RaaS: Reasoning-Aware Attention Sparsity for Efficient LLM Reasoning

Junhao Hu'?*, Wenrui Huang®, Weidong Wang®, Zhenwen Li!, Tiancheng Hu',
Zhixia Liu*, Xusheng Chen®, Tao Xie?!'", Yizhou Shan*
SCS, Peking University, Beijing, China
2Key Lab of HCST (PKU), MOE, Beijing, China
3School of Computer Science, Nanjing University, Nanjing, China
“Huawei Cloud, Shanghai, China

Abstract

Large Language Models (LLMs) have demon-
strated strong capabilities across various do-
mains, with recent advancements in challeng-
ing reasoning tasks such as mathematics and
programming. However, solving reasoning
tasks often requires an LLM to generate long
sequences, incurring O (V) time and memory
complexities per token, where N is the cur-
rent sequence length. To reduce complexities,
existing sparsity-based algorithms propose to
retain Key-Value (KV) vectors, the intermedi-
ate representations of only the most critical to-
kens. However, these algorithms struggle with
the “impossible trinity” of accuracy, time, and
memory. For example, the state-of-the-art al-
gorithm, Quest, achieves high accuracy with
O(L) time but O(N) memory (L is the cache
budget, L < N). To address the “impossible
trinity”, in this paper, we identify a new atten-
tion pattern during the decode stage of reason-
ing tasks, where milestone tokens (analogous
to lemmas in mathematical proofs) emerge, are
utilized, and then become unimportant after-
ward. Based on this pattern, we propose a new
algorithm RaasS that identifies milestone tokens
and retains their KV vectors until they are no
longer needed, achieving high accuracy with
O(L) time and O(L) memory complexities.

1 Introduction

Large Language Models (LLMs) have gained
widespread adoption due to their exceptional per-
formance and versatility across various applica-
tions. However, their large-scale deployment faces
a major obstacle: the high computational cost
of long-sequence inference, which is increasingly
common in modern user requests (i.e., prompts).
This cost arises from the O(N) time and O(N)
memory complexities required to generate each to-
ken, where N denotes the current sequence length

*This work was completed during his internship at Huawei.
TCorresponding author.

(i.e., input plus output tokens). Consequently, com-
pleting an entire request incurs a total time com-
plexity of O(N?). For instance, the Llama 3.1 8B
model supports sequences up to 128,000 tokens,
leading to Job Completion Times (JCT) of several
thousand seconds and memory usage up to 16GB
per request!.

To study long-sequence inference, prior work
divides LLMs’ generation process into two stages:
prefill and decode. First, in the prefill stage, the
model processes the prompt tokens given by users.
It computes the Key (K) and Value (V) vectors
for all prompt tokens, stores these vectors in the
KV cache, and generates the first output token to
initiate the decode stage. We collectively refer to
prompt or input tokens as prefill tokens. Second, in
the decode stage, the model iteratively processes
each newly generated token. It computes the KV
vectors for the new token, appends these vectors to
the KV cache, and generates the next token. This
process repeats until a specified stopping criterion
is met. We refer to output tokens as decode tokens.

This paper focuses on optimizing the decode
stage for two main reasons. First, long-decode
tasks (producing long model outputs) have recently
gained prominence, particularly in reasoning ap-
plications, as demonstrated by models such as
OpenAl’s 01/03 (OpenAl) and DeepSeek R1 (Dai
et al., 2024). Despite their growing importance, the
optimization of long-decode tasks remains under-
explored compared to long-prefill tasks (containing
long prompts) (Hu et al., 2024; Zheng et al., 2024;
Kwon et al., 2023; Jin et al., 2024; Bai et al., 2024),
such as Retrieval-Augmented Generation (RAG),
few-shot learning, and tool use. Second, the decode
stage represents a significant performance bottle-
neck in long-decode tasks. In reasoning applica-
tions, for instance, the time spent in the decode
stage accounts for 99% of the JCT (Figure 1).

"https://huggingface.co/blog/1lama31

2577

Findings of the Association for Computational Linguistics: ACL 2025, pages 2577-2590
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://huggingface.co/blog/llama31

Existing sparsity-based algorithms (Tang et al.,
2024; Zhang et al., 2023; Xiao et al., 2024) opti-
mize long-decode inference by retaining the KV
vectors of only the most critical tokens, but strug-
gle with the “impossible trinity” of accuracy, time,
and memory (Figures 2 (b)(c)(d)). First, H20,
the pioneering work on attention sparsity, theoret-
ically achieves O(L) time and memory complex-
ities, where L indicates cache size and L <« N.
However, its inability to utilize efficient attention
kernels and the lack of page-level KV manage-
ment make it impractical. Moreover, H20 suffers
from low accuracy. Second, StreamingLLM or
Sink (Xiao et al., 2024) similarly offers O(L) time
and memory complexities, but adopts an aggres-
sive sparsification strategy that leads to extremely
low accuracy on reasoning and other tasks (Tang
et al., 2024)). Third, Quest (Tang et al., 2024), the
state-of-the-art, achieves high accuracy with O(L)
time complexity but O(/N) memory complexity.

To maintain accuracy and O(L) time and mem-
ory complexities at the same time for reasoning
tasks, we analyze their attention pattern during the
decode stage, uncovering two key characteristics.
First, we identify milestone tokens, which initially
exhibit high attention scores but gradually receive
lower scores and never receive high scores again.
Analogous to lemmas in mathematical proofs, mile-
stone tokens emerge, are utilized, and then fade
away. These tokens, visible as bright columns (on
the attention map) that slowly diminish, must be
carefully managed to prevent significant accuracy
loss (Figure 5). Second, we identify phoenix to-
kens, which receive low attention scores for a pe-
riod long enough to be evicted from the cache but
later regain importance. These tokens typically
appear in the prefill tokens, such as user queries.
Quest (Tang et al., 2024) retains the entire KV
cache to avoid losing phoenix tokens, resulting in
its O(IN) memory complexity.

Based on the preceding observations, we pro-
pose a new RaaS algorithm that addresses the “im-
possible trinity” and consists of two main ideas.
First, we identify milestone tokens and retain their
KV vectors using a Least-Recently-Used (LRU)
caching strategy. During each decoding step, to-
kens that receive attention scores above the median
are considered used and are assigned the latest
timestamp. Milestone tokens typically continue
to receive the latest timestamps until they become
permanently irrelevant. When the KV cache is
full, RaaS evicts KV vectors of the tokens with

the oldest timestamp. Second, we retain the KV
vectors of all prefill tokens without eviction. Since
the phoenix tokens almost always appear within
them in reasoning tasks, retaining these tokens’
KV vectors ensures that critical information is not
lost during the decode stage.

We implement RaaS with 2k lines of Python
code. To evaluate its performance, we com-
pare it against H20 (Zhang et al.,, 2023),
Streamingl.LM (Xiao et al.,, 2024), and
Quest (Tang et al., 2024) using three mathe-
matical datasets on four reasoning-enabled models.
Our experimental results demonstrate that RaaS
achieves comparable accuracy and latency to Quest,
while offering a significant advantage in memory
efficiency (O(L) memory complexity). The code
is available at: https://github.com/DerekHJH/raas.

In this paper, we make the following three main
contributions:

* We identify a novel attention pattern in reason-
ing tasks, where milestone tokens (analogous
to mathematical lemmas) emerge, are utilized,
and then become unimportant.

* Based on the milestone pattern, we propose
a new algorithm RaasS that achieves high ac-
curacy with O(L) time and O(L) memory
complexities.

* We implement and evaluate RaaS, demonstrat-
ing constant memory usage while maintaining
similar accuracy and time performance com-
pared to the state-of-the-art Quest.

2 Background and Motivation

In this section, we overview the Large Language
Model (LLM) inference, highlighting the key con-
cepts and challenges that motivate our work.

2.1 Autoregressive Generation and KV Cache

The generation process of LLMs consists of two
distinct stages: the prefill stage and the decode
stage (Hu et al., 2025b; Kwon et al., 2023). In the
prefill stage, the model processes a sequence of
prompt tokens all at once. It computes the Key (K)
and Value (V) vectors for all prompt tokens, stores
these vectors in the KV cache, and generates the
first output token to initiate the decode stage. In the
decode stage, the model iteratively processes each
newly generated token. It computes the KV vectors
for the new token, appends these vectors to the KV

2578

https://github.com/DerekHJH/epic

1.0 == — 1.0

P N T P 2WikiMQA
04|/ ,"" ,’: ; D 2WikiMQA 0.8
: J)] 7775 P MultiNews
S i
L 061 i ," V¥ ? D MultiNews 0.6 -
% j ! A :: .3 PSAMSum -
Coadl if ¥ D SAMSum 0.4 =
! e

P PassageCount

O
' iy coe Count
1
0.2 ! Vi b Log detoun 0.2 =5
A | |
!'" 3 bLcc —
0.0 0.0 4

P AIME

D AIME

P MATH500
D MATH500
P GSM8K

D GSM8K

time/s

mm Prefill time

1000 Decode time

800

600

400

200

0 10000 20000 30000 0 10000
tokens
(a) Long-prefill workloads

tokens
(b) Long-decode workloads

30000 0 0 20 40 60

decode tokens / k
(c) Prefill and decode time breakdown

20000

Figure 1: The Cumulative Distribution Function (CDF) of sequence lengths for the Prefill (P) and Decode (D) stages
for (a) five datasets from LongBench (Bai et al., 2024) and (b) three math datasets running on the reasoning-enabled
Marco-O1 model. (c) The breakdown of prefill and decode time during the inference of fixed 32k tokens using
vLLM 0.6.1 with the LLaMA 3.1 8B model in FP16 precision. As the number of decode tokens increases (with the
number of prefill tokens being 32k minus the decode tokens), the decode time rises significantly faster than the

prefill time.

cache, and generates the next token. This process
repeats until a specified stopping criterion is met.
The KV cache (Pope et al., 2023; Hu et al., 2025a)
accelerates the decode stage by allowing LLMs to
process only the new token instead of reprocess-
ing the entire sequence. With the KV cache, the
attention mechanism incurs a time complexity of
O(N) per decoding step and a memory complexity
of O(N) for storing the KV cache, where NN is the
sequence length.

2.2 Cost Transfer: From Long-Prefill to
Long-Decode Inference

Long-sequence inference incurs significant costs
due to both memory and time requirements. First,
it demands substantial memory resources, reaching
up to 16 GB KV cache (in addition to the 16 GB
model parameters) for processing 128k tokens run-
ning the LLaMA 3.1 8B model in FP16 precision.
Second, it requires considerable processing time,
with inference for 32k tokens taking around 20 -
1000 seconds on vLLM 0.6.1 using the same model
(Figure 1 (¢)).

Long-sequence inference can be categorized
into two types: long prefill and long decode.
Long prefill arises from extensive input prompts,
as observed in prior studies such as Retrieval-
Augmented Generation (RAG) (Li et al., 2022;
Jin et al., 2024; Gao et al., 2023; Jeong et al.,
2024; Ram et al., 2023; Mao et al., 2021) (Figure 1
(a)). Long decode occurs particularly in reasoning-
intensive tasks. Recent advancements emphasize
reasoning, where models are guided to think, intro-
spect, and iteratively refine their outputs (OpenAl;

https://huggingface.co/blog/1lama31

Wang et al., 2024; Lightman et al., 2024; Zhao et al.,
2024; Wei et al., 2022). This approach significantly
enhances accuracy but shifts the computational bur-
den to the decode stage. For instance, the OpenAl
ol model (OpenAl) requires approximately tens
or hundreds of seconds® of “thinking time” before
producing its final output. Given the prolonged de-
coding time and its already substantial proportion
of the overall inference process (Figure 1 (b)), it is
critically important to further optimize the decode
stage to reduce both time and memory complexi-
ties.

2.3 Existing Sparsity-Based Algorithms

To reduce time and memory complexities of long-
decode inference, one line of research uses sparsity-
based algorithms (Xiao et al., 2024; Zhang et al.,
2023; Tang et al., 2024; Chen et al., 2024) that re-
tain the KV vectors of only the most critical tokens
(fewer than 10% (Tang et al., 2024)). But these
algorithms struggle with the “impossible trinity” of
accuracy, time, and memory (Figure 2 (b)(c)(d)).
Figure 2 compares existing sparsity-based algo-
rithms. First, the Dense or the standard attention
algorithm (Vaswani et al., 2017) caches and reuses
KV vectors of all tokens, achieving the highest
accuracy but incurring O(N) time and memory
complexities. Second, H20 (Zhang et al., 2023),
the pioneering sparsity-based algorithm, caches
and reuses KV vectors of recent tokens and im-
portant non-recent tokens. When the cache is full,
it evicts non-recent tokens with the lowest accu-
mulated attention scores. Although H2O theoret-

3https://www.reddit.com/r/OpenAI/comments/
1frdwgk/your_longest_thinking_time_gpt4_o1_
olmini/

2579

https://huggingface.co/blog/llama31
https://www.reddit.com/r/OpenAI/comments/1frdwqk/your_longest_thinking_time_gpt4_o1_o1mini/
https://www.reddit.com/r/OpenAI/comments/1frdwqk/your_longest_thinking_time_gpt4_o1_o1mini/
https://www.reddit.com/r/OpenAI/comments/1frdwqk/your_longest_thinking_time_gpt4_o1_o1mini/

(a) Dense (b) H20 (c¢) StreamingLLM (Sink) (d) Quest
All Tokens (¢) Raa$
—r Time: O(N) Time: O*(L), O(L) Time: O(L) Time: O(L)
Mem: O(N) Mem: O*(L), O(L) Mem: O(L) Mem: O(N)
Evicted Tokens Cached Tokens Acc: high Acc: low, high Acc: low Acc: high
—
Reused Tokens
H
Current Token

Cache/reuse all tokens

Cache/reuse important
and recent tokens

Cache all tokens and
reuse important tokens

Cache/reuse initial
and recent tokens

Figure 2: Comparison of sparsity-based algorithms. NV indicates the sequence length while L indicates the cache
budget where L < N. Asterisks on H20’s time and memory complexities indicate theoretical complexities that are
not realized in practical implementations. RaaS addresses the “impossible trinity” by achieving O(L) complexity
for both time and memory, with accuracy comparable to Dense on reasoning tasks. Refer to Section 2 for detailed

explanations of each algorithm’s design.

ically achieves O(L) time and memory complex-
ities, where . < N denotes the cache budget,
it suffers from low accuracy. Moreover, its lack
of support for efficient attention kernels and page-
level KV management limits its practical utility.
Third, Streamingl.LM or Sink (Xiao et al., 2024)
statically decides to cache and reuse KV vectors
of only the initial and recent tokens, without dy-
namically selecting important ones based on atten-
tion scores as H20. Sink also offers O(L) time
and memory complexities, but performs poorly on
both reasoning and other tasks (Tang et al., 2024).
Fourth, Quest caches KV vectors of all tokens but
reuses only the ones with the top-k attention scores.
Quest achieves high accuracy and O(L) time com-
plexity but retains an O(/N') memory complexity
due to conservative caching.

3 Algorithm Design

To break the “impossible trinity” of sparsity-based
algorithms on reasoning tasks, we analyze their
decode stage and discover a new attention pattern
(Section 3.1), based on which we design a new
algorithm RaaS (Section 3.2) that achieves O(L)
time and memory complexities, with accuracy com-
parable to Quest.

3.1 Reasoning Attention Pattern

By analyzing the attention map of reasoning tasks’
decode stage, we discover two key characteristics
(Figure 3). First, we identify milestone tokens,
which initially exhibit high attention scores but
gradually receive lower scores and never receive
high scores again. Analogous to lemmas in math-
ematical proofs, milestone tokens emerge, are uti-
lized, and then fade away. These tokens, visible as
bright columns (on the attention map) that slowly

diminish (Figure 3 (a)), must be carefully managed
to prevent significant accuracy loss (Figure 5). Sec-
ond, we identify phoenix tokens, which receive
low attention scores for a period long enough to
be evicted from the cache but later regain impor-
tance. These tokens typically appear in short pre-
fill prompts, such as user queries (Figure 3 (b)).
Quest (Tang et al., 2024) retains the entire KV
cache to avoid losing phoenix tokens, resulting in
its O(NN) memory complexity.

We offer a possible explanation for the milestone
pattern in reasoning tasks. First, the emergence of
milestone tokens is analogous to lemmas in mathe-
matical proofs or subconclusions in thinking steps.
Once an LLM generates milestone tokens, sub-
sequent tokens primarily attend to the milestone
tokens rather than the preceding tokens arriving at
the milestone tokens. Second, the fading attention
score of a milestone token mirrors the progression
in mathematical reasoning. As reasoning advances
from lower-level lemmas to higher-level ones, sub-
sequent steps rely on the new lemmas rather than
revisiting the older ones.

To illustrate the preceding explanation, consider
one example* in Figure 4. First, tokens @@® serve
as initial lemmas, which are crucial for subsequent
deductions, corresponding to @@® columns in
Figure 3 (a). Second, tokens @® serve as a new
lemma, built upon ®@®), while at the same time,
tokens ®@® fade. Third, the final answer (token
®) attend to only the latest milestone tokens @®®.

On the other hand, the definition of phoenix to-
kens depends on the cache budget: a token qual-
ifies as a phoenix token if it is evicted from the

“Examples abound during the investigation of reasoning
tasks, not limited to this one, and not limited to those extra
examples in the appendix.

2580

Milestone token

(a) Milestone pattern (24.2%)

Pheonix token
0 in prompts
(b) Pheonix pattern (1.5%)

To convert the point \((0,3)\) from rectangular coordinates to
polar coordinates, we need to find the values of \(r\) and
\(\theta\). The formulas for converting from rectangular
coordinates \((x,y)\) to polar coordinates \((r,\theta)\) are:

\[r =\sqrt{x"2 + y*2}\] D
\[\theta = \tan*{-1}\left(\frac{y}{x}\right) \] @

Given the point \((0,3)\), we have \(x = 0\) and \(y = 3\). Let's
calculate \(n\) first: @
\[r =\sqrt{02 + 372} = \sqrt{9} = 3 \]

Next, we need to find \(\theta\). The formula \(\theta =
\tan™-1\left(\frac{y}{x}\right)\) is not directly useful here
because it involves division by zero, which is undefined.
Instead, we need to consider the position of the point \((0,3)\)
in the coordinate plane. The point \((0,3)\) lies on the positive
\(y\)-axis. Therefore, the angle \(\theta\) is \(\frac{\pi}{2}\).

So, the polar coordinates of the point \((0,3)\) are: @
\[(r, \theta) = \left(3, \frac{\pi}{2}\right) \] ®

Thus, the final answer is: ®
\[\boxed{\left(3, \frac{\pi}{2}\right)} \]

Figure 4: We input the prefill tokens, “...Convert the
point (0, 3) to polar coordinates...”, to Qwen2.5-Math-
7B-Instruct and obtain the corresponding decode tokens
in the figure. The red tokens represent the milestone
tokens or bright columns in Figure 3 (a).

cache and later reused. Under this definition, any
token—including milestone tokens—can become a
phoenix token. For instance, a milestone token that
temporarily receives low attention scores (e.g., for
four decoding steps) may be evicted under a cache
budget of 4, thus becoming a phoenix token.

Phoenix tokens exhibit distinct behaviors in pre-
fill and decode tokens. First, phoenix tokens rarely
appear in decode tokens when using a sufficiently
large cache budget. This behavior arises because
decode tokens primarily consist of milestone to-

(c) StreamingLLM pattern (74.3%)
Figure 3: A new attention pattern emerges in reasoning tasks. We manually inspect attention maps across 28 layers
and 28 heads of Qwen2.5-Math-7B-Instruct (Yang et al., 2024) on 100 MATHS500 (Hendrycks et al., 2021) test
cases. We find that (a) 24.2% maps with milestone tokens, (b) 1.5% maps with phoenix tokens (with a 64-token
cache budget), (c) more than 70% “lazy” (Zhang et al., 2022) maps with StreamingL.LM pattern. We use our best
effort to balance the clarity and completeness of long-decode attention maps.

kens and other low-importance tokens, and mile-
stone tokens are considered permanently irrelevant
if they remain unused for an extended period. A
sufficiently large cache budget prevents milestone
tokens from becoming phoenix tokens. For exam-
ple, with a cache budget of 512 tokens, phoenix
tokens are rarely observed in decode tokens (Fig-
ure 5). In contrast, with a smaller budget of 64
tokens, phoenix tokens still occur, leading to de-
graded accuracy for RaaS. Second, phoenix tokens
frequently occur in prefill tokens regardless of the
cache budget. This behavior arises because LLMs
typically refer back to the front user queries in the
final conclusions of reasoning. To prevent the loss
of critical query information, we retain KV vec-
tors of prefill tokens and apply RaaS (Section 3.2)
exclusively to decode tokens.

3.2 Design of Raa$S

Based on the preceding observations, we propose a
new RaaS algorithm that addresses the “impossible
trinity” and consists of two main ideas. First, we
identify milestone tokens and retain their KV vec-
tors using a Least-Recently-Used (LRU) caching
strategy. During each decoding step, tokens that
receive attention scores above the median are con-
sidered used and are assigned the latest timestamp.
Milestone tokens typically continue to receive the
latest timestamps until they become permanently
irrelevant. When the KV cache is full, RaasS evicts
KV vectors of the tokens with the oldest times-
tamp. Second, we retain the KV vectors of all pre-
fill tokens without eviction. Since prefill tokens are
typically short and phoenix tokens almost always
appear within them in reasoning tasks, retaining
these tokens’ KV vectors ensures that critical infor-

2581

Algorithm 1 RaaS Algorithm

1: Input: A sequence X of prefill tokens, a model
M, a KV manager kvm with r = 0.5

2: Output: A sequence Y of prefill tokens plus
decode tokens

33 Y=X

4: y = M.forward(Y, “prefill”)

5: while y # eos and len(Y) < M.context_len()

6: Y.append(y)

7

8

9

: y = M.forward(Y, “decode”)
: Return'Y

10: Function M.forward(X, stage)

12: K_old, V_old = kvm.load_cache(X)

13: Generate Q, K_new, V_new for X’s new tokens
14: K=K _o0ld::K_new, V=V_old::V_new

15: score = attention(Q, K, V)

16: kvm.store_cache(K, V, score, stage)

18: End Function

20: Function kvm.store_cache(K, V, score, stage)
21: if stage == “prefill”

22: Store K, V and mark them as non-evictable
23: else if stage == “decode”

24: Store K_new and V_new.

25: New timestamps to KVs with top-r score
26: if kvm.is_full()

27: Evict KVs with the oldest timestamps

28: End Function

mation is not lost in the decode stage.

Algorithm 1 presents the detailed procedure of
RaaS. (1) Given a sequence X of prefill tokens,
the model M first performs the prefill stage, and
then proceeds with the decode stage until a stop-
ping criterion is met—such as the generation of
an End-Of-Sequence (EOS) token or reaching the
model’s maximum sequence length. (2) During
each forward pass—whether in the prefill or de-
code stage—M loads the old KVs with a KV man-
ager kvm, computes new KVs, concatenates them
(denoted by ““::"), calculates attention scores, and
stores the new KVs. (3) The kvm’s store_cache
implements the core logic of RaasS, as described in
the preceding paragraph. It retains a proportion r
of tokens with the highest attention scores. Specifi-
cally, when r» = 0.5, tokens with attention scores
above the median are considered used and receive
the latest timestamp.

The choice of r controls the distribution of to-
kens’ timestamps. If r is large, too many tokens
will receive the latest timestamp, preventing effec-
tive differentiation of milestone tokens. Conversely,
if r is small, most tokens are deemed irrelevant, po-
tentially leading to the loss of milestone tokens.
To address this dilemma, we propose to assign the
latest timestamp to 50% (r = 0.5) tokens with
the highest attention scores in each decoding step,
yielding good results (Figure 8).

3.3 Page-Based RaaS

Directly applying the version of RaaS in Sec-
tion 3.2 faces two challenges. First, managing KV
cache at the token level is inefficient, as small frag-
mentation in the cache complicates memory man-
agement and hinders efficient GPU computation.
Second, RaasS requires the attention scores of all
tokens to update timestamps, but retrieving these
scores is incompatible with optimized attention ker-
nels such as FlashAttention (Dao et al., 2022; Dao,
2024). As with H20, bypassing fast kernels in fa-
vor of Raa$ could result in degraded performance.

To address these challenges, we propose a page-
based version of RaaS>. First, we introduce a page-
based caching system with a fixed page size of
page_size = 16 as in vLLM (Kwon et al., 2023).
The timestamp management, as well as cache re-
tention and eviction, is handled at the page level as
in most of modern inference engines (Kwon et al.,
2023; Zheng et al., 2024). Second, before using op-
timized attention kernels, we add a lightweight step
to retrieve a representative attention score for each
page to update its timestamp, similar to Quest. We
select a representative Key (K) for each page, and
the Query (Q) of the new decoding token attends
to these representative keys to compute a single
attention score per page. Based on these attention
scores, we update the timestamp for each page and
make eviction decisions at the page level. Vari-
ous strategies exist for selecting a representative
K, such as those used in Quest (Tang et al., 2024)
and ArkVale (Chen et al., 2024). For fairness, we
adopt the same representative selection strategy as
in Quest.

4 Evaluation

We begin by describing the experimental setup, in-
cluding implementation details, datasets, models,

SFrom now on, whenever we use Raas, we refer to page-
based Raas.

2582

—— Sink H20 —&— Quest —*— RaaS ——=- Dense
Mistral 7B SFT Qwen 2.5 Math 7B Instruct Marco ol DeepScaleR 1.5B Preview
1.0 1.0 1.0 1.0
0.8 0.8 0.8
>
® 8 0.6 0.6 0.6
= 5
38
O< 0.4 0.4 0.4
0.2 0.2 0.2
O'00 500 1000 0'OO 500 1000 0.0
1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
39
in © 0.6 0.6 0.6 0.6
T 5
g3
S804L___ 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0'00 500 1000 0'00 500 1000 0'00 500 1000 0'00 500 1000
1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
0
W 0.6 0.6 0.6 0.6 e
=5
<S04 0.4 0.4 0.4
g0 . . .
0.2 0.2 0277777 T == 0.2
0'06 500 1000 0'00 500 1000 0'00 500 1000 0'00 500 1000

Cache budget / # tokens Cache budget / # tokens

Cache budget / # tokens Cache budget / # tokens

Figure 5: Accuracy vs. cache budget for five algorithms (legends) across three datasets (rows) and four models
(columns). The y-axis shows the proportion of correctly solved problems among 200 test cases, while the x-axis
represents varying cache budgets: 64, 128, 256, 512, and 1024.

evaluation metrics, and software/hardware environ-
ment. We then present key evaluation results.

4.1 Experiment Setup

Implementation. We implement RaaS based on
Hugging Face (Hugging Face) and Quest (Tang
et al., 2024) with 2k lines of Python code. We port
Quest from their public repository®.

Datasets. We take the first 200 test cases
from each of the following three open-source
datasets for our benchmarks: GMS8K (Cobbe et al.,
2021), MATH500 (Hendrycks et al., 2021), and
AIME (AIME), to test the reasoning ability of lan-
guage models. First, GMS8k (Cobbe et al., 2021)
contains 8.5k high-quality, linguistically diverse
grade-school math problems. These human-written
problems need solutions that involve multi-step
reasoning and a series of basic arithmetic opera-
tions. Second, MATH500 (Hendrycks et al., 2021)
contains 500 challenging problems sourced from
high school math competitions with five distinct
levels based on the Art of Problem Solving (AoPS)
framework, ranging from level 1 to level 5. Third,

®https://github.com/mit-han-1lab/Quest. Accessed
on Oct 2024.

AIME (AIME) is a math problem dataset collected
from the American Invitational Mathematics Ex-
amination (AIME) competition from 1983 to 2024,
designed to challenge the most exceptional high
school math students in the United States. These
problems cover various fields, such as algebra, ge-
ometry, and number theory.

Models. We evaluate our algorithm using
four popular models: Marco-ol (Zhao et al.,
2024), Qwen2.5-Math-7B-Instruct (Wang et al.,
2024), Mistral-Math-7B (Wang et al., 2024), and
DeepScaleR-1.5B”. They are four of the most pow-
erful open-source LLMs with long-reasoning capa-
bilities.

Metrics. We use two metrics to evaluate perfor-
mance and model accuracy. First, Job Completion
Time (JCT) is the time from when users send a
request (prompt) to LLMs to when users receive
a complete response. A smaller JCT indicates a
faster algorithm. Second, Accuracy (Wang et al.,
2024) measures the mathematical equivalence be-
tween an LLM’s output and the ground-truth an-

"https://pretty-radio-b75.notion.site/DeepScaleR-
Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-
19681902¢1468005bed8ca303013ade2

2583

https://github.com/mit-han-lab/Quest

swer. For each test case, it is either correct or
incorrect, and the overall accuracy is reported as
the percentage of correctly solved problems across
the entire dataset.

Baselines. We compare RaaS$’ accuracy with
Dense, H20, Streamingl..M, and Quest. We im-
plement H20 and Streamingl.ILM using the Hug-
gingFace Cache class. We compare RaaS’s latency
and memory consumption with only Dense and
Quest because StreaminglLLM and H20 achieve
too low accuracy to be included. We use Quest’s
official repository with page_size = 16.

Environment. We run experiments on a single
NVIDIA A100 server with one A100-80GB GPU
available. It has 128-core Intel(R) Xeon(R) Plat-
inum 8358P CPU@2.60GHz with two hyperthread-
ing and 1TB DRAM. We use Ubuntu 20.04 with
Linux kernel 5.16.7 and CUDA 12.6. Unless stated
otherwise, we set r = 0.5 and page_size = 16.

4.2 Accuracy and Cache Budget Trade-off

We evaluate five algorithms across three datasets
and four models, yielding three key insights from
the experimental results (Figure 5). First, H20 and
Sink exhibit poor accuracy under fixed cache bud-
gets compared to others. Sink indiscriminately dis-
cards important tokens, including milestone tokens.
H2O0, on the other hand, overemphasizes accumu-
lated historical attention scores, leading it to retain
outdated milestone tokens for too long while dis-
carding newer, relevant ones. Second, Quest and
Raas achieve the best accuracy. Quest retains KV
vectors of all tokens while RaaS$ optimizes memory
usage by carefully handling milestone tokens with
O(L) memory complexity (Figure 6). Across these
datasets, a cache budget of 1024 tokens is gener-
ally sufficient to match Dense’s accuracy. Third,
when the cache budget is small, RaaS underper-
forms because Raas retains all prefill tokens, and
with a limited cache budget, most of the budget is
allocated to prefill tokens, causing almost all decod-
ing tokens to be discarded, negatively impacting
accuracy. For small cache budgets or long-prefill
scenarios, we recommend using Quest for prefill
tokens and RaaS for decode tokens.

4.3 Latency/Memory vs. Decoding Length

We evaluate the Dense, Quest, and RaasS in terms
of their time and memory complexities, yielding
two key observations from the experimental re-
sults (Figure 6). First, as the number of decode
tokens increases, Dense’s JCT grows quadratically,

400
--- RaaS-512 S| 109 Ve
Raas-1024 /| y
3001 ... Quest-1024 G 087 J
-—== D ’ ~ Vi
2 ense " g 0.6 //
5 200 L 5 Y
= et O 0.44 il
4 S e s
100 e a‘f1ﬂ.a-- § 02 Y
e o . ,/
o
|2~ e
0 T T T T O'OAV T T T
00 25 50 75 00 25 50 75

decode tokens / k # decode tokens / k

Figure 6: Latency and memory consumptions of Dense,
Quest, and RaaS running on Mistral-Math-7B, using
workloads with a fixed prefill length (128 tokens), vary-
ing decode lengths (from O to 8k tokens) and a batch
size of 4. We use dashed lines to improve the visibility
of overlapping lines.

while both RaaS and Quest exhibit linear latency
growth. The reason is that Dense has O(N?) time
complexity, whereas RaaS and Quest have O(N L)
time complexity, reducing each decoding step from
O(N) to O(L). Second, as the number of de-
code tokens increases, the memory consumption
of Dense and Quest grows linearly, while RaaS
initially increases linearly but plateaus once the
number of decode tokens exceeds its cache budget.
The reason is that Dense and Quest have O(N)
memory complexity, whereas RaaS achieves O(L)
memory complexity. With a smaller memory foot-
print, inference engines using Raa$ are likely to
achieve significantly higher throughput.

4.4 Micro-Benchmarks

The impact of discarding milestone tokens. Fig-
ure 7 shows that discarding milestone tokens, as
in H20-128 and Sink-128, increases the decode
lengths. Sometimes, the decode length increases
without solving the problem. Analysis of the out-
puts reveals that while the model initially reasons
correctly for the first few tokens (e.g., green tokens
in Figure 7), it loses track (orange tokens) of the
reasoning process when milestone tokens are dis-
carded, leading to repeated attempts at re-reasoning
(red tokens), which ultimately results in the model
getting stuck indefinitely.

The impact of . The choice of r affects the
distribution of tokens’ timestamps, with r = 0.5
generally yielding optimal results, as shown in Fig-
ure 8. First, when r is small, too many tokens are
assigned the latest timestamp, preventing effective
differentiation of milestone tokens. Second, when
7 is big, most tokens are deemed irrelevant, poten-
tially leading to the loss of milestone tokens.

2584

0 convert the point \((0,3)) from rectangular
coordinates to polar coordinates, we need to
ffind the values of \(r\) and \(\theta\). The
formulas for converting from rectangular
coordinates

1.0

0.8

0.6

w .
8 f Sink-128 1. The given by following these coordinates
0.4 H20-128 \(\boxed({3\)
— Quest-128 [To convert the given by following these steps
0.2 —— RaaS-128 [To find the given \(\boxed{3}
—— Dense-128 [To find the given point \(\boxed{3}
0.0 [To find the given point \(\boxed{3} \) and then
0 1000 2000 3000

ffind the given point \(\boxed{3} \) and then fini
the given point...

Figure 7: Decode-length distribution of five algo-
rithms using Qwen2.5-Math-7B-Instruct with 4k con-
text length, on MATHS00. For example, H20-128 (128-
token cache) always generates to the 4k length limit
without solving the problem. On the right, we show a
decoding example of H20-128.

decode tokens

—*— r=0.4 r=0.5 —*— r=0.6 —--- Dense
Mistral 7B SFT Qwen 2.5 Math 7B Instruct
0.8 0.8
o 0.6 0.6
o v
n ©
s
£S04l _______ 0.4
s < o
0.2] 0.2
0.0 0.0

0 250 500 750 1000 O 250 500 750 1000
Cache budget / # tokens Cache budget / # tokens

Figure 8: Accuracy of RaaS with different cache bud-
gets and rs.

5 Related Work

Many approaches have been proposed to reduce the
time and memory complexities of long-sequence
inference; these approaches can be categorized into
two types: one that modifies the model architecture
and the other that is more plug-and-play.

5.1 Model Architecture

Two types of approaches have emerged for alter-
ing model architecture. First, some approaches
modify the inner workings of the Transformer
while retaining its overall structure. For exam-
ple, Multi-Query Attention (MQA) (Shazeer, 2019)
and Group-Query Attention (GQA) (Ainslie et al.,
2023) reduce the number of KV heads, achiev-
ing similar accuracy to full-head configurations.
Second, some approaches change the Transformer
architecture significantly in favor of alternative
paradigms. For example, RWKV (Peng et al.,
2023), RetNet (Sun et al., 2023), and Mamba (Gu
and Dao, 2023) adopt RNN-based models, offering
lower computational costs but typically underper-
form compared to Transformer-based models.

5.2 KV Compression

Two primary types of KV compression have
emerged: KV quantization and KV pruning. First,
KV quantization approaches (Xiao et al., 2023;
Yao et al., 2022; Dettmers et al., 2022; Liu et al.,
2024) map higher precision KVs into lower ones,
trading accuracy for savings in time and memory.
Second, KV pruning approaches focus on lever-
aging attention sparsity (Zhang et al., 2023; Ge
et al., 2024; Jiang et al., 2024; Cai et al., 2024; Fu
et al., 2024; Xiao et al., 2025), which states that
only a few tokens are crucial during LLM infer-
ence. Thus, evicting less important tokens from
the KV cache is a key strategy for reducing time
and memory. For example, StreamingLLLM (Xiao
et al., 2024) and LM-Infinite (Han et al., 2024) evict
fixed-position tokens, retaining only the initial and
recent window tokens. H20 (Zhang et al., 2023),
SnapKV (Li et al., 2024), ScissorHands (Liu et al.,
2023), and TOVA (Oren et al., 2024) keep the re-
cent tokens and the top-k important tokens based
on the attention score calculated within a local win-
dow. More recent work, such as Quest (Tang et al.,
2024) and ArkVale (Chen et al., 2024), manages
the KV cache at the page level, selecting the top-
k important pages during each generation step to
reduce time complexity.

Our work presents a new trial of applying KV
pruning in reasoning tasks, which are character-
ized by a new milestone attention pattern. For the
first time, we achieve real O(L) time and memory
complexities with high accuracy.

6 Conclusion

In this paper, we have identified a new milestone
attention pattern observed in the decode stage of
reasoning tasks. Leveraging this pattern, we have
proposed a sparsity-based algorithm Raa$S that
achieves high accuracy while maintaining O(L)
time and O(L) memory complexities. Our exper-
iments, conducted across three datasets and four
reasoning-enabled models, demonstrate that RaaS
delivers comparable accuracy and latency to the
state-of-the-art Quest, but with constant memory
consumption. The key to Raa$’ success lies in the
handling of milestone tokens, which represent in-
termediate conclusions leading to the final output.

Limitations

Our work in this paper has the following major
limitations.

2585

Lack of comprehensive attention map statis-
tics. Attention patterns vary across layers, heads,
and model architectures. Manual inspection, with-
out rigorous statistical analysis, is insufficient for
drawing general conclusions about emerging atten-
tion patterns. Our study remains small-scale due
to the absence of an automated tool for analyzing
attention patterns across datasets, models, and lay-
ers. Such a tool would take an input defining an
attention pattern, a range of datasets and models,
and output the statistics of the specified attention
pattern across each model’s layers and heads. Al-
though we cannot address this limitation for now,
we plan to develop such a tool in the future, and this
tool would benefit the entire research community.

Limited applicability of RaaS. RaasS is specifi-
cally designed for reasoning tasks where the num-
ber of prefill tokens (e.g., a mathematical query)
is small but the number of decode tokens (e.g., a
chain of reasoning followed by a final answer) is
large. Given that RaaS$ retains KV vectors of all
prefill tokens, it allocates the entire cache budget
to them and discards nearly all decode tokens in
long-prefill scenarios. Therefore, in these scenar-
ios, we recommend using the combination of Quest
(on only prefill tokens) and RaaS (on only decode
tokens).

Evaluation on a limited set of datasets and
models. Our evaluation covers only four models
and three datasets. As such, the results may not
generalize beyond these specific configurations. Al-
though models with longer context lengths (e.g.,
Qwen2.5-Max, DeepSeek-r1) and datasets such as
GPQA Diamond and Codeforces exist, exhaustive
evaluation across all combinations is computation-
ally prohibitive (Hu et al., 2023). As reported in
prior work (Zhong et al., 2024), decoding a single
token can take approximately 30 ms; thus, process-
ing 16k tokens on an A100-80GB GPU requires
around 8 minutes. Running 200 test cases would
take over a day on a single GPU, making large-
scale evaluation infeasible with limited resources.
Nonetheless, we believe that the core idea of the
milestone pattern and its underlying rationale—the
thinking/reasoning process is step-by-step, con-
structing lemmas along the way— remains broadly
applicable.

Acknowledgments

This work was partially supported by National Nat-
ural Science Foundation of China under Grant No.

92464301. We would also like to thank the anony-
mous reviewers for their insightful comments and
suggestions, which help improve the quality of this

paper.

References

AIME. AIME. https://huggingface.co/
datasets/di-zhang-fdu/AIME_1983_2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895—
4901.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the Sixty-Second Annual Meeting of
the Association for Computational Linguistics, pages
3119-3137.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. 2024. PyramidKV:
Dynamic KV cache compression based on pyramidal
information funneling. CoRR.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu,
Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan,
Meng Li, and Yun Liang. 2024. ArkVale: Efficient
generative LLM inference with recallable key-value
eviction. In Proceedings of the Thirty-Eighth An-
nual Conference on Neural Information Processing
Systems, pages 113134-113155.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. DeepSeekMoE: Towards
ultimate expert specialization in mixture-of-experts
language models. In Proceedings of the Sixty-Second
Annual Meeting of the Association for Computational
Linguistics, pages 1280-1297.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Pro-
ceedings of the Twelfth International Conference on
Learning Representations.

2586

https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024
https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Proceedings of the Thirty-Sixth Annual Conference
on Neural Information Processing Systems, pages
16344-16359.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Proceedings of
the Thirty-Sixth Annual Conference on Neural Infor-
mation Processing Systems, pages 30318-30332.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta,
Mohammad Rastegari, and Mahyar Najibi. 2024.
LazyLLM: Dynamic token pruning for efficient long
context LLM inference. CoRR.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells you
what to discard: Adaptive KV cache compression for
LLMs. In Proceedings of the Twelfth International
Conference on Learning Representations.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time se-
quence modeling with selective state spaces. CoRR.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong,
Yu Chen, Heng Ji, and Sinong Wang. 2024. LM-
Infinite: Zero-shot extreme length generalization for
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3991-4008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Proceed-
ings of the Neural Information Processing Systems
Track on Datasets and Benchmarks.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu,
Xusheng Chen, Tao Xie, Chenxi Wang, Sa Wang,
Yungang Bao, Ninghui Sun, and Yizhou Shan. 2024.
MemServe: Context caching for disaggregated LLM
serving with elastic memory pool. CoRR.

Junhao Hu, Wenrui Huang, Haoyi Wang, Weidong
Wang, Tiancheng Hu, Qin Zhang, Hao Feng,
Xusheng Chen, Yizhou Shan, and Tao Xie. 2025a.
EPIC: efficient position-independent caching for serv-
ing large language models. In Proceedings of the
Forty-Second International Conference on Machine
Learning.

Junhao Hu, Chaozheng Wang, Hailiang Huang, Huang
Luo, Yu Jin, Yuetang Deng, and Tao Xie. 2023. Pre-
dicting compilation resources for adaptive build in an

industrial setting. In Proceedings of the Thity-Eighth
IEEE/ACM International Confgrence on Automated

Software Engineering, pages 1808—1813.

Junhao Hu, Jiang Xu, Zhixia Liu, Yulong He, Yuetao
Chen, Hao Xu, Jiang Liu, Baoquan Zhang, Shining
Wan, Gengyuan Dan, Zhiyu Dong, Zhihao Ren, Jie
Meng, Chao He, Changhong Liu, Tao Xie, Dayun
Lin, Qin Zhang, Yue Yu, Hao Feng, Xusheng Chen,
and Yizhou Shan. 2025b. DEEPSERVE: Serverless
large language model serving at scale. In Proceed-
ings of the 2025 USENIX Annual Technical Confer-
ence.

Hugging Face. Hugging Face. https://huggingface.
co.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong Park. 2024. Adaptive-RAG: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 7036—7050.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024. MInference 1.0: Acceler-
ating pre-filling for long-context LLMs via dynamic
sparse attention. In Proceedings of the Thirty-Eighth
Annual Conference on Neural Information Process-
ing Systems, pages 52481-52515.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin
Liu, Xuanzhe Liu, and Xin Jin. 2024. RAGCache:
Efficient knowledge caching for retrieval-augmented
generation. CoRR.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with PagedAttention. In Proceedings of the Twenty-
Ninth Symposium on Operating Systems Principles,
pages 611-626.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and
Lemao Liu. 2022. A survey on retrieval-augmented
text generation. CoRR.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. SnapKV:
LLM knows what you are looking for before gener-
ation. In Proceedings of the Thirty-Eighth Annual
Conference on Neural Information Processing Sys-
tems, pages 22947-22970.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In Proceedings
of the Twelfth International Conference on Learning
Representations.

2587

https://huggingface.co
https://huggingface.co

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test
time. In Proceedings of the Thirty-Seventh Annual
Conference on Neural Information Processing Sys-

tems, pages 52342-52364.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024. KIVI: A tuning-free asymmetric
2bit quantization for KV cache. In Proceedings of
the Forty-First International Conference on Machine
Learning, pages 32332-32344.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Generation-augmented retrieval for open-
domain question answering. In Proceedings of the
Fifty-Ninth Annual Meeting of the Association for
Computational Linguistics and the Eleventh Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 4089-4100.

OpenAl. OpenAl ol. https://openai.com/o1/.

Matanel Oren, Michael Hassid, Yarden Nir, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state RNNs. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 18724-18741.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczyn-
ski, Xingjian Du, Matteo Grella, Kranthi Kiran GV,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko,
Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hay-
den Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdi-
nand Mom, Atsushi Saito, Guangyu Song, Xiangru
Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan
Zhang, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
2023. RWKYV: Reinventing RNNs for the trans-
former era. In Findings of the Association for Compu-
tational Linguistics: EMNLP, pages 14048-14077.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. In Proceedings
of the Sixth Conference on Machine Learning and
Systems, pages 606—624.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics.

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. CoRR.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yugqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023. Retentive network: A successor to trans-
former for large language models. CoRR.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. QUEST: query-
aware sparsity for efficient long-context LLM in-
ference. In Proceedings of the Forty-First Inter-
national Conference on Machine Learning, pages
47901-47911.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Thirty-First Annual
Conference on Neural Information Processing Sys-

tems, pages 5998—6008.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen
Zhu, Anjie Liu, Zigin Gong, Yan Song, Lei Chen,
Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan
Zhang. 2024. OpenR: An open source framework
for advanced reasoning with large language models.
CoRR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the Thirty-Sixth Annual Conference
on Neural Information Processing Systems, pages
24824-24837.

Guangxuan Xiao, Ji Lin, Mickaél Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for
large language models. In Proceedings of the Forti-
eth International Conference on Machine Learning,
pages 38087-38099.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2025. DuoAttention: Efficient long-context
LLM inference with retrieval and streaming heads.
In Proceedings of the Thirteenth International Con-
ference on Learning Representations.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks. In Proceedings
of the Twelfth International Conference on Learning
Representations.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-Math tech-
nical report: Toward mathematical expert model via
self-improvement. CoRR.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
ZeroQuant: Efficient and affordable post-training
quantization for large-scale transformers. In Proceed-
ings of the Thirty-Sixth Annual Conference on Neu-
ral Information Processing Systems, pages 27168—
27183.

2588

https://openai.com/o1/

Xuan Zhang, Fengzhuo Zhang, Cunxiao Du, Chao Du, Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue

Tianyu Pang, Wei Gao, and Min Lin. 2022. Light- Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Transfer: your long-context LLM is secretly a hybrid Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W.
model with effortless adaptation. CoRR. Barrett, and Ying Sheng. 2024. SGLang: Efficient

. . . execution of structured language model programs. In
Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Proceedings of the Thirty-Eighth Annual Conference

Chen, Lianmin Zhe':ng, RUiSi, Cai, Zhao Song, on Neural Information Processing Systems, pages
Yuandong Tian, Christopher Ré, Clark W. Barrett, 62557—62583.

Zhangyang Wang, and Beidi Chen. 2023. H2O:
heavy-hitter oracle for efficient generative inference Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,

of 'large language models. In Proceedings of the Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
Thlr'ty-Seventh Annual Conference on Neural Infor- 2024. DistServe: Disaggregating prefill and decod-
mation Processing Systems, pages 34661-34710. ing for goodput-optimized large language model serv-

ing. In Proceedings of the Eighteenth USENIX Sym-
posium on Operating Systems Design and Implemen-

tation, pages 193-210.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024. Marco-ol: Towards open
reasoning models for open-ended solutions. CoRR.

2589

Prompt: If $f(x) = \\frac{3x-2}{x-2}$, what is the value of $f(-2)
+f(-1)+f(0)$? Express your answer as a common fraction.

Decode:

To find the value of \(f(-2) + f(-1) + f(0) \) for the function \(f(x) =
\frac{3x-2}{x-2} \), we need to evaluate \(f(x) \) at \(x =-2\), \(x = -1
\), and \(x = 0 \) separately and then sum the results. 1D

First, let's evaluate \(f(-2) \):
\[f(-2) = \frac{3(-2) - 2}{-2 - 2} = \frac{-6 - 2}{-4} = \frac{-8}{-4} =2\] @

Next, let's evaluate \(f(-1) \):
\[f(-1) = Wfrac{3(-1) - 2K-1 - 2} = \frac{-3 - 2}{-3} = \frac{-5-3} =
\frac{543}\| ®

Then, let's evaluate \(f(0) \):
\[f(0) = \frac{3(0) - 2}{0 - 2} = \frac{-2}{-2} = 1\] @

Now, we sum the values of \(f(-2) \), \(f(-1) \), and \(f(0) \):
\[f(-2) + f(-1) + f(0) = 2 + \frac{5}{3} + 1\] ®

To add these numbers, we need a common denominator. The
common denominator for 2, \(\frac{5}{3}\), and 1 is 3. We convert 2
and 1 to fractions with a denominator of 3:

\[2 = \frac{6}{3} \quad \text{and} \quad 1 = \frac{3}{3} \]

Now we can add the fractions: ®
\[\frac{6}{3} + \frac{5}{3} + \frac{3K3} = \frac{6 + 5 + 3}3} =
\frac{14}{3}\] @

Therefore, the value of \(f(-2) + f(-1) + f(0) \) is \(\boxed{\frac{14}3}}\)

Figure 10: Milestone example.

Prompt: Define

\[p = \sum_{k = 1}\infty \frac{1}k"2} \quad \text{and} \quad q =
\sum_{k = 1}M\infty \frac{1}{k"3}.\]Find a way to write

\N\sum_{j = 1}Minfty \sum_{k = 1}Ninfty \frac{1}{(j + k)*3}\]in terms of
p and $q.$

Decode

To find a way to write the double sum \(\sum_{j=1}Minfty
\sum_{k=1}\infty \frac{1}(j+k)*3}\) in terms of \(p\) and \(q\), we start
by considering the sum in a different form. We can rewrite the double
sum by changing the order of summation. Instead of summing over
\(j\) and \(k\) directly, we sum over \(n = j+k\) and then over the
possible values of \(j\) and \(k\) that satisfy \(j+k=n\). D

The sum \(\sum_{j=1}"infty \sum_{k=1}infty \frac{1}{(j+k)"3}\) can be
rewritten as:

\[\sum_{n=2}\infty \sum_{j=1}"n-1} \frac{1}{n"3}. \] @

Here, the inner sum \(\sum_{j=1}*{n-1} \frac{1}{n"3}\) is simply
\(\frac{n-1}{n"3}\) because there are \(n-1\) terms in the sum, each
equal to \(\frac{1}n"3}\). Therefore, the double sum becomes:
\[\sum_{n=2}Minfty \frac{n-1}{n"3} = \sum_{n=2}"infty \left(
\frac{1}{n"2} - \frac{1}{n*3} \right). \] @

We can split this into two separate sums:

\[\sum_{n=2}Minfty \frac{1}{n"2} - \sum_{n=2}Minfty \frac{1}{n"3}. \]
The first sum \(\sum_{n=2}Ninfty \frac{1}{n"2}\) is the same as \(p - 1\)
because \(p = \sum_{n=1}Minfty \frac{1}{n*2}\). The second sum
\(\sum_{n=2}"\infty \frac{1}{n"3}\) is the same as \(q - 1\) because \(q =
\sum_{n=1}infty \frac{1}{n"*3}\). Therefore, the expression becomes:
\[(p-1)-@-1)=p-q.\1®

Thus, the double sum \(\sum_{j=1}"infty \sum_{k=1}Minfty
\frac{1}{(j+k)"3}\) in terms of \(p\) and \(q\) is: &

\[\boxed{p - q}. \]

Figure 9: Milestone example.

A More Examples for Milestone Tokens

This section presents more examples of milestone
tokens in Figure 9 and Figure 10. For all examples,
we input the prefill tokens to Qwen2.5-Math-7B-
Instruct and obtain the corresponding decode to-
kens, as shown in the figure. The tokens marked red
represent the milestone tokens. Although we only
show a few examples here, the milestone patterns
abound in reasoning tasks.

B Checklist-Related Issues

Three datasets GSM8k (MIT), MATH500 (MIT),
AIME (MIT), and four models Mistral Math 7B
(No licence), Qwen 2.5 Math 7B Instruct (apache-
2.0), Marco ol (apache-2.0), DeepScaleR 1.5B Pre-
view (MIT) are used with their intended usage sce-
narios. We retrieve all models and datasets from
Hugging Face, where detailed documentation, in-
cluding parameter sizes and model architectures,
is provided. We manually checked the data and
believe there is no personal information misused.

We used ChatGPT to check the grammar of the
texts.

To the best of our knowledge, we believe our
work does not pose risks that harm any subgroup
of our society.

2590

