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Abstract

Large Language Models (LLMs) have demon-
strated strong capabilities across various do-
mains, with recent advancements in challeng-
ing reasoning tasks such as mathematics and
programming. However, solving reasoning
tasks often requires an LLM to generate long
sequences, incurring O (V) time and memory
complexities per token, where N is the cur-
rent sequence length. To reduce complexities,
existing sparsity-based algorithms propose to
retain Key-Value (KV) vectors, the intermedi-
ate representations of only the most critical to-
kens. However, these algorithms struggle with
the “impossible trinity” of accuracy, time, and
memory. For example, the state-of-the-art al-
gorithm, Quest, achieves high accuracy with
O(L) time but O(N) memory (L is the cache
budget, L < N). To address the “impossible
trinity”, in this paper, we identify a new atten-
tion pattern during the decode stage of reason-
ing tasks, where milestone tokens (analogous
to lemmas in mathematical proofs) emerge, are
utilized, and then become unimportant after-
ward. Based on this pattern, we propose a new
algorithm RaasS that identifies milestone tokens
and retains their KV vectors until they are no
longer needed, achieving high accuracy with
O(L) time and O(L) memory complexities.

1 Introduction

Large Language Models (LLMs) have gained
widespread adoption due to their exceptional per-
formance and versatility across various applica-
tions. However, their large-scale deployment faces
a major obstacle: the high computational cost
of long-sequence inference, which is increasingly
common in modern user requests (i.e., prompts).
This cost arises from the O(N) time and O(N)
memory complexities required to generate each to-
ken, where N denotes the current sequence length
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(i.e., input plus output tokens). Consequently, com-
pleting an entire request incurs a total time com-
plexity of O(N?). For instance, the Llama 3.1 8B
model supports sequences up to 128,000 tokens,
leading to Job Completion Times (JCT) of several
thousand seconds and memory usage up to 16GB
per request!.

To study long-sequence inference, prior work
divides LLMs’ generation process into two stages:
prefill and decode. First, in the prefill stage, the
model processes the prompt tokens given by users.
It computes the Key (K) and Value (V) vectors
for all prompt tokens, stores these vectors in the
KV cache, and generates the first output token to
initiate the decode stage. We collectively refer to
prompt or input tokens as prefill tokens. Second, in
the decode stage, the model iteratively processes
each newly generated token. It computes the KV
vectors for the new token, appends these vectors to
the KV cache, and generates the next token. This
process repeats until a specified stopping criterion
is met. We refer to output tokens as decode tokens.

This paper focuses on optimizing the decode
stage for two main reasons. First, long-decode
tasks (producing long model outputs) have recently
gained prominence, particularly in reasoning ap-
plications, as demonstrated by models such as
OpenAl’s 01/03 (OpenAl) and DeepSeek R1 (Dai
et al., 2024). Despite their growing importance, the
optimization of long-decode tasks remains under-
explored compared to long-prefill tasks (containing
long prompts) (Hu et al., 2024; Zheng et al., 2024;
Kwon et al., 2023; Jin et al., 2024; Bai et al., 2024),
such as Retrieval-Augmented Generation (RAG),
few-shot learning, and tool use. Second, the decode
stage represents a significant performance bottle-
neck in long-decode tasks. In reasoning applica-
tions, for instance, the time spent in the decode
stage accounts for 99% of the JCT (Figure 1).

"https://huggingface.co/blog/1lama31
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Existing sparsity-based algorithms (Tang et al.,
2024; Zhang et al., 2023; Xiao et al., 2024) opti-
mize long-decode inference by retaining the KV
vectors of only the most critical tokens, but strug-
gle with the “impossible trinity” of accuracy, time,
and memory (Figures 2 (b)(c)(d)). First, H20,
the pioneering work on attention sparsity, theoret-
ically achieves O(L) time and memory complex-
ities, where L indicates cache size and L <« N.
However, its inability to utilize efficient attention
kernels and the lack of page-level KV manage-
ment make it impractical. Moreover, H20 suffers
from low accuracy. Second, StreamingLLM or
Sink (Xiao et al., 2024) similarly offers O(L) time
and memory complexities, but adopts an aggres-
sive sparsification strategy that leads to extremely
low accuracy on reasoning and other tasks (Tang
et al., 2024)). Third, Quest (Tang et al., 2024), the
state-of-the-art, achieves high accuracy with O(L)
time complexity but O(/N) memory complexity.

To maintain accuracy and O(L) time and mem-
ory complexities at the same time for reasoning
tasks, we analyze their attention pattern during the
decode stage, uncovering two key characteristics.
First, we identify milestone tokens, which initially
exhibit high attention scores but gradually receive
lower scores and never receive high scores again.
Analogous to lemmas in mathematical proofs, mile-
stone tokens emerge, are utilized, and then fade
away. These tokens, visible as bright columns (on
the attention map) that slowly diminish, must be
carefully managed to prevent significant accuracy
loss (Figure 5). Second, we identify phoenix to-
kens, which receive low attention scores for a pe-
riod long enough to be evicted from the cache but
later regain importance. These tokens typically
appear in the prefill tokens, such as user queries.
Quest (Tang et al., 2024) retains the entire KV
cache to avoid losing phoenix tokens, resulting in
its O(IN) memory complexity.

Based on the preceding observations, we pro-
pose a new RaaS algorithm that addresses the “im-
possible trinity” and consists of two main ideas.
First, we identify milestone tokens and retain their
KV vectors using a Least-Recently-Used (LRU)
caching strategy. During each decoding step, to-
kens that receive attention scores above the median
are considered used and are assigned the latest
timestamp. Milestone tokens typically continue
to receive the latest timestamps until they become
permanently irrelevant. When the KV cache is
full, RaaS evicts KV vectors of the tokens with

the oldest timestamp. Second, we retain the KV
vectors of all prefill tokens without eviction. Since
the phoenix tokens almost always appear within
them in reasoning tasks, retaining these tokens’
KV vectors ensures that critical information is not
lost during the decode stage.

We implement RaaS with 2k lines of Python
code. To evaluate its performance, we com-
pare it against H20 (Zhang et al.,, 2023),
Streamingl.LM (Xiao et al.,, 2024), and
Quest (Tang et al., 2024) using three mathe-
matical datasets on four reasoning-enabled models.
Our experimental results demonstrate that RaaS
achieves comparable accuracy and latency to Quest,
while offering a significant advantage in memory
efficiency (O(L) memory complexity). The code
is available at: https://github.com/DerekHJH/raas.

In this paper, we make the following three main
contributions:

* We identify a novel attention pattern in reason-
ing tasks, where milestone tokens (analogous
to mathematical lemmas) emerge, are utilized,
and then become unimportant.

* Based on the milestone pattern, we propose
a new algorithm RaasS that achieves high ac-
curacy with O(L) time and O(L) memory
complexities.

* We implement and evaluate RaaS, demonstrat-
ing constant memory usage while maintaining
similar accuracy and time performance com-
pared to the state-of-the-art Quest.

2 Background and Motivation

In this section, we overview the Large Language
Model (LLM) inference, highlighting the key con-
cepts and challenges that motivate our work.

2.1 Autoregressive Generation and KV Cache

The generation process of LLMs consists of two
distinct stages: the prefill stage and the decode
stage (Hu et al., 2025b; Kwon et al., 2023). In the
prefill stage, the model processes a sequence of
prompt tokens all at once. It computes the Key (K)
and Value (V) vectors for all prompt tokens, stores
these vectors in the KV cache, and generates the
first output token to initiate the decode stage. In the
decode stage, the model iteratively processes each
newly generated token. It computes the KV vectors
for the new token, appends these vectors to the KV
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Figure 1: The Cumulative Distribution Function (CDF) of sequence lengths for the Prefill (P) and Decode (D) stages
for (a) five datasets from LongBench (Bai et al., 2024) and (b) three math datasets running on the reasoning-enabled
Marco-O1 model. (c) The breakdown of prefill and decode time during the inference of fixed 32k tokens using
vLLM 0.6.1 with the LLaMA 3.1 8B model in FP16 precision. As the number of decode tokens increases (with the
number of prefill tokens being 32k minus the decode tokens), the decode time rises significantly faster than the

prefill time.

cache, and generates the next token. This process
repeats until a specified stopping criterion is met.
The KV cache (Pope et al., 2023; Hu et al., 2025a)
accelerates the decode stage by allowing LLMs to
process only the new token instead of reprocess-
ing the entire sequence. With the KV cache, the
attention mechanism incurs a time complexity of
O(N) per decoding step and a memory complexity
of O(N) for storing the KV cache, where NN is the
sequence length.

2.2 Cost Transfer: From Long-Prefill to
Long-Decode Inference

Long-sequence inference incurs significant costs
due to both memory and time requirements. First,
it demands substantial memory resources, reaching
up to 16 GB KV cache (in addition to the 16 GB
model parameters) for processing 128k tokens run-
ning the LLaMA 3.1 8B model in FP16 precision.
Second, it requires considerable processing time,
with inference for 32k tokens taking around 20 -
1000 seconds on vLLM 0.6.1 using the same model
(Figure 1 (¢)).

Long-sequence inference can be categorized
into two types: long prefill and long decode.
Long prefill arises from extensive input prompts,
as observed in prior studies such as Retrieval-
Augmented Generation (RAG) (Li et al., 2022;
Jin et al., 2024; Gao et al., 2023; Jeong et al.,
2024; Ram et al., 2023; Mao et al., 2021) (Figure 1
(a)). Long decode occurs particularly in reasoning-
intensive tasks. Recent advancements emphasize
reasoning, where models are guided to think, intro-
spect, and iteratively refine their outputs (OpenAl;

https://huggingface.co/blog/1lama31

Wang et al., 2024; Lightman et al., 2024; Zhao et al.,
2024; Wei et al., 2022). This approach significantly
enhances accuracy but shifts the computational bur-
den to the decode stage. For instance, the OpenAl
ol model (OpenAl) requires approximately tens
or hundreds of seconds® of “thinking time” before
producing its final output. Given the prolonged de-
coding time and its already substantial proportion
of the overall inference process (Figure 1 (b)), it is
critically important to further optimize the decode
stage to reduce both time and memory complexi-
ties.

2.3 Existing Sparsity-Based Algorithms

To reduce time and memory complexities of long-
decode inference, one line of research uses sparsity-
based algorithms (Xiao et al., 2024; Zhang et al.,
2023; Tang et al., 2024; Chen et al., 2024) that re-
tain the KV vectors of only the most critical tokens
(fewer than 10% (Tang et al., 2024)). But these
algorithms struggle with the “impossible trinity” of
accuracy, time, and memory (Figure 2 (b)(c)(d)).
Figure 2 compares existing sparsity-based algo-
rithms. First, the Dense or the standard attention
algorithm (Vaswani et al., 2017) caches and reuses
KV vectors of all tokens, achieving the highest
accuracy but incurring O(N) time and memory
complexities. Second, H20 (Zhang et al., 2023),
the pioneering sparsity-based algorithm, caches
and reuses KV vectors of recent tokens and im-
portant non-recent tokens. When the cache is full,
it evicts non-recent tokens with the lowest accu-
mulated attention scores. Although H2O theoret-

3https://www.reddit.com/r/OpenAI/comments/
1frdwgk/your_longest_thinking_time_gpt4_o1_
olmini/
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Figure 2: Comparison of sparsity-based algorithms. NV indicates the sequence length while L indicates the cache
budget where L < N. Asterisks on H20’s time and memory complexities indicate theoretical complexities that are
not realized in practical implementations. RaaS addresses the “impossible trinity” by achieving O(L) complexity
for both time and memory, with accuracy comparable to Dense on reasoning tasks. Refer to Section 2 for detailed

explanations of each algorithm’s design.

ically achieves O(L) time and memory complex-
ities, where . < N denotes the cache budget,
it suffers from low accuracy. Moreover, its lack
of support for efficient attention kernels and page-
level KV management limits its practical utility.
Third, Streamingl.LM or Sink (Xiao et al., 2024)
statically decides to cache and reuse KV vectors
of only the initial and recent tokens, without dy-
namically selecting important ones based on atten-
tion scores as H20. Sink also offers O(L) time
and memory complexities, but performs poorly on
both reasoning and other tasks (Tang et al., 2024).
Fourth, Quest caches KV vectors of all tokens but
reuses only the ones with the top-k attention scores.
Quest achieves high accuracy and O(L) time com-
plexity but retains an O(/N') memory complexity
due to conservative caching.

3 Algorithm Design

To break the “impossible trinity” of sparsity-based
algorithms on reasoning tasks, we analyze their
decode stage and discover a new attention pattern
(Section 3.1), based on which we design a new
algorithm RaaS (Section 3.2) that achieves O(L)
time and memory complexities, with accuracy com-
parable to Quest.

3.1 Reasoning Attention Pattern

By analyzing the attention map of reasoning tasks’
decode stage, we discover two key characteristics
(Figure 3). First, we identify milestone tokens,
which initially exhibit high attention scores but
gradually receive lower scores and never receive
high scores again. Analogous to lemmas in math-
ematical proofs, milestone tokens emerge, are uti-
lized, and then fade away. These tokens, visible as
bright columns (on the attention map) that slowly

diminish (Figure 3 (a)), must be carefully managed
to prevent significant accuracy loss (Figure 5). Sec-
ond, we identify phoenix tokens, which receive
low attention scores for a period long enough to
be evicted from the cache but later regain impor-
tance. These tokens typically appear in short pre-
fill prompts, such as user queries (Figure 3 (b)).
Quest (Tang et al., 2024) retains the entire KV
cache to avoid losing phoenix tokens, resulting in
its O(NN) memory complexity.

We offer a possible explanation for the milestone
pattern in reasoning tasks. First, the emergence of
milestone tokens is analogous to lemmas in mathe-
matical proofs or subconclusions in thinking steps.
Once an LLM generates milestone tokens, sub-
sequent tokens primarily attend to the milestone
tokens rather than the preceding tokens arriving at
the milestone tokens. Second, the fading attention
score of a milestone token mirrors the progression
in mathematical reasoning. As reasoning advances
from lower-level lemmas to higher-level ones, sub-
sequent steps rely on the new lemmas rather than
revisiting the older ones.

To illustrate the preceding explanation, consider
one example* in Figure 4. First, tokens @@® serve
as initial lemmas, which are crucial for subsequent
deductions, corresponding to @@® columns in
Figure 3 (a). Second, tokens @® serve as a new
lemma, built upon ®@®), while at the same time,
tokens ®@® fade. Third, the final answer (token
®) attend to only the latest milestone tokens @®®.

On the other hand, the definition of phoenix to-
kens depends on the cache budget: a token qual-
ifies as a phoenix token if it is evicted from the

“Examples abound during the investigation of reasoning
tasks, not limited to this one, and not limited to those extra
examples in the appendix.
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Milestone token

(a) Milestone pattern (24.2%)

Pheonix token
0 in prompts
(b) Pheonix pattern (1.5%)

To convert the point \((0,3)\) from rectangular coordinates to
polar coordinates, we need to find the values of \(r\) and
\(\theta\). The formulas for converting from rectangular
coordinates \((x,y)\) to polar coordinates \((r,\theta)\) are:

\[r =\sqrt{x"2 + y*2}\] D
\[ \theta = \tan*{-1}\left(\frac{y}{x}\right) \] @

Given the point \((0,3)\), we have \(x = 0\) and \(y = 3\). Let's
calculate \(n\) first: @
\[ r =\sqrt{02 + 372} = \sqrt{9} = 3 \]

Next, we need to find \(\theta\). The formula \(\theta =
\tan™-1\left(\frac{y}{x}\right)\) is not directly useful here
because it involves division by zero, which is undefined.
Instead, we need to consider the position of the point \((0,3)\)
in the coordinate plane. The point \((0,3)\) lies on the positive
\(y\)-axis. Therefore, the angle \(\theta\) is \(\frac{\pi}{2}\).

So, the polar coordinates of the point \((0,3)\) are: @
\[ (r, \theta) = \left(3, \frac{\pi}{2}\right) \] ®

Thus, the final answer is: ®
\[ \boxed{\left(3, \frac{\pi}{2}\right)} \]

Figure 4: We input the prefill tokens, “...Convert the
point (0, 3) to polar coordinates...”, to Qwen2.5-Math-
7B-Instruct and obtain the corresponding decode tokens
in the figure. The red tokens represent the milestone
tokens or bright columns in Figure 3 (a).

cache and later reused. Under this definition, any
token—including milestone tokens—can become a
phoenix token. For instance, a milestone token that
temporarily receives low attention scores (e.g., for
four decoding steps) may be evicted under a cache
budget of 4, thus becoming a phoenix token.

Phoenix tokens exhibit distinct behaviors in pre-
fill and decode tokens. First, phoenix tokens rarely
appear in decode tokens when using a sufficiently
large cache budget. This behavior arises because
decode tokens primarily consist of milestone to-

(c) StreamingLLM pattern (74.3%)
Figure 3: A new attention pattern emerges in reasoning tasks. We manually inspect attention maps across 28 layers
and 28 heads of Qwen2.5-Math-7B-Instruct (Yang et al., 2024) on 100 MATHS500 (Hendrycks et al., 2021) test
cases. We find that (a) 24.2% maps with milestone tokens, (b) 1.5% maps with phoenix tokens (with a 64-token
cache budget), (c) more than 70% “lazy” (Zhang et al., 2022) maps with StreamingL.LM pattern. We use our best
effort to balance the clarity and completeness of long-decode attention maps.

kens and other low-importance tokens, and mile-
stone tokens are considered permanently irrelevant
if they remain unused for an extended period. A
sufficiently large cache budget prevents milestone
tokens from becoming phoenix tokens. For exam-
ple, with a cache budget of 512 tokens, phoenix
tokens are rarely observed in decode tokens (Fig-
ure 5). In contrast, with a smaller budget of 64
tokens, phoenix tokens still occur, leading to de-
graded accuracy for RaaS. Second, phoenix tokens
frequently occur in prefill tokens regardless of the
cache budget. This behavior arises because LLMs
typically refer back to the front user queries in the
final conclusions of reasoning. To prevent the loss
of critical query information, we retain KV vec-
tors of prefill tokens and apply RaaS (Section 3.2)
exclusively to decode tokens.

3.2 Design of Raa$S

Based on the preceding observations, we propose a
new RaaS algorithm that addresses the “impossible
trinity” and consists of two main ideas. First, we
identify milestone tokens and retain their KV vec-
tors using a Least-Recently-Used (LRU) caching
strategy. During each decoding step, tokens that
receive attention scores above the median are con-
sidered used and are assigned the latest timestamp.
Milestone tokens typically continue to receive the
latest timestamps until they become permanently
irrelevant. When the KV cache is full, RaasS evicts
KV vectors of the tokens with the oldest times-
tamp. Second, we retain the KV vectors of all pre-
fill tokens without eviction. Since prefill tokens are
typically short and phoenix tokens almost always
appear within them in reasoning tasks, retaining
these tokens’ KV vectors ensures that critical infor-
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Algorithm 1 RaaS Algorithm

1: Input: A sequence X of prefill tokens, a model
M, a KV manager kvm with r = 0.5

2: Output: A sequence Y of prefill tokens plus
decode tokens

33 Y=X

4: y = M.forward(Y, “prefill”)

5: while y # eos and len(Y) < M.context_len()

6: Y.append(y)

7

8

9

: y = M.forward(Y, “decode”)
: Return'Y

10: Function M.forward(X, stage)

12: K_old, V_old = kvm.load_cache(X)

13: Generate Q, K_new, V_new for X’s new tokens
14: K=K _o0ld::K_new, V=V_old::V_new

15: score = attention(Q, K, V)

16: kvm.store_cache(K, V, score, stage)

18: End Function

20: Function kvm.store_cache(K, V, score, stage)
21: if stage == “prefill”

22: Store K, V and mark them as non-evictable
23: else if stage == “decode”

24: Store K_new and V_new.

25: New timestamps to KVs with top-r score
26: if kvm.is_full()

27: Evict KVs with the oldest timestamps

28: End Function

mation is not lost in the decode stage.

Algorithm 1 presents the detailed procedure of
RaaS. (1) Given a sequence X of prefill tokens,
the model M first performs the prefill stage, and
then proceeds with the decode stage until a stop-
ping criterion is met—such as the generation of
an End-Of-Sequence (EOS) token or reaching the
model’s maximum sequence length. (2) During
each forward pass—whether in the prefill or de-
code stage—M loads the old KVs with a KV man-
ager kvm, computes new KVs, concatenates them
(denoted by ““::"), calculates attention scores, and
stores the new KVs. (3) The kvm’s store_cache
implements the core logic of RaasS, as described in
the preceding paragraph. It retains a proportion r
of tokens with the highest attention scores. Specifi-
cally, when r» = 0.5, tokens with attention scores
above the median are considered used and receive
the latest timestamp.

The choice of r controls the distribution of to-
kens’ timestamps. If r is large, too many tokens
will receive the latest timestamp, preventing effec-
tive differentiation of milestone tokens. Conversely,
if r is small, most tokens are deemed irrelevant, po-
tentially leading to the loss of milestone tokens.
To address this dilemma, we propose to assign the
latest timestamp to 50% (r = 0.5) tokens with
the highest attention scores in each decoding step,
yielding good results (Figure 8).

3.3 Page-Based RaaS

Directly applying the version of RaaS in Sec-
tion 3.2 faces two challenges. First, managing KV
cache at the token level is inefficient, as small frag-
mentation in the cache complicates memory man-
agement and hinders efficient GPU computation.
Second, RaasS requires the attention scores of all
tokens to update timestamps, but retrieving these
scores is incompatible with optimized attention ker-
nels such as FlashAttention (Dao et al., 2022; Dao,
2024). As with H20, bypassing fast kernels in fa-
vor of Raa$ could result in degraded performance.

To address these challenges, we propose a page-
based version of RaaS>. First, we introduce a page-
based caching system with a fixed page size of
page_size = 16 as in vLLM (Kwon et al., 2023).
The timestamp management, as well as cache re-
tention and eviction, is handled at the page level as
in most of modern inference engines (Kwon et al.,
2023; Zheng et al., 2024). Second, before using op-
timized attention kernels, we add a lightweight step
to retrieve a representative attention score for each
page to update its timestamp, similar to Quest. We
select a representative Key (K) for each page, and
the Query (Q) of the new decoding token attends
to these representative keys to compute a single
attention score per page. Based on these attention
scores, we update the timestamp for each page and
make eviction decisions at the page level. Vari-
ous strategies exist for selecting a representative
K, such as those used in Quest (Tang et al., 2024)
and ArkVale (Chen et al., 2024). For fairness, we
adopt the same representative selection strategy as
in Quest.

4 Evaluation

We begin by describing the experimental setup, in-
cluding implementation details, datasets, models,

SFrom now on, whenever we use Raas, we refer to page-
based Raas.
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Figure 5: Accuracy vs. cache budget for five algorithms (legends) across three datasets (rows) and four models
(columns). The y-axis shows the proportion of correctly solved problems among 200 test cases, while the x-axis
represents varying cache budgets: 64, 128, 256, 512, and 1024.

evaluation metrics, and software/hardware environ-
ment. We then present key evaluation results.

4.1 Experiment Setup

Implementation. We implement RaaS based on
Hugging Face (Hugging Face) and Quest (Tang
et al., 2024) with 2k lines of Python code. We port
Quest from their public repository®.

Datasets. We take the first 200 test cases
from each of the following three open-source
datasets for our benchmarks: GMS8K (Cobbe et al.,
2021), MATH500 (Hendrycks et al., 2021), and
AIME (AIME), to test the reasoning ability of lan-
guage models. First, GMS8k (Cobbe et al., 2021)
contains 8.5k high-quality, linguistically diverse
grade-school math problems. These human-written
problems need solutions that involve multi-step
reasoning and a series of basic arithmetic opera-
tions. Second, MATH500 (Hendrycks et al., 2021)
contains 500 challenging problems sourced from
high school math competitions with five distinct
levels based on the Art of Problem Solving (AoPS)
framework, ranging from level 1 to level 5. Third,

®https://github.com/mit-han-1lab/Quest. Accessed
on Oct 2024.

AIME (AIME) is a math problem dataset collected
from the American Invitational Mathematics Ex-
amination (AIME) competition from 1983 to 2024,
designed to challenge the most exceptional high
school math students in the United States. These
problems cover various fields, such as algebra, ge-
ometry, and number theory.

Models. We evaluate our algorithm using
four popular models: Marco-ol (Zhao et al.,
2024), Qwen2.5-Math-7B-Instruct (Wang et al.,
2024), Mistral-Math-7B (Wang et al., 2024), and
DeepScaleR-1.5B”. They are four of the most pow-
erful open-source LLMs with long-reasoning capa-
bilities.

Metrics. We use two metrics to evaluate perfor-
mance and model accuracy. First, Job Completion
Time (JCT) is the time from when users send a
request (prompt) to LLMs to when users receive
a complete response. A smaller JCT indicates a
faster algorithm. Second, Accuracy (Wang et al.,
2024) measures the mathematical equivalence be-
tween an LLM’s output and the ground-truth an-

"https://pretty-radio-b75.notion.site/DeepScaleR-
Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-
19681902¢1468005bed8ca303013ade2
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swer. For each test case, it is either correct or
incorrect, and the overall accuracy is reported as
the percentage of correctly solved problems across
the entire dataset.

Baselines. We compare RaaS$’ accuracy with
Dense, H20, Streamingl..M, and Quest. We im-
plement H20 and Streamingl.ILM using the Hug-
gingFace Cache class. We compare RaaS’s latency
and memory consumption with only Dense and
Quest because StreaminglLLM and H20 achieve
too low accuracy to be included. We use Quest’s
official repository with page_size = 16.

Environment. We run experiments on a single
NVIDIA A100 server with one A100-80GB GPU
available. It has 128-core Intel(R) Xeon(R) Plat-
inum 8358P CPU@2.60GHz with two hyperthread-
ing and 1TB DRAM. We use Ubuntu 20.04 with
Linux kernel 5.16.7 and CUDA 12.6. Unless stated
otherwise, we set r = 0.5 and page_size = 16.

4.2 Accuracy and Cache Budget Trade-off

We evaluate five algorithms across three datasets
and four models, yielding three key insights from
the experimental results (Figure 5). First, H20 and
Sink exhibit poor accuracy under fixed cache bud-
gets compared to others. Sink indiscriminately dis-
cards important tokens, including milestone tokens.
H2O0, on the other hand, overemphasizes accumu-
lated historical attention scores, leading it to retain
outdated milestone tokens for too long while dis-
carding newer, relevant ones. Second, Quest and
Raas achieve the best accuracy. Quest retains KV
vectors of all tokens while RaaS$ optimizes memory
usage by carefully handling milestone tokens with
O(L) memory complexity (Figure 6). Across these
datasets, a cache budget of 1024 tokens is gener-
ally sufficient to match Dense’s accuracy. Third,
when the cache budget is small, RaaS underper-
forms because Raas retains all prefill tokens, and
with a limited cache budget, most of the budget is
allocated to prefill tokens, causing almost all decod-
ing tokens to be discarded, negatively impacting
accuracy. For small cache budgets or long-prefill
scenarios, we recommend using Quest for prefill
tokens and RaaS for decode tokens.

4.3 Latency/Memory vs. Decoding Length

We evaluate the Dense, Quest, and RaasS in terms
of their time and memory complexities, yielding
two key observations from the experimental re-
sults (Figure 6). First, as the number of decode
tokens increases, Dense’s JCT grows quadratically,

400
--- RaaS-512 S| 109 Ve
Raas-1024 /| y
3001 ... Quest-1024 G 087 J
-—== D ’ ~ Vi
2 ense " g 0.6 //
5 200 L 5 Y
= et O 0.44 il
4 S e s
100 e a‘f1ﬂ.a-- § 02 Y
e o . ,/
o
|2~ e
0 T T T T O'OAV T T T
00 25 50 75 00 25 50 75

# decode tokens / k # decode tokens / k

Figure 6: Latency and memory consumptions of Dense,
Quest, and RaaS running on Mistral-Math-7B, using
workloads with a fixed prefill length (128 tokens), vary-
ing decode lengths (from O to 8k tokens) and a batch
size of 4. We use dashed lines to improve the visibility
of overlapping lines.

while both RaaS and Quest exhibit linear latency
growth. The reason is that Dense has O(N?) time
complexity, whereas RaaS and Quest have O(N L)
time complexity, reducing each decoding step from
O(N) to O(L). Second, as the number of de-
code tokens increases, the memory consumption
of Dense and Quest grows linearly, while RaaS
initially increases linearly but plateaus once the
number of decode tokens exceeds its cache budget.
The reason is that Dense and Quest have O(N)
memory complexity, whereas RaaS achieves O(L)
memory complexity. With a smaller memory foot-
print, inference engines using Raa$ are likely to
achieve significantly higher throughput.

4.4 Micro-Benchmarks

The impact of discarding milestone tokens. Fig-
ure 7 shows that discarding milestone tokens, as
in H20-128 and Sink-128, increases the decode
lengths. Sometimes, the decode length increases
without solving the problem. Analysis of the out-
puts reveals that while the model initially reasons
correctly for the first few tokens (e.g., green tokens
in Figure 7), it loses track (orange tokens) of the
reasoning process when milestone tokens are dis-
carded, leading to repeated attempts at re-reasoning
(red tokens), which ultimately results in the model
getting stuck indefinitely.

The impact of . The choice of r affects the
distribution of tokens’ timestamps, with r = 0.5
generally yielding optimal results, as shown in Fig-
ure 8. First, when r is small, too many tokens are
assigned the latest timestamp, preventing effective
differentiation of milestone tokens. Second, when
7 is big, most tokens are deemed irrelevant, poten-
tially leading to the loss of milestone tokens.
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Figure 7: Decode-length distribution of five algo-
rithms using Qwen2.5-Math-7B-Instruct with 4k con-
text length, on MATHS00. For example, H20-128 (128-
token cache) always generates to the 4k length limit
without solving the problem. On the right, we show a
decoding example of H20-128.
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5 Related Work

Many approaches have been proposed to reduce the
time and memory complexities of long-sequence
inference; these approaches can be categorized into
two types: one that modifies the model architecture
and the other that is more plug-and-play.

5.1 Model Architecture

Two types of approaches have emerged for alter-
ing model architecture. First, some approaches
modify the inner workings of the Transformer
while retaining its overall structure. For exam-
ple, Multi-Query Attention (MQA) (Shazeer, 2019)
and Group-Query Attention (GQA) (Ainslie et al.,
2023) reduce the number of KV heads, achiev-
ing similar accuracy to full-head configurations.
Second, some approaches change the Transformer
architecture significantly in favor of alternative
paradigms. For example, RWKV (Peng et al.,
2023), RetNet (Sun et al., 2023), and Mamba (Gu
and Dao, 2023) adopt RNN-based models, offering
lower computational costs but typically underper-
form compared to Transformer-based models.

5.2 KV Compression

Two primary types of KV compression have
emerged: KV quantization and KV pruning. First,
KV quantization approaches (Xiao et al., 2023;
Yao et al., 2022; Dettmers et al., 2022; Liu et al.,
2024) map higher precision KVs into lower ones,
trading accuracy for savings in time and memory.
Second, KV pruning approaches focus on lever-
aging attention sparsity (Zhang et al., 2023; Ge
et al., 2024; Jiang et al., 2024; Cai et al., 2024; Fu
et al., 2024; Xiao et al., 2025), which states that
only a few tokens are crucial during LLM infer-
ence. Thus, evicting less important tokens from
the KV cache is a key strategy for reducing time
and memory. For example, StreamingLLLM (Xiao
et al., 2024) and LM-Infinite (Han et al., 2024) evict
fixed-position tokens, retaining only the initial and
recent window tokens. H20 (Zhang et al., 2023),
SnapKV (Li et al., 2024), ScissorHands (Liu et al.,
2023), and TOVA (Oren et al., 2024) keep the re-
cent tokens and the top-k important tokens based
on the attention score calculated within a local win-
dow. More recent work, such as Quest (Tang et al.,
2024) and ArkVale (Chen et al., 2024), manages
the KV cache at the page level, selecting the top-
k important pages during each generation step to
reduce time complexity.

Our work presents a new trial of applying KV
pruning in reasoning tasks, which are character-
ized by a new milestone attention pattern. For the
first time, we achieve real O(L) time and memory
complexities with high accuracy.

6 Conclusion

In this paper, we have identified a new milestone
attention pattern observed in the decode stage of
reasoning tasks. Leveraging this pattern, we have
proposed a sparsity-based algorithm Raa$S that
achieves high accuracy while maintaining O(L)
time and O(L) memory complexities. Our exper-
iments, conducted across three datasets and four
reasoning-enabled models, demonstrate that RaaS
delivers comparable accuracy and latency to the
state-of-the-art Quest, but with constant memory
consumption. The key to Raa$’ success lies in the
handling of milestone tokens, which represent in-
termediate conclusions leading to the final output.

Limitations

Our work in this paper has the following major
limitations.
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Lack of comprehensive attention map statis-
tics. Attention patterns vary across layers, heads,
and model architectures. Manual inspection, with-
out rigorous statistical analysis, is insufficient for
drawing general conclusions about emerging atten-
tion patterns. Our study remains small-scale due
to the absence of an automated tool for analyzing
attention patterns across datasets, models, and lay-
ers. Such a tool would take an input defining an
attention pattern, a range of datasets and models,
and output the statistics of the specified attention
pattern across each model’s layers and heads. Al-
though we cannot address this limitation for now,
we plan to develop such a tool in the future, and this
tool would benefit the entire research community.

Limited applicability of RaaS. RaasS is specifi-
cally designed for reasoning tasks where the num-
ber of prefill tokens (e.g., a mathematical query)
is small but the number of decode tokens (e.g., a
chain of reasoning followed by a final answer) is
large. Given that RaaS$ retains KV vectors of all
prefill tokens, it allocates the entire cache budget
to them and discards nearly all decode tokens in
long-prefill scenarios. Therefore, in these scenar-
ios, we recommend using the combination of Quest
(on only prefill tokens) and RaaS (on only decode
tokens).

Evaluation on a limited set of datasets and
models. Our evaluation covers only four models
and three datasets. As such, the results may not
generalize beyond these specific configurations. Al-
though models with longer context lengths (e.g.,
Qwen2.5-Max, DeepSeek-r1) and datasets such as
GPQA Diamond and Codeforces exist, exhaustive
evaluation across all combinations is computation-
ally prohibitive (Hu et al., 2023). As reported in
prior work (Zhong et al., 2024), decoding a single
token can take approximately 30 ms; thus, process-
ing 16k tokens on an A100-80GB GPU requires
around 8 minutes. Running 200 test cases would
take over a day on a single GPU, making large-
scale evaluation infeasible with limited resources.
Nonetheless, we believe that the core idea of the
milestone pattern and its underlying rationale—the
thinking/reasoning process is step-by-step, con-
structing lemmas along the way— remains broadly
applicable.
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Prompt: If $f(x) = \\frac{3x-2}{x-2}$, what is the value of $f(-2)
+f(-1)+f(0)$? Express your answer as a common fraction.

Decode:

To find the value of \( f(-2) + f(-1) + f(0) \) for the function \( f(x) =
\frac{3x-2}{x-2} \), we need to evaluate \( f(x) \) at \( x =-2\), \(x = -1
\), and \( x = 0 \) separately and then sum the results. 1D

First, let's evaluate \( f(-2) \):
\[ f(-2) = \frac{3(-2) - 2}{-2 - 2} = \frac{-6 - 2}{-4} = \frac{-8}{-4} =2\] @

Next, let's evaluate \( f(-1) \):
\[ f(-1) = Wfrac{3(-1) - 2K-1 - 2} = \frac{-3 - 2}{-3} = \frac{-5-3} =
\frac{543}\| ®

Then, let's evaluate \( f(0) \):
\[ f(0) = \frac{3(0) - 2}{0 - 2} = \frac{-2}{-2} = 1\] @

Now, we sum the values of \( f(-2) \), \( f(-1) \), and \( f(0) \):
\[ f(-2) + f(-1) + f(0) = 2 + \frac{5}{3} + 1\] ®

To add these numbers, we need a common denominator. The
common denominator for 2, \(\frac{5}{3}\), and 1 is 3. We convert 2
and 1 to fractions with a denominator of 3:

\[ 2 = \frac{6}{3} \quad \text{and} \quad 1 = \frac{3}{3} \]

Now we can add the fractions: ®
\[ \frac{6}{3} + \frac{5}{3} + \frac{3K3} = \frac{6 + 5 + 3}3} =
\frac{14}{3}\] @

Therefore, the value of \( f(-2) + f(-1) + f(0) \) is \(\boxed{\frac{14}3}}\)

Figure 10: Milestone example.

Prompt: Define

\[p = \sum_{k = 1}\infty \frac{1}k"2} \quad \text{and} \quad q =
\sum_{k = 1}M\infty \frac{1}{k"3}.\]Find a way to write

\N\sum_{j = 1}Minfty \sum_{k = 1}Ninfty \frac{1}{(j + k)*3}\]in terms of
$p$ and $q.$

Decode

To find a way to write the double sum \(\sum_{j=1}Minfty
\sum_{k=1}\infty \frac{1}(j+k)*3}\) in terms of \(p\) and \(q\), we start
by considering the sum in a different form. We can rewrite the double
sum by changing the order of summation. Instead of summing over
\(j\) and \(k\) directly, we sum over \(n = j+k\) and then over the
possible values of \(j\) and \(k\) that satisfy \(j+k=n\). D

The sum \(\sum_{j=1}"infty \sum_{k=1}infty \frac{1}{(j+k)"3}\) can be
rewritten as:

\[\sum_{n=2}\infty \sum_{j=1}"n-1} \frac{1}{n"3}. \] @

Here, the inner sum \(\sum_{j=1}*{n-1} \frac{1}{n"3}\) is simply
\(\frac{n-1}{n"3}\) because there are \(n-1\) terms in the sum, each
equal to \(\frac{1}n"3}\). Therefore, the double sum becomes:
\[\sum_{n=2}Minfty \frac{n-1}{n"3} = \sum_{n=2}"infty \left(
\frac{1}{n"2} - \frac{1}{n*3} \right). \] @

We can split this into two separate sums:

\[ \sum_{n=2}Minfty \frac{1}{n"2} - \sum_{n=2}Minfty \frac{1}{n"3}. \]
The first sum \(\sum_{n=2}Ninfty \frac{1}{n"2}\) is the same as \(p - 1\)
because \(p = \sum_{n=1}Minfty \frac{1}{n*2}\). The second sum
\(\sum_{n=2}"\infty \frac{1}{n"3}\) is the same as \(q - 1\) because \(q =
\sum_{n=1}infty \frac{1}{n"*3}\). Therefore, the expression becomes:
\[(p-1)-@-1)=p-q.\1®

Thus, the double sum \(\sum_{j=1}"infty \sum_{k=1}Minfty
\frac{1}{(j+k)"3}\) in terms of \(p\) and \(q\) is: &

\[ \boxed{p - q}. \]

Figure 9: Milestone example.

A More Examples for Milestone Tokens

This section presents more examples of milestone
tokens in Figure 9 and Figure 10. For all examples,
we input the prefill tokens to Qwen2.5-Math-7B-
Instruct and obtain the corresponding decode to-
kens, as shown in the figure. The tokens marked red
represent the milestone tokens. Although we only
show a few examples here, the milestone patterns
abound in reasoning tasks.

B Checklist-Related Issues

Three datasets GSM8k (MIT), MATH500 (MIT),
AIME (MIT), and four models Mistral Math 7B
(No licence), Qwen 2.5 Math 7B Instruct (apache-
2.0), Marco ol (apache-2.0), DeepScaleR 1.5B Pre-
view (MIT) are used with their intended usage sce-
narios. We retrieve all models and datasets from
Hugging Face, where detailed documentation, in-
cluding parameter sizes and model architectures,
is provided. We manually checked the data and
believe there is no personal information misused.

We used ChatGPT to check the grammar of the
texts.

To the best of our knowledge, we believe our
work does not pose risks that harm any subgroup
of our society.
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