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Abstract

Long-CoT reasoning combined with reinforce-
ment learning for large language models
demonstrates remarkable performance and scal-
ability. However, we observe that the initial pol-
icy model could significantly influence the fi-
nal performance as well as the token efficiency.
Additionally, there is a lack of systematic guide-
lines for obtaining a better initial policy model.
To bridge this gap, we initiate a comprehen-
sive investigation by activating the initial model
using a variety of datasets with different data
volumes and reasoning patterns. Then, we con-
duct a thorough analysis and comparison of the
RL process for different initial models from
the perspectives of upper bounds, diversity, and
token efficiency, providing a deeper understand-
ing and insight into the long-CoT RL. Based
on our empirical results, we propose a system-
atic guideline and a novel Re-RFT method for
constructing a better RL start point. Our exper-
iment results based on the 14B model surpass
the DeepSeek-R1-Distill-Qwen-14B by an av-
erage of 4.6%, demonstrating our approach’s
effectiveness and superiority.

1 Introduction

With the rapid advancement of artificial intelli-
gence, the complex reasoning abilities of large lan-
guage models (DeepSeek-AI et al., 2025; Team
et al., 2025; Team, 2024; Yang et al., 2024), such
as mathematical reasoning (Yeo et al., 2025; Shen
et al., 2025) and code generation (OpenAI et al.,
2025), have garnered significant attention. To en-
hance these capabilities, a powerful technique, test-
time scaling has been developed, where the model
using more tokens during inference has a signifi-
cant improvement in performance.

There are currently two lines of research to im-
plement test-time scaling. One method, based on

†Project Lead.
‡Corresponding author.

Lower  Start

Higher End

Figure 1: Performance of different initial policy models
in reinforcement learning. We use the same problem
set but different generated responses from Qwen-2.5-
MATH (Qwen et al., 2025), o1-mini (OpenAI, 2024),
and R1 (DeepSeek-AI et al., 2025) to cold-start the
initial model. All the activation data is correct ensured
by an answer rejection sampling.

the Monte Carlo Tree Search (Zhang et al., 2024;
Xie et al., 2024; Luo et al., 2024), guides the
model to generate more accurate answers through
extensive repeated sampling and the outcome feed-
back. Another line of research adopts reinforce-
ment learning, and achieves test-time scaling by
reinforcing longer model generation and more de-
tailed chain of thought (CoT) (Team et al., 2025;
DeepSeek-AI et al., 2025). In this pipeline, the
model is first activated with high-quality long-CoT
data and then reinforced through simple and effec-
tive outcome reward and policy optimization algo-
rithms, enhancing both the model’s output length
and final performance. This method has proven to
be highly efficient, enabling the model to achieve
superior performance.

Despite its effectiveness, we discover that the
initial policy model plays a crucial role in the re-
inforcement learning process. As shown in Fig-
ure 1, we activate the Qwen-14B-Instruct (Qwen
et al., 2025) model with the same prompt set but
different reasoning-pattern CoT generated from
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Figure 2: Our work primarily focus on what constitutes a good initial policy model and how to obtain a better initial
policy model. We conduct a comprehensive study by isolating the reasoning patterns and the amount of activation
data as key variables. Through an in-depth analysis of the RL process from the perspectives of model upper bound,
diversity, and token efficiency, we provide a detailed recipe and a novel ReRFT approach for better policy init.

Qwen-2.5-MATH, o1-mini derived from prompt
engineering, and R1, resulting in vastly different
RL performances. What’s more, we find that the
performance of the start point does not accurately
reflect the eventual gains it will achieve through
RL. This raises an essential question: What is a
better initial policy model for scalable RL?

To answer this question, we investigate the fac-
tors influencing the reinforcement learning process
from perspectives beyond traditional accuracy, fo-
cusing specifically on the model’s potential, diver-
sity, and token efficiency. Our analysis reveals
that the initial model’s pass@k metric provides
a more accurate reflection of the final RL perfor-
mance than accuracy alone. Furthermore, the gap
between pass@k and accuracy, along with model
diversity, serves as a reliable indicator of training
token efficiency during the RL process. Addition-
ally, we find that the choice of the initial model can
also significantly impact the length token efficiency
throughout the RL training process.

Building on these findings, we further explore
how to obtain a better initial policy model by con-
sidering both data volume and reasoning patterns.
In terms of data volume, we find that if the target is
higher performance, more high-quality activation
data is beneficial. However, as the data volume
increases, the training token efficiency tends to de-
crease, but the length token efficiency LTE shows
a slight increase. On the other hand, with smaller
data volumes, RL tends to result in rapid growth
in both length and performance. Regarding reason-
ing patterns, we find that the R1 reasoning pattern
outperforms the traditional CoT pattern and the
o1-mini pattern derived from prompt engineering
in terms of a higher pass@k, diversity, and train-
ing token efficiency. Additionally, we propose a

novel ReRFT method, which can identify more effi-
cient patterns through the policy model itself, thus
enabling more effective and scalable RL.

Our experimental results based on the 14B model
surpass the DeepSeek-R1-Distill-Qwen-14B by an
average of 4.6% across four challenging olympiad-
level math benchmarks, demonstrating the effec-
tiveness and superiority of our approach.

2 Preliminary

2.1 Long-Cot Based Reasoning

With the introduction of the O1 series models, long-
cot combined with reinforcement learning has seen
significant development (DeepSeek-AI et al., 2025;
Team et al., 2025; Yeo et al., 2025; Shen et al.,
2025). The common practice of long-cot-based
post-training can be summarized as follows:

1) Activating the model with high-quality long-
cot data Dtrains = {(xi, yi)}Ni=1 using supervised
fine-tuning as Equation 1 and then serving it as a
starting point πθ0 for reinforcement learning.

LSFT = E[(x,y)∼Dtrains ]




|y|∑

t=1

log πθ(yt | y<t, x)




(1)
2) Optimizing the policy model πθ with RL algo-

rithms. Formally, given a training dataset Dtrainr =
{(xi, ai)}ni=1, where xi denotes a problem and ai
denotes its corresponding ground truth answer, our
goal is to optimize a policy model πθ. Given a prob-
lem xj of the test set Dtest = {(xj , aj)}mj=1, the
policy model can correctly generate ŷj = (ẑj , âj)
where ẑj denotes the long and detailed chain-of-
thought with specific reasoning pattern and âj is
consistent with the gold answer aj .
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2.2 Policy Optimization
There are currently many strategies and varia-
tions for policy model optimization including
PPO (Schulman et al., 2017), Reinforce++ (Hu,
2025), Policy Mirror Descent (Team et al., 2025),
and GRPO (DeepSeek-AI et al., 2025). For sim-
plicity, we directly follow Kimi k1.5 (Team et al.,
2025) for our RL policy optimization.

Specifically, for the i-th iteration, given the prob-
lem x with the answer a, we let the policy model
πθ explore k times and the gradient of the policy
model can be computed as follows:

1

k

k∑

i=1

(∇θ log πθ(yi|x)·R(x, yi, a)−
τ

2
∇θZ(x, yi)),

(2)
where τ is the hyper-parameter controlling the reg-
ularization and Z(x, yi) measures the prediction
difference between policy model πθ and the refer-
ence model as Equation 3. The reference model
πθi can be obtained from the last optimization step
of the previous iteration.

Zπθ,πθi
(x, yi) =

(
log

πθ(yi|x)
πθi(yi|x)

)2

(3)

Reward Given that the result of the olympiad-
level mathematical problem can be complex and
difficult to process with a rule-based evalua-
tion (Gao et al., 2024; Team et al., 2025), we adopt
the same outcome reward as Team et al. (2025)
with a chain-of-thought RM trained from Qwen-
2.5-72B-Instruct (Qwen et al., 2025). Chain-of-
thought RM can explicitly generate a step-by-step
reasoning process before providing a final judg-
ment. Given a question of x with answer a as well
as the ŷ generated by the policy model, the final
reward can be computed as follows:

R(x, ŷ, a) = (r(x, ŷ, a)− r), (4)

where r(x, ŷ, a) is the 1 when the final judgment
of the RM is "True" and otherwise 0 when the
judgment is "False" and r is the average reward
across the k responses per question explored by the
policy model.

3 Delving into scalable RL

In this section, we conduct a comprehensive and
in-depth analysis of the influence of the initial pol-
icy model activated with different datasets during

the reinforcement learning process. We argue that
beyond the final accuracy, it is essential to consider
additional aspects such as Pass@k (Section 3.1),
Diversity (Section 3.2), and Token Efficiency (Sec-
tion 3.3). These metrics can provide more valuable
insights of the long-context reinforcement learning
process.

Experimental Setup Our objective is to investi-
gate the impact of varying quantities and patterns
of data on the model’s reinforcement learning pro-
cess, thus we avoid using excessively large datasets,
as they could hinder the ease of our exploration.
To enhance the model’s reasoning capabilities, we
have compiled a activation dataset and RL prompt
set comprising level-4 and level-5 problems from
MATH (Hendrycks et al., 2021), AIME 1983-2023,
and a portion of Omni-MATH (Gao et al., 2024).

For SFT activation, we conduct our study us-
ing three different initial reasoning patterns. The
first is the traditional CoT generated by Qwen-2.5-
MATH (Yang et al., 2024). Additionally, we in-
troduce two long-CoT variants derived from O1-
mini and R1. Since O1 does not publicly provide
its hidden CoT, we extract its reasoning pattern
using prompt engineering, inspired by the Think
Claude *.

For the vanilla model, we have selected
Qwen-14b-instruct (Qwen et al., 2025) as well
as DeepSeek-R1-distill-Qwen-14B (DeepSeek-AI
et al., 2025) activated with 800K R1-generated data
for further validation.

In constructing the test set, we have cho-
sen four complex mathematical reasoning bench-
marks: MATH-500 (Hendrycks et al., 2021), Omni-
MATH-500 (Gao et al., 2024), AIME 2024, and
10 problems from AIMO 2024 (AIMO, 2024).
Given the limited data available for AIME 2024
and AIMO 2024, we let the model repeat sampling
10 times and take the average result to ensure a
robust evaluation. We have performed string-level
matching detection to prevent the data leakage. The
detailed data statistics are shown in Table 1.

3.1 Pass@K

The pass@k represents the potential for model
improvement, as a higher pass@k indicates that
the model is capable of generating higher-quality
data during training, thereby facilitating further
progress. For a given question x with answer a,

*https://github.com/richards199999/Thinking-Claude
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Usage Dataset Name Num.

SFT
MATH (Hendrycks et al., 2021) 9631

AIME 1983–2023 918

RL
MATH (Hendrycks et al., 2021) 3988

Omni-MATH (Gao et al., 2024) 2926

Test

AIME 2024 30× 8

MATH-500 (Hendrycks et al., 2021) 500

Omni-MATH-500 (Gao et al., 2024) 500

AIMO 2024 (AIMO, 2024) 10× 8

Table 1: Statistics of datasets of SFT, RL and Test. The
RL dataset only contains the questions and correspond-
ing final answer without CoT.

πθ0 Acc pass@K ∆. Acctest πθt

w/ Qwen 66.0 73.1 8.1 35.1
w/ o1-mini 66.7 75.9 9.2 40.6
w/ R1 62.9 79.9 17.0 46.2

Table 2: The RL training accuracy and training pass@K
of the πθ0 activated with different reasoning pattern as
well as the accuracy of the RL-trained model πθt on
Omni-MATH-500 test set.

pass@k measures the probability of the model gen-
eration Ŷ = (ŷ1, ŷ2, ..., ŷk) passing at least once
in k samples, as shown in below:

Pass@k(x, Ŷ , a) = 1−
k∏

i=1

I(g(ŷi) ̸= a), (5)

where g(·) denotes the answer extraction function.
The pass@k and accuracy of different initial pol-

icy models are shown in Table 2. For models ini-
tialized with different activation patterns, we ob-
serve that the initial pass@k aligns more perfectly
with the final RL performance than initial accu-
racy. Models initialized with long COT tend to
exhibit higher pass@k, indicating greater potential,
even though their Pass@1 may be lower than that
of Qwen-MATH’s traditional COT. Additionally,
throughout the reinforcement learning process, we
find that models with a larger gap between pass@k
and accuracy tend to show a steeper performance
improvement as the RL steps progress as shown in
Figure 1. In other words, the greater the difference
between the model’s current accuracy and its po-
tential, the larger the gain at each RL training step.
In conclusion, an initial policy model with a higher
pass@k is considered a better initial policy model.

3.2 Diversity
During the reinforcement learning process, particu-
larly in the early stages, another important factor to

consider is the diversity of the data rollout by the
model (Zintgraf et al., 2021; Norman and Clune,
2024). A greater diversity implies a higher explo-
ration rate of the model to find better solutions,
which allows the model to reinforce itself based on
these successful explorations. In this section, we
proposed two methods for measuring the diversity
of the model-generated responses and conducted a
detailed analysis of the models activated with the
three aforementioned patterns.

Distinct-N Distinct-N (Li et al., 2016) directly
measures the diversity of the N-grams in the
model’s output. For a model generated content
s, the distinct-N of s can be computed as follow:

Distinct-N(s) =
1

N

N∑

n=1

# unique n-grams(s)
# total n-grams(s)

.

(6)
For the same problem set, a higher distinct-N in-
dicates a higher lexical diversity from the model,
which proved to be essential for post-training pro-
cess (Wu et al., 2024b).
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Figure 3: Diversity of πθ0 activated by different reason-
ing pattern during RL training

Figure 3a illustrates the distinct-N values for
the three initial-policy models activated by differ-
ent patterns discussed above. As shown, the data
generated by the R1 activation, which is based on
long-COT with no prompt restrictions, results in
the highest diversity, followed by the fixed-prompt
of o1’s long-COT, and finally, the model activated
by traditional COT. An intriguing finding is that,
during the reinforcement learning process, we ob-
serve a continuous decline in distinct-N for all mod-
els, but the long-COT-based model shows a more
significant drop, eventually under-passing the tradi-
tional COT. However, despite this decline, the RL
performance continues to rise. We believe this is a
result of the exploration-exploitation trade-off: At
the early stages, the model explores a wide vari-
ety of reasoning traces and reinforce itself with the
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guidance of the reward. As RL training progresses,
the model gradually converges toward more effi-
cient reasoning traces. Consequently, the diversity
of its reasoning paths decreases, and its overall per-
formance stabilizes and converges. Therefore, we
conclude that lexical diversity in the initial phase is
more important, as it implies a larger search space
for the model, increasing the likelihood of discov-
ering better reasoning traces, which is also one of
the key advantages of long- CoT over traditional
CoT.

Varlen-K Besides the lexical diversity, in the con-
text of Long-COT, we believe that generating re-
sponses of varying lengths for the same question
signifies greater diversity in the reasoning patterns.
Specifically, different approaches or thinking pat-
terns generated by the model are reflected in out-
puts of varying lengths. Therefore, we propose a
diversity metric named Varlen-K. Varlen-K defines
the normalized standard deviation of the lengths of
the k responses Ŷ = (ŷ1, ŷ2, ..., ŷk) generated by
the model πθ for a given question x:

Varlen-K(Ŷ ) =

√∑k
i=1(

|yi|
avg(|Ŷ |) − µ)2

k
, (7)

where µ is the average value of the |yi|
avg(|Ŷ |) .

Figure 3b illustrates the Varlen-K for three dif-
ferent initial policy models. The model activated
by R1, which has no additional prompt constraints,
exhibits significantly higher length diversity com-
pared to the model activated by o1 with prompt
restrictions, as well as the traditional CoT model.

Additionally, we observed that, the length di-
versity of the πθ traditional CoT and prompt en-
gineered o1-mini CoT remains consistently low
during RL training. The model fails to learn how to
utilize a larger budget to solve more difficult tasks,
which limits its ability or efficiency to scale up in
length and performance.

3.3 Token Efficiency
In the long-CoT reinforcement learning process,
token efficiency plays a critical role in determining
the upper bounds of RL performance. This is pri-
marily due to the limited context windows in most
existing models; for instance, the Qwen (Qwen
et al., 2025) series model has a maximum context
length of 128K tokens.

Moreover, the improvement achieved within cer-
tain training tokens of RL is also crucial. Based on

our previous findings in Section 3.2, the model’s
distribution gradually converges during the RL pro-
cess, leading to a slower performance gain over
time. Therefore, performance improvements within
a fixed training tokens indicate that the model can
effectively leverage rollout data to enhance itself
without being constrained by locally optimal distri-
butions.

Throughout the RL process, we observed that the
model’s token efficiency exhibited different trends
depending on the activation data of different pat-
terns. To provide a clearer definition of token effi-
ciency, we outline three key metrics:

Delta Length Token Efficiency (LTE) LTE mea-
sures the relationship between performance im-
provements and the increase in average token
length throughout the RL process. A higher LTE
signifies that, within a fixed length budget increase,
the model is capable of achieving greater perfor-
mance gains. LTE is influenced by many factors,
such as the efficiency of the RL algorithm and the
suitability of the RL prompt set. However, our pa-
per specifically focuses on the impact of different
initial policy models on LTE.

LTE(πθ) =
acc(x, ŷπθ

, a)− acc(x, ŷπθ0
, a)

len(ŷπθ
)− len(ŷπθ0

)
(8)

Training Token Efficiency (TTE) Given that
online-RL requires the policy model rollout and
real-time interactions with the environment, its
computational cost is significantly higher than that
of supervised fine-tuning. What’s more, perfor-
mance improvements within a fixed number of
training tokens indicate that the model can effec-
tively utilize rollout data to enhance itself without
being constrained by locally optimal distributions.
Therefore, the training token efficiency is an impor-
tant metric to monitor. A better TTE indicates an
efficient RL training.

TTE(πθ) =
acc(x, ŷπθ

, a)− acc(x, ŷπθ0
, a)

# train_iters
(9)

Figure 4 and Figure 5 illustrate the growth in
the length and token efficiency of policy models
activated by different patterns during the reinforce-
ment learning process. As shown in Figure 4b,
under the same hyperparameters, the initial policy
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Figure 4: Experimental results of different pattern acti-
vated πθ in the total test set (without averaging AIME
and AIMO multiple times).
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Figure 5: The token efficiency of πθ activated by differ-
ent reasoning patterns.

models activated by different patterns exhibit signif-
icant differences in length growth during RL. The
traditional-CoT pattern does not achieve test-time
scaling during RL and even performs a slight length
reduction. In contrast, the model activated by the
long-cot pattern shows a steady increase in length,
although the growth rate varies significantly. When
the policy model is activated by o1-mini by a fixed
prompt, it performs a gradual increase in length
during RL. However, the policy model activated by
R1, sees a rapid increase in length, accompanied by
a corresponding fast improvement in performance.

Figure 5 shows the token efficiency of different
models. The R1-activated model demonstrates the
highest training token efficiency among the three
models, indicating more efficient RL returns. The
o1-mini-activated model, on the other hand, ex-
hibits a higher length token efficiency, suggesting a
greater likelihood of solving tasks within the same
length and showing a higher upper bound for RL
improvement. However, although the traditional-
cot model has a slightly higher initial token effi-
ciency than the other two long-cot-activated mod-
els, its length does not increase proportionally with
RL growth, resulting in a lack of length token ef-
ficiency. Additionally, its train token efficiency is

significantly lower than that of the long-CoT mod-
els.

Beyond these conclusions, we also observed
that the TTE, the gap between pass@K and acc,
and the diversity of the initial policy model are
positively correlated. One plausible explanation
is that a model with greater diversity is more likely
to discover high-quality reasoning traces within its
K attempts, thereby yielding a higher pass@k that
exceeds its single-attempt accuracy. Furthermore,
as the model continuously reinforces its learning
of these superior reasoning traces through reward
mechanisms, it ultimately achieves a higher TTE.

Therefore, we can conclude that the long-cot ac-
tivation pattern is crucial for effective RL training.

4 Towards a Better Initial Policy Model

In the previous section, we analyzed the impact
of different pattern-activated initial policy models
from various perspectives. We also explored what
is a good initial policy model for reinforcement
learning. Specifically, the one with higher pass@k,
greater diversity at the early training stage, and bet-
ter token efficiency during the RL training. Based
on the observations and conclusions, we try to ex-
plore the optimal activation strategy by two key
aspects: the quantity of activation data and the rea-
soning pattern for the policy model.

4.1 The Quantity of Activation Data

In RL activation, an important question is how
much data should be used to activate a vanilla
model. Existing studies have shown that activat-
ing a model with a small amount of high-quality
data can yield strong reasoning capabilities (Muen-
nighoff et al., 2025; Ye et al., 2025). However, is a
small amount of activation data sufficient to obtain
superior reasoning ability? Based on our experi-
mental findings, our conclusion is that if the goal
is to maximize the final performance, we should
use as many high-quality long-CoT data as pos-
sible to train the initial policy model. If the goal
is to achieve rapid performance improvement
in reinforcement learning with limited training
data and training steps, a small amount of acti-
vated data is more effective.

To prove this, we sample 2K data from a total of
10K R1-pattern data shown in Table 1 to activate
the Qwen-14b-Instruct, in comparison with the to-
tal 10K activation data. We also include an extreme
situation: DeepSeek-distill-Qwen-14B trained with
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Model AIME2024 AIMO2024 MATH-500 OmniMATH-500 Total

OpenAI o1-12-17 (OpenAI, 2024) 79.2 - 96.4 - -
Kimi-k1.5 (Team et al., 2025) 77.5 - 96.2 - -
DeepSeek-R1 (DeepSeek-AI et al., 2025) 79.8 - 97.3 - -
QwQ-32B-Preview (Team, 2024) 50.0 36.2 90.6 46.2 63.1
Satori-Qwen-7B (Shen et al., 2025) 23.3 - 83.6 - -
s1-32B (Muennighoff et al., 2025) 56.7 - 93.0 - -
DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI et al., 2025) 68.8 48.8 94.9 65.2 76.1

Qwen-14B-Custom-Activated w/ 2K♠ 27.5 13.8 85.4 36.2 51.9
Qwen-14B-Custom-Activated w/ 10K♠ 32.5 22.5 87.6 42.8 55.5
Qwen-14B-Custom-Activated w/ 10K♠ + ReRFT♠ 33.8 18.8 89.2 49.0 59.6
DeepSeek-R1-Distill-Qwen-14B♠ 75.4 60.0 95.4 69.2 79.9
DeepSeek-R1-Distill-Qwen-14B♠ + ReRFT♠ 75.8 61.3 97.6 69.2 80.7

Table 3: Main results of the models across all mathematical reasoning benchmarks. Models marked with ♠ indicate
the performance after reinforcement learning. For example, DeepSeek-R1-Distill-Qwen-14B♠ means we apply
reinforcement learning using DeepSeek-R1-Distill-Qwen-14B as initial policy model.
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Figure 6: The performance of πθ activated with different data volume on total test set.

800K R1-generated data. The experimental results
are shown in Figure 6a and the token efficiency is
shown in Figure 6c and Figure 6d.

As a result, during the early stages of RL train-
ing, the model initialized with minimal data ex-
hibits a higher initial length and accuracy as well
as a rapid increase in both length and performance.
This could be attributed to the fact that the mini-
mal data allowed the model to learn the long-CoT
format without introducing excessive human induc-
tive bias, resulting in the highest training token
efficiency. However, we observed that this rapid
performance and length increase is accompanied
by a lower LTE. The model is soon constrained by
the 64K sequence length window, limiting further
performance improvements. The higher ratio of
truncated rollout data even made the model col-
lapse, as seen in 6a.

In contrast, activating the model with full SFT
data, resulted in slower length growth and a higher
LTE and, consequently, better performance within
the same 64K context window. This trend can also
be observed in the 800K dataset activation of the
DeepSeek-distill-Qwen-14B model in contrast with
2K and 10K activation data, which achieved the

highest LTE and the lowest TTE. However, due to
the large volume of high-quality data introduced
in the supervised fine-tuning stage, the excessive
prior knowledge could anchor the model’s reason-
ing from more exploration, thus result in lower
TTE. Even though, the model achieved the high-
est initial total accuracy and pass@k through its
superior capability, ultimately resulting in the best
overall performance, as shown in Figure 6a.

In summary, to achieve superior final perfor-
mance, it is essential to collect as much high-
quality long-CoT data as possible during the SFT
phase. However, as the volume of long-CoT data
increases, the training token efficiency tends to
decrease. In resource-constrained scenarios, for ex-
ample, lack of high-quality supervised fine-tuning
data, long-CoT RL offers a highly efficient ap-
proach to enhancing model performance within
fewer training steps.

4.2 ReRFT for Better Reasoning Pattern

From Section 3, it is evident that an effective rea-
soning pattern has a significant impact on reinforce-
ment learning. Especially when the activation data
is heavy, our objective is to identify a more efficient
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reasoning pattern that enables the model to achieve
a higher TTE, thereby rapidly enhancing the final
model performance.

The insights from Section 3 suggest that a supe-
rior pattern might be uncovered directly from the
policy model itself. During the RL process, we ob-
served that while the diversity of outputs declines,
the model’s Pass@K steadily increases. This in-
dicates that the model gradually converges toward
a narrower distribution that is more effective at
improving the rewards. We hypothesize that the
patterns produced by the model’s rollouts at this
stage are more efficient. However, after multiple
iterations, the model πθt tends to favor exploitation,
resulting in a lower TTE. To address this, we pro-
pose leveraging data generated by πθt to re-activate
the initial model πθ0 , thereby achieving more effi-
cient pattern activation as well as a higher diversity
compared to πθt .

Formally, for the initial policy model πθ0 , we
first conduct RL training until the model’s perfor-
mance converges, yielding πθt . At this convergence
point, we use πθt to re-rollout SFT activation data
and, after outcome rejection sampling, obtain a
new dataset Dπθt

. Subsequently, we combine the
initial SFT dataset D0 and the data from πθt to fine-
tune the model πθ0 , resulting in a new initial policy
model πθ′0 . At this moment, πθ′0 have a more effi-
cient reasoning pattern as well as a higher diversity.

As demonstrated in Table 3, our experimental
results validate the effectiveness of this approach.
We applied ReRFT to both a custom-trained model
and the DeepSeek-R1-Distill-Qwen-14B. Our find-
ings indicate that, compared to the baseline, the
proposed ReRFT can further enhance the perfor-
mance of the RL model through obtaining efficient
reasoning patterns and reactivating them, thereby
increasing diversity beyond πθt .

5 Related Work

Olympiad-Level Reasoning for LLM With the
release of OpenAI O1 series models (OpenAI,
2024), which demonstrated the ability of large lan-
guage models to handle Olympiad-level reason-
ing tasks, there has been a significant interest in
Olympiad-level reasoning in recent studies. Cur-
rently, there are two main technical approaches.
The first involves verifier and search (Wang et al.,
2024; Qi et al., 2024; Guan et al., 2025), where
the model repeatedly samples during inference and
relies on a verifier to select the highest-quality fi-

nal result or reasoning steps, thereby enabling test-
time scaling for better performance. The second
approach utilizes long-CoT combined with RL. Pre-
vious studies have focused on short-CoT (Yang
et al., 2024), but with the emergence of long-CoT
models such as Kimi K1.5 (Team et al., 2025) and
R1 (DeepSeek-AI et al., 2025), increasing research
has highlighted the advantages of long-CoT in tack-
ling complex reasoning tasks (Yeo et al., 2025;
Shen et al., 2025). Moreover, by incorporating RL,
the number of completion tokens of long-CoT can
be further expanded, enhancing the model’s over-
all capabilities. However, current research has not
fully explored why long-CoT outperforms short-
CoT. In Section 3, we compare the initial policy
models activated with different CoT patterns and
analyze them from different perspectives, which
provide more valuable insight into this question for
future studies.

Reinforcement Learning for LLM Since the in-
troduction of RLHF (Ouyang et al., 2022), the com-
bination of LLMs and reinforcement learning has
proven to be highly effective, particularly in tasks
such as aligning with human preferences, mathe-
matical reasoning, and code generation. Recently,
long-CoT combined with RL (DeepSeek-AI et al.,
2025; Shen et al., 2025; Team et al., 2025; Hu,
2025; Yeo et al., 2025; Muennighoff et al., 2025)
has demonstrated powerful capabilities in solving
complex problems. The primary pipeline involves
first activating the initial policy model through long-
CoT activation, followed by policy optimization
methods such as GRPO (DeepSeek-AI et al., 2025)
or REINFORCE (Team et al., 2025; Hu, 2025),
combined with rule-based rewards. However, there
is currently a lack of systematic research on Long-
CoT RL and the initial policy model.

6 Conclusion

Our work presents the first systematic investiga-
tion into the critical role of the initial policy model
in long-CoT reinforcement learning process. We
offer an in-depth analysis of long-cot RL using met-
rics beyond performance, providing insights into
what constitutes a good initial policy model. Addi-
tionally, we investigate a recipe for a better initial
policy model in terms of data volume. We also
introduce a simple yet effective Re-RFT method to
obtain more efficient reasoning patterns. We hope
our work provides valuable insights into scalable
reinforcement learning for future work.
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7 Limitation

We systematically analyze the RL process from
multiple perspectives in this paper and propose
a more effective initial policy model activation
recipe. However, due to cost constraints, we are
unable to conduct experiments on larger models,
such as those at the 72B scale. We believe that
different model sizes may also exhibit a scaling
taw for length token efficiency and training token
efficiency, We leave this exploration for our future
work.
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A Towards a More Efficient Reasoning
Pattern with Mannual Ablation

Drawing on the conclusions of Wu et al. (2024a),
who have identified several typical patterns in the
responses of the o1 model, such as System Analy-
sis, Verification Reflection, and Human Reasoning
Style.

System Analysis refers to the model tends to do
a systematically analysis before solving a problem.
Verification indicates the model’s tendency to use
an extended chain of thought to validate its con-
clusions. Reflection describes the model’s iterative
self-reflection process, while Human Reasoning
Style refers to the model adopting a human-like
reasoning tone.
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Figure 7: Manual ablation on the reasoning pattern of
o1-mini.

Question Set

Answer

Resposne with o1-mini
Prompt Engineering

w/o Reflection/ Verification / ....
o1-Mini

Rewrite

Verification

Is the final answer CORRECT?
Does it contains Reflection / Verification / ...

Figure 8: The Rewrite-then-Verify framework for reli-
able pattern ablation.

To assess the impact of these patterns on model
scaling performance, we conducted an ablation
study by manually removing them from the train-
ing set. Our approach follows a rewrite-then-verify
strategy as shown in Figure 8: given a fully de-
veloped CoT generated via prompt engineering,
we instruct the model to rewrite it while removing

πθt: Efficient Pattern and Low Diversity

t0

πθ'0: Efficient Pattern and Higher Diversity

Performance

Training Step

Figure 9: Illustration and explanation of ReRFT method.

specific features. The final results are shown in
Figure 7.

Our ablation study reveals that nearly all iden-
tified features have a significant impact on model
performance. Moreover, manually ablating fea-
tures to discover reasoning patterns with higher
LTE proves to be challenging. Therefore, we shift
our focus to analyzing the metrics of the initial pol-
icy model during training (as discussed in the main
text). This approach reduces human inductive bias
and effectively enhances model performance

B Acc and Pass@K Improvements

We present the Train Acc and Pass@K results for
different amount of activation data in Figure ??. It
is evident that in a good RL process, both Pass@K
and Acc improve over time, although Pass@K
grows more slowly than Acc. This indicates that
RL progressively transforms the model’s latent po-
tential into actual performance. Furthermore, as
training progresses, the model’s potential continues
to increase through reinforcement learning.

Train Acc. πθ0 πθ′ ∆.

Qwen-14b w/ 10K R1-pattern 43.9% 53.1% 9.2%
DeepSeek-R1-distill-Qwen-14b 80.1% 86.9% 6.8%
Train Pass@k πθ0 πθ′ ∆.

Qwen-14b w/ 10K R1-pattern 79.9% 90.5% 10.6%
DeepSeek-R1-distill-Qwen-14b 95.5% 96.5% 1%

Table 4: Comparison of model performance in terms of
Accuracy (Acc) and pass@k metrics.

C Detailed Performance

The detailed model performance of using different
quantitty of R1-pattern data activate πθ is shown in
Table 5.

7663



Table 5: The detailed model performance

Model # R1 data ckpt
Performance Other Metric

AIME AIMO MATH500 OmniMATH Total Pass@K Distinct-N Varlen-K TTE

Qwen-14B-Custom-Activated 2K
πθ0 16.67 11.25 80.8 33.0 46.82 74.9 60.45 94.76 -
πθ′ 27.5 13.75 85.4 36.2 51.89 77.3 47.01 89.14 0.68

Qwen-14B-Custom-Activated 10K
πθ0 17.1 12.5 74.6 32.0 44.2 74.0 58.58 65.37 -
πθ′ 32.5 22.5 87.6 42.8 55.45 79.4 50.01 63.29 0.29

DeepSeek-R1-Distill-Qwen-14B 800K
πθ0 63.75 52.5 94.2 63.8 74.62 95.51 48.42 29.29 -
πθ′ 75.42 60.0 95.4 69.2 79.92 97.27 45.67 32.31 0.12

D Detailed Training Setup

We use the data from Tabl 1 for RL training. For the
SFT data, to obtain CoT samples with diverse rea-
soning patterns, we first generate responses using
Qwen-2.5-MATH, O1, and R1.

Note that after generating responses for the train-
ing set, we apply a strict answer filtering process,
retaining only correctly answered questions. To
maximize problem coverage, we perform multi-
ple sampling when the model’s initial answer is
incorrect until a correct response is obtained. This
minimizes the impact of answer quality inconsis-
tencies on the model’s training.

For RL training, we ensure that all reasoning
patterns and activation data use an identical RL
setup for the initial model.

E More Explanations on ReRFT

As shown in Figure 9, during the reinforcement
learning process, πθt gradually converges to a lo-
cally optimal distribution, characterized by lower
diversity and more efficient reasoning patterns. To
counteract this, we reactivate πθ0 using the rollout
data from πθt , aiming to transfer the more efficient
patterns learned in πθt to improve πθ0’s Pass@K.
Since πθ0 has not undergone RL training, it nat-
urally retains higher diversity. This reactivation
process results in π′

θ0
, which exhibits both a higher

RL upper bound and improved efficiency.

F Comparative Analysis of Reasoning
Patterns in Different Initial Policy
Models

We present a comparative analysis of the reason-
ing patterns in three different initial policy models
(R1, Qwen, and O1-mini) based on seven reasoning
patterns: System Analysis, Verification, Reflection,
Decomposition, Language Style Context Empha-
sis, and Method Reuse. Among these, the first
three are defined in Appendix A, while Decompo-
sition refers to breaking down the original problem

Figure 10: The frequency of reasoning patterns.

into subproblems for resolution, Language Style
refers to the frequent use of conversational mark-
ers, Context Emphasis refers to whether the model
highlights contextual background and constraints
related to the problem, and Method Reuse refers to
the reuse of common algorithms or models, poten-
tially omitting certain steps.

We randomly selected 30 samples from mathe-
matical problems and analyzed the frequency of
different reasoning patterns across the three mod-
els, as shown in Figure 10. In solving mathematical
problems, System Analysis, Verification, and De-
composition play the most critical roles.

Figure 11 illustrates the differences in reasoning
patterns among the three models. Reflection and
Verification are likely the key factors driving the
performance differences between the models. R1
places greater emphasis on reviewing and verifying
conclusions, making it more stable in multi-step
reasoning tasks. O1-mini shows slightly lower fre-
quencies of Reflection and Verification compared to
R1, while Qwen rarely verifies its answers, which
may be a key reason for its lower performance.
Furthermore, R1 demonstrates the highest level of
Context Emphasis, consistently paying attention
to contextual constraints, whereas Qwen almost
never uses conversational markers. In contrast,
both R1 and O1-mini employ conversational mark-
ers to guide further thinking or verification. Over-

7664



Figure 11: The frequency of reasoning patterns in dif-
ferent models.

all, the combination of rigorous verification, con-
textual awareness, and interactive language style
contributes to R1’s superior performance, while
Qwen’s lack of verification and contextual empha-
sis limits its effectiveness.
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