
Findings of the Association for Computational Linguistics: ACL 2025, pages 24724–24746
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

KARPA: A Training-free Method of Adapting Knowledge Graph as
References for Large Language Model’s Reasoning Path Aggregation

Siyuan Fang1, Kaijing Ma2, Tianyu Zheng3, Xinrun Du3,
Ningxuan Lu4, Ge Zhang3, Qingkun Tang5*

1Beijing University of Posts and Telecommunications, 2Tongji University,
3Multimodal Art Projection Research Community, 4Duke University, 5ZTE Corporation

syfang@bupt.edu.cn, tang.qingkun@zte.com.cn

Abstract
Large language models (LLMs) demonstrate
exceptional performance across a variety of
tasks, yet they are often affected by hallucina-
tions and the timeliness of knowledge. Leverag-
ing knowledge graphs (KGs) as external knowl-
edge sources has emerged as a viable solution,
but existing methods for LLM-based knowl-
edge graph question answering (KGQA) are
often limited by step-by-step decision-making
on KGs, restricting the global planning and rea-
soning capabilities of LLMs, or they require
fine-tuning or pre-training on specific KGs. To
address these challenges, we propose Knowl-
edge graph Assisted Reasoning Path Aggre-
gation (KARPA), a novel framework that har-
nesses the global planning abilities of LLMs for
efficient and accurate KG reasoning. KARPA
operates in three steps: pre-planning relation
paths using the LLM’s global planning capa-
bilities, matching semantically relevant paths
via an embedding model, and reasoning over
these paths to generate answers. Unlike exist-
ing KGQA methods, KARPA avoids stepwise
traversal, requires no additional training, and
is adaptable to various LLM architectures. Ex-
tensive experimental results show that KARPA
achieves state-of-the-art performance in KGQA
tasks, delivering both high efficiency and accu-
racy. Our code is available on GitHub.1

1 Introduction

In recent years, large language models (LLMs)
(Touvron et al., 2023a,b; Achiam et al., 2023;
Bai et al., 2023) have revolutionized natural lan-
guage processing, demonstrating impressive per-
formance in areas such as information extraction
(Xu et al., 2023), summarization (Jin et al., 2024),
and question answering (Louis et al., 2024). How-
ever, despite these advancements, LLMs face no-
table challenges, particularly in maintaining up-
to-date knowledge, domain-specific knowledge

*Corresponding Author.
1https://github.com/Icamd/KARPA

(Zhang et al., 2024), and dealing with hallucina-
tions (Zhang et al., 2023; Huang et al., 2023) where
LLMs produce incorrect or nonsensical outputs.

Knowledge graphs (KGs) enhance the reasoning
capabilities of LLMs by providing structured, re-
liable external knowledge (Zhu et al., 2024; Pan
et al., 2024). Existing approaches to integrating
LLMs with KGs fall into two categories: (1) Di-
rect interaction between LLMs and KGs, where
the LLM explores the KG step-by-step (Sun et al.,
2023; Jiang et al., 2023), often relying on local
search strategies like beam search. These methods
can produce suboptimal answers by overlooking
the LLM’s global planning and reasoning potential.
Additionally, they require numerous interactions
between LLMs and KGs, as shown in Figure 1(b).
(2) Training-based methods, such as reasoning on
graphs (RoG) (Luo et al., 2023), generate retrieval
information for KGQA. However, they often re-
quire fine-tuning or pre-training on specific KG
data (Li et al., 2023b; Huang et al., 2024). These
methods struggle with unseen KGs, necessitate re-
training, and are prone to hallucinations during in-
formation generation, as illustrated in Figure 1(a).

To address these limitations, we propose Knowl-
edge graph Assisted Reasoning Path Aggrega-
tion (KARPA), an innovative framework that lever-
ages the global planning capabilities of LLMs
alongside semantic embedding models for efficient
and accurate KG reasoning. Our approach consists
of three key steps: pre-planning, matching, and rea-
soning, as shown in Figure 2. In the pre-planning
phase, KARPA enables the LLM to generate ini-
tial relation paths for the provided question using
LLM’s inherent reasoning and planning capabili-
ties. With these inital relation paths, KARPA em-
ploys a semantic embedding model (Ruder et al.,
2019) to identify candidate relations that are se-
mantically similar to the relations within the initial
paths. The LLM can then create coherent rela-
tion paths that logically connect the topic entity

24724

https://github.com/Icamd/KARPA

CEO of

born in

drop out from
co-founder

occupation

Mark
Zuckerberg

born in

graduate from

occupation
Priscilla Chanwife of CEOMeta

USA

Harvard
University

PediatricianCEO

graduate fromEduardo
Saverin

Question: Who is Mark Zuckerberg's wife? entities
relations

(a)

LLM
Question

Pre-train or Fine-tune

LLM

Unseen KGs

Sorry, I do
not know ...

Hallucination

LLM
[wife of,

spouse of]

Q

Q

(b)

LLM
Question

Stepwise Beam Search

Iteration

[co-founder, born in]Step1:

[Eduardo Saverin, USA]

Step2: [graduate from, ...]

[Harvard University, ...]
Step3: ...

(c)

LLM
Question

Pre-planning

Relevant relations
Candidate paths

Matching

Embedding
Model

Candidate paths

Retrieved paths
[CEO of -> wife of CEO, ...]

Matched

Reasoning:
LLM Retrieved

paths Priscilla Chan

KG

Figure 1: Comparison of different LLM-based KGQA methods: (a) Pre-training or fine-tuning the LLM on specific
KG data. (b) Direct reasoning over KGs via stepwise interactions with the LLM. (c) Our KARPA framework, which
combines the global planning and reasoning abilities of LLMs with embedding-based matching techniques. KARPA
enables comprehensive path planning while avoiding local optima and hallucinations observed in previous methods.

to potential answer entities using these candidate
relations. During the matching phase, KARPA
employs an embedding model to identify relation
paths within the KG that exhibit the highest sim-
ilarity to the paths generated by the LLM in the
pre-planning phase. This avoids locally optimal
issues encountered in previous methods. Finally,
during the reasoning step, the matched relation
paths and their corresponding entities are provided
to the LLM to formulate final answers. The detail
of our framework is shown in Figure 2.

KARPA offers several key advantages over ex-
isting LLM-based KGQA methods: (1) KARPA
fully leverages the global planning and reasoning
capabilities of LLMs to generate logically coherent
paths, which aligns better with human-like reason-
ing processes. Unlike methods limited to adjacent
relations or requiring iterative traversal within the
KG, KARPA selects from all potential relations
within the KG, significantly reducing interactions
between LLMs and KGs. (2) Our embedding-based
matching strategy avoids the locally optimal so-
lution that arises from the stepwise interactions
between LLMs and KGs, ensuring more effective
exploration of the KGs. (3) KARPA is training-
free, making it adaptable to various LLMs while
enhancing reasoning capabilities with techniques

such as chain-of-thought (CoT) (Wei et al., 2022).
Our contributions can be summarized as follows:

• We propose KARPA, which combines the
global planning and reasoning capabilities of
LLMs with embedding models to improve
both accuracy and efficiency of KGQA tasks.

• By enabling LLMs to generate initial rela-
tion paths across all potential relations within
the KG and integrating a semantic embedding
model for path matching, KARPA mitigates
the risk of local optima and minimizes inter-
actions with KGs. Techniques such as CoT
can also be incorporated to further enhance
the LLM’s reasoning abilities over KGs.

• KARPA operates in a training-free man-
ner and is compatible with various LLMs,
providing a plug-and-play solution that
achieves state-of-the-art performance on sev-
eral KGQA benchmark datasets.

2 Related Work

Prompt-Based Reasoning with LLMs. LLMs
such as LLaMA (Touvron et al., 2023a,b), Qwen
(Bai et al., 2023), and GPT-4 (Achiam et al.,
2023)have advanced reasoning by leveraging ex-
tensive internal knowledge. Various prompt-based

24725

methods further enhance these capabilities. For in-
stance, Chain-of-Thought (CoT) (Wei et al., 2022)
improves reasoning by decomposing complex tasks
into manageable steps, excelling in domains like
mathematical reasoning (Jie et al., 2023) and log-
ical inference (Zhao et al., 2023). Variants such
as Auto-CoT (Zhang et al., 2022), Zero-Shot-CoT
(Kojima et al., 2022), and Complex-CoT (Fu et al.,
2022) further optimize this approach. Frameworks
like Tree of Thoughts (ToT) (Yao et al., 2024) and
Graph of Thoughts (GoT) (Besta et al., 2024) have
expanded the scope of LLM reasoning. Lately,
OpenAI o1 series models represent a significant
advancement in LLM reasoning. These methods
underscore the role of tailored prompts in maximiz-
ing LLM reasoning potential.

LLM-Based KGQA. Integrating KGs with
LLMs enhances reasoning and mitigates halluci-
nations. Unlike methods such as CoT that rely
solely on the internal knowledge of LLMs, incorpo-
rating KGs provides access to structured external
knowledge (He et al., 2022; Wang et al., 2023).
Approaches like Think-on-Graph (ToG) (Sun et al.,
2023), Interactive-KBQA (Xiong et al., 2024) and
StructGPT (Jiang et al., 2023) enable stepwise in-
teractions between LLMs and KGs. Methods such
as Reasoning on Graphs (RoG) (Luo et al., 2023),
chain of knowledge (Li et al., 2023c) and other
techniques (Huang et al., 2024; Pan et al., 2024;
Li et al., 2023b) utilize pre-trained or fine-tuned
LLMs to generate retrieval information for KGQA.
Furthermore, methods like UniKGQA (Jiang et al.,
2022) and KG-CoT (Zhao et al., 2024) require train-
ing specific models for KG information retrieval,
further complicating their implementation.

3 Preliminary

Knowledge Graphs (KGs). KGs represent struc-
tured information as G = (E,R), where E is the
set of entities and R denotes the set of relations.
Each relation r ∈ R connects two entities (ei, ej),
with ei, ej ∈ E.

Relation Paths and Reasoning Paths. A re-
lation path P connects a topic entity et to an an-
swer entity ea via a sequence of relations: P =
(r1, r2, . . . , rn), where ri ∈ R. Reasoning paths
further include intermediate entities along the path,
represented as Pr =

{
et

r1→ e1
r2→ . . .

rn→ ea

}
.

Knowledge Graph Question Answering
(KGQA). KGQA aims to answer questions using
information from KGs. Given a query Q, the goal

of KGQA is to generate an answer A using a func-
tion f : A = f(Q,G), where f extracts the answer
from the KG G based on Q.

Embedding Models and Semantic Similarity.
Embedding models represent text in a continuous
vector space, enabling semantic similarity measure-
ments. A function Φ : R → Rd maps a sentence
R to a d-dimensional vector. Similarity between
embeddings is computed using cosine similarity:

sim(ri, rj) =
Φ(ri) · Φ(rj)

∥Φ(ri)∥∥Φ(rj)∥
, (1)

where · is the dot product and ∥ · ∥ is the Euclidean
norm. This metric aids in comparing semantic
information for retrieval tasks.

4 Approach

In this section, we present KARPA, a framework
that leverages the strengths of LLMs and embed-
ding models to enhance KGQA. Our approach is
composed of three key steps: pre-planning, match-
ing, and reasoning, as illustrated in Figure 2.

4.1 Pre-Planning with LLM
The pre-planning phase leverages the global plan-
ning capabilities of LLMs to generate initial paths
Pinitial and candidate paths Pcand. This phase ini-
tiates the reasoning process by allowing the LLM
to analyze the input question Q and the associated
topic entity et. By leveraging the reasoning capa-
bility of LLM, KARPA is able to propose paths
that are not only logically coherent but also have
the potential to lead to the answer entities Ea.

Initial Planning Using LLM KARPA starts by
using the LLM to generate a set of initial relation
paths based on the provided question Q, as shown
in Figure 2. The LLM outputs a set of potential
relation paths P as follows:

P = {p1, p2, . . . , pm},
where pi = (ri1, r

i
2, . . . , r

i
ni
).

(2)

Here, each pi is a path of ni relations rij that could
logically connect a topic entity et to the potential
answer entity ea. The relations within these paths
serve as candidates for relations extraction.

Relation Extraction Strategy With the initial re-
lation paths P , we decompose each path pi into its
constituent relations Ri = {ri1, ri2, . . . , rini

}. For
each relation rij ∈ Ri, we utilize an embedding

24726

CEO of

born in

drop out fromco-founder

occupation

Mark
Zuckerberg

born in

graduate from

occupation
Priscilla Chanwife of CEOMeta

USA

Harvard
University

PediatricianCEO

graduate fromEduardo
Saverin

Question: Who is Mark Zuckerberg's wife? Knowledge
Graph (KG)

LLM
Q

Step 1: Pre-planning:

CoT [...]

[spouse of]

Initial Planning
[wife]

[has child, parent of]

Relation Extraction
[wife, spouse of, has
child, parent of, ...]

Embedding
Model

[All relations]

Candidate Relations:
[wife of CEO (0.61), occupation (0.44), ...]

LLM
Q CoT

Re-planning

Candidate
Relations

Candidate paths:

Plan

Plan Let's think step-by-step...
Length 1 path might be:

{wife of CEO};
Length 2 path might be:
{CEO of, wife of CEO};

Step 2: Matching:

All
Relations

Relation Paths

Candidate
Paths

Embedding
Model

{wife of CEO}
{CEO of, wife of CEO}

Candidate Paths:

{occupation}
{wife of CEO}

{born in}
{CEO of, wife of CEO}

Relation Paths:

...

...
{CEO of, wife of CEO}
Score: 0.96
{co-founder}
Score: 0.43
{occupation}
Score: 0.37
{born in}
Score: 0.24

Top-K Retrieved Paths

Semantic
Similarity

Top-K
Paths

Step 3: Reasoning:

LLM

Top-K
Paths

Q CoT

Let's analyze these
relation paths
step-by-step: ...
Therefore, the

answer is:
{Priscilla Chan}.... ...

Figure 2: The framework of our KARPA. Our framework consists of three main steps: (1) Pre-planning: The LLM
generates initial relation paths based on the given question, decomposes them for relation extraction, and re-plans
coherent candidate paths that connect the topic and answer entities with relevant relations. (2) Matching: Relation
paths are extracted based on their similarity to the re-planned candidate paths using an embedding model. Our
matching method accommodates paths of varying lengths. (3) Reasoning: The selected top-K paths, combined with
the question and corresponding entities, form a prompt for the LLM to enable accurate KG question answering.

model to identify top-K semantically similar rela-
tions from the entire KG:

Ri
j = {rj1, rj2, . . . , rjk} = Top-K(sim(rij, r)),

(3)
where sim(·) calculates the semantic similarity
function (e.g., cosine similarity) between the em-
bedding of relation rij and all relations r ∈ KG

using Equation 1. The resulting set Ri
j contains the

relations that best align with the initial relations, en-
suring that LLM has access to all relevant relations
beyond the immediate neighbors in the KG.

Re-planning Relation Paths with LLM Using
the candidate relations Ri

j from the previous step,
the LLM constructs refined relation paths Pcand

that potentially connect the topic entity et to the
answer entity ea:

Pcand = LLM(Q,Ri
j), each rij ∈ Ri

j ⊂ R. (4)

Given the question Q and candidate relations Ri
j ,

the LLM utilizes its reasoning capabilities to pro-
duce coherent candidate paths Pcand, as shown in
Figure 2. During this phase, techniques like CoT
can be incorporated to strengthen LLM’s logical
reasoning, ensuring the construction of semanti-
cally meaningful paths.

By extracting relations from the entire KG rather
than limiting to adjacent neighbors, KARPA avoids
stepwise interactions, reducing the risk of local
optima and unnecessary interactions with the KG.

The pre-planning phase sets the foundation for effi-
cient and accurate matching and reasoning in the
subsequent steps.

4.2 Relation Paths Matching
The matching step in KARPA extracts relevant rela-
tion paths from KGs based on the LLM-generated
candidate paths Pcand, as shown in Figure 2. This
process systematically explores and scores poten-
tial relation paths for reasoning step.

4.2.1 Conventional Relation Paths Matching
Conventional LLM-based KG exploration methods,
such as ToG(Sun et al., 2023), typically involve the
LLM selecting top-K promising relations Rt from
the adjacent relations of the current entity e at each
step. This strategy resembles greedy algorithms,
such as beam search. Formally, let R(e) denote
the set of relations available for the current entity
e. The selection process can be defined as:

Rselected = argmaxr∈R(e) f(r), r ∈ KG. (5)

In Equation 5, f(r) is a scoring function indicat-
ing the potential of relation r. Since embedding
similarity represents the similarity between two
relations, we use 1− sim(ri, rj) as the cost func-
tion for beam search. However, this approach does
not guarantee finding the optimal path, as it may
overlook globally optimal solutions.

To enhance relation path matching, we employ
traditional pathfinding algorithms like Dijkstra’s,

24727

which can be expressed as:

cost(v) = min{cost(v), cost(v′) + cost(v′, v)}.
(6)

In Equation 6, the cost to reach node v is deter-
mined by either its current known cost or the cost of
reaching one of its predecessors v′ plus cost(v′, v),
the cost of the edge connecting v′ to v.

In KARPA, we begin from the topic entity et
and compute the semantic similarity sim(ri, rj)
using Equation 1 for relations at each step, scor-
ing the relations based on their similarity to the
corresponding relations in the candidate relation
paths Pcand. The cost for each step is defined
as: cost(r) = 1 − sim(ri, rj). This modification
ensures that higher similarity scores correspond
to lower costs, facilitating optimal path discovery.
Since similarity scores range from 0 to 1, we av-
erage the total cost of relation paths of different
lengths so that shorter paths can be fairly compared
with longer paths. The path matching function
based on Dijkstra’s algorithm can be defined as:

cost(e) = min
{ 1

ne
cost(e),

1

ne′ + 1

[
cost(e′) + sim(r(e′,e), rcand)

] }
,

(7)

where the cost of entity e is compared between
cost(e) averaged by the number of relations ne

to reach entity e, and the cost of its predecessor
cost(e′) plus the current cost sim(r(e′,e)), rcand),
averaged by number of relations ne′ plus one.

4.2.2 Heuristic Value-Based Paths Matching
Since the conventional relation paths matching
methods require the cost of each relations alone
the paths, the similarity between initial relation
paths and current paths within the KG can only be
calculated when current paths have the same length
as candidate paths Pcand. Inspired by the heuris-
tic value in A* algorithm, we design a heuristic
value-based relation paths matching method. In the
traditional A* algorithm, the heuristic value serves
as a guiding function that indicates the distance
between current node and target node. In KARPA,
the heuristic value h indicate the semantic simi-
larity between the candidate relation paths Pcand

and current path within the KG. By using heuristic
value h as an indicator, we are able to compute the
similarity between paths of differing lengths, such

as A
father−−−−→ father−−−−→ B and A

grandfather−−−−−−−→ B, as

shown in Figure 2. For paths Pa and Pb, we con-
catenate all relations into one sentence and use the
embedding model to calculate their similarity:

sim(Pa, Pb) = sim(concat(RPa), concat(RPb)).
(8)

In Equation 8, the similarity between path Pa and
Pb can be calculated using the concatenation of
their internal relations RP with Equation 1. Since
the heuristic value represents the semantic distance
between Pa and Pb, it can be defined as h = 1 −
sim(Pa, Pb). The top-K relation paths PK with
lowest heuristic value can be extracted as:

PK = argmaxP∈Pall
sim(P, Pcand), Pall ∈ KG.

(9)
Through Equation 9, we are able to identify the top-
K relevant paths from a diverse range of lengths as
retrieved paths PK for further reasoning.

The relation paths matching method in KARPA
broadens the search space and mitigates the risk of
missing potentially optimal paths that traditional
methods might overlook. By dynamically adapting
to paths of varying lengths, KARPA identifies top-
K paths for LLM reasoning, ensuring robust and
comprehensive path matching.

4.3 Reasoning with LLM
In the reasoning step, we integrate the top-K can-
didate paths PK with their corresponding entities
e into a prompt, enabling the LLM to generate an-
swers for question Q, as shown in Figure 2. The
reasoning process can be expressed as:

Answer = LLM(Q,PK , e),

PK = {p1, p2, . . . , pn}.
(10)

If the top-K candidate paths do not yield a valid an-
swer, we leverage the LLM’s inherent knowledge
to provide an appropriate response. The KARPA
framework facilitates the LLM’s ability to evalu-
ate multiple reasoning paths in parallel, thereby
enhancing the overall efficiency of LLM-based
KGQA tasks.

5 Experiments

In this section, we detail the experimental setup,
present our main results, and conduct further anal-
ysis to evaluate the performance of KARPA.

5.1 Experimental Settings
Datasets and Evaluation Metrics We evaluate
KARPA on two widely used multi-hop KGQA

24728

WebQSP CWQ

Type of Model Method Accuracy Hit@1 F1 Accuracy Hit@1 F1

Answering with Internal Knowledge

GPT-4 IO prompt - 62.5 - - 44.3 -
GPT-4 CoT* (Sun et al., 2023) - 67.3 - - 46.0 -

Training-based Methods

LLaMA2-7B (Fine-tune) KD-CoT* (Wang et al., 2023) - 68.6 52.5 - 55.7 -
Graph Reasoning Model KG-CoT* (Zhao et al., 2024) - 84.9 - - 62.3 -
FiD-3B DECAF* (Yu et al., 2022) - 82.1 78.8 - 70.4 -
PLM (Pretrain) UniKGQA* (Jiang et al., 2022) - 77.2 72.2 - 51.2 49.0
LLaMA2-7B (Fine-tune) RoG 80.4 84.6 70.1 60.5 61.3 54.2

Direct Inference over KGs with LLMs

GPT-4o ToG 58.6 78.5 50.9 53.3 56.8 41.9
GPT-4 ToG* (Sun et al., 2023) - 82.6 - - 69.5 -
GPT-4 Interactive-KBQA* - - 71.2 - - 49.1
GPT-4o KARPA 76.1 87.7 69.2 69.8 75.3 58.4
GPT-4 KARPA 80.9 91.2 72.1 73.6 78.4 61.5

Table 1: Performance comparison of KARPA with three method categories: (1) Answering with internal knowledge
of LLMs, (2) Training-based methods, which require constant re-train for unseen KGs, and (3) Direct inference over
KGs with LLMs. *Results are cited from corresponding publications. Bold represents the best result, underline
represents the second best, and fbox represents the third best.

Method Dataset Accuracy Hit@1 F1

RoG
Original 63.5 77.8 64.8

Anonymized 51.4 64.3 52.9
Variation -12.1 -13.5 -11.9

ToG
Original 53.1 73.6 50.3

Anonymized 45.8 64.2 44.1
Variation -7.3 -9.4 -6.2

KARPA
Original 72.3 86.4 67.2

Anonymized 71.8 82.3 68.7
Variation -0.5 -4.1 +1.5

Table 2: Performance variation of different methods
between original and anonymized WebQSP datasets.

datasets: WebQuestionSP (WebQSP) (Yih et al.,
2016) and Complex WebQuestions (CWQ) (Tal-
mor, 2018), as well as our newly anonymized ver-
sion of the WebQSP dataset with placeholders re-
placing specific details. Evaluation metrics include
Accuracy, Hit@1 and F1 score.

Baselines for Comparison We compare KARPA
against several baselines: (1) LLM-only baselines:
IO Prompt (Brown et al., 2020) and CoT (Wei et al.,
2022) to evaluate LLM reasoning without external
knowledge; (2) Training-based methods: KD-CoT
(Wang et al., 2023), KG-CoT (Zhao et al., 2024),
UniKGQA (Jiang et al., 2022), DECAF (Yu et al.,
2022), and RoG (Luo et al., 2023), highlighting
KARPA’s performance without extra training; (3)

Direct inference over KGs: ToG (Sun et al., 2023)
and Interactive-KBQA (Xiong et al., 2024), repre-
senting the training-free state-of-the-art methods.

Experimental Details We test KARPA with var-
ious LLMs via API calls. We employ all-MiniLM-
L6-v2(Reimers, 2019) as our embedding model.
For each LLM, we randomly select 300 KGs from
each datasets to evaluate KARPA’s performance,
aiming to reduce computational costs. In matching
step, we extract 16 top-K paths with the highest
semantic similarity for each candidate paths.

5.2 Main Results

5.2.1 Comparison between Baselines
We compare KARPA with other approaches in Ta-
ble 1.The results show that KARPA significantly
outperforms existing baselines across most metrics,
achieving state-of-the-art performance. When com-
paring to the direct answering methods, we demon-
strate that leveraging KGs as external knowledge
sources enables the LLM to yield superior answers.

In contrast to training-based methods, KARPA
is plug-and-play, requiring no additional training
while maintaining effective KG-based reasoning.
When comparing with inference-based method,
which also utilizes LLMs for reasoning over KGs
without additional training, KARPA achieves supe-
rior results by leveraging LLM’s global planning

24729

WebQSP CWQ

Model Method Accuracy Hit@1 F1 Accuracy Hit@1 F1

GPT-4o-mini

CoT - 61.3 - - 49.5 -
ToG 56.4 75.2 51.6 50.2 54.0 34.5

KARPA-B 67.2 82.3 61.5 66.0 72.1 57.8
KARPA-P 67.8 82.6 62.4 66.4 71.7 58.7
KARPA-H 71.9 85.3 64.5 68.1 73.3 56.5

GPT-4o

CoT - 67.0 - - 52.3 -
ToG 58.6 78.5 50.9 53.3 56.8 41.9

KARPA-B 73.8 85.2 67.3 65.0 70.5 55.8
KARPA-P 73.7 86.8 69.7 69.2 74.1 59.8
KARPA-H 76.1 87.7 69.2 69.8 75.3 58.4

GPT-4

CoT - 66.1 - - 54.7 -
ToG* (Sun et al., 2023) - 82.6 - - 69.5 -

KARPA-B 73.5 85.5 68.4 71.2 75.4 61.1
KARPA-P 74.1 86.8 69.3 73.4 77.9 63.0
KARPA-H 80.9 91.2 72.1 73.6 78.4 61.5

Gemini-1.5-Pro

CoT - 65.3 - - 52.1 -
ToG 62.3 78.4 52.5 51.7 57.9 40.5

KARPA-B 70.1 84.5 65.9 69.1 74.0 57.2
KARPA-P 73.8 88.0 67.4 69.6 73.5 57.7
KARPA-H 80.7 90.5 68.6 69.8 75.0 54.8

Table 3: Comparison of KARPA, ToG, and CoT using various LLMs and matching strategies. KARPA-B: Beam
search-based matching method with fixed beam width. KARPA-P: Pathfinding-based matching constrained to fixed-
length paths. KARPA-H: Heuristic value-based matching allowing similarity calculations across variable-length
paths. KARPA consistently outperforms ToG, the prior SOTA for direct KG-based reasoning using LLM.

Figure 3: Comparison of different matching strategies
across various LLMs on Hit@1 and F1 metrics.

capabilities, enabling the construction of coherent
relation paths between topic and answer entities.

To isolate reasoning ability of the LLM from
its internal knowledge, we tested KARPA on an
anonymized version of the WebQSP dataset, where
specific details in questions and answers are re-
placed with placeholders. For example, question
“Where is Jamarcus Russell from? - Mobile.” is
transformed into “Where is Person A from? - Lo-
cation A.” This ensures that the final results are
unaffected by LLM’s pre-existing knowledge. In

Table 2, RoG utilize its instruction-tuned LLaMA2-
7B for planning and GPT-4o-mini for reasoning,
while ToG and KARPA employ GPT-4o-mini for
entire pipeline. KARPA shows the smallest perfor-
mance drop, demonstrating its reliance on reason-
ing rather than LLM’s internal knowledge. RoG
exhibits larger decline, highlighting the limitations
of instruction-tuned LLMs for unseen KGs.

Dataset Method Accuracy Hit@1 F1

WebQSP
CoT - 41.5 -
ToG 24.6 30.2 21.9

KARPA 65.6 79.2 58.6

CWQ
CoT - 28.3 -
ToG 22.4 25.8 20.2

KARPA 47.6 52.7 38.8

Table 4: Performance comparison using Qwen2.5-7B.

5.2.2 Performance Across Different LLMs
We also evaluate ToG and KARPA across various
LLMs. As shown in Table 3, KARPA consistently
outperforms ToG and CoT, regardless of the LLM,
by leveraging global planning to construct more
logically sound and complete reasoning chains. In
contrast, ToG’s reliance on stepwise relation se-
lection limits its effectiveness, as it neglects the

24730

LLM’s inherent planning capabilities.
To demonstrate the effectiveness of KARPA on

smaller LLMs, we evaluate KARPA with Qwen2.5-
7B. Table 4 shows that KARPA outperforms ToG
even with smaller LLMs, demonstrating its robust-
ness and reduced reliance on LLMs’ planning abil-
ities. More results are provided in Appendix D.

6 Analysis and Discussion

6.1 Interaction Comparison
We compare the average number of interactions re-
quired by KARPA and ToG across multiple LLMs
and datasets. As shown in Table 5, KARPA reduces
interactions by more than half compared to ToG
while maintaining higher answer accuracy.

Method WebQSP CWQ

ToG*(Sun et al., 2023) 11.2 14.3

KARPA+GPT-4o-mini 5.1 6.2
KARPA+GPT-4o 4.8 5.3
KARPA+GPT-4 5.5 6.0

Table 5: Comparison of LLM call frequency.

To further illustrate the reduced reasoning com-
plexity, we compare the average number of input
and output tokens for both methods using GPT-4o-
mini’s tokenizer. Table 6 shows KARPA signifi-
cantly reduces token usage, lowering both reason-
ing complexity and computational cost.

WebQSP Input Tokens/KG Output Tokens/KG

ToG 6351.5 1836.5
KARPA 2465.9 1492.3

CWQ Input Tokens/KG Output Tokens/KG

ToG 7935.7 2931.6
KARPA 3612.1 2267.1

Table 6: Token usage comparison with GPT-4o-mini.

6.2 Ablation Study
Impact of matching methods. Table 3 shows
that KARPA-H achieves the best matching results,
demonstrating the advantage of its flexible and ro-
bust performance for KGQA. More results are pro-
vided in Appendix C.

Influence of different LLMs. Figure 3 shows
the impact of LLM capabilities on KARPA’s perfor-
mance. More powerful LLMs, such as GPT-4, gen-
erate better relation paths, leading to more accurate
answers (Kaplan et al., 2020). With weaker LLMs
like GPT-4o-mini, performance declines slightly

but still surpasses ToG. This highlights the impor-
tance of global planning in KARPA’s design.

Influence of Embedding Models. Table 7 eval-
uates KARPA with different embedding models:
(1) all-MiniLM-L6-v2 (86MB): Default model of
KARPA. (2) all-mpnet-base-v2 (417MB): More
powerful embedding model. (3) paraphrase-
multilingual-MiniLM-L12-v2 (448MB): Supports
embedding between multiple languages. The re-
sults demonstrate that KARPA’s performance re-
mains stable across different embedding models.

Embedding Model Accuracy Hit@1 F1

all-MiniLM-L6-v2 72.3 86.4 67.2
all-mpnet-base-v2 74.5 86.1 68.6
multilingual-MiniLM-L12-v2 74.1 85.3 68.3

Table 7: KARPA with different embedding models.

6.3 Discussion
KARPA requires fewer interactions and token us-
age comparing to ToG, while still outperforming
ToG even when using smaller LLMs. This effi-
ciency stems from KARPA’s ability to generate
complete reasoning chains, reducing the need for
stepwise interactions in other methods. Methods
like ToG impose heavy computational burdens by
evaluating hundreds or even thousands of adjacent
relations at each step, whereas KARPA’s global
planning aligns better with human-like reasoning.

Table 7 demonstrates that KARPA performs ro-
bustly across embedding models. Its pre-planned
paths are distinctive and semantically aligned with
correct reasoning paths, making even lightweight
embedding models sufficient for path matching.

7 Conclusion

In this paper, we propose KARPA, a novel frame-
work designed to enhance LLM-based KGQA by
utilizing the global planning and reasoning capabil-
ities of LLMs. KARPA addresses key limitations of
existing methods, achieving superior accuracy and
efficiency through its pre-planning, matching and
reasoning processes. Our experiments show that
KARPA consistently outperforms state-of-the-art
methods across multiple datasets. Its training-free
design allows seamless integration with various
LLMs, making it broadly applicable to different
KGQA tasks. By optimizing LLM-KG interac-
tions, KARPA enhances reasoning efficiency and
effectiveness, highlighting its potential as a robust
approach for future RAG systems.

24731

8 Limitations

Although KARPA effectively reduces the reliance
on the capacity of LLMs, its performance is still
influenced by the reasoning and planning capabili-
ties of the LLMs themselves. In situations where
weaker LLMs are used, KARPA’s performance may
degrade due to LLMs’ limited ability to generate
logically coherent paths or perform intricate reason-
ing tasks. In our future work, we aim to enhance
KARPA’s performance on weaker LLMs, ensur-
ing that KARPA remains effective across a broader
range of LLMs with varying levels of reasoning
and planning capabilities.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Claude 3.5 sonnet model card adden-
dum. Accessed: 2024-09-21.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682–17690.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Tiezheng Guo, Qingwen Yang, Chen Wang, Yanyi
Liu, Pan Li, Jiawei Tang, Dapeng Li, and Yingyou
Wen. 2024. Knowledgenavigator: Leveraging
large language models for enhanced reasoning over
knowledge graph. Complex & Intelligent Systems,
10(5):7063–7076.

Hangfeng He, Hongming Zhang, and Dan Roth. 2022.
Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Rikui Huang, Wei Wei, Xiaoye Qu, Wenfeng Xie, Xi-
anling Mao, and Dangyang Chen. 2024. Joint multi-
facts reasoning network for complex temporal ques-
tion answering over knowledge graph. In ICASSP
2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
10331–10335. IEEE.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong
Wen. 2022. Unikgqa: Unified retrieval and reason-
ing for solving multi-hop question answering over
knowledge graph. arXiv preprint arXiv:2212.00959.

Zhanming Jie, Trung Quoc Luong, Xinbo Zhang, Xi-
aoran Jin, and Hang Li. 2023. Design of chain-of-
thought in math problem solving. arXiv preprint
arXiv:2309.11054.

Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and
Jinghua Tan. 2024. A comprehensive survey on
process-oriented automatic text summarization with
exploration of llm-based methods. arXiv preprint
arXiv:2403.02901.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

24732

https://www.paperswithcode.com/paper/claude-3-5-sonnet-model-card-addendum
https://www.paperswithcode.com/paper/claude-3-5-sonnet-model-card-addendum

Shiyang Li, Yifan Gao, Haoming Jiang, Qingyu Yin,
Zheng Li, Xifeng Yan, Chao Zhang, and Bing Yin.
2023a. Graph reasoning for question answering with
triplet retrieval. arXiv preprint arXiv:2305.18742.

Wendi Li, Wei Wei, Xiaoye Qu, Xian-Ling Mao,
Ye Yuan, Wenfeng Xie, and Dangyang Chen.
2023b. Trea: Tree-structure reasoning schema for
conversational recommendation. arXiv preprint
arXiv:2307.10543.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Lidong Bing, Shafiq Joty, and Soujanya Po-
ria. 2023c. Chain of knowledge: A framework for
grounding large language models with structured
knowledge bases. arXiv preprint arXiv:2305.13269.

Antoine Louis, Gijs van Dijck, and Gerasimos Spanakis.
2024. Interpretable long-form legal question answer-
ing with retrieval-augmented large language models.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 22266–22275.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2023. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv
preprint arXiv:2310.01061.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

OpenAI. 2023. Gpt-4 technical report. Technical report,
OpenAI.

OpenAI. 2024. Gpt-4o system card. Technical report,
OpenAI. https://www.openai.com/research/
gpt-4o.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering.

Reimers. 2019. Sentence-BERT: Sentence embeddings
using Siamese BERT-networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3982–3992, Hong Kong,
China. Association for Computational Linguistics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
A survey of cross-lingual word embedding models.
Journal of Artificial Intelligence Research, 65:569–
631.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. arXiv
preprint arXiv:1809.00782.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Heung-Yeung Shum,
and Jian Guo. 2023. Think-on-graph: Deep and
responsible reasoning of large language model with
knowledge graph. arXiv preprint arXiv:2307.07697.

Talmor. 2018. The web as a knowledge-base for
answering complex questions. arXiv preprint
arXiv:1803.06643.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
et al. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
Preprint, arXiv:2403.05530.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang
Xiong. 2023. Knowledge-driven cot: Exploring faith-
ful reasoning in llms for knowledge-intensive ques-
tion answering. arXiv preprint arXiv:2308.13259.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu
He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. 2022. Large language models are better
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Guanming Xiong, Junwei Bao, and Wen Zhao. 2024.
Interactive-kbqa: Multi-turn interactions for knowl-
edge base question answering with large language
models. arXiv preprint arXiv:2402.15131.

24733

https://cdn.openai.com/papers/gpt-4.pdf
https://www.openai.com/research/gpt-4o
https://www.openai.com/research/gpt-4o
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, and
Enhong Chen. 2023. Large language models for
generative information extraction: A survey. arXiv
preprint arXiv:2312.17617.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2022. Decaf: Joint decoding of answers and log-
ical forms for question answering over knowledge
bases. In The Eleventh International Conference on
Learning Representations.

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao
Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yim-
ing Yang, and Michael Zeng. 2021. Kg-fid: In-
fusing knowledge graph in fusion-in-decoder for
open-domain question answering. arXiv preprint
arXiv:2110.04330.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren,
Shu Wu, and Zhumin Chen. 2024. Knowledge
graph enhanced large language model editing. arXiv
preprint arXiv:2402.13593.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the ai ocean: A survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang,
and Guandong Xu. 2024. Kg-cot: Chain-of-thought
prompting of large language models over knowledge
graphs for knowledge-aware question answering.

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber,
Jae Hee Lee, Kun Chu, and Stefan Wermter. 2023.
Enhancing zero-shot chain-of-thought reasoning in
large language models through logic. arXiv preprint
arXiv:2309.13339.

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao,
Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen,
and Ningyu Zhang. 2024. Llms for knowledge graph
construction and reasoning: Recent capabilities and
future opportunities. World Wide Web, 27(5):58.

A Algorithm for KARPA

In this section, we present the pseudo-code for the
Knowledge graph Assisted Reasoning Path Aggre-
gation (KARPA) framework, as shown in Algo-
rithm 1. The pseudo-code outlines the key compo-
nents of our approach, including the pre-planning,
matching, and reasoning phases. It demonstrates
the interaction between the large language model
(LLM) and the embedding model in generating,
matching, and refining relation paths, which are
crucial for improving LLM-based KGQA tasks.

Algorithm 1: KARPA Framework
Input: Question Q, Topic entity et,

Knowledge Graph KG
Output: Answers Ea

Pre-Planning Phase:
Generate initial paths
Pi = {p1, p2, . . . , pm} using
LLM(Q, et);

for each path pi = (ri1, r
i
2, . . . , r

i
ni
) do

Decompose pi into relation list
Ri = {ri1, ri2, . . . , rini

};
for each relation rij in Ri do

Retrieve top-K similar relations
Ri

j = Top-K(sim(rij, r));
end

end
Re-plan relation paths
Pcand = LLM(Q,Ri

j) based on extracted
relations Ri

j ;
Matching Phase:
Extract relation paths Pr with length
L ∈ len(Pcand);

for each path p in Pcand do
Compute similarity between paths

using heuristic value Pmatched =
Heuristic(sim(p, pr), pr ∈ Pr);

Extract top-K similar paths
P = Top-K(Pmatched);

end
Reasoning Phase:
Combine relation paths
Pmatched = {r1, r2, . . . , rn} with et, ea
into prompt;

Predict final answer
Ea = LLM(Q,Pmatched, et, ea);

return Ea

24734

WebQSP

Model Tpye Method Accuracy Hit@1 F1 Precision

GPT-4o-mini
KARPA-B 67.2 82.3 61.5 64.1
KARPA-P 67.8 82.6 62.4 64.9
KARPA-H 71.9 85.3 64.5 65.9

GPT-4o
KARPA-B 73.8 85.2 67.3 72.3
KARPA-P 73.7 86.8 69.7 70.5
KARPA-H 76.1 87.7 69.2 71.5

GPT-4
KARPA-B 73.5 85.5 68.4 71.7
KARPA-P 74.1 86.8 69.3 73.6
KARPA-H 80.9 91.2 72.1 73.1

DeepSeek-V2.5
KARPA-B 71.8 84.0 63.1 65.9
KARPA-P 73.4 85.3 64.1 66.3
KARPA-H 78.1 88.4 68.7 67.6

Gemini-1.5-Pro
KARPA-B 70.1 84.5 65.9 64.7
KARPA-P 73.8 88.0 67.4 66.1
KARPA-H 80.7 90.5 68.6 67.8

Claude-3.5-Sonnet
KARPA-B 75.1 85.7 66.0 67.6
KARPA-P 80.4 89.0 69.7 70.4
KARPA-H 82.6 89.5 69.7 69.1

Table 8: Performance of KARPA with different matching strategies (KARPA-B, KARPA-P, and KARPA-H) and
LLMs on the WebQSP dataset.

B Implementation Details

Model Invocation. KARPA is tested with LLMs
such as GPT-4 (OpenAI, 2023), GPT-4o (Ope-
nAI, 2024), GPT-4o-mini, Claude-3.5-Sonnet (An-
thropic, 2024), Gemini-1.5-pro (Team et al., 2024),
and other LLMs through API calls. These LLMs
are queried dynamically throughout the experimen-
tal pipeline to perform pre-planning, matching, and
reasoning steps.

Experimental Setup. During the pre-planning
stage, the initial paths generated by the LLM are
decomposed and stored, along with the query, into
a list. For each element in this list, we extract the
top-k relations, where the total number of extracted
relations does not exceed 30. These relations are
semantically closest to the elements based on the
LLM’s initial output.

In the matching step, KARPA selects the top 16
relation paths with the highest similarity for each
initial relation path. These paths serve as candidate
paths for reasoning step. In the reasoning step, we
limit the number of candidate paths input to the
LLM at one time to a maximum of 8, ensuring

that the reasoning process remains manageable and
focused on the most relevant paths.

Answer Evaluation. To determine if the LLM
correctly answers the question, KARPA enforces
a specific output format. The final answer must be
enclosed in curly brackets in the LLM’s output. We
consider an answer correct only when the tail enti-
ties of the reasoning paths match the text enclosed
within the curly brackets in the LLM’s output. For
CoT, we consider an answer correct if the LLM’s
response contains the correct answer entities. This
difference reflects the distinct reasoning and output
expectations between KARPA and CoT.

C Additional Results

In this section, we present additional experimen-
tal results to further evaluate the performance of
KARPA when using different matching methods:
KARPA-B (beam search-based matching strategy),
KARPA-P (pathfinding-based matching strategy),
and KARPA-H (heuristic value-based matching
strategy). We conduct these experiments across
various LLMs, analyzing the effectiveness of each

24735

CWQ

Model Tpye Method Accuracy Hit@1 F1 Precision

GPT-4o-mini
KARPA-B 66.0 72.1 57.8 58.6
KARPA-P 66.4 71.7 58.7 59.8
KARPA-H 68.1 73.3 56.5 55.1

GPT-4o
KARPA-B 65.0 70.5 55.8 57.8
KARPA-P 69.2 74.1 59.8 58.4
KARPA-H 69.8 75.3 58.4 59.5

GPT-4
KARPA-B 71.2 75.4 61.1 62.7
KARPA-P 73.4 77.9 63.0 62.5
KARPA-H 73.6 78.4 61.5 63.1

DeepSeek-V2.5
KARPA-B 61.6 63.2 48.4 50.1
KARPA-P 60.9 63.0 51.8 52.6
KARPA-H 62.6 64.1 51.9 53.5

Gemini-1.5-Pro
KARPA-B 69.1 74.0 57.2 59.5
KARPA-P 69.6 73.5 57.7 60.3
KARPA-H 69.8 75.0 54.8 55.8

Claude-3.5-Sonnet
KARPA-B 62.8 65.7 49.6 52.1
KARPA-P 61.5 64.3 52.9 55.5
KARPA-H 70.6 73.7 54.9 56.9

Table 9: Performance of KARPA with different matching strategies (KARPA-B, KARPA-P, and KARPA-H) and
LLMs on the CWQ dataset.

matching strategy in conjunction with different
LLMs. These results provide a deeper insight into
how different matching mechanisms impact the
overall performance of KARPA, showcasing the
versatility and adaptability of our approach under
varying model conditions.

The results presented in Table 8 and Table 9 con-
sistently demonstrate the superior performance of
KARPA-H (heuristic value-based matching) com-
pared to the other two matching strategies, KARPA-
B (beam search-based) and KARPA-P (pathfinding-
based), across different LLMs and datasets (We-
bQSP and CWQ).

In the majority of LLMs, KARPA-H outper-
forms the other methods in most metrics. This
suggests that KARPA-H is more effective at extract-
ing the correct relation paths, which in turn leads
to more accurate and contextually relevant answers.
These results highlight KARPA-H as the most ro-
bust and reliable matching method among the three,
reinforcing its advantage in handling complex KG-
based reasoning tasks.

D Additional Experiments

In this section, we provide additional experiments
to validate KARPA’s performance from different
perspectives.

To demonstrate that KARPA has better gen-
eralization capabilities than methods based on
instruction-tuned LLMs, we conducted an experi-
ment using GPT-4o-mini with a modified version
of the WebQSP dataset. Specifically, we slightly
alter the questions in WebQSP dataset while pre-
serving their original meaning, using the prompt:
"Please revise the question to make it more clear,
but the original meaning of the question and the
corresponding answers remain unchanged." We test
RoG using its instruction-tuned LLaMa2-Chat-7B
from in the planning step and GPT-4o-mini for rea-
soning. In KARPA, we use GPT-4o-mini for both
pre-planning and reasoning steps.

The results in Table 10 show that KARPA’s per-
formance remains consistent and robust to question
modifications, while RoG’s performance drops due
to path mismatches. This further highlights the
advantage of KARPA’s training-free framework,

24736

Question Method Accuracy Hit@1 F1 Method Accuracy Hit@1 F1
Origin RoG 67.6 84.1 69.7 KARPA 73.1 85.4 68.1

Revised RoG 63.5 74.3 64.1 KARPA 72.6 84.5 68.9
Variation RoG -4.1 -9.8 -5.6 KARPA -0.5 -0.9 +0.8

Table 10: Comparison of RoG and KARPA on the WebQSP dataset with original and revised questions.

maintaining superior robustness and adaptability
across all KGs.

To demonstrate the effectiveness of KARPA
with smaller LLMs, we conduct experiments with
Qwen2.5-7B and Qwen2.5-14B as the LLM back-
bones for KARPA. The results in Table 11 demon-
strate that KARPA consistently outperforms step-
wise direct inference baselines such as ToG, even
when using smaller LLMs. This reinforces the
robustness and adaptability of our method across
different LLM scales.

WebQSP

Model Type Method Accuracy Hit@1 F1

Qwen2.5-7B
CoT - 41.5 -
ToG 24.6 30.2 21.9

KARPA 65.6 79.2 58.6

Qwen2.5-14B
CoT - 49.6 -
ToG 45.0 55.9 42.7

KARPA 72.6 84.1 65.0

CWQ

Qwen2.5-7B
CoT - 28.3 -
ToG 22.4 25.8 20.2

KARPA 47.6 52.7 38.8

Qwen2.5-14B
CoT - 31.2 -
ToG 30.2 36.6 29.5

KARPA 51.5 57.9 41.6

Table 11: Performance comparison of different methods
on WebQSP and CWQ datasets using smaller LLMs.

Also, the results in Table 11 show that KARPA
can perform well with LLMs that have weaker plan-
ning and reasoning capabilities, further highlight-
ing KARPA’s robustness and its reduced depen-
dence on the LLM’s planning and reasoning abili-
ties compared to other inference-based methods.

In multilingual scenarios, KARPA can effec-
tively address this problem by using multilingual
embedding models. For instance, in a multilin-
gual setting, we test KARPA with paraphrase-
multilingual-MiniLM-L12-v2, a multilingual em-
bedding model. In the multilingual experiment,
we use GPT-4o-mini to generate relation paths in
Chinese, and then use the multilingual embedding

model to calculate the semantic similarity between
the candidate paths and paths in the KG.

These results in Table 12 demonstrate that with a
multilingual embedding model, KARPA performs
effectively across languages, maintaining its robust-
ness. They also indicate that language variations
do not significantly impact KARPA’s performance.

To demonstrate the necessity of extending rela-
tion paths with different lengths, we restrict the
matching step to use only single-relation candi-
date paths provided by the LLM during re-planning
step, and compare the performance of the heuristic
value-based matching method (KARPA-H) with
the pathfinding-based matching method (KARPA-
P) using GPT-4o-mini.

The results in the Table 13 demonstrate that
the heuristic value-based matching method outper-
forms pathfinding-based matching methods in such
scenarios, as it effectively addresses the seman-
tic similarity issues that arise from differing path
lengths. Moreover, as the questions in the CWQ
dataset generally require longer reasoning paths
compared to WebQSP, both methods exhibit a more
significant decline in various metrics on CWQ.
However, the heuristic value-based method shows
a less pronounced drop compared to pathfinding-
based methods, further demonstrating its superior-
ity.

To validate the performance of KARPA on KGs
outside the training scope, we compare KARPA
with Chain-of-Thought (CoT) reasoning, where the
LLM directly relies on its internal knowledge to
answer questions. Using open source LLMs such
as Qwen2.5-7B, Qwen2.5-14B and Qwen2.5-72B
(with limited stored knowledge), we observe that
CoT performance drops significantly on KGQA
tasks while KARPA maintains strong performance.

The results in Table 14 highlight KARPA’s abil-
ity to operate effectively on unseen KGs by focus-
ing on reasoning and planning rather than leverag-
ing the LLM’s pre-existing knowledge. The results
also show that KARPA maintained strong perfor-
mance, even as the LLM’s stored knowledge was
significantly reduced. This means that even if the

24737

WebQSP CWQ

Language Accuracy Hit@1 F1 Accuracy Hit@1 F1

English-English 74.1 85.3 68.3 65.3 69.5 55.4
Chinese-English 74.6 84.5 67.6 63.1 68.0 54.2

Table 12: Performance comparison of different languages using a multilingual embedding model.

WebQSP CWQ

Candidate Path Method Accuracy Hit@1 F1 Accuracy Hit@1 F1
Original Paths KARPA-P 66.0 81.2 63.8 61.0 64.5 53.4
Original Paths KARPA-H 72.3 86.4 67.2 64.6 67.7 55.1
Single-Relation Paths KARPA-P 63.6 77.3 60.7 40.5 43.9 39.3
Single-Relation Paths KARPA-H 71.4 85.5 68.9 55.1 59.6 47.4

Table 13: Performance of KARPA-P and KARPA-H using different candidate paths on the WebQSP and CWQ
datasets.

LLM does not have ample prior knowledge about
a specific domain, KARPA can still leverage the
LLM’s reasoning and planning capabilities to con-
struct reasoning chains to find the correct answers
within the KG.

To demonstrate the effectiveness of KARPA in
noisy KGs and specialized domains, we conduct
an experiment introducing noise into the KG. For
WebQSP and CWQ samples with reasoning paths
longer than one, we randomly shuffle the neighbor-
ing relations of topic entity and then compared the
performance of KARPA and ToG using GPT-4o-
mini.

The results in Table 15 show that KARPA experi-
ences a slight drop in performance, demonstrating
its resilience to noisy relations. ToG shows a more
significant decline, highlighting the limitations of
traditional KGQA methods in noisy environments.

E Further Discussion

E.1 Effectiveness Beyond KGQA Tasks
While KARPA is currently designed to address
challenges in KGQA tasks, following the settings
of prior works such as RoG and ToG, its methodol-
ogy is generalizable to other knowledge-intensive
tasks.

KARPA’s core idea lies in letting LLMs gener-
ate complete reasoning chains instead of disrupting
reasoning continuity with step-by-step searching.
This approach mimics human reasoning processes
and enhances reasoning efficiency. For example, in
knowledge-intensive task such as the retrieval of
academic papers, KARPA could generate reason-

ing chains like “research field → target journal/con-
ference → specific keywords”, and then retrieve
the corresponding paper using semantic similarity.
When extracting information from books, the rea-
soning chain like “book title → relevant chapter →
relevant paragraphs” could streamline the informa-
tion extraction. This reasoning-chain generation
aligns with human thought processes, making it
both intuitive and adaptable to diverse knowledge-
intensive tasks.

E.2 Incorporating User Feedback
Mechanisms

KARPA’s architecture is inherently well-suited to
incorporating user feedback mechanisms due to its
design of generating complete reasoning paths. We
provide a potential extension here:

• Initial Path Generation: KARPA generates an
initial reasoning path based on the user query.

• Ambiguity Threshold: Using our semantic
similarity-based matching method, we match
the LLM-generated path with paths within the
KG. If the similarity score reaches a certain
ambiguity threshold, the query is considered
clear; if the similarity score falls below that
threshold, we identify the query as potentially
ambiguous.

• User Feedback: If the similarity score reaches
the threshold, we can provide the user with
the retrieved answers. If the score falls below
the threshold, we could present the extracted

24738

WebQSP CWQ

Base-Model Method Accuracy Hit@1 F1 Accuracy Hit@1 F1

Qwen2.5-7B
CoT - 41.5 - - 28.3 -
KARPA 65.6 79.2 58.6 47.6 52.7 38.8
Gain - +37.7 - - +24.4 -

Qwen2.5-14B
CoT - 49.6 - - 31.2 -
KARPA 72.6 84.1 65.0 51.5 57.9 41.6
Gain - +34.5 - - +26.7 -

Qwen2.5-72B
CoT - 56.9 - - 40.5 -
KARPA 73.2 86.0 64.5 61.1 63.6 52.7
Gain - +29.1 - - +23.1 -

Table 14: Performance comparison of CoT and KARPA methods across different base models (Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-72B) on WebQSP and CWQ datasets.

reasoning paths to the user for review and
request further clarification or refinement of
the query.

• Refinement and Rematching: Based on user
feedback, KARPA could adjust the reasoning
path and re-run the matching process to gen-
erate more accurate results.

Through the steps outlined above, KARPA can
establish a comprehensive user feedback mech-
anism, which enhances the precision of queries
based on ongoing user feedback.

F Detailed Related Work

F.1 Prompt-Based Question Answering Using
Internal Knowledge

In the field of large language models (LLMs), re-
searchers explore how to combine internal knowl-
edge with external information to enhance reason-
ing abilities. Existing models utilize a vast internal
knowledge base and achieve significant progress
in reasoning tasks. To further optimize these capa-
bilities, researchers propose various prompt-based
methods, such as Chain of Thought (CoT) (Li
et al., 2023c) prompting. This method breaks
down complex tasks into manageable steps, pro-
moting structured reasoning and excelling in math-
ematical and logical reasoning. Building on CoT,
researchers also develop variants like Auto-CoT
(Zhang et al., 2022), Zero-Shot-CoT (Kojima et al.,
2022), Complex-CoT (Fu et al., 2022), and new
frameworks such as Tree of Thoughts (ToT) (Yao
et al., 2024), which further expand the application
range of LLMs.

Additionally, with regard to the “decoding" prob-
lem of the reasoning process, Self-consistency
CoT (Wang et al., 2022) serves as a representa-
tive method. It generates multiple reasoning paths
through manually designed prompts and employs a
“majority voting" mechanism to identify the “most
consistent" path, thereby enhancing CoT perfor-
mance. CoT verification (Weng et al., 2022) is
another important research direction that allows
models to self-verify the correctness of their an-
swers through multiple rounds of reasoning. Self-
Verification samples multiple candidate reasoning
paths and ranks them based on whether the con-
ditions satisfy the conclusions. Recently, OpenAI
launches the o1 series models, marking a signifi-
cant advancement in LLM reasoning abilities, al-
lowing models to develop extensive internal chains
of thought and further tap into their reasoning po-
tential.

F.2 Embedding models and Embedding-based
methods.

Embedding models have revolutionized how we
represent and understand text by converting words
and sentences into dense vector representations
(Mikolov et al., 2013). These embedding models
capture the semantic meaning of the text, enabling
models to effectively measure the similarity and re-
lationships between different texts. In recent years,
significant progress has been made in the field of
text embeddings, largely due to the emergence of
pre-trained language models (Vaswani et al., 2017).
Models like BERT and its variants have become
fundamental tools for efficiently encoding the un-
derlying semantics of data. Key advancements in

24739

WebQSP CWQ

Knowledge Graphs Method Accuracy Hit@1 F1 Accuracy Hit@1 F1

Original KGs ToG 54.2 72.8 50.3 47.6 52.5 39.1
Shuffled KGs ToG 32.7 48.2 30.1 23.3 26.7 20.9
Variation ToG -21.5 -24.6 -20.2 -24.3 -25.8 -18.2

Original KGs KARPA 72.3 86.4 67.2 64.6 67.7 55.1
Shuffled KGs KARPA 70.7 84.1 64.5 56.0 61.3 51.5
Variation KARPA -1.6 -2.3 -2.7 -8.6 -6.4 -3.6

Table 15: Comparison of performance between original and shuffled KGs for ToG and KARPA methods on WebQSP
and CWQ datasets.

contrastive learning, particularly improvements in
negative sampling and knowledge distillation appli-
cations, also contribute significantly to the progress
in this field. As a result, there is a growing trend
to develop universal embedding models that can
uniformly support a variety of applications, rang-
ing from information retrieval to natural language
processing tasks.

F.3 Knowledge Graphs and
Retrieval-Augmented Methods.

Knowledge graphs and retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020) play a crucial
role in enhancing various downstream tasks, such
as question answering, text generation, and infor-
mation retrieval. Early research (Sun et al., 2018)
uses random walk algorithms to retrieve informa-
tion from knowledge graphs. Subsequent studies
(Li et al., 2023a; Yu et al., 2021) employ BM25
and DPR algorithms for knowledge graph-based
information retrieval, further improving the perfor-
mance of LLMs. UniKGQA (Jiang et al., 2022) in-
tegrates the retrieval process with LLMs to achieve
state-of-the-art performance in knowledge graph
question-answering tasks. KELP utilizes an embed-
ding model to filter reasoning paths from the KG.
However, it does not leverage the reasoning capa-
bilities of LLMs and is limited to reasoning paths
within a 2-hop range, restricting its applicability to
more complex queries. KnowledgeNavigator (Guo
et al., 2024) employs an iterative process where the
LLM retrieves and filters relevant knowledge di-
rectly from the KG. GraphRAG (Edge et al., 2024)
designs a powerful process that extracts structured
data from unstructured text using LLMs. These
studies collectively demonstrate that information
retrieved from knowledge graphs significantly en-
hances the reasoning capabilities of LLMs.

G Datasets

We adopt two widely-used multi-hop KGQA
datasets in our work. Table 16 below gives detailed
statistical information for both datasets.

Statistics WebQSP CWQ

Dataset Split

Train 2,826 27,639
Test 1,628 3,531

Question Hop Distribution

1 hop 65.49% 40.91%
2 hop 34.51% 38.34%
≥ 3 hop 0.00% 20.75%

Answer Counts Distribution

Ans = 1 51.2% 70.6%
2 ≤ Ans ≤ 4 27.4% 19.4%
5 ≤ Ans ≤ 9 8.3% 6.0%
Ans ≥ 10 12.1% 4.0%

Table 16: Comprehensive Statistics of Datasets.

• WebQuestionsSP (WebQSP) (Yih et al.,
2016) is a knowledge base Q&A dataset con-
taining 4737 questions requiring up to 2-hop
reasoning on the KG Freebase (Bollacker
et al., 2008), designed to improve the per-
formance of Q&A systems through semantic
parsing.

• Complex WebQuestion (CWQ) (Talmor,
2018) is extended based on the WebQSP
dataset that require up to 4-hop reasoning on
the KG Freebase (Bollacker et al., 2008) to
solve more complex Q&A tasks.

24740

H Baselines

We consider the following baseline methods for
performance comparison:

• IO Prompt: Directly query large language
models (LLMs) for answers without relying
on external sources of information or addi-
tional reasoning processes.

• CoT Prompt: Utilizing Chain-of-Thought
prompting with LLMs to facilitate reasoning
involves guiding the LLM through a step-by-
step process, where each step reflects the logi-
cal sequence of human reasoning.

• LLM-Based KGQA Methods:

KD-CoT (Wang et al., 2023) interacts with
external knowledge to verify and amend the
reasoning paths within the Chain-of-Thought
(CoT), effectively overcoming issues of hal-
lucinations and error propagation. It struc-
tures the CoT reasoning process of LLMs into
a formatted multi-round QA approach. In
each round, LLMs interact with a QA system
that retrieves external knowledge, construct-
ing more reliable reasoning paths based on the
precise answers retrieved, thereby enhancing
the accuracy and credibility of reasoning.

UniKGQA (Jiang et al., 2022) unifies re-
trieval and reasoning in both model architec-
ture and parameter learning by designing a
shared pre-training task based on question-
relation matching and applying fine-tuning
strategies to optimize the retrieval and reason-
ing processes. It includes two main modules:
a semantic matching module based on a pre-
trained language model (PLM) for question-
relation semantic matching, and a matching
information propagation module that spreads
matching information along directed edges in
the knowledge graph (KG).

DECAF (Yu et al., 2022) arrives at the final
answer by co-generating logical forms and di-
rect answers and combining the best of both.
Unlike approaches that rely on entity linking
tools, DECAF simplifies the process of infor-
mation retrieval by linearizing the knowledge
base into text documents and locating relevant
subgraphs using text-based retrieval methods.

RoG (Luo et al., 2023) is an approach that
combines LLMs with KG to achieve reliable

and interpretable reasoning. The method first
generates knowledge graph-based relational
paths that serve as faithful reasoning plans,
and then utilizes these plans to retrieve valid
reasoning paths from the knowledge graph for
accurate reasoning in LLMs. RoG enhances
the reasoning capabilities of LLMs by training
to distill knowledge from knowledge graphs
and allows them to be seamlessly integrated
with arbitrary LLMs for reasoning.

ToG (Sun et al., 2023) proposes a new LLM-
KG integration paradigm “LLM

⊗
KG” that

treats a LLM as an agent that performs a beam
search over the knowledge graph iteratively to
discover the most promising reasoning paths
and return the most possible reasoning re-
sults. ToG leverages the reasoning power of
LLMs and expert feedback to ensure trace-
ability and correctability of knowledge. The
framework is flexible and plug-and-play for
different LLMs, knowledge graphs, and cue-
ing strategies with no additional training cost.

I Prompts

Our proposed KARPA framework consists of the
following three main steps: (1) Pre-Planning; (2)
Matching; (3) Reasoning. Among them, steps (1)
and (3) use the Large Language Model (LLM), and
Appendix I provides the related Prompts.

I.1 Pre-Planning
I.1.1 Initial-Planning Prompt
In the pre-planning stage, initial planning involves
using an LLM to preliminarily generate several
relation paths of different lengths. The prompt
used for this process is given in Content I.1.1.

- Initial-Planning Prompt

In the process of answer retrieval using a knowl-
edge graph, please think step-by-step and generate
reasoning paths of lengths 1, 2, and 3 from a given
question and the provided head entity (or entities)
that could potentially lead to answer entities. If a
reasoning path of the specified length does not exist,
please explain the reason.

Q:
Name the president of the country whose main

spoken language was Brahui in 1980?
Topic Entity: Brahui Language

A:
Length 1 reasoning path: The answer entity can-

not be reached within a single step, so the length 1
reasoning path is None: {}.

24741

Length 2 reasoning path: The answer en-
tity may be reached by first finding the cor-
responding country through the relation "lan-
guage.human language.main country", and then find-
ing the president of the country through the rela-
tion "government.government position held.office
holder". So the length 2 reasoning path is:
{language.human_language.main_country, govern-
ment.government_position_held.office_holder}.

Length 3 reasoning path: The answer entity does
not require 3 steps to reach, so the length 3 reasoning
path is None: {}.

Q:
Who is Tom’s wife?
Topic Entity: Tom

A:
Length 1 reasoning path: The answer entity can

be reached within a single step by finding Tom’s
spouse through the relation "people.person.spouse_s".
Therefore, the length 1 reasoning path is: {peo-
ple.person.spouse_s}.

Length 2 reasoning path: The answer entity of
the question may be reached if we first find the chil-
dren through first relation "people.person.children",
and then find the parent through second relation
"people.person.parent". Therefore, the length 2
reasoning path is: {people.person.children, peo-
ple.person.parent}.

Length 3 reasoning path: The answer entity of the
question does not require 3 steps to reach, so the
length 3 reasoning path is None: {}.

Q:
{A Question.}
Topic Entity: {An Entity}

A:

I.1.2 Re-Planning Prompt

In the re-planning of pre-planning, the LLM is used
to re-plan relation paths based on the extracted re-
lations (specifically the top-K relations), which are
then used as retrieval information in the matching
step. The prompt used is shown in Content I.1.2.

' Re-Planning Prompt

Given a set of relations and a question, please se-
lect relevant relations from the provided relation set
to form reasoning paths of length 1, 2, and 3 that
could lead from the provided topic entity (or entities)
to potential answer entities in a knowledge graph.
Ensure that the reasoning paths you create logically
connect the topic entity and potential answer entities.
Only consider length 3 paths if shorter paths are in-
sufficient to reach the answer. If a reasoning path of
the specific length cannot be formed, please explain
why.

Q:
Name the president of the country whose main

spoken language was Brahui in 1980?
Topic Entity: Brahui Language
Relations:

language.human_language.language_family;

language.human_language.main_country;
base.rosetta.languoid.parent;
language.human_language.writing_system;
language.human_language.countries_spoken_in;
kg.object_profile.prominent_type;

A:
Length 1 reasoning path: The provided relations

cannot reach the answer entity in one step, so the
length 1 reasoning path is None: {}.

Length 2 reasoning path: The answer entity
may be reached by first finding the correspond-
ing country through the provided relation "lan-
guage.human language.main country", and then find-
ing the president of the country through the rela-
tion "government.government position held.office
holder". So the length 2 reasoning path is:
{language.human_language.main_country, govern-
ment.government_position_held.office_holder}.

Length 3 reasoning path: The answer entity does
not require 3 steps to reach, so the length 3 reasoning
path is None: {}.

Q:
Who is Tom’s wife?
Topic Entity: Tom
Relations:

people.person.profession;
people.marriage.spouse;
people.person.nationality;
award.award_nomination.award_nominee;
people.person.parents;
award.award_nominee.award_nominations;
people.person.children;

A:
Length 1 reasoning path: Tom’s wife in knowl-

edge graph could be reached within a single step by
finding Tom’s spouse through the provided relation
"people.person.spouse_s". Therefore, the length 1
reasoning path is: {people.person.spouse_s}.

Length 2 reasoning path: Tom’s wife may be
reached if we first find the children through the rela-
tion "people.person.children", and then find the par-
ent through second relation "people.person.parent".
Therefore, the length 2 reasoning path is: {peo-
ple.person.children, people.person.parent}.

Length 3 reasoning path: The answer entity of the
question does not require 3 steps to reach, so the
length 3 reasoning path is None: {}.

Q:
{A Question.}
Topic Entity: {An Entity.}
Relations: {A list of Relations.}

A:

I.2 Reasoning

In the reasoning step, the top-K relation paths re-
trieved in the matching step, along with their con-
nected topic entity, answer entities, the correspond-
ing question, and all related information are input
into the LLM. The prompt used is provided in con-
tent I.2 below.

24742

« Reasoning Prompt

Given a question and the associated retrieved
knowledge graph reasoning paths (topic entity, re-
lation path, tail entity/entities), please think step-by-
step and determine whether the tail entity/entities of
each provided reasoning paths are the right answer
to the question. If any of the tail entities are the cor-
rect answer, return those tail entities in the format of
answer_1, answer_2, If the tail entity of current
reasoning path is not the answer of question, explain
why. All reasoning paths should be analysed.

Q:
Rift Valley Province is located in a nation that uses

which form of currency?
Reasoning Paths:

(Rift Valley Province, location.administrative
division.country, Kenya)

(Rift Valley Province, location.location.geo lo-
cation, UnName Entity)

(Rift Valley Province, location.administrative
division.country → location.country.currency used,
Kenyan shilling)
A:

Let’s analyze the reasoning paths step-by-step to
determine the correct answer to the question.

1.(Rift Valley Province, location.administrative di-
vision.country, Kenya): Rift Valley Province is lo-
cated in Kenya. However, it does not provide infor-
mation about the currency used in Kenya, so Kenya
is not the direct answer to the question.

2.(Rift Valley Province, location.location.geo loca-
tion, UnName Entity): The UnName Entity is not the
answer of question.

3.(Rift Valley Province, location.administrative
division.country→ location.country.currency used,
Kenyan shilling): Kenyan shilling is the form of cur-
rency used in the nation where Rift Valley Province
is located, so ’Kenyan shilling’ is the right answer to
the question.

The correct answer to the question is the Kenyan
shilling, as identified in the fourth reasoning path.
Therefore, the correct tail entity is:
{Kenyan shilling}.

Q:
{A Question.}
Reasoning Paths: {A list of Reasoning Paths.}

A:

J Case Study

In this section, we present a detailed case study
to illustrate the effectiveness of KARPA in han-
dling complex knowledge graph question answer-
ing (KGQA) tasks. KARPA leverages LLMs in
both the pre-planning and reasoning steps. For the
question “What did James K. Polk do before he
was president?", KARPA uses the LLM to generate
initial reasoning paths and then further refines the
answer by reasoning over the identified relation
paths and corresponding entities. The following
case study elaborates on the workflow of KARPA

in this example, showcasing its ability to utilize
external knowledge and LLM planning capabilities
to accurately answer the question.

In the pre-planning step, KARPA first utilizes
the LLM to generate initial relational paths based
on the provided question, as shown in Figure 4.
Given the question “What did James K. Polk do
before he was president?", the LLM generates paths
of varying lengths. Initially, the LLM considers
whether the answer entities can be reached within a
single relational step. Since the LLM considers the
answer entities for this question cannot be reached
in one step, the LLM outputs an empty reasoning
path of length 1.

When considering a relational path with two
associated relations, the LLM infers that the an-
swer entity can be found by first identifying the
political positions held by James K. Polk through
the relation “government.politician.position_held,"
and then filtering for the position he held before
becoming president using “filter: position before
president." Thus, the LLM determines that the an-
swer entities can be reached via the path {govern-
ment.politician.position_held, filter: position be-
fore president}. Additionally, the LLM considers
that the answer entities might be accessible through
a path involving three relations. This step-by-step
reasoning process allows the LLM to initially plan
multiple reasoning chains for subsequent relation
extraction.

In the third phase of the pre-planning step,
KARPA employs the LLM to re-plan the relational
paths based on the set of extracted relations. For
the question “What did James K. Polk do before
he was president?", the LLM is provided with a set
of relations, as illustrated in Figure 5. The LLM
is tasked with selecting relevant relations from the
list and assembling them into complete reasoning
chains that potentially connect the topic entity to
the answer entities.

In this case, the LLM determines that the
answer entities cannot be reached using a
single relation from the provided list, and
therefore outputs an empty relation path for
length 1. When constructing a relation path
of length 2, the LLM identifies that “govern-
ment.politician.government positions held" and
“government.government position held.office
position or title" form a complete reasoning chain,
enabling the extraction of the correct answer
entities for the given question. As a result, the
LLM outputs the length 2 relation path as {govern-

24743

Figure 4: A Case for Relational Path Generation in the Initial-Planning Phase.

ment.politician.government_positions_held, gov-
ernment.government_position_held.office_position
or_title}. Since the LLM considers that the answer
can be extracted using this two-step reasoning
chain, it determines that a three-step reasoning
chain is unnecessary and outputs None for the
length 3 relation paths.

In the reasoning step of KARPA, several can-
didate relational paths are provided for the LLM
to determine the final answer. Given these can-
didate paths and their corresponding entities, the
LLM analyzes each path step-by-step, enabling
more thoughtful and accurate reasoning. An exam-
ple of KARPA’s reasoning process is illustrated in
Figure 6.

24744

Figure 5: A Case of Relation Path Assembling in the Re-Planning Phase.

24745

Figure 6: A Case of Inputting Top-K Relation Paths into LLMs During Reasoning Phase.

24746

