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Abstract

Large Language Models (LLMs) exhibit emer-
gent in-context learning (ICL) capabilities, al-
lowing them to adapt to unseen tasks based on
example demonstrations. Traditional ICL em-
beds examples within the prompt, while activa-
tion steering, uses a vector derived from exam-
ples to guide the latent states of LLMs toward
desired behaviors. However, traditional ICL is
difficult to control quantitatively and consumes
valuable context space. Existing activation
steering methods apply a single sentence-level
steering vector uniformly across all tokens, ig-
noring LLMs’ token-wise, auto-regressive na-
ture. This coarse control can lead to incon-
sistencies and suboptimal adjustments during
generation. To address this problem, we intro-
duce Dynamic Steering with Episodic Memory
(DSEM), a novel training-free framework that
aligns LLMs to given demonstrations by steer-
ing at the token level conditioned on the input
query. DSEM employs a key-value memory
to store associations between generated tokens
and steering vectors. During inference, it uses
a nearest-neighbor mechanism to dynamically
compute steering vectors for each token chunk,
enabling more precise and adaptive guidance.
Our method surpasses strong baselines across
diverse alignment tasks - including safety, style
transfer, and role-playing - demonstrating im-
proved alignment as demonstration size scales.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance in a wide range
of natural language processing tasks, with their ef-
fectiveness improving as the number of parameters
increases (Brown et al., 2020; Wei et al., 2022;
Chowdhery et al., 2023). One of the most intrigu-
ing abilities of larger models is In-Context Learn-
ing (ICL), where LLMs can perform tasks they
have not encountered during training, given only
a few demonstrations (Brown et al., 2020). This

enables an alternative approach to achieve strong
downstream performance by modifying the input
prompt in text space, incorporating instructions and
in-context examples (Liu et al., 2021).

Despite the intriguing capabilities of ICL, it
is highly sensitive to nearly every aspect of the
prompt. The selection of demonstrations, the phras-
ing of instructions, or even subtle variations in
example formatting can lead to significant fluc-
tuations in final performance (Liu et al., 2021;
Min et al., 2022). This sensitivity raises concerns
about the robustness and reliability of ICL in real-
world applications. Furthermore, a fundamental
limitation of traditional ICL is the restricted con-
text length of most open-source LLMs, which con-
strains the number of demonstrations that can be
included in the prompt. As a result, effectively uti-
lizing ICL requires careful prompt engineering and
selection of examples to mitigate these challenges.

One recent approach to address the limitations
of traditional ICL is activation steering, which in-
volves modifying the activation layers of LLMs.
For instance, Liu et al. (2024) have proposed com-
puting the principal direction of the difference be-
tween source and target representations and using
this as a single steering vector for all test data.
More recently, Wang et al. (2025) introduced a
binary masking method to identify the most influen-
tial elements in the steering process. A fundamen-
tal limitation of these methods is that they are either
query-agnostic or lack fine-grained control, ham-
pering final alignment performance. This raises
a research question: How can activation steering
be adaptively applied in a query-dependent man-
ner and at the token level to effectively guide LLM
generation toward a desired goal?

To this end, we propose Dynamic Steering with
Episodic Memory (DSEM), a novel and efficient
steering method designed to steer LLM genera-
tions flexibly, enabling quick adaptation to a given
input and fine-grained control over the genera-
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tion process. Drawing inspiration from the rapid
and instance-based learning mechanisms observed
in the hippocampus region of the human brain
(Lengyel and Dayan, 2007), our method utilizes
an external episodic memory that stores input rep-
resentations, partially generated outputs, and their
stored steering vectors. We use the input-output
demonstrations to define the partial outputs and
compute the stored steering vectors. During infer-
ence, DSEM utilizes the memory to generate steer-
ing vectors for each input query. It retrieves stored
steering vectors and estimates the chunk-level steer-
ing vector using a nearest-neighbor mechanism, en-
suring that steering vectors adapt across queries
instead of remaining static.

Another significant benefit of DSEM is its abil-
ity to compute steering vectors at the token level.
Instead of using a fixed steering vector for an entire
sentence, DSEM dynamically determines steering
vectors for generating the next few tokens. By
leveraging token-level information saved in mem-
ory (i.e., the partially generated outputs), DSEM re-
trieves steering vectors that are better aligned with
the desired outputs. This approach is motivated by
the fact that next-token prediction in transformers
(Vaswani et al., 2017) is inherently a token-wise
process, suggesting that steering should also be
applied at the token rather than the sentence level.

Finally, to preserve the global semantics of the
demonstration, DSEM retrieves the most relevant
steering vector at inference time and interpolates it
with a global steering vector during each token gen-
eration step. This interpolation ensures a smooth
transition between context-sensitive adjustments
and overarching guidance, preventing abrupt shifts
in model behavior. The interpolation weight is de-
termined adaptively based on the uncertainty of
the memory prediction, allowing DSEM to balance
local specificity with global coherence.

In summary, our main contributions are: (1)
We propose DSEM, a fine-grained activation steer-
ing method that dynamically interpolates between
memory-based and global steering vectors, en-
abling precise control over generation. (2) We
propose an uncertainty-driven interpolation mech-
anism that dynamically balances local specificity
with global coherence. (3) We empirically demon-
strate that DSEM outperforms strong baselines,
including fine-tuning and state-of-the-art activa-
tion steering methods, across multiple tasks such
as detoxification, formality adjustment, and role-
playing, as well as across different model architec-

tures and demonstration sizes.

2 Methods

2.1 Problem formulation

In-context Learning. In the standard framework
of ICL, we have access to the base language model
L, which is trained on large-scale data, and a set
of demonstration data Ddemos = {(xi, yi)}|Ddemos|

i=1 ,
where each pair (xi, yi) represents an input-output
example for the task we want to accomplish. Given
a test query xtest, the input prompt for traditional
ICL is constructed by concatenating the demonstra-
tion examples with the test query. Specifically,
Prompt = concat((xdemos, ydemos), xtest), where
(xdemos, ydemos) are the pairs of demonstration ex-
amples, and concat(., .) denotes the concatenation
operation. As a result, the model’s output is given
by ytest = L(Prompt). The response ytest can be in-
fluenced by the demonstration examples provided
and their order (Do et al., 2024; Pham et al., 2025).
This allows for a degree of control over the output,
as different choices or arrangements of demonstra-
tions can lead to varying model behaviors.
Activation Steering. LLMs rely on the Trans-
former architecture (Vaswani et al., 2017), where
self-attention mechanisms relate different token
positions in a sequence. In ICL, demonstration ex-
amples are preappended to the query, influencing
how attention is distributed across tokens. In la-
tent space, Park et al. (2024) found evidence that
concepts are represented as linear directions in the
activation space of neural networks. Activation
steering typically produces a steering vector, which
is a modification to the latent space of an LLM that
guides its output toward a desired outcome.

2.2 Steering With Episodic Memory

In this section, we present the architecture of our
episodic memory M, which extracts the steer-
ing vector at the token level during LLM gener-
ation. Assume we generate l tokens at a time;
the goal is to find a steering vector for those l
tokens and steer them toward the desired behav-
ior. For example, in a Shakespearean role-playing
task, a source sentence could be ’I need your help
now.’ If fully steered toward Shakespearean for-
mality, it would be "I beseech thee, assist me this
very moment!", which is unnecessarily elaborate.
Steered for clarity, it would remain ’I need help
now.’ By balancing both clarity and Shakespearean
formality, the final output would be: ’I beseech
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Figure 1: Memory Read process of DSEM and an example element fromM for the Shakespeare dataset (bottom
left). Given the input x̂ and the current partial generation ŷm, at inference time, Memory is queried with x̂ and
ŷm to extract vmemory and Uncertainty. vmemory undergoes an interpolation phase with vglobal, derived from Ddemos,
with interpolation weights determined by the Uncertainty of Memory’s prediction. The resulting vector, vsteer, is
then used to guide the generation of the next l tokens. After that, we do an update on the partially generated output
ŷm ← ŷm+l. This loop is continued until the end of generation.

thee, assist me now.’ This shows how having
different steering vectors during generation can
achieve the optimal balance of style and clarity.
In this paper, we utilize an episodic memory to
dynamically compute steering vectors in a query-
dependent and token-level manner, avoiding the
need for expensive fine-tuning (Hu et al., 2021). To
write into memory, we store tuples of the demon-
stration source x, its representation s(x), the cor-
responding steering vector vmemory, and progres-
sively larger token chunks yl, y2l, . . . , yL, where
L is the target sentence length. During inference
(Memory Read phase), the memoryM is queried
with the input x̂ and partial generation ŷm to ex-
tract vmemory and its associated Uncertainty. The
extracted vector is interpolated with vglobal from
Ddemos using Uncertainty-based weights, produc-
ing vsteer. This vector guides the generation of the
next l tokens, after which the partial output is up-
dated as ŷm ← ŷm+l. The process repeats until
the generation is completed. An illustration of the
process is shown in Figure 1.

State Representation. Accurate and meaningful
text representations are essential for both memory
storage and efficient retrieval. In DSEM, a mem-
ory element contains the embedded representation
of the demonstration example xdemo along with
chunk-level information. For sentence-level infor-
mation, we compute the mean pooling of the last

token representation of the demonstration sentence
xdemo when passed through the LLM L, which we
denote as s(xdemo). To preserve token-level infor-
mation, we store the target sentence’s tokens pro-
gressively. This is achieved by segmenting ydemo
into

⌈
L
l

⌉
parts, transforming a sentence of length

L into
⌈
L
l

⌉
progressive states. Each state grants

DSEM access to granular token-level insights, en-
hancing retrieval precision and efficiency.
Steering Vector Extraction. Given a pair of
demonstrations (xdemo, ydemo), we calculate the
steering vector as follows:

vdemo = h(ydemo)− h(xdemo) (1)

Here, h(ydemo) and h(xdemo) are the concate-
nated embeddings across all layers of the LLM
L. vdemo ∈ Rnlayers,nhidden , where nlayers and
nhidden denote the number of layers and the la-
tent representation dimension of L, respectively.
Intuitively, vdemo steers the model’s output from
xdemo toward ydemo. Adding vdemo to the latent rep-
resentation of L(xdemo) at each token step guides
the model toward generating ydemo.

2.2.1 Memory Construction
We populate the memoryM using a set of demon-
stration examples Ddemos. For each example, we
pair its text input xdemo and embedded represen-
tation s(xdemo) with the corresponding target out-
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put ydemo. The output ydemo is divided into pro-
gressively larger chunks, where the size of each
chunk is determined by l. Specifically, the first
chunk contains l tokens, the second chunk con-
tains 2l tokens, and so on. A smaller l captures
finer-grained contextual information but increases
memory storage, while a larger l results in coarser
chunks, reducing the memory storage. The tar-
get sequence is partitioned into multiple chunks
for a given l. Each chunked representation is
paired with its corresponding steering vector vdemo,
which is derived from the demonstration. These
tuples are then stored in memoryM in the form:(
s(xdemo), xdemo, y

j
demo, vdemo

)
, where yjdemo rep-

resents the j-th chunk of the target sequence. These
elements are appended sequentially toM, ensur-
ing that all relevant contextual information is pre-
served.

2.2.2 Memory Read
In this section, we describe the memory reading
process used to obtain token-level steering vectors
Sentence-level Retrieval With Reciprocal Rank
Fusion. In practice, we often encounter novel sen-
tences, i.e., sentences not present in memory. To ad-
dress this, we leverage our memoryM as a nearest-
neighbor estimator to obtain steering vectors at
the token level. We first retrieve Nsent, the set
containing the top-Ksent most relevant sentences.
Inspired by Reciprocal Rank Fusion (RRF) (Cor-
mack et al., 2009), we rank these neighbors by
combining dense retrieval and BM25 (Robertson
and Zaragoza, 2009) to enhance retrieval precision.

For retrieval, we combine dense and lexical sim-
ilarity to capture both semantic and lexical infor-
mation. Dense retrieval ranks candidates (Rdense)
based on their cosine similarity with the test query,
capturing semantic alignment. Lexical similarity
is introduced by computing BM25 scores between
the test query xtest and all queries inM, resulting
in the ranking RBM25. The details of Rdense and
RBM25 are provided in Appendix A.2.

Once we obtain two rankings, Rdense and RBM25,
the final rank of each sentence xi inM, denoted
as RRRF (xtest), is computed using the RRF score:

scoreRRF(xi) =
1

kRRF +Rdense(xi)
+

1

kRRF +RBM25(xi)
(2)

where kRRF is a constant integer. Intuitively,
a higher scoreRRF indicates greater similarity be-
tween the memory element xi and the test query

xtest at the sentence level. Finally, we use RRRF to
get Nsent corresponding to xtest.
Token-level Vector Extraction. Beyond retrieving
the nearest input neighbors, we also search for the
stored target outputs closest to the current genera-
tion to refine the steering vector at the token level.
This step is performed during generation between
the current partial generation and the target chunks
we stored in M, which differs from the RRF re-
trieval used for retrieving the nearest sentences.

Let Ntok represent the set of chunks derived
from the top-Ksent retrieved sentences for the test
query. Our objective is to retrieve the top-Ktok
nearest chunks from Ntok to the current generation.
To achieve this, we calculate the BM25 score be-
tween the current generation ym and each chunk
ytok, ytok ∈ Ntok. The top-Ktok memory elements
are then selected based on these scores. This ap-
proach provides access to fine-grained token-level
information about the current generation with re-
spect to the memory elements, thereby improving
the accuracy of the steering vector calculation. For
simplicity, we set Ktok = Ksent.
Steering Vector Interpolation With Memory Un-
certainty. In this section, we illustrate how the
token-level steering vector is calculated. First, we
show how to extract the memory steering vector, de-
noted as vmemory. When the generation process has
not started, it is not possible to use Token-level Re-
trieval, thus, for that case, we rely on the top-Ksent

sentences’ steering vector. Formally, we have:

vmemory =

{∑|Ntok|
j=1 vj

/
|Ntok|, if t = 0,

∑|Nsent|
j=1 vj

/
|Nsent|, otherwise.

(3)
Here, t is the number of generated tokens in the
response, vj is the steering vector corresponding to
the jth memory element in Ntok.

To balance the tradeoff between local relevance
and global coherence during token-level steering,
we propose a dynamic interpolation mechanism
between memory-based and global steering vectors.
The general form of the interpolation is defined as:

vsteer = (1− δ(xtest)) · vmemory + δ(xtest) · vglobal,
(4)

where vglobal represents the global steering vector,
and δ(xtest) is the uncertainty-based weight that
adjusts the contribution of each component.

The memory-based steering vector, vmemory,
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provides localized guidance by capturing token-
relevant information from similar past contexts,
ensuring improved contextual relevance. However,
solely relying on memory can cause the model to
overfit to specific memory instances, resulting in
outputs that are less consistent with the broader
data distribution. To address this, we include
the global steering vector, vglobal, which captures
corpus-wide information and aligns with the refer-
ence data’s statistical properties.

The uncertainty-based interpolation weight
δ(xtest) is motivated by two key goals. First, it
reduces hyperparameter tuning costs by dynami-
cally adjusting the interpolation weight, eliminat-
ing the need for manual tuning of fixed weights and
making the approach more adaptive and efficient.
Second, it enables dynamic adjustment for each
input by varying the interpolation weight based on
the uncertainty of the memory retrieval. For inputs
with low uncertainty, vmemory is prioritized, other-
wise, the mechanism shifts focus toward vglobal.

To compute the global steering vector vglobal, we
adopt the state-of-the-art method from ICV (Liu
et al., 2024), defined as:

vglobal = argmax
h

1

|D|
∑

i

(
hT (hyi − hxi)

)2
,

s.t. hTh = 1.
(5)

Here, yi and xi represent the target and source
sentences in the demonstration set Ddemos, respec-
tively. This ensures that vglobal captures the overall
statistical patterns of the corpus, complementing
the localized guidance provided by vmemory.

To determine the interpolation weight dynami-
cally at the token level, we introduce an uncertainty-
based mechanism. Let d be the cosine distances
between s(xtest) and all stored elements inM. If
s(xtest) ∈M, the memory provides a direct steer-
ing vector with zero uncertainty δ(xtest) = 0. Oth-
erwise, we estimate uncertainty based on the dis-
persion of distances among the top-Ksent retrieved
sentences inM: δ(xtest) =

mean(d)−min(d)
max(d)−min(d) . Higher

uncertainty δ signals greater variability in mem-
ory distances, indicating lower confidence in the
retrieved steering vector.

After computing vsteer in Equation 4 using the
elements outlined above, we apply it to guide the
generation of the next l tokens as follows:

v̂iL = viL + λ · visteer (6)

where i denotes layer ith of L and λ denotes steer-
ing intervention strength. By combining vmemory
and vglobal in this framework, we achieve a balance
between local adaptation and global coherence at
the token level. The uncertainty-based weighting
mechanism ensures robust, contextually adaptive
steering while minimizing manual effort. Memory
Read algorithm is shown in Appendix A.1.

3 Experiments

Our experiments focus on open-source LLMs:
Llama-2-7b-chat, Gemma-2-9b-it, Falcon-7B,
and Mistral-7b-Instruct-v0.2 (Touvron et al.,
2023; Team, 2024; Almazrouei et al., 2023; Jiang
et al., 2023). The same top_p and temperature val-
ues are used across all methods within each model.

3.1 Datasets
ParaDetox. We evaluate DSEM on the detoxi-
fication task using ParaDetox (Logacheva et al.,
2022), a dataset consisting of toxic-neutral sen-
tence pairs. For evaluation, we randomly select
700 examples. The goal is to rewrite toxic sen-
tences into non-toxic ones while preserving their
original meaning. GYAFC. We evaluate DSEM
on the formality transfer task using GYAFC (Rao
and Tetreault, 2018), where each sample contains
an informal and a formal sentence. The objective
is to rewrite informal sentences into their formal
counterparts. The dataset is further divided into two
subsets: GYAFC-family and GYAFC-music, which
contain sentences related to family relationships
and music, respectively. Shakespeare. We also
consider the Shakespeare Modern English dataset
(Jhamtani et al., 2017), where each sample con-
sists of a Modern English sentence. The task is to
rewrite it in the style of Shakespearean English.

3.2 Baselines
We compare our approach with state-of-the-art
steering and finetuning methods across different
LLMs and demonstration sizes. No Context only
uses the test input without additional context. ICL
adds a set of randomly selected examples from the
demonstration set together with the test query to
build the prompt. LoRA fine-tunes the model with
Low-Rank Adaptation (Hu et al., 2021) using the
demonstration set as training data. SaDI (Wang
et al., 2025) averages the differences of all data
pairs in the demonstration set. It then finds the
most influential elements to create a binary mask to
steer the model. ICV (Liu et al., 2024) computes a
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Llama-2-7b Gemma-9b
Paradetox GYAFC_family GYAFC_music Paradetox GYAFC_family GYAFC_music

Method Tox.↓ BERT↑ For.↑ BERT↑ For.↑ BERT↑ Tox.↓ BERT↑ For.↑ BERT↑ For.↑ BERT↑
No Context 39.00 90.75 39.77 92.19 40.56 92.25 44.28 83.82 28.71 82.55 27.51 80.11
ICL-4 41.43 85.09 26.45 55.13 45.33 64.93 22.14 90.24 60.60 92.27 85.36 89.56

E = 10
ICL-10 25.85 41.03 51.59 66.69 53.62 70.77 14.00 88.98 83.11 90.57 83.42 90.22
ICV 24.86 91.12 50.28 91.34 66.84 91.67 6.71 85.50 51.78 86.61 76.19 85.46
SaDI 28.14 45.50 53.66 92.11 57.14 92.23 78.29 90.93 8.07 92.06 5.82 91.38
LoRA 39.71 90.70 50.84 92.04 19.71 90.70 82.71 90.59 7.31 92.18 5.64 91.43
DSEM 21.42 91.68 66.04 92.26 76.37 92.26 5.57 88.29 96.44 90.35 96.47 90.59

E = 100
ICV 18.42 90.77 69.36 91.50 55.73 91.60 5.67 84.62 85.37 86.24 78.13 83.97
SaDI 17.86 90.44 52.91 92.10 59.44 92.15 80.43 91.76 7.69 92.60 6.80 90.13
LoRA 47.14 93.23 34.14 93.77 32.98 93.70 61.29 89.54 5.25 90.27 5.82 94.42
DSEM 15.70 90.90 85.00 92.11 83.60 92.22 4.29 88.15 97.75 90.29 94.53 90.41

Table 1: DSEM vs. Baselines on Detoxification and Formality Transfer. Results (percentages) across Llama-2-7b
and Gemma-9b models. "Tox." is for Toxicity, "For." is Formality. ICL-4 and ICL-10 use 4 and 10 random
demonstrations. Lower Toxicity is better, while Higher Formality and BERTScore indicate better performance. Best
results are bolded, second-best underlined, excluding No Context and ICV-4.

steering vector based on the principal direction of
differences between positive and negative examples
from the demonstration set.

3.3 Standard Benchmarking Evaluation

Following prior work (Liu et al., 2024), to mea-
sure alignment effectiveness, we use a safety clas-
sifier to detect toxicity in ParaDetox generations,
trained on datasets like Wikipedia Toxic Comments
(Wulczyn et al., 2017), Build It - Break It - Fix It
(Votipka et al., 2020), and Bot-Adversarial Dia-
logue (Xu et al., 2021). A sentence is considered
safe if its predicted score exceeds 0.9. The dataset
is split into GYAFC-family and GYAFC-music,
aligning with subdomains. For formality transfer,
we use a RoBERTa-based classifier (Dementieva
et al., 2023) with a 0.9 threshold. Additionally,
ground-truth relevance is measured using ROUGE-
1 (Lin, 2004) and BERTScore (Zhang et al., 2020)
for lexical and semantic similarity, respectively.
Due to space restriction, the results of detoxifica-
tion, formality transfer and BERTScore for Llama-
2-7b and Gemma-9b are shown in Table 1, while
the full results, including ROUGE-1 metric and
other LLMs such as Falcon-7b and Mistral-7b are
shown in Table 5 in Appendix A.4.
Paradetox Results. Our method, DSEM, achieves
the lowest toxicity across nearly all models and
demonstration sizes, demonstrating its effective-
ness in controlled text generation. As shown in Ta-
ble 1, DSEM consistently outperforms other meth-
ods in reducing toxicity while maintaining competi-
tive fluency and relevance. Notably, DSEM achieve
the highest scores across all datasets with E = 10,
which highlights its efficiency over other methods.
On Llama-2-7b at E = 100, DSEM lowers toxicity

to 15.70%, outperforming ICV (18.42%) and sig-
nificantly surpassing LoRA (47.14%). Although
LoRA achieves the highest BERTscores in some
settings (e.g., 93.23 for Llama-2-7b at E = 100),
its high toxicity makes it unsuitable for detoxifica-
tion tasks. DSEM balances toxicity reduction with
coherence and relevance, offering scalable and fine-
grained control. For Gemma-9b, DSEM produces
meaningful low-toxicity content, whereas ICV, de-
spite similarly low toxicity, generates repetitive and
nonsensical tokens (see Appendix A.12).
Formality Transfer Results. DSEM consistently
achieves the highest Formality scores across all
models and datasets, significantly outperforming
baselines. This advantage is most pronounced
at E = 100, increasing the chance of retriev-
ing better neighbors. With Gemma-9b, perfor-
mances of DSEM nearly achieve the perfect For-
mality rates for both datasets. In addition, the
performance gaps of DSEM compared to sec-
ond best baselines are large (e.g., +12.38% on
GYAFC_family and +16.40 % on GYAFC_Music
while having higher BERTScores with E = 100).
At E = 10, DSEM remains superior. With
Llama-2, it achieves 66.04% (GYAFC_family) and
76.37% (GYAFC_music), outperforming second-
best baselines, which are SaDI and ICV, by 12.38%
and 9.53%, respectively. Notably, these gains
come with higher BERTScore, indicating effective
memory-based steering.

3.4 LLM Evaluation

To capture subtle aspects of language quality that
conventional metrics may overlook, we evaluate
using CohereAI’s Command-R Plus model, a pow-
erful enterprise LLM with 104 billion parameters
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Figure 2: Win rates of DSEM versus ICV across dif-
ferent backbones on the Shakespeare role-playing task
using Command-r-plus as evaluator.
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Figure 3: Win rates of DSEM versus ICV across differ-
ent backbones on other datasets with 300 samples each
using Command-r-plus as the evaluator.

(Cohere For AI, 2024). This model acts as a proxy
for human evaluation, determining which responses
are superior. We randomize the order of the re-
sponses in the prompt to avoid possible positional
bias (Zheng et al., 2023). Evaluation prompts are
reported in Appendix A.16.
Shakespeare Role-Playing Results. We evalu-
ate DSEM on 585 test samples from the Shake-
speare role-playing dataset (Jhamtani et al., 2017),
using ICV (Liu et al., 2024) as the baseline due
to its strong performance in alignment as shown
in the previous experiment. We set E = 100
and Ktok = Ksent = 9. As shown in Figure 2,
DSEM consistently outperforms ICV across all
tested backbones. This demonstrates the advantage
of our fine-grained steering method in improving
response quality while maintaining alignment with
the intended role.
Results on Other Datasets. We randomly select
300 samples from each dataset for LLM evaluation
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Figure 4: Ablation on using different l with Llama-2-7b
and E = 100 for GYAFC Family and GYAFC Music.

to further validate the effectiveness of DSEM. We
compare the generations head-to-head with ICV
(Liu et al., 2024), and the results are presented in
Figure 3. DSEM outperforms ICV across all back-
bone models on the GYAFC_Music dataset, with
Gemma-9b achieving the highest win rate of 91.4%.
For Paradetox, DSEM consistently performs better
across all models. On the GYAFC_Family dataset,
except for Falcon-7b, DSEM maintains superiority
over ICV, with Mistral-7b achieving the second-
best win rate of 58.1%.

4 Ablation Study

4.1 Effect of Different Token Chunk Length l

We study the impact of chunk length l on perfor-
mance to understand the benefit of token-level steer-
ing. Results for Llama-2-7b across GYAFC Fam-
ily and GYAFC Music datasets are shown in Fig-
ure 4. Overall, a lower l tends to boost relevance,
as evidenced by higher BERTScores. However,
the optimal chunk length varies by dataset. For
GYAFC Music, shorter chunks yield substantial
gains because they capture fine-grained contextual
nuances essential for music-related texts. In con-
trast, for GYAFC Family, longer chunks better pre-
serve broader context and narrative flow, leading
to improved downstream performance. These find-
ings indicate that the optimal l is dataset-dependent,
reflecting the varying linguistic and structural char-
acteristics across tasks. Therefore, it is important to
steer at a flexible token level and adjust the chunk
length to suit different settings.

4.2 Effect of Using Memory Steering

We validate the results when using only vmemory
as the steering vector, without interpolating with
vglobal. We use Llama-2-7b on the GYAFC Family
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Figure 5: Ablation of only using vmemory using Llama-
2-7b on GYAFC Family dataset with E = 10.

Dataset Scores R-1 BERT
Paradetox ↓ 16.28 (+1.1) 50.66 90.81
GYAFC_Family ↑ 84.99 (-0.01) 45.60 91.47
GYAFC_Music ↑ 83.25 (-0.35) 51.25 92.22

Table 2: Results of DSEM using the average of all
vectors stored inM as vglobal. We use Llama-2-7b with
E = 100. For Paradetox, Lower score is better (↓),
while Higher score is better for the rest (↑).

dataset. For the "Global Only" baseline, vglobal is
derived from ICV (Liu et al., 2024). As shown
in Figure 5, using only vglobal achieves the low-
est results among all approaches. Using only
vmemory yields better results on both Formality and
BERTScore. Yet, the best performance is achieved
by interpolating between vmemory and vglobal, ensur-
ing smooth transitions between context-sensitive
adjustments and overarching guidance.

4.3 Effect of Different vglobal
In addition to using vglobal as ICV, we try vglobal as
the average of stored steering vectors inM. Re-
sults for Llama-2-7b with E = 100 are shown
in Table 2. Toxicity increases slightly (1.1%),
while Formality decreases marginally. While us-
ing vglobal as ICV performs slightly better, this
experiment shows that DSEM is robust to simpler
methods of deriving vglobal.

4.4 Chunk Length Selection

In addition to the results we have already presented
in the paper using LLaMA-2-7B, we report ad-
ditional experiments on the GYAFC_Family and
GYAFC_Music datasets using Gemma-9B. The ex-
periments were run with l ∈ [2, 4, 8, 16, 32].

Observing the results, we find that increasing
l generally decreases BERTScore while enhanc-
ing the formality of the output, which aligns with
our earlier findings using LLaMA-2. However,

Dataset l Formality BERT
GYAFC_family 2 96.42 90.25

4 96.44 90.35
8 97.18 90.17
16 97.74 90.21
32 97.18 90.12

GYAFC_music 2 95.22 90.59
4 96.47 90.59
8 96.29 90.62
16 96.29 90.49
32 97.17 90.41

Table 3: Results of DSEM using Gemma-9b with differ-
ent chunk length l.

on the GYAFC_Family dataset, formality contin-
ues to increase with larger l, diverging from the
trend presented in Figure 4 . Overall, a medium
value of l (between 4 and 16) appears to provide
a good balance between downstream performance
and relevance, whereas values that are too small
(e.g., l = 2) or too large (e.g., ℓ = 32) tend to yield
suboptimal results.

4.5 Other Ablation Studies

Due to the page limit, we provide more ablation
studies in the Appendix. We provide additional
results on larger LLMs in Appendix A.5’s Table 6,
results on TruthfulQA dataset in Appendix A.6’s
Table 9, ablation with various number of neigh-
bors in Appendix A.7’s Figure 8, ablation on us-
ing DSEM with more demonstration examples in
Appendix A.8 ’s Table 7, ablation on the interven-
tion factor in Appendix A.9’s Table 9, inference
speed and memory in Appendix A.10’s Table 10
and Table 12. These results demonstrate DSEM’s
consistent outperformance across various settings.

5 Related Work

Traditional ICL Improvements. Several meth-
ods have been proposed to improve ICL, including
instruction tuning, demonstration selection, and
ordering (Deng et al., 2022; Zhang et al., 2022;
Do et al., 2024; Pham et al., 2025). Instruction
tuning fine-tunes models on diverse tasks to en-
hance generalization, while demonstration selec-
tion identifies the most relevant examples to op-
timize performance. Ordering strategies explore
how the arrangement of examples impacts output.
While these approaches enhance ICL by editing
instructions or selecting and arranging examples,
they remain constrained by the fixed context win-
dow, limiting scalability.
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Activation Steering refers to techniques that mod-
ify the latent space of models to produce desired
outputs. Burns et al. (2022); Park et al. (2024)
demonstrate that latent knowledge encoded in the
activation space is linearly separable. Liu et al.
(2024) proposes finding the principal direction of
the steering vectors in a demonstration set and ap-
plying it to the entire test set. Wang et al. (2025)
introduces a binary mask for the latent space to
enhance the values of the most important elements.
However, while Liu et al. (2024) identifies a query-
agnostic steering vector, Wang et al. (2025) relies
heavily on brute-force search to determine the opti-
mal number of important elements and the strength
of the intervention, a limitation acknowledged in
their work. In contrast, DSEM introduces a dy-
namic, query-dependent approach to identify steer-
ing vectors at the token level, allowing the steering
direction to adapt smoothly during generation.

6 Conclusion

We introduce Dynamic Steering with Episodic
Memory (DSEM), a training-free framework that
aligns LLMs with given demonstrations by steering
at the token level, conditioned on the input query.
DSEM stores representation-vector associations
and uses a nearest-neighbor mechanism to extract
the steering vector during generation. It leverages
prediction uncertainty to determine the interpola-
tion weight with a global steering vector. Evalu-
ations on safety, style transfer, and role-playing
tasks demonstrate its effectiveness, with detailed
model analyses highlighting its advantages.

Limitations

We explore the ability to steer LLM generations
using Dynamic Steering with Episodic Memory
(DSEM). Our work introduces query-dependent,
token-level steering during generation, a promis-
ing direction that warrants further research atten-
tion. However, several limitations must be acknowl-
edged. First, while DSEM demonstrates promising
results on medium-scale datasets, its scalability to
larger datasets remains to be evaluated. Second,
verifying memory-based generation poses chal-
lenges in black-box models where internal repre-
sentations are inaccessible. Future research should
aim to develop techniques for better understanding
these behaviors and extend our findings to broader
contexts.
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A Appendix

A.1 Pseudocode for Memory Read of DSEM
We provide the pseudocode for Memory Read pro-
cess in Algorithm 1

Algorithm 1 Token-level Steering With Memory
Read
Require: MemoryM, Language Model L, Token

step l, Demo set Ddemos, Test sample xtest,
Max tokens L, End-of-sequence token <eos>

1: Initialize: yt ← y0, t ← 0, termination ←
False

2: Compute vglobal via Eq. (5)
3: Obtain s(xtest)
4: while not termination do
5: Compute Rdense, RBM25
6: Compute RRRF via Eq. (2), retrieve Nsent
7: if t = 0 then
8: Retrieve Ntok from top-Ksent (based on

RRRF)
9: vmemory ← 1

|Ntok|
∑|Ntok|

j=1 vj
10: else
11: vmemory ← 1

|Nsent|
∑|Nsent|

j=1 vj
12: end if
13: Interpolate vsteer = (1− δ(xtest)) ·vmemory +

δ(xtest) · vglobal
14: Add vsteer at all layers of L: v̂iL = viL + λ ·

visteer
15: Generate next l tokens: yt:t+l ←

Lsteered(y
t, xtest)

16: Update sequence: yt ← concat(yt, yt:t+l)
17: Update number of generated tokens: t ←

t+ l
18: termination← (t ≥ L) or (<eos> ∈ yt:t+l)
19: end while

A.2 Dense Retrieval and BM25 Scoring
Details

We show detailed formulas for Dense Retrieval
and BM25 retrieval here. For dense retrieval, we
retrieve Rdense for a test query xtest as the dense
retrieval ranking based on their cosine distances
with the test query:

dcs(s(xtest), s(xi)) = 1− s(xtest) · s(xi)
∥s(xtest)∥∥s(xi)∥

(7)

where s(xi) is a latent representation of demonstra-
tion source xi saved inM.

To complement dense retrieval, we rank mem-
ory elements using BM25, which captures lexical
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Llama-2-7b Gemma-9b Falcon-7b Mistral-7b
Method Tox. ↓ R-1 ↑ BERT↑ Tox.↓ R-1↑ BERT↑ Tox. ↓ R-1↑ BERT ↑ Tox. ↓ R-1↑ BERT↑
No Context 39.00 52.11 90.75 44.28 34.20 83.82 89.14 67.75 92.04 31.28 38.78 89.66
ICL - 4 41.43 38.48 85.09 22.14 52.14 90.24 84.00 70.67 92.91 22.43 49.77 90.17

E = 10
ICL - 10 25.85 29.35 41.03 14.00 52.61 88.98 85.26 34.64 85.67 24.71 59.94 89.82
ICV 24.86 55.09 91.12 6.71 36.15 85.50 32.14 63.17 91.76 15.57 38.04 89.43
SaDI 28.14 45.50 90.48 78.29 63.66 90.93 84.00 70.72 92.91 22.57 34.52 89.26
LoRA 39.71 46.47 90.70 82.71 62.38 90.59 85.14 70.98 92.95 26.38 42.72 90.10
DSEM 21.42 56.64 91.68 5.57 27.37 88.29 32.57 65.05 92.98 12.29 35.68 89.98

E = 100
ICV 18.42 50.47 90.77 5.67 25.60 84.62 26.43 57.19 91.52 11.71 33.32 88.61
SaDI 17.86 45.08 90.44 80.43 67.02 91.76 84.14 70.99 92.98 23.00 34.54 89.23
LoRA 47.14 70.74 93.23 61.29 61.94 89.54 58.29 68.61 92.38 33.28 70.64 93.28
DSEM 15.70 50.97 90.90 4.29 27.70 88.15 21.42 56.98 92.75 9.71 33.54 88.99

Table 4: Model Comparison on Detoxification Task. Results (percentages) for various methods. "Tox." indicates
Toxicity; ICL-4 and ICL-10 use 4 and 10 random demonstrations, respectively. ICL with E = 100 is omitted due to
context length limits. For ICV, LoRA, and DSEM, results are shown for different E. Lower Toxicity scores are
better, while higher ROUGE-1 (R-1) and BERT scores indicate better relevance. Best results are bolded, second-best
underlined. Notation excludes No Context and ICV-4.

overlap. Given a test query xtest, the BM25 score
for a memory element xi is computed as:

BM25(xi, xtest) =
∑

tj∈xtest

IDF(tj) · ftj ,xi · (k1 + 1)

ftj ,xi + k1 · (1− b+ b · |xi|
avgdl )

(8)

where ftj ,xi is the term frequency of tj in xi,
and |xi| is its word count. The average length of
elements inM is denoted as avgdl. Hyperparame-
ters k1 and b control term frequency saturation and
length normalization, respectively.

The inverse document frequency (IDF) of a term
tj is given by:

IDF(tj) = log

(
N − ntj + 0.5

ntj + 0.5
+ 1

)
(9)

where N is the total number of memory ele-
ments, and ntj is the count of elements containing
tj . We rank memory elements based on their BM25
scores and fuse rankings with dense retrieval using
RRF.

A.3 Addtional results: Toxicity.
We present the complete results of four LLMs:
Llama-2-7b, Gemma-9b, Falcon-7b, and Mistral-
7b on the Paradetox dataset. The results are sum-
marized in Table 4. As shown in the table, DSEM
achieves the best Toxicity scores in all but one
setting, demonstrating the effectiveness of the dy-
namic steering it provides. For instance, with
Mistral-7b, DSEM achieves a 12.29% Toxicity

score while ranking second in terms of BERTScore.
Similarly, for Llama-2-7b, DSEM achieves the
best scores across all metrics—Toxicity, ROUGE-
1, and BERTScore—with E = 10. Regarding rele-
vance, while DSEM lags behind SaDI and LoRA
in certain settings, it is important to note that their
Toxicity scores are significantly higher. This trade-
off indicates that their relevance scores become less
meaningful, as such an imbalance is suboptimal.

A.4 Addtional results: Formality.

We provide Formality results of Falcon-7b
and Mistral-7b in Table 5. With Mistral,
DSEM achieves near-perfect scores (96.62% for
GYAFC_family, 96.30% for GYAFC_music) with
E = 100. A similar trend is observed when
E = 10. Mistral-7b outperforms ICV (the sec-
ond best baselines) in both GYAFC_Family and
GYAFC_Music by 8.82 % and 7.58 % while hav-
ing higher relevant scores. This further indicates
the superior in steering control of DSEM.

On GYAFC_music, DSEM more than doubles
the third-best Formality score (39.68% vs. 15.87%).
Even losing to ICL-10 in E = 10 setting, DSEM
improves significantly when E = 100. We suspect
that with more demonstration examples, DSEM
is more likely to find suitable steering vector via
closer neighbors, thus illustrating better perfor-
mances.
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Llama-2-7b Gemma-9b
GYAFC_family GYAFC_music GYAFC_family GYAFC_music

Method For. R-1 BERT For. R-1 BERT For. R-1 BERT For. R-1 BERT
No Context 39.77 49.60 92.19 40.56 52.34 92.25 28.71 30.42 82.55 27.51 29.34 80.11
ICL-4 26.45 34.72 55.13 45.33 41.51 64.93 60.60 50.66 92.27 85.36 42.71 89.56

E = 10
ICL-10 51.59 43.63 66.69 53.62 46.54 70.77 83.11 51.74 90.57 83.42 48.73 90.22
ICV 50.28 46.40 91.34 66.84 48.89 91.67 51.78 33.47 86.61 76.19 22.92 85.46
SaDI 53.66 47.18 92.11 57.14 49.54 92.23 8.07 61.61 92.06 5.82 60.72 91.38
LoRA 50.84 46.75 92.04 19.71 46.50 90.70 7.31 61.08 92.18 5.64 61.69 91.43
DSEM 66.04 47.90 92.26 76.37 50.05 92.26 96.44 30.07 90.35 96.47 37.25 90.59

E = 100
ICV 69.36 48.54 91.50 55.73 54.71 91.6 85.37 26.29 86.24 78.13 19.91 83.97
SaDI 52.91 46.71 92.13 59.44 49.66 92.15 7.69 61.57 92.60 6.80 61.06 90.13
LoRA 34.14 61.45 93.77 32.98 64.24 93.70 5.25 62.34 90.27 5.82 69.70 94.42
DSEM 85.00 51.69 92.11 83.60 51.71 92.22 97.75 30.15 90.29 94.53 35.45 90.41

Falcon-7b Mistral-7b
GYAFC_family GYAFC_music GYAFC_family GYAFC_music

Method For. R-1 BERT For. R-1 BERT For. R-1 BERT For. R-1 BERT
No Context 4.70 61.58 92.73 6.52 60.40 91.72 65.67 35.42 90.80 63.32 40.45 90.89
ICL-4 40.71 27.09 84.81 45.15 35.74 86.16 51.59 42.72 80.00 71.43 45.65 81.53

E = 10
ICL-10 41.78 54.47 91.78 41.62 55.18 90.91 74.86 54.22 90.85 75.66 52.74 90.15
ICV 17.07 66.27 93.82 15.87 66.08 93.51 83.49 30.89 89.93 88.89 39.44 90.57
SaDI 4.88 64.05 93.26 5.82 62.24 92.10 67.73 36.66 90.91 68.08 41.80 91.02
LoRA 3.75 64.34 93.38 5.29 63.21 92.34 50.84 44.11 91.75 26.29 42.79 90.10
DSEM 34.90 67.42 93.90 39.68 69.02 94.23 92.31 32.76 90.66 96.47 40.74 91.32

E = 100
ICV 55.16 66.09 93.99 32.09 66.25 93.40 93.99 33.29 90.22 92.59 39.21 90.52
SaDI 7.69 61.57 92.60 6.80 61.06 90.13 65.48 36.37 90.87 68.25 42.17 91.06
LoRA 27.58 68.74 94.54 25.57 69.70 94.42 21.39 62.23 92.96 23.81 65.26 93.64
DSEM 64.43 66.87 94.02 48.85 69.32 94.16 96.62 35.36 90.88 96.30 40.97 91.28

Table 5: Comparison of different methods on Paradetox and two formality transfer datasets using all 4 LLMs:
Llama-2-7B, Gemma-9b, Mistral-7b and Falcon-7B with E = 10 and E = 100. "Tox." denotes Toxicity, "For."
denotes Formality, "R-1" represents ROUGE-1, and "BERT" refers to BERTScore. Lower values are better for
Toxicity, while higher values are better for all other metrics. In this table, for DSEM, Ktok = Ksent = 5 for all runs.
Best downstream performance results (Toxicity and Formality) are bolded, with second-best results underlined.

A.5 Additional results: Performance
comparison on larger LLMs.

We provide results on the Paradetox,
GYAFC_Family, and GYAFC_Music datasets
using larger LLMs: meta-llama/Llama-2-13b-
chat-hf and Falcon-11B (Touvron et al., 2023;
Almazrouei et al., 2023). Results can be seen
in 6. Our approach is compared against two
state-of-the-art baselines: ICV (Liu et al., 2024)
and SaDI (Wang et al., 2025). The detailed
results are presented in Table 6. It is evident that
DSEM consistently outperforms other methods
across the majority of tasks, particularly excelling
on GYAFC_Family and GYAFC_Music. For
instance, with Llama-2-13B, DSEM achieves an
impressive 95.68% formality rate at E = 100,

while still maintaining high BERTScore and
ROUGE-1 scores, demonstrating its effectiveness
in preserving both formality and content quality.
This highlights DSEM’s robustness in structured
text transformation. For Paradetox, DSEM
continues to deliver strong performance. Notably,
it achieves the best downstream results across 3
datasets with Falcon-11B at E = 10 and remains
highly competitive at E = 100, securing the best
on GYAFC datasets and second-best performance
on Paradetox. These results suggest that DSEM is
particularly effective in leveraging larger models
and dataset-specific characteristics, providing
strong improvements over existing baselines.
These results suggest the ability to scale up to
larger LLMs of DSEM, proposing a rapid and
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Llama-2-13B
Paradetox GYAFC_Family GYAFC_Music

Method Tox. R-1 BERT For. R-1 BERT For. R-1 BERT
E = 10

ICV 20.71 56.18 91.43 83.49 34.12 90.04 65.08 50.11 92.06
SaDI 17.28 41.44 90.02 60.41 42.72 91.49 63.49 45.74 91.65
DSEM 19.86 54.40 91.61 87.42 37.89 90.81 73.37 51.20 92.59

E = 100
ICV 15.43 46.71 90.13 93.62 37.83 90.54 85.71 41.09 90.46
SaDI 15.88 41.91 90.07 60.40 42.71 91.49 63.69 45.64 91.66
DSEM 14.89 47.21 90.09 95.68 42.81 91.29 81.83 49.35 92.23

Falcon-11B
Paradetox GYAFC_Family GYAFC_Music

Method Tox. R-1 BERT For. R-1 BERT For. R-1 BERT
E = 10

ICV 25.43 54.48 91.51 63.41 60.71 93.28 87.47 49.47 92.18
SaDI 31.71 49.36 91.02 64.92 48.64 92.63 62.43 52.37 92.64
DSEM 21.29 55.18 91.63 81.61 53.52 92.32 88.00 49.31 91.86

E = 100
ICV 15.42 46.43 90.49 90.68 36.71 90.78 90.59 34.15 89.98
SaDI 33.14 49.77 91.01 66.23 48.45 92.61 63.84 53.53 92.76
DSEM 16.42 47.55 90.60 94.93 45.84 91.45 92.42 46.41 91.46

Table 6: Comparison of different methods on Paradetox and two formality transfer datasets using Llama-2-13B
and Falcon-11B with E = 10 and E = 100. "Tox." denotes Toxicity, "For." denotes Formality, "R-1" represents
ROUGE-1, and "BERT" refers to BERTScore. Lower values are better for Toxicity, while higher values are better
for all other metrics. In this table, for DSEM, Ktok = Ksent = 5 for all runs. Best downstream performance results
(Toxicity and Formality) are bolded, with second-best results underlined.
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Figure 6: DSEM top 10 most repeated words across
generation responses

model-free approach to enhance larger LMs
performances.

A.6 Additional results: TruthfulQA

We evaluate DSEM on TruthfulQA, a dataset de-
signed to assess whether LLMs generate truthful
answers. We sample 700 examples from its test
set for evaluation. A head-to-head comparison is
conducted between DSEM and ICV and reported in
Table 9, which we consider the strongest baseline
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Figure 7: ICV top 10 most repeated words across gener-
ation responses

based on previous results in this paper. To deter-
mine which response is better, we employ Cohere-
r-plus as the judge. To demonstrate the general-
izability of our improvement, we evaluate across
four different model backbones. For all runs, we
use E = 100 samples and Ktok = Ksent = 9. As
shown in the results, DSEM outperforms the cur-
rent state-of-the-art method, ICV, across all settings.
Notably, with Gemma-9B, DSEM achieves an im-
pressive 87.51% win rate, significantly surpassing
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Figure 8: Downstream results (Toxicity, Formality) and BERT scores of DSEM on Paradetox and GYAFC datasets
with various number of neighbors (1, 5, 9, 15, 20), using Llama-2-7b with E = 100. We note that for simplicity, we
use Ktok = Ksent in all our experiments.
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Figure 9: Results of DSEM with different values of λ. We use Llama-2-7b with E = 100 on GYAFC Family
dataset.

Dataset Scores R-1 BERT
Paradetox (↓) 4.00 27.54 88.05
GYAFC Family (↑) 98.87 26.85 89.78
GYAFC Music (↑) 96.82 31.42 89.67

Table 7: Comparison (in percentages) of DSEM using
Gemma-9b(E = 1000) examples. For Paradetox, a
lower score is better (↓), while for GYAFC datasets, a
higher score is better (↑).

ICV and further demonstrating the effectiveness of
our approach.

A.7 Ablation: Different number of neighbors

We present results in Figure 8, showing the impact
of varying the number of neighbors (1, 5, 9, 15, 20)
on DSEM performance using Llama-2-7b with
E = 100 on ParaDetox and GYAFC. For simplic-
ity, we set Ksent = Ktok in all experiments. Pa-
raDetox achieves optimal performance at K = 9,

Method Parameters Value
Number of epochs 3

Cutoff Length 1024
Preprocessing workers 16

Per device train batch size 1
bf16 True

Learning rate 1e−4

Learning rate scheduler type cosine
Gradient accumulation step 8

LoRA Warm up ratio 0.1
ICV Intervention strength (λ) 0.1

K 6
SaDI Intervention strength (δ) 5

Table 8: Baselines training details

balancing toxicity reduction and semantic preser-
vation, while GYAFC benefits from larger K (15
or 20), despite minor semantic drift. These results
underline the task-specific nature of neighbor se-
lection.
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Model E Vs-baseline Winrate
Llama-2-7b 100 ICV 54.97
Gemma-9b 100 ICV 87.51
Mistral-7b 100 ICV 56.01
Falcon-7b 100 ICV 54.74

Table 9: Win rates of DSEM versus ICV baseline on
TruthfulQA dataset with E = 100

A.8 Ablation: More examples

We evaluate the performance of DSEM with E =
1000 across three datasets using Gemma-9b. Re-
sults can be seen in Table 7. The Toxicity score
and the Formality score on GYAFC Music improve
compared to settings with lower E, while the rel-
evance scores are only marginally lower. This
demonstrates that DSEM is susceptible to noise
when more memory elements are introduced, high-
lighting its scalability challenges.

A.9 Ablation: Different values of intervention
weight λ

We study the effect of different values of λ using
Llama-2-7b with E = 100 on the Formality Family
dataset. The results are presented in Figure 9. As
λ increases, formality steadily improves, peaking
at λ = 0.08 before slightly declining. BERTScore
remains relatively stable across all values, with a
small dip observed beyond λ = 0.1. These findings
suggest that λ = 0.1 achieves the best trade-off,
optimizing text quality while maintaining both for-
mality and semantic similarity.

A.10 Ablation: Inference Speed and Memory
Usage

We include analysis of inference speed in Table 10
and memory usage of our episodic memory in Ta-
ble 12. Since these values do not vary significantly
across different datasets, we report results only for
the Paradetox dataset.

Inference Speed. Table 10 compares toxicity
rates and running times using Gemma-9B across all
baselines and settings (with and without episodic
memory) on the Paradetox sampled test set (700
samples). It can be seen that DSEM achieves a
significantly lower toxicity rate compared to other
baselines, while also being faster than the primary
baseline, ICV. This highlights DSEM’s effective-
ness in producing more aligned outputs while main-
taining reasonable speed.

GPU Memory Usage. Table 12 shows the GPU
memory consumption (in MB) of our episodic
memory. As the usage does not vary significantly
across datasets, we report numbers only for the Pa-
radetox dataset. As expected, our memory module
stores only a limited number of examples (as few
as 10), with each stored value being a steering vec-
tor. Consequently, our framework does not raise
concerns regarding memory overflow.

A.11 Discussion on Quality of Memory
Entries

In this section, we discuss how the quality of
memory entries can effect the performance of our
method. We follow standard practice in in-context
learning when using curated data, a setup also
adopted by prior state-of-the-art methods (e.g., ICV,
SaDI). We do not cherry-pick the demonstrations;
instead, we randomly select the in-context exam-
ples. The availability of demonstrations is required
for both traditional in-context learning and activa-
tion steering methods.

A.12 Result Analysis: Paradetox

We provide further analysis in the extreme case of
Gemma-9b. As shown in Table 1, with Gemma-9b
and E = 100, the toxicity rates of ICV and our
method DSEM are only approximately 5%, which
is very low compared to other baselines. However,
upon closer inspection, we notice that the answers
produced by ICV contain repeated tokens, which
fragment its BERTScore with respect to the ref-
erence sentence. We provide both a qualitative
example and a quantitative plot of Word Repetition
per Generation (Repetition count) (Figure 6 and
Figure 7), which highlights how many words ap-
pear more than once in each generation. We can
see that the word ’to’ is repeated by ICV more than
1500 times, and ’the’ is used more than 1400 times.
In contrast, DSEM illustrates better behavior, with
its most common repeated word, ’the’, appearing
less than 200 times. We also provide an example
that shows the repetition of generations of ICV in
Figure 10.

A.13 DSEM hyperparameters details.

We provide specific parameters used in DSEM in
Table 13. In addition, we also provide the number
of neighbors used in all of our experiments. We
note that Ktok = Ksent for simplicity.
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E Baseline Toxic rate Run time (hours)
0 Nocontext 44.28 0.20
4 ICL-4 22.14 0.35

ICL-10 14.00 0.57
ICV 6.71 0.63
SaDI 78.29 0.40
LoRA 82.71 0.28

10 DSEM 5.57 0.60
ICV 5.67 0.67
SaDI 80.43 0.45
LoRA 61.29 0.42

100 DSEM 4.29 0.67

Table 10: Toxic rate and run time of different models under various E values.

Model Paradetox Family Music Shakespeare
E = 10

Llama-7b 9 5 5 9
Falcon-7b 5 15 15 9
Gemma-9b 9 9 9 5
Mistral-7b 9 9 9 9
Llama-13b 5 9 9 9
Falcon-11b 9 5 5 9

E = 100
Llama-7b 9 15 15 9
Falcon-7b 5 15 15 9
Gemma-9b 9 9 9 5
Mistral-7b 9 9 9 9
Llama-13b 5 9 9 9
Falcon-11b 9 5 5 9

Table 11: DSEM neighbors selected in experiments. We note that Ktok = Ksent.

Model E Memory Used (MB)
10 131.90

Llama-2-7b 100 223.86
10 113.07

Falcon-7b 100 235.07
10 133.32

Gemma-9b 100 238.53
10 131.94

Mistral-7b 100 224.02
10 140.70

Falcon-11b 100 311.42
10 137.52

Llama-13b 100 280.69

Table 12: Memory used of different models with E ∈
[10, 100]

A.14 Other Baselines details.

To conduct LoRA fine-tuning, we utilize Llama-
Factory (Zheng et al., 2024). We also provide im-
portant parameters for other baselines in Table 8.
We note that for (Wang et al., 2025), we select

Parameter Notation Value
Chunk size l 4

Intervention strength λ 0.1
RRF constant kRRF 60

Table 13: DSEM parameters

K = 6 as they claim it to be in range of best work-
ing parameters.

A.15 Hardware requirements.
All of our experiments were conducted on a sin-
gle NVIDIA H100 GPU. We used pytorch=2.5.1,
CUDA=12.1, cuDNN=9.1.0.70 and transform-
ers=4.47.1.

A.16 Evaluation Prompts
We provide the prompts used for LLM evaluations
in Figure 11, Figure 12 and Figure 13.
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If you don' to like me to to talk to to to to to to to to to to to to to to to to to
to to to to to

ICV

If you are uncomfortable with me speaking negatively about police officers,
please let me know.

DSEM

If you don't like me saying bad words about cops, let me know.

Target

Figure 10: Example of DSEM and ICV generations on Paradetox dataset. From this example, it can be seen that
DSEM greatly reduces toxicity, while being relevant to the target sentence. For ICV, the output is often meaningless
and repetitive, which, in a way, makes the content non-toxic.

Please act as an impartial and objective judge and evaluate the quality of formality. You should rank the models based on how formal the
sentence is, as well as content relevance to reference sentence. The rankings are then output using Python dictionaries and lists. Your
evaluation should consider these factors below: 
1. Which answer is more formal. The more formal the answer, the better. 
2. Which one better preserves the semantic meaning of the reference sentence. The more semantic meaning is preserved, the better. 
This is the reference sentence: 
{} 
This is the formality transfer sentence from model-A: 
{} 
This is the formality transfer sentence from model-B:
{} 
Now, based on the above two criteria, please rank the models. Avoid any positional biases and ensure that the order in which the responses
are presented does not influence your decision. Do not favor certain model names. Be as objective as possible. Then, use a list containing the
model’s name, its rank, and the reason for its ranking to return the results, i.e., please ensure to use the following format to return the results:
[{{"model": <model-name>, "reason": <rank-reason>, "rank": <model-rank>}}, {{"model": <model-name>, "reason": <rank-reason>, "rank":
<model-rank>}}] 
Your answer must STRICTLY follow the format above, and must be a valid Python list of dictionaries to ensure I can directly parse it using
Python. Always use double quotes for the keys and values. Do not include any extraneous content! Please provide a ranking that is as
accurate as possible and aligns with the intuition of most people.

Paradetox

Figure 11: Cohere Evaluation Prompt For Paradetox Dataset
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Please act as an impartial and objective judge and evaluate the quality of formality. You should rank the models based on how formal the
sentence is, as well as content relevance to reference sentence. The rankings are then output using Python dictionaries and lists. Your
evaluation should consider these factors below:
1. Which answer is more formal. The more formal the answer, the better.
2. Which one better preserves the semantic meaning of the reference sentence. The more semantic meaning is preserved, the better.
This is the reference sentence:
{}
This is the formality transfer sentence from model-A:
{}
This is the formality transfer sentence from model-B:
{}
Now, based on the above two criteria, please rank the models. Avoid any positional biases and ensure that the order in which the responses
are presented does not influence your decision. Do not favor certain model names. Be as objective as possible. Then, use a list containing the
model’s name, its rank, and the reason for its ranking to return the results, i.e., please ensure to use the following format to return the results:
[{{"model": <model-name>, "reason": <rank-reason>, "rank": <model-rank>}}, {{"model": <model-name>, "reason": <rank-reason>, "rank":
<model-rank>}}]
Your answer must STRICTLY follow the format above, and must be a valid Python list of dictionaries to ensure I can directly parse it using
Python. Always use double quotes for the keys and values. Do not include any extraneous content! Please provide a ranking that is as
accurate as possible and aligns with the intuition of most people.

GYAFC

Figure 12: Cohere Evaluation Prompt For GYAFC Datasets

Please act as an impartial and objective judge and evaluate the quality of the role-playing performance. You should rank the models based on
the role characteristics as well as content relevance. The rankings are then output using Python dictionaries and lists. The models below are to
play the role of William Shakespeare. Your evaluation should consider these factors below:
1. Which one better preserves the semantic meaning of the reference sentence. The more semantic meaning is preserved, the better.
2. Which one is better at not generating redundant information. The less redundant information is generated, the better.
3. Which one has a more pronounced role-speaking style, and speaks more in line with the reference sentence in terms of the style.
This is the reference sentence:
{}
This is the role-playing sentence from model-A:
{}
This is the role-playing sentence from model-B:
{}
Now, based on the above two criteria, please rank the models. Avoid any positional biases and ensure that the order in which the responses
are presented does not influence your decision. Do not favor certain model names. Be as objective as possible. Then, use a list containing the
model’s name, its rank, and the reason for its ranking to return the results, i.e., please ensure to use the following format to return the results:
[{{"model": <model-name>, "reason": <rank-reason>, "rank": <model-rank>}}, {{"model": <model-name>, "reason": <rank-reason>, "rank":
<model-rank>}}]
Your answer must STRICTLY follow the format above, and must be a valid Python list of dictionaries to ensure I can directly parse it using
Python. Always use double quotes for the keys and values. Do not include any extraneous content! Please provide a ranking that is as
accurate as possible and aligns with the intuition of most people.

Shakespeare

Figure 13: Cohere Evaluation Prompt For Shakespeare Dataset
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