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Abstract

Autoregressive decoders in large language mod-
els (LLMs) excel at capturing users’ sequen-
tial behaviors for generative recommendations.
However, they inherently struggle to leverage
graph-structured user-item interactions, which
are widely recognized as beneficial. This pa-
per presents AGRec, adapting LLMs’ decoders
with graph reasoning for recommendation. We
reveal that LLMs and graph neural networks
(GNNs) manifest complementary strengths in
distinct user domains. Building on this, we
augment the decoding logits of LLMs with an
auxiliary GNN model to optimize token gener-
ation. Moreover, we introduce a rankable finite
state machine to tackle two challenges: (1) ad-
justing autoregressive generation with discrimi-
native decoders that directly predict user-item
similarity, and (2) token homogeneity, where
LLMs often generate items with similar prefix
tokens, narrowing the scope of beam search.
Our AGRec outperforms state-of-the-art mod-
els in sequential recommendations. Our source
code and data are available online1.

1 Introduction

Large language models (LLMs) have demonstrated
powerful reasoning capabilities in converting rec-
ommendation tasks into language generation tasks
(Zhang et al., 2024b,a; Wei et al., 2024; Lu et al.,
2024; Yu et al., 2024; Kannen et al., 2024). Recent
methods exploit enhanced item tokenization (e.g.,
<a_35><b_11><c_23><d_77> for a basketball and
<a_35><b_11><c_23><d_24> for a soccer ball in
the top of Fig. 1) (Rajput et al., 2023; Zheng et al.,
2024; Wang et al., 2024b), to substitute numeri-
cal IDs (e.g., “item_1234”) (Li et al., 2023b) and
textual IDs (e.g., movie titles) (Tan et al., 2024a).
However, an inherent problem with LLMs is their
difficulty in interpreting graph-constructed high-
order interactions, which are widely acknowledged

1https://github.com/WangXFng/AGRec

Figure 1: Motivation illustration: LLMs and GNNs both
capture collaborative signals (leading to an overlap in
terms of hit rate over user distribution), yet each also ex-
cels in distinct domains. LLMs excel at capturing user
sequential behaviors autoregressively, while GNNs bet-
ter learn high-order relationships via message-passing.

as valuable for recommendation tasks (Wang et al.,
2022, 2024g,f; Zhao et al., 2022; Yu et al., 2022).
The reason is that interaction signals and the pre-
trained textual semantics of LLMs are distributed in
entirely different feature spaces (Wei et al., 2024).
This fundamental mismatch explains why, despite
numerous efforts to align graph-structured interac-
tions with textual inference (Wang et al., 2024h;
Guo et al., 2024; Huang et al., 2024b), LLMs still
face challenges in accurately capturing these sig-
nals for recommendation. More recently, several
attempts (Wang et al., 2024h; Tan et al., 2024b;
Zhu et al., 2024; Huang et al., 2024b) generate mas-
sive textual prompts based on user-item interaction
edges to train their LLMs. This is less effective,
as a node with 100 one-hop neighbors could have
up to 10,000 two-hop neighbors, growing expo-
nentially with more hops. Another endeavor is to
employ graph neural networks (GNNs) (He et al.,
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2020; Yu et al., 2023; Wang et al., 2023) that ag-
gregate node features through interaction edges to
assist LLMs in recommendations (Kim et al., 2024;
Ma et al., 2024; Wang et al., 2024d). Nevertheless,
the autoregressive decoder of LLMs involves token
selection from a predefined vocabulary, centered
around textual coherence, which inherently differs
from GNNs’ decoding that relies on user-item rep-
resentation similarity.

Unlike NLP tasks, training LLMs for recommen-
dation with significantly large vocabularies (where
a single token represents each item) is very chal-
lenging due to the extremely sparse user-item inter-
actions (less than 0.09% as shown in Table 1). To
address the issue, many recent studies have adopted
the RQ-VAE module (van den Oord et al., 2017;
Zeghidour et al., 2021) for item tokenization. How-
ever, LLM decoders still face a challenge: they
struggle with the issue of homogeneity (Bao et al.,
2024; Lu et al., 2024; Chen et al., 2025). As il-
lustrated in Fig. 2, LLMs often generate items
with similar prefixes, narrowing the scope of beam
search. This is further exacerbated by the non-
uniform distribution of items in the language space
(Bao et al., 2024), leading some items to contain to-
kens with generation probabilities close to 1. More-
over, once a prefix token is incorrect, the model
fails to make recommendations, regardless of the
subsequent tokens. In contrast, item tokens de-
coded by GNNs offer greater diversity, enabling
LLMs to broaden their perspective in selecting pre-
fix tokens.

In light of the aforementioned discussions, we
propose the AGRec model, which adapts LLMs’
decoders with graph reasoning for recommenda-
tion. Empirically, we found that LLMs and GNNs
make effective recommendations for the same user
domain, while also demonstrating complementary
strengths in specific user domains, as illustrated in
Fig. 1. Inspired by recent work (Zheng et al., 2024)
that leverages text-free models to generate addi-
tional token scores at each decoding step, AGRec
employs an auxiliary GNN to directly enhance its
decoding logits for token generation, harnessing
their complementary strengths. Different from the
two common methods: (i) using a graph-based
retriever and (ii) incorporating graph-based repre-
sentations, this approach offers a novel perspective
for improving LLM-based recommenders with ex-
ternal graph-structured knowledge.

To address the decoding misalignment and the
homogeneity issues, we introduce a novel rank-

Figure 2: Illustration of token homogeneity. During
beam search, LLMs generate item tokens according
to contextual coherence, often causing overly similar
prefix tokens compared with GNNs.

able finite state machine (FSM). The FSM has
been widely studied to constructively reformulate
text generation for LLMs (Willard and Louf, 2023;
Chen et al.; Wang et al., 2024c), by strategically
masking undesired tokens during decoding. Specif-
ically, we convert GNN logits into finite states with
rating scores, in which only tokens from the top n
items are selectable and rankable for LLMs. We
reveal that LLMs can intelligently infer the next
token, even when the newly generated last token is
not the originally highest-ranked.

The main contributions of our work can be sum-
marized as follows: (1) We reveal the complemen-
tary strengths of LLMs and GNNs in recommen-
dation tasks and propose AGRec, which augments
the token generation of LLMs with an auxiliary
GNN; (2) We introduce a novel rankable FSM to
address the decoding misalignment between LLMs
and GNNs and the homogeneity issue. (3) Exten-
sive experiments demonstrate that AGRec, with
LLaMA-1B as its backbone, outperforms state-of-
the-art (SOTA) baselines equipped with LLaMA-
7B in sequential recommendation tasks.

2 Related work

LLMs have exhibited remarkable reasoning capa-
bilities in recommendations (Huang et al., 2023,
2024a; Li et al., 2023a, 2024; Wang et al., 2024a;
Lu et al., 2024; Ji et al., 2024; Du et al., 2024a).
Many attempts have leveraged knowledge of LLMs
to improve performance (Bao et al., 2023; He et al.,
2023; Sanner et al., 2023; Xu et al., 2024), includ-
ing reranking items using textual data (Yue et al.,
2023; Carraro and Bridge, 2024), integrating mul-
timodal data (Geng et al., 2022, 2023; Li et al.,
2023b; Wang et al., 2024e) and augmenting textual
representations (Harte et al., 2023; Lin et al., 2023;
Lei et al., 2024; Viswanathan et al., 2023; Na et al.,
2024; Ren et al., 2024). Recently, numerous efforts

7077



Figure 3: Illustration of the FSM for the regular expres-
sion “([A− Z]∗)[0− 9]∗”. Each state imposes specific
constraints on the tokens that LLMs can choose, with
all other tokens masked. “[EOS]” represents the early
stopping token marking the end of sentences.

have explored tokenization of items for recommen-
dation (Hua et al., 2023; Rajput et al., 2023; Zheng
et al., 2024; Wang et al., 2024b).

An increasing number of research has integrated
GNNs with LLMs for recommendation, such as
aligning interactions with textual inference (Guo
et al., 2024; Tan et al., 2024b; Zhu et al., 2024;
Huang et al., 2024b), generating text prompts based
on interaction edges (Wang et al., 2024h; Tan et al.,
2024b; Zhu et al., 2024), encoding node descrip-
tions (Chen et al., 2024; Du et al., 2024b; Dami-
anou et al., 2024), and graph structure augmenta-
tion (Wei et al., 2024). Several endeavors employ
GNNs (Kim et al., 2024; Wang et al., 2024d) to
generate collaborative embeddings for LLMs.

3 Preliminary

3.1 Vector-Quantized Item Tokenization

Tokenizers for LLMs separate numeric IDs into
subwords, causing spurious correlations among
IDs (Wang et al., 2024d). For example, the IDs
“1234” and “3412” are independent but share the
same tokens, “12” and “34”. Toward this, recent
endeavors utilize the residual-quantized variational
autoencoder (RQ-VAE) (van den Oord et al., 2017;
Zeghidour et al., 2021) to generate item indices
(Rajput et al., 2023; Hou et al., 2023; Zheng et al.,
2024; Wang et al., 2024b). RQ-VAE represents
items using code sequences from learnable shared
multi-level codebooks (e.g., four-level codebooks
consist of around 1,000 codes). Specifically, this
approach first uses pre-trained models to extract
item textual embeddings from texts (e.g., descrip-
tions) and then assigns a sequence of the closest
codes as item indices, by iteratively minimizing the
differences (i.e., residuals) between the textual em-
beddings and the assigned code embeddings. The
RQ-VAE training objectives are (i) reconstructing
textual data from the assigned codes and (ii) mini-

mizing residual distances across multiple levels.

3.2 Reformulated Text Generation
The FSM (Sipser, 1996) and trie (Fredkin, 1960)
are widely used to guide text generation by mask-
ing invalid tokens in task-specific LLMs (Willard
and Louf, 2023; Chen et al.; Hua et al., 2023; Zheng
et al., 2024; Wang et al., 2024b). For example, the
regular expression “([A − Z]∗)[0 − 9]∗” defines
a string pattern (e.g., “AB12,” “XY ,” or “789”).
As shown in Fig. 3, an FSM constructed from this
pattern restricts token selection at each state, mask-
ing all invalid options. During decoding, the next
state depends on the previous state and the newly
generated token, which limits the next valid tokens
for LLMs to follow the specified pattern.

4 Approach

Fig. 4 illustrates the overall framework of AGRec,
consisting of (a) decoding discriminative GNN log-
its and (b) recommendation with graph reasoning.

4.1 Decoding Discriminative GNN Logits
The AGRec adopts a pre-trained discriminative
model, LightGCN (He et al., 2020) as the auxiliary
model due to its simplicity and effectiveness, which
estimates the rating score Ru,v of item v ∈ V for
user u ∈ U by an inner-product operation:

Ru,v = < ϕ(u), ψ(v) >, (1)

where ϕ(u) and ψ(v) are the embeddings of u and
i, respectively. ϕ : U −→ Rd and ψ : V −→ Rd

denote the feature aggregations by LightGCN:

ψ(v)(l+1) =
∑

u∈Nv

1√
|Nv|

√
|Nu|

ϕ(u)(l),

ϕ(u)(l+1) =
∑

v∈Nu

1√
|Nu|

√
|Nv|

ψ(v)(l),

(2)

where l refers to the LightGCN layer, and Nv and
Nu denote the neighbors of v and u, respectively.

Building on the logits of LightGCN (i.e., Ru,∗
of user u), we convert the top n items into code se-
quences using RQ-VAE (Zheng et al., 2024; Wang
et al., 2024b), and construct a rankable FSM based
on these code sequences and their scores as shown
in Fig. 4 (a). Specifically, we utilize four-level
codebooks (i.e., “<a>”, “<b>”, “<c>”, and “<d>”)
with each codebook containing up to 256 tokens,
which are assigned as new tokens in the vocabulary
(Zheng et al., 2024; Wang et al., 2024b). We define
a rankable FSM as a tuple (Q,Σ, δ, s0, sf ), where:
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Figure 4: The framework of AGRec, consisting of (a) decoding discriminative GNN logits and (b) recommendation
with graph reasoning. In (a), we transforms GNNs’ discriminative logits into a probability distribution with rankable
FSMs over the vocabulary, aligning them with LLM decoding. In (b), we integrates the FSMs into LLM decoding,
allowing AGRec to go beyond relying solely on textual coherence for recommendation.

• Q refers to a finite set of states,

• Σ represents the set of available tokens (e.g.,
“<a_35>” and “<b_11>”), each associated
with a score for every state,

• δ : Q× Σ → Q is the transition function,

• s0 ∈ Q represents the initial state, and

• sf ∈ Q denotes the accept state, which is
reached after encountering the stopping token
(e.g., “[EOS]”).

At each decoding step, the FSM identifies the
current state based on the last generated token and
the previous state, thereby providing the next avail-
able tokens for LLMs. After masking undesired to-
kens, the FSM employs LightGCN logits to assign
scores to tokens in the vocabulary at state s(y≤t),
represented as pG(yt|y<t), where y≤t denotes the
hypothesis with token y selected at step t, and pG(·)
is the discrete probability distribution of available
tokens. In this manner, the FSM transforms the dis-
criminative decoding logits of GNNs for each user
into a probability distribution over the vocabulary,
aligning them with the LLM’s decoding process.

4.2 Recommendation with Graph Reasoning
As illustrated in Fig. 4 (b), after embedding code
sequences of items into the prompt template, we
tokenize and feed them into LLMs to autoregres-
sively generate the code sequence of the target item.
Given the input tokens denoted as X = [x1, ...,

x|X|], the goal of AGRec is to generate the code
sequence Z = [z1, ..., z|Z|]. The probability of the
target item is defined by:

p(z1, ..., z|V |) =
|Z|∏

i=1

p(zi|z<i, X), (3)

where p(zi|z<i, X) indicates the conditional prob-
ability of the token zi at step i, given the previous
tokens z<i and input tokens X .

Building on the finding that LLMs and GNNs
can complement each other in distinct domains, we
integrate graph reasoning with GNNs into LLM
decoders. Drawing inspiration from (Zheng et al.,
2024), we enhance LLMs’ decoders by refining
scores with logits from auxiliary GNNs, guiding
them to select tokens from the vocabulary:

p̂(zt|z<t, X) = (1−α)p(zt|z<t, X)+αpG(zt|z<t),
(4)

where α ∈ [0, 1] refers to the hyperparameter to
balance the logits of LLMs and GNNs. A higher
value of α indicates the stronger influence of GNN
logits. As such, the AGRec no longer relies on
merely textual coherence to make recommenda-
tions, thereby significantly preventing LLMs from
producing overly similar prefixes.
Reranked Beam Search. Beam search methods
provide a robust solution to find the optimal code
sequence for generative recommendations (Zheng
et al., 2024; Tan et al., 2024a; Wang et al., 2024d,b).

7079



Figure 5: Illustration of autoregressive token generation. Assume that <a_77> is the optimal token for LLMs, while
<a_125> ranks highest for GNNs. If an LLM is forced to select <a_125>, its next prediction would dynamically
shift to <b_101> and <b_34> instead of <b_67> and <b_18>. This results from the self-attention between the newly
generated token (e.g., <a_125>) and previous tokens (e.g., <a_35>), which determines the next token’s probability.

We leverage enhanced LLM decoding to rerank
tokens during beam search, allowing AGRec to
highlight the tokens recommended by the GNNs.
The formula to cumulate the beam search score
S(z≤t) for the token up to step t is given as follows:

S(z≤t) = S(z≤t−1) + log(p̂(zt|z<t, X)). (5)

Remarks. On one hand, LLMs can dynamically
adjust logits for the next-token predictions, even if
the last generated token was not the highest-ranked
for them. This stems from their autoregressive
nature, where the probability of the next token is
determined by the self-attention between the last to-
ken and all previous tokens, as illustrated in Fig. 5.
Formally, the hidden representation ht of the t-th
token to predict the (t+1)-th token is a weighted
sum of all previous token Values (denoted as V ):
ht =

∑t
j=1 at,jVj , where at,j depends on the dot

product between the Query of the last token and
the Keys of all previous tokens:

at,j =
exp(qtk

⊤
j /

√
d)

∑
i≤t exp(qtk

⊤
i /

√
d)
. (6)

On the other hand, when the last generated to-
ken does not match any state defined by the FSMs
(i.e., the last token does not align with the top items
from the GNNs, indicating that it is purely gener-
ated by the LLM logits), the FSMs will not provide
available tokens, and AGRec will rely entirely on
the LLM logits to continue token generation based
on Eq. (4). When both LLMs and GNNs suggest
the same tokens, AGRec prioritizes them by com-
bining their likelihoods with Eq. (4). In summary,
once the prefix tokens are determined, AGRec au-
tomatically selects the subsequent tokens that are
recommended by the LLMs, GNNs, or both.

4.3 Model Optimization
To learn the sequential patterns of all codes, AGRec
autoregressively generates all tokens for training,

Dataset #User #Item #Interaction #Avg. Density
Instruments 24,773 9,923 206,153 8.32 0.084%

Arts 45,142 20,957 390,832 8.66 0.041%
Games 50,547 16,860 452,989 8.96 0.053%
Yelp 30,431 20,033 316,354 10.40 0.052%

Table 1: Statistics of datasets. “#User”, “#Item”, “#In-
teraction”, and “#Avg” denote the counts of users, items,
interactions, and average interactions, respectively.

including items from historical interactions (Zheng
et al., 2024; Wang et al., 2024b). We define the
input tokens and the target item tokens asX = [x1,
. . . , x|X|], and Z = [z1, . . . , z|Z|], respectively.
The input-label pairs are given as follows:

X = [x1, . . . , x|X|, z1, . . . , z|V |−1],

Y = [x2, . . . , x|X|, z1, . . . , z|V |].
(7)

We utilize a log-likelihood loss function to optimize
the model parameters Θ:

LΘ =
1

|D|
∑

(X,Y )∈D

1

|Y |

|Y |∑

t=1

− log p(y|y<t, X),

(8)
where D indicates a set of input-label pairs.

5 Experiments

5.1 Experimental Setup
We conducted experiments on four benchmark
datasets: Instruments, Arts, and Games from the
Amazon dataset2, and the Yelp dataset3. Following
baselines (Zheng et al., 2024; Wang et al., 2024b,d),
we used the last and the second-to-last as test and
validation data, and the rest as training data. Table 1
shows the dataset statistics. We utilized two widely
used evaluation metrics: hit rate (H@K) and nor-
malized discounted cumulative gain (N@K) with
K ∈ {5, 10}. We performed parameter-efficient

2https://www.amazon.com/
3https://business.yelp.com/data/resources/open-dataset/
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Dataset Metric
Discriminative Decoding-based Approaches Large Language Model-based Approaches

Imprv.
Caser HGN BERT4Rec SASRec S3-Rec P5-CID TIGER ELMRec RDRec LR-Rec LETTER Ours

Instruments

H@5 0.0543 0.0813 0.0671 0.0751 0.0857 0.0809 0.0870 0.0836 0.0862 0.0835 0.0921 0.1053 +14.3%*
H@10 0.0710 0.1048 0.0822 0.0947 0.1121 0.0987 0.1058 0.0914 0.0930 0.1056 0.1137 0.1260 +10.8%*
N@5 0.0355 0.0668 0.0560 0.0627 0.0621 0.0695 0.0737 0.0750 0.0783 0.0741 0.0791 0.0883 +11.6%*
N@10 0.0409 0.0774 0.0608 0.0690 0.0705 0.0751 0.0797 0.0775 0.0813 0.0789 0.0848 0.0950 +12.0%*

Arts

H@5 0.0543 0.0813 0.0559 0.0757 0.0767 0.0724 0.0788 0.0782 0.0762 0.0931 0.0889 0.1019 +9.5%*
H@10 0.0710 0.1048 0.0713 0.1051 0.1046 0.0902 0.1012 0.0824 0.0811 0.1133 0.1116 0.1223 +7.9%*
N@5 0.0355 0.0668 0.0451 0.0521 0.0541 0.0607 0.0631 0.0720 0.0691 0.0752 0.0740 0.0820 +9.0%*
N@10 0.0409 0.0744 0.0500 0.0612 0.0634 0.0664 0.0703 0.0731 0.0705 0.0812 0.0798 0.0887 +9.2%*

Games

H@5 0.0367 0.0517 0.0482 0.0581 0.0606 0.0506 0.0599 0.0390 0.0364 0.0626 0.0642 0.0815 +17.9%*
H@10 0.0617 0.0856 0.0763 0.0940 0.1002 0.0803 0.0939 0.0528 0.0505 0.0930 0.0948 0.1064 + 6.2%*
N@5 0.0227 0.0333 0.0311 0.0365 0.0364 0.0342 0.0392 0.0300 0.0269 0.0437 0.0443 0.0572 +24.6%*
N@10 0.0307 0.0442 0.0401 0.0481 0.0491 0.0392 0.0501 0.0345 0.0314 0.0535 0.0545 0.0671 +22.7%*

Yelp

H@5 0.0150 0.0186 0.0186 0.0183 0.0197 0.0219 0.0253 0.0230 0.0260 0.0250 0.0276 0.0295 +6.9%*
H@10 0.0263 0.0326 0.0291 0.0296 0.0332 0.0347 0.0407 0.0359 0.0320 0.0282 0.0423 0.0463 +9.5%*
N@5 0.0099 0.0115 0.0115 0.0116 0.0123 0.0140 0.0164 0.0158 0.0172 0.0175 0.0181 0.0187 +3.3%
N@10 0.0134 0.0159 0.0159 0.0152 0.0168 0.0181 0.0213 0.0199 0.0212 0.0208 0.0224 0.0243 +8.5%*

Table 2: Performance comparison of recommender models. Bold: Best, underline: Second best. “*” indicates that
the improvement is statistically significant in pairwise t-test across 10 trials (p-value < 0.05).

LoRA (Hu et al.) to fine-tune AGRec with LLaMA-
1B (Dubey et al., 2024) as its backbone. More
experimental details are provided in Appendix A.

We compared AGRec with eleven methods that
are divided into the following two groups:
• Discriminative Decoding-based Approaches:

Caser (Tang and Wang, 2018), SASRec (Kang
and McAuley, 2018), HGN (Ma et al., 2019),
BERT4Rec (Sun et al., 2019), and S3-Rec (Zhou
et al., 2020).

• Large Language Model-based Approaches:
P5-CID (Geng et al., 2022; Hua et al., 2023),
TIGER (Rajput et al., 2023), RDRec (Wang
et al., 2024e), ELMRec (Wang et al., 2024d), LR-
Rec (Zheng et al., 2024) and LETTER (Wang
et al., 2024b).

5.2 Main Results

Table 2 presents the performance comparison be-
tween AGRec and baseline methods for sequen-
tial recommendations. These results demonstrate
that AGRec consistently outperforms all competi-
tors in four datasets in terms of H@K and N@K
with K ∈ {5, 10}. Specifically, the improvements
compared with the runner-ups, S3-Rec, LR-Rec
and LETTER, are 10.8% ∼ 14.3% in Instruments,
7.9% ∼ 9.5% in Arts, 6.2% ∼ 24.6% in Games, and
3.3% ∼ 9.5% in Yelp. We also obtain the following
observations and insights:

(1) Compared with discriminative recommender
models, most LLM-based methods that frame se-
quential recommendation as a language generation

Models
Instruments Arts Games

H@10 N@10 H@10 N@10 H@10 N@10

w/o Seq. 0.1197 0.0904 0.1171 0.0817 0.0995 0.0623

w/o Graph 0.0967 0.0755 0.0863 0.0635 0.0664 0.0339
AGRec 0.1260 0.0950 0.1223 0.0887 0.1064 0.0671
Impv. 30.3% 25.8% 40.4% 39.7% 60.2% 97.9%

Table 3: Ablation study. “w/o Seq.” and “w/o Graph”
denote the AGRec without sequential and graph-based
features, respectively.

task achieve strong performance. This stems from
(i) Transformers’ exceptional ability to capture user
sequential patterns behind prompting tokens and
(ii) sufficient pre-trained general knowledge for
generative reasoning.

(2) TIGER, LR-Rec, and LETTER outperform
other LLM-based recommenders due to their en-
hanced item tokenization, which leverages learn-
able RQ-VAE to effectively capture semantic rela-
tionships among items.

(3) By leveraging the strengths of both GNNs
and LLMs, AGRec surpasses SOTA LLM-based
models, LR-Rec and LETTER. This highlights the
effectiveness of the rankable finite state machine in
aligning GNN and LLM decoding while addressing
the homogeneity issue.

(4) It is noteworthy that AGRec takes LLaMA-
1B as its backbone while LR-Rec and LETTER
are equipped with LLaMA-7B for this task. This
indicates both efficacy and efficiency of AGRec for
generative recommendations.
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Models
Instruments Arts Games

H@10 N@10 H@10 N@10 H@10 N@10

LR-Rec 0.0888 0.0721 0.0858 0.0633 0.0579 0.0334
LETTER 0.0965 0.0756 0.0897 0.0650 0.0602 0.0343

AGRec 0.1260 0.0950 0.1223 0.0887 0.1064 0.0671
Imprv. 29.5% 24.1% 36.6% 36.5% 76.7% 95.6%

Table 4: Effect of SOTA baselines with LLaMA-1B.

5.3 Ablation Study
To investigate the effectiveness of sequential and
graph-based features, we conducted an ablation
study in Tables 3. We have the following findings:

(1) We can see that relying solely on graph-based
features (i.e., w/o Seq.), AGRec fails to achieve
optimal recommendation performance, suggesting
the essentiality of sequential features by LLMs for
recommendation.

(2) By augmenting LLM decoding logits with an
auxiliary GNN, AGRec achieves a substantial im-
provement of 25.8% to 60.2% across three datasets.
This underscores the effectiveness of integrating
graph-based signals with the proposed rankable
FSM to guide LLMs in item token generation.

5.4 Comparison with Lightweight Backbone
We compared AGRec with two SOTA LLM-
based baselines, LR-Rec and LETTER, using the
lightweight LLaMA-1B as backbone (Dubey et al.,
2024). From Table. 4, we make two conclusions:

(1) Our AGRec, fine-tuned with parameter-
efficient LoRA and utilizing only 1B parameters,
consistently outperforms competing approaches by
24.1% to 95.6% across three datasets, showcasing
its effectiveness and scalability when dealing with
resource-limited scenarios.

(2) Although LETTER’s enhanced item tok-
enization also leverages collaborative filtering em-
beddings from a pre-trained LightGCN for promis-
ing performance, AGRec achieves even better per-
formance by directly augmenting LLM decoding
with LightGCN logits through rankable FSMs.

5.5 Effect of Various Auxiliary GNNs
We investigated AGRec with three GNNs: Light-
GCN (He et al., 2020), SGL (Wu et al., 2021), and
XSimGCL (Yu et al., 2023), which have achieved
great success in recommendation tasks. The results
in Table. 5 provide three observations:

(1) We selected LightGCN as the optimal auxil-
iary model due to its simplicity and effectiveness
on the Instruments and Arts datasets.

Models
Instruments Arts Games

H@10 N@10 H@10 N@10 H@10 N@10

w/o Graph 0.0967 0.0755 0.0863 0.0635 0.0664 0.0420

+LightGCN 0.1260 0.0950 0.1223 0.0887 0.1064 0.0671
Imprv. 30.3% 25.8% 40.4% 39.7% 60.2% 59.8%

+SGL 0.1284 0.0974 0.1304 0.0924 0.1025 0.0638
Imprv. 32.8% 29.0% 51.1% 45.5% 54.4% 51.9%

+XSimGCL 0.1070 0.0851 0.1187 0.0878 0.0882 0.0549
Imprv. 10.7% 12.7% 37.5% 38.3% 32.8% 30.7%

Table 5: Effect of AGRec with various auxiliary GNNs.

Figure 6: In-depth Analysis. (a) indicates that AGRec
can emphasize the common candidates provided by
LLMs and GNNs. (b) illustrates that AGRec have to
make a compromise when either of LLMs or GNNs
correctly predict the target token, relying on α.

(2) Overall, AGRec improves recommendation
performance with the support of any of these GNN
models, which demonstrates its robustness and gen-
eralization to GNNs;

(3) Although SGL yields the best performance
on the Instruments and Arts datasets, it also in-
creases the computational cost via graph structure
enhancements, i.e., node dropout, edge dropout,
and random walk.

5.6 In-depth Analysis

We conducted an in-depth analysis and obtained
the following observations:

(1) As illustrated in Fig. 6 (a), AGRec highlights
a candidate token when the token is commonly
suggested by LLMs and GNNs, leveraging user
sequential and high-order interactive patterns.

(2) In (b), when only either of LLMs and GNNs
predicts the target token correctly during inference,
AGRec should balance their influence by selecting
an appropriate α.

(3) Compared to GNN-based discriminative
methods that directly estimate the relevance be-
tween users and candidates, LLM-based methods
generate tokens of the target item from the vocabu-
lary, making recommendation more challenging.

(4) We analyze the key hyperparameter α, which
balances the logits of LLMs and GNNs. As illus-
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Figure 7: Performance by AGRec over different α on
different datasets. The x-axis indicates the values of α.

trated in Fig. 7, the optimal α varies across datasets.
Specifically, AGRec relies less on GNN logits for
the Instruments dataset (α = 0.4) and the Arts
dataset (α = 0.2), while for the Games and Yelp
datasets, it requires more, with an optimal α of 0.7
for both.

5.7 Case Study

We conducted case study to better understand our
AGRec. Fig. 8 presents a typical case from the
Instruments dataset. We observed that:

(1) AGRec, utilizing graph reasoning, correctly
recommends “Item#1729” to “User#3741”, where
many similar users who purchased the same prod-
ucts (e.g., Mini Mic Boom Arm, Mic Gooseneck,
and Mic Bar) also bought the item.

(2) We can see that the recommended results
start with various prefix tokens, lead to the correct
prediction (i.e., Telescoping Mic Mini-Boom) for
user U#3741. This indicates that the incorpora-
tion of GNN logits effectively mitigates the token
homogeneity issue.

(3) As shown by pink and light green arrows,
AGRec can highlight the tokens for items that are
jointly recommended by LLMs and GNNs. Al-
though item <a_118><b_108><c_102><a_103>
(i.e., GLS Audio 3ft Patch Cable Cords) is not
the target item this time, we believe that it remains
a reliable recommendation in practical because it
is suggested by both LLMs and GNNs.

5.8 Computational Complexity

Although AGRec utilizes the computationally ex-
pensive LightGCN model with a complexity of
O((|U| + |V|)2) during preprocessing, where |U|

Figure 8: A practical case from the Instruments dataset.
“I#A” and “U#B” represent the item and user with IDs
of “A” and “B”, respectively. The code sequences in the
same color demonstrates the homogeneity issue.

and |V| denote the number of users and items in the
recommender system, this preprocessing computa-
tion is performed only once, making it feasible for
real-world deployment.

Unlike prior works (Kim et al., 2024; Ma et al.,
2024; Wang et al., 2024d) that employ GNNs to it-
eratively aggregate node features for LLM to learn,
AGRec directly integrates the logits from an aux-
iliary pretrained GNN into LLM decoders. This
design significantly reduces the reasoning burden
during both training and inference, lowering the
computational complexity from O((|U| + |V|)2)
to O(L2), where L represents the average interac-
tion sequence length per user and satisfies L ≪
(|U|+ |V|). As a result, compared to these GNN-
based approaches, our AGRec mitigates memory
overhead in real-time recommendation scenarios
with graph reasoning.

Besides, we use a prefix trie (Hua et al., 2023;
Tan et al., 2024a; Wang et al., 2024b) constructed
by the code sequences of all candidate items to pre-
vent our AGRec from generating ghost items that
are non-existent in the recommender system. Once
the generated token does not match the trie, we
force it to choose the early stoping token, “[EOS]”.
This setting could also reduce the inference time
without scarifying the performance.
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Figure 9: Visualization of user and item distributions based on LightGCN embeddings. The same color represents
users (or items) who have purchased (or been purchased by) the same items (or users).

5.9 Visualization

We also visualized the distributions of users and
items based on LightGCN embeddings using t-
SNE (Van der Maaten and Hinton, 2008). The
same color represents users who have purchased
the same items or items that have been purchased
by the same users. The results in Fig. 9 show that
even when graph embeddings are compressed into
three dimensions, dots of the same color still clus-
ter closely together. We observed that LightGCN
effectively transforms high-order collaborative sig-
nals into graph embeddings. This supports the
notion that the inner products of these embeddings
can serve as valuable guidance logits for LLMs in
generative recommendation tasks.

6 Conclusion

This paper introduces AGRec that manifests com-
plementary strengths of LLMs and GNNs in dis-
tinct user domains for sequential recommendations.
We introduce a rankable finite state machine to
adjust autoregressive generation with discrimina-
tive decoders, and mitigate token homogeneity to
broaden the scope of beam search. The experi-
mental results demonstrate the effectiveness and
efficiency of AGRec. Our future work involves (i)
incorporating multi-modal features, such as images
(Geng et al., 2023; Bian et al., 2023) and (ii) ex-
ploring more effective item tokenization (Hua et al.,
2023; Rajput et al., 2023; Wang et al., 2024b) for
generative recommendations.

Limitations

The limitations of AGRec include: (i) The prepro-
cessing stage employs the computationally expen-
sive LightGCN model, with a costly complexity.
Although this is only required once, it partially
limits the employment of AGRec in super large-
scale recommendation scenarios. (ii) The AGRec
model requires re-training the entire model from
scratch for cold-start scenarios involving new users
or items. This is a challenging, yet intriguing future
work to further improve AGRec for zero / few-shot
and cold-start recommendations (He et al., 2023;
Sanner et al., 2023). (iii) The model focuses solely
on interactive signals between users and items for
recommendation, neglecting other important fea-
tures such as textual reviews (Li et al., 2023a; Wang
et al., 2024e; Wei et al., 2024) and images (Geng
et al., 2023; Ji et al., 2023).
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Ivan Vulić, Anna Korhonen, and Mohamed Hammad.
2024. Calrec: Contrastive alignment of generative
llms for sequential recommendation. In Proceed-
ings of the 18th ACM Conference on Recommender
Systems, pages 422–432.

Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-
Kiong Ng, and Tat-Seng Chua. 2023. A multi-facet
paradigm to bridge large language model and recom-
mendation. arXiv preprint arXiv:2310.06491.

Wensheng Lu, Jianxun Lian, Wei Zhang, Guanghua
Li, Mingyang Zhou, Hao Liao, and Xing Xie. 2024.
Aligning large language models for controllable rec-
ommendations. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8159–8172.

Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical
gating networks for sequential recommendation. In
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 825–833.

Qiyao Ma, Xubin Ren, and Chao Huang. 2024. XRec:
Large language models for explainable recommen-
dation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 391–402.

Hyunsoo Na, Minseok Gang, Youngrok Ko, Jinseok
Seol, and Sang-goo Lee. 2024. Enhancing large lan-
guage model based sequential recommender systems
with pseudo labels reconstruction. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 7213–7222.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghu-
nandan Hulikal Keshavan, Trung Vu, Lukasz Heldt,
Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al.
2023. Recommender systems with generative re-
trieval. Advances in Neural Information Processing
Systems, 36:10299–10315.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi
Cheng, Junfeng Wang, Dawei Yin, and Chao Huang.
2024. Representation learning with large language
models for recommendation. In Proceedings of the
ACM on Web Conference 2024, pages 3464–3475.

7086



Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2012. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618.

Scott Sanner, Krisztian Balog, Filip Radlinski, Ben
Wedin, and Lucas Dixon. 2023. Large language mod-
els are competitive near cold-start recommenders for
language-and item-based preferences. In Proceed-
ings of the 17th ACM conference on recommender
systems, pages 890–896.

Michael Sipser. 1996. Introduction to the theory of
computation. ACM Sigact News, 27(1):27–29.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441–1450.

Juntao Tan, Shuyuan Xu, Wenyue Hua, Yingqiang Ge,
Zelong Li, and Yongfeng Zhang. 2024a. Idgenrec:
Llm-recsys alignment with textual id learning. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 355–364.

Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang,
Shiping Wang, and Carl Yang. 2024b. Musegraph:
Graph-oriented instruction tuning of large language
models for generic graph mining. arXiv preprint
arXiv:2403.04780.

Jiaxi Tang and Ke Wang. 2018. Personalized top-n se-
quential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM
international conference on web search and data
mining, pages 565–573.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Aaron van den Oord, Oriol Vinyals, and koray
kavukcuoglu. 2017. Neural discrete representation
learning. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Vijay Viswanathan, Luyu Gao, Tongshuang Wu, Pengfei
Liu, and Graham Neubig. 2023. Datafinder: Scien-
tific dataset recommendation from natural language
descriptions. In the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 10288–10303.

Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang,
Chong Chen, Yiqun Liu, and Shaoping Ma. 2022.
Towards representation alignment and uniformity in
collaborative filtering. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 1816–1825.

Tianhao Wang, Sheng Wu, Fen Yi, Lidan Kuang, You
Wang, and Jin Zhang. 2024a. Hybrid prompt rec-
ommendation explanation generation combined with
graph encoder. Neural Processing Letters, 56(1):32.

Wenjie Wang, Honghui Bao, Xinyu Lin, Jizhi Zhang,
Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng
Chua. 2024b. Learnable item tokenization for gen-
erative recommendation. In Proceedings of the 33rd
ACM International Conference on Information and
Knowledge Management, pages 2400–2409.

Xiaochen Wang, Junqing He, Liang Chen, Reza Haf Zhe
Yang, Yiru Wang, Xiangdi Meng, Kunhao Pan, and
Zhifang Sui. 2024c. Sg-fsm: A self-guiding zero-
shot prompting paradigm for multi-hop question an-
swering based on finite state machine. arXiv preprint
arXiv:2410.17021.

Xinfeng Wang, Jin Cui, Fumiyo Fukumoto, and Yoshimi
Suzuki. 2024d. Enhancing high-order interaction
awareness in llm-based recommender model. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 11696–
11711.

Xinfeng Wang, Jin Cui, Yoshimi Suzuki, and Fumiyo
Fukumoto. 2024e. Rdrec: Rationale distillation for
llm-based recommendation. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
65–74.

Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi
Suzuki, Jiyi Li, and Dongjin Yu. 2023. Eedn:
Enhanced encoder-decoder network with local and
global context learning for poi recommendation. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 383–392.

Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi
Suzuki, Jiyi Li, and Dongjin Yu. 2024f. Cadrec:
Contextualized and debiased recommender model.
In Proceedings of the 47th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 405–415.

Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi
Suzuki, and Dongjin Yu. 2024g. Nfarec: A negative
feedback-aware recommender model. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 935–945.

Xinyuan Wang, Liang Wu, Liangjie Hong, Hao Liu, and
Yanjie Fu. 2024h. Llm-enhanced user-item interac-
tions: Leveraging edge information for optimized
recommendations. arXiv preprint arXiv:2402.09617.

7087

https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf


Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin
Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. 2024. Llmrec: Large language models with
graph augmentation for recommendation. In Pro-
ceedings of the 17th ACM International Conference
on Web Search and Data Mining, pages 806–815.

Brandon T Willard and Rémi Louf. 2023. Efficient
guided generation for large language models. arXiv
preprint arXiv:2307.09702.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He,
Liang Chen, Jianxun Lian, and Xing Xie. 2021. Self-
supervised graph learning for recommendation. In
Proceedings of the 44th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 726–735.

Shuyuan Xu, Wenyue Hua, and Yongfeng Zhang. 2024.
Openp5: An open-source platform for developing,
training, and evaluating llm-based recommender sys-
tems. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 386–394.

Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen
Quoc Viet Hung, and Hongzhi Yin. 2023. Xsimgcl:
Towards extremely simple graph contrastive learning
for recommendation. IEEE Transactions on Knowl-
edge and Data Engineering.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen
Cui, and Quoc Viet Hung Nguyen. 2022. Are graph
augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of
the 45th international ACM SIGIR conference on
research and development in information retrieval,
pages 1294–1303.

Yakun Yu, Shi-ang Qi, Baochun Li, and Di Niu. 2024.
PepRec: Progressive enhancement of prompting for
recommendation. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 17941–17953.

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira
Moreira, Dong Wang, and Even Oldridge. 2023.
Llamarec: Two-stage recommendation using large
language models for ranking. arXiv preprint
arXiv:2311.02089.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran,
Jan Skoglund, and Marco Tagliasacchi. 2021.
Soundstream: An end-to-end neural audio codec.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 30:495–507.

An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang,
and Tat-Seng Chua. 2024a. On generative agents
in recommendation. In Proceedings of the 47th in-
ternational ACM SIGIR conference on research and
development in Information Retrieval, pages 1807–
1817.

Yang Zhang, Keqin Bao, Ming Yan, Wenjie Wang, Fuli
Feng, and Xiangnan He. 2024b. Text-like encoding

of collaborative information in large language models
for recommendation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9181–
9191.

Sen Zhao, Wei Wei, Ding Zou, and Xianling Mao. 2022.
Multi-view intent disentangle graph networks for bun-
dle recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 4379–4387.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen,
Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
2024. Adapting large language models by integrat-
ing collaborative semantics for recommendation. In
2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 1435–1448. IEEE.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual informa-
tion maximization. In Proceedings of the 29th ACM
international conference on information & knowl-
edge management, pages 1893–1902.

Yaochen Zhu, Liang Wu, Qi Guo, Liangjie Hong, and
Jundong Li. 2024. Collaborative large language
model for recommender systems. In Proceedings
of the ACM on Web Conference 2024, pages 3162–
3172.

7088



A Appendix

In this section, we present additional experimen-
tal details, including baselines, additional results,
running time and implementation details.

A.1 Baselines

To evaluate the effectiveness of AGRec for sequen-
tial recommendation, we compared it with eleven
baselines, which are classified into two groups:
(1) Discriminative Decoding-based Approaches
• CASER (Tang and Wang, 2018) treats user in-

teractions as images and employs 2-dimensional
convolutions to capture sequential patterns.

• SASRec (Kang and McAuley, 2018) exploits
Markov Chains to learn user sequential patterns
for making recommendations.

• HGN (Ma et al., 2019) models users’ long- and
short-term interests with a novel gating strategy
for sequential recommendations.

• BERT4Rec (Sun et al., 2019) proposes to lever-
age the BERT-style cloze task for the sequential
recommender algorithm.

• S3-Rec (Zhou et al., 2020) learns users’ latent be-
havioral features via employing a self-supervised
learning paradigm.

(2) Large Language Model-based Approaches
• P5 (Geng et al., 2022) presents a unified recom-

mendation paradigm, which converts multiple
recommendation tasks into natural language gen-
eration tasks using LLMs.

• TIGER (Rajput et al., 2023) characterizes the
textual semantics of items as their IDs for LLM-
based recommendations.

• RDRec (Wang et al., 2024e) proposes a rationale
distillation to extract user preferences and item
attributes from reviews.

• ELMRec (Wang et al., 2024d) explots GNN-
based graph embedding to enhance LLMs’ inter-
pretation of graph-constructed interactions for
recommendation.

• LR-Rec (Zheng et al., 2024) utilizes a learning-
based vector quantization method with uniform
semantic mapping, and a series of specially de-
signed tuning tasks to enhance the integration of
collaborative semantics in LLMs.

• LETTER (Wang et al., 2024b) integrates hierar-
chical semantics, collaborative signals, and code
assignment diversity to satisfy the essential re-
quirements of identifiers.

Models
Yelp

H@5 H@10 N@5 N@10

LR-Rec 0.0182 0.0260 0.0128 0.0151
LETTER 0.0188 0.0275 0.0131 0.0159

AGRec 0.0295 0.0463 0.0187 0.0243
Impv. 56.9% 68.4% 42.7% 52.8%

Table 6: Performance comparison of AGRec and
SOTA LLM-based baselines, LR-Rec and LETTER,
with LLaMA-1B as their backbone on the Yelp dataset.

Models
Yelp

H@5 H@10 N@5 N@10

w/o Graph 0.0185 0.0128 0.0272 0.0156

+LightGCN 0.0295 0.0463 0.0187 0.0243
Impv. 59.6% 46.1% 70.2% 55.8%

+SGL 0.0308 0.0494 0.0201 0.0262
Impv. 66.5% 57.0% 81.6% 67.9%

+XSimGCL 0.0259 0.0320 0.0172 0.0192
Impv. 40.0% 34.4% 17.6% 23.1%

Table 7: Performance comparison of AGRec with
various auxiliary GNNs (i.e., LightGCN, SGL, and
XSimGCL) on the Yelp dataset.

A.2 Additional Results

We provide additional experimental results on the
Yelp dataset. Table 6 compares AGRec with state-
of-the-art (SOTA) LLM-based baselines, i.e., LR-
Rec and LETTER, all using LLaMA-1B as their
backbone. On this dataset, AGRec outperforms
the second-best baseline, LETTER, achieving im-
provements of 42.7% to 68.4% in terms of H@K
and N@K with K = 5 and 10. This highlights the
effectiveness and scalability of AGRec in scenarios
with limited resources.

Table 7 presents the impact of different auxiliary
GNNs on AGRec for sequential recommendation:
LightGCN (He et al., 2020), SGL (Wu et al., 2021),
and XSimGCL (Yu et al., 2023). We have the
same observation: while SGL with a more complex
architecture achieves the best performance on the
Yelp dataset, we choose LightGCN as the optimal
auxiliary model due to its balance of effectiveness
and simplicity. This also demonstrates that AGRec
can leverage more advanced GNNs as auxiliary
models when sufficient computational resources
are available.
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Datasets Stages
Pre-processing Pre-training Inference

Instruments 13m32s 2h06m45s 48m39s

Arts 21m34s 4h24m49s 1h47m20s

Games 25m55s 5h17m53s 1h51m46s

Yelp 17m12s 3h58m20s 1h09m28s

Table 8: Running time in different stages on four
datasets. “h”, “m”, and “s” indicate “hours” and “min-
utes”, and “seconds” respectively.

A.3 Running Time

In Table 8, we present the running time of AGRec
in pre-processing, pre-training, and recommenda-
tion inference, respectively. We can see that the
running time in these four datasets are acceptable
while achieving SOTA performance in the sequen-
tial recommendation task. This is because the main
computational cost of training and inference time
comes from the LLaMA model, which means that
AGRec saves a lot of computational cost and tun-
able parameters.

A.4 Implementation Details

The best hyperparameters of AGRec were sampled
as follows: α was set to 0.4, 0.2, 0.7, and 0.7 for In-
struments, Arts, Games, and Yelp, respectively. We
set the scores of masked tokens as 1e-5 in FSMs.
The number n of top items by LightGCN was set
to 10. The learning rate was 1e-4 with the weight
decay of 1e-2. Consistent with baselines (Zheng
et al., 2024; Wang et al., 2024b), the training epoch
was set to 4. These hyperparameters were tuned
using Optuna4 (Akiba et al., 2019). All prompts for
sequential recommendation are borrowed from LR-
Rec and LETTER. The dataset preprocessing also
follows LR-Rec and LETTER for a fair comparison.
We utilized the parameter-efficient fine-tuning tech-
nique, LoRA (Hu et al.), to fine-tune AGRec with
LLaMA-1B (Dubey et al., 2024) as its backbone.
The rank and parameter alpha of LoRA matrices
was set to 16 and 32, respectively. We implemented
LC-Rec with LLaMA-7B (Touvron et al., 2023).
We implemented LETTER using LLaMA-7B and
T5 (Raffel et al., 2020) and reported the higher of
the two results, following the original paper (Wang
et al., 2024b). For TIGER, we used the public
implementation5 as no official version is available.

4https://github.com/pfnet/optuna
5https://github.com/HonghuiBao2000/LETTER

As item tokenization is not our main focus, we
followed LETTER to implement it, specifically, we
used 4-level codebooks for RQ-VAE, where each
codebook comprises up to 256 code embeddings
with a dimension of 32. Consistent with baselines
(Zheng et al., 2024; Wang et al., 2024b), we as-
signed all these codes as new tokens in the vocab-
ulary. We use a code sequence trie (prefix tree)
constructed by the code sequences of all candidate
items (Hua et al., 2023; Tan et al., 2024a; Zheng
et al., 2024; Wang et al., 2024b) to prevent our
AGRec from generating ghost items that are non-
existent in the recommender system. The auxiliary
LightGCN model was trained using the Bayesian
personalized ranking (BPR) loss (Rendle et al.,
2012) before the AGRec fine-tuning and inference
processes. The embedding size d of LLaMA-1B
was 2,048, and that of LightGCN was set to 512.
We implemented and evaluated our AGRec using
PyTorch on an NVIDIA RTX 6000 Ada (48GB
memories). Our ARGrec only requires 24G GPU
memories to train and run.
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