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Abstract

We investigate static and contextualized embed-
dings for English pseudowords across a variety
of Large Language Models (LLMs), to study (i)
how these models represent semantic attributes
of strings they encounter for the very first time
and how (ii) these representations interact with
sentence context. We zoom in on a key seman-
tic attribute, valence, which plays an important
role in theories of language processing, acquisi-
tion, and evolution. Across three experiments,
we show that pseudoword valence is encoded
in meaningful ways both in isolation and in
context, and that, in some LLMs, pseudowords
affect the representation of whole sentences
similarly to words. This highlights how, at least
for most LLMs we surveyed, pseudowords and
words are not qualitatively different constructs.
Our study confirms that LLMs capture system-
atic mappings between form and valence, and
shows how different LLMs handle the contextu-
alisation of pseudowords differently. Our find-
ings provide a first computational exploration
of how sub-lexical distributional patterns in-
fluence the valence of novel strings in context,
offering useful insights for theories on the form-
meaning interface and how it affects language
learning and processing.

1 Introduction

Recently, a few studies have focused on pseu-
dowords – phonotactically legitimate strings in a
language which however lack conventional mean-
ing –, uncovering a rich web of associations be-
tween sub-lexical patterns and semantic dimen-
sions (Westbury et al., 2017; Gatti et al., 2024b;
Joosse et al., 2024; Gatti et al., 2024a; Cassani
et al., 2020; Sabbatino et al., 2022). This perspec-
tive blurs the distinction between pseudowords and
words (Hendrix and Sun, 2020; Gatti et al., 2022;
de Varda et al., 2024; Ryskina et al., 2020): from a
learning perspective, every word a speaker knows
used to be a pseudoword. However, the first time

speakers experienced a novel word, it likely ap-
peared in context (Savic et al., 2022; Chaffin et al.,
2001). Nonetheless, no study has yet considered
how sentence context influences the semantic con-
notations of entirely novel words.

We aim to start exploring the interplay between
systematic form-meaning mappings and linguistic
context, relying on computational analyses of cur-
rent LLMs. How is lexical meaning constructed for
novel words upon first encounter? What role does
the linguistic form of words play in the process, if
any? How does it interact with context, which is
a key source in learning novel words (Savic et al.,
2022; Lazaridou et al., 2014; Chaffin et al., 2001)?

In addressing these questions, we rely on evi-
dence that has challenged the notion of arbitrary
form-meaning mappings (Hockett, 1960). Many
studies have observed sound symbolic associations
(Köhler, 1929; Sapir, 1929) in typologically di-
verse languages (Winter et al., 2022; Ćwiek et al.,
2022; Blasi et al., 2016). These observations sup-
port the notion that form-meaning mappings are
best characterized as at least partly systematic (Pi-
mentel et al.; Blasi et al., 2016; Dingemanse et al.,
2015; Sidhu and Pexman, 2018). The extent to
which systematicity documented in isolated words
and pseudowords interacts with the semantics of
co-occurring words is an open question we aim to
address in this work.

We present three experiments which investigate
pseudowords by focusing on a specific semantic
attribute, i.e., valence, which characterizes words
by how positive or negative they are. Theoretically,
this semantic dimension has been identified as a
critical axis along which both people and language
models structure semantic representations (Osgood
et al., 1957; Westbury et al., 2024). Practically,
large datasets of human ratings for both words and
pseudowords are available for this specific seman-
tic dimension, making it a viable starting point to
investigate how semantic connotations of entirely
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novel words interact with sentence context. Our
first experiment focuses on static representations
learned by different LLMs and how well they cap-
ture human ratings of pseudoword valence. The
second experiment studies how such static represen-
tations are affected by co-occurring words. Finally,
the last experiment investigates how pseudowords
influence sentence representations. Our study pro-
vides the following key contributions:

LLMs capture pseudowords’ valence: we see a
sizable correlation between human valence
ratings and static embeddings produced by all
LLMs for pseudowords, confirming that the
tokenization in part-words allows LLMs to
encode form-meaning mappings.

Systematicity interacts with context: LLMs be-
have differently, but two cognitively sensi-
ble patterns emerge. Some models are only
influenced by co-occurring words, discount-
ing form-related information; others are in-
fluenced by both, suggesting that upon first
encounter, pseudowords might retain valence
associations conveyed by the linguistic form.

Pseudowords affect sentence representations:
across models, the valence of sentences is
systematically influenced by pseudowords.
Moreover, the influence of pseudowords is
similar to that of words, strengthening the
hypothesis that words and pseudowords are
not qualitatively distinct.

2 Experiment 1: Static representations of
novel words

We replicate the design from Gatti et al. (2024a),
investigating to what extent the static representa-
tions that five LLMs learn for pseudowords encode
valence in line with human intuitions.

2.1 Materials & Methods
We use the 1,500 English pseudowords from Gatti
et al. (2024a) rated for valence using a best-worst-
scaling paradigm, and the valence norms collected
by Warriner et al. (2013) for more than 13,000
English words. Ratings for both words and pseu-
dowords are on a continuous scale. Following Gatti
et al. (2024a), we train a linear regressor to pre-
dict the valence of words, encoded in a variety
of ways1. The trained regressor is then applied

1All materials used in the analyses are supplied at this link:
https://osf.io/aeygc/.

to pseudowords to get a predicted valence rating,
which is correlated with the human ratings. This
design ensures that valence is construed in the same
way for words and pseudowords, strengthening the
analysis’ validity.

Following Gatti et al. (2024a), we re-implement
the letter uni-gram model, yielding 26-dimensional
vectors where each position stores the frequency
of an English lowercase letter in a target string.
Moreover, we replicated the FastText (Bojanowski
et al., 2017) model, encoding each string as the 300-
dimensional vector from a custom FastText model
trained on the Corpus of Contemporary American
English (CoCA Davies, 2010) using 2- to 5-grams.
Unlike the original study, though, we use Ridge
Regression to better account for the large dimen-
sionality of input vectors (the best hyper parameter
values are available in Table 2 in Appendix A).

We tested five LLMs, accessed using Hugging-
Face (Wolf et al., 2020), encompassing a variety of
architectures. BERT-EN(glish), in its base config-
uration, (Devlin et al., 2019) is an encoder model
which has been extensively used for a variety of
tasks, including the investigation of pseudowords’
semantics (de Varda et al., 2024). Multilingual
BERT (M-BERT, Devlin et al., 2019) offers a mul-
tilingual variant: if systematic mappings between
word form and meaning are cross-linguistic (Blasi
et al., 2016), a model which learns from multiple
languages is expected to better leverage such map-
pings. RoBERTa (Zhuang et al., 2021) is a variant
of the BERT model, which has also been used to in-
vestigate pseudowords’ semantics (de Varda et al.,
2024). Moreover, we considered two autoregres-
sive models, GPT-2 Medium (Radford et al., 2019)
and LLaMa 3.2 (Grattafiori et al., 2024). These
models, and the comparison with the previous ones,
allow us to investigate how pseudowords’ represen-
tations change between autoregressive and Masked
Language Models (MLMs).

For each word and pseudoword, we extracted the
corresponding static embedding2, before positional

2For GPT2 and RoBERTa, we prepended a white space
to each string when extracting static embeddings, since this
affects tokenization: for example, ‘wonderful’ is tokenized as
[‘w’, ‘onder’, ‘ful’] whereas ‘_wonderful’ (with _ indicating
a white space for better clarity) is tokenized as [‘Ġwonderful’];
the pseudoword ‘brogmub’ would be tokenized as [‘b’, ‘rog’,
‘m’, ‘ub’] while ‘_brogmub’ [‘Ġbro’, ‘gm’, ‘ub’], with differ-
ences not just in the first token, but also in the resulting tokens
within the pseudoword. This is important to ensure consis-
tency throughout our experiments, since in Experiments 2 and
3 pseudowords will be embedded in sentences and preceded
by a white space.
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Model All pseudowords Lowest 25% Highest 25% Challenging set

Letter unigrams
0.411; p <.001
[0.368, 0.452]

0.188; p <.001
[0.089, 0.284]

0.100; p = 0.053
[-0.001, 0.199]

0.549; p <.001
[0.466, 0.623]

FastText
0.287; p <.001
[0.239, 0.332]

0.168; p <.01
[0.068, 0.265]

0.138; p <.01
[0.038, 0.236]

0.299; p <.001
[0.194, 0.397]

BERT-EN
0.344; p <.001
[0.298, 0.388]

0.255; p <.001
[0.158, 0.347]

0.132; p <.05
[0.031, 0.230]

0.331; p <.001
[0.228, 0.427]

M-BERT
0.364; p <.001
[0.319, 0.407]

0.249; p <.001
[0.152, 0.342]

0.187; p <.001
[0.088, 0.283]

0.381; p <.001
[0.281, 0.472]

RoBERTa
0.377; p <.001
[0.332, 0.419]

0.270; p <.001
[0.174, 0.361]

0.102; p = 0.051
[0.000, 0.201]

0.365; p <.001
[0.264, 0.460]

GPT2-Medium
0.333; p <.001
[0.287, 0.377]

0.187; p <.001
[0.087, 0.283]

0.169; p <.01
[0.069, 0.265]

0.303; p <.001
[0.198, 0.401]

LLaMa3.2
0.409; p <.001
[0.366, 0.450]

0.303; p <.001
[0.208, 0.392]

0.122; p <0.05
[0.021, 0.221]

0.385; p <.001
[0.285, 0.476]

Table 1: Spearman rank correlation coefficients, between human ratings and model predictions based on static
representations for various models and subsets of pseudowords. The best model for each subset of pseudowords is
in bold, the second best in italic. 95% Confidence Intervals are provided in brackets. p-values are reported next to
each correlation coefficient.

encoding is added. This representation is entirely
context independent. When a string consists of
multiple tokens - hence for all pseudowords - we
averaged the embeddings of the relevant tokens.

We evaluate the pseudowords’ representations
each model produces by computing the Spearman
correlation (which avoids the assumption of a lin-
ear relation between observed and predicted val-
ues) between human and model-predicted valence
ratings for the entire set of pseudowords. More-
over, we zoom in on three particularly relevant
subsets of pseudowords. First, we consider the
25% most negative pseudowords according to hu-
man ratings: previous studies have suggested that
systematic form-meaning mappings may be partic-
ularly useful in quickly signaling negative valence
as an adaptive mechanism (Adelman et al., 2018;
Louwerse and Qu, 2017). Second, we zoom in on
the pseudowords in the 25% most positively rated
pseudowords. This probes whether model can cap-
ture differences between extremely negative and
somewhat negative(positive) pseudowords beyond
capturing differences between negative, neutral and
positive pseudowords, offering a more fine-grained
evaluation. Finally, the pseudowords in Gatti et al.
(2024a) were created using Wuggy (Keuleers and
Brysbaert, 2010), which creates pseudowords start-
ing from actual words and permuting characters
following phonotactic rules. This poses a prob-
lem in our study. Consider the pseudoword tou-
tured, clearly derived from tortured. When asked

to determine its valence, a participant might rate
the closest match instead - a process which ap-
pears to have been at play considering that Gatti
et al. (2024a) found that a model predicting a pseu-
doword’s valence based on the valence of the word
at the lowest edit distance yields a sizable correla-
tion. It is however questionable whether the rating
for toutured actually constitutes the rating of a pseu-
doword, given the presence of a such a distinct and
precise nearest neighbor based on word form. To
zoom in on ratings provided for less transparent
pseudowords, we created a subset consisting of
pseudowords with no neighbors at an edit distance
1 and at least 3 neighbors at edit distance 2 in the
SUBTLEX-US dataset (74,286 words) (Brysbaert
et al., 2012). This was done to minimize the chance
that participants resorted to the same closely match-
ing word when rating a pseudoword’s valence. This
set, which we term the challenging set, consisted
of 309 pseudowords.

2.2 Results

In Table 1, we see that letter uni-grams outper-
form other approaches on the full set, with a larger
margin on the challenging set. However, when fo-
cusing on the tails of the distribution, the neural
models emerge as very competitive, even though
performance declines substantially, especially for
the pseudowords rated as most positive. It is hard
to identify consistent trends across neural mod-
els, since all embed pseudowords in a way which
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is largely consistent with human ratings, with no
systematic differences between MLMs and autore-
gressive models. LLaMa 3.2 shows strong perfor-
mance across all evaluation sets, topping the chart
for negatively perceived pseudowords and show-
ing strong performance on all pseudowords and on
the challenging set. In Appendix A, we provide
scatter-plots of predicted versus observed values
for all transformer models to better characterize
the relation. Here we see that models can gener-
ally differentiate between negatively and positively
perceived pseudowords, but struggle more with
differentiating pseudowords with extreme valence
ratings from pseudowords with moderate valence
ratings in the same direction.

2.3 Discussion
In line with Gatti et al. (2024a), letter uni-grams
emerged as the best featurization to capture hu-
man valence ratings produced for isolated pseu-
dowords. When zooming in on pseudowords which
do not closely resemble a specific existing word,
this advantage grew. However, when we consid-
ered the tails of the distribution, focusing on the
pseudowords in the top and bottom quartiles, we
observed that neural models emerged as the best
performing models, better capturing subtler differ-
ences among pseudowords with similar perceived
valence. Our results, hence, dovetail with observa-
tions from Haslett and Cai (2024) that part-words
reliably encode meaning even when they do not
reflect morphemes: we further show that such part-
words provide representations that reflect human
intuitions on the valence of entirely novel strings.

The focus on the tails of the valence distribution
also highlights that it is easier to capture negative
than positive valence ratings. This aligns with mul-
tiple observations that non-arbitrary mappings en-
code negative emotions more strongly (Adelman
et al., 2018; Louwerse and Qu, 2017), in line with
an adaptive account of form-meaning systematic-
ity. In this view, the role of non-arbitrariness is
to facilitate the communication of important mes-
sages through statistically reliable correlates in
word form. If we use a word whose meaning our
interlocutor does not know, we can still communi-
cate negative emotions through systematic form-
meaning correspondences, and thus elicit the ap-
propriate response.

Finally, we see an advantage for LLaMa 3.2,
which is a multilingual model with a comparatively
large vocabulary. This suggests that systematic

mappings apply cross-linguistically (M-BERT also
shows a rather strong performance, especially on
the tails of the distribution). Moreover, the large vo-
cabulary hints to the possibility that form-meaning
mappings matter most in low-frequency words.

3 Experiment 2: How novel words are
represented in context

After establishing that all LLMs represent isolated
pseudowords reflecting human ratings on pseu-
dowords’ valence, we turn to investigate how pseu-
dowords’ representations encoded by these models
are affected by co-occurring words. How do they
morph, if they do at all, when context kicks in? Do
they change entirely according to the other words
they co-occur with or do they maintain a stable,
even if somewhat blurry, semantics?

3.1 Materials & Methods

We constructed 100 sentence templates using words
with valence norms from Warriner et al. (2013), in
order to span the whole valence spectrum from very
negative to very positive sentences. We identified
sets of 4 or 5 words with similar valence and fed
them to GEMMA (Team et al., 2024) with the in-
struction to create sentences of at most 10 words,
without negation nor irony. Other content words
were kept to a minimum and only used when nec-
essary to form fluent sentences3 Sentences were
reviewed manually and modified to have an open
slot at the end, to be filled by a noun.

We then randomly sampled 514 pseudowords
from the challenging set to have a uniform distri-
bution of valence ratings and avoid that results are
entirely driven by the bulk of pseudowords with
no clear perceived valence. We then plugged each
pseudoword in each sentence template, generating
a total of 5,100 sentences, and derived the fully
contextualized embedding of each pseudoword in
each sentence.

We feed each contextualized pseudoword em-
bedding to the same regressor trained in Exper-
iment 1 used to obtain the predicted valence of

3For example, given the words [nauseating, stench, trashy,
slaughterhouse] which all share similarly negative valence
ratings, we created the sentence A nauseating stench from the
trashy slaughterhouse created a lot of [open slot]., where the
verb created was needed to have a fluent sentence even though
it did not belong to the original set of similarly rated words:
in all these cases we used neutral words as much as possible.

4This is the number that yields the largest uniform distri-
bution given the valence ratings of the pseudowords in the
challenging set.
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(a) BERT-EN
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(b) M-BERT
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(c) RoBERTa
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(d) GPT-2 Medium
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(e) LLaMa3.2 1B

Figure 1: Tensor products from GAMMs fitted to the difference between pseudoword valence predicted from static
and contextualized embeddings, predicted using a Ridge Regressor trained on word valence (see Experiment 1).

pseudowords in isolation, obtaining the predicted
valence for a contextualised pseudoword. The use
of a same probe to make inferences on representa-
tions from different layers is consistent with studies
investigating the internal representations of LLMs
(Kuribayashi et al., 2025) — we further discuss this
choice in Appendix B. We then subtracted an iso-
lated pseudoword’s predicted valencefrom the same
pseudoword’s predicted valence when plugged in
each sentence, obtaining 100 differences per pseu-
doword. Positive differences indicate that the pre-
dicted valence was higher when a pseudoword ap-
peared in the sentence, and thus that the sentence
context made the pseudoword more positive.

This difference was entered as the dependent
variable in a Generalized Additive Mixed Model
(GAMM, Baayen et al., 2017), including pseu-
doword valence and sentence template valence
(computed as the average valence rating of the
words used to generate a sentence) as simple non-
linear smooths and their interaction as a partial ten-
sor product. We also included random intercepts
for sentence templates and pseudowords.

If pseudowords’ representations are malleable,
we should observe that the difference only depends
on sentence template’s valence: the more positive
the sentence, the more a pseudoword will become
positive. However, if the context and the pseu-

doword interact and thus pseudowords retain at
least some of the semantics they encode in isolation
when used in context, we should observe a signifi-
cant effect of pseudoword valence and a significant
partial tensor product. We expect a higher differ-
ence when a very negative pseudoword is plugged
into a very positive sentence, reflecting the shift
a pseudoword undergoes, from its original nega-
tive connotation to a more positive one (vice versa
for negative differences). If the original valence
of a pseudoword and that of the sentence template
match, the difference should be close to 0.

3.2 Results

The analysis highlights distinct patterns across
models, visible in Figure 1 which shows the tensor
products5. Orange shades indicate higher predicted
differences, blue shades indicate lower predicted
differences6, with red lines connecting predictions
of the same magnitude. The plots combine the
main effects and interactions in a single visualiza-
tion showing the predicted values.

For M-BERT, GPT2 and LLaMa 3.2 the main
5All regression coefficients and plots for all smooths and

tensor products are available in Appendix B, Table 3.
6The scale is specific to each plot, so orange can indicate

negative differences and blue can indicate positive differences
in different plots: what is constant is that orange denotes
higher predicted differences than blue within a same plot.
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effect of sentence valence and the tensor product
significantly influenced the predicted difference,
whereas pseudoword valence did not. These mod-
els show a clear pattern whereby the target differ-
ence is predominantly influenced by sentence va-
lence: when a sentence features negative words, the
representation of any pseudoword becomes more
negative, while the opposite happens when the sen-
tence is positive. A slight yet significant non-linear
interaction with pseudoword valence in M-BERT,
visible in the bottom right corner of the plot, shows
that the representations of negatively perceived
pseudowords require more positive templates to
become more positive.

RoBERTa shows the closest pattern to our ini-
tial hypothesis and is the only model where pseu-
doword valence significantly influences the target
difference and interacts with sentence valence. The
tensor product shows how the predicted target dif-
ference is positive when negatively rated pseu-
dowords are plugged in sentences consisting of
positive words, and negative in the opposite situa-
tion. Therefore, across RoBERTa’s attention blocks
and layers, an initially negative pseudoword grows
more positive if plugged in a positive sentence (re-
sulting in a positive target difference), and vice
versa, a positive pseudoword becomes more nega-
tive in a negative sentence (resulting in a negative
target difference).

BERT-EN shows no significant main effect but a
significant non-linear interaction which is however
hard to interpret and may depend on the specific
pseudowords and sentence templates used.

3.3 Discussion
This experiment reveals a predominant pattern in
how neural language models contextualise pseu-
dowords, whereby the dominant force is the sen-
tence context: any pseudoword, when plugged into
a negative sentence, is represented more negatively,
and vice versa for positive sentences. Therefore, de-
spite the fact that all models produced static embed-
dings for pseudowords which correlated with hu-
man valence ratings, the semantics of pseudowords
appears to be largely malleable. Non-linear in-
teractions with pseudoword valence are present,
suggesting that pseudowords are not completely
inert, but visual inspection of the tensor products
clearly shows how sentence valence is by far the
main driver.

RoBERTa, on the contrary, deviates from this
pattern: pseudowords retain most of their valence

connotation, and sentence templates make them
shift most when the valence encoded in the pseu-
doword and that coming from the context clash.

Both patterns fit with possible cognitive accounts
of pseudoword processing. The former predicts
that pseudowords, while encoding valence in iso-
lation, are so weak that context fully dictates their
interpretation. The latter, on the contrary, predicts
that pseudowords are strong enough to retain some
of their valence even when processed in a sentence.
It is interesting to note that the two multilingual
models, M-BERT and LLaMa 3.2, which produced
very strong correlations with human ratings when
considering static embeddings, rely heavily on sen-
tence context to shape the representation of those
same strings in context. Speculatively, these mod-
els might have better picked up systematic form-
meaning mappings while also learning to disregard
those when context is available, since the same sub-
word tokens must encode radically different conno-
tations depending on the co-occurring ones across
languages. Further studies should consider the spe-
cific sub-lexical tokens used to encode words and
pseudowords and how their representations shift in
contexts changing in language and valence.

To sum up, we have seen that despite the fact
that all LLMs exhibited a sizable correlation with
human ratings of isolated pseudoword valence, they
embed pseudowords differently in context.

4 Experiment 3: How novel words affect
sentence embeddings

In this last experiment, we investigate to what ex-
tent the valence encoded in pseudowords alters the
representation of whole sentences. Once again, if
pseudowords retain any of the semantics they en-
code when considering their static embeddings, we
expect that sentence valence should change when
sentences include different pseudowords. We fur-
ther consider what happens when plugging words
with different valence ratings in the sentences: in-
tuitively, the word plague should make a sentence
containing positive words such as We were all in-
credibly happy to celebrate the funny [open slot].
quite less positive. Will the same happen for a
negatively rated pseudoword like puyfred?

4.1 Materials & Methods

We used the same 100 sentence templates con-
structed for Experiment 2. For each of the five
target LLMs we retrieved the 10 likeliest words
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to fill the open slot that have a neutral valence in
Warriner et al. (2013)’s dataset. We thus generated
1,000 sentences (10 for each template), which each
model considers at least somewhat probable and
where the word filling the open slot does not have
a clear valence. We then derived a sentence embed-
ding7 for each of the 1,000 sentences. In all cases,
we used the embedding at the last layer, reflecting
full integration of sentential context. Thus, we ob-
tained 1,000 sentence embeddings, each derived
from a sentence template designed to have a spe-
cific valence. We then trained a Ridge Regressor to
predict the average valence of each template given
the sentence embedding.

In order to ensure a robust pipeline, we used two
different 10-fold cross-validation procedures (the
pseudo-code for both is available in Appendix C).
In the first, each fold contained 10% of the sen-
tences derived from each template (so 1 sentence
from each template per fold). A Ridge Regressor
was trained on sentence embeddings from all sen-
tence templates (each appearing 9 times, each time
with a different filler word) and used to predict
the sentence valence given a sentence embedding
derived from the same templates featuring a differ-
ent filler. In the second CV pipeline, instead, each
fold contained 10% of the templates, each with all
the 10 sentences derived from it. This time the
regressor was used to predict the average valence
of entirely different sentence templates. Unsur-
prisingly, the latter proved more challenging, with
higher Root Mean Squared Error and lower correla-
tion between predicted and true template valence –
results are detailed in the Supplementary Materials.
However, since both approaches yield qualitatively
similar results, we only show the former here and
present results for the latter in Appendix C.

During training we thus obtained 10 different
regressors, one per fold, each used to predict the
valence of a specific sentence from a sentence tem-
plate. We averaged these predictions to get an av-
erage predicted valence of the template. Then, we
derived sentence embeddings for each of the 5,100
sentences resulting from crossing pseudowords and
sentence templates. We used all 10 trained regres-
sors to get a predicted valence for each sentence
and averaged the 10 predictions. We are interested
in what changes between completing templates
with neutral words versus pseudowords of different

7With BERT-EN, M-BERT, and RoBERTa we used the
embedding of the CLS token; for auto-regressive models we
averaged the word embeddings of each token in a sentence.

valence. We thus subtracted (1) the average pre-
dicted valence of a sentence template completed
with neutral words from (2) the predicted valence
of a sentence template featuring a pseudoword, av-
eraged over the predicted ratings obtained from
the 10 regressors trained during cross-validation.
Positive differences indicate that the predicted sen-
tence valence is higher when the sentence template
includes a pseudoword, and vice versa.

This difference was entered as the dependent
variable in a GAMM, with the same structure as
detailed for Experiment 2. Once again, we are
interested in the pseudoword valence main effect
and in partial tensor product. If pseudowords’ rep-
resentations are robust, we expect that a negative
pseudoword should trigger a more negative differ-
ence when plugged into a positive sentence, and
vice versa for positive pseudowords.

Finally, we replicated the entire pipeline using 51
words sampled to have a uniform distribution over
valence ratings from Warriner et al. (2013), exclud-
ing words used to create sentences in the first place,
to investigate whether words and pseudowords af-
fect sentence templates differently. Detailed results
are provided in Appendix C.

4.2 Results

All LLMs show the same pattern, with minor dif-
ferences in the exact shape and magnitude of the
effects. Figure 2 displays the tensor products for
all models except BERT-EN, which exhibited a
weird pattern in the previous experiment8 Figure 3
shows what happens with real words instead of
pseudowords.

M-BERT and GPT-2 show very consistent pat-
terns between words and pseudowords, with sen-
tence embeddings becoming more negative when
negative (pseudo)words are plugged into positive
sentences. The effect of (pseudo)word valence
is robust, with sentences becoming more positive
when (pseudo)words grow more positive. Pre-
dictably, the effect of word valence is stronger
than that of pseudoword valence, suggesting that
these models encode words’ semantics more reli-
ably than pseudowords. This pattern dovetails with
results from the previous experiment.

RoBERTa and LLaMa, on the contrary, show
less consistent patterns: in both models, the most
important predictor is sentence valence, although

8All smooths and tensor product visualizations for both
CV pipelines are provided in Appendix C.
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(c) GPT-2 Medium
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(d) LLaMa 3.2 1B

Figure 2: Tensor products between the pseudoword valence and sentence template valence from GAMMs fitted to
the difference between (a) valence predicted from sentence embeddings derived from template filled with neutral
words and (b) template filled with pseudowords of different valence.
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(d) LLaMa 3.2 1B

Figure 3: Tensor products between the pseudoword valence and sentence template valence from GAMMs fitted to
the difference between (a) valence predicted from sentence embeddings derived from template filled with neutral
words and (b) template filled with pseudowords of different valence.

there are strong non-linear interactions with pseu-
doword valence that make interpretations difficult.

4.3 Discussion

In this experiment, sentence template valence plays
an important role, which is expected since we an-
alyzed sentence embeddings. Nonetheless, pseu-
doword valence also exerts a strong influence in
most models: it is remarkable that even changing
a single item in the sentence has such a systematic
influence on the valence encoded by the sentence
embedding. It is even more remarkable considering
that (i) we are manipulating pseudowords, with no
specific meaning profile the model can recognize,
and (ii) a similar qualitative pattern emerges when
replacing pseudowords with words.

The pattern observed for M-BERT and GPT-2 is
surprising considering that in Experiment 2 the con-
textualized pseudoword representations they pro-
duced were almost entirely dictated by the sentence
template. It is interesting then to see that the ef-
fect goes both ways: pseudoword representations
change because of context (Experiment 2) but leave
a trace that affects context as well (this experiment).

Even though pseudowords are entirely new, the
tokens used to encode them appear to carry sta-
ble valence information that attention heads do not
wash out: it is not enough to describe a pseudoword
perceived to be negative as cute to fully convince an

LLM. A positive sentence about a cute something,
will be (slightly) more negative if that something
is labeled as a puyfred, attesting to robust form-
valence mappings. In general, the presence of a
pseudoword with negative valence in a positive
sentence slightly shifts the sentence’s overall va-
lence, demonstrating that these models pick up on
form-meaning mappings.

5 General Discussion

Across three experiments, we showed that several
LLMs are sensitive to non-arbitrary form-valence
mappings in the input text. In Experiment 1, we
assessed to what extent the static embeddings each
model assigns to pseudowords capture valence in
line with human ratings. In Experiment 2 we ex-
plored how such representations are contextualized,
systematically varying the valence of co-occurring
words. Finally, in Experiment 3, we investigated
the trace that different pseudowords leave in sen-
tence embeddings derived from sentences manip-
ulated to consist of words with different valence.
In this endeavor we leveraged gold standard hu-
man valence ratings for both words (Warriner et al.,
2013) and pseudowords (Gatti et al., 2024a).

Experiment 1 showed that all models develop
representations that capture human ratings across
a number of evaluation sets which targeted pseu-
dowords with extreme ratings (either very positive
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or very negative) as well as pseudowords with no
clearly similar words that might have functioned
as attractors and influenced the rating. While let-
ter unigrams top the chart when considering all
pseudowords, they fail to capture differences in per-
ceived valence across positive and negative pseu-
dowords. On the contrary, neural models fare bet-
ter, particularly LLaMa 3.2 1B. Our evaluation thus
complements and further qualifies findings from
Gatti et al. (2024a), highlights the importance of
using appropriate and informative evaluation sets,
and speaks to the tension between single letters
and broader systematic patterns in language when
considering the semantic connotations elicited by
entirely novel strings (Sabbatino et al., 2022; Gatti
et al., 2022; Joosse et al., 2024; Sidhu and Pexman,
2018; Westbury et al., 2017). The slight yet con-
sistent advantage of multilingual models further
suggests that systematic form-meaning mappings
may be partly cross-linguistic (Blasi et al., 2016;
Ćwiek et al., 2022), benefiting a model which is
not limited to learn from English form-meaning
patterns. At the same time, Experiment 2 shows
that M-BERT and LLaMa discard pseudowords’
valence when these appear in context, possibly in-
dicating that a model trained on multiple languages
learns to downplay information coming from the
make-up of a new word to prioritize contextual
information, highlighting a tension between sys-
tematicity and arbitrariness across languages.

Our results further highlight the role of sub-word
tokenization in LLMs (Kudo et al., 2024). FastText
(Bojanowski et al., 2017) has been extensively used
to gauge the likely meaning of novel strings thanks
to its decomposition of every string into its con-
stituent, overlapping n-grams (Gatti et al., 2022;
Hendrix and Sun, 2020; Joosse et al., 2024; Sab-
batino et al., 2022). Sub-word tokenization offers
an alternative approach, which splits only less fre-
quent words into non-overlapping segments: this
study confirms that part-words do encode system-
atic form-meaning mappings (de Varda et al., 2024;
Cai et al., 2024). Haslett (2025) has explored the
role of part-words produced by sub-lexical tok-
enization in shaping representations considering
semantic radicals in Chinese: a model’s vocabu-
lary, and hence the degree to which it segments
word forms into part-words, has direct influences
on the representations the model produces, under-
scoring how form-meaning mappings play an im-
portant role in LLMs. Future work should further
investigate differences between these two strate-

gies (overlapping n-grams from any string versus
non-overlapping tokens derived only from those
strings that the model does not store as whole
words) in capturing non-arbitrary form-meaning
relations. The performance of LLaMa — a mul-
tilingual model, with a large vocabulary — hints
to the possibility that learning form-meaning map-
pings from low-frequency words only might pro-
vide more signal.

Finally, our evidence points to small yet sys-
tematic effects of both the perceived valence of
a pseudoword and the valence of the words it co-
occurs with, with two profiles emerging. On the
one hand, M-BERT, GPT-2 and LLaMa 3.2 almost
exclusively rely on sentence context to represent
pseudowords in context (Savic et al., 2022). On the
other hand, RoBERTa is predominantly sensitive to
the valence of the pseudoword itself but is also in-
fluenced by the valence of co-occurring words. At
the same time, in some models, sentences tend to
absorb the valence of pseudowords, which emerge
as having a sufficiently strong semantics to survive
the contextualisation process. It is in this sense
telling that the effect found when using words of
varying valence instead of pseudowords is similar,
showing that some LLMs consider novel strings
consisting of part-words akin to words. This fits
with behavioral evidence showing semantic effects
for pseudowords in (primed) lexical decision tasks
(Hendrix and Sun, 2020; Gatti et al., 2022), suggest-
ing the existence of a shared cognitive encoding of
words and pseudowords.

Future work should focus on collecting behav-
ioral data from speakers of typologically distinct
languages to understand how humans process pseu-
dowords in context. Our results provide principled
predictions about how novel words might be repre-
sented in context, to further study how our cogni-
tive system deals with this very common situation.
Especially during acquisition, most words are akin
to pseudowords for learners (Cassani et al., 2020;
Cassani and Limacher, 2021). Understanding how
humans as well as cutting edge NLP models han-
dle the ever present situation of quickly having to
encode an entirely novel string in context and de-
rive flexible and generalizable representations is an
important step in the process of modeling human
and artificial language learning (Weissweiler et al.,
2023), which will further aid in developing theo-
ries of how linguistic form interfaces with meaning
to shape this process (Sidhu and Pexman, 2018;
Monaghan et al., 2014).
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6 Limitations

This study has a few notable limitations which nar-
row the generalisability of the findings. First, the
study only considers English pseudowords plugged
in English sentences. This choice is primarily dic-
tated by which resources are available, with large
databases of valence ratings for both words and
pseudowords being currently only available for En-
glish. This evidently limits the scope of our find-
ings and leaves several questions open. Closely re-
lated, valence is certainly an important dimension
of meaning, but does not encompass meaning: fu-
ture studies should investigate whether the patterns
we observed also apply to other salient semantic
connotations.

Moreover, the lack of human behavioral data
about processing of pseudowords in context lim-
its the scope of our findings. At this stage, we
can only describe what different LLMs do, but not
yet adjudicate which model behavior more closely
reflects human behavior. Such data would be cru-
cial to develop cognitive theories of how linguistic
form and sentence context affect the first stages
in the process by which lexical meaning develops
and becomes entrenched in semantic memory. At
the same time, a comparison with human behavior
would allow to understand which learning mecha-
nisms deployed in language models are responsible
for the encoding of pseudowords’ semantic associ-
ations and their update in context. Crucially, we do
not assume that a model whose behavior fits that
of humans is necessarily human-like. We see and
study these models as powerful information pro-
cessing systems that can illuminate the presence
and possible influence of statistical patterns in the
input. Observing similar patterns of behavior in
models and humans can then point to interesting
directions to better chart how both behave and un-
cover fundamental similarities and differences in
learning mechanisms and how they leverage input
information.

Another limitation has to do with the fact that we
probed text-based models and written pseudowords.
Exploration of systematicity in spoken and signed
pseudowords would be necessary to develop pre-
cise theories of how meaning is constructed in con-
text for novel, word-like signs.

Tied to the issue of the role of form-meaning
mappings, our study assumes a full-fledged vocabu-
lary: the question of whether developmentally plau-
sible vocabularies in terms of size and content also

support stable and useful systematic form-meaning
mappings remain open and cannot be answered
based on our simulations.

Related to data availability, we relied on word
valence ratings collected approximately 15 years
ago. We believe it is unlikely that the valence of a
substantial part of the words in this dataset shifted
in this time period, but more recent ratings would
improve the validity of the estimates and the mod-
eling.

7 Ethical statements

This work uncovers possible biases in LLMs repre-
sentations that bear relevance in the following areas.
First, because of sub-lexical semantic associations,
these models may encode certain names differently
than other, with cascading effects. Second, for the
same reason, this study shows how LLMs could be
leveraged to craft product and brand names with
specific semantic associations that could influence
people’s behavior in subtle ways.

The use of automatically generated sentences in
Experiments 2 and 3 could pose ethical concerns,
which we tried to mitigate by manually reviewing
all sentences before using them.

Finally, the pseudoword and word valence rat-
ings were made freely accessible by the authors:
no license was stated for either dataset. No dataset
used in this study contains unique identifiers that
could disclose personal identities.
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A Details over Experiment 1

Table 2 shows the best α for the Ridge Regressors
trained on each feature representation in Experi-
ment 1. For all models, we explored the following
values: [0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100].

The LLMs we used have the following num-
ber of parameters. BERT-EN: 110M; M-BERT:

Model Best Alpha
Uni-grams 100
FastText 50
LLama 3.2 10
GPT-2 Medium 10
BERT-EN 10
M-BERT 10
RoBERTa 10

Table 2: Best alpha values and explored hyperparameter
ranges for Ridge Regressors across different models.

110M; RoBERTa: 125M; GPT-2: 345M; LLaMa
3.2: 405B. All experiments were run using Google
COLAB, with runtime set to NVIDIA A100 GPU,
and a virtual machine equipped with NVIDIA RTX
A4500 GPU. The amount of computing hours used
in all phases of this project totals around 250 hours.
Running the computational simulations used to pro-
duce the results reported takes less than 1 hour for
all three experiments on the NVIDIA RTX A4500,
provided that one has embedded all words, pseu-
dowords, and sentences.

B Details over Experiment 2

We argue an important design choice in our ex-
periment consists in training a single regressor on
static embeddings and use it to make inferences for
both static and contextualised embeddings, as this
allows to model the direct influence that sentence
context exerted on the representations. This ap-
proach is attested in the literature, with approaches
like logitlens. Evidently, though, for this approach
to be tenable, the two embedding spaces need to
be directly comparable and not a rotation of each
other. For models trained with weight-tying, this
is built-in. For models trained with independent
embedding and un-embedding matrices, this is not
a guarantee. To ensure that BERT models satisfy
the requirement of having comparable embedding
spaces at different layers despite the many linear
and non-linear transformations, we conducted the
following experiment.

First, we harvested ∼25k words from different
psycholinguistic resources to collate a represen-
tative sample, and for each we derived the static
embedding, wstatic, using BERT-base. Then, we
fetched 50 sentences from the Corpus of Contem-
porary American English (CoCA) for each word,
and derived the contextualised word embedding
(CWE) of the target word in each sentence, w12,
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(a) Predicted-observed scatter-plots for the BERT-EN model.
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(b) Predicted-observed scatter-plots for the M-BERT model.
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(c) Predicted-observed scatter-plots for the RoBERTa model.
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(d) Predicted-observed scatter-plots for the GPT-2 Medium model.
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(e) Predicted-observed scatter-plots for the LLaMa3.2 model.

Figure 4: Scatterplots showing the relation between observed and predicted valence ratings in different models over
different evaluation sets (from left to right: all pseudowords, the 25% pseudowords with lowest observed ratings,
the 25% pseudowords with the highest observed ratings, the pseudowords in the challenging set.

obtaining 50 CWEs per word. We then averaged
the 50 w12 vectors for a same word to obtain
a prototype vector for each word, wproto. For
each wstatic, we retrieved its 10 nearest neighbors
among the 25k prototype embeddings, embedded at
layer 12, 10nnstatictoproto. Then we retrieved the
10 nearest neighbors of each prototype embedding
among the 25k available prototype embeddings,

10nnproto−to−proto. Given the embeddings and
the nearest neighbors, we then computed (i) how
often the top nearest neighbor of wstatic among
10nnstatic−to−proto is the word itself and (ii) the
Jaccard coefficient between 100nnstatic−to−proto

and 10nnproto−to−proto, indicating how many of
the nearest neighbors are shared between wstatic

and wproto. If the embedding spaces are not
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aligned, the prototype embedding of a word should
not be the nearest neighbor of its static representa-
tion and the 10 nearest neighbors of the static and
prototype representations among other prototype
representations should not be comparable.

Our results show that in 66% of cases
the top nearest neighbor (1NN) of wstatic in
nnstatic−to−proto is indeed the word itself. In
other cases, it is often an(other) inflected form
of the same lemma (e.g., includesproto as
the 1NN of includedstatic). In many other
cases, it is a semantically related word type (e.g.,
sobbingproto as the 1NN of cryingstatic). For
other word types, the 1NN shared one or more
tokens with the target word (e.g., sojournproto

as the 1NN of adjournstatic). Finally, there
are a minority of cases where the 1NN is en-
tirely unrelated (e.g., filchedproto as the 1NN
of indigestionstatic). As to the Jaccard coeffi-
cient, its average is 0.2, indicating that 3 to 4 near-
est neighbors from 10nnproto−to−proto also feature
among the 10nnstatic−to−proto, confirming that the
static embedding entertains consistent geometrical
relations to the corresponding prototype embed-
ding.

Crucially, when randomly permuting the
dimensions—which amounts to rotating the em-
bedding space without changing the similari-
ties within the space—the 1NN of wstatic in
10nnstatic−to−proto is never the word itself and the
Jaccard coefficient is consistently 0. This confirms
that, while different layers use a different portion
of the embedding space, in line with the increasing
anisotropism across BERT’s layers, the coordinates
of the underlying latent space are consistent across
layers, justifying our approach.

Table 3 summarizes all coefficients for the
GAMMs fitted to model the difference between
pseudoword valence predicted from static, a-
contextual embeddings and valence predicted
from fully contextualized pseudoword embeddings,
when each pseudoword appeared in each of 100 sen-
tences generated to have a specific valence. These
coefficients refer to Experiment 2. Figure 5 visual-
izes the effects for better interpretability. The ten-
sor products for all models but LLaMa also appear
in the main text and are reported here for complete-
ness.

C Details over Experiment 3

Algorithm 1 and Algorithm 2 detail the two cross-
validation strategies used to train Ridge Regres-
sors to estimate the average valence of a sentence
template filled with neutral words given the sen-
tence embedding and to be then used to predict
the valence of a sentence template filled with pseu-
dowords.

When using Algorithm 1, the dataset containing
sentence templates with neutral words, Dneu, is
partitioned in k folds such that each fold contains
k% of the sentences from each template. Each of
the 10 sentences generated from a same template
was thus assigned to a different fold. First, we de-
rived a sentence embedding for each sentence in
Dneu. Then, a different Ridge Regressor is trained
on the sentence embeddings in all folds but one
and used to predict the valence of the sentences in
the held-out fold. This process yields 10 different
predicted valences for each template, which are
averaged to obtain the predicted valence of a sen-
tence template, v̂templ. First, we ran a grid search
over different values for the hyper-parameter α and
selected the best one by looking at how well v̂templ

approximated the template average valence consid-
ering Pearson’s r. This CV pipeline, however, also
yields 10 different regressors, which we used to pre-
dict the valence of sentences obtained by plugging
each pseudoword in each template. We passed each
sentence containing a pseudoword through all the
10 regressors trained during the CV pipeline, and
averaged their predictions to obtain the predicted
valence for a sentence, v̂templ+pw, so that the pre-
dicted valence did not depend on a specific subset
of the training data. Finally, we derived the target
difference d(templ,pw) = v̂templ+pw− v̂templ, using
the average valence of the appropriate template.

With Algorithm 2, we followed a similar ap-
proach but trained models on a different, and harder,
generalization. Whereas in Algorithm 1, each re-
gressor has seen all templates during training and
is asked to predict the valence of new sentences fea-
turing a combination of known template and a new
neutral word that never occurred in training, here
we ask regressors to generalize to entirely new tem-
plates. First, we randomly assigned templates to
fold: since templates cover the entire valence spec-
trum, it is important that each fold contains tem-
plates randomly sampled from the entire valence
spectrum, rather than grouping negative templates
together, and separate from positive ones. Again,

18761



BERT-EN Parametric Coefficients Estimate Std. Error t p
Intercept -5.285 0.322 -16.4 <.001
Smooth Terms edf Ref. df F p
s(Template_avg_valence) 1.866 1.876 1.154 0.230
s(Valence_filler) 1.000 1.000 0.079 0.779
ti(Template_avg_valence, Valence_filler) 7.357 9.737 3.985 <.001

M-BERT Parametric Coefficients Estimate Std. Error t p
Intercept 1.531 0.397 3.855 <.001
Smooth Terms edf Ref. df F p
s(Template_avg_valence) 2.929 2.941 26.72 <.001
s(Valence_filler) 1.000 1.000 0.00 0.984
ti(Template_avg_valence, Valence_filler) 6.677 9.020 17.02 <.001

RoBERTa Parametric Coefficients Estimate Std. Error t p
Intercept 0.584 0.073 8.006 <.001
Smooth Terms edf Ref. df F p
s(Template_avg_valence) 1.859 1.867 2.877 0.096
s(Valence_filler) 1.000 1.000 13.940 <.001
ti(Template_avg_valence, Valence_filler) 5.810 7.780 4.386 <.001

GPT-2 Medium Parametric Coefficients Estimate Std. Error t p
Intercept 0.9774 0.3059 3.195 <.01
Smooth Terms edf Ref. df F p
s(Template_avg_valence) 1.993 1.995 75.330 <.001
s(Valence_filler) 1.000 1.000 0.038 0.846
ti(Template_avg_valence, Valence_filler) 6.195 7.735 17.377 <.001

LLaMa 3.2 Parametric Coefficients Estimate Std. Error t p
Intercept 18.112 4.948 3.661 <.001
Smooth Terms edf Ref. df F p
s(Template_avg_valence) 2.234 2.236 99.160 <.001
s(Valence_filler) 1.000 1.000 0.269 0.604
ti(Template_avg_valence, Valence_filler) 7.895 9.872 8.906 <.001

Table 3: GAMM coefficients for parametric terms and smooth terms for all LLMs in Experiment 2, predicting the
difference in predicted valence between the static layer and the fully contextualized layer, for pseudowords plugged
into 100 sentences whose valence was manipulated to span from very positive to very negative.

CV approach Model MSE RMSE MAE Pearson r
k% sentences per template per fold BERT-EN 0.0457 0.2137 0.1563 0.9891

M-BERT 0.1223 0.3497 0.2516 0.9708
GPT-2 Medium 0.0055 0.0743 0.0531 0.9987
LLama 3.2 2.1175 1.4552 1.2232 0.0421
RoBERTa 5.9180 2.4327 1.9637 0.0354

k% templates per fold BERT-EN 0.6106 0.7814 0.6342 0.8429
M-BERT 0.8500 0.9219 0.7353 0.7716
GPT-2 Medium 0.4453 0.6673 0.5424 0.8901
LLama 3.2 2.1590 1.4694 1.2355 -0.0292
RoBERTa 5.9667 2.4427 1.9632 0.0054

Table 4: Performance metrics for Ridge Regression models evaluated on how well they can predict the av-
erage valence of sentence templates in Experiment 3, provided separately for the two Cross Validation strate-
gies detailed in the paper and in the pseudocode above. All models were trained using Ridge Regression with
α ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}, and the best performing α was consistently 10.
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we derived sentence embeddings from each sen-
tence. Once templates were assigned to folds, we
trained k regressors, which we used to obtain a pre-
dicted valence for all sentences from unseen tem-
plates. Once again, we derived v̂templ by averaging
the valence predicted for all sentences generated
from a same template. Unlike before, each regres-
sor has seen all instances from some templates, and
cannot be used to predict the valence of a sentence
featuring that same template in combination with
a pseudoword. Therefore, we do not need to aver-
age predictions from different regressors and sim-
ply derived v̂templ+pw by applying the appropriate
trained regressor on each sentence resulting from
the combination of templates not seen in the trainig
of that regressor and pseudowords. Finally, we
again computed d(templ,pw) = v̂templ+pw − v̂templ.

Table 4 summarizes the performance of the two
CV pipelines in inferring the valence of a template.
In general, we see that both manage to predict the
average valence of templates, with sizable correla-
tions between predicted and observed valence. As
it could be easily predicted, Algorithm 1 yields a
nearly perfect correlation since the generalization
required of the CV pipeline is not too hard: every
template appears in training after all. However,
we see that the procedure works also when using
Algorithm 2. LLMs differ as well, with LLaMa
affording the most accurate predictions, and M-
BERT the least accurate.

Importantly, however, Figure 6 and Figure 7
highlight that GAMMs fitted to model the target
difference capture very similar patterns regardless
of which cross-validation procedure is used to train
Ridge Regressors to predict valence from sentence
embeddings. This confirms that whatever pattern
is observed does not depend on how regressors are
trained and increases the robustness of the results.

Finally, we provide the plots for smooths and
tensor products when replicating pipeline 1 (with
10% of sentences from each template allocated to
each fold) with 51 words rather than pseudowords,
sampled to span the whole valence spectrum and
not overlap with words used in sentence templates.
As mentioned in the main text, the pattern emerg-
ing from the GAMMs is remarkably similar to
that reported for pseudowords, confirming that for
all LLMs we surveyed, pseudowords and words
largely influence sentence embeddings similarly.

18763



Algorithm 1 Cross-Validation: k% Sentences per Template per Fold

1: Input: Dataset Dneu with a sentence embedding generated from each sentence template filled with
at least k neutral words, Dataset Dpw with sentence embeddings generated from the same sentence
templates filled with pseudowords, Number of folds k.

2: Output: difference in predicted valence between sentence templates and sentence templates featuring
each of the target pseudowords.

3: Step 1: Assign sentence embeddings to folds
4: function ASSIGN_FOLDS_KSENTENCES_PERTEMPLATE_PERFOLD(Dneu, k)
5: for Each template T in Dneu do
6: Shuffle sentence embeddings of T
7: for Each fold f ∈ {1, . . . , k} do
8: Assign exactly k% sentence embeddings from T to fold f
9: end for

10: end for
11: end function
12: Apply assign_folds_ksentences_perTemplate_perFold(Dneu, k)
13: Step 2: Hyperparameter tuning
14: for Each hyperparameter α in search space do
15: for Each fold f ∈ {1, . . . , k} do
16: Train Ridge regression model using all folds except f
17: Predict the valence of sentences in fold f
18: Compute Pearson correlation coefficient rf
19: end for
20: Compute average Pearson r̄ over all folds
21: if r̄ > best found correlation then
22: Update best α
23: Save Ridge Regressors
24: end if
25: end for
26: compute v̂templ by averaging the predicted valence of all sentences from a same template
27: Step 3: Predict on sentences with pseudowords
28: function PREDICT_PSEUDOWORDS_KSENTENCES_PERTEMPLATE_PERFOLD(Dpw, RidgeRegressors)
29: for Each fold f ∈ {1, . . . , k} do
30: Use regressor from fold f to predict the valence of sentence embeddings derived from

templates filled with pseudowords
31: Store predictions
32: end for
33: Compute v̂templ+pw by averaging the valence predicted by all regressors for a sentence-

pseudoword combination
34: end function
35: Use models with best α and predict using predict_pseudowords_ksentences_perTemplate_perFold()
36: Compute overall performance metrics
37: Compute d = v̂templ+pw − v̂templ for each sentence-pseudoword combination

18764



Algorithm 2 Cross-Validation: k% Templates per Fold

1: Input: Dataset Dneu with a sentence embedding generated from each sentence template filled with
at least k neutral words, Dataset Dpw with sentence embeddings generated from the same sentence
templates filled with pseudowords, Number of folds k.

2: Output: difference in predicted valence between sentence templates and sentence templates featuring
each of the target pseudowords.

3: Step 1: Assign sentence embeddings to folds
4: function ASSIGN_FOLDS_KTEMPLATES_PERFOLD(Dneu, k)
5: for Each fold f ∈ {1, . . . , k} do
6: Assign the sentence embeddings from k% of templates to fold f
7: end for
8: end function
9: Apply assign_folds_ktemplates_perFold(Dneu, k)

10: Step 2: Hyperparameter tuning
11: for Each hyperparameter α in search space do
12: for Each fold f ∈ {1, . . . , k} do
13: Train Ridge regression model using all folds except f
14: Predict the valence of sentences in fold f
15: Compute Pearson correlation coefficient rf
16: end for
17: Compute average Pearson r̄ over all folds
18: if r̄ > best found correlation then
19: Update best α
20: Save Ridge Regressors
21: end if
22: end for
23: Compute v̂templ by averaging the predicted valence given each sentence embedding from a same

template in Dneu

24: Step 3: Predict on pseudowords
25: function PREDICT_PSEUDOWORDS_KTEMPLATES_PERFOLD(Dpw, RidgeRegressors)
26: for Each fold f ∈ {1, . . . , k} do
27: Assign each pseudoword to the fold of its corresponding template
28: Use model from fold f to predict on pseudowords assigned to that fold
29: Store v̂templ+pw, the valence predicted for a sentence-pseudoword combination
30: end for
31: end function
32: Use models with best α and predict using predict_pseudowords_ktemplates_perFold()
33: Compute overall performance metrics
34: Compute d = vtempl+pw − v̂templ for each sentence-pseudoword combination
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Figure 5: Each row showcases the smooths (left: valence of the sentence template; center: valence of the pseudoword)
and tensor product for a different LLM, as emerging from a GAMM fitted to model the difference in predicted
valence between the static layer and the fully contextualized layer, for pseudowords plugged into 100 sentences
whose valence was manipulated to span from very positive to very negative.
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Figure 6: Visualizations of the effects of template valence, pseudoword valence, and their partial tensor product as
estimated by GAMMs for five different LLMs in Experiment 3. The target difference is computed using the k%
sentences per template per fold pipeline (Algorithm 1).
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Figure 7: Visualizations of the effects of template valence, pseudoword valence, and their partial tensor product as
estimated by GAMMs for five different LLMs in Experiment 3. The target difference is computed using the k%
templates per fold pipeline (Algorithm 2).
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Figure 8: Visualizations of the effects of template valence, word valence, and their partial tensor product as
estimated by GAMMs for five different LLMs in Experiment 3. The target difference is computed using the k%
sentences per templates per fold pipeline (Algorithm 1).
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