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Abstract

Web tasks, which involve processing data from
online resources, challenge agents to gener-
alize beyond fixed knowledge to unseen task
contexts. Learning from experience, the abil-
ity to derive reusable patterns from past tasks,
is crucial for improving generalization. How-
ever, existing methods focus on summarizing
workflows, i.e., common sub-routines, which
may introduce excessive low-level details that
distract models. Additionally, the absence of
task-specific objectives can lead to inconsisten-
cies between workflows and future task queries,
hindering reasoning performance. This paper
seeks to mitigate these issues by proposing A2,
a framework that derives task-adaptive hier-
archical abstraction to enhance web task rea-
soning. Our approach first extracts general-
purpose semantic abstraction from past task-
solution pairs. Combined with the next task
query, this abstraction forms a task-adaptive
episodic abstraction that guides subsequent rea-
soning. Experiments show that A? achieves
superior performance with competitive cost-
efficiency, improving success rates by 0.7%
on Mind2web and 4.6% on Webarena. The
code is accessible at https://github.com/
Xinyu-Pang/A2.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across a wide range of nat-
ural language reasoning tasks (Brown et al., 2020;
OpenAl, 2023; Touvron et al., 2023). Despite the
promising performance, state-of-the-art LLMs still
struggle with web tasks (Yao et al., 2022a), which
involve processing dynamic online information.
The primary difficulty arises from the evolving na-
ture of web content. Such variability often exceeds
the static knowledge stored in pre-trained models,
posing significant challenges for generalization.
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Figure 1: Comparison of workflow and abstraction.
Workflow may include irrelevant ( ) or misleading
(red) details, causing incorrect solutions, whereas task-
adaptive hierarchical abstraction provides focused and
effective guidance (green), ensuring accurate solutions.

One approach to addressing these challenges is
learning from experience, i.e., identifying reusable
patterns shared across similar tasks and general-
izing them to novel environments. Prior efforts
have explored to learn from experience by sum-
marizing workflows (Wang et al., 2024), as illus-
trated in Fig. 1. These works derive common sub-
routines from experiential data, capturing the exe-
cution logic of each step to assist further reasoning.

However, summarizing workflow is not univer-
sally effective, primarily due to two issues. (1)
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As experiential data grows, workflow memory ex-
pands, escalating computational costs and poten-
tially exceeding context window limits (Liu et al.,
2024b; Zhao et al., 2024). The accumulation of
irrelevant details distracts the model, hindering
key insight extraction. Consequently, reasoning
performance deteriorates as the model becomes
overwhelmed by nonessential information. For in-
stance, irrelevant workflows (gray) in Fig. 1 may
obscure critical ones (green), leading to incorrect
solutions. (2) The absence of a specific target task
during workflow summarization may yield content
misaligned with subsequent tasks, leading to sub-
optimal or even erroneous outcomes. As shown in
Fig. 1, misleading workflows (red) may make mod-
els incorrectly prioritize first class over economy.
A key distinction between LLMs and human rea-
soning lies in the ability to form task-adaptive hier-
archical abstraction from experience. As demon-
strated in Fig. 1, it involves organizing experiential
data into structured layers, where higher-level con-
cepts build upon lower-level details. When faced
with novel environments, general-purpose abstrac-
tion transitions into task-adaptive abstraction, en-
abling context-specific guidance. Humans naturally
develop this ability early, enabling them to adapt
prior knowledge to solve novel challenges (Mitchel-
more, 2002; Fine, 2002). Compared to workflow-
based approaches, it provides a more structured
approach to distill key patterns and guide effective
reasoning. Despite its potential, task-adaptive hier-
archical abstraction remains unexplored in LLMs.
In this paper, we propose to enhance LLMs’
web task reasoning capability by developing
task-adaptive hierarchical abstraction from expe-
rience (Sec. 4). We introduce Assimilation and
Accommodation (A?), consisting of three key steps.
(1) Assimilation: General-purpose semantic ab-
straction is derived from previously solved tasks,
leveraging knowledge to guide reasoning. (2)
Accommodation: This abstraction is refined into
a task-specific episodic one based on the new
task query, ensuring alignment with task require-
ments. (3) Utilization: The episodic abstraction
then guides reasoning to improve performance.
Extensive experiments show that A2 achieves su-
perior performance with remarkable cost-efficiency.
On Webarena (Zhou et al., 2024), a web task bench-
mark, it improves success rate by 4.6% w.r.t. base-
lines using GPT-40-mini. On Mind2web (Deng
et al., 2023), a web navigation dataset, it outper-
forms state-of-the-art methods with a 4.5% gain in

step success rate and a 0.7% increase in overall suc-
cess rate. Further analysis confirms our method’s
robustness, indispensability, and lower token cost,
highlighting its potential for web task resolution.

2 Related Work

Web tasks, as the research focus of this work, re-
fer to reasoning tasks that involve web data, such
as retrieving or processing information from on-
line sources. Current representative methods to
addressing web tasks tend to prompt LLMs (Zheng
et al., 2024; Zhou et al., 2024), or train agents by
reinforcement learning (Humphreys et al., 2022;
Liu et al., 2018). Various web task benchmarks
have been introduced to evaluate the performance
of these approaches (Liu et al., 2018; Yao et al.,
2022a; Zhou et al., 2024). Web tasks pose unique
challenges compared to other reasoning problems,
characterized by dynamic data dependencies and
the need for multi-step action sequences. These re-
quirements demand both generalization from prior
knowledge and continuous adaptation. In this work,
we address these challenges through a task-adaptive
hierarchical abstraction framework, offering a ro-
bust and scalable solution for web-based reasoning.
Inductive reasoning seeks to derive common
principles from specific instances. Typically, LLMs
are provided with 2-5 input-output pairs that ad-
here to a pre-defined rule and are then expected to
deduce the underlying rule and solve a correspond-
ing test problem. Existing research mainly focus
on prompt-based strategies (Yang et al., 2024b;
Mirchandani et al., 2023; Xu et al., 2023), with
dedicated benchmarks assessing these capabili-
ties (Chollet, 2019; Moskvichev et al., 2023). How-
ever, such works are limited by the reliance on arti-
ficial, context-specific rules derived from minimal
examples, hindering real-world applicability. Our
approach addresses this by leveraging task-adaptive
hierarchical abstraction to enhance generalization,
enabling LLMs to tackle practical challenges be-
yond constrained example-based scenarios.
Utilization of experience. To boost reasoning
performance, models are expected to make full
use of known information, i.e., previous tasks and
model-generated solutions. In general, current ap-
proaches can fall into three main categories: (1)
Few-shot ICL uses previous queries and solutions as
demonstrations in the prompts (Dong et al., 2024;
Song et al., 2023). However, while intuitively ap-
pealing, it suffers from implicit knowledge transfer
and context window limitations. (2) Rule summa-
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Figure 2: Illustration of A2, solving web tasks using LLMs with the help of task-adaptive hierarchical abstraction
from experience. The approach consists of three key stages: assimilation, accommodation, and utilization.

rization extracts general rules from past tasks (Zhu
et al., 2023). However, these rules typically lack
detailed execution instructions and fail to adapt ef-
fectively to novel task contexts. (3) Workflow or
template summarization derives common execution
patterns, predominantly through prompting (Wang
et al., 2024; Zheng et al., 2024; Yang et al., 2024a),
or rule-based techniques (Ellis et al., 2020; Bow-
ers et al., 2023). However, two critical limitations
persist: (1) The lack of specific summarization tar-
gets often results in irrelevant or even misleading
knowledge for subsequent tasks. (2) As past tasks
expand, the accumulation of extraneous details may
distract models from effectively extracting key in-
sights necessary for guiding reasoning processes.

3 Task Definition

In this section, we build upon representative
works (Yao et al.,, 2022a,b) to formally define
web tasks as tasks that necessitate interaction with
web-based environments, including retrieving, pro-
cessing, and reasoning over data from online re-
sources. Agents generate action sequences as solu-
tions based on task queries and the dynamic states
of websites. The inclusion of numerous and con-
stantly evolving HTML elements presents signif-
icant challenges for existing methods. Web task

benchmarks generally follow a sequential task or-
der, requiring methods to adopt an online approach,
solving tasks one by one. Due to the significant
differences between websites, tasks are typically
grouped by website, with all tasks for a given web-
site completed before proceeding to the next one.
As shown in Fig. 3, given a task query ¢ and
an initial state S = (), the agent first gathers
an initial observation oy from the environment
E. Using the observation oy, the current state .S,
and the task query ¢, the agent predicts an action
ap = f(q,S,00). After executing ag, the state
is updated to S = S U {(0p, ap) }, and a new ob-
servation o1 = h(E, S) is collected from the en-
vironment, where h represents the environment
update function. This process repeats until ¢ is
satisfactorily resolved or a pre-defined maximum
step limit m is attained. The final solution is repre-
sented as a sequence of executed actions, denoted
by s = {(ao, a;, . .., a,)}. For a given website, the
set of tasks @ = {qo, q1, - - - , qx } is solved sequen-
tially, ensuring that all tasks for one website are
completed before proceeding to the next website.

4 Method

In this section, we introduce A2, a framework de-
signed to enhance LLMs’ capability to learn from
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experience and adapt to novel environments.

As illustrated in Fig. 2, A? is built on the de-
sign principles of discovery and utilization, i.e.,
(1) assimilation: dynamically extracting general-
purpose hierarchical semantic abstraction from ex-
periential data (Sec. 4.2); (ii)) accommodation:
adapting semantic abstraction to new queries, gen-
erating task-adaptive episodic abstraction as reason-
ing guidance (Sec. 4.3); and (iii) utilization: apply-
ing episodic abstraction to steer problem-solving
process (Sec. 4.4). Details are provided below.

Existing approaches generally follow a sequen-
tial procedure for each website (Deng et al., 2023;
Wang et al., 2024), as shown in Fig. 3(b). Given
a set of previously solved query-solution pairs
P = {(qo,50),(q1,81); -, (¢i-1,4qi-1)}, work-
flows W = {wyg,wy, ..., w,} are derived. Each
workflow w;(0 < j < n) represents a set of com-
mon sub-routines extracted from historical data.
For a new task query g;, the model generates a so-
lution s; = {ao, a1, ..., an, } guided by W, where
each a; represents an action (detailed in Sec. 3).
The new query-solution pair (g;, s;) is added to
update solved tasks P’ = P U{(g;, s;)}, and work-
flows are updated. This process repeats until all
tasks for the current website are completed.

4.1 Overview
Our approach consists of three stages, as shown in

Fig. 3 (c¢). (1) To leverage experience from previ-
ously solved tasks, we derive a general-purpose se-
mantic abstraction from past tasks. Prior practices
that involve all solved tasks may introduce irrele-
vant or misleading details, as discussed in Sec. 1.
Instead, we incrementally update the semantic ab-
straction using the most recent query-solution pair:

Algorithm 1 A?: Task-Adaptive Abstraction

Require: Reasoning agent f, abstraction agent
g, task set @ = {qo,q1,--.,qK }, maximum
steps m, environment £, environment update
function h

. Initialize semantic abstraction A
episodic abstraction Ay < 0

— 0,

—

2: fori=0: K do

3 Initialize state S < ()

4: if 7 > 0 then > Step-1: Assimilation
5: A — g(Ai—1, Gi—1,5i-1)

6: end if

7: A; g(A;, q;) > Step-2: Accommodation
8: fork=0:mdo > Step-3: Utilization
9: Gather observation oy, < h(E,S5)

10: Predict action ay, < f(q;, ok, S)

11: if a;, = None then

12: Break

13: end if

14: Update state S” < S U {(og, ax)}

15: end for

16: yield solution s; < {ag,a1,...,an,}

17: end for

A; = g(A;—1,qi—1.5i—1) where A represents se-
mantic abstraction, g represents abstraction agent.
(2) We adapt it to the next task query g;, forming a
task-specific episodic abstraction: A; = 9(A;, qi),
ensuring relevance between abstraction and the cur-
rent task. The process mirrors human cognitive
mechanisms, where episodic abstraction encodes
task-specific and contextualized knowledge. Both
A; and A; are hierarchically structured, capturing
knowledge at varying levels of granularity. A; pro-
vides general-purpose insights, while A; refines it
for the current task. (3) Then /All guides the rea-
soning process to solve g;. The process iterates for
each new task, dynamically updating the semantic
abstraction and generating a task-specific episodic
abstraction. The pipeline is shown in Algorithm. 1.

4.2 Assimilation

Web tasks involve diverse task contexts and dy-
namic data, which frequently surpass models’ pre-
trained knowledge, posing challenges in effective
reasoning. Given limited information, i.e., pre-
viously solved queries and model-generated solu-
tions, a practical way is learning general knowledge
from experience, akin to human cognitive process.
According to Jean Piaget’s cognitive development
theory (Piaget, 1977, 2013), we define the stage of
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forming semantic abstraction with general-purpose
knowledge as assimilation, which integrates novel
information into existing schema. In our frame-
work, assimilation constructs semantic abstraction
A that stores general-purpose abstraction knowl-
edge derived from previously solved tasks.
Technically, during the assimilation stage, we ex-
pect LLMs to extract semantic abstraction with gen-
eral purposes, representing widely-purposed knowl-
edge from previous experiential data. After solving
the (i — 1)™ task, its query and model-generated
solution are provided to supplement and adjust ex-
isting semantic abstraction A;_1, producing A; in
an on-policy process. To produce an abstraction
that more accurately captures the implicit patterns
or principles across previously completed tasks,
we propose an LM-based module that prompts the
LLM to extract and derive hierarchical abstraction
from the prior input experiences, i.e., previously
solved tasks and corresponding predicted solutions.
Abstraction Structure.  Each piece of ab-
straction consists of two key components: (1) a nat-
ural language goal specification and (2) executable
implementation procedures, including the opera-
tion type, the content of involved elements, and ele-
ment IDs. For instance, the “modify price” abstrac-
tion combines the description “Adjust product pric-
ing” with concrete operations like "fill([element
id], [new price])" and "click save button [element
id].” The textual description explicitly defines the
abstraction’s purpose, while the procedural steps
provide precise guidance for the execution process.
Like human memory structure (Anderson, 2013),
A; is organized in a hierarchical manner, therein
higher levels encapsulate the functionality and ob-
jectiveness of lower levels. For example, in tasks
such as booking hotels or flights, low-level actions
like searching, selecting, and confirming can be
grouped into higher-level abstractions such as plan-
ning, booking, and confirmation. The depth is dy-
namically adjusted according to the comprehen-
siveness of the experiential data and the desired
granularity for each task. This hierarchical organi-
zation captures multi-grained patterns, balancing
fine-grained details with overarching logic to en-
hance knowledge retrieval and application while
minimizing distraction from excessive information.

4.3 Accommodation

Although A; embodies extensive general-purpose
world knowledge accumulated from a wide range
of tasks, it may not precisely align with the specific

demands of a new query ¢;. This misalignment
arises because A; often includes extraneous infor-
mation irrelevant to the current task. The primary
challenge in facilitating effective reasoning lies in
efficiently utilizing the knowledge within the on-
going reasoning process. We would claim that de-
riving query-adaptive knowledge is of the essence.
Inspired by cognitive theory (Piaget, 1977, 2013),
we term the process accommodation, wherein ex-
isting knowledge structures are modified or recon-
structed to integrate and adapt to novel information
— specifically, the next query g; in this context.

To achieve this, we instantiate semantic abstrac-
tion A; along with the next query ¢; into episodic
abstraction fli, which is adapted from A; but re-
tains only query-relevant knowledge. A; is highly
task-adaptive and well-suited for guiding subse-
quent query reasoning. The adaptation ensures that
the abstraction remains focused and pertinent, thus
mitigating potential misguidance caused by indis-
criminate summarization. Assimilation integrates
new information into existing schema, while ac-
commodation entails modifying existing schema
to adapt to novel information. The dynamic bal-
ance between these processes enables both precise
execution and broad generalization. In our frame-
work, assimilation forms semantic abstraction that
stores general-purpose world knowledge, whereas
accommodation adapts it into episodic abstraction
tailored to specific queries. The semantic abstrac-
tion is stored and updated in the reasoning process,
while the episodic abstraction serves as a pull-and-
play assistance, providing targeted assistance.

4.4 Utilization

Following the assimilation and accommodation
stages, the task-adaptive episodic abstraction A;is
constructed, functioning as a succinct yet informa-
tive representation to steer the ensuring reasoning
processes. Since the derived episodic abstraction is
compact and focused on only the most relevant ab-
straction, the entirety of A; is incorporated into the
subsequent reasoning procedure. Specifically, we
integrate three components for reasoning: episodic
abstraction, task query, and observation from the
website environment. Then the agents are required
to predict the next action to execute. Further details
on the utilization process are provided in Sec. 3.

S Experiments

This section presents a comprehensive evaluation
of A? with representative baselines on several web

14004



task datasets. Firstly, we introduce several criti-
cal parts of the experimental setups (in Sec. 5.1).
Secondly, we provide a comprehensive analysis
(in Sec. 5.2). Lastly, we conduct extensive analy-
sis studies to deeply understand the task-adaptive
hierarchical abstraction (in Sec. 5.3 to Sec. 5.5).

5.1 Implementation

e Datasets. We evaluate A% with baselines on
two web benchmarks: Mind2web and Webarena.
Mind2web (Deng et al., 2023) serves as a bench-
mark assessing the ability to follow instructions for
completing tasks on real-world websites. Statistics
are shown in Table 5 in the appendix. It consists of
tasks from 137 websites across 31 domains. These
tasks are systematically divided into three subsets
based on their relationship with the training set:
(1) cross-task (tasks from encountered websites,
252 instances), (2) cross-website (tasks from un-
seen websites, 177 instances), and (3) cross-domain
(tasks from entirely novel domains, 912 instances).
Webarena (Zhou et al., 2024) operates as a self-
hostable web environment designed for develop-
ing autonomous agents and creating websites with
real-world functionality and data. To simulate hu-
man problem-solving, it integrates tools and knowl-
edge resources as standalone websites. The dataset
features 812 long-horizon tasks, grouped into five
classes according to website types. Both datasets
are highly challenging and rich in real-world sce-
narios. Solving these tasks requires models to ef-
fectively leverage prior knowledge, adapt to diverse
contexts, and engage in dynamic reasoning.

e Metrics. To ensure a comprehensive evaluation,
we consider distinct metrics for these datasets. In
the Mind2web dataset, evaluation metrics consider
both elements and whole tasks, comprising four
metrics in total. (1) Element Accuracy (EA) mea-
sures the match between the selected element and
all acceptable options. (2) Operation F1 (AF) cal-
culates the token-level F1 score for the predicted
operation. For the whole task, (3) Step Success
Rate (Step SR) and (4) Success Rate (SR, for the
whole task) are used. A step is deemed success-
ful if both the predicted element and operation are
correct. A task is successful if all steps succeed.
Success Rate (SR) is the metric in Webarena.

e Baselines. We select multiple representative
baseline methods to ensure a comprehensive eval-
uation, following the A? evaluation paradigm to
ensure a rigorous evaluation process:

* MindAct (Deng et al., 2023) tackles the

Mind2web benchmark by scoring promising el-
ements using small language models and retain-
ing high-potential promising elements for subse-
quent reasoning. It processes tasks directly with
instructions, without prior knowledge or demon-
strations. It is exclusively applied to Mind2web.

* Trajectory-as-Exemplar (TaE) (Zheng et al.,
2024) employs human-designed query-solution
pairs as few-shot demonstrations, with solutions
as action trajectories. As MindAct is specific to
Mind2web, TaE serves as the Webarena baseline
for fair "no prior knowledge" comparison.

* Agent Workflow Memory (AWM) (Wang et al.,
2024), a method for inducing commonly reused
sub-routines to guide subsequent generations.

e Implementation Details.  Due to time and

cost constraints, we primarily employ GPT-4o-

mini (OpenAl, 2024) as the base LLM for the analy-
ses in this study. We also include deepseek-v3 (Liu
et al., 2024a) in our experiments for additional
comparison. Due to the significant variation in
website environments and the tasks in web task
benchmarks are generally sequential, we follow
standard practice by independently summarizing
abstraction knowledge for each website. Abstrac-
tion knowledge is not shared across different web-
sites to prevent possible misleading effects. For the

Mind2web dataset, we follow Deng et al. (2023)

and use a fine-tuned small model to score raw

HTML elements, narrowing down the pool of po-

tential candidates. Specifically, we use a trained

DeBERTa-v3-base model with 86M parameters to

rank elements, selecting the top five for subsequent

reasoning. Browsergym (Drouin et al., 2024) is
adopted for Webarena for efficient evaluation.

For all baselines and our approach, we con-
sistently set the temperature parameter to zero
to minimize output variability and ensure repro-
ducibility. For evaluations on Webarena, we adopt
the configuration used in AWM and set the tem-
perature to 1.0. The maximum token limit and
stop tokens adhere to their default settings. Given
the characteristics of the datasets, we apply dif-
ferent task selection criteria for evaluating suc-
cess. For Webarena, the semantic abstraction is up-
dated when the previous task is successfully solved,
ensuring the accuracy of the abstraction. In con-
trast, for Mind2web, due to the limited number of
tasks per website, we do not require the previously
solved task to be solved correctly before updating
the abstraction. These approaches ensure the accu-
mulation of diverse and comprehensive abstraction.
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Cross-Task

Cross-Website Cross-Domain

Model Method | g\ AF StepSR SR | EA AF StepSR SR | EA AF StepSR SR
MindAct | 339 428 298 00 | 275 356 226 00 | 293 371 261 00
GPT-4o-mini AWM 335 426 288 00 | 281 346 221 00 | 297 387 269 03

A% Ours) | 37.8 498 331 0.6 | 348 430 289 11351 446 302 08

MindAct 409 51.7 37.0 1.6
AWM 41.7  50.6 37.3 1.2

Deepseek-v3

346 424 28.8 0.0 | 349 442 31.8 1.0
343 415 28.2 0.0 | 343 425 30.8 1.2

A? (Ours) | 437 524 377

0.8 | 373 436  30.0

0.6 ‘ 36.3 445 30.5 1.2

Table 1: Evaluation performance (%) on Mind2web benchmark using GPT-40-mini and deepseek-v3 under the
zero-shot setting. EA is short for element accuracy and AF is short for action F1 score. SR is short for success rate.

Method | Shopping CMS Reddit Gitlab Avg.
TaE 17.2 17.6 14.0 3.6 13.1
AWM 17.7 14.8 14.0 4.6 12.8
A? (Ours) | 24.0 19.8 19.3 7.7 17.7

Table 2: Success rate (%) on Webarena benchmark using
GPT-40-mini under the zero-shot setting.

Given the diversity of domains and task contexts,
providing annotated examples for each task class,
such as one-shot or few-shot settings, is neither
feasible nor practical for evaluating the reasoning
process. In real-world applications, models are
expected to operate in zero-shot settings, which
better assess their ability to tackle complex web
tasks. Based on these considerations, we adopt a
zero-shot reasoning approach in our experiments.
While our method does not rely on annotated ex-
amples for reasoning, we involve a single fixed
example to ensure format correctness during ab-
straction derivation in our approach and workflow
generation in baseline methods. The example re-
mains consistent throughout the entire experiment.

5.2 Main Results

As shown in Table 1 and Table 2, A% achieves
significant performance improvements across all
datasets. On the Webarena dataset, our approach
outperforms baseline methods with an average suc-
cess rate improvement of 4.6%. On the Mind2web
dataset, our approach achieves average improve-
ments of 5.5% in element accuracy (EA), 7.2% in
action F1 (AF), 4.5% in step success rate (Step SR),
and 0.7% in overall success rate (SR) separately
using GPT-40-mini. The consistent improvements
across all subsets validate the superiority of our
method. Notably, on the cross-website subset of
the Mind2web dataset, our approach significantly
improves performance, increasing EA from 28.1%
to 34.8%, AF from 35.6% to 43.0%, Step SR from
22.6% to 28.9%, and SR from 0.0% to 1.1%. Ad-

ditionally, A2 exhibits superior performance with
deepseek-v3 model. To further analyze the results,
we provide the following detailed observations.
A? performs well on unfamiliar tasks, gen-
eralizing effectively to unseen data. The
Mind2web dataset comprises three subsets de-
signed to evaluate an agent’s ability to general-
ize across domains, websites, and tasks. A de-
tailed introduction to these subsets is provided in
the appendix A. Among these, the cross-task sub-
set closely resembles the demonstration tasks in
the training set, while the cross-website and cross-
domain subsets contain more unfamiliar tasks, serv-
ing to assess agents’ reasoning ability in novel envi-
ronments. Compared to other baseline methods, A?
demonstrates greater performance improvements
on the cross-website and cross-domain subsets rel-
ative to the cross-task subset. The potential reason
may be that summarizing experiences assists in
solving unfamiliar contexts and tasks, whereas pre-
viously encountered tasks rely heavily on knowl-
edge acquired during the models’ training process.
Performance varies with task distribution and
dataset diversity. The improvement achieved by
A? across different datasets on both Mind2web
and Webarena is not directly proportional to the
number of tasks in a subset. Instead, performance
is influenced by task distribution and similarity.
When tasks are sparsely distributed, the improve-
ment tends to be less pronounced. For example,
in the cross-task subset, which exhibits high task
diversity (as shown in Table 5 in the appendix), the
performance gain is relatively smaller compared to
others. These results show that task distribution and
diversity are key to overall reasoning performance.

5.3 Ablation Study
We further investigate the effectiveness of the se-
mantic and episodic abstraction in A2, focusing

on their individual contributions by sequentially
removing each component. Table 3 presents the
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Semantic Abs. Episodic Abs. | EA  AF StepSR SR
X X 275 35.6 22.6 0.0
v X 33.6 4238 227 0.0
v 4 | 348 43.0 28.9 1.1

Table 3: Ablation performance (%) on test_website from
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the Mind2web benchmark. Abs. stands for abstraction.

Method (Sequence) EA AF StepSR SR
MindAct (Original) 27.5 356 22.6 0.0
AWM (Original) 28.1 34.6 22.1 0.0
A? (Random) 352 419 27.8 11
A? (Easiest2hardest) 32.1 427 26.9 0.0
A? (Hardest2easiest) 33.5 424 27.0 0.6
A? (Original) 348 43.0 28.9 1.1

Table 4: Performance (%) on test_website subset from
Mind2web benchmark with different task sequences.

results of an ablation study conducted with GPT-4o-
mini on the cross-website subset of the Mind2web
benchmark. We observe that incorporating both
abstraction components leads to a consistent
improvement, underscoring their necessity in our
approach. Specifically, semantic abstraction boosts
the element accuracy and action F1 metrics, while
episodic abstraction remarkably improves both
step-level and overall success rates. This difference
may stem from the nature of each abstraction. Se-
mantic abstraction involves general-purpose knowl-
edge, aiding the model in accurately identifying el-
ements. Episodic abstraction captures task-specific
patterns, reflecting the procedural and logical struc-
ture of the task. We look forward to further investi-
gating the underlying reasons in future research.

5.4 Task Sequence Sensitivity Analysis

The abstraction knowledge is accumulated through
the sequential task-solving process, making the task
sequence a crucial factor influencing overall perfor-
mance. We investigate the impact under four dis-
tinct task sequence settings: (1) the original order,
(2) random shuffling, (3) from easiest to hardest,
and (4) from hardest to easiest (where the number
of actions in the ground truth measures task com-
plexity). Table 4 presents the results of these task
sequences with GPT-40-mini on the Mind2web
cross-website dataset. For comparison, baseline
scores are reported under the original task sequence.
The results indicate that while task sequence has a
minor impact on reasoning performance, A2 con-
sistently outperforms other baselines across all four
metrics in every sequence setting. This highlights
the robustness and superiority of our approach A2,
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Figure 4: Token cost and step success rate (Step SR) on
10 websites from the Mind2web cross-website dataset.

5.5 Computational Efficiency Analysis

We evaluate the token costs of different methods
on the Mind2web cross-website dataset using GPT-
40-mini, as illustrated in Fig. 4. A? significantly re-
duces token usage compared to previous workflow
summarization methods like AWM. Specifically,
our approach updates semantic abstraction by in-
corporating the latest task-solution pair, deriving
task-adaptive episodic abstraction with compara-
tively limited length to steer subsequent reasoning.
In contrast, AWM constructs lengthy workflows
by integrating all previously solved task-solution
pairs, leading to substantially higher token expendi-
ture. Furthermore, A? achieves higher step success
rates (Step SR) across all 10 websites compared to
both MindAct and AWM. These results underscore
that our approach not only delivers superior perfor-
mance but also maintains optimal cost-efficiency.

6 Conclusion

In this paper, we propose A2, a novel reasoning
framework that integrates task-adaptive hierarchi-
cal abstraction from experience to enhance web
task reasoning. Our approach extracts general-
purpose semantic abstraction from experience and
dynamically adapts it into episodic abstraction
based on the next task query. By leveraging
episodic abstraction to guide reasoning, our method
effectively filters out irrelevant details and mislead-
ing knowledge, improving both accuracy and effi-
ciency. A? achieves state-of-the-art performance
while maintaining high cost-effectiveness. We en-
courage further research on abstraction-based rea-
soning to advance the effectiveness of LLMs in
successfully learning abstraction knowledge from
experiential data to fit in dynamic task contexts.
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Limitations

In this paper, we propose A?, a novel framework to
assist reasoning with hierarchical abstractions. De-
spite the promising performance of our approach,
we acknowledge that there are areas for improve-
ment and opportunities for future research.

First, our evaluation is primarily conducted on
complex web task datasets, which concentrate on
instruction execution in dynamic and context-rich
website environments. While this highlights the
approach’s ability to handle complex reasoning, it
does not assess broader reasoning capabilities, such
as algebra calculation or program synthesis. Ex-
tending the evaluation to diverse reasoning tasks
encompassing these abilities would better demon-
strate the generalization of our approach.

Second, we currently focus on the construction
and leveraging of task-adaptive hierarchical ab-
straction of experiential data. However, potential
knowledge conflicts may arise between the derived
abstraction knowledge and subsequent task queries,
further influencing the subsequent reasoning perfor-
mance. Investigating methods to detect and resolve
such conflicts in the abstraction process represents
a valuable direction for future research.
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This article adheres to the ACL Code of Ethics.
According to our knowledge, our work constitutes
foundational research, and we do not identify any
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mental impact, fairness, or privacy concerns.
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A Datasets

In this section, we provide a detailed introduction
to the two web task datasets utilized in the main
experiments, i.e., Mind2web and Webarena.
Mind2web is a novel dataset containing natural
language task descriptions and manually annotated
action sequences. It contains 5 top-level domains:
Travel, Shopping, Service, Entertainment, and In-
formation. Subsequently, these are separated into
31 secondary domains. For each domain, 3-5 web-
sites are manually chosen, resulting in 137 websites
in total. The statistics are shown in Table 5. For the
task proposal stage, to boost creativity and diversity,
they use ChatGPT to propose seed tasks, based on
which annotators are required to generate various
tasks. During the task demonstration period, work-
ers use a Playwright-based tool to demonstrate how
to perform the proposed tasks in a web browser.
The workers subsequently execute element selec-
tion and operation selection to ensure accuracy.
Mind2web contains 2,350 tasks, 1,135 elements on
average, and 7.3 actions per task on average.
Webarena is a realistic and reproducible web
environment designed to facilitate the development
of autonomous agents to execute tasks. It contains
four self-host domains, i.e., online shopping, dis-
cussion forums, collaborative development, and
business content management. The dataset con-
tains 812 tasks, each with a natural language intent,
emulating the abstract language usage patterns typi-
cally employed by humans. The evaluation focuses
on functional correctness, which measures whether
the actions actually solve the task goal. The bench-
mark contains 241 templates and 812 instantiated
intents. On average, each template is instantiated to
3.3 examples. The intents can be roughly divided
into three classes, i.e., information seeking, site
navigation, and configuration operation.

B Implement Details

B.1 Evaluation

For Mind2web, we follow MindAct to compare the
reasoning results with the ground truth, measuring
the four metrics: element accuracy, action F1 score,
step success rate, and overall success rate. For
the Webarena dataset, there is no golden ground
truth for evaluation. The benchmark designs an
evaluation process to measure the extent to which
the actions satisfy the task. We follow previous
techniques to evaluate using an LL.M, which is kept
the same as the corresponding reasoning model.

Subset | #Website #Task Avg. Task #D  #Sub
test_task 69 252 3.65 3 17
test_website 10 177 17.7 3 9
test_domain 54 912 16.89 2 13

Table 5: Min2web statistics, including the number of
websites, number of tasks, average tasks per website,
number of domains, and number of subdomains.

B.2 Models

Web task reasoning requires long contexts because
of the abundant options and dynamic web states.
Therefore, models that only support small dialogue
context lengths may fail to reason effectively, lead-
ing to incorrect evaluation. Based on the above
consideration and price limit, we use GPT-40-mini
as our backbone model. We use deekseek-v3 to
facilitate comparison. The experiments are mainly
completed in Dec 2024. The reasoning and evalu-
ation models are kept the same in all experiments.
We would like to emphasize that the models for
assimilation and accommodation are not required
to be the same. In our experiments, the models
are kept the same for a fair comparison. However,
it is important to note that this is not a strict re-
quirement: our approach allows for flexibility in
choosing either the same or different models for
these steps, depending on implementation needs.

B.3 Parameters

To accommodate the long contexts required for
solving web tasks, we set the maximum token limit
to 128,000 for the WebArena dataset, which is uni-
formly applied across all methods. To ensure repro-
ducibility, we consistently set the temperature to
zero, except when evaluating the WebArena dataset.
Following Wang et al. (2024), we set the tempera-
ture to 1.0 in this case to enhance output diversity.
As discussed in Sec. 5, it is impractical nor effi-
cient to manually design demonstrations for each
website. Therefore, we consistently adapt zero-shot
settings through our experiments. For Mind2web,
the number of positive candidate elements is kept
at 5, following the default settings of MindAct.
For the Webarena dataset, we follow AWM to
utilize Browsergym for our experiments. Browser-
gym is a framework designed to address the grow-
ing need for efficient evaluation and benchmarking
of web agents. It involves various existing bench-
marks for comprehensive evaluations. Browser-
gym aims to boost the evaluation of web agents
by providing a unified, gym-like environment with
well-defined observation and action spaces. By
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Method | o+ p cv
EA for AWM 26.9750+£1.03188  0.03767
EA for A2 33.9000+1.4750 0.0358
AF for AWM 35.0000+0.3250 0.0163
AF for A? 42.5000£0.1650 0.0096
Step SR for AWM | 22.3500+0.5675 0.0337
Step SR for A? 27.6500£0.6425 0.0290

Table 6: Robustness comparison between A% and AWM.

standardizing the evaluation, the framework is able
to reduce the time cost as well as the complexity of
developing web agents.

B.4 Model Prompts

We provide model prompts in Listing 1 to enhance
reproducibility. The prompts mainly contain three
key components as follows.

* System task description: Defines the
objective-updating semantic abstraction dur-
ing assimilation and specifies the expected
output abstraction format.

 Existing semantic abstraction: The abstrac-
tion follows a hierarchical structure imple-
mented through numbering, special tokens,
and indentation. Each entry includes a nat-
ural language task description and concrete
actions. Similar to Python, indentation and
finer-grained numbering indicate task relation-
ships. Subroutines are described, with execu-
tion steps in backticks and dynamic parame-
ters in curly braces (e.g., web element IDs).
This ensures a clear, flexible structure.

* One demonstration example: A fixed exam-
ple ensures correct formatting and minimizes
manual effort by remaining consistent.

For further details, refer to our GitHub reposi-
tory: https://github.com/Xinyu-Pang/A2.

C Further Analysis
C.1 Robustness

To provide a more comprehensive analysis, we ex-
panded the experiments on the Mind2web cross-
website subset, comparing A?> and AWM un-
der four task ordering settings: Random, Easi-
est2hardest, Hardest2easiest, and Original. We
report the mean (p), standard deviation (o), and
coefficient of variation (C'V') to assess relative per-
formance changes, where CV = u/o. Since Min-
dAct does not incorporate prior task information,

Website/Metric | EA AF Step SR
shopping.google | 0.01695 0.00009 0.02401
trip 0.00450 0.00301 0.01641
recreation.gov 0.01132  0.00453  0.00130
tripadvisor 0.00001  0.00073  0.00003
cars 0.02164 0.01436  0.00440
tiktok.music 0.00036  0.00426  0.00068
stubhub 0.03581 0.03726  0.01806
nba 0.01013  0.00146  0.00300
macys 0.00890 0.00634 0.00763
bestbuy 0.00346  0.00005 0.01190

Table 7: P-values for A2 and MindAct across different
metrics and websites.

its performance remains stable across different task
orders and is thus not relevant for this comparison.
Additionally, as AWM consistently achieves an SR
of 0.0, we focus on the remaining metrics: EA, AF,
and Step SR. The results are represented in Table 6.

The results indicate that A2 consistently achieves
lower C'V and higher average performance across
different metrics. This suggests that our approach
remains robust and consistently outperforms base-
line methods across different task order settings.

C.2 T-test

To further confirm the statistical significance of
our findings, we conducted a t-test comparing A2
with MindAct. For this analysis, we selected the
cross-website subset from Mind2web, which con-
tains 10 websites. GPT-40-mini is used as the base
model, and the dataset is randomly shuffled 5 times.
Both A? and MindAct are evaluated separately on
these shuffled datasets. The evaluation metrics in-
cluded element accuracy (EA), action F1 (AF), and
step success rate (Step SR). All other experimental
settings were maintained following the previous
experiments. The t-test was performed using the
scipy Python package, and the p-values for differ-
ent metrics and websites are shown in Table 7.
The hypothesis tested was: "A? achieves signif-
icantly higher scores (EA, AF, or Step SR) than
MindAct." Across all 10 websites, the t-test con-
sistently yields low p-values across every metric,
ranging from 0.00001 to 0.03726. Using the stan-
dard significance threshold of 0.05, we confirm that
the hypothesis holds: A? significantly outperforms
MindAct across every evaluation metric. Combin-
ing the above t-test results and the reasoning per-
formance, we concluded that A? achieves superior
performance over baseline approaches.
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# Python prompt for deriving semantic abstraction.

**System Promptx*xx
<Task> Integrate the latest solved task (g_i) and next task query (gq_{i+1}) with
the existing abstraction (a_{i-1}) to refine a new abstraction (a_i). The
new abstraction contains information from all previous tasks and is
hierarchically organized. (a_i) should assistant in solving (q_{i+1}).

<Abstraction Requirements>

1. Hierarchical: The abstractions should be multi-layered. Higher-level
abstractions should represent lower-level ones while ignoring irrelevant
details. The structure and layer depth should be dynamically adjusted.

2. Comprehensive: (a_i) should encapsulate patterns from all tasks, balancing
task-specific details (in lower-level abstractions) and general principles (
in higher-level abstractions).

<Task Format> The extracted abstractions should follow this format: {
Operation_type} [{element_id}] {Operation_value} ([{element_type} {
element_content} -> {Operation_typel}]). If the Operation_type is CLICK, then
{Operation_value} should not be included.

**x1-shot Demonstration Inputx*x
## Query 1: Book a cheapest bundle and save option for 2 adults from Ahmedabad
to Dubai on April 5 with free cancellation options, hotel should be a 3 star
near Burj Khalifa with guest rating above 4, one night.
Actions:
“Action: [span] Bundle & Save -> CLICK~®
“Action: [textbox] From -> TYPE: ahmedabad"
“Action: [b] Ahmedabad -> CLICK™
“Action: [textbox] To -> TYPE: dubai-
“Action: [span] DXB -> CLICK~®
“Action: [textbox] Depart -> CLICK™
“Action: [listitem] 5 -> CLICK"
“Action: [listitem] 6 -> CLICK®
“Action: [div] Search -> CLICK"
“Action: [span] 4+ -> CLICK"
“Action: [div] Price (Low to High) -> CLICK®
“Action: [button] Book -> CLICK™

<Split token>
1. Choose task type
#{task} could be Trains, Flights, and so on, depending on the task
description and html
“Action: CLICK [{element_id}] ([span] {task} -> CLICK)"

2. Add constraints

2.1 Set location
“Action: CLICK [{element_id}] ([{element_type}] City or Region -> CLICK)
“Action: TYPE [{element_id}] {location} ([{element_type}] {City or

airport} -> TYPE: {location})"

2.2 Set time
“Action: CLICK [{element_id}] ([{element_typel}] {arrive_date} -> CLICK)"
“Action: CLICK [{element_id}] ([{element_type}] {leave_date} -> CLICK)"

3. Action
# {action} could be Search, Select, and so on.
“Action: CLICK [{element_id}] ([{element_type}] {action} -> CLICK)"

4. Other
“Action: CLICK [{element_id}] ([il] -> CLICK)

Listing 1: Prompt for deriving semantic abstraction (part 1).
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**x1-shot Demonstration Output=*x

<Split token>
1. Choose task type
#{task} could be Trains, Flights, Bundle&Save, and so on, depending on the
task description and html
“Action: CLICK [{element_id}] ([span] {task} -> CLICK)"

2. Add constraints
2.1 Set location
2.1.1 Choose city or airport
“Action: CLICK [{element_id}] ([{element_type}] City or Region ->
CLICK)"
“Action: TYPE [{element_id}] {location} ([{element_type}] {City or
airport} -> TYPE: {location})"
2.1.2 Type in locations
“Action: [textbox] From -> TYPE: {starting_origin}"
“Action: [b] {starting_origin} -> CLICK"
“Action: [textbox] To -> TYPE: {destination}"
“Action: [span] {destination} -> CLICK~™

2.2 Set time
“Action: CLICK [{element_id}] ([{element_typel}] {arrive_date} -> CLICK)"
“Action: CLICK [{element_id}] ([{element_type}] {leave_date} -> CLICK)"

3. Action
# {action} could be Search, Book, Select, and so on.
“Action: CLICK [{element_id}] ([{element_type}] {action} -> CLICK)"

4. Sort
4.1 Sort by price (from low to high)
“Action: CLICK [{element_id}] ([div] Price (Low to High) -> CLICK)"

*xTask Input*x*
## Query: {specific task query}
Actions: {detailed action sequences}
## Existing Abstraction: {exsiting semantic abstraction}

Listing 2: Prompt for deriving semantic abstraction (part 2).

# Python prompt for deriving episodic abstraction.

**System Promptx*x*

<Task> Integrate the existing semantic abstraction (a_{i}) and next query (q_{i
+1}) to refine a new abstraction (\hat{a_i}). The new abstraction contains
useful information that assists in solving nthe ext query.

<Abstraction Requirements>

1. Hierarchical: The abstractions should be multi-layered. Higher-1level
abstractions should represent lower-level ones while ignoring irrelevant
details. The structure and layer depth should be dynamically adjusted.

2. Comprehensive: (a_i) should encapsulate patterns from all tasks, balancing
task-specific details (in lower-level abstractions) and general principles (
in higher-level abstractions).

<Task Format> The extracted abstractions should follow this format: {
Operation_type} [{element_id}] {Operation_value} ([{element_type} {
element_content} -> {Operation_typel}]). If the Operation_type is CLICK, then
{Operation_value} should not be included.

Listing 3: Prompt for deriving episodic abstraction (part 1).
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*x1-shot Demonstration Input=*x
## Query 2: Select a high speed train ticket with a departure time before 23:00
from Shanghai to Beijing.

<Split token>
1. Choose task type
#{task} could be Trains, Flights, Bundle&Save, and so on, depending on the
task description and html
“Action: CLICK [{element_id}] ([span] {task} -> CLICK)"

2. Add constraints
2.1 Set location
2.1.1 Choose city or airport
“Action: CLICK [{element_id}] ([{element_type}] City or Region ->
CLICK)"
“Action: TYPE [{element_id}] {location} ([{element_typel}] {City or
airport} -> TYPE: {location})"
2.1.2 Type in locations
“Action: [textbox] From -> TYPE: {starting_origin}"
“Action: [b] {starting_origin} -> CLICK"
“Action: [textbox] To -> TYPE: {destination}"
“Action: [span] {destination} -> CLICK"™

2.2 Set time
“Action: CLICK [{element_id}] ([{element_typel}] {arrive_date} -> CLICK)"
“Action: CLICK [{element_id}] ([{element_typel}] {leave_date} -> CLICK)"

3. Action
# {action} could be Search, Book, Select, and so on.
“Action: CLICK [{element_id}] ([{element_typel}] {action} -> CLICK)"

4. Sort
4.1 Sort by price (from low to high)
“Action: CLICK [{element_id}] ([div] Price (Low to High) -> CLICK)"

*x1-shot Demonstration Output=*=*
<Split token>
1. Choose task type to book train tickets
“Action: CLICK [{element_id}] ([span] {Trains} -> CLICK)"

2. Add constraints
2.1 Type in locations
“Action: [textbox] From -> TYPE: {shanghai}"
“Action: [b] {shanghai} -> CLICK"
“Action: [textbox] To -> TYPE: {beijing}"
“Action: [span] {beijing} -> CLICK"®

2.2 Set departure time
“Action: CLICK [{element_id}] ([{element_typel}] {23:30} -> CLICK)"

3. Book action
# {action} could be Search, Book, Select, and so on.
“Action: CLICK [{element_id}] ([{element_typel}] {action} -> CLICK)"

**xTask Input*x*
## Query: {next task query}
## Existing Abstraction: {exsiting episodic abstraction}

Listing 4: Prompt for deriving episodic abstraction (part 2).
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