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Abstract

A significant portion of the energy consumed
by Large Language Models (LLMs) arises from
their inference processes; hence developing
energy-efficient methods for inference is cru-
cial. While several techniques exist for in-
ference optimization, output compression re-
mains relatively unexplored, with only a few
preliminary efforts addressing this aspect. In
this work, we first benchmark 12 decoder-only
LLMs across 5 datasets, revealing that these
models often produce responses that are sub-
stantially longer than necessary. We then con-
duct a comprehensive quality assessment of
LLM responses, formally defining six infor-
mation categories present in LLM responses.
We show that LLMs often tend to include re-
dundant or additional information besides the
minimal answer. To address this issue of long
responses by LLMs, we explore several sim-
ple and intuitive prompt-engineering strategies.
Empirical evaluation shows that appropriate
prompts targeting length reduction and control-
ling information content can achieve significant
energy optimization between 25-60% by reduc-
ing the response length while preserving the
quality of LLM responses.

1 Introduction

Large Language Models (LLMs) have seen rapid
adoption in different applications, including vir-
tual assistants for daily life, and in scientific re-
search. However, the deployment of these models
require massive computational resources, leading
to significant energy consumption and carbon emis-
sions. Although a single inference operation may
not consume much energy, such operations are per-
formed enormously many times under deployment.
For example, OpenAI’s ChatGPT processes more
than 1B queries per day, which consumes an esti-
mated 0.5GWh of energy. In recent times, ninety
percent of the total cloud computing demand for
Amazon Web Services was for model inference

purposes (Barr, 2019). Hence, LLM inferences
contribute to a significant energy impact (Wu et al.,
2022; Patterson et al., 2022) and merit further in-
vestigation.

Our prior work established that the energy con-
sumption during inference is closely correlated
with the length of the response generated by
LLMs (Poddar et al., 2025). Notably, output length
has a greater impact on inference energy usage than
input length because inputs may benefit from par-
allel processing and caching on GPUs, whereas
output generation is predominantly sequential. Ad-
ditionally, we demonstrated in (Poddar et al., 2025)
that the energy expended during inference is largely
independent of task complexity or type, depending
largely on the output size. Together, these findings
highlight the potential for optimizing inference en-
ergy consumption by limiting the output length.

A key consideration in this context is how popu-
lar LLMs behave - specifically, whether LLMs tend
to generate more text than necessary for certain
tasks. To investigate this, in this work, we bench-
mark 12 LLMs across 5 tasks/datasets spanning
different use cases. We focus on factual question-
answering datasets primarily consisting of factual
and procedural questions, deliberately excluding
opinion-based questions, as determining their min-
imal response length can be challenging. Our pri-
mary finding is that, for factual questions, LLM-
generated responses are significantly longer than
the target responses, regardless of whether the tar-
gets are human-written or machine-generated.

It can be argued that longer answers are more
useful to the users, since the additional information
beyond the core information need – such as ex-
planations, summaries, or conversational enhance-
ments – can enhance user experience. But it is im-
portant to recognize that such enhancements come
at the cost of increased energy consumption and en-
vironmental costs. A useful analogy is air travel via
economy vs. business class, where the core need
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(timely travel) is distinct from optional enhance-
ments that improve the experience but come at an
additional cost. This is the first work to bring for-
ward the trade-off between energy efficiency and
user satisfaction, a pivotal contribution that unveils
an entirely new perspective on LLM responses.

Next, we categorize the LLM-generated re-
sponses by identifying six distinct information cat-
egories through a comprehensive manual survey.
This categorization reveals that LLM responses
often include, along with the minimal answers,
explanations, examples, and reasoning informa-
tion, as well as redundant or irrelevant text. In
fact, our study reveals that, on average, the core
answer constitutes only about 42% of the total re-
sponses. While the extra elements can enhance
readability and potentially increase user satisfac-
tion (for instance, users might appreciate supple-
mentary context or a polite add-on), they also incur
higher inference energy costs. Consequently, we
argue that LLMs should be aligned to generate
minimal answers by default, incorporating only a
limited amount of additional content and excluding
extraneous or conversational tokens.

Finally, we explore several prompt-based strate-
gies to generate more concise responses from
LLMs. These include simple directives (such as
“Answer briefly”), providing in-context examples
to guide the LLM toward optimal response length,
specifying a desired output length, and reducing
non-essential content such as conversational and
irrelevant information. We evaluate these prompt
engineering strategies in terms of how they affect
the length, energy, and information content of the
LLM responses. We also check how they affect the
quality of LLM responses in terms of ROUGE-
L F1 scores with the target (gold standard) an-
swers. Empirical evaluation shows that some of our
prompts achieve significant energy optimization by
reducing the response lengths, while preserving (or
sometimes even improving) the quality of LLM
responses. For instance, one of our best strategies
is simply where we direct the LLM to provide only
the minimal answer; this strategy achieves up to
88% reduction in LLM responses, which leads up
to 58% reduction in energy consumption, while
actually improving the response quality.

2 Related Works

The optimization of energy consumption in large
language models (LLMs) has been extensively

Dataset Description

DOLLY
(Conover et al.,
2023)

instruction following records with
human-curated answers in several QA
and classificaion categories

GOOAQ
(Khashabi
et al., 2021)

open-domain dataset with factual ques-
tions from Google searches and an-
swers mined from Google’s responses.

MS-MARCO
(Nguyen et al.,
2016)

Open-domain QA dataset, with ques-
tions from Bing queries and crowd-
sourced answers.

NARRATIVEQA
(Kočiský et al.,
2018)

QA dataset where Wikipedia sum-
maries of novels were given to humans
to frame question-answer pairs.

TWEETQA
(Xiong et al.,
2019)

factual QA dataset, curated by humans
based on context from tweets used by
jounalists.

Table 1: List of datasets used in our experiments.

studied in the literature. Notable white-box ap-
proaches include pruning (Kurtić et al., 2024),
quantization (Xiao et al., 2023; Frantar et al., 2022),
early exit strategies (Schuster et al., 2022), and
embedding recycling (Saad-Falcon et al., 2022).
Hardware or OS-level optimizations focus on op-
timal data transfer and device utilization, for ex-
ample, caching (Ramírez et al., 2023), schedul-
ing (Yu et al., 2022), etc. Black-box approaches
include cascading (Chen et al., 2023), specula-
tive decoding (Leviathan et al., 2023), input com-
pression (Jiang et al., 2023a,b), among others. A
detailed literature survey has been given in Ap-
pendix A.

However, the area of output compression re-
mains relatively underexplored, with only a few
preliminary efforts in the literature, namely prompt
augmentation with generation directives (Li et al.,
2024). In this work, our primary focus is to com-
prehensively explore the underexplored avenue of
output compression for energy-efficient inference.

3 Do LLMs generate too much text?

In this section, we investigate the question – Are
LLMs generating too much text, more than neces-
sary for certain types of tasks? We primarily focus
on objective factual queries where concise and pre-
cise responses are often sufficient and compressing
the response can improve energy efficiency trading-
off with user satisfaction. Note that output com-
pression may not be suitable for long-form tasks.

3.1 Experimental Setup

Datasets: We choose 5 datasets, namely DOLLY,
GOOAQ, MS-MARCO, NARRATIVEQA, and
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Dataset tgt GPT GPT gemma gemma Llama Mistral Llama Llama Phi-3 Phi-3 falcon vicuna
len 3.5t 4om -2-2b -2-9b -2-13b -7B -3.2-3B -3.1-8B -mini -small -11B -13b

DOLLY 68.3 78.2 123.3 191.1 152.3 176.3 150.4 229.0 539.8 1445.1 477.5 168.3 84.2
GOOAQ 27.4 63.1 142.3 212.5 162.4 219.3 161.8 311.9 535.2 1333.9 418.5 177.5 89.0
MS-MARCO 22.8 40.3 127.8 124.4 138.8 169.3 139.4 280.6 683.3 1620.0 1333.2 63.9 94.8
NARRATIVEQA 7.1 23.4 44.7 35.0 25.1 36.9 37.1 246.4 671.8 1215.6 1462.6 30.9 38.0
TWEETQA 4.0 12.7 22.8 89.6 44.8 71.9 111.6 182.6 395.4 1671.7 1108.2 80.8 49.1

Table 2: Average target response length (second column) vs response lengths for different LLMs on the 5 datasets.
In almost all cases, LLM responses are substantially longer than the target response lengths, across all datasets.

TWEETQA for LLM evaluations, for reasons de-
scribed below. The datasets are described in Table 1
(refer Appendix F for examples).

We selected these 5 datasets for the follow-
ing reasons: (1) Diverse tasks: The datasets
cover a diverse range of tasks, including logi-
cal reasoning (DOLLY, GOOAQ), instruction fol-
lowing (DOLLY), knowledge-dependent closed-
QA (DOLLY, GOOAQ), knowledge-dependent
short contextual QA (TWEETQA) and long con-
textual open-QA (NARRATIVEQA, MS-MARCO).
(2) Diverse domains: These datasets also cover di-
verse domains, ranging from tweet-based queries in
TWEETQA, regular factual and procedural queries
from different categories in DOLLY and GOOAQ,
and curated queries from fiction in NARRA-
TIVEQA. GOOAQ and MS-MARCO also present
several factoid-based questions of practical interest,
sampled from google searches and bing searches.
(3) Diverse answer types: Target answers in our
selected datasets include human-generated, human-
annotated, and machine-generated responses. To
ascertain whether LLMs are generating more text
than is required, we need to compare LLM re-
sponses with minimal and sufficient answer lengths.
Human-written answers serve as the proxy of
answers of reasonable lengths in DOLLY, MS-
MARCO, NARRATIVEQA, and TWEETQA, while
GOOAQ contains answers to short fact-based and
longer procedural questions automatically scraped
from Google search answers. This results in diverse
answer types, and a rich space of answers.

From each of the datasets, we select 1,024 sam-
ples from the validation/test splits for evaluating
the LLMs. 5K samples are also extracted from
the train splits to be used in Section 5. To test
LLMs generalizability, we use this pool of 25K
training samples for different strategies, rather than
using individual datasets for training and testing
the models separately.

Large Language Models: In this work, we study
the generation of 10 open-source LLMs from dif-
ferent families – Meta Llama-2/3, Microsoft Phi-3,
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Figure 1: Target answer length vs LLM generated re-
sponse length by Phi-3-small on different datasets

Google Gemma-2, Mistral, Falcon, Vicuna. We
also test the closed-source OpenAI GPT-3.5-turbo
and GPT-4o-mini LLMs. These models are listed
in Table 2 and detailed in App:B.

For reproducibility, models were loaded in stan-
dard half-precision and made to generate greedily
up to a hard limit of 2K tokens. Note that this
limit does not affect the response generated, and
is rather just a cut-off if the model keeps on gen-
erating tokens. The repetition penalty parameter
was set to 1.2 (Keskar et al., 2019) to restrict mod-
els from generating repetitive text. Details of the
hardware/software setup are reported in App: C.

Measuring the length of LLM responses: We
measure the length of the response by counting the
number of tokens present in the text, where the to-
kenizer of the corresponding model has been used
to tokenize the model output as well as the gold
answer. For the closed-source GPT-3.5/4 models
from OpenAI, we use the SpaCy library to tok-
enize the responses and gold answers. We refer
to the length of gold-standard answers from the
datasets (mostly human-written responses) as “tar-
get length” and the length of LLM-generated re-
sponse as “generated length”.

3.2 Quantitative Analysis

Table 2 presents the average target response length
and generated response length in terms of tokens
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DS-R1- DS-R1- Gemma-2 Target
Llama-8B Qwen-14B -9B Answer

DOLLY 586.2 (64.8%) 669.1 (73.8%) 152.2 68.3
GOOAQ 552.6 (52.5%) 759.5 (73.1%) 162.4 27.4

Table 3: Average response lengths of Deepseek reason-
ing models on two datasets (% of thinking/reasoning
tokens inside parenthesis).

for all dataset-LLM pairs. In almost all cases,
LLMs generate responses substantially longer than
target responses. Even for extremely brief target
responses (avg < 10 tokens) in NARRATIVEQA
and TWEETQA, LLM responses are relatively long
(20–1.5K tokens).

We can classify the models based on the ratio of
their average response length to the average target
answer length into three categories – (1) Moderate
(mostly within 1-3 times): models from GPT-3
family generate responses within 1-3 times of the
target answer length, (2) Long (mostly between
3-10 times): models from GPT-4, vicuna, gemma-
2, llama-2, and mistral generate moderately long
responses, and (3) Very Long (often more than
10 times): responses of llama-3.1, and phi-3 family
are generally very long.

Figure 1 plots the distribution of generated re-
sponse length with target answer length across all
datasets for phi-3-small; the presence of datapoints
mostly above the diagonal signifies that LLMs gen-
erate overly long responses.

Reasoning LLMs are gaining popularity as they
perform well in complex scientific tasks. They do
this by generating long reasoning traces for opti-
mal final answers, requiring higher time and en-
ergy for inference. To further analyze the behavior
of reasoning LLMs, Table 3 reports average re-
sponse length for DeepSeek-R1-Distill-Llama-8B
and DeepSeek-R1-Distill-Qwen-14B on the Dolly
and GooAQ datasets; we observe that these mod-
els generate very long outputs on average, with
reasoning tokens constituting the majority of them.

Note that our selected datasets include examples
with both human-written responses and standard
objective responses to serve as a proxy for mini-
mal/sufficient response length. Thus, we can con-
clude that most LLMs usually generate responses
substantially longer than desired for the use cases
under consideration in this study.

3.3 Categorizing information in responses

To gain further insight on overly long responses of
LLMs, we categorize the information present in the

responses. Low et al. (1973) suggests a taxonomy
of irrelevant, relevant, and redundant information
for general concept transfer. Following this line of
work and our inspection of 300 responses by differ-
ent LLMs, we develop the following classification
scheme for the tokens contained in LLM responses.

1. Minimal answer (MINANS): These tokens
provide a concise and to-the-point answer to the
query/prompt. Note that the minimal answer can
be correct or wrong; we are not differentiating be-
tween correct and wrong answers in this analysis.
2. Additional helpful information (ADDINFO):
These include information that adds valuable con-
text and aims to expand the knowledge of the user.
Example: User: “What is capital of France?” LLM:
“Paris. It is a center of art and culture”.
3. Reasoning/Explanations (EXPLAIN): Here the
LLM states its thought process, logical steps that
it followed to answer the query. Example: User:
“What is 2 + 2?” LLM: “First, you take 2 and add
another 2, which equals 4. Final answer: 4”.
4. Conversational Enhancements (CONVERS):
Tokens that are included to maintain politeness, en-
hance the conversational tone, or ask users if they
require further information on some aspects. Ex-
amples include “Let me know if you need anything
else”, “I hope that helps!”.
5. Redundant Information (REDINFO): In some
longer responses, LLMs provide a summary of the
previous content at the end. In some other cases,
the responses contain rephrased versions of infor-
mation already given (in the same response). Ex-
ample: “Netherlands is the official name of the
country as a whole, including Holland and other
regions like Friesland, Gelderland. So, while Hol-
land is part of the Netherlands, Netherlands is the
entire country.”
6. Irrelevant Information (IRREL): At times,
LLMs generate tokens unrelated to the user’s query,
e.g., when the model hallucinates, or produces re-
peating patterns of tokens. Example: User: "Who
discovered America?" LLM: "Columbus! By the
way, I recently read about American recipes."

3.4 Analysis of LLM responses

Two of the authors annotated an additional 500
LLM responses, sampling uniformly from the 5
datasets and 10 LLMs, marking spans from the
responses into the categories defined above. The
first 50 were marked by both authors and achieved
pairwise F-measure (Deleger et al., 2012) of 0.764,
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Figure 2: Distribution of information categories in LLM responses.

macro-averaged across different categories, which
shows reasonable agreement. The major disagree-
ments were in the REDINFO class, particularly in
cases where parts of minimal answer, additional
and redundant information were intertwined. Some
example annotations are shown in Appendix E. We
are releasing this annotated dataset to promote fur-
ther research on LLM responses.1

The distribution of the categories across all re-
sponses is given in Figure 2a, whereas Figure 2b
and Figure 2c present model-specific and dataset-
specific category distributions. Figure 2a shows
that though the answers primarily contain mini-
mal answer (MINANS) and additional information
(ADDINFO), irrelevant information (≈ 18%) and
conversation enhancers (≈ 5.2%) form a signifi-
cant portion of the responses. Reducing these can
immediately lead to much lower consumption of
energey. Further, restricting additional information
(≈ 21%) and explanations (≈ 11.5%) can further
compress the answers without degrading the qual-
ity, where concise answers are sufficient.

Figure 2b shows the distribution of information
categories in the responses by different LLMs. We
see that, for some LLMs such as GPT-3,4, Mistral-
7B, gemma-2, Llama-3.2-3B, most of the generated
tokens belong to ‘minimal answer’ with a moder-
ate portion of additional information. On the other
hand, llama-3 generates a lot of explanation (CoT
reasoning) and irrelevant information, and phi-3
generates a high amount of irrelevant text, with
minimal response being rather small parts of the
generations. These model-specific trends in re-
sponses seem to be consistent across a model fam-
ily, suggesting that the training setup of an LLM is
the primary factor in determining the distribution
of content categories within a response in compari-
son to the relative size of the model. Interestingly,
older LLMs (Llama-2.1, GPT-3.5) give more min-

1https://github.com/sohampoddar26/LLM-brevity

imal answers, whereas newer LLMs (Llama-3.1,
Llama-3.2, GPT-4om), with updated pre-training
data and strategies, generate more of additional
information and explanations.

For dataset-specific trends (Figure 2c), queries
in NARRATIVEQA and TWEETQA are objective
and factual, based on a given context, resulting in
responses being mostly minimal answers with low
amount of additional information. In MS-MARCO,
DOLLY, and GOOAQ, queries are open-domain
questions, containing both factual and reasoning
queries, resulting in decreasing fraction of mini-
mal responses and increasing additional info and
conversational enhancements.

Based on our observations above, we now ex-
plore several strategies to reduce the LLM response
lengths, while still retaining the response quality.

4 Some common strategies for shortening
LLM responses

We now focus on some common strategies for short-
ening LLM responses to achieve energy-efficient
inference. We explore simple, intuitive white-box
approaches, including response truncation and fine-
tuning of LLMs, as well as black-box strategies
based on prompt engineering.

Truncating responses refers to stopping the gen-
eration early, e,g., just after the minimal answer is
obtained. However, we notice that in about 19%
of the responses studied in Section 3.4, the min-
imal answer is not at the beginning of the LLM
response. In most of these cases, the LLMs output
conversational enhancers first to set up the context
or for readability, followed by the minimal answer,
thus limiting the scope of strategies for truncating
responses.

Fine-tuning LLMs: Next we explore whether sim-
ple fine-tuning can help in controlling the response
length. Toward that, we performed some basic fine-
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tuning experiments. We fine-tuned Phi-3-mini (one
of the LLMs that generate very long responses,
as stated earlier) with a pool of human-written
question-answers from the DOLLY and GOOAQ
datasets, using LoRA with r = 16, for 100 epochs.
The models were trained on the target answer to-
kens with the hypothesis that it would enable the
models to generate responses similar to humans
on these particular datasets. We compare the aver-
age ratio of generated and target response lengths
for the DEFAULT model and the fine-tuned model.
We observe that simple fine-tuning is leading to
1.24 times higher ratio for DOLLY and 1.26 times
higher ratio for GOOAQ, in comparison with the
DEFAULT model. This is an unexpected result,
where fine-tuning is (slightly) increasing the re-
sponse length instead of shortening the length. This
behavior could stem from extensive pretraining on
large-scale data, making small-scale fine-tuning in-
sufficient to alter its learned patterns. Additionally,
a model’s intrinsic stopping mechanism may not be
functioning as intended after the fine-tuning, caus-
ing it to overestimate the length for the responses.

Therefore, it is prudent to explore prompt en-
gineering strategies leveraging LLM’s zero-shot
capabilities, drawing on our observations in Sec-
tion 3. We explore this direction in the next section.

5 Prompt engineering strategies for
controlling LLM responses

Here we investigate various prompt engineering
strategies aimed at generating concise LLM re-
sponses, thereby reducing inference energy.

5.1 Prompt engineering strategies

We first describe the different strategies we used to
control response length. The exact prompts used
are given in Table 4.

BRIEF: Following (Li et al., 2024), the default
query is modified by appending “Answer briefly”
at the end of the query.

BM25-INCONTEXT: In this method, we provide
a set of in-context examples to help LLM in de-
ciding the ideal response length of the given query.
Specifically, we provide a sequence of 10 sam-
ple queries and their respective gold-answers as
in-context examples, followed by the given query.
These samples were chosen from the 25K train set
based on the similarity with the given query, as
predicted by the BM25+ retrieval model (Trotman
et al., 2014).

LIMIT-LEN: In this approach, we specify an esti-
mated length of the response and instruct the LLM
to restrict the generation length within that limit.
Specifically, we add “Answer within X words” at
the end of the prompt, where X is the limit of gener-
ation that we obtain through three ways: (1) BM25-
LENGTH: Top-k similar samples are selected from
the pool of samples using BM25+ model, and X is
set to the median of their target lengths. (2) GOL-
DRESLEN: To serve as an oracle baseline, X is
set to the actual gold-answer length corresponding
to the query. (3) PREDRESLEN: Here we em-
ploy a supervised framework for learning the ideal
length of a given query. Specifically, we train an
encoder-only transformer-based regression model
DEBERTA-V3-LARGE (He et al., 2021) with scaler
output to predict X of the given query. The model
is trained with queries and the length of their target
(gold standard) responses from the training set.

LIMIT-CAT: Based on our observations regard-
ing the distribution of various categories in LLM
responses (see Figure 2a), we hypothesize that re-
sponses can be made shorter and energy-efficient
while preserving response quality, by reducing the
presence of CONVERS, REDINFO, and IRREL in
the responses. Accordingly, we design LIMIT-
CAT, a set of prompt directives to control the pres-
ence of various categories in the response. We
tried several combinations of prompts to restrict
the category distribution in the responses. Out
of these we report results for the following two
strategies which performed the best: (1) MINANS:
Model is asked to provide the minimal answer only.
(2) MADDNORED: Model is asked to provide
the minimal answer, along with some additional
information if applicable. It is also explicitly asked
not to produce redundant text or conversational
enhancements (exact prompts in Table 4).

5.2 Results

We empirically validate the efficacy of the prompt
engineering strategies against the default prompt,
by investigating these questions: (1) Can the
prompt engineering strategies achieve a reduction
in LLM response length? (2) Does the length reduc-
tion degrade the response quality? (3) Are these ap-
proaches able to achieve notable reduction in terms
of energy? (4) How do these methods influence the
category distribution in the LLM responses?

Effects on response length: Fig. 3 reports the ra-
tio of generated response length to the target length
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query <Context if present> \n
### Question: <Query text> \n

prompt <query> <response directive>
### Response:

Response directives
BRIEF Answer briefly.
MINANS Only provide the minimal answer.
MADDNORED Provide the minimal answer. Pro-

vide some additional information
where applicable, but do not produce
redundant text or politeness and con-
versational enhancements.

LIMIT-LEN Answer within X words.
BM25-
INCONTEXT

<10 examples> <default prompt>

Table 4: Prompt directives to shorten LLM responses.
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Figure 3: Ratio of generated response length to target
length for different LLMs using each prompting strategy,
averaged over all datasets.

for each of the above-mentioned strategies, aver-
aged across all datasets. We observe that prompt
directives are generally able to reduce the response
length for almost all models relative to the DE-
FAULT setup.

MINANS achieves the highest length reduction
across all models with about 60% decrease, fol-
lowed by PREDRESLEN at 53%. The supervised
length estimator PREDRESLEN performs at par
with the oracle (GOLDRESLEN) with superior
length reduction for some models, namely mis-
tral (66%), llama-2 (77%), and gemma-2-9b (69%),
showing its efficacy in accurate estimation of ideal
target length. BM25-LENGTH and BRIEF per-
form comparably while achieving lower compres-
sion of about 38%. on average Length reduction is
minimal for BM25-INCONTEXT, as some models
fail to understand the desired output length from
examples. MADDNORED produces relatively less
compression too as we specifically ask the mod-
els to generate additional information. However,
some LLMs, like phi-3-small or llama-3-8B fail to

respond to such prompts appropriately.

Effect on response quality: While response qual-
ity is abstract and difficult to quantify, we wanted
to check if the user’s basic information need is be-
ing fulfilled in the LLM responses. To this end,
we compute the Rouge-L F1 scores of the LLM
responses with respect to the target answers. While
this is no substitute for a human evaluation, this
will give us some insights into the quality of re-
sponses using different strategies.

Fig. 4 shows the Rouge-L-F1 score of each
strategy for different models, averaged across all
datasets. We observe that employing the above-
mentioned prompting strategies generally improves
the F1-scores of the responses upon the default
setup in most cases, since the models are instructed
to generate more information-dense answers, that
better match the target answers. Specifically, we
find that shorter responses lead to substantial im-
provements in ROUGE precision, with marginal
drop in ROUGE recall, leading to increased F1
scores ( refer to Appendix G for the precision, re-
call and F1-scores for all the methods).

MINANS emerges as the most effective tech-
nique with the highest gain in response quality,
followed by GOLDRESLEN, PREDRESLEN and
BRIEF. These results demonstrate that both sim-
ple directives for shortening responses (MINANS,
BRIEF) as well as providing accurate length es-
timates (PREDRESLEN) can achieve significant
length reduction while preserving the response
quality. MADDNORED and BM25-LENGTH

shows a smaller performance gain than the default,
which can be attributed to longer response with
lesser precision. BM25-INCONTEXT generates
even larger responses leading to drop in perfor-
mance.

Effects on Energy Consumption: To understand
the effect of prompt engineering on inference
energy, we report inference energy for different
models for different strategies, averaged across
all datasets in Figure 5. The inference energy
consumed per sample is measured in milli-watt-
hour (mWh) using the popular CodeCarbon li-
brary (Courty et al., 2024) (see Appendix C).

Most methods demonstrate improved energy ef-
ficiency compared to the default approach, except
for BM25-INCONTEXT, which fails to reduce en-
ergy usage across all models, attributing to both
significantly longer input and its ineffectiveness
in achieving length reduction. Among the evalu-
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Figure 4: ROUGE-L-F1 scores for different models
using different strategies, averaged across all datasets.
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Figure 5: Inference Energy for different models using
different strategies, averaged over all datasets

ated techniques, MINANS emerges as most energy-
efficient method with 28%, attributing to highest
length reduction. MINANS is closely followed
by PREDRESLEN (comparable with oracle GOL-
DRESLEN) with about 26% reduction, highlighting
the importance of advanced energy-efficient super-
vised approaches for estimating optimal response
lengths. Methods like BM25-LENGTH achieves
lower energy efficiency, due to its compression in-
efficiency and computational overhead.

Effects on information categories in responses:
Finally, to understand how these prompts affect the
information category distribution in the LLM re-
sponses, we perform the following experiment. We
select a subset of the category-annotated queries
for which the responses were manually annotated
to identify information categories (Sec. 3.4). For
each of the queries, we employ the following
prompts – BRIEF among the general prompts,
PREDRESLEN among the length-specific prompts,
and MINANS, and MADDNORED among the
category-specific prompts. The responses of the

0 20 40 60 80 100
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Figure 6: Distribution of information categories in re-
sponses of Gemma-2-9B after incorporating 4 prompt
strategies, compared to DEFAULT.

two models on these four prompts are further
annotated by the authors into the same information
categories.

Figure 6 presents a representative result for the
gemma-2-9B LLM, showing the category distribu-
tion for the generated responses, averaged across
all queries for each model. Gemma-2 is seen to
give almost entirely minimal answers for MINANS,
and a good balance of minimal and additional infor-
mation with the MADDNORED strategy. BRIEF
and PREDRESLEN give relatively short answers
containing mostly minimal answers, with BRIEF
having some amounts of all desirable classes.

Table 5 shows a few examples of responses
by Gemma-2-9B before and after introducing the
prompt strategies. It can be seen that MINANS

leads the Gemma-2-9B model to generate just
the minimal answer and correctly remove the ex-
planations. We also see examples for BRIEF
and MADDNORED which shorten the responses
hugely, while still retaining some useful extra in-
formation. However, we also observed cases where
the prompts are making unnecessary cuts. For ex-
ample, as stated earlier, we experimented with dif-
ferent LIMIT-CAT strategies; we observed that, if
we ask the Gemma-2-9B model to remove the con-
versation elements, there are cases where it also
removes explanations and additional info as well,
leading to a more minimal answer that may af-
fect user satisfaction. This suggests that further re-
search is needed to systematically identify prompts
that lead to the desired behaviour (with respect to
both response length and quality) in various LLMs.

6 Concluding Discussion

In this work, we comprehensively explore output
compression for energy-efficient inference. Our
specific contributions are as follows. (1) We are the
first to systematically establish that large language
models (LLMs) often generate very long responses
which lead to high energy consumptions; We also
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Strategy Gemma-2-9B Response
Query: 29 cm is equal to how many m?

DEFAULT Here’s how to convert centimeters (cm) to meters (m): **Remember the conversion:** 1 meter = 100 centimeters. **Divide by 100:** To
find out how many meters are in 29 cm, divide 29 by 100. 29 cm / 100 cm/meter = 0.29 meters Therefore, 29 cm is equal to 0.29 meters

MINANS 0.29
BRIEF 0.29 m
MADDNORED 0.29 **Explanation:** There are 100 centimeters (cm) in one meter (m). To convert from centimeters to meters, divide by 100."

Query: <INFORMATION from different sources> ### Question: what is a necromonger in riddick?
DEFAULT In the Chronicles of Riddick film franchise, Necromongers are a fanatical warrior-religious order ... <LONG ADDITIONAL INFO> Let me

know if you have any other questions about the Chronicles of Riddick!
MINANS A fanatical religious warrior race seeking universal conversion or death.
BRIEF A Necromonger is a member of a fanatical religious empire in the *Riddick* franchise. They believe life is an enemy of the universe and

seek to conquer and convert all others through violence.
MADDNORED A Necromonger is a member of a fanatical religious empire in the *Chronicles of Riddick* franchise. They believe life is an affront to the

universe and seek to eradicate it through conversion or death. Their society is highly structured with strict rules and rituals.

Query: How to connect iphone to LG TV to play music?
DEFAULT Here’s how to connect your iPhone to an LG TV for screen mirroring, along with some important things to keep in mind: <LONG ADDITIONAL

INFO> Let me know if you have any other questions!
MINANS Use AirPlay 2 on your iPhone and ensure your LG TV supports it. Then, select ""Screen Mirroring"" in Control Center and choose your LG

TV from the list.
BRIEF 1. **Enable Miracast on your LG TV.** (Settings > General > Screen Share) 2. **Turn on AirPlay Mirroring on your iPhone.** (Control

Center > Screen Mirroring). 3. **Select your LG TV from the list of available devices.** Let me know if you need detailed instructions!
MADDNORED 1. **Enable Miracast on your LG TV.** (Settings > General > Screen Share) 2. **Turn on AirPlay Mirroring on your iPhone.** (Control

Center). Your iPhone should now appear as a connection option on your LG TV. Select it to mirror your screen.

Table 5: Sample queries and responses of Gemma-2-9B after introducing prompt strategies.

categorize LLMs based on their generation lengths.
(2) We present the first comprehensive information
categorization of the LLM responses, identifying 6
information classes; (3) Based on our findings, we
develop various length-based and category-based
prompts and evaluate them extensively in terms
of how they affect the length, energy and quality
of LLM responses. We observe that appropriate
prompts can achieve significant energy reduction
by reducing response length, alongside improving
response quality. Overall, we think the present
work takes the first important step toward exploring
the utility of output compression in reducing the
energy consumption of LLMs.

Our work opens up several future directions
for further work (more details in Appendix H).
(1) What constitutes an ideal response length
under different scenarios/applications should be
studied more, and various factors influencing that
decision should be identified. Measuring user sat-
isfaction would likely require different approachs,
including human surveys and automated scoring
metrics and need a study on its own. (2) User per-
sonalisation: Another possible direction is to con-
sider user-preferences while optimizing response
length, since different users can prefer responses of
different lengths for the same question/task. Such
personalization is out of scope for the current work.
However, it presents a promising line of future
research. (3) Automatic information categoriza-
tion: We attempted to automate the categorization
of LLM responses. To this end, we employed Ope-
nAI GPT-4o with a detailed prompt describing all
the information categories. We achieved an average

F1 score of 0.391 over all tokens. Hence, efficient
methods for distinguishing categories in LLM re-
sponses should be investigated. (4) Pre-training:
Model families seem to generate responses with
similar category distributions, indicating the pre-
training of the LLMs should be revisited to have
better control over what information categories
should be included in the response. (5) Model
alignment: Efforts should be made to align LLMs
towards generating responses of desirable lengths.
(6) Efficient decoding algorithms may be em-
ployed to control category information within the
generated responses in the real-time, to achieve a
better compromise between readability and energy-
optimality.
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Limitations

While this study offers a comprehensive analysis
and valuable insights, some limitations should be
noted: (1) Limited applicability to long-answer
tasks: The potential for energy optimization
through output compression is limited in tasks re-
quiring detailed and lengthy responses, such as
creative writing or critical decision-making tasks
with explanations. Our approaches are primarily ef-
fective for objective, factual queries where concise
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and brief responses are both sufficient and desir-
able. (2) Subjectivity of Ideal Response Length:
The notion of an ideal response length is subjec-
tive and varies significantly among individuals. As
a result, a one-size-fits-all approach may not ef-
fectively meet the diverse needs of users. Here
we argue that the default behaviour of LLMs can
be tuned so that they generate shorter responses,
so that energy consumption is minimized. A user
can ask for more details or longer responses if she
desires. (3) Use of standard datasets: Our experi-
ments have been performed on publicly available
rich data for testing LLMs. However, the LLMs
we used might have been pre-trained on parts of
these standard datasets, causing them to behave in
a certain way. This may lead to slight variations
in results for real-world use cases, but the overall
findings should be generalizable enough.
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Appendix

A Related Works

The optimization of energy consumption in large
language models (LLMs) has been extensively stud-
ied in the literature.
White-box approaches: These techniques focus
on architectural modifications to LLMs and repre-
sent a well-established line of research. Notable
methods include pruning (Kurtić et al., 2024), quan-
tization (Xiao et al., 2023; Frantar et al., 2022),
early exit strategies (Schuster et al., 2022), and
embedding recycling (Saad-Falcon et al., 2022),
among others.
Hardware- or OS-level optimizations focus on
improving energy efficiency by leveraging hard-
ware innovations or operating system enhance-
ments. Yu et al. (Yu et al., 2022) propose an opti-
mal scheduling strategy by making it iteration-level
from user-request-level. Flash-attention (Dao et al.,
2022) effectively reduces latency by optimizing
the number of memory read and write operations
required in calculating model states. Ramirez et
al. (Ramírez et al., 2023) employs a student model
along with the larger LLM, which gradually gains
proficiency in independently handling increasing
user requests, mimicking the popular caching tech-
nique in OS.
Black-box approaches avoid altering the underly-
ing model, unlike the white-box models. Instead,
they employ multi-level frameworks that incorpo-
rate smaller LLMs for specific tasks. Chen et
al. (Chen et al., 2023) highlight the efficacy of
cascading and multiplexing in reducing inference
energy and cost. Leviathan et al. (Leviathan et al.,
2023) introduce speculative decoding that acceler-
ates the decoding by running Larger LLMs on the
output of approximately smaller models.
Input compression techniques apply for large-
input tasks like legal question answering, multi-
document summarization, multi-document re-
trieval, etc, where the input is excessively high.
Jiang et al. (Jiang et al., 2023a) propose LLMLin-
gua, a coarse-to-fine prompt compression method
that involves a budget controller to maintain se-
mantic integrity under high compression ratios.
LongLLMLingua (Jiang et al., 2023b) further re-
fine the method, resulting in achieving higher com-
pression.

As already shown in literature (Luccioni et al.,
2024; Poddar et al., 2025), inference energy is also

closely tied to output length, presenting a scope
for reducing energy consumption by Output com-
pression. However, this area remains relatively
underexplored, with only a few preliminary efforts
in the literature. For instance, prompt augmentation
with generation directives has been investigated as
an initial step (Li et al., 2024). In this work, we
aim to comprehensively explore the underexplored
avenue of output compression, advancing the state
of the art in energy-efficient inference.

B Details of LLMs used

Table 6 states the links to the specific LLM variants
that we used in our experiments.

C Details of Hardware/Software setup

We perform our experiments on a single NVIDIA
A6000 GPU with 48GB VRAM hosted in a local
server with Intel Xeon Silver 4210R processor and
128GB RAM, running Ubuntu 20.04-LTS. We use
Pytorch version 2.3 (with CUDA 12.1). We employ
vLLM (Kwon et al., 2023) for all our experiments,
which is a fast and easy-to-use library for LLM
inference and serving.

To measure energy consumption of LLMs in
offline mode, we used the CodeCarbon (Courty
et al., 2024) library with default settings. The li-
brary samples every 15 seconds the GPU power
usage from the nvidia-smi app, CPU-power from
Intel RAPL files and an approximate RAM power.
These power values are integrated over time to get
the total energy usage. Note that CodeCarbon is
a popular and reliable tool for measuring energy
consumption (Jay et al., 2023; Bouza et al., 2023)
and has been used in prior works to measure the
energy consumption of LLMs (Poddar et al., 2025).

D More Length ratio plots

Figure 7 shows scatter plots comparing the target
answer lengths and the generated response lengths
for some more LLMs. In all cases, we see that
LLMs generate substantially longer responses then
the target answer lengths, in most cases.

E Annotation Examples

Figure 8 shows screenshots of the annotation of
LLM responses with information categories.

F Examples from Datasets

Table 7 demonstrates a few illustrative examples
from each dataset.
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Model Model description link

GPT-3.5-turbo & GPT-4o-mini https://platform.openai.com/
Llama-2-13B (13B params) https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
Llama-3-3B (3B params) https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
Llama-3-8B (8B params) https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
Gemma-2-2B (2.6B params) https://huggingface.co/google/gemma-2-2b-it
Gemma-2-9B (9B params) https://huggingface.co/google/gemma-2-9b-it
Phi-3-mini (4B params) https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
Phi-3-small (8B params) https://huggingface.co/microsoft/Phi-3-small-8k-instruct
Mistral-7B (7B params) https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
Falcon-11B (11B params) https://huggingface.co/tiiuae/falcon-11B
Vicuna-13B (13B params) https://huggingface.co/lmsys/vicuna-13b-v1.5

Table 6: Links to specific models versions we used in our experiments

100 101 102 103

Target answer Length

100

101

102

103

Ge
ne

ra
te

d 
re

sp
on

se
 L

en
gt

h

Dolly
MSMaRCo
GooAQ
TweetQA
NarrQA

(a) Llama-3.1-8B

100 101 102 103

Target answer Length

100

101

102

103

Ge
ne

ra
te

d 
re

sp
on

se
 L

en
gt

h

Dolly
MSMaRCo
GooAQ
TweetQA
NarrQA

(b) Gemma-2-9B

Figure 7: Target answer length vs LLM generated response length on different datasets

G Detailed ROUGE-L metrics for prompt
engineering strategies

Table 8 gives the average ROUGE-L Precision
scores for all the prompt engineering strategies.
Table 9 gives the average ROUGE-L Recall scores
for all the prompt engineering strategies. Table 10
gives the average ROUGE-L F1 scores for all the
prompt engineering strategies.

H Detailed discussion about the scope
and potential future work

In this work, we explore the question whether
LLMs are generating too much text, which add
up the energy consumption and environmental im-
pact of the models. To this end, we benchmark the
responses of various open-source LLMs for factual
objective queries. We find that LLMs are gener-
ating long responses, often orders of magnitude
higher than human-written answers. Revisiting
decoding and training strategies with the insights
from our experiments can be a promising direction
for future research toward devising solutions that

produce concise and accurate answers.

Response categorization can play a pivotal role
in devising techniques for forcing the models to
generate brief (as desired) and accurate answers.
Specifically, we established that the minimal an-
swers contain enough information to achieve accu-
rate responses, while redundant information could
be removed completely in most cases. What con-
stitutes an ideal response under different scenar-
ios/applications should be studied more, and var-
ious factors influencing that decision should be
identified. We argue that the composition of the
responses should be based on users preferences too,
whether they want concise or explanatory or cre-
ative answers. However, we argue that, from an
energy optimality perspective, the LLM should, by
default, generate a brief and succinct response for
factual objective user queries.

We employed OpenAI GPT-4o for categorizing
the responses from the set of 500 annotated ex-
amples, which is found incapable to differentiate
between certain pair of categories like irrelevant
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and redundant, reasoning and redundant, highlight-
ing the need for more sophisticated, focused ap-
proaches. Overall it only achieved an average F1
score of 0.391 over all tokens. Effective Methods
for distinguishing categories, between necessary
(minimal answer and strongly related additional
information), redundant (polite, summary, repeti-
tion, reasoning), and irrelevant content should be
investigated. Towards that, we make our annotated
LLM responses publicly available. Researchers
can employ this dataset to develop such supervised
framework (e.g. using Longformer (Beltagy et al.,
2020) based models), that can be used to automat-
ically classify LLM responses into different cate-
gories, which will remove the human annotation
dependency and enable large-scale evaluation of
LLM responses.

We found that Minimal answers are sometimes
preceded by other categories (polite and conversa-
tional enhancements, additional information), lim-
iting the scope for simple early stopping strategies
such as stopping after ’k’ tokens and discarding
incomplete sentences, for getting the ideal min-
imal answer. Simple fine-tuning on these open-
domain QA datasets proved ineffective, though it
may prove beneficial for certain controlled environ-
ments. Fine-tuning with a length penalty may allow
models to capture desired lengths better. Model
families seem to generate responses with similar
category distributions, indicating the pre-training
of the LLMs should be revisited to have better
control over the information categories in the re-
sponse.

We also found irrelevant information are present
in nearly 20% of responses across all models. This
happens when the model is unsure of what to pre-
dict next. Generation can be shortened greatly
if the models are stopped from generating irrel-
evant information, towards which hallucination
detection and prevention (Manakul et al., 2023;
Ji et al., 2023) are promising starting steps. Model
alignment have been used to mitigate harmful con-
tent/biases in reponses through re-training (Wang
et al., 2024; Dai et al., 2024). Efforts should also be
made to align LLMs towards generating responses
of lengths that are desirable for a given situation.

Prompt engineering strategies show promise
in reducing the response length and energy con-
sumption, while preserving both precision and
recall of the response for most of the models.
Specifically, length-based prompts with sophisti-
cated length estimator (PREDRESLEN), along with

certain category-specific prompts (MINANS and
MADDNORED) are quite effective in achieving
energy-aware inferences across different use cases.
However, they are not enough to effectively control
the desired proportions of the information cate-
gories. Efficient decoding time algorithms may
be employed to control category information within
the generated response in the real-time, enabling
us to achieve a better compromise between read-
ability and energy-optimality. MLP or RNN-based
methods may be trained on our annotated response
category data and incorporated into the final lan-
guage modelling That will also allow us a finer
control for modulating the category distribution in
the generated response, enhancing its scope and
applicability.
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Figure 8: Annotation examples depicting the information categories
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Dataset Example

DOLLY (Conover et al.,
2023)

Instruction: Instead of making a peanut butter and jelly sandwich,
what else could I combine peanut butter with in a sandwich? Give five ideas.

Answer: Instead of jelly, try one of the following with peanut butter in a sandwich:
Honey
Raisins
Fruit preserves
Bananas
Sliced apples

GOOAQ (Khashabi
et al., 2021)

Question: what are the steps for decision making?
Answer(collection):
Step 1: Identify the decision You realize that you need to make a decision. ,
Step 2: Gather relevant information.
Step 3: Identify the alternatives.
Step 4: Weigh the evidence.
Step 5: Choose among alternatives.
Step 6: Take action.
Step 7: Review your decision and its consequences.

MS-MARCO (Nguyen
et al., 2016)

Open-domain question-answering dataset with questions sampled from Bing
user query logs and answers generated by humans.

NARRATIVEQA
(Kočiský et al., 2018)

Title: Ghostbusters II
Summary snippet: . . . Peter’s former girlfriend Dana Barrett has had a son, Oscar. . .
Story snippet:
DANA (setting the wheel brakes on the buggy) Thank you, Frank. I’ll get the
hang of this eventually. She continues digging in her purse while Frank
leans over the buggy and makes funny faces at the baby, OSCAR, a very cute
nine-month old boy.
FRANK (to the baby) Hiya, Oscar. What do you say, slugger?
FRANK (to Dana) That’s a good-looking kid you got there, Ms. Barrett
Question: How is Oscar related to Dana?
Answer: her son

TWEETQA (Xiong
et al., 2019)

Passage: Oh man just read about Paul Walkers death. So young. Ugggh makes me
sick especially when it’s caused by an accident. God bless his soul.
– Jay Sean (@jaysean)
December 1, 2013
Question: why is sean torn over the actor’s death?
Answer: walker was young

Table 7: List of datasets with illustrative examples.
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Dataset gemma gemma Llama Mistral Llama Llama Phi-3 Phi-3 falcon vicuna
-2-2b -2-9b -2-13b -7B -3.2-3B -3.1-8B -mini -small -11B -13b

Default 16.0 21.3 19.5 16.1 5.8 3.2 2.3 5.3 24.0 22.4
Brief 30.1 41.5 31.7 24.8 12.3 3.8 5.4 4.0 21.8 22.3
BM25-InContext 12.6 5.0 12.6 50.3 7.9 2.6 0.9 8.0 27.0 10.4
GoldResLen 31.7 45.2 41.0 31.6 15.8 4.5 8.9 7.0 24.1 36.3
MinAns 46.5 55.9 42.9 40.5 22.2 5.8 11.7 5.9 32.8 35.6
MAddNoRed 30.7 43.2 26.7 20.1 8.6 4.0 4.4 3.5 18.5 28.2
BM25-Length 25.0 26.6 30.7 18.3 8.0 3.7 2.3 4.9 23.5 22.2
PresResLen 33.3 35.9 38.3 24.0 9.6 3.5 5.3 5.6 25.6 29.2

Table 8: Average ROUGE-L Precision scores.

Dataset gemma gemma Llama Mistral Llama Llama Phi-3 Phi-3 falcon vicuna
-2-2b -2-9b -2-13b -7B -3.2-3B -3.1-8B -mini -small -11B -13b

Default 55.1 57.0 56.9 56.0 60.7 64.4 26.7 55.0 41.0 47.9
Brief 46.5 46.0 50.6 52.2 55.7 62.2 27.4 56.9 41.3 51.4
BM25-InContext 12.1 5.4 15.2 56.8 61.0 67.9 5.2 34.8 22.8 10.0
GoldResLen 41.8 42.3 39.9 43.4 53.2 60.7 23.1 51.6 31.1 44.6
MinAns 38.7 36.6 41.0 44.7 48.5 60.5 25.9 51.1 34.2 45.0
MAddNoRed 43.4 44.1 50.5 52.7 55.4 61.6 28.9 58.2 41.5 48.9
BM25-Length 48.1 51.2 48.6 51.3 58.4 64.2 19.3 54.0 39.5 49.0
PresResLen 43.1 44.8 41.9 43.4 55.5 62.6 18.8 50.2 35.4 40.6

Table 9: Average ROUGE-L Recall scores.

Dataset gemma gemma Llama Mistral Llama Llama Phi-3 Phi-3 falcon vicuna
-2-2b -2-9b -2-13b -7B -3.2-3B -3.1-8B -mini -small -11B -13b

Default 19.7 25.2 22.9 19.4 8.6 5.3 2.7 6.0 21.4 23.9
Brief 29.0 37.4 32.5 27.2 14.1 5.9 5.6 4.2 21.7 25.8
BM25-InContext 11.5 4.5 11.8 46.8 9.8 4.2 1.0 8.0 21.0 9.0
GoldResLen 29.3 41.3 37.4 29.5 17.8 6.9 9.2 8.0 22.5 36.5
MinAns 36.3 39.4 35.4 35.1 20.1 7.8 10.0 4.6 27.1 33.0
MAddNoRed 28.5 37.4 28.2 23.3 11.7 6.4 4.5 4.5 19.9 29.0
BM25-Length 27.7 29.9 32.1 22.1 11.4 6.0 2.9 5.9 23.0 24.9
PresResLen 30.8 32.7 34.1 23.7 12.3 5.5 5.1 6.0 22.6 27.5

Table 10: Average ROUGE-L F1 scores.
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