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Abstract

Knowledge base question answering (KBQA)
aims to answer natural language questions by
reasoning over structured knowledge bases.
Existing approaches often struggle with the
complexity of mapping questions to precise
logical forms, particularly when dealing with
diverse entities and relations. In this paper,
we propose Hierarchical Topology Multi-task
Learning (HTML), a novel framework that
leverages a hierarchical multi-task learning
paradigm to enhance the performance of log-
ical form generation. Our framework consists
of a main task: generating logical forms from
questions, and three auxiliary tasks: entity pre-
diction from the input question, relation pre-
diction for the given entities, and logical form
generation based on the given entities and
relations. Through joint instruction-tuning,
HTML allows the mutual guidance and knowl-
edge transfer among the hierarchical tasks,
capturing the subtle dependencies between en-
tities, relations, and logical forms. Extensive
experiments on public benchmarks show that
HTML markedly outperforms both supervised
fine-tuning methods and training-free methods
based on powerful large language models (e.g.,
GPT-4), demonstrating its superiority in ques-
tion understanding and structural reasoning.

1 Introduction

Knowledge base question answering (KBQA) is a
critical task that bridges unstructured natural lan-
guage questions with structured knowledge bases
(KBs) to deliver precise answers (Lan et al., 2021,
2023). Generally, KBQA involves knowledge re-
trieval (Yao et al., 2007) and semantic parsing (Be-
rant et al., 2013; Eyal et al., 2023; Banerjee et al.,
2023) to obtain the final answer. Regarding the
input question, knowledge retrieval may include
approaches like named entity recognition (Mayhew
et al., 2020) and entity linking (Huang et al., 2020),
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which provide the meta knowledge for semantic
parsing. As the core component in KBQA, seman-
tics parsing aims to translate unstructured natural
language questions into the corresponding struc-
tured logical forms (e.g. S-expression (Gu et al.,
2021)), which is then converted into an executable
graph database query (e,g, SPARQL (Harris and
Shadbolt, 2005; Pérez et al., 2009)) for retrieving
answers from knowledge bases, such as Freebase
(Bollacker et al., 2008), Wikidata (Vrandecic and
Krötzsch, 2014) and DBpedia (Auer et al., 2007).

With the advances of pre-trained large language
models (LLMs), state-of-the-art (SOTA) works
widely adopt LLMs to enhance semantic parsing to
generate possible logical forms (Wang et al., 2023;
Sun et al., 2024; Luo et al., 2024b; Peng et al.,
2024; Xu et al., 2024; Dehghan et al., 2024; Luo
et al., 2024a; Xiong et al., 2024). ChatKBQA(Luo
et al., 2024a) fine-tuning large language models
(LLMs) to unify the phrases of knowledge retrieval
and semantic parsing, directly generating the log-
ical form only based on the question. In the post-
processing retrieval phrase, the logical form is re-
fined to leverage the KBs and converted into the
executable query. CoQ(Peng et al., 2024) first de-
composes the question into smaller ones and ex-
tracts the reference knowledge, based on which the
logical form is then generated.

Different from the supervised fine-tuning meth-
ods, a number of works (Peng et al., 2024; Sun
et al., 2024; Xiong et al., 2024) leverage commer-
cial LLMs’ (e.g. GPT4 (OpenAI, 2023)) strong rea-
soning abilities via in-context learning (Xie et al.,
2022; Min et al., 2022) in a training-free manner.
This line of methods queries the APIs to gener-
ate the executable query (e.g., SPARQL) or logi-
cal form to interact with KBs, always consisting
of multiple steps and API calls. ToG (Sun et al.,
2024) method implements an LLM-KG integrat-
ing paradigm via treating the LLM as an agent,
which iteratively performs beam search on the KB,
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identifies the most promising reasoning paths, and
ultimately returns the most likely reasoning results.

Despite the recently achieved progress, we dis-
cover that there exist three issues in semantic pars-
ing, resulting in inaccurately mapping complex
questions to logical forms or excusable queries,
especially when handling diverse entities and rela-
tions that require multi-hop reasoning.
(1) Meta knowledge deficiency. This issue lies in
the methods that perform semantic parsing without
meta knowledge extraction process. Without the
candidate entities and relations, it is hard for LLMs
to directly generate totally correct logical forms
only based on the questions.
(2) Error propagation. Some existing works first
extract the reference knowledge and then leverage
the results to guide the logical form generation.
However, there may exist noisy knowledge in the
extraction results, thus the error prorogation issue
would harm the semantic parsing phrase.
(3) Insufficient knowledge alignment while high
cost. Even equipped with powerful commercial
LLMs, in-context-learning cannot sufficiently align
the key information in the question with the struc-
tured knowledge in the KBs, resulting in worse
performances than SFT methods (as shown in Ta-
ble 1). Besides, training-free methods generally
require a large number of API calls, which is usu-
ally an unforgettable cost.

To tackle the above issues, in this paper, we pro-
pose a novel hierarchical task topology paradigm
in semantic parsing, as shown in Fig. 1. Regard-
ing semantic parsing as the main task, we discom-
pose it into three subtasks: entity recognition and
alignment (EntRA), entity-aware relation extrac-
tion (EARE) and logical form skeleton generation
(SkelGen). EntRA aims to extract the entities in
the question and predict the aligned ones in the
KBs. EARE aims to predict the relations existing
among the given entities. SkelGen aims to generate
the correct logical form with the given entities and
the relations among them. The three subtasks are
intertwined with each other with intrinsic hierar-
chical topologies, and they collaboratively support
semantic parsing.

To further implement our paradigm, we pro-
pose Hierarchical Topology Multi-task Learning
(HTML) to effectively model the interdependen-
cies among semantic parsing, EntRA, EARE and
SkelGen within a unified instruction-tuning frame-
work, as shown in Fig. 2. After constructing the
instructions for each task, we mix them in specific

EQ EntRA

EARE R

SkelGen L

LQ Semantic 
Parsing

Enhancement

Task-decomposing

L R

E

Logic Form

Entities

Relations

Q Question

Main Task

SubTasks

Figure 1: Illustration of the hierarchical task topology
paradigm of HTML.

proportions to form an instruction-following train-
ing set for fine-tuning the open-resource LLMs.
By leveraging mutual guidance and knowledge
transfer across these hierarchically organized tasks,
HTML effectively models the compositional na-
ture of KBQA, where entity-relation dependencies
and structural reasoning are tightly intertwined. In
the inference stage, only the semantic parsing in-
struction is adopted while the captured hierarchical
topology multi-task knowledge support accurate
generation of logical forms. Experimental results
on standard benchmarks demonstrate that HTML
significantly outperforms both SFT and training-
free SOTA approaches, demonstrating stronger ca-
pability in question understanding and structural
reasoning. This work advances the KBQA field
by illustrating how hierarchical task decomposition
and multi-task instruction-tuning can be integrated
to address the challenge of semantic parsing.

2 HTML

Accurately mapping natural language questions to
structured logical forms remains a significant chal-
lenge in KBQA. To address this fundamental prob-
lem, we propose an innovative Hierarchical Topo-
logical Multi-Task Learning (HTML) framework
(shown in Fig. 2), which implements a hierarchical
task topology paradigm (shown in Fig. 1). In this
section, we depict the details of HTML.

2.1 Hierarchical Task Topology
We decompose the semantic parsing (SP) phase in
KBQA into several interdependent subtasks: En-
tity Recognition and Alignment (EntRA), Entity-
Aware Relation Extraction (EARE), and Logical
Form Skeleton Generation (SkelGen). As shown
in Fig. 1, EntRA takes the question as input and
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The national anthem Afghan National Anthem is from the country 

which practices what religions?

Inference Stage

Semantc Parsing result :

1. Retrieve entities and relations to replace entity names and 

relation names

2. Convert to SPARQL query

3. Retrieve results from Knowledge Graph

( JOIN ( R [ location , religion percentage , religion ] )

 ( JOIN ( R [ location , statistical region , religions ] )

 ( JOIN [ location , country , national anthem ] 

( JOIN [ government , national anthem of a country , anthem ] 

[ Afghan National Anthem ] ) ) ) )

Post-Processing Steps

HT

ML

Logical Form Skeleton GenerationLogical form

Decomposed Subtasks Supporting Semantic Parsing

Subtask 3: Combine the result from EntRA and 

EARE to do Logical Form Skeleton Generation

What state is home to the university that is represented in sports by 

George Washington Colonials men's basketball?
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Main Task: do          Skele    Generation

Subtask 1: Do Entity Recognition and Alignment

George Washington Colonials men's basketball

EntRA

EARE

Subtask 2: After EntRA done, Entity-Aware Relation 

Extraction
[ location , mailing address , state province region ] 

[ organization , organization , headquarters ] 

[ education , educational institution , sports teams ]

EntRA

Logical form

Logical form

( JOIN ( R [ location , mailing address , state province region ] )

 ( JOIN ( R [ organization , organization , headquarters ] )

 ( JOIN [ education , educational institution , sports teams ] 

[ George Washington Colonials men's basketball ] ) ) )

( JOIN ( R [ location , mailing address , state province region ] )

 ( JOIN ( R [ organization , organization , headquarters ] )

 ( JOIN [ education , educational institution , sports teams ] 

[ George Washington Colonials men's basketball ] ) ) )

HT

ML
Main Task: Do                        GenerationLogical form

Integrated Hierarchical Topology Multi-task Knowledge

The learned subtasks’ 

cababilities 

synergistically support 

semantic parsing 

EntRA

EARE

Meta Knowledge

Figure 2: Illustration of the overall framework of HTML.

generates the entity candidates aligned in the KBs.
EARE accepts the question and aligned entities as
the input and outputs the relations existing among
the entities. As for SkelGen, it serves for logical
form generation based on the given entity and rela-
tion candidates. This paradigm systematically de-
composes the challenge semantic parsing task into
hierarchical subtasks, which are deeply coupled
and intertwined. They work together to provide
the meta knowledge for semantic parsing, facilitat-
ing the enhancement of the model’s capacity for
question understanding and structural reasoning.

2.2 Task-specific Instructions

Semantic Parsing (Main Task) The primary in-
struction ISP directs LLMs to convert the natural
language question text into the corresponding log-
ical form. Specifically, our designed ISP is as
follows:

Instruction:
Please generate the corresponding logical form of this
question: In which countries do the people speak Por-
tuguese, where the child labor percentage was once 1.8?

Response:
( AND ( JOIN [ location , statistical region , child labor
percent ] ( JOIN [ measurement unit , dated percentage ,
rate ] [ "1 , 8" ] ) ) ( JOIN ( R [ language , human language
, countries spoken in ] ) [ Portuguese Language ] ) )

In this instruction, the keywords “logical form” and
“question” emphasize critical information prompt-
ing the LLM to perform semantic parsing.

Entity Recognition and Alignment The EntRA
subtask instruction IEntRA guides the LLM to out-
put the identified and aligned the entities in the
KBs. Specifically, our designed IEntRA is as:

Instruction:
Please identify the entities in the following question and
output their corresponding names aligned in the knowl-
edge base. Question: In which countries do the people
speak Portuguese, where the child labor percentage was
once 1.8?

Response:
[ Portuguese Language ]

The key words “entities” and “question” as well
as the phrase “corresponding names aligned in the
knowledge base” indicate the task information of
EntRA that prompts the LLM to perform entity
recognition and alignment.

Entity-Aware Relation Extraction The instruc-
tion IEARE of this task guides the LLM to extract
the relations existing among the entity candidates.
Specifically, our designed IEARE is as:

Instruction:
Given a question and some entities, please identify and out-
put the relations among the entities. Question: In which
countries do the people speak Portuguese, where the child
labor percentage was once 1.8?
Entities: Portuguese Language

Response:
[ location , statistical region , child labor percent ]
[ measurement unit , dated percentage , rate ]
[ language , human language , countries spoken in ]
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Question:  
what is the name of justin bieber brother?

SPARQL: 
PREFIX ns: http://rdf.freebase.com/ns/
SELECT DISTINCT ?x
WHERE {

FILTER (?x != ns:m.06w2sn5)
FILTER (!isLiteral(?x) OR lang(?x) = '' OR langMatches(lang(?x), 'en’))
ns:m.06w2sn5 ns:people.person.sibling_s ?y .
?y ns:people.sibling_relationship.sibling ?x .
?x ns:people.person.gender ns:m.05zppz .

}

Entities: 
m.06w2sn5 , m.05zppz

Relations: 
people.person.sibling_s 
people.sibling_relationship.sibling
people.person.gender 

Entities with name: 
m.06w2sn5 :  Justin Bieber
m.05zppz :  Male

Intuitive Relations name : 
people , person , sibling s 
people , sibling relationship , sibling
people , person , gender 

From
Freebase

Replace
 ‘.’ to ‘ , ’

Entities and Relations 
Pre-process

Logical From Query:
<Logical Form Query>

( AND ( JOIN 
<Relation> people , person , gender </Relation> 
<Entity> Male </Entity> ) 
( JOIN ( R <Relation> people , sibling relationship , sibling </Relation> )
 ( JOIN ( R <Relation> people , person , sibling s </Relation> ) 
<Entity> Justin Bieber </Entity> ) ) )

</Logical Form Query>

Input: 
 <Task>After doing Entity Recognition and Alignment, do 
Entity-Aware Relation Extraction corresponding to the 
given Question and Entities before generating a Logical
Form Query. The outputs are Relations.</Task> 
<Question>…</Question>
<Entities>…</Entities>

Output:
<Relations><Relation> people , sibling relationship , 
sibling </Relation>
<Relation> people , person , sibling s </Relation>
<Relation> people , person , gender </Relation></Relations>

Input: 
<Task>Do Entity Recognition and Alignment corresponding 
to the given Question before Generating a Logical Form 
Query. The outputs are Entities.</Task> 
<Question>…</Question>

Output:
<Entities>
<Entity> Male </Entity>
<Entity> Justin Bieber </Entity>
</Entities>

Input: 
<Task>After doing Entity Recognition and Alignment and 
Entity-Aware 
Relation Extraction, generate the Logical Form Query that 
retrieves 
the information corresponding to the given Question, 
Entities ,and 
Relations. The output is a Logical Form Query.</Task>
<Question>…</Question>
<Entities>…</Entities>
<Relations>…</Relations>

Output:
 <Logical Form Query>…</Logical Form Query>

Input: 
<Task>Generate a Logical Form Query that 
retrieves the 
information corresponding to the given 
Question.</Task>
<Question>what is the name of justin bieber 
brother</Question>

Output:
<Logical Form Query>…</Logical Form Query>

Instruction
Dataset

Generation

Figure 3: Illustration of the instruction construction process.

The key words “entities”, “relations”, and “ques-
tion” convey the task information of EARE that
prompts the LLM to perform entity-aware relation
extraction.

Logical Form Skeleton Generation The in-
struction ISkelGen of this task guides the LLM to
generate the correct logical form of the question
with the guidance of the given entities and relations.
Specifically, ISkelGen is designed as:

Instruction:
Please generate the logical form of the following question,
based on the provided entities and relations.
Question: In which countries do the people speak Por-
tuguese, where the child labor percentage was once 1.8?
Entities: Portuguese Language
Relations:
[ location , statistical region , child labor percent ]
[ measurement unit , dated percentage , rate ]
[ language , human language , countries spoken in ]

Response:
( AND ( JOIN [ location , statistical region , child labor
percent ] ( JOIN [ measurement unit , dated percentage ,
rate ] [ "1 , 8" ] ) ) ( JOIN ( R [ language , human language
, countries spoken in ] ) [ Portuguese Language ] ) )

The keywords “question”, “logical form”, “entity”
and “relations” provide the task information of
SkelGen for the LLM. Then the LLM is guided
to compose the entity-relation components and an-
alyze the logical structure, finally generating the
correct logical form.

2.3 Training and Inference

Training We first construct all instructions of
ISP , IEntRA, IEARE and ISkelGen for all training
samples, as shown in Fig. 3. Then we randomly se-
lect α ratio of the instructions of IEntRA, IEARE

and ISkelGen and merge them with all ISP instruc-
tions, forming the final instruction-following fine-
tuning data. We use the shuffled training data with
batching strategy to fine-tune the LLM in the text-
to-text generation form. The training objective is
to minimize the negative log-likelihood for each in-
struction: L = −∑N

n=1 log p (yn | y<n, I). N is
the length of the golden output sequence y1, ..., yN
and I denotes the current input instruction.

As illustrated in Fig. 2, the interdependencies of
subtasks are explicitly modeled through the task-
specific keywords in their instructions, establish-
ing functional equivalence between their combined
operation and the main task objective. Through
joint instruction-tuning, the primary task seman-
tic parsing undergoes the systematic enhancement
from the three interconnected subtasks, because
this explicit multi-task learning framework enables
simultaneous optimization of the primary task, and
subtasks as well as the modeling of their correla-
tions during model training.
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Method SFT Backbone WebQSP CWQ
F1 Hit@1 Acc F1 Hit@1 Acc

ChatGPT(Wang et al., 2023) × GPT-3.5-Turbo – 66.8 – – 39.9 –
ChatGPT+CoT(Wang et al., 2023) × GPT-3.5-Turbo – 75.6 – – 48.9 –
KD-CoT-RtR(Wang et al., 2023) × GPT-3.5-Turbo 50.2 73.7 – – 50.5 –
KD-CoT(Wang et al., 2023) × GPT-3.5-Turbo 52.5 68.6 – – 55.7 –
ToG-R(Sun et al., 2024) × GPT-3.5-Turbo – 75.8 – – 58.9 –
ToG-R(Sun et al., 2024) × GPT-4 – 81.9 – – 69.5 –
ToG(Sun et al., 2024) × GPT-3.5-Turbo – 76.2 – – 57.1 –
ToG(Sun et al., 2024) × GPT-4 – 82.6 – – 67.6 –
GoG(Xu et al., 2024) × GPT-4 – 84.4 – – 75.2 –
ARC-KBQA(Tian et al., 2024) × GPT-3.5-0125 75.6 – – – – –
Interactive-KBQA(Xiong et al., 2024) × GPT-4-Turbo – 71.2 – – 49.1 –
WebGLM(Dehghan et al., 2024) × WebGLM-10B – 63.5 – – 42.3 –
EWEK-QA(Dehghan et al., 2024) X WebGLM-10B – 71.3 – – 52.5 –
CoQ(Peng et al., 2024) X GPT-3.5-Turbo,T5 78.1 79.3 – 78.8 79.0 –
RoG(Luo et al., 2024b) X LLaMA2-Chat-7B 70.8 85.7 – 56.2 62.6 –
ChatKBQA(Luo et al., 2024a) X LLaMA2-7B 79.8 83.2 73.8 – – –
ChatKBQA(Luo et al., 2024a) X LLaMA2-13B – – – 77.8 82.7 73.3

HTML(Ours) X LLaMA2-7B 81.0 84.4 74.9 77.4 81.5 73.7
HTML(Ours) X LLaMA2-13B 81.1 84.1 75.3 78.9 82.9 75.1

Table 1: Performance comparison with different baselines on WebQSP and CWQ.

Inference In the inference stage, the initial step
is to generate the logical form of the question using
ISP . Subsequently, an entity and relation mapping
phase is performed via KB retrieval (Luo et al.,
2024a). Then the refined logical form is trans-
formed into the executable SPARQL query. Finally,
the query is used to retrieve and obtain the exact
answer from the KB.

Note that we only adopt ISP for inference, with-
out introducing extra inference latency and cost.
After the training stage, the respective functions
of the subtasks have been captured and integrated
into the LLM and the learned capabilities can ef-
fectively support semantic parsing.

3 Experiments

3.1 Settings

Datasets Following previous works (Sun et al.,
2024; Luo et al., 2024a), we adopt ComplexWe-
bQuestions 1.1 (CWQ) (Talmor and Berant, 2018)
and WebQuestionsSP (WebQSP) (Yih et al., 2015)
as our text bed to evaluate our HTML. The selected
datasets are widely recognized within the field for
their complexity and relevance. Specifically, CWQ
extends WebQSP by incorporating more intricate
query structures that demand a deeper understand-
ing of the underlying knowledge bases. WebQSP
includes 3098 and 1639 samples for training and
testing, respectively. CWQ consists of 27639, 3531
and 3519 samples for training, testing and valida-
tion, respectively.

Implementation Details We choose the open-
source 7B and 13B version of LLaMA21 as our
LLM backbone. LoRA (Hu et al., 2022a) is
adopted for parameter-efficient fine-tuning. All ex-
periments are conducted on a NVIDIA A40 GPU
equipped with 48GB of video memory. For fair
comparison, we use the same SFT hyper-parameter
setting as SOTA baselines (Luo et al., 2024a). The
learning rate was set to 5e-5, the batch size was
configured to 4, and gradient updates were sched-
uled every four steps. HTML2 is trained for 100
epochs on the WebQSP dataset and 10 epochs on
the CWQ dataset.

Evaluation Metrics In this study, we employ
three conventional evaluation metrics: F1 score,
Hits@1, and Accuracy (Acc). The F1 score serves
as a comprehensive metric that evaluates the over-
all answer coverage by harmonizing the precision
and recall rates of predicted answers. The Hits@1
metric specifically measures the accuracy rate of
the top-ranked prediction among all candidate an-
swers. Accuracy (Acc) is utilized to quantify the
exact-match ratio, representing the proportion of
questions that receive completely correct answers
within the entire question set.

3.2 Main Results

This study compares nine state-of-the-art KBQA
methods as baselines, which encompass two ma-
jor technical paradigms: Training-Free and SFT

1https://huggingface.co/meta-llama
2https://github.com/XingBowen714/HTML
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Method Backbone
WebQSP CWQ

F1 Hit@1 Acc F1 Hit@1 Acc

Interactive-KBQA GPT-4-Turbo – 78.64 – – 56.74 –
ChatKBQA LLaMA2-7B 83.5 86.4 77.8 – – –
ChatKBQA LLaMA2-13B – – – 81.3 86.0 76.8

HTML(Ours) LLaMA2-7B 83.5 86.6 77.7 81.6 85.6 77.9
HTML(Ours) LLaMA2-13B 84.1 87.1 78.3 82.8 86.5 79.0

Table 2: Comparison of Results using Golden Entities
as retrieval results.

(as detailed in Table 1). We compare our HTML
with various SOTA approaches, and the results are
shown in Table 1. We can find that our proposed
HTML method achieves SOTA performance on
both the WebQSP and CWQ datasets. Specifically,
when using LLaMA2-13B as the backbone, HTML
outperforms previous best SFT SOTA ChatKBQA
by 1.5% and 1.8% in Acc on the WebQSP and
CWQ datasets, respectively. Compared with pre-
vious best training-free SOTA GOG, we achieve
7.7% improvement in Hit@1 on the CWQ dataset.
The significant improvements can be attributed to
the fact that HTML can marry the hierarchical task
decomposition and multi-task instruction-tuning to
capture integrated hierarchical topology multi-task
knowledge. Besides, generally SFT approaches
can outperform training-free ones, especially on
the CWQ dataset, which includes more complex
and challenging scenarios. This indicates that fine-
tuning smaller open-source LLMs remain an effec-
tive technical solution for complex KBQA.

Following the practices of some baselines (e.g.,
Interactive-KBQA and ChatKBQA), we also con-
duct a set of evaluations using Golden Entities in-
stead of Retrieved Entities, The performance com-
parison is shown in Table 2. On the WebQSP
dataset, HTML gains significant improvements of
2.2% to 3.0% in all metrics using Golden Enti-
ties compared to Retrieved Entities. On the CWQ
dataset, the improvements are sharper, ranging
from 3.6% to 4.2% percentage points. Compared
with baselines, our HTML demonstrates consistent
and significant superiorities, e.g., 2.2% improve-
ment in Acc on CWQ.

3.3 Ablation Study of Subtasks
We conduct a group of ablation experiments to ver-
ify the effectiveness of each subtask decomposed
from the main task semantic parsing. The results
are shown in Table 3. We can observe that re-
moving any subtask leads to obvious performance
decreases on both datasets and all metrics. For

Dataset Ablation
Retri. Ent. Gold. Ent.

F1 Hit@1 Acc F1 Hit@1 Acc

WebQSP

HTML 81.0 84.4 74.9 83.5 86.6 77.7
w/o EntRA 76.3 79.6 70.4 79.5 82.4 73.9
w/o EARE 77.2 80.2 71.4 80.1 83.0 74.6
w/o SkelGen 76.1 79.3 70.1 78.9 82.0 73.1

CWQ

HTML 77.4 81.5 73.7 81.6 85.6 77.9
w/o EntRA 71.7 77.8 67.6 75.7 81.4 71.5
w/o EARE 71.9 77.9 67.6 75.8 81.7 71.6
w/o SkelGen 69.2 75.4 64.7 73.2 79.5 68.7

Table 3: Ablation results of subtasks.

instance, the removal of the EntRA task causes
~4% and ~6% Acc drops on WebQSP and CWQ
datasets, respectively. The similar phenomenon can
be observed from the results of w/o EARE. As for
SkelGen, removing it leads to >4% and >9% drops
in Acc on both datasets. These results demonstrate
that the decomposed subtasks play a vital role in
HTML via providing the model with respective ca-
pabilities for semantic parsing. We can find that the
performance drops on CWQ are sharper than We-
bQSP, which is an easier benchmark. This can be
attributed that our HTML unleashes more potential
in the more challenging scenarios. Besides, w/o
SkelGen brings more obvious performance drops
than w/o EntRA and EARE. We suspect the reason
is that SkelGen is the closest subtask to the main
task, more responsible for the generated logical
form quality.

3.4 Effect of Instruction Mixture Ratio α
To study the effect of the ratio α that controls the
extent of subtask instructions, we conduct a group
of experiments with different values of α in the
range of [10%, 30%, 50%, 70%, 100%]. The ex-
periment results are shown in Fig. 4. We can find
that HTML’s performance is relatively sensitive to
the value of α. Specifically, for larger model scales,
best performances are achieved when α = 50%
is adopted for the CWQ dataset while α = 70%
for WebQSP. For smaller model scales, 70% and
100% are chosen for α to achieve the best scores
on CWQ and WebQSP, respectively.

3.5 Task Topology Analysis
This study explores 6 different settings of task
topology and the results are shown in Table 4. Due
to space limitation, the definitions of Only E, Only
R, E&R, CoT, Mix in Appendix section Definition
and Instruction of Different Task Topologies in Sec.

The performance of various framework enhance-
ments to LLaMA2 models (13B and 7B) across the
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10% 30% 50% 70% 100%

F1

H@1

Acc

F1

H@1

Acc

81.0

84.4

75.0

83.6

86.6

78.0

80.4 80.5 79.3 80.6

83.6 83.6 82.7 83.5

74.4 74.3 73.0 74.9

83.2 83.0 83.4 83.5

86.1 86.3 86.2 86.2

77.7 76.7 77.9 77.7

(a) LlaMA2-7B (WebQSP)

10% 30% 50% 70% 100%

F1

H@1

Acc

F1

H@1

Acc

81.1

84.1

75.4

84.1

87.1

78.4

80.1 79.8 80.9 80.8

83.4 83.0 83.9 84.0

74.7 73.9 75.3 74.7

82.6 82.3 83.7 83.5

85.7 85.4 86.6 86.6

77.4 76.5 78.3 77.5

(b) LlaMA2-13B (WebQSP)

10% 30% 50% 70% 100%

F1

H@1

Acc

F1

H@1

Acc

77.4

81.6

73.7

81.6

85.8

77.9

76.5 77.2 76.6 77.3
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Figure 4: Experiment results on F1 using different value of α.

Dataset Model Method Retri. Ent. Gold. Ent.
F1 Hit@1 Acc F1 Hit@1 Acc

WebQSP

LLaMA2
7B

Only E 80.1 83.2 74.2 83.5 86.5 77.8
Only R 80.0 82.8 74.4 83.0 85.6 77.9
E&R 80.5 83.6 74.3 82.8 85.8 76.9
CoT 79.6 82.9 73.9 83.0 86.0 77.5
Mix 80.0 83.0 74.0 82.9 85.6 77.4
HTML 81.0 84.4 74.9 83.5 86.6 77.7

LLaMA2
13B

Only E 80.8 83.9 74.7 83.7 86.8 77.9
Only R 80.7 83.8 74.6 83.6 86.7 77.8
E&R 81.0 84.0 75.0 83.5 86.5 77.5
CoT 80.0 83.5 74.1 83.8 86.7 78.5
Mix 80.2 83.7 74.2 83.7 86.5 78.2
HTML 81.1 84.1 75.3 84.1 87.1 78.3

CWQ

LLaMA2
7B

Only E 76.8 80.8 73.1 80.8 84.7 77.1
Only R 76.7 81.1 72.7 80.5 84.7 76.6
E&R 76.6 80.5 73.3 81.1 84.8 77.7
CoT 73.6 80.8 73.2 81.0 84.7 77.5
Mix 77.4 81.5 73.7 81.6 85.4 78.0
HTML 77.4 81.5 73.7 81.6 85.6 77.9

LLaMA2
13B

Only E 78.1 82.3 74.2 82.1 86.1 78.4
Only R 79.0 83.4 75.0 81.9 86.0 78.1
E&R 78.1 82.4 74.3 82.0 86.0 78.4
CoT 78.1 82.6 74.2 81.8 85.9 77.9
Mix 78.6 82.8 74.7 81.8 85.7 78.5
HTML 78.9 82.9 75.1 82.8 86.5 79.0

Table 4: Performances of different task topologies.

CWQ and WebQSP datasets. The evaluated meth-
ods include baseline (Main), entity name align-
ment (Only E), relation prediction (Only R), com-
bined entity name alignment and relation prediction
(E&R), mixed strategies (Mix), HTML (HTML),
and Chain-of-Thought (CoT). Metrics focus on F1
scores , Hit@1 and accuracy for Entity Retrieval
and Golden Entity tasks. Key findings indicate
that HTML consistently achieves superior results,
particularly for the 13B model on WebQSP (e.g.,
81.1 F1 for Entity Retrieval). The 7B model ben-
efits most from Mix on CWQ (77.4 F1). Over-
all, integrating structured data (e.g., HTML) and
hybrid methods demonstrate robust performance
improvements, highlighting the impact of architec-
tural adaptations on entity-centric tasks (see fig.4).

3.6 Subtask-specific Evaluation
Subtask Accuracy We conduct a set of experi-
ments to further analyze the quality of parsed log-

Dataset Task ChatKBQA HTML
Acc Retrieve Golden Retrieve Golden

WebQSP

Entity 81.8 81.8 83.3 83.3
Relation 70.8 71.2 72.0 72.4
Skeleton 82.5 82.6 82.4 82.5
LF-EM 63.2 63.1 64.4 64.4

CWQ

Entity 85.7 86.7 86.1 87.4
Relation 80.4 81.2 81.7 82.6
Skeleton 74.1 74.6 75.3 76.0
LF-EM 58.1 57.5 58.8 59.6

Table 5: HTML vs SOTA on different subtasks.

23.2%

49.8%

27.0%

(a) WebQSP

22.3%

45.7%

32.0%

(b) CWQ

Error Type
Entity Relation Skeleton

Figure 5: Error type distributions.

ical forms on four metrics: entity Acc, relation
Acc, skeleton Acc and logical form exact match
(LF-EM) Acc. Due to space limitation, we put the
detailed definition of the metrics in Appendix B.
The comparisons of our HTML and ChatKBQA
are shown in Table 5. On CWQ with retrieved
entities our HTML achieves a 0.4% entity Acc im-
provement over the baseline, and in relation Acc
the improvement is 1.3%. In skeleton Acc, our
HTML shows a 1.2% improvement over the base-
line, and for LF-EM Acc, the increase was 0.7%.
On WebQSP, HTML achieves an improvement of
1.5% nd 1.2% on entity Acc and relation Acc, re-
spectively. For LF-EM Acc, the improvement is
1.2%. These findings indicate that while HTML
demonstrates consistent advantages on all aspects
of semantic parsing, which thanks to the hierarchi-
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Case A (from CWQ Testset)

Case B (from WebQSP testset)

( JOIN ( R [ people , deceased person , cause of death ] ) [ Shannon Hoon ] )

( JOIN ( R [ people , deceased person , cause of death ] ) [ Shannon Hoon ] )

Ground Truth Logic Form:

HTML Generated Logic Form:

ChatKBQA Generated 

Logic Form:

Ground Truth 

Logic Form:

HTML Generated

Logic Form:

ChatKBQA Generated 

Logic Form:

( JOIN ( R [ people , deceased person , cause of death ] ) [ Curt Cobain ] )

( AND ( GREATER THAN ( JOIN [ film , film , release date s ] [ film , film regional release 

date , release date ] ) 2011-12-22 ) ( JOIN ( R [ film , director , film ] ) [ Angelina Jolie ] ) )

( AND ( GREATER THAN [ film , film , initial release date ] 2011-12-22 ) ( JOIN ( R [ film , 

director , film ] ) [ Angelina Jolie ] ) )

( AND ( GREATER THAN [ film , film , initial release date ] 2011-12-22 ) ( JOIN ( R [ film , 

director , film ] ) [ Angelina Jolie ] ) )

Question： What movie directed by Angelina Jolie that was released after 12-22-2011?

Question： What did shannon hoon die from?

Entity Error

Relation Error

Figure 6: Case Studies.

cal task discomposition and multi-task correlative
learning achieved by HTML.

Error Analysis We count the logical form errors
and categorize them into three types: entity error,
relation, and skeleton error. Due to space limitation,
we put the content of error definition and metric
calculation in Appendix C. The error distribution
is shown in Fig. 5. We can observe that the rela-
tion errors are the most prevalent, accounting for
49.8% on WebQSP and 45.7% on CWQ. This high
error rate stems from the model’s reliance on gener-
ative capabilities and associative reasoning to infer
relationships among the entities. This indicates
that while the model excels in entity recognition
and logical form skeleton generation, more effort
should be paid on relation extraction. Future work
can follow this line to address the relation errors
for comprehensive system optimization.

3.7 Case Study
In Figure 6, we present two detailed cases to further
validate the effectiveness of our approach in prac-
tical applications. In Case A, with the natural lan-
guage question "What movie directed by Angelina
Jolie that was released after 12-22-2011?", our
method incorporates the main task semantic pars-
ing with the hierarchical subtasks EntRA, EARE
and SkelGen, thus successfully generating the cor-
rect logical form, avoiding the incorrect relation
prediction made by ChatKBQA. In Case B, with
the question "Who is the wife of the president of

the United States?", our HTML can generates the
correct logical form. However, ChatKBQA gen-
erate a wrong logical form including an strange
entity which is not related to the original question,
posing a hallucination issue. This indicates that
HTML can alleviate the hallucination issue thanks
to the explicit modeling the subtasks which can
provide the crucial and beneficial meta knowledge
for semantic parsing.

4 Related Works

4.1 Neural Network based KBQA

Early KBQA systems employed modular archi-
tectures combining pre-trained language mod-
els (PLMs) like BERT (Devlin et al., 2019)
and T5 (Raffel et al., 2020) with special-
ized components. Graph Neural Networks
(GNNs) (Schlichtkrull et al., 2018) and sequen-
tial models (e.g., LSTM(Wang et al., 2019) and
CRF (Wang et al., 2019)) were typically integrated
for structural reasoning (Jie and Lu, 2019), as seen
in KagNet (Lin et al., 2019) which cascades PLM
encoders with GCNs(Liu et al., 2021) and LSTMs
for multi-hop reasoning. Besides, some innova-
tions focuse on architectural adaptations: GMT-
KBQA (Hu et al., 2022b) implemented weight-
sharing in T5 for multi-task learning, while FC-
KBQA (Zhang et al., 2023) ensemble multiple
PLMs to enhance performance.

9314



4.2 LLM based KBQA

The recent emergence of LLMs has introduced two
primary paradigms for KBQA, namely training-
free and SFT.

Training-free approaches emloy powerful com-
mercial LLMs like ChatGPT or GPT4 and rely on
multi-step prompting(Sun et al., 2024; Wang et al.,
2023) or longer in-context-learning (Nie et al.,
2024) to reason through queries (Sun et al., 2024)
with multiple API calls. ToG enhances deep reason-
ing without additional training, while (Nie et al.,
2024) proposes transforming logical forms into
code generation to reduce formatting errors. How-
ever, the cost of commercial API calls is usually
of high invocation costs, and training-free meth-
ods often under-perform SFT approaches in overall
performance.

SFT approaches adopt the open-resource LLMs
(e.g., LLaMA series (Touvron et al., 2023)) as the
backbone and adopt parameter-efficient fine-tuning
(e.g., LoRA (Hu et al., 2022a)) strategy (Lin et al.,
2019; Hu et al., 2022b; Ye et al., 2022; Zhang et al.,
2023; Jiang et al., 2023; Luo et al., 2024b; Peng
et al., 2024; Luo et al., 2024a; Dehghan et al., 2024).
ChatKBQA (Luo et al., 2024a) introduces an inno-
vative framework that first generates logical forms
followed by entity-relation substitution, leverag-
ing pre-trained language models to significantly
enhance the efficiency of knowledge retrieval and
the accuracy of semantic parsing.

However, existing SFT methods suffer from
meta knowledge deficiency and error propaga-
tion. To overcome the drawbacks of existing meth-
ods, we propose HTML, which also follows the
SFT manner. Different from existing approaches,
HTML is based a novel hierarchical task topology
paradigm to allow the subtasks synergistically en-
hance the precise semantic parsing.

5 Conclusion

In this paper, we propose Hierarchical Topology
Multi-task Learning (HTML), which is a novel
framework discomposing the semantic parsing task
into several interdependent subtasks. HTML ef-
fectively models the interdependencies among se-
mantic parsing, entity recognition and alignment,
entity-aware relation extraction, and logical form
skeleton generation within a unified instruction-
tuning framework. The subtasks can synergistically
enhance semantic parsing by effectively improving

the quality of logical form generation. Extensive
experiments on public benchmark verify the supe-
riority HTML, which achieves new state-of-the-art
performance and demonstrates advantages.
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Limitation

Although HTML achieves significant improvement
on semantic parsing, it not yet focuses on the ex-
ecuting stage of logical forms. We actually find
considerable executing errors in experiments even
with correctly generated logical forms. In the fu-
ture, we plan to extend HTML to handle logical
form execution errors by introducing a new task.
We also plan to explore HTML’s potential in other
tasks that require multi-step reasoning, such as task-
oriented dialog systems (Xing and Tsang, 2022b,
2023, 2022a,c, 2024a,b; Xing et al., 2024).
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A Definition and Instruction of Different
Task Topologies in Sec. 3.5

Only E In the Only E methodology, we em-
ployed the subtask prompt designated for Entity
Recognition and Alignment, maintaining consis-
tency with the notation IEntRA as specified under
the method selection criteria. Concurrently, the pri-
mary prompt was kept consistent with the notation

9318

https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/v1/2024.emnlp-main.804
https://doi.org/10.18653/v1/2024.emnlp-main.804
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.findings-acl.286
https://doi.org/10.18653/v1/2022.findings-acl.286
https://doi.org/10.18653/v1/2022.findings-acl.286
https://doi.org/10.18653/v1/2022.findings-acl.286
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.1109/TPAMI.2023.3336709
https://doi.org/10.1109/TPAMI.2023.3336709
https://doi.org/10.1109/TPAMI.2024.3402746
https://doi.org/10.1109/TPAMI.2024.3402746
https://doi.org/10.1109/TPAMI.2024.3402746
https://doi.org/10.18653/V1/2024.ACL-LONG.569
https://doi.org/10.18653/V1/2024.ACL-LONG.569
https://doi.org/10.18653/V1/2024.ACL-LONG.569
https://aclanthology.org/2024.emnlp-main.1023
https://aclanthology.org/2024.emnlp-main.1023
https://aclanthology.org/2024.emnlp-main.1023
https://doi.org/10.1109/WI.2007.113
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.3115/V1/P15-1128
https://doi.org/10.18653/V1/2023.ACL-LONG.57
https://doi.org/10.18653/V1/2023.ACL-LONG.57


ISP , also delineated within the method selection
framework.

Only R In the Only R method, the subtask
prompt for Relation Prediction/Extraction is for-
mulated as follows, while the main prompt remains
consistent with ISP in the method selection.

Instruction:
Please do Relation Prediction before Generate a Logical
Form query.
Question: In which countries do the people speak Por-
tuguese, where the child labor percentage was once 1.8?
Entities: Portuguese Language

Response:
[ location , statistical region , child labor percent ]
[ measurement unit , dated percentage , rate ]
[ language , human language , countries spoken in ]

E&R In the E&R method, the prompt for En-
tity Recognition and Alignment remains consis-
tent with IEntRA in the method selection process,
while the prompt for Relation Prediction/Extraction
aligns with the Only R method. The combined task
is formulated as follows:

Instruction:
Please generate a Logical Form query by using the result
of Entity Linking and Relation Prediction.
Question: In which countries do the people speak Por-
tuguese, where the child labor percentage was once 1.8?
Entities: Portuguese Language
Relations:
[ location , statistical region , child labor percent ]
[ measurement unit , dated percentage , rate ]
[ language , human language , countries spoken in ]

Response:
( AND ( JOIN [ location , statistical region , child labor
percent ] ( JOIN [ measurement unit , dated percentage ,
rate ] [ "1 , 8" ] ) ) ( JOIN ( R [ language , human language
, countries spoken in ] ) [ Portuguese Language ] ) )

CoT In CoT method, we only applied the prompt
as the main prompt. The example is as follows:

Instruction:
After doing Entity Linking and doing Relation Predic-
tion, generate a Logical Form query that retrieves the in-
formation corresponding to the given question , Entity
Linking Result and Relation Prediction Result.
Question:In which countries do the people speak Por-
tuguese, where the child labor percentage was once 1.8?

Response:
( AND ( JOIN [ location , statistical region , child labor
percent ] ( JOIN [ measurement unit , dated percentage ,
rate ] [ "1 , 8" ] ) ) ( JOIN ( R [ language , human language
, countries spoken in ] ) [ Portuguese Language ] ) )

Mix In Mix method, we applied the prompt
as the subtask prompt, and the main prompt is the
same as ISP in the method selection. The example
is as follows:

Instruction:
First Do Entity Linking and Relation Prediction, then
generate a Logical Form query corresponding to the given
question: In which countries do the people speak Por-
tuguese, where the child labor percentage was once 1.8?

Response:
( AND ( JOIN [ location , statistical region , child labor
percent ] ( JOIN [ measurement unit , dated percentage ,
rate ] [ "1 , 8" ] ) ) ( JOIN ( R [ language , human language
, countries spoken in ] ) [ Portuguese Language ] ) )

B Calculation Metrics for Sec. 3.6

Let T denote the test set with its prediction result
set R consisting of C instances. For each predic-
tion result r ∈ R, the accuracy Acc of Entity, Re-
lation, and SkelGen, can be calculated as follows.

The accuracy AccEntity of Entity Recognition and
Alignment is computed as eq. (1):

AccEntity =

∑
r∈RCr.ent∑
r∈R C̃r.ent

(1)

The accuracy AccRelation of Relation Prediction or
Extraction is computed as eq. (2):

AccRelation =

∑
r∈RCr.rel∑
r∈R C̃r.rel

(2)

The accuracy AccSkel of Logical Form Skeleton
Generation is computed as eq. (3):

AccSkel =

∑
r∈RCr.skel

C
(3)

The accuracy AccLFEM of Logical Form Full Match
is computed as eq. (4):

AccLFEM =

∑
r∈RCr.lfem

C
(4)

Where Cr.ent is the result r of correctly predicted
entities, C̃r.ent is the golden entities in resultr, Cr.rel

is the result r of correctly predicted relations, C̃r.rel

is the golden relations in resultr, C is the element
count of R ,Cr.ent is the total entity count of r ∈ R
and Cr.rel is the total entity count of r ∈ R.

C Definition and Metric Calculation of
Error Analysis in Sec. 3.6

In the context of the set R, each element r may
contain up to three types of errors:
1. Entity type errors, calculated as shown in eq. (5);
2. Relation type errors, calculated as shown in
eq. (6);
3. Skeleton generation type errors, calculated as
shown in eq. (7).
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Errr.ent.type =

{
1, Errr.ent.c > 0

0, otherwise
(5)

Errr.rel.type =

{
1, Errr.rel.c > 0

0, otherwise
(6)

Errr.Skel.type =

{
1, Errr.Skel.c > 0

0, otherwise
(7)

Here, Errr.ent.c denotes the number of entity er-
rors in r, Errr.rel.type represents the number of rela-
tion errors in r, and Errr.Skel.c indicates whether a
logical form skeleton generation error occurs in r
(recorded as 1 if an error is present, and 0 other-
wise).

We conducted a statistical analysis of the error
types committed by the model on the test sets of
CWQ and WebQSP, selecting three types of logical
form synthesis errors for our error analysis propor-
tion. Specifically, we categorized and quantified
these errors Err using the following definitions:

• ErrEnt.C: Total number of errors associated
with Entity Recognition and Alignment;

• ErrRel.C: Total number of errors related to En-
tity Attribute Relation Extraction;

• ErrSkel.C: Total number of errors pertaining to
Logical Form Skeleton Generation.

ErrEnt.C =
∑

r∈R
Errr.ent.c

ErrRel.C =
∑

r∈R
Errr.rel.type

ErrSkel.C =
∑

r∈R
Errr.Skel.c

The formula for calculating the aggregate count
of each error type is defined as follows:

ErrTotal = ErrEnt.CErrRel.CErrSkel.C

Then the percentage Ep of each error type is
calculated as:

EpEnt =
ErrEnt.C

ErrTotal

EpRel =
ErrRel.C

ErrTotal

EpSkel =
ErrSkel.C

ErrTotal

D Ratios of Subtask Mixing

In table 6, we present the detailed results of the
subtask mixing ratios for the CWQ and WebQSP
datasets. Specifically, we examine the effects of
adjusting the subtask coverage rates on model per-
formance.

When using LLaMA2-13B, for the CWQ dataset,
we observe that a 50% subtask coverage rate yields
the best results, with an F1 score of 78.6%, a Hit@1
accuracy of 82.8%, and an Acc of 74.7%. On the
WebQSP dataset, a 70% subtask coverage rate is
optimal, resulting in an F1 score of 81.1%, a Hit@1
accuracy of 84.4%, and an Acc of 74.9%. These
findings underscore the importance of adjusting
subtask mixing proportions to optimize model per-
formance, particularly in the context of Knowledge
Base Question Answering (KBQA) tasks.

When using LLaMA2-7B, for the CWQ dataset,
a 70% subtask coverage rate is optimal, yielding
an F1 score of 77.4%, a Hit@1 accuracy of 81.5%,
and an Acc of 73.7%. On the WebQSP dataset,
a 100% subtask coverage rate is preferred, result-
ing in an F1 score of 81.0%, a Hit@1 accuracy of
84.4%, and an Acc of 74.9%. These results further
highlight the significance of adjusting subtask mix-
ing ratios to enhance model performance across
different datasets and model scales.

E Explorations on Implementation
Strategies

According to Table 7, the third set of parame-
ters demonstrated optimal overall performance on
the WebQSP dataset, achieving high scores in F1,
Hit@1, and Acc. Consequently, the selected con-
figuration includes employing float16 precision for
the backbone network, float32 for Layer-Norm lay-
ers, and enabling flash attention to accelerate the
training process. Specifically, the Epoch value is
set to 100 for the WebQSP dataset, whereas for
the CWQ dataset, which has approximately one-
tenth the data volume of WebQSP, the Epoch value
is configured to 10. This setup aims to optimize
model performance while enhancing training effi-
ciency.
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Table 6: An Investigation into Subtask Mixing Proportions and Extended Issues Analysis in Hierarchical Topology
Multi-task Learning.

LLaMA2-7B

Dataset WebQSP CWQ

Method Cover Retrieved Entities Golden Entities Retrieved Entities Golden Entities
F1 Hit@1 Acc F1 Hit@1 Acc F1 Hit@1 Acc F1 Hit@1 Acc

E&R

10% 79.3 82.2 73.2 81.9 84.7 76.1 77.5 81.8 73.5 81.2 85.4 77.4
30% 80.2 83.3 74.3 82.8 85.7 77.4 76.4 80.6 72.6 80.7 84.5 77.1
50% 79.4 82.4 73.6 82.5 85.2 76.9 76.6 80.6 72.8 80.9 84.5 77.2
70% 79.3 82.4 73.3 82.5 85.4 76.6 76.3 80.4 72.7 80.2 84.3 76.6

100% 80.5 83.6 74.3 82.8 85.8 76.9 76.6 80.5 73.3 81.1 84.8 77.7

Mix

10% 79.7 83.0 73.6 82.4 85.4 76.9 77.4 81.5 73.7 81.6 85.4 78.0
30% 79.5 82.9 73.3 82.9 85.8 77.2 76.6 80.5 73.0 81.1 84.7 77.5
50% 79.6 83.0 73.6 83.0 85.9 77.6 76.7 80.7 73.0 81.2 85.1 77.4
70% 79.6 82.8 73.6 82.6 85.5 76.9 76.6 80.6 72.9 81.0 84.8 77.3

100% 80.0 83.0 74.0 82.9 85.6 77.4 76.1 80.1 72.4 80.3 84.1 76.8

HTML

10% 80.4 83.6 74.4 83.2 86.1 77.7 76.5 80.7 72.7 81.4 85.3 77.7
30% 80.5 83.6 74.3 83.6 86.3 78.0 77.2 81.4 73.4 81.4 85.2 77.8
50% 79.3 82.7 73.0 83.0 86.2 76.7 76.6 81.0 72.7 80.5 84.8 76.8
70% 80.6 83.5 75.0 83.4 86.2 77.9 77.3 81.6 73.3 81.5 85.8 77.5

100% 81.0 84.4 74.9 83.5 86.6 77.7 77.4 81.5 73.7 81.6 85.6 77.9

LLaMA2-13B

Dataset WebQSP CWQ

Method Cover Retrieved Entities Golden Entities Retrieved Entities Golden Entities
F1 Hit@1 Acc F1 Hit@1 Acc F1 Hit@1 Acc F1 Hit@1 Acc

E&R

10% 79.9 82.9 74.0 82.7 85.4 76.9 78.1 82.4 74.1 81.5 85.7 77.5
30% 81.0 84.0 75.0 83.4 86.4 78.0 78.1 82.4 74.3 82.0 86.0 78.4
50% 80.1 83.0 74.4 83.2 85.8 77.6 77.9 81.9 74.3 81.7 85.4 78.2
70% 79.9 83.1 74.0 83.3 86.1 77.3 78.1 82.3 74.3 82.0 86.0 78.2

100% 81.0 84.0 75.0 83.5 86.5 77.5 77.7 81.7 74.3 81.8 85.7 78.3

Mix

10% 80.4 83.7 74.4 83.1 86.0 77.5 78.6 82.8 74.7 81.8 85.7 78.5
30% 80.1 83.6 74.1 83.6 86.6 77.9 77.4 81.6 73.6 81.2 85.2 77.5
50% 80.2 83.7 74.2 83.7 86.5 78.2 77.8 82.1 74.0 81.2 85.1 77.6
70% 80.3 83.4 74.2 83.4 86.2 77.7 78.1 82.3 74.1 81.3 85.1 77.5

100% 80.7 83.7 74.6 83.7 86.2 78.1 78.0 81.8 74.4 81.6 85.2 78.1

HTML

10% 80.1 83.4 74.7 82.6 85.7 77.4 77.3 81.5 73.5 80.9 85.0 77.2
30% 79.8 83.0 73.9 82.3 85.4 76.5 77.9 82.0 74.3 81.6 85.4 78.1
50% 80.9 83.9 75.4 83.7 86.6 78.4 78.9 82.9 75.1 82.8 86.5 79.0
70% 81.1 84.1 75.3 84.1 87.1 78.3 78.1 82.1 74.5 81.9 85.7 78.3

100% 80.8 84.0 74.7 83.5 86.6 77.5 78.0 82.3 74.2 81.9 85.8 78.2

Table 7: Performance on different implementation strategies.

Implementation Strategies Retrieved Entities Golden Entities
Combination Epoch Compute Layer-Norm Flash-Attn F1 Hit@1 Acc F1 Hit@1 Acc

1 100 fp16 fp32 – 80.1 83.1 74.3 83.1 86 77.8
2 100 fp16 fp16 – 78.9 81.8 73.3 82 84.5 76.8
3 100 fp16 fp32 X 80.1 83.2 74.3 83.3 86.0 78.2
4 100 fp16 fp16 X 79.4 82.7 73.1 82.7 85.8 76.9
5 100 bf16 bf16 – 79.9 83 73.9 83 85.8 77.5
6 100 bf16 bf16 X 79.8 82.9 74 82.3 85.1 77.1
7 50 fp16 fp32 – 78.9 81.9 73 81.4 84.2 75.8
8 75 fp16 fp32 – 79.0 82.1 73.3 82.1 85.0 76.8
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