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Preface

While deep learning methods have led to many breakthroughs in practical natural language applications,
there is still a sense among many NLP researchers that we have a long way to go before we can develop
systems that can actually “understand” human language and explain the decisions they make. Indeed,
“understanding” natural language entails many different human-like capabilities, and they include but are
not limited to the ability to track entities in a text, understand the relations between these entities, track
events and their participants described in a text, understand how events unfold in time, and distinguish
events that have actually happened from events that are planned or intended, are uncertain, or did not
happen at all. We believe a critical step in achieving natural language understanding is to design
meaning representations for text that have the necessary meaning “ingredients” that help us achieve these
capabilities. Such meaning representations can also potentially be used to evaluate the compositional
generalization capacity of deep learning models.

This workshop intends to bring together researchers who are producers and consumers of meaning
representations and, through their interaction, gain a deeper understanding of the key elements of
meaning representations that are the most valuable to the NLP community. The workshop will provide
an opportunity for meaning representation researchers to present new frameworks and to critically
examine existing frameworks with the goal of using their findings to inform the design of next-generation
meaning representations. One particular goal is to understand the relationship between distributed
meaning representations trained on large data sets using network models and the symbolic meaning
representations that are carefully designed and annotated by NLP researchers, with an aim of gaining a
deeper understanding of areas where each type of meaning representation is the most effective.

These proceedings include papers presented at the 6th International Workshop on Designing Meaning
Representations on August 4, 2025 in Prague, Czechia. DMR 2025 received 9 submissions, out of
which 6 papers have been accepted to be presented at the workshop as talks. The papers address topics
ranging from meaning representation methodologies to issues in meaning representation parsing, to the
adaptation of meaning representations to specific applications and domains, to cross-linguistic issues in
meaning representation. In addition to oral paper presentations, DMR 2025 also featured invited talks by
Roberto Navigli (Sapienza University of Rome) and Mehrnoosh Sadrzadeh (University College London),
entitled “NounAtlas, VerbAtlas, BMR, MOSAICo and other marvels: Towards a Unified Multilingual
Semantic Framework” and “Quantum machine learning for natural language processing,” respectively.

We thank our organizing committee for its continuing organization of the DMR workshops. We are
grateful to all of the authors for submitting their papers to the workshop and our program committee
members for their dedication and their thoughtful reviews. Finally, we thank our invited speakers for
making the workshop a uniquely valuable discussion of linguistic annotation research.

Kenneth Lai and Shira Wein
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Abstract

Uniform Meaning Representation (UMR) is
a semantic framework designed to represent
the meaning of texts in a structured and inter-
pretable manner. In this paper, we evaluate
the results of the automatic conversion of ex-
isting resources to UMR, focusing on Czech
(PDT-C treebank) and Latin (LDT treebank).
We present both quantitative and qualitative
evaluations based on a comparison between
manually and automatically generated UMR
structures for a sample of Czech and Latin sen-
tences. The findings indicate comparable re-
sults of the automatic conversion for both lan-
guages. The key challenges prove to be the
higher level of semantic abstraction required by
UMR and the fact that UMR allows for captur-
ing semantic structure in multiple ways, poten-
tially with varying levels of granularity.

1 Introduction
The challenge of representing meaning has been
fascinating linguists, philosophers, and cogni-
tive scientists for centuries. Traditional seman-
tic frameworks—such as truth-conditional seman-
tics (e.g., Davidson, 1967), frame semantics (e.g.,
Baker et al., 1998; Fillmore et al., 2002), and cog-
nitive semantics (e.g., Langacker, 1987; Croft and
Cruse, 2004)—aimed to formalize how meaning is
constructed, interpreted, and communicated.

Recent advances in natural language process-
ing have been driven by large language models.
These models excel at downstream tasks such as
text generation and translation. However, given
their unclear interpretability—as they rely on sta-
tistical patterns rather than true semantic or logi-
cal understanding—they do not answer the essen-
tial questions about meaning representation.

Thus, symbolic approaches remain central to ef-
forts to search for precise, inference-capable mean-
ing representations. Uniform Meaning Represen-
tation (UMR), the fundamentals described by van

Gysel et al. (2021), is one of the responses to
this interest. We build on this initiative and test
the approach for representing Czech and Latin—
inflected languages with rich morphology and free
word order representing information-structural fea-
tures (such as topic-focus articulation and dis-
course dynamics) rather than syntactic relations.
The results of our effort could thus provide valu-
able insight for the UMR community.

Creating data from scratch is extremely time-
consuming and requires highly trained annotators
with extensive expertise. That’s why we aim to
take advantage of the richly annotated datasets al-
ready available for the two languages, and investi-
gate the possibility of their (semi-)automatic con-
version to the UMR framework. Namely, we rely
on the PDT-C corpus1 (Hajič et al., 2024a) for
Czech and on a subset of the Latin Dependency
Treebank (LDT)2 (Bamman and Crane, 2006) for
Latin. Both are annotated using the same PDT an-
notation scenario, thus supporting the same con-
version process. A similar approach has proved
to be advantageous for English—as described by
Bonn et al. (2023b), who created the extensive En-
glish UMR corpus (Bonn et al., 2025) from struc-
tures used in Abstract Meaning Representation, the
UMR predecessor. Full conversion is not always
feasible, but even partial results are highly ben-
eficial, as shown by Buchholz et al. (2024) and
Gamba et al. (2025).

The paper presents a comparison of (a small
sample of) double-annotated UMR data, that is, the
data with manually created UMR structures and
their counterparts automatically converted from
the PDT-C and LDT corpora, respectively. First,
we briefly describe the UMR and PDT-C ap-
proaches and the available automatic conversion
(§ 1.1, 1.2, and 1.3, respectively) and the Czech

1http://hdl.handle.net/11234/1-5813
2https://itreebank.marginalia.it/
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and Latin UMR data (§ 2). § 3 introduces the way
we compare the structures and brings a quantita-
tive comparison. A qualitative analysis follows in
§ 4. § 5 then summarizes the results and discusses
further work.

1.1 Uniform Meaning Representation
Uniform Meaning Representation (see esp. van Gy-
sel et al., 2021; Bonn et al., 2023b, 2024) is a se-
mantic framework designed to represent the mean-
ing of texts in an interpretable way, elaborating
the (originally English-centered) Abstract Mean-
ing Representation (Banarescu et al., 2013; Wein
and Bonn, 2023). UMR’s graph-based sentence-
level representation abstracts from the overt sen-
tence syntax; in particular, it encodes the frame-
based predicate-argument structure of all even-
tive concepts, including their aspectual informa-
tion. In addition, UMR models semantic rela-
tions that cross sentence boundaries, such as coref-
erence, temporal chains, and epistemic modality,
which makes it possible to interpret context and
discourse more effectively.3 Its applicability has
been demonstrated on a sample of data from En-
glish, Chinese, and four low-resource American
languages (Bonn et al., 2023a).

1.2 PDT: Deep syntactic representation
Both treebanks that we use as our source data,
Czech PDT-C and Latin LDT, provide representa-
tion at the so-called deep syntactic layer (also tec-
togrammatical or t-layer; see esp. Sgall et al., 1986;
Hajič et al., 2020 for Czech and Passarotti, 2014;
Gonzalez Saavedra and Passarotti, 2014 for Latin).
The core of this dependency-oriented representa-
tion is formed by the predicate-argument structure
(valency) and other deep syntactic relations. This
core structure is enriched with meaning-relevant
morphological information (number and gender for
nouns; tense, aspect, modality for verbs), topic-
focus articulation, and coreference annotation.4

In contrast to UMR, the PDT scenario concen-
trates on linguistically structured meaning; as such,
it more or less directly refers to the annotated text.
Thus, this scenario is less abstract than UMR—
which presents the main obstacles to the automatic
conversion (as will be discussed below).

3The UMR 0.9 specification as available here:
https://github.com/umr4nlp/umr-guidelines/blob/
master/guidelines.md

4For the full PDT-C documentation, see https://ufal.mff.
cuni.cz/pdt-c/documentation.

A more thorough comparison of the two ap-
proaches, envisaging the possibility of the auto-
matic PDT-C to UMR conversion, can be found in
Lopatková et al. (2024).

1.3 PDT to UMR automatic conversion
Here we work with the first attempt to automati-
cally convert PDT structures to UMR structures, as
described in Lopatková et al. (2025). Let us stress
that this conversion is partial—it covers only se-
lected phenomena pertaining to the sentence-level
annotation (esp. structure of the graph, labeling
of nodes and relations, PropBank-like argument
structure for verbs, and selected attributes); in addi-
tion, intra-sentential coreference relations are iden-
tified.

The conversion procedure recursively traverses
the PDT-C tree (namely the t-structure), and in-
crementally builds the corresponding UMR graph.
Each node and edge are analyzed to determine nec-
essary structural and labeling changes, as well as
the addition of UMR attributes.

• In this stage, structural transformations are
a key part of the process. These typically
arise from handling coreference (merging pro-
nouns with their referents, reentrancies, in-
verse roles), coordination (esp. represent-
ing conjuncts and their shared dependents in
a UMR-adequate structure), relative clauses
(merging referential nodes and linking them
semantically), and control or raising verbs
(merging arguments across predicates), as
sketched by Lopatková et al. (2024, 2025).

• Changes in nodes labeling reflect the shift
from deep syntactic elements of PDT-C (iden-
tified as t-lemmata) to UMR concepts (enti-
ties, states, and processes).

• For edges labeling, deep syntactic roles of
PDT-C are converted to UMR semantic re-
lations, using (i) verb-specific mapping of
arguments (whenever available, Hajič et al.,
2024b) and (ii) default mapping of arguments
and adjuncts (Lopatková et al., 2025).

• UMR nodes are enriched with selected UMR
attributes, namely aspect, degree, polar-
ity, quant, refer-number, and refer-person
(Lopatková et al., 2025).

• Nodes alignment is gained from PDT-C.
In the following, we concentrate on evaluating

the quality of conversion for the aforementioned
phenomena. We exclude UMR attributes not listed
above (i.e., wiki, modal-strength, mode, polite, and
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corpus sentences tokens PDT / LDT UMR nodes UMR nodes
nodes (manual) (automatic)

Czech PDT 25 467 378 375 349
PDTSC 50 374 321 442 305
PCEDT 16 474 400 307 327
total 91 1315 1099 1124 981

Latin LDT 50 889 928 773 865

Table 1: Statistics for both manually and automatically annotated data.

quote), as well as all phenomena represented in the
document-level annotation.5

2 Double-annotated UMR Data
2.1 Czech UMR data
The PDT-C corpus offers a large volume of Czech
data spanning various genres. We selected a sam-
ple of six files from its development data for man-
ual annotation. This sample covers key genres pre-
sented in PDT-C (written texts in both general jour-
nalistic and technical styles, as well as spoken data).
Another selection criterion was that the files in-
clude specific linguistic phenomena where we an-
ticipate problems during the conversion (e.g., not
overtly expressed entities or events, selected types
of special constructions, coordinated structures,
complex coreferential chains, negation). Specifi-
cally, the selected texts are as follows:

• 25 sentences (2 documents) from the core
PDT6 subcorpus (Czech newspaper texts
from 1992-94);

• 50 sentences from the PDTSC7 subcorpus
(spontaneous dialogs);

• 16 sentences (out of 37 sentences, 2 docu-
ments) from the Czech part of the PCEDT8

subcorpus (Czech translations of the Penn
Treebank-WSJ texts).

Table 1 provides more detailed statistics. It re-
veals that the WSJ texts from PCEDT are more
complex (especially compared to spontaneous di-
alogs from PDTSC); thus, despite the lower num-
ber of PCEDT sentences, the sample data selected
for manual annotation provide relatively balanced
coverage of the genres represented in the corpus.

A small portion of the data (21 sentences with
255 tokens from PDT and PDTSC) were annotated

5The Czech and Latin UMR data described and compared
in the paper are available through the Lindat repository, see
http://hdl.handle.net/11234/1-5951.

6https://ufal.mff.cuni.cz/pdt3.5
7https://ufal.mff.cuni.cz/pdtsc2.0
8https://ufal.mff.cuni.cz/pcedt2.0/

by two human annotators in parallel; these data
were used to estimate inter-annotator agreement
(Table 2).

2.2 Latin UMR data
The corpus utilized in this study corresponds to
a portion of the LDT as provided by the Index
Thomisticus Treebank project9 (Passarotti, 2019).
Compared to the original version, this subset was
refined at the syntactic layer and annotated from
scratch at the semantic-pragmatic layer. It includes
the entire De coniuratione Catilinae ‘Conspiracy
of Catiline’ by Sallust along with excerpts from the
works of Caesar and Cicero. For this work, we fo-
cus specifically on Sallust and select the first 50
sentences of his work, corresponding to the first
five (out of 61) chapters of the text. We select these
sentences as they are already part of the UMR 2.0
release. Table 1 provides basic data statistics.

3 Comparison: Global Perspective
3.1 Metrics for graph comparison
Quantitative comparison of semantic graphs is a
non-trivial task because two representations of the
same sentence may differ in the number of nodes,
and the node identifiers (variables) typically differ,
too. It is thus not obvious which nodes should be
taken as corresponding to each other. If we can find
the optimal node mapping between the two graphs,
the rest of the task is easy. Properties of the graph
can be expressed as a set of triples (x, y, z), where
x is a node (now identifiable in both graphs), y is
a name of a relation or an attribute, and z is an-
other node (child node of the relation) or the value
of the attribute. Similarity of two graphs can be
expressed as the F1 score of the triples.

UMR is a successor to AMR, and for AMR, the
smatch metric (Cai and Knight, 2013) has emerged
as the de-facto standard. It defines as optimal the
mapping that maximizesF1 of the resulting triples;

9https://itreebank.marginalia.it/
3



UMR node mapping:
Anot1 nodes Anot2 nodes mapped recall precision F1

228 221 215 94% 97% 96%

Concept and relation comparison (only mapped nodes):∗
Anot1 triples Anot2 triples match recall precision F1

633 644 595 94% 92% 93%

Concept and relation comparison:∗∗
Anot1 triples Anot2 triples match recall precision juːmæʧ = F1

663 659 595 90% 90% 90%

Table 2: Manually double-annotated UMRs: quantitative comparison for Czech (PDT+PDTSC).
(∗ Unmapped nodes are ignored. ∗∗ Unmapped nodes all counted as incorrect.)

the smatch algorithm employs hill-climbing with
restarts to find an approximate solution to the opti-
mization problem.

An alternative node mapping algorithm, called
AnCast, has been proposed specifically for UMR
(Sun and Xue, 2024). It has been shown to be more
efficient and more accurate than smatch. The au-
thors also define a number of partial metrics, such
as Concept F1 and Labeled Relation F1, which im-
prove interpretability of the results.

One of the improvements of UMR over AMR is
that UMR annotation includes alignment of nodes
to surface tokens. Smatch does not have the notion
of word alignment; AnCast can use it if available,
but it can work without it, too. Nevertheless, An-
Cast’s ability to exploit alignment is limited. The
token–node alignments can be M : N , with a
node potentially mapped to a discontinuous set of
tokens, while AnCast can currently process only
continuous alignments. AnCast also compares con-
cepts of the nodes to be mapped, and it tries to
assess concept similarity rather than identity, al-
though in a restricted manner. To achieve similar-
ity > 0, one concept lemma must be substring of
the other. This would recognize similarity between
e.g., fry and stir-fry, but not between Czech volit
‘to vote’ and nominalized volba ‘election’.

Both smatch and AnCast will map as many
nodes as possible. If one of the graphs has more
nodes that the other, remaining nodes will stay un-
mapped. If the graphs have the same number of
nodes, every node will be mapped to a node in
the other graph, even if they are clearly unrelated.
This may occasionally improve the score when a
random attribute occurs in both nodes, but it blurs
the interpretation of the score. More importantly,

we also want to use the mapping to eye-ball dis-
agreement between annotators, and maximal node
mapping is not helpful for that purpose. There-
fore, we employ a third mapping algorithm called
juːmæʧ, which primarily maps nodes aligned to the
same word(s), and for nodes without word align-
ment (which are a minority in UMR graphs) re-
quires concept identity. As with smatch and An-
Cast, we assess similarity of other node attributes
if needed to get a symmetric one-to-one mapping.
An example comparing juːmæʧ and smatch map-
pings is given in Appendix A.

Note that all scores in the present paper evalu-
ate only the sentence-level graphs in UMR. The
document-level relations (modal and temporal an-
notation, coreference) could be evaluated as triples
using the same node mapping, but the current eval-
uation scripts do not support it.

3.2 Quantitative comparison

Comparison of manually double-annotated
Czech data. First, to gain insight into the prob-
lem, we quantitatively analyzed, using juːmæʧ
scores, a small sample of manually double-
annotated Czech data (21 sentences with 255
tokens, annotated by two annotators in parallel).
The scores cover all concept instance triples,
all relations between nodes, and selected node
attributes. To be able to use the same setting for
the manually double-annotated data and for the
comparison of the manually and automatically
created structures, we skip attributes whose values
cannot be obtained from the source data (wiki,
modal-strength) and not-yet-converted source
attributes (mode, polite, quote). The results are
shown in Table 2.

4



UMR node mapping:
corpus MAN nodes AUTO nodes mapped recall precision F1

PDT 375 349 284 76% 81% 78%
PDTSC 442 305 235 53% 77% 63%
PCEDT 307 327 244 79% 75% 77%
total 1124 981 763 68% 78% 72%

Concept and relation comparison (only mapped nodes):∗
corpus MAN triples AUTO triples match recall precision F1

PDT 844 819 502 59% 61% 60%
PDTSC 622 633 352 57% 56% 56%
PCEDT 714 588 342 48% 58% 53%
total 2180 2040 1196 55% 59% 57%

Concept and relation comparison:∗∗
corpus MAN triples AUTO triples match recall precision juːmæʧ = F1 smatch
PDT 1082 916 502 46% 55% 50% 49%
PDTSC 1318 770 352 27% 46% 34% 37%
PCEDT 916 757 342 37% 45% 41% 51%
total 3316 2443 1196 36% 49% 42% 45%

Table 3: Czech UMRs: quantitative comparison of manual and automatic structures.
(∗ Unmapped nodes are ignored. ∗∗ Unmapped nodes all counted as incorrect.
MAN stands for the manual annotation, AUTO for the automatic conversion.)

The table shows that juːmæʧ was able to suc-
cessfully map 96% of Czech nodes, with the over-
all F1 over 90%. However, it is important to note
that these figures were obtained after thorough dis-
cussions and reconciliation of problematic cases;
as such, they represent an upper bound for what
the automatic conversion procedure could achieve.
While the inter-annotator agreement is reasonably
high in this experiment (though the available data
sample is very small), the results still indicate that
we cannot expect perfect agreement, given the na-
ture of the UMR framework.

Comparison of manual and automatic UMR
structures. A basic quantitative analysis with
juːmæʧ scores is provided in Tables 3 and 4. The
same setting is preserved (i.e., the scores cover
all concept instance triples, all relations between
nodes, and the same set of node attributes).

The tables reveal relatively low agreement: only
78% of Czech nodes and 77% of Latin nodes were
successfully mapped by juːmæʧ. For these cor-
rectly mapped nodes, around 60% of the triples
match (57% for Czech and 62% Latin). When all
nodes are scored, the overall F1 drops to 42% for
Czech and 51% for Latin. The results are broadly
consistent across both languages. For Czech, the

most elaborated PDT subcorpus displays consis-
tently better conversion results (juːmæʧ reaching
50%), while the PDTSC subcorpus has a low re-
call, as discussed in § 4.1.

For comparison, Tables 3 and 4 also provide
figures obtained by the smatch metric. For both
languages, these figures are higher than those of
juːmæʧ (increase of 3% for Czech and 10% for
Latin). Note that smatch uses a different nodes
mapping algorithm and that it does not allow for
excluding selected attributes.

4 Comparison: Analysis of Differences

Despite rather low results reported above, visual
comparison of the graphs for individual sentences
often yields a fairly good match. The basic struc-
ture typically aligns, and differences are mostly lo-
cal (concepts, relation types, or local structure).

In this section, we focus on the main sources
of disagreement and attempt to determine whether
they stem from shortcomings in the conversion
process, differing interpretations of the annotation
guidelines, or even annotation errors (which can
potentially be reconciled). Another possible expla-
nation for the observed results lies in the nature of
the UMR framework itself, which—as repeatedly
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UMR node mapping:
MAN nodes AUTO nodes mapped recall precision F1

773 865 629 81% 73% 77%

Concept and relation comparison (only mapped nodes):∗
MAN triples AUTO triples match recall precision F1

1820 1923 1168 64% 61% 62%

Concept and relation comparison:∗∗
MAN triples AUTO triples match recall precision juːmæʧ = F1 smatch

2174 2367 1168 54% 49% 51% 58%

Table 4: Latin UMRs: quantitative comparison of manual and automatic structures.
(∗ Unmapped nodes are ignored. ∗∗ Unmapped nodes all counted as incorrect.
MAN stands for the manual annotation, AUTO for the automatic conversion.)

noted in its specification—allows for multiple valid
annotations of the same meaning (as the compari-
son of two manual structures illustrates).

The main differences between automatic and
manual UMRs lie in the fact that UMR is more ab-
stract than PDT and, at the same time, allows al-
ternative annotations. In particular, abstract pred-
icates (§ 4.1), event-entity distinction (§ 4.2), and
abstract entities (§ 4.3) proved to be challenging.

4.1 Abstract predicates
To foster cross-linguistic comparability of meaning
representations, UMR introduces several types of
abstract predicates (also called abstract rolesets).
Among these, rolesets for nonprototypical predi-
cation, so-called implicit rolesets, and predicates
for reification need special attention during conver-
sion.

Rolesets for nonprototypical predication.
UMR predicates for nonprototypical predication
capture possession, location, property and object
predication, and identity relationships (e.g., have-
91 or belong-91 for possession or have-mod-91
for property predication). In PDT, the corre-
sponding semantic content is represented with the
overt verb, typically být ‘be’ or mít ‘have’.10 The
current version of the conversion keeps the lexical
predicates být ‘be’ or mít ‘have’, which, of course,
is not in compliance with the UMR specification.

As an exemplification, consider the (shortened)
PDT example (1) and its manually and automat-
ically created UMR structures (both simplified).

10In these contexts, být ‘be’ or mít ‘have’ are considered
predicates, i.e., lexical verbs rather than auxiliaries, in Czech
linguistics, with valency frames (PDT analogy to framesets)
characterizing each of their senses.

The use of the first abstract predicate have-place-
91 does not affect the overall structure at the upper
level (the only differences being the node and the
relation labels, :ARG0 and :place instead of :ARG1
and :ARG2, respectively). However, the UMR-
compliant manual annotation substantially differs
from the straightforward PDT annotation when it
comes to the representation of the interpersonal re-
lation; it employs the have-rel-role-92 predicate,
which captures sister as a person (:ARG2) who has
a ‘sister’ relation (:ARG4) to the speaker (:ARG1).

(1) … je tam sestra…
‘… there is (my) sister there…’

MAN:
(b / have-place-91

:ARG2 (t / place) 'there'
:ARG1 (p / person

:ARG2-of (h / have-rel-role-92
:ARG1 (p2 / person

:refer-number singular
:refer-person 1st)

:ARG4 (s / sestra)))) 'sister'

AUTO:
(b / být-011 'be'

:place (t / tam) 'there'
:ARG0 (s / sestra)) 'sister'

Next steps: Typical candidates for nonprototypi-
cal predication should be identified: (i) Among
the valency frames (framesets) of the verbs být
‘be’ and mít ‘have’, identify those corresponding to
UMR predicates for nonprototypical predication,
together with adequate argument role mapping. (ii)
Determine other candidates for possessive predica-
tion (e.g., vlastnit, ‘own, possess’, patřit (někomu)
‘belong to’, possessive pronouns, etc.). (iii) Find re-
lational nouns underlying object predication. How-
ever, identification of all candidates for abstract
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predicates remains a challenging task.

Reifications. Reification, a process of convert-
ing a role (= a relation) into a concept, is another
important UMR feature. From the conversion per-
spective, it represents an additional source of dis-
agreement. See, e.g., the manual annotation of ex-
ample (2), where the :frequency relation is changed
to the have-frequency-91 predicate in the manual
annotation, while the relation is preserved in the
automatic conversion. Formally, the upper struc-
ture of the graph is the same, the only changes deal
with nodes labeling (the lexical predicate být-011
‘be’ to the reification have-frequency-91) and re-
lations labeling (the role :frequency to :ARG2).

(2) … teď je to každý rok.
‘… now it’s every year.’

MAN:
(f / have-frequency-91

:temporal (t / teď) 'now'
:ARG1 (e / event)
:ARG2 (r2 / rate-entity-91

:ARG3 (t / temporal-quantity
:quant 1
:unit (r / rok)))) 'year'

AUTO:
(b / být-011 'be'

:temporal (t / teď) 'now'
:ARG1 (t2 / ten) 'it (refers to event e)'
:frequency (r / rok 'year'

:mod (k / každý))) 'every'

Next steps: Again, while the identification of in-
dividual valency frames of být ‘be’, which often
underlies such structures, appears to be challeng-
ing but doable, automatic recognition of other can-
didates for reification seems a too ambitious task.
As the UMR specification suggests applying reifi-
cation only if needed, this step can be postponed.11

Implicit rolesets. UMR is characterized by a list
of implicit rolesets that specify various types of in-
formation, the most relevant being the following:

• They can identify meta-language informa-
tion (e.g., publication-91, hyperlink-91, and
street-address-91).

• The second group is formed by predicates
that express quantitative observations (e.g.,
include-91 to represent subsets, as in some of
them, 23% of voters; range-91 for more than
2 months).

11A possible way to eliminate this type of disagreement
would be to normalize all graphs into reified forms prior to
an automatic evaluation.

• Yet other implicit rolesets indicate special
constructions, as, e.g., comparison (like
resemble-91 for be like John).

• They can also identify dialog-related struc-
tures (e.g., request-confirmation-91 for
Okay?; say-91 for identifying communica-
tion structure (who says what to whom)).

In general, the comparison has revealed that it is
very difficult to automatically identify language
material in PDT that corresponds to phenomena
covered by the implicit rolesets in UMR. Moreover,
even if such structures are identified, the use of the
relevant implicit roleset typically implies a differ-
ent structure. Compare, for example, the lower part
of (2), with každý rok ‘every year’ specifying fre-
quency; the use of the rate-entity-91 roleset with
its :ARG3 role (together with the abstract entity
temporal-quantity, see § 4.3 below) makes the
structure fairly different.

In particular, abstract predicates indicating
meta-language information and those related to dia-
log structures represent a significant source of dif-
ferences between the manual annotations and the
automatic conversions. As this information is typi-
cally not explicitly structured by the language, it is
not captured within the deep syntactic annotation
(our source data), and thus cannot be straightfor-
wardly converted. This is especially relevant for
PDTSC dialogs, as illustrated in (3). The man-
ual UMR structure clearly identifies the speaker
and the listener and their role changing through
the coreference annotation, in contrast to PDT (and
thus to the automatic conversion).
(3) a. Byla to vaše první motorka?

‘Was this your first motorcycle?’
b. První.

‘First.’
MAN:
(s1s / say-91

:ARG0 (s1e1 / person :refer-person 1st)
:ARG2 (s1e2 / person :refer-person 2nd)
:ARG1 (s1b / have-ord-91

:quote s1s
:ARG1 (s1m / motorka 'motorcycle'

:ARG1-of (s1b2 / belong-91
:ARG2 s1e2)) 'you'

:ARG2 (s1p / ordinal-entity :value 1)))

(s2s / say-91
:ARG0 (s2e1 / person :refer-person 1st)
:ARG2 (s2e2 / person :refer-person 2nd)
:ARG1 (s2b / have-ord-91

:quote s2s
:ARG1 (s2m / motorka 'motorcycle'

:ARG1-of (s1b2 / belong-91
:ARG2 s2e1)) 'I'
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:ARG2 (s2p / ordinal-entity :value 1)))
:coref ((s1e1 :same-entity s2e2)

(s1e2 :same-entity s2e1)
(s1m :same-entity s2m))

AUTO:
(s1b / být-007 'be'

:ARG1 (s1t / ten)
:ARG2 (s1m / motorka 'motorcycle'

:mod (s1e2 / entity :refer-person 2nd) 'you'
:mod (s1p / první))) 'first'

(s2m / motorka 'motorcycle'
:mod (s2p / první)) 'first'

This example illustrates one more open question
in the UMR specification: To what extent should
UMR annotation reconstruct fragmentary usages
and ellipses (highly relevant especially for spoken
data and dialogs)? While the complete replay is re-
constructed in the manual annotation (= Motorka
to byla moje první. ‘This was my first motorcy-
cle.’), the PDT annotation, and thus the conversion,
is limited to the fragment (= První motorka. ‘The
first motorcycle.’)
Next steps: Although not explicitly annotated in
our source files, meta-language information is also
available within the PDT data. The next step,
therefore, is to examine the extent to which UMR-
relevant data can be extracted and utilized to en-
hance the conversion process: not only to identify
speakers in spoken data but also to recognize el-
ements such as headlines and other pertinent con-
textual information. Second, more detailed guide-
lines on proper UMR annotation of fragmentary
sentences would improve data consistency.

4.2 Event-related nouns
The UMR specification suggests representing
agent nouns as arguments of the respective verbs;
thus, for example, teacher is a person annotated as
:ARG0 participant of the predicate teach-01. One
might infer that nouns denoting other participants
should also be represented with respective eventive
concepts (e.g., food can be annotated either as a
thing being :ARG1 of eat-01 or just as an instance
of the lexical entity food). However, it is not clear
how far the abstraction should go.

The possibility of multiple correct UMR struc-
tures for the same lexical content undermines the
potential of any automatic metric considering just
one “gold” annotation. It inevitably fails to pro-
vide comprehensive insight into the quality of the
conversion. Cf. the following text fragment from
the beginning of the Czech data (4).

(4) Vážení čtenáři, …
‘Dear readers (= subscribers), …’

MAN:
(... :vocative (p / person

:ARG0-of (c / číst-002) 'read'
:mod (v / vážený))) 'dear'

AUTO:
(... :vocative (c / čtenář 'reader'

:mod (v / vážený))) 'dear'

Although both structures are correct UMRs, their
proper comparison remains a challenge far exceed-
ing the capabilities of a simple automatic metric.
Next steps: Though PDT-scenario does not distin-
guish which lexemes (words) are related to even-
tive concepts (verbal predicates) and which are en-
tities, additional language resources can be used to
identify at least unquestionable candidates for con-
version (as already discussed in Lopatková et al.,
2024). In addition, a more detailed specification
of the UMR conventions could help reduce the oc-
currence of such ambiguous cases.

4.3 Abstract entities
Artificial lemmas employed in the PDT-scenario
for unexpressed arguments (e.g., #PersPron,
#EmpVerb) roughly correspond to UMR basic
abstract concepts like person, thing, event. How-
ever, since it is not possible to deduce the correct
type from PDT and LDT data automatically, the
conversion introduces two supertypes: (i) entity,
subsuming all UMR non-events (esp. person and
thing), and (ii) concept (used esp. in construc-
tions where two or more events, states, or entities
are compared). The first supertype is illustrated in
ex. (3), where the node s1e2 /person (the posses-
sor) in the manual graph corresponds to the node
s1e2 / entity in the converted one.

Further, UMR employs a rich set of abstract en-
tities that identify structured data; for example:

• “entities” (e.g., url-entity, percentage-
entity, or ordinal-entity in ex. (3), with the
subrole :value),

• “quantities” (e.g., temporal-quantity každý
rok ‘every year’ in ex. (2)),

In the current version of the conversion procedure,
structured data of these types have not yet been pro-
cessed using abstract entities. Thus, they represent
an additional source of disagreement in our com-
parison. (Semi-)automatic identification of at least
most frequent constructions remains one of the im-
portant tasks for further improvement.
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4.4 Discourse relations
The PDT and UMR schemata represent paratactic
structures (such as coordination and discourse rela-
tions) in a similar way, by introducing a dedicated
node in the graph to represent the whole paratactic
construction. As a result, the conversion process is
generally straightforward and primarily concerned
with technical adjustments. However, when parat-
actic constructions intertwine with other phenom-
ena (such as relative clauses, represented in UMR
as inverted relations) additional complexity arises,
making the conversion less trivial. For instance,
in example (5) (simplified), the conversion fails
to accurately capture the :ARG0-of inverted rela-
tions, and the coordinating node and is incorrectly
placed one level lower in the graph structure.
(5) et qui fecere et qui facta aliorum scripsere,

multi laudantur.
‘many who have acted, and many who have
recorded the actions of others, are praised.’

MAN:
(sl / laudo-08 'praise'

:ARG1 (a / and
:op1 (p / person

:quant (m / multus) 'many'
:ARG0-of (f / facio-02 'act' : ...))

:op2 (p2 / person
:quant m

:ARG0-of (s / scribo-14 'write, record' : ...))))

AUTO:
(l / laudo-08 'praise'

:ARG0 (e / entity)
:ARG1 (m / multus 'many'

:mod (a / and
:op1 (f / facio-23 'act' : ...)
:op2 (s / scribo-14 'write, record' : ...))))

Next steps: While discourse relations are generally
handled correctly, their interaction with more com-
plex constructions will be examined. Conversion
will be refined if systematic errors are found.

5 Conclusions
This paper presents a comparison between man-
ually constructed UMRs and those produced by
automatic conversion from deep syntactic annota-
tions in existing corpora—–specifically, PDT-C for
Czech and LDT for Latin. We employed a novel
evaluation metric that offers several advantages
over existing methods to assess similarity of UMR
graphs. The results revealed limitations of the cur-
rent conversion process, which we further analyzed
to suggest areas of possible improvements.

Overall, our evaluation shows that automatic
UMR conversion performs comparably for Czech

and Latin. However, the analysis also reveals sig-
nificant challenges inherent to the task, particularly
the high level of semantic abstraction required by
UMR and the fact that UMR allows for multiple
valid representations with varying degrees of gran-
ularity. These characteristics complicate both the
conversion itself and the evaluation of its accuracy.

Despite the relatively low scores, a simple visual
comparison of manual and automatically created
graphs often reveals reasonable alignment. This
suggests that the automatic procedure—especially
after implementing the proposed improvements—
could serve as a solid basis for subsequent manual
annotation, significantly accelerating and reducing
the cost of creating UMR data.
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A Node mapping in juːmæʧ and smatch
Here we show an example sentence from the test
data and document the word alignments and the
node mapping used by the two metrics.

The full sentence: Vážení čtenáři, je tomu právě
rok, kdy jsme vám oznamovali nepopulární infor-
maci, že se cena našich novin zvyšuje. “Dear read-
ers, it’s been a year since we announced the unpop-
ular news that the price of our newspaper was in-
creasing.”

Our excerpt: Vážení čtenáři, je tomu právě rok,
kdy jsme vám oznamovali informaci “Dear readers,
it’s been a year since we announced the news”
MAN:
(s1p0 / publication-91

:ARG3 (s1s1 / say-91
:aspect activity
:modal-strength full-affirmative
:ARG0 (s1p1 / person

:refer-number plural
:refer-person 1st)

:ARG2 (s1p2 / person

:refer-number plural
:refer-person 2nd
:ARG0-of (s1c1 / číst-002 'read'

:aspect habitual
:modal-strength full-affirmative)

:mod (s1v1 / vážený 'dear'))
:ARG1 (s1h1 / have-temporal-91

:aspect state
:modal-strength full-affirmative
:quote s1s1
:vocative s1p2
:ARG1 (s1o1 / oznamovat-002 'announce'

:aspect performance
:modal-strength full-affirmative
:ARG0 s1p1
:ARG1 (s1i1 / informace 'information'

:refer-number singular)
:ARG2 s1p2)

:ARG2 (s1r1 / rok 'year'
:refer-number singular
:mod (s1p4 / právě 'just')))))

AUTO:
(s1b1 / být-011

:aspect activity
:vocative (s1c1 / čtenář 'reader'

:refer-number plural
:mod (s1v1 / vážený 'dear'))

:ARG1 (s1t1 / ten
:refer-number singular
:temporal (s1p1 / právě 'just'))

:duration (s1r1 / rok 'year'
:refer-number singular
:temporal-of (s1o1 / oznamovat-002 'announce'

:aspect activity
:ARG0 (s1p2 / person

:refer-number plural
:refer-person 1st)

:ARG1 (s1i1 / informace 'information'
:refer-number singular)

:ARG2 s1c1)))

juːmæʧ node mapping between MAN and
AUTO (word alignment, if any, is shown in brack-
ets after the concept):
s1p0 / publication-91 … UNMAPPED
s1s1 / say-91 … UNMAPPED
s1p1 / person (“našich”) … s1p2 / person (“našich”)
s1p2 / person (“čtenáři vám”)

… s1c1 / čtenář (“čtenáři vám”)
s1c1 / číst-002 … UNMAPPED
s1v1 / vážený (“Vážení”) … s1v1 / vážený (“Vážení”)
s1h1 / have-temporal-91 (“je”) … s1b1 / být-011 (“je”)
s1o1 / oznamovat-002 (“tomu jsme oznamovali”)

… s1o1 / oznamovat-002 (“jsme oznamovali”)
s1i1 / informace (“informaci”)

… s1i1 / informace (“informaci”)
UNMAPPED … s1t1 / ten (“tomu”)
s1r1 / rok (“rok kdy”) … s1r1 / rok (“rok kdy”)
s1p4 / právě (“právě”) … s1p1 / právě (“právě”)

smatch node mapping between MAN and
AUTO (showing only differences from juːmæʧ
mapping):
s1s1 / say-91 … s1b1 / být-011 (“je”)
s1h1 / have-temporal-91 (“je”) … s1t1 / ten (“tomu”)

In our excerpt, the only nodes left unmapped by
11



smatch are s1p0 and s1c1 from the MAN graph, be-
cause there are no nodes left available in the AUTO
graph. There are two other nodes that are left un-
mapped by juːmæʧ but not by smatch: s1s1 in
MAN and s1t1 in AUTO. The mapping that smatch
found for these nodes has no semantic justification
(but it will slightly increase F1 score because both
say-91 and být-011 have :aspect activity).
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Abstract

The graph-based semantic representation Ab-
stract Meaning Representation (AMR) incorpo-
rates Proposition Bank (PropBank) sense IDs
to indicate the senses of nodes in the graph and
specify their associated arguments. While this
contributes to the semantic information cap-
tured in an AMR graph, the utility of incor-
porating sense IDs into AMR graphs has not
been analyzed from a technological perspec-
tive, i.e. how useful sense IDs are to generating
text from AMRs and how accurately senses are
induced by AMR parsers. In this work, we ex-
amine the effects of altering or removing the
sense IDs in the AMR graphs, by perturbing the
sense data passed to AMR-to-text generation
models. Additionally, for text-to-AMR pars-
ing, we quantitatively and qualitatively verify
the accuracy of sense IDs produced from state-
of-the-art models. Our investigation reveals
that sense IDs do contribute a small amount
to accurate AMR-to-text generation, meaning
they enhance AMR technologies, but may be
disregarded when their reliance prohibits multi-
lingual corpus development.

1 Introduction

The Proposition Bank (PropBank; Palmer et al.,
2005) is a corpus of semantic roles of verbs and
their arguments, where each verb sense is assigned
an ID.1 In addition to verbs, PropBank also anno-
tates semantic roles of select adjectives, preposi-
tions, and multiword expressions (Pradhan et al.,
2022); some of the verbs in PropBank are verb-
particle constructions, where a combination of a
verb and preposition have a specified unique mean-
ing, such as “turn in” meaning to submit/hand in.

The graph-based semantic representation Ab-
stract Meaning Representation (AMR; Banarescu

1For example, like-01 and like-02 are two different
senses of like, where like-01 means have affection towards,
be fond of, enjoy (habitually) while like-02 means would
like, wish, want (polite) (Palmer et al., 2005).

Text: Everyone likes strawberries in summer.
Parsed AMR:
(l / like-01

:ARG0 (e / everyone)
:ARG1 (s / strawberry)
:time (s2 / summer))

Figure 1: Example sentence and its AMR graph. The
dashed number (-01) is the PropBank sense ID specify-
ing the intended meaning of the predicate like.

et al., 2013) uses English PropBank frames to in-
dicate the sense of each node in the graph and its
associated arguments (as shown for like-01 in Fig-
ure 1). While the sense IDs in AMR graphs provide
relevant semantic information, this inclusion re-
quires manually checking PropBank for each sense
ID and presents challenges when trying to annotate
AMR in languages other than English (if adequate
PropBank frames do not exist for that language).
Senses do not always correspond across languages
(Padó, 2007; van der Plas et al., 2010), limiting
the benefits of relying on English PropBank for
non-English languages, and many low-resource lan-
guages do not have framesets available. Two exten-
sions of AMR, Uniform Meaning Representation
(UMR; Van Gysel et al., 2021) and WISeR (Widely
Interpretable Semantic Representation; Feng et al.,
2023), resolve this issue by incorporating a “Stage
0” frameset development phase for low-resource
languages and eliminating senses from the repre-
sentation entirely, respectively.

Thus, given the prohibitive nature of sense IDs
in multilingual extensions of AMR, in this work,
we examine the technical utility of maintaining
sense IDs in AMRs. We investigate the extent to
which AMR-to-text generation models and text-to-
AMR parsing models accurately rely on sense IDs
when producing either text or AMRs, respectively.
Specifically, we examine how AMR-to-text genera-
tion models perform when the sense IDs are altered
in the AMR graphs, and perform an analysis of the
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accuracy of sense ID prediction in text-to-AMR
parsers. We alter sense IDs in the input AMRs by:

• removing the sense IDs,
• replacing them with sense IDs that do not cor-

respond with real PropBank frames,
• changing each sense ID to a realistic different

sense of the same verb,
• swapping each verb’s sense ID with the most

(and least frequent) sense ID in the AMR3.0
corpus, and

• swapping each verb-particle construction with
a verb (and the reverse: swapping all verbs
with verb-particle constructions where possi-
ble).

We then generate text from four state-of-the-art
AMR-to-text generation models on versions of the
AMR3.0 dataset (Knight et al., 2020) with these
sense ID alterations.

Next, we set out to ascertain the accuracy of
sense IDs parsed by state-of-the-art automatic text-
to-AMR parsers, which is related to the task of
word sense disambiguation. We do this by examin-
ing whether the sense IDs match among the verbs
that appear in both the automatically parsed AMRs
and their human-annotated gold references.

We find that, while AMR-to-text generation mod-
els exhibit only a small decrease in automatic met-
ric scores from these perturbations (removals and
changes), there is still a statistically significant de-
crease for all models across all automatic metrics.
We also find that, impressively, even for less fre-
quently appearing senses, text-to-AMR parsers per-
form sense induction highly accurately. These re-
sults suggest that sense IDs are a contributing factor
in the success of AMR technologies, but may be
disregarded when necessary to promote multilin-
gual extensions of AMR.

2 Methods

Here, we outline the data we use for experimen-
tation (Section 2.1), the methods for sense ID al-
teration in AMR-to-text generation (Section 2.2),
the evaluation techniques and models for AMR-to-
text generation (Section 2.3), and the evaluation
techniques and models for text-to-AMR parsing
(Section 2.4).

2.1 Data

The AMR3.0 dataset contains 59,255 sentences
written in English (from sources such as news and
online forums), along with their matching gold

(human-annotated) AMR graphs. We use only the
test split of AMR3.0 to produce the altered datasets
and generate parsed outputs, but identify the high-
est and lowest frequency sense IDs for each verb
across the entire AMR3.0 dataset.

2.2 Sense ID Alterations
We evaluate the quality of AMR-to-text generation
output under various conditions. We remove the
sense IDs in four ways to observe how different
components of a sense, such as the dash, signal
the presence a predicate. We perform substitutions
based on the frequency and existence of each in-
dividual sense ID to understand the effect of the
appearance of senses in the training data. Lastly,
we alter the verb-particle constructions to observe
the impact of the verb form on the generated sen-
tence.

Removed. We test removing sense IDs from
AMR graphs in four ways: (1) completely remove
the sense IDs and the dash preceding them (e.g.
get-01 to get), (2) remove the sense IDs but keep
the dash preceding them (e.g. get-01 to get-),
(3) change all the sense IDs to 0 (e.g. get-01 to
get-0) , and (4) change all the sense IDs to 00 (e.g.
get-01 to get-00). We hypothesize that the dash
functions as a marker for sense IDs, and therefore
keeping the dash may improve sense induction per-
formance compared to completely removing it, by
signaling to the model that the preceding word is a
predicate.

Arbitrarily large. We inspect the impact of
a large sense ID that does not exist in PropBank
by changing all the sense IDs to arbitrarily large
numbers, randomized between 50 and 100, given
that no sense IDs above 50 appear in PropBank.

Realistic substitution. Next, we change each
sense ID to a random, “realistic” sense ID. If the
word has multiple senses in PropBank, we substi-
tute the current sense with another PropBank sense
of the same verb form. If there is only one sense
(-01), we substitute in -02.

Highest frequency. Here, we change each sense
ID to the sense ID that appears most frequently for
each verb in the AMR3.0 dataset. In the case of
a tie (i.e. more than one sense has the same fre-
quency), the lower numbered sense is used (given
that it was added to PropBank first).

Lowest frequency. Similarly, we change each
sense ID to the sense ID that appears the fewest
number of times in the entire AMR3.0 dataset. In
the case of a tie, the higher valued number is used
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amrlib SPRING BiBL AMRBART
Datasets BERT BLEU MET. BERT BLEU MET. BERT BLEU MET. BERT BLEU MET.
Baseline 0.9523 0.3869 0.7119 0.9589 0.4181 0.7366 0.9642 0.4753 0.7695 0.9651 0.4815 0.7732
Removed (1) 0.9512 0.3778 0.7074 0.9581 0.4126 0.7355 0.9631 0.4678 0.7674 0.9611 0.4399 0.7572
Removed (2) 0.9514 0.3815 0.7097 0.9577 0.4115 0.7328 0.9630 0.4669 0.7660 0.9614 0.4423 0.7575
Removed (3) 0.9516 0.3807 0.7089 0.9446 0.3531 0.6852 0.9604 0.4531 0.7534 0.9564 0.4111 0.7385
Removed (4) 0.9517 0.3789 0.7101 0.9583 0.4134 0.7351 0.9635 0.4713 0.7677 0.9612 0.4373 0.7579
Arbitrarily Large 0.9509 0.3753 0.7068 0.9584 0.4125 0.7366 0.9624 0.4644 0.7634 0.9602 0.4286 0.7531
Realistic Substitution 0.9519 0.3806 0.7104 0.9578 0.4088 0.7319 0.9624 0.4667 0.7624 0.9611 0.4390 0.7557
Highest Frequency 0.9521 0.3852 0.7111 0.9583 0.4150 0.7343 0.9639 0.4729 0.7676 0.9645 0.4761 0.7693
Lowest Frequency 0.9520 0.3836 0.7111 0.9582 0.4123 0.7338 0.9637 0.4758 0.7690 0.9637 0.4711 0.7683
To VPC 0.9348 0.3088 0.6763 0.9429 0.3566 0.7041 0.9495 0.4122 0.7430 0.9499 0.4056 0.7425
Remove VPC 0.9407 0.3175 0.6601 0.9497 0.3785 0.7102 0.9575 0.4451 0.7554 0.9584 0.4469 0.7601

Table 1: AMR-to-text generation results on the baseline and ten altered versions (VPC=verb-particle construction).
The highest non-baseline scores within each model are bolded in blue, and the lowest scores for each model are
italicized in red.

(given that it was added to PropBank later).
Change to verb-particle construction. Where

possible, we change each verb to a verb-
particle construction, such as get-away-08 or
run-out-05. To test the significance in changing a
verb to a verb-particle construction, we exclude all
AMR graphs that did not have any changes made
(i.e.: verb has no verb-particle construction in Prop-
Bank). If there are valid senses to substitute, we
choose one randomly. For example, if drop-05
appears in the dataset, we replace it with a ran-
domly chosen sense from the list: drop-by-02,
drop-off-03, drop-out-04, drop-in-08. In this
way, the parse is changed to have verb-particle con-
struction (i.e. both the text and sense ID in the
concept change) where applicable, though the verb-
particle construction does not appear in the original
sentence.

Remove verb-particle constructions. Finally,
we change each verb-particle construction to a verb
form, if applicable, using the same process as for
changing to verb-particle constructions.

2.3 Generation Models & Evaluation

For AMR-to-text generation, we leverage four mod-
els: amrlib2, SPRING (Bevilacqua et al., 2021),
AMRBART (Bai et al., 2022), and BiBL (Cheng
et al., 2022). For evaluation, we use the test set
from AMR3.0 (Knight et al., 2020), which con-
tains 1,898 AMR graphs, as some of these models
were trained on the training portion of the corpus.

To analyze the effect of modifying sense IDs, we
alter each node in the AMR graphs in the specified
manner and then generate text from each of these
sets of altered AMRs, using the aforementioned

2amrlib GitHub Repository

four generation models. We also generate baseline
outputs from the original test split to compare how
well our modified outputs perform.

We evaluate the generated text with BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and BERTscore (Zhang et al., 2020).

2.4 Parsing Models & Evaluation

For text-to-AMR parsing, we assess the accuracy of
the sense IDs included in automatically produced
AMR graphs. We use five models: the BART-large
fine-tuned model of amrlib, SPRING, AMRBART,
BiBL, and LeakDistill (Vasylenko et al., 2023).
For evaluation, we use the test set from AMR3.0.
Specifically, we use the Consensus dataset, which
contains 100 AMRs, which we chose due to its
suitable size for manual qualitative analysis.

In order to perform a small-scale analysis of
text-to-AMR parser accuracy for sense IDs, we
use the aforementioned parsers to generate the 100
predicted AMRs for each model. Then, we check
for matching verbs, and of those verbs, correct
sense IDs. For example, if the gold annotation is
get-01 and the predicted sense is get-02, then we
have a matching verb and a different sense ID.

3 Results

Table 1 shows the results of our experiments on the
effect of altering sense IDs on AMR-to-text gener-
ation; Table 2 contains the results of our evaluation
of the sense ID accuracy of text-to-AMR parsing
models.

3.1 Generation Results

We find that the automatic metric scores are only
slightly—though consistently—lower for texts gen-
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erated from the altered datasets. This includes
cases where sense IDs were removed, a promis-
ing finding for extending AMR-to-text generation
to languages with insufficient PropBank frames.

Interestingly, the impact is more pronounced
for better-performing models, suggesting they may
be utilizing the sense ID information to a greater
degree. In particular, AMRBART is the best-
performing model with a baseline BERTscore of
0.9651, but its modified outputs show an average
decrease of 0.0053. On the other hand, amrlib,
SPRING, and BiBL have baseline BERTscores of
0.9523, 0.9589, and 0.9642, respectively, but their
modified outputs show decreases of only 0.0035,
0.0045, and 0.0033 on average.

The text generated from the AMR nodes
swapped with their highest frequency sense IDs has
the highest automatic metric scores overall, with
BERTscore decreases of just 0.0002 to 0.0006 com-
pared to the baseline. This supports our hypothesis
that AMR-to-text generation models tend to priori-
tize generating PropBank sense IDs based on their
frequency in the AMR3.0 corpus. Notably, the
AMRs swapped with the least frequent senses also
perform competitively, occasionally outperforming
all the other altered datasets in BLEU and ME-
TEOR scores. The highest and lowest frequency
substitutions are the only alterations which ensure
that all sense IDs present in the AMRs actually ex-
ist in PropBank, suggesting that maintaining valid
sense information (and the same verb form) leads
to higher quality text generation.

In contrast, AMRs involving verb-particle con-
struction substitutions result in the greatest perfor-
mance drops overall, with an average BERTscore
decrease of 0.0122 across all models. These are
the only cases where the root verbs change en-
tirely, indicating that such changes disrupt the per-
formance of AMR-to-text generation models more
than changes to sense IDs alone.

We also find that the way in which the sense IDs
are removed has an impact on the generated text,
where maintaining the dash preceding the sense ID
or changing the sense ID to 00 improves model per-
formance compared to removing them both com-
pletely. This suggests that models treat the dash
as a predicate marker. Furthermore, using 00 pre-
serves the familiar formatting of most sense IDs
and aligns with its use as a placeholder for missing
predicates (Banarescu et al., 2019).

Though on an item-level basis the decrease in
BERTscore is minimal, we find that all perturba-

Models Matching Verbs Sense Accuracy (%) 1-Sense Verbs (%)
amrlib 351 98.0% 51.6%

SPRING 349 98.0% 51.6%
BiBL 341 98.5% 52.8%

AMRBART 350 98.9% 51.7%
LeakDistill 343 98.3% 52.5%

Table 2: Text-to-AMR parsing results. Sense Accuracy
refers to instances where not only the root verbs but
also the associated sense IDs are predicted correctly.
About half of these matching verbs for each model have
only one sense, with the exact percent for each model
indicated here with the “1-Sense Verbs” column.

tions result in a statistically significant decrease in
BERTscore when compared via t-tests (p ≤ 0.05).
We perform paired t-tests comparing the base-
line BERTscore values against all datasets, ex-
cept for the verb-particle construction changes, for
which we perform unpaired t-tests given that these
datasets are smaller (since not all individual AMR
graphs were able to have a verb-particle construc-
tion substitution for any nodes).3 This suggests that
AMR-to-text generation models are still sensitive
to changes in verb senses.

3.2 Parsing Qualitative Analysis

We check the sense accuracy of verbs which ap-
pear in both the gold AMR and the system out-
put. As seen in Table 2, all five text-to-AMR
parsers—amrlib, SPRING, BiBL, AMRBART, and
LeakDistill—demonstrate high accuracy in assign-
ing sense IDs to correctly predicted verbs, with
accuracy rates from 98.0% to 98.9%. About half
of these matching verbs for each model have only
one sense, contributing to this high accuracy.

Impressively, the parsers also correctly identify
less frequent senses. For instance, all five mod-
els accurately predict run-04 in a sentence about
Route 288 in Virginia,4 even though run-04 ap-
pears only 19 times in the AMR3.0 training split—
compared to 188 instances of run-01 and 149 of
run-02. However, one of those 19 instances men-
tions “Virginia_State_Route_203” in a similar con-
text, suggesting that the models drew on contextual
patterns from training.

Our study is conducted using the AMR3.0 cor-
pus, which primarily consists of newswire and on-

3For amrlib, the p-values range from <0.0001 to 0.0317.
For SPRING, the p-values range from <0.0001 to 0.0244. For
BiBL, the p-values range from <0.0001 to 0.0050. Finally,
for AMRBART, the p-values range from <0.0001 to 0.0047.

4“Route 288, the circumferential highway running around
the south - western quadrant of the Richmond New Urban
Region, opened in late 2004.”
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line text, raising the question of how our findings
on sense ID sensitivity generalize to other domains.
From our results, we find that text-to-AMR parsers
perform sense induction accurately even for senses
that appear infrequently in the training data. This is
promising for applying parsing models to other cor-
pora, such as The Little Prince dataset (Banarescu
et al., 2013), which is a literary work with often
uncommon language usage. Even if infrequent
senses appear in other corpora, our findings sug-
gest that the parsing models would still perform
well. The relatively small decrease in generation
quality from sense ID alterations suggests that gen-
eration models are not effectively using the sense
ID information. It is unclear whether this is due
to the model architecture or how the sense ID in-
formation appears in AMR graphs. However, we
know that the presence of a dash improves perfor-
mance, suggesting that models recognize this as a
signal to expect sense IDs. Additionally, the sub-
stantial drop in performance when substituting for
verb-particle construction indicates that the verb
form has a larger impact than the sense ID itself.

4 Conclusion & Future Work

In this work, we explored to what degree AMR-
to-text generation models rely on sense IDs in
AMR graphs, by swapping or removing the sense
IDs in the nodes, and assessing the quality of the
resulting text. We find that AMR-to-text genera-
tion models are susceptible to sense perturbations
and suffer a small decrease in automatic metric
scores (BERTscore, BLEU, and METEOR), with
BERTscore decreases of up to 0.0175; though the
decrease is relatively small, all of the changes that
we make to the sense IDs result in a statistically
significant decrease in text quality for all genera-
tion models. We also measured the accuracy of
sense annotation in text-to-AMR parsers, and our
parsing analysis reveals that AMR technologies do
accurately perform sense induction when parsing.

Our results indicate that sense IDs enable higher
quality text generation when included in the AMRs
for AMR-to-text generation models, and provide in-
sightful semantic content within the AMR. Still, the
technical relevance of sense IDs is small, and may
be worth avoiding if the creation of in-language
frames precludes the development a non-English
AMR extension—or for multilingual extensions
of AMR broadly. Accordingly, our findings mo-
tivate future work investigating multilingual ex-

tensions of AMR that do not include any sense
IDs and generalize roles across (i.e. moving from
opaque arguments such as :ARG0 to more generaliz-
able terms such as :agent); finding generic terms
that would be sufficiently representative across lan-
guages presents an additional challenge.
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Abstract

Deriving structured semantic representations
from unrestricted text, in a format suitable for
sound, explainable reasoning, is an important
goal for achieving AGI. Consequently much
effort has been invested in this goal, but the
proposed representations fall short in various
ways. Unscoped Logical Form (ULF) is a
strictly typed, loss-free semantic representa-
tion close to surface form and conducive to
linguistic inference. ULF can be further re-
solved into the more precise Episodic Logic.
Previous transformer language models have
shown promise in the task of parsing English to
ULF, but suffered from a lack of a substantial
dataset for training. We present a new fine-
tuned language model parser for ULF, trained
on a greatly expanded dataset of ULFs auto-
matically derived from Brown corpus Treebank
parse trees. Additionally, the model uses Pa-
rameter Efficient Fine Tuning (PEFT) to lever-
age a substantially larger base model than its
predecessor while maintaining fast training
times. We find that training on automatically
derived ULFs substantially improves parser
performance from the existing smaller dataset
(from SEMBLEU score of 0.43 to 0.68), or even
the previously used larger, generatively aug-
mented ULF dataset, used with a transition
parser (from SEMBLEU score of 0.49 to 0.68).

1 Introduction

Large language models (LLMs) have revolution-
ized the interactive generation of fluent, coherent
text by machines, but their functioning is hidden
in their millions or billions of parameters. This
blurs the distinction between knowledgeable out-
put and confabulation. Moreover, because they rely
on probabilistic mimicry of their vast training data,
rather than on rational thought, they do not reason
or plan with the kind of reliability and scalability
that is required for consequential applications in ar-
eas like healthcare, legal matters, police operations,

or search and rescue. Ultimately, artificial general
intelligence (AGI) requires the ability to reason and
plan reliably at scale, and to explain how conclu-
sions or plans were arrived at. For reasoning to
be explicit and auditable, the knowledge and rules
employed must themselves be made explicit and
sufficiently unambiguous. You cannot tell whether

“Alice warned the woman that Bob had left” plausi-
bly entails “Bob had left" or instead, “Bob had left
the woman,” without clarifying the semantic struc-
ture of the premise.1 Thus effective representation
of linguistic content and background knowledge
forms the cornerstone of systems designed not only
to converse fluently, but also to reason and plan
reliably. Such representations should be derivable
from language, and enable semantic inference, dis-
course processing, and explicit, explainable reason-
ing. Kim and Schubert (2019) describe Unscoped
Logical Form (ULF), one such knowledge repre-
sentation (with a lengthy prior history, e.g., Hwang
and Schubert, 1994; Schubert and Hwang, 2000),
as an alternative to other popular representations,
because it preserves more of the semantic infor-
mation of natural language while maintaining a
strict type system supporting well-founded, natural
inference.

Due to their retention of all sentential informa-
tion and their coherent type structure, ULFs lend
themselves to natural logic-like inference (Kim
et al., 2021c,b), discourse inferences including
clause-taking verbs, counterfactuals, questions, re-
quests, and generalizations (Kim et al., 2019), as
well as schema-based story representation (Lawley
et al., 2019). ULFs, and their subsequent resolu-

1As a preview, the alternative VP logical forms are these
(hinging on reifier that vs. relativizer that.rel):

((PAST warn.v) (the.d woman.n)
(that (| Bob| ((PAST have.aux) (PERF leave.v)))))

((PAST warn.v) (the.d (n+preds woman.n (sub that.rel
(| Bob| ((PAST have.aux) ((PERF leave.v) *h)))))))
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tion into Episodic Logic, have also proven to be a
useful representation for inference within interac-
tive natural language understanding systems (Kane
et al., 2020, 2023). Improving the scope and ac-
curacy of ULF parsers will enable generalization
of such systems. To provide an initial idea of the
form of ULFs and their application to inference,
here are three simple examples of the ULFs for the
sentences “Bob pretended to be asleep”, “Alice
often kids Bob”, and “I wish I had turned off the
stove”, along with some inferences derivable by
the cited methods:

((| Bob| ((PAST pretend.v) (to (be.v asleep.a)))))
⇒ (| Bob| ((PAST be.v) (not asleep.a)))

(| Alice| frequently.adv-f ((PRES kid.v) | Bob|))
⇒ ((a.d person.n) sometimes.adv-f ((PRES tease.v)

(a.d person.n)))

(I.pro ((PRES wish.v) (tht (I.pro ((cf have.aux-s)
((PERF turn_off.v) (the.d stove.n)))))))

⇒ (I.pro ((PAST do.aux-s) not.adv-s (turn_off.v
(the.d stove.n))))

(Some syntactic explanations follow later.) Their
similarity to surface form should enable the reader
to understand the inferences. Unlike inferences by
LLMs, such ULF-based inferences are explainable
in detail, in this case in terms of the implications of
“pretending to,” from the plausible assumption that
“Bob” and “Alice” are instances of persons, from
the entailment “frequently” ⇒ “sometimes,” from
the approximate synonymy of “kid” and “tease” (as
verbs), and (in the last example) from the proper-
ties of counterfactual entailment of the subjunctive
form. Resolving ULFs into Episodic Logic (EL)
involves systematic deindexing, scoping, and ref-
erence resolution processes, and this more precise
representation enables a superset of FOL inferences
as well as uncertain inferences, in conjunction with
miscellaneous world and lexical knowledge, and
with support from taxonomic, temporal, arithmetic,
and other specialist subsystems (e.g., Schubert,
2014). If necessary, ULF can be further converted
to Episodic Logic for more granular inference. Re-
solving ULFs into Episodic Logic (EL) involves
systematic deindexing, scoping, and reference res-
olution processes, and this more precise represen-
tation enables a superset of FOL inferences as well
as uncertain inferences, in conjunction with mis-
cellaneous world and lexical knowledge, and with
support from taxonomic, temporal, arithmetic, and
other specialist subsystems (e.g., Schubert, 2014).

The main contributions of this paper are (1)
the demonstration that a large corpus of syntac-
tically annotated sentences from a wide spectrum
of sources (the Brown corpus) can be rather re-
liably mapped to ULF – an English-like, highly
expressive, coherently typed initial logical form
previously shown to be suitable for inference; and
(2) the ULF-annotated sentences thus obtained to-
gether with a small hand-annotated “gold” train-
ing set can be used to fine-tune an LLM for se-
mantic parsing, obtaining a level of accuracy strik-
ingly better than obtained by previous ULF parsers,
and comparable to results obtained for other, less
comprehensive semantic representations that used
much larger hand-annotated training sets than our
“gold” corpus.

In the remaining sections, we comment on re-
lated representations and prior ULF parsers (Sec-
tion 2), our rule-based annotation of the Brown
corpus Penn Treebank (Marcus et al., 1993) POS
tags to obtain a greatly expanded ULF training
set (Section 3), our models for fine-tuning and the
success metrics (Section 4), and the results with
our methods, comparing these to relevant previous
semantic parsers (Section 5). We summarize and
reiterate our results in the Conclusion (Section 6).

2 Related Work

2.1 Other Knowledge Representations

We briefly discuss the pros and cons of other con-
temporary knowledge representations including
generic First Order Logic (FOL), Discourse Rep-
resentation Theory (DRT), Abstract Meaning Rep-
resentation (AMR), and Minimal Recursion Se-
mantics (MRS). Perhaps the most simply format-
ted representation, FOL is easy to generate infer-
ences from and expressive enough to represent the
meaning of most simple, matter-of-fact sentences.
Through the use of various syntactic and semantic
maneuvers, FOL can also be adapted to sentences
that involve more subtle subject matter. However,
the required circumlocutions are apt to be awk-
ward and remote from surface form. For example,
they may require explicit quantification over pos-
sible worlds, or functionalizing of all predicates
and quantifiers, and application of a “Holds” or “Is
True” predicate to functionalized sentences (Schu-
bert, 2015).

To address some pronoun resolution issues in
the conversion of natural language to FOL, Kamp
(1981) and Heim (1982) developed Discourse Rep-
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resentation Theory. The nested structures in this
theory contain free variables to be dynamically in-
terpreted; but because Discourse Representation
Theory is convertible to FOL, it shares the expres-
sive limitations of the latter. (An extension of DRT
allowing for mental states and attitudes, MS-DRT,
seems not to have been deployed as yet in semantic
parsing.)

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is less focused on echoing the
syntax of sentences, instead striving to represent
sentences of similar meaning but different wording
as the same AMR graph structure. This is useful in
detecting meaning similarity or equivalence, and
reduces the need for inferences, such as a “collide”
event occurred, given that “Bob was injured in a col-
lision”. However, AMR drops important aspects of
meaning (such as tense, and the distinction between
hypothetical events and real ones), and makes in-
sufficient commitments about the semantic types
of its constituents (such as modifiers and quanti-
fiers) to be suitable for reliable inference (again
see Schubert, 2015, where other representations
are considered as well). The more recent multi-
lingual Uniform Meaning Representation (UMR)
(Van Gysel et al., 2021) extends AMR to include
temporal and modal dependencies, but due to lim-
ited training corpora, the only available parsers use
a pipeline approach by first parsing the AMR and
then automatically converting to UMR (Chun and
Xue, 20240815–20240815).

In view of the considerable attention that AMR
has received in the research literature of the last
decade, some quick comparisons of AMR and ULF
structures can provide an intuitive idea of their char-
acteristics and differences, particularly for readers
unfamiliar with ULF. Consider the sentences

1. The broadcast asserted that chemicals
were dumped into the river.
2. The broadcast showed chemicals be-
ing dumped into the river.

The AMR representations of these sentences are
identical except for the respective event predicates
{assert-02, show-01}:

(z0 / {assert-02, show-01}
:ARG0 (z1 / broadcast
:ARG1 (z2 / dump-01

:ARG1 (z3 / chemical)
:destination (z4 / river)))

Note the free variables, generally assumed to be
existentially bound at the top level. For version

(1), this roughly says that a broadcast z1 asserts
an event z2 of dumping a chemical z3 into a river
z4. Besides the neglect of tense, one issue is that a
dumping event is implicitly assumed to exist, not al-
lowing for a false assertion (“assert” should create
an opaque context). Another is that “assert” should
take a proposition, not an event, as object argument.
(You can assert the Second Amendment, but not
the Second World War.) The AMR representation
works better for version (2), insofar as it’s entirely
possible that a broadcast might show a chemical
dumping event.

The following are the quite distinct ULF inter-
pretations automatically obtained for (1) and (2)
(where the tags ∼1, ∼2, ... indicate positions of
corresponding input words, needed for reference
resolution and other pragmatic phenomena; they
are omitted for ULF evaluations):

(((the.d~1 broadcast.n~2)
((PAST assert.v~3)
(that~4
((k (plur chemical.n~5))
((PAST be.aux~6)
((pasv dump.v~7)

(adv-a (into.p~8 (the.d~9 river.n~10)))))))))
\.)

(((the.d~1 broadcast.n~2)
((PAST show.v~3)
((k (plur chemical.n~4))
((PROG be.aux~5)
((pasv dump.v~6)
(adv-a (into.p~7 (the.d~8 river.n~9))))))))

\.)

Some points to note in these examples (as well as
the earlier introductory ones) are type/sortal distinc-
tions indicated by dot-suffixes like .d (determiner),
.n (nominal predicate), .v (verbal predicate), etc.;
and the retention of tense, definite determiners, and
plurals. ‘plur’ shifts a predicate true or false of
single entities to a predicate true or false of sets
of entities. The operator ‘k’ type-shifts a monadic
predicate P to the abstract kind (k P) whose real-
izations satisfy P.2 Most notably, the type-shifting
operator ‘that’ in the first ULF maps a sentence
meaning to a propositional individual (see Kim
and Schubert, 2019). While the proposition exists,
it need not be true and the entities it introduces
need not exist – this is a matter of inference, for
instance for a trustworthy report. In the second
ULF, the verbal predicate ‘show.v’ is treated as tak-
ing an object (theme) – namely chemicals, and a
predicate – namely, the property of being dumped

2But acting on a kind entails acting on an instance of the
kind – here, an instance of the kind, chemicals.
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into the river, as arguments. (Predicate arguments
cannot be quantified over, and the logic remains
first-order.)

Minimal Recursion Semantics (MRS)
(Flickinger et al., 2012) shares some fea-
tures with DRT and AMR, though it deals fully
with restricted quantification, attitudes, and other
phenomena. In its “native form” it uses ordinary
predicate + arguments syntax, but assigns names
(handles) to predications, using these as place-
holders for embedded predications. However, the
semantic representations seem under-determined
in terms of type structure, and are somewhat hard
to understand, because of the indirectness of the
structural descriptions – use of handles to flatten
the representation, span indices to indicate the
scope of handles, and arguments of predicates that
include, besides handles (sometimes undefined),
various types of unbound variables that are
presumably to be closed existentially with some
appropriate scope. It is unclear if MRS is intended
for reasoning, but we are not aware of recent work
in that direction.

2.2 Previous ULF Parsers
Kim et al. (2021a) introduced an LSTM-based tran-
sition parser trained on a small, hand-annotated
“gold” corpus of English-ULF pairs, achieving ac-
curacy on par with early AMR parsers trained on
much larger datasets. Gibson and Lawley (2022)
later used a fine-tuned autoregressive language
model on the same corpus and reported similar
performance, showing that such models can per-
form well even with limited training data. Their
model used the idea from (Mager et al., 2020) and
(Bevilacqua et al., 2021) that the parsing task could
be performed by seq2seq models similar to previ-
ous AMR-to-text models. Building on these, Ju-
vekar et al. (2023) generated a much larger syn-
thetic dataset using the gold data as seed sen-
tences. Their method, grounded in ULF type
constraints and linguistic patterns, created up to
116,112 English-ULF pairs, slightly improving
upon (Kim et al., 2021a) (see Section 5).

Here, we present a new parser based on a large
language model (LLM) trained on ULFs automati-
cally derived from the Brown Treebank, containing
about 50,000 sentences (20 words long on average)
from many genres. Unlike the original gold corpus,
which lacked longer and structurally complex sen-
tences due to annotation costs, the Brown corpus
provides broader structural and topical diversity.

Whereas Gibson and Lawley used GPT-Too (Mager
et al., 2020)3, we apply Parameter Efficient Fine
Tuning (PEFT) to a larger base model for improved
performance with minimal training overhead.

3 Expanding the ULF Training Data
Using the Penn Treebank Corpus

We now describe how we obtained ULF formu-
las from Brown corpus Penn Treebank (Marcus
et al., 1993) syntax trees, for use in fine-tuning the
Gemma-2B model (and also GTP-Too, for compari-
son). The idea behind use of the Brown corpus was
that syntactic constituency trees roughly indicate
the compositional semantic structure of sentences,
and this should facilitate transduction into ULF. For
example, a syntactic VP structure of form

(VP (VBD saw) (NP (DT the) (JJ white) (NN swan)))

(in the Penn Treebank format) can be regarded
as indicating that the meaning of the verb phrase
is obtained by applying the meaning of the past-
tense verb “saw” to the meaning of the object noun
phrase (NP). The result is a monadic predicate that
can be applied to the meaning of an NP subject
such as (NNP Bob) to obtain a sentence meaning.
Similarly, the structure of the object NP suggests
functional application of the determiner (DT) mean-
ing and the adjective (JJ) meaning to the meaning
of the nominal predicate, (NN swan).

3.1 Rule-based adjustments to the Treebank
trees

However, there are some immediate adjustments
that are needed to obtain a type-coherent structure.
First, the past-tense component of (VBD saw) ac-
tually has sentence-level significance, placing the
seeing-event (with the white swan as its object) in
the past relative to the time of assertion. In ULF,
(VBD saw) is split into a pair of semantic con-
stituents, (PAST see.v), where “see.v” is an object-
taking and subject-taking predicate, and PAST is
an unscoped tense operator. Second, the structure
of the object NP is insufficient to determine that
the adjective should first be applied to the nominal
predicate, forming the meaning of “white swan”;
this modified nominal predicate is then operated
upon by the determiner. In ULF, such determiner
phrases are again unscoped semantic constituents.
The resulting ULF phrase is thus

3“GPT-Too” appears in the title of this paper, referring
to small, medium, and large versions of GPT-2 used by the
authors for English generation from AMR.
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((PAST see.v) (the.d ((MOD-N white.a) swan.n)));

this incorporates a third adjustment, namely con-
version of the predicate “white.a” to a nominal-
modifier via type-shifting operator MOD-N. This
is needed if we take the (natural) view that “white”
is lexicalized as a simple predicate (consider “Snow
is white”), rather than as a predicate modifier like
“fake”.4

Thus, while syntactic constituency provides a
rough indication of semantic structure, a variety of
adjustment rules are needed to map Treebank trees
to ULF. We use nearly 400 such rules, dealing with
issues such as different uses of quotes, punctua-
tion and brackets, inserting silent complementizers,
regularizing complex quantifiers (such as “almost
all” or “one out of six”), interpreting auxiliaries,
distinguishing prepositional phrases used as predi-
cates, predicate modifiers, or argument-suppliers,
distinguishing the different semantic functions of
participial VPs and subordinate clauses, expand-
ing quantifying pronouns into quantifier-noun com-
binations (e.g., “nothing,” “everybody”), dealing
with displaced constituents, interpreting several
types of comparatives, and many more.

The writing of these rules was made relatively
straightforward by use of our tree transduction lan-
guage TT, a simpler, more easily used variant of
TTT (Purtee and Schubert, 2012). TT match pat-
terns closely mirror the input tree structure, i.e.,
every sublist in a pattern must correspond to a sub-
list in the target list structure. The simplest pattern
elements can be integers i = 1, 2, ..., which will
match up to i successive atoms or lists. More of-
ten, we make use of TT’s regex-like constructs,
based on match predicates starting with charac-
ters ‘!’, ‘?’, ‘*’, ‘+’ to signal matchability to 1
item, 0 or 1 item, 0 or more items, and 1 or more
items respectively; there are over 100 such predi-
cates (separately defined). Some cover extensive
data, for example, !event-noun covers about 220
event nouns, and a predicate checking for purely
intransitive verbs covers over 5,300 verbs. A sec-
ond class of match predicates, starting with a dot
and applicable to atoms only, are interpreted via
ISA-hierarchies. For example, .TIME-PERIOD checks
whether the atom being matched “is a” word like
second, day, summer, pause, ..., by checking for
an ISA-chain of 0 or more links from the word to

4Modified nominals cannot in general be viewed as a con-
junction of two predicates, as in “is white and is a swan”; for
instance this fails for “white wine,” “plastic swan,” or “utmost
danger”.

.TIME-PERIOD. (Lexical category can be checked by
another ISA-predicate such as .NN/NNP, defined to
match either NN or NNP.) Since TT allows for arbi-
trary nesting of expressions, the match predicates
can be used at any structural level. Here is an exam-
ple of the use of this language to expand a temporal
NP such as “last summer,” as represented in a con-
stituent tree, into a temporal adverbial “during last
summer”:

(defrule *add-prep-for-definite-embedded-time-np*
; E.g., "I know what you did {last summer}"
; parse fragment: (VP (AUX DID)
; (NP (JJ LAST) (NN SUMMER)))
'((!atom *expr (!not-prep-or-symb +expr)

(NP +expr (.NN/NNP .TIME-PERIOD)) *expr)
(1 2 3 (ADVP (-SYMB- adv-e)

(PP (-SYMB- {during}.p) 4)) 5)))

Every rule consists of a match pattern and an out-
put pattern. Here the match pattern (!atom *expr
(!not-prep-or-symb ...) (NP ...) *expr) matches
any phrase in parentheses starting with exactly one
atomic expression, followed by zero or more arbi-
trary expressions, followed by two subexpressions
of specified forms (the second one being the tem-
poral NP), and possibly additional ones.

When a match succeeds, the matched con-
stituents can be referenced in the output pattern
by their position. In the example, position indices
1–5 correspond to the five top-level matched expres-
sions. Non-numeric elements are copied into the
output directly, though TT also allows for output
elements that are functions of matched input ele-
ments. Note the PP adverbial containing during.p
(with the time-NP as its complement) in the out-
put. To refer numerically to matched constituents
lying within subexpressions of the match pattern,
TT uses integers joined by dots. For example, 4.3.2
would refer to whatever piece of the input expres-
sion matched .TIME-PERIOD.

3.2 From adjusted trees to ULFs

Once transformed, trees are semantically inter-
preted via a compositional process driven by syn-
tactic types and morphological cues. Lexemes re-
ceive type tags via about 50 rules based on word
POS – which in many cases has been made seman-
tically more revealing through preprocessing rules,
e.g., WDT-REL instead of WDT for which or that
used as a relativizer. Type-shifting operators in-
troduced during preprocessing likewise facilitate
function-argument application throughout. The
compositional mapping from preprocessed phrases
to ULFs is then quite simple, involving a little over
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a page of code.
ULFs derived this way proved effective: in

a small evaluation (11 sentences), the raw
Brown-derived ULFs scored 0.81 F1 on EL-
SMATCH and 0.82 on SEMBLEU, with 952 triples.
Our final dataset includes 51,649 English-ULF
pairs—substantially larger and more varied than
the original gold corpus.

4 Models and Metrics

4.1 Language base models

Our model for deriving ULF from English builds
on the training architecture developed by Gibson
and Lawley (2022), which in turn built on GPT-Too,
an AMR-to-English system (Mager et al., 2020).
When run in reverse, Gibson and Lawley’s model
was shown to also be state-of-the art for the En-
glish to ULF parsing task. We apply Gibson and
Lawley’s architecture, fine-tuning on English-ULF
sentence pairs to maximize the joint probabilities
of English and ULF tokens. We also use their train-
ing process, but instead fine-tune Quantized Low
Rank Adapters (QLoRA) (Dettmers et al., 2023) of
the pretrained model to perform parameter-efficient
fine-tuning (PEFT) to leverage a large base model.
The previous LLM model used the 774M param-
eter version of GPT-Too (i.e., GPT-2L), while we
use the 2.5B parameter Google Gemma-2B which
would previously have been infeasible to train with-
out parameter-efficient fine-tuning.

4.2 Metrics

We evaluated the model on both a test subset of the
previous hand-annotated (gold) dataset (n = 174)
and a test set of Brown corpus derived ULFs
(n = 174) using the metrics EL-SMATCH and SEM-
BLEU. These metrics are borrowed from standard
AMR evaluations, but the type-shifting operators of
ULF and other differences from AMR require intro-
duction of additional nodes and links to obtain Pen-
man format, after which SMATCH and SEMBLEU

can be applied. The SMATCH (Cai and Knight,
2013) score is calculated by (1) extracting all the
triples from a hypothesis and reference AMR (e.g.,
see Figure 1), (2) performing a greedy search to
unify variable names between the hypothesis and
reference, and finally (3) calculating F1, precision,
and recall scores from the matching triples. As
noted by Groschwitz et al. (2023), current AMR
parsers achieve high SMATCH scores but can still
make frequent errors. This is partially because the

SMATCH score suffers from two immediate prob-
lems: Only taking into account triples (two vari-
ables/concepts and a relations) means that larger
semantic structure is not captured in the evaluation;
and unifying the variables leads to over-counting
matching triples where the relation matches but the
variables do not map to the same concepts.

instance(z0, assert-02) ARG0(z0, z1)
instance(z1, report-01) ARG1(z0, z3)
instance(z2, news) ARG1(z1, z2)
instance(z3, dump-01) ARG1(z3, z4)
instance(z4, chemical) destination(z3, z5)
instance(z5, river)

Figure 1: Extracted triples for the AMR corresponding
to the sentence, “The news report asserted that chem-
icals were dumped into the river.” z0 through z5 are
variable names, the predicates instance, ARG0, ARG1,
and destination are the edges of the AMR graph
which capture semantic relations between variables. The
instance predicate maps variables to concepts.

SEMBLEU scores are instead calculated by
(1) extracting all n-grams from the hypothesis
and reference AMR, where an n-gram includes
n concepts connected by n − 1 relations (e.g.,
assert-01 :ARG1 dump-01 :ARG1 chemical is
a 3-gram roughly corresponding to the meaning
“chemicals being dumped is asserted”), (2) calcu-
lating an adjusted accuracy of matching n-grams
between the hypothesis and reference, (3) multi-
plying by a brevity penalty. By including longer
chains, SEMBLEU captures more complex seman-
tic structures, and not using variables solves the
over-counting problem of the SMATCH unification
strategy. Because of this and in accordance with
previous ULF parsing work, we use SEMBLEU

(Song and Gildea, 2019) as a primary evaluation
metric and EL-SMATCH for a more detailed break-
down of F1, precision and recall. EL-SMATCH is
fully described by Kim and Schubert (2016), but
is essentially an adaptation of SMATCH to evaluate
ULFs as sets of triples in the same way as AMR.

5 Results

5.1 Results on the gold data in comparison
with earlier ULF parsers

Using the 51,649 English-ULF dataset we obtained
from the Brown corpus, and employing PEFT, we
achieved major gains in all metrics as compared to
previous ULF parsers – see Table 1. The results in-
dicate that stronger base models improve evaluation
metrics across the board, but have a less substantial
effect than the new Brown-based dataset.
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Base Model SEMBLEU EL-SMATCH

F1 Precision Recall
(Kim et al., 2021a): Transition model 0.47 0.59
(Gibson and Lawley, 2022): GPT-Too 0.43 0.63
Trained on Gold + Generated Set
(Juvekar et al., 2023): Transition model 0.49 0.60
Trained on Gold + Brown Set (our results)
GPT-2 124M 0.55 0.60 0.60 0.61
GPT-2 355M 0.66 0.69 0.70 0.68
Google Gemma 2B (PEFT) 0.68 0.72 0.73 0.71

Table 1: Results for models tuned on gold training set vs combined gold and Brown-derived training set.

The small gold dataset sufficed to train both Kim
et al.’s transition-based and Gibson and Lawley’s
LLM-based ULF parser to a level of performance
comparable with that of early AMR parsers trained
on much larger datasets. As noted in Section
2, Juvekar et al. (2023) obtained small improve-
ments over the original transition-based model
using up to 116,112 artificially generated, type-
consistent English-ULF pairs. The 51,649 English-
ULF dataset we obtained from the Brown corpus is
not as large as theirs, but we see substantial parsing
performance increases over their parser. We sus-
pect that this can be largely attributed to the fact
that Brown Treebank sentences are a diverse, nat-
urally occurring set, and that the carefully tuned,
rule-based tree-to-ULF parser is almost as accu-
rate as hand annotation of English sentences with
ULFs. The substantial gains in SEMBLEU scores
show that the model retrieves more individual con-
stituents, and that the overall coherence of the frag-
ments is higher.

5.2 Results on Brown-Derived ULFs

Our model’s performance is best described by the
results on the hand-annotated gold data. However,
since our parser was fine-tuned on a combination
of a (small) gold training set and a large set derived
from the Brown corpus, it is of interest to look at its
performance on Brown data in comparison with its
performance on the gold data. Differences are to be
expected, in part because the Brown data, though
less accurate, clearly impacted performance very
significantly, but also because some streamlining
of certain syntactic conventions (e.g., the handling
of auxiliary verbs and tense/aspect operators) was
incorporated into the Brown data which are still in
their old form in the gold data. The comparison is
provided in Table 2.

As expected, the scores on the Brown-derived
test set show substantially better SEMBLEU scores,
although surprisingly, the EL-SMATCH scores are
scarcely different. In other words, the parser gener-
ally matches the overall structure of Brown-derived
data better than for gold data, perhaps because of
the change in some ULF conventions, but the triple-
by-triple match structure is not greatly affected. If
we were to create a new gold set abiding by the re-
vised conventions, our parser’s performance likely
would fall somewhere between the results on the
gold and Brown-derived ULFs (i.e., between 0.68
and 0.76 on SEMBLEU). These results are also
surprising because the sentence complexity and
lengths in the Brown corpus are larger than those
in the gold ULF set.

5.3 Comparison to AMR parsers

To relate our work to AMR parsing, we compare
our ULF parsing results with results from two
AMR parsers in Table 3. Other AMR parsers
achieve similar SMATCH scores to (Drozdov et al.,
2022) on the AMR 3.0 benchmark dataset. Af-
ter the proof-of-concept GPT-Too parser (Mager
et al., 2020), the first seq2seq parser with bench-
mark results (Bevilacqua et al., 2021), scored 83.0
on AMR 3.0. More recently Bai et al. (2022) and
Vasylenko et al. (2023) build on (Bevilacqua et al.,
2021) achieving significant improvements (scores
of 84.2 and 84.6 respectively), using novel ideas
such as incrementally finding spans to abstract, and
inserting the corresponding concepts, treating the
transduction between text and AMR as symmetric,
and pretraining on AMR graph data rather than
(just) text. For parsers of other knowledge repre-
sentations, the recent English Resource Grammar
parser by Lin et al. (2023) (based on Minimal Re-
cursion Semantics) improves performance with a
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Model SEMBLEU EL-SMATCH

F1 Precision Recall
Gold ULF Test Set 0.68 0.72 0.73 0.71
Brown-Derived ULF Test Set 0.76 0.72 0.72 0.72

Table 2: Parser performance on hand-annotated (gold) test set versus performance on a test set of Brown-derived
English-ULF pairs.

Parser Model SEMBLEU SMATCH/EL-SMATCH

AMR3-structbart-L (Drozdov et al., 2022) 0.56 0.83
AMR2-joint-ontowiki-seed42 (Lee et al., 2022) 0.60 0.86
Our Model 0.68 0.72

Table 3: Hand annotated test set comparison to AMR parser performance.

neural-symbolic approach, where prior knowledge
from the symbolic parser alleviates inaccuracies
of the neural model on out-of-distribution evalua-
tion. A recent DRT parser from Yang et al. (2024)
similarly proposes a neural-symbolic parser that
predicts the scope structure with a rule or depen-
dency based resolver.

As was seen in the discussion of sentences (1)
and (2), the greater expressivity of ULF, and its
fidelity to the full contents of sentences, results in
more variety and complexity in ULF constructions
relative to AMR. To re-emphasize this point, sen-
tences such as “Dogs are barking” (thus, presently),
“Dogs bark” (thus, generically), and “A dog barked”
(thus, in the past) map to distinct ULF represen-
tations, while they are assigned the same AMR.
This results in higher SMATCH scores for AMR
parsers. Other knowledge representations also tend
to blur semantic distinctions, or degrade for com-
plex sentences (though apparently not for MRS).
For example, DRT parsers score lower on datasets
with long and complex sentences (SMATCH score
of 87.1 on short example sentences versus 48.7 on
longer sentences) (Yang et al., 2024).

Unlike the impressive SMATCH scores of AMR
parsers, their SEMBLEU scores are weaker, suggest-
ing that while they are able to adequately generate
correct constituents, the arrangement of those con-
stituents is less predictable than for ULF. While
the greater expressivity and semantic fidelity of
ULF may make it more difficult to generate indi-
vidually correct constituents, the type coherence of
ULF may also help improve the overall structure
of the parses. When introducing the SEMBLEU

evaluation metric, Song and Gildea (2019) show
that SMATCH marks edges as identical regardless
of the nodes they attach, leading to inflated scores

for parsers that don’t accurately capture sentence
structure. From our increased SEMBLEU score, we
tentatively infer that the ULF type structure is less
susceptible to mistakes of this sort.

5.4 Error Analysis

The most common errors we observed in the results
for testing on the gold test set were missing im-
plicit references, not generating multi-sentence con-
structions, and incorrectly identifying proper nouns
and quotations. Implicit references (semantic con-
stituents not appearing in the surface text) should
show up in ULFs as pronouns or other elements
in curly brackets. Errors are possibly due to the
Brown-derived ULFs having different proportions
of the most common implicit references. The most
common form in the gold ULFs is {YOU}.PRO
(typically implicit in English imperatives), account-
ing for over half the implicit references in the gold
test set but only 15% of the Brown-derived set.
The latter contains more instances of {REF}.N
and {FOR}.P (as in “This _ will serve _ to ap-
pease him,” where the missing items are a nominal
and a purposive “for” applied to the action type
“to appease him”). Additionally, errors in multi-
sentence constructions were expected because the
Brown-derived ULFs only contain single sentence
examples while the gold set contains examples with
multiple punctuation-separated sentences.

The less frequent remaining errors include over-
generating special operators and macros, and in-
correct bracketing. Specifically, the parser over-
generates the N+PREDS macro (typically used for
combining a noun with its postmodifiers) which is
again over-represented in the Brown-derived ULFs
as compared to gold. Also the order in which
pre- and post-modifiers are applied to a noun may
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be different in gold sentence ULFs and in parser-
generated ULFs, though it’s sometimes unclear
which order is correct. For example, the sentence
“Name the disposable razor that ‘costs about 19
cents.’ ” was hand annotated with

({you}.pro (name.v (the.d (n+preds
((mod-n disposable.a) razor.n)
(that.rel ((PRES cost.v) (about.adv-s
(ds currency ``19 cents''))))))))

but our model parses it to
({you}.pro (name.v (the.d
((mod-n disposable.a) (n+preds razor.n
(that.rel ((PRES cost.v) ((about.mod-a | 19.a|)
(plur cent.n)))))))))

These variant modifier structures have slightly dif-
ferent semantics, but neither is outright mistaken.
The other difference between the hand annotation
and the parse is the use of the domain-specific
representation of currency in the gold ULF, (ds
currency “19 cents”) and the adv-s vs. mod-a
difference. The Brown-derived ULFs do not in-
clude domain-specific annotations, so, naturally,
the parser handles “19 cents” differently. Now, “19”
to be suffixed with .a (the adjectival version of the
numeral) and “about” is suffixed with .mod-a, so
that it functions as an adjective modifier. In the
hand-annotated sentence, the full “19 cents” is an-
notated in the domain-specific currency context, so
there is no adjective 19.a for “about” to modify, and
it is instead annotated with suffix .adv-s. Our model
parses sentences like this well, but because of sim-
ilar discrepancies that lead to larger differences
from the hand-annotated ULF, their correctness is
not reflected in our evaluation metrics.

6 Conclusion

We presented an LLM-based parser that demon-
strates significant gains in parsing English to ULF,
driven by a new dataset of English-ULF pairs au-
tomatically generated from Brown corpus Penn
Treebank trees. These gains are evident across all
metrics, especially SEMBLEU, which reflect the
parser’s ability to capture semantic relations and
maintain coherence. Our approach outperforms
previous ULF parsers and some modern AMR
parsers, showing ULF’s potential to represent nu-
anced semantics and complex sentence structures.
While evaluation scores on gold test data are lower
than on Brown-derived test data, this likely results
from updates to ULF annotation principles since
the gold data was created, so revising the gold data
to align with current standards would be valuable.

With the new Brown ULF dataset, data scarcity
is no longer the main challenge in ULF parsing.
Future research can instead focus on incorporating
learning techniques from AMR parsing, extending
the augmentation strategy of Juvekar et al. (2023),
or using ULF’s type system to constrain generation.

The increased reliability of ULF parsing will
make inference and reasoning in AI systems more
broadly applicable. An example of a system that
relied on rule-based semantic parsing into ULF was
the DAVID virtual human (Kane et al., 2020) de-
signed to answer questions in a physical “blocks
world”. DAVID was answered user questions like

“How many red blocks were to the left of a blue block,
before I moved the Nvidia block?”, based on ob-
serving and modeling blocks’ spatial relations via
cameras, and mapping questions to ULF for spa-
tial model queries. Similarly, the SOPHIE system
(Kane et al., 2023), a virtual cancer patient used to
help train physicians, makes use of ULF inference
in generating dialogue responses. The authors de-
scribe a future improvement to their system using
a learned ULF parser, to support more logically
coherent inferences within the global context.

An intriguing future research direction compat-
ible with our approach to logical form would be
to use the type structure of ULF for unsupervised
language learning. It appears that the types of ULF
and Episodic Logic—names, generalized quanti-
fiers, predicates, predicate and sentence reifying
operators, predicate and sentence modifying op-
erators, and a handful more—suffice for human
languages in general. We could treat these types as
semantically “innate,” and take language learning
to be learning a mapping from word sequences to
structures instantiating these types. The variability
of languages, besides different vocabularies, would
correspond to different strategies for linearizing
and abbreviating internal graph-like structures to
facilitate interpretation. Additional learning sup-
port besides textual corpora would be needed, such
as visual grounding; but it seems that ULF/EL-like
presupposed type structure should greatly reduce
the demand for data in the learning process.
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Abstract

Task-oriented dialogue (TOD) requires capa-
bilities such as lookahead planning, reason-
ing, and belief state tracking, which continue
to present challenges for end-to-end methods
based on large language models (LLMs). As a
possible method of addressing these concerns,
we are exploring the integration of structured
semantic representations with planning infer-
ences. As a first step in this project, we describe
an algorithm for generating Minimal Recursion
Semantics (MRS) from dependency parses, ob-
tained from a machine learning (ML) syntactic
parser, and validate its performance on a chal-
lenging cooking domain. Specifically, we com-
pare predicate-argument relations recovered by
our approach with predicate-argument relations
annotated using Abstract Meaning Representa-
tion (AMR). Our system is consistent with the
gold standard in 94.1% of relations.

1 Introduction

Natural Language Understanding (NLU) is a core
capability of all dialogue systems. It enables ma-
chines to interpret and generate contextually appro-
priate responses to language. Semantic parsing has
long been a crucial component of NLU, providing
an early-stage component for converting language
into a structured semantic representation. How-
ever, since the emergence of large language models
(LLMs), there has been a trend towards entirely
replacing NLU modules and structured semantic
representations with end-to-end model inference
(OpenAI, 2022). Such systems have been shown
to perform well in question answering, natural lan-
guage generation (NLG), translation, summariza-
tion, and many other applications (OpenAI, 2024).
Nevertheless, state-of-the-art Task-Oriented Dia-
logue (TOD) systems still benefit from an NLU
module or a semantic representation (Feng et al.,
2021; Zhu et al., 2023; Sun et al., 2023), and out-
perform single-call LLM systems in specific TOD

benchmarks (Hudeček and Dusek, 2023). LLMs
struggle with key aspects of TOD, including looka-
head planning problems (Bachmann and Nagarajan,
2024), reasoning (Jiang et al., 2024), and tracking
belief states (Chiu et al., 2023). These issues high-
light the potential advantages of having a structured
semantic representation that can be updated based
on dialogue, information from the environment,
and plan-based task reasoning (Geib et al., 2022).

In this paper, we explore MRS as a semantic
representation framework due to its rich expressive
power, connections to logical inference, close links
to syntax, and potential for constraint-based dis-
ambiguation (Copestake et al., 2005). We develop
methods for benchmarking MRS approaches for
dialogue based on annotations expressed in terms
of Abstract Meaning Representations (AMR), by
comparing the consistency of predicate-argument
relations across representations, thus showing that
MRS shows promise for TOD. Our evaluation
shows that in 94.1% of cases, our implementation
of MRS using spaCy yields edges consistent with
gold-standard predicate-argument relations anno-
tated in a cooking domain (Jiang et al., 2022).

2 Related Work

2.1 LLM TOD systems

Multiple recent TOD systems have been built us-
ing LLMs and specialized NLU modules for their
specific task. However, most end-to-end LLMs can
struggle in three areas. The first is with lookahead
planning problems, where understanding the final
goal is crucial to avoid early errors that can ob-
struct later steps. Bachmann and Nagarajan (2024)
demonstrate cases where models trained to solve
problems using only next-token prediction struggle
to learn what the model should choose for the first
token. Momennejad et al. (2023) and Valmeekam
et al. (2023) found that models struggle on planning
tasks framed as word problems. The second area
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where LLMs may struggle is reasoning. Jiang et al.
(2024) determined that state-of-the-art LLMs fail
to reason consistently across minor variations, such
as changing names of people or places. The third
area is belief state tracking, where it has been seen
that an end-to-end LLM inference compares poorly
to supervised models. Hudeček and Dusek (2023)
shows five state-of-the-art models performing bet-
ter than LLMs, 3 of which use an NLU component
or a semantic representation (Feng et al., 2021; Sun
et al., 2023; Zhu et al., 2023).

LLM-based systems can stage multiple prompts
to perform dialogue state tracking, knowledge re-
trieval, and dialogue planning (Dong et al., 2025;
Xu et al., 2024; Zhang et al., 2023). However,
as the amount of LLM calls or tokens in the out-
put increase, the inference latency of LLMs can
become a pain point for real-time dialogue sys-
tems; many AI assistants require a response within
a particular time frame, such as Alexa’s 8-second
requirement for responses.1 The specialized com-
ponents that TOD systems use to achieve real-time
performance—track belief states (Hudeček and
Dusek, 2023) or generate responses(Chiu et al.,
2023)—typically rely on explicit semantic repre-
sentations.

2.2 TOD systems using Procedural Semantic
Representations

One approach to explicit semantics in TOD is pro-
cedural semantics (Bollini et al., 2013; Nevens
et al., 2024; Verheyen et al., 2023). Procedural se-
mantics offers representations for task descriptions
that are specific enough to be executed program-
matically and achieve desired results. Ultimately,
collaborative agents need executable action repre-
sentations, but there are potential disadvantages to
deriving those representations directly from utter-
ances. Deriving them may involve planning and
plan recognition as well as processes of compo-
sitional interpretation and resolution of grounded
references (Geib et al., 2022). For example, ac-
tion plans may depend on the capabilities of the
agent and the physical state of the environment. An
abstract semantic representation can play an impor-
tant role for collaborative dialogue by representing
task content in a way that can be shared across
agents and contexts and can mediate between vari-
ous kinds of linguistic and plan-based reasoning.

1https://developer.amazon.
com/docs/alexa/custom-skills/
send-the-user-a-progressive-response.html

2.3 TOD systems using AMR

AMR is another form of semantic representation
used in NLU modules for TOD (Tam et al., 2023).
AMR represents each sentence as a rooted, directed,
acyclic graph. In the graph, each edge has a label
for the relation, and each leaf represents a con-
cept (Banarescu et al., 2013). These graphs can
also be written in PENMAN notation (Matthiessen
and Bateman, 1992). AMR has been extended
to be more suitable for representing dialogues
(O’Gorman et al., 2018; Bonial et al., 2020) and
multimodal communication (Brutti et al., 2022).
Tam et al. (2023) has shown that AMR can be used
to annotate actions for both human-human inter-
actions and human-object interactions. AMR has
also shown promise in TOD through interactive
simulations (Krishnaswamy et al., 2017).

2.4 Minimal Recursion Semantics

We have chosen to use MRS in our work. MRS is
a framework that can encode predicate arguments
and other grammatical constraints on lexical and
phrasal semantics to generate flat semantic repre-
sentations. An MRS structure is a tuple containing
a top handle (GT), a bag of elementary predicates
or EPs (“an EP is a single relation with its associ-
ated arguments”), and a bag of handle constraints
(C) (Copestake et al., 2005). Like AMR, MRS is
scalable because it abstracts away from domain-
specific content.

While AMR is easy to annotate, and has become
a popular semantic representation for text-based
tasks, AMR does not support constraint-based am-
biguity resolution like MRS does (Copestake et al.,
2005; Wein, 2025). The incremental constraint-
based approach of MRS also streamlines the rep-
resentation of dialogue processes such as clarifica-
tion, thereby facilitating system efforts to ensure
common ground. In addition, AMR lacks the full
logical expressiveness of MRS (Bender et al., 2015;
Bos, 2016), which underpins logical approaches to
bridging semantic and common-sense inferences
(Hobbs, 1985; Copestake et al., 2005).

We have chosen not to build on existing MRS im-
plementations, such as English Resource Grammar
(ERG) (Flickinger et al., 2000) 2, because our ap-
proach allows for more flexibility, such as choosing
to ignore scopal arguments (which would not have
an impact when combining linguistic reasoning and
plan-based inferences, since planning modules typ-

2https://delph-in.github.io/delphin-viz/demo/
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ically do not account for scopal arguments), there-
fore allowing for a more lightweight and efficient
representation. Our MRS implementation is builds
on dependency parsing provided by spaCy. This
decision is primarily for convenience; dependen-
cies provide a simple and effective starting point
for our work. We believe our approach could be
adapted as needed to other state-of-the-art real-time
dependency or constituency parsers.

3 System Design

For this paper, MRS is used as an early component
of NLU to help create a logical form (LF) as a se-
mantic representation that can be used for dialogue
systems and updated with information from the
planner’s inferences, allowing the LF to be updated
with information from the environment. Since we
are comparing MRS to AMR (to show that if AMR
is used in TOD, MRS should be able to do so as
well), we will focus on non-scopal EPs, ignoring
all EPs that can be a scopal EP (such as adverbs).3

3.1 spaCy
For dependency parsing, spaCy was selected due to
its popularity and its capability for real-time depen-
dency parsing. It is a transition-based dependency
parser that uses an arc-eager system. SpaCy’s En-
glish models were trained using OntoNotes 5.0
(Weischedel et al., 2013), which contains approx-
imately 1.5 million words from news media, tele-
phone conversations, broadcast conversations, and
weblogs. SpaCy’s developers report a 95.1% ac-
curacy for unlabeled attachment score (UAS) and
93.7% labeled attachment score (LAS) accuracy
when tested on the Penn Treebank (Marcus et al.,
1993)4, which contains articles from the Wall Street
Journal (WSJ) from 1984 to 1989. However, a
machine learning model evaluated on WSJ may
have different accuracy for other domains. We took
Cookdial and evaluated predicate-argument rela-
tions reported by spaCy and translated to MRS (dis-
cussed in Section 4) to determine their consistency
with the corresponding Extended-AMR (EAMR).
We used spaCy version 3.7.4 with en_core_web_lg
model version 3.7.1.

3.2 Implementation
Algorithm 1 shows the logic used to implement
MRS to create an LF. It assumes that each word

3Note that an entire MRS structure can generally be created
with a dependency tree parse.

4https://spacy.io/usage/facts-figures

Algorithm 1 Build MRS LF from Dependencies

1: Input: sent = sentence
2: Output: lf
3: lf = set()
4: ignore_deps ={det,punct,case,adv}
5: for all (child,rel,head) ∈ sent.deps() do
6: if is_pred(child) then
7: lf.add ([child.pred,child.var])
8: if rel ∈ UD_Modifiers then
9: lf.add([=,head.var,child.var])

10: if child.tag = VBG then
11: lf.add([nsubj,child.var,head.var])
12: else if child.tag = VBN then
13: lf.add([dobj,child.var,head.var])
14: if rel = pobj, dobj then
15: lf.add([role(rel,head),
16: head.head.var,child.var])
17: else if rel /∈ ignore_deps then
18: lf.add([rel,head.var,child.var])
19: return lf

in the sentence is associated with a head, a depen-
dency label, a part-of-speech (POS) tag, and its
position in the sentence. Each word may also be
associated with a predicate (the meaning carried by
the word) and a variable (the discourse referent it
evokes).

The algorithm loops through each relation in the
sentence, focusing on representing the contribution
of the dependent element (child). Nouns, pronouns,
adjectives, verbs, and auxiliaries without depen-
dents contribute elementary predications. Verbal
dependent modifiers assign an appropriate syntac-
tic role to the head referent (subject for present
participle, object for past participle). All other
modifiers, excluding adverb modifiers which are
ignored, equate their variable to the variable of the
elementary predicate they are describing. Objects
of prepositions are assigned a suitable semantic role
with respect to the entity modified by the prepo-
sition. Aside from root, determiners, punctuation,
adverbs, and case modifiers, all other dependency
labels are included in the logical form. Since plan-
ning modules typically do not account for scopal
arguments, determiners and adverb modifiers have
been excluded from consideration.

For the sentence "Pour cranberry juice into a 5-
cup ring mold", the MRS algorithm will go through
each relation given by spaCy (as shown in Figure 1).
If the first dependency identified is the direct object
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Token Relation Part of Speech Tag Head Children Ancestors

Pour root VERB VB Pour [juice,into] [ ]
cranberry compound NOUN NN juice [] [juice, Pour]
juice dobj NOUN NN Pour [cranberry] [Pour]
into prep ADP IN Pour [mold] [Pour]
a det DET DT mold [] [mold, into, Pour]
5 nummod NUM CD cup [ ] [cup, mold, into, Pour]
- punct PUNCT HYPH cup [ ] [cup, mold, into, Pour]
cup compound NOUN NN mold [5, - ] [mold, into, Pour]
ring compound NOUN NN mold [ ] [mold, into, Pour]
mold pobj NOUN NN into [a, cup, ring] [into, Pour]
. punct PUNCT . Pour [ ] [Pour]

Table 1: spaCy parse of "Pour cranberry juice into a 5-cup ring mold."

Remove and let stand for 5 minutes .

ROOT

cc

conj

xcomp prep
pobj

nummod

punct

Figure 1: spaCy dependency parse of the sentence: “Remove and let stand for 5 minutes.” Parsed using spaCy.

relationship between the head "Pour" and the child
"juice", the algorithm identifies that "juice" evokes
a discourse referent, and stores the fact that the
predicate "juice" applies to the referent "x_juice_2"
by storing [juice, "x_juice_2"] Then, it will identify
that the dependency is not a Universal Dependency
modifier, and that the dependency is not a preposi-
tion, so it will be represented as ["dobj", x_Pour_0,
x_juice_2]. This process will be completed while
going through all remaining dependencies.

(inst-0 / R
:inform (ac-0-0 "Pour" 3:7/ AC
:ppt (ing-0 "cranberry juice" 8:23 / FOOD)
:gol(tool-0-0 "a 5-cup ring mold" 29:46 / TOOL)
:_result (juice-in-mold))

Figure 2: EAMR representation of the instruction “Pour
cranberry juice into a 5-cup ring mold.”

For the sentence "Remove and let stand for 5
minutes.", the MRS algorithm will go through
each relation given by spaCy (as shown in Fig-
ure 4). It will identify and store the elemen-
tary predications, "remove", "let", "stand", "5",
"minutes" as before. For example, "remove" will
be stored as [remove, "x_remove_0"]. It will
stores additional relations such as noting the num-
mod relation between "minutes" and "5" as [’=’,
’x_5_5’, ’x_minutes_6’]. The remaining relations

are from the else if clause on line 17. These re-
lations are: [’cc’, ’x_Remove_0’, ’and’], [’conj’,
’x_Remove_0’, ’x_let_2’], [’xcomp’, ’x_let_2’,
’x_stand_3’], [’for’, ’x_stand_3’, ’x_minutes_6’].
When supplied to reference resolution and clarifi-
cation module, we can potentially recognize that
"remove" and "stand" concern an implicit object de-
rived from dialogue context. When combined with
a planner module, the planner could infer how to
achieve the successive "remove" and "stand" tasks
with suitable planner actions.

(inst-8 / R
:inform (ac-8-0 "Remove" 3:9/ AC

:ppt (NULL / FOOD)
:ppt (NULL / FOOD)

:inform (ac-8-0 "stand" 18:23/ AC
:duration (dur-8-0 "5 minutes"@28:37 / DUR)
:ppt (NULL / FOOD)))

Figure 3: EAMR representation of the instruction “Re-
move and let stand for 5 minutes.”

4 Evaluation

For our evaluation we chose the Cookdial dataset
(Jiang et al., 2022). The data set contains Extended-
AMR (EAMR) annotations of recipe instructions,
which mimic many ideas and notations from AMR
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(Jiang et al., 2022). EAMR uses PENMAN nota-
tion (the string and index annotations are placed
into “:name” or “:named”), and represents a di-
rected acyclic graph composed of nodes (the entity
type) and edges (relation between the predicate and
its arguments) (Jiang et al., 2022). For the purposes
of evaluation, we will be only considering EAMR
with multiple edges or nodes, since EAMR of just a
single node would not have any significant informa-
tion to compare against spaCy’s parse, as the entire
sentence would be the constituent. This provides
us with 227 sentences, totaling 951 constituents to
evaluate for the consistency of predicate-argument
relations in EAMR captured in both the spaCy
parse and MRS clauses.

4.1 Predicate-Argument Consistency

We recursively iterate through the AMR graph,
starting from its root node (Algorithm 2 in Ap-
pendix), and verify if each constituent has exactly
one semantic relation with a different constituent
(Algorithm 3 in Appendix). This is done by identi-
fying and counting the external semantic relations
the constituent has, and by verifying the alignment
of AMR with the dependency head relation (that
would be provided to MRS) by spaCy’s parse. For
example, if you consider Figure 2, the phrase "cran-
berry juice", we would confirm that there is only
one external semantic relation, which in this case
would be the head verb "Pour". This means no ad-
ditional dependencies link to a word in the phrase
from elsewhere in the AMR graph, therefore show-
ing that the EAMR and spaCy parse are consistent.
This evaluation can be applied across any AMR
that contains multiple edges or nodes by following
the same methods.

4.2 Evaluation Results

Out of the 951 edges evaluated, it was found that
56 had inconsistent constituency (≈ 5.9%). This
performance (≈ 94.1%) is comparable with spaCy
RoBERTa (2020) dependency parsing accuracy
on Penn Treebank (Marcus et al., 1993), which
is 95.1% for unlabeled attachment score.5 Note
that spaCy had incorrectly interpreted "in." as the
end of a sentence for two utterances; therefore, it
was decided "inch" would be substituted for "in."
While this analysis of the consistency of the De-
pendency Parser’s and MRS algorithm highlights
specific limitations of the parser, the implications

5https://spacy.io/usage/facts-figures

of the dependency parser’s accuracy for the LF are
not yet fully understood.

5 Conclusion

In this paper, we have built on existing AMR an-
notations to argue that MRS may also be used for
semantic representations in TOD. We showed how
to evaluate MRS by comparing predicate-argument
relations in the input of MRS to those annotated in
EAMR for a cooking domain. Evaluation shows
that MRS aligns with EAMR relations with 94.1%
accuracy when using spaCy’s dependency parsing
as the main input for our MRS algorithm.

In future work, we plan to explore further uses
of MRS as structured, semantic representations to
bridge language-based and plan-based inferences
for TOD. We hope to develop a versatile NLU mod-
ule that can be used across multiple domains and
even languages—since the Universal Dependen-
cies framework provides consistent cross-linguistic
grammar annotations (de Marneffe et al., 2021).
We further hope to build on strategies from Traum
(1995) and Rich et al. (2001) to allow for tracking
and maintaining common ground in collaborative
interactions. Finally, we are interested in using our
MRS module for coordinating activity by extend-
ing our existing implementation of plan filtering
and semantic grounding using planning and plan
recognition (Geib et al., 2022).

Limitations

While this paper evaluates the dependency parse on
EAMR, only relations between EAMR nodes are
tracked, leaving out node-internal relations, such
as the relation between "cranberry" and "juice" in
the EAMR constituent "cranberry juice". Also,
while our NLU module may be applicable across
domains, it will still require planning modules that
may have to be created for each domain, as well
as a knowledge base for each domain to identify
action types and resolve references. We have also
not demonstrated the impact of our techniques on
dialogue quality or task success.
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A Appendix

A.1 Algorithms
We present Algorithm 2 to show how the AMR
graph was traversed while checking relations. We
gave each node in a sentence a unique identification,
and for each relation in the AMR, we would call
Algorithm 3, and report the returned results.

In Algorithm 3, we show how we verify if each
constituent has exactly one semantic relation with
a different constituent, and how we verify the align-
ment of the AMR graph and spaCy’s parse.

A.2 spaCy Dependency Diagram
Table 1 presents the spaCy dependency parse for
the example sentence "Pour cranberry juice into a
5-cup ring mold".

36



Algorithm 2 AMR_TRAVERSAL

Input: node_id = first node id in amr_graph, amr_graph, visited = [], prev_word=None
Output: Dataframe updated by report_result function
if node_id in visited then return
visited.add(node_id)
head_node = amr_graph[node_id]
for each child_id in head_node.relations do

child_node = amr_graph[child_id]
if prev_word ̸= None then

relations,head_relations = check_relation(head_node.words,child_node.words)
report_result(relations,head_relations)

Traverse_AMR(child_id, amr_graph, visited, node_id)

Algorithm 3 CHECK_RELATION(WORDS, HEAD_WORDS)
Input: words, head_words
Output: relations, head_relations
relations = []
head_relations = []
apart_relations = []
for each word in words: do

if word.head not in words then
relations.append(word.head)

if len(relations) == 1 : then
for word in head_words : do

if word in relations then
head_relations.append(word)

else
ancestors = get_ancestors(words,word)
for ancestor in ancestors do

if ancestor == word and not in apart_relation and not in words then
apart_relation.append(ancestor)

if len(head_relations)< 1: then
head_relations = apart_relation

return relations, head_relations

Pour cranberry juice into a 5 - cup ring mold .

ROOT

dobj

compound

prep

nummod
punct

pobj
det

compound

compound

punct

Figure 4: spaCy dependency parse of the sentence: “Pour cranberry juice into a 5-cup ring mold.” Parsed using
spaCy.
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Abstract

We propose different modular evaluation met-
rics for Layered Meaning Representation, de-
fined as YARN, a semantic formalism en-
coded using rich structures that generalize AMR
graphs. While existing metrics like SMATCH
evaluate graph-based semantic representations
such as AMR, they cannot directly handle
YARN’s more complex structures. We make
full use of the modular nature of YARN to pro-
pose two families of metrics, depending on the
linguistic features and type of semantic phe-
nomenon targeted. The first one, SMATCHY,
extends the AMR SMATCH metric. We also
propose YARNBLEU, based on the SEMBLEU
metric for AMR. We evaluate both families on a
small dataset of human annotated YARN struc-
tures, adding random modifications simulating
annotation mistakes and show that SMATCHY
provides a more consistent and reliable ap-
proach with respect to the type of modifications
considered.

1 Introduction

Evaluating the similarity between two graphs is a
non-trivial task, as different approaches emphasize
different aspects of structural variation. On the spe-
cific topic of graph based semantic formalisms, the
most popular metric, SMATCH (Cai and Knight,
2013) compares AMR graphs (Banarescu et al.,
2013) by matching nodes from a candidate graph
to a reference graph, and treating the task as pre-
diction, evaluating on the popular f-score metric.
Alternative metrics based on SMATCH have been
proposed like S²MATCH (Opitz et al., 2020) who
allows soft matching by incorporating a distance
function on concepts. Another popular metric for
AMR evaluation is SEMBLEU (Song and Gildea,
2019), which is based on the classical Bleu met-
ric for machine translation, and compares k-grams
in the candidate and reference graphs. SMATCH

and SEMBLEU have been introduced to take into
account the specificities of AMR graphs, and they

cannot be applied directly to other kinds of seman-
tic formalism that are not graph-based.

We focus on layered meaning representations
such as the recently introduced YARN formal-
ism (Pavlova et al., 2024). YARN is based on
AMR, but extends this formalism by adding typed
edges and vertices, and enabling certain edges to
go from or toward other edges. By allowing one to
choose the features they would like to target (like
quantification, modalities, aspect), YARN provides
a modular framework for partial annotations: it
is more expressive than AMR, can represent first-
order logic and quantification phenomenon, as well
as scope. Meaning representation-based similar-
ity measures have been widely applied to natural
language processing tasks, ranging from Natural
Language Inference (Opitz et al., 2023) to text gen-
eration evaluation (Manning and Schneider, 2021)
and compositional semantic similarity measure-
ment (Fodor et al., 2025). Since YARN provides
a more complete and accurate representation than
AMR, similarity measures on YARN structures have
the potential to yield more precise results on such
tasks, provided parser accuracy. We propose de-
composing the YARN structures as a set of clauses.
This allows us to extend the steps presented in the
original SMATCH paper to YARN structures. Fur-
thermore, by keeping the information related to
edge and vertices types in the clause decomposi-
tion, we are able to evaluate the performance of a
given parser on various type of phenomenon. We
extend SEMBLEU in a similar way, by proposing
a way to represent YARN structures as graphs and
using the same k-grams extraction method as in
SEMBLEU.

We first review the classical AMR metrics
SMATCH and SEMBLEU and present YARN. Then,
we introduce two metrics families based on
SMATCHY and YARNBLEU, and evaluate them
on a small dataset of annotated YARN. Finally, we
discuss the results and propose future work.
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2 AMR metrics

Smatch (Cai and Knight, 2013) uses a seman-
tically motivated approach, by decomposing the
candidate AMR and the reference graph as conjunc-
tions of triples , and computing precision, recall and
f-score based on predicting correct triples. Since
triples involves variables, the score depends on
variable matching of both graphs, and the SMATCH

score is calculated as the best f-score over all possi-
ble partial one-to-one mapping between the set of
variables of the two AMRs. A complete example is
given in Appendix A.

SMATCH is an interpretable and semantics-
driven metric: each triple represents a predicate
in the event structure described by the AMR graph.
Thus, it accurately captures the overlap between
the two meaning associated to AMRs, in terms of
asserted elementary relations between entities or
variables. In particular, SMATCH does not heavily
penalize incorrect labels: two AMR graphs with
similar structure but different vertex labels can still
score high if the number of edges outweighs the
labels differences. However, using a semantically
grounded metric has a cost: finding the optimal
variable matching between two AMRs is NP-hard,
and SMATCH relies on heuristic, non-deterministic
solvers with repeated random initialization.

SemBLEU (Song and Gildea, 2019) on the other
hand, does away with variable matching by tak-
ing inspiration from the classical BLEU (Papineni
et al., 2002) metric and comparing k-grams pre-
dicted by the candidate graph to k-grams present
in a reference graph. Since BLEU is used to evalu-
ate machine translation, it is motivated by casting
AMR parsing as translating from english to AMR.
However BLEU cannot be used as is since an AMR

graph is not a text sequence. Nevertheless, since
BLEU relies on k-grams matching, a straightfor-
ward extension of BLEU for graphs has been pro-
posed by (Song and Gildea, 2019) by considering
k-grams as sequences of connected k-nodes. More
precisely, for a reference graph z and a candidate
graph c, SEMBLEU enumerates 1-grams (vertices),
2-grams (labeled edges), ..., n-grams by a travers-
ing both graphs with a breadth-first algorithm, and
then applies the standard BLEU equation:

BLEU = e
min

(
1− |z|

|c| ,0
)
× e

∑n
k=1 wk log pk

pk =
|k-gram(z) ∩ k-gram(c)|

|k-gram(c)|

Figure 1: YARN structures representing for “Each poem
narrates only a part of the war.”. The second structure
focuses only on the quantifier feature and the PA part.

Where w is a sequence of n positive parameters
summing to 1. The authors of the original SEM-
BLEU paper use n = 3 and w1 = w2 = w2 = 1/3.

SEMBLEU has the property of being determin-
istic and computable in linear time for trees. Al-
though AMR graphs are not necessarily trees, they
are generally sparse, and (Song and Gildea, 2019)
empirically verified that the property still holds.

3 YARN

In this section, we give a brief overview of the
YARN formalism, and how it can be represented as
a set of clauses. We refer to (Pavlova et al., 2024)
for a more detailed description of the formalism.

The features of YARN that we need to take into
account when proposing a metric are the following:
The base of a YARN structure is a graph represent-
ing the basic predicate argument (PA) structure. (i)
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YARN has typed vertices. (ii) YARN has typed edge
connecting different types of vertices. (iii) YARN

has typed edges1 connecting vertices or edges to
other vertices or edges. (iv) YARN is modular: we
might remove all vertices and edges connected to
the structure only through feature nodes represent-
ing certain features we do not wish to focus on.
This allows to get another simplified YARN struc-
ture. Figure 1 gives an example of this process.

We use the definition by Pavlova (2025) which,
compared to Pavlova et al. (2024), provides a
slightly simplified and more expressive version
of the YARN formalism. We explicitly define the
changes between the former and the later in the
following paragraph.

A YARN structure is defined as a 9-tuple:

Y = (S, V, F,D,E,C, L,H, I)

Each term denotes a set of labeled edges or ver-
tices. The base of the representation follows AMR:
V elements are vertices representing concepts, in-
dividuals or attributes, while E edges express rela-
tions between V elements. S elements are nodes
corresponding to elementary events with F ele-
ments, features associated to them. D elements
are edges representing discourse relations between
elementary events (D is called Es in Pavlova et al.
(2024)). L elements are edges connecting F and
V nodes (L is called EFV in Pavlova et al. (2024)).
For details on their interpretation and use to model
various phenomena, see again Pavlova et al. (2024).
The remaining elements are not present in Pavlova
et al. (2024): C elements are edges linking V and
S nodes to model clauses. H elements are edges
going either from elements of F towards other el-
ements of H or L, or from L or other H ones to-
wards V or E. This expresses how features interact
and modulate semantic relations between entities.
Finally, I are undirected edges between V vertices.

4 SMATCHY

4.1 SMATCHY-BASE

SMATCH uses variables associated to nodes to han-
dle reference towards them, encoding the struc-
ture of a graph as a collection of triples. YARN

structures can be considered as classical directed
graphs that have nodes of different types, with the
addition of specific L or H edges that either go
from another edge to a node or from a node to an

1This is a slight abuse of terminology.

edge. The only missing element in order to use
SMATCH on YARN structures would be the ability
to encode such edges. This can be done by adding
variables corresponding to edges, as illustrated in
Figure 2. With this encoding, due to the additional
variables assignations, we encode YARN structures
as sets of quadruples2 (corresponding to edges)
and triples (corresponding to labels of vertices), or
only quadruples by adding dummy variables. An
easy extension of SMATCH can then be proposed
for YARN, as the best f-score that can be achieved
through partial one-to-one variable matching on the
clauses (triples and quadruples) defining the given
SMATCH structures. We now show how to compute
such a matching using integer linear programming
(ILP).

ILP formulation let Y1 and Y2 be two graph
structures, we define V1 as the set of variables in
Y1, V2 as the set of variables in Y2, C1 the set
of clauses appearing in Y1, C2 the set of clauses
appearing in Y2.

We say that two clauses are comparable if they
correspond to the same type of edge or vertex in
the YARN structure, and they are labeled with the
same relation, concept or feature type.

We can frame the problem of finding optimal
variable alignment as an integer linear program-
ming problem, with the given binary matrixes:

v : V1 × V2 → {0; 1} t : C1 × C2 → {0; 1}
Where vij is 1 if and only if variable i is assigned
to variable j, and tcd is 1 if and only if the clauses c
and d are comparable and match given the variable
assignment.

The constraints for v to represent a partial one
to one alignment are:

n∑

i=1

vij ≤ 1, ∀j ∈ {1, 2, . . . ,m}

m∑

j=1

vij ≤ 1, ∀i ∈ {1, 2, . . . , n}

Additionally clauses ci ∈ C1 and cj ∈ C2 match if
they are comparable and their variables match, we
can formalize this in the following way: if ci and
cj are comparable and have respective variables (x,
y, z) and (a, b, c) we write:

tcicj ≤ vxa tcicj ≤ vyb tcicj ≤ vzc

2We follow SMATCH formulation: a triple correspond to a
relation together with two variables, and a quadruple consists
of a relation together with three variables.
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instance_f(degree, d) e1 := ARG1_e(h,m)
instance_f(temp, t) e2 := ARG1_e(h2, h3)
instance_s(event, s1) l1 := more_l(d, h)
instance_v(high-02, h) h1 := present_h(t, l1)
instance_v(high-02, h2) h2 := than_h(l1, h2)
instance_v(hill, h3)
instance_v(mountain,m)
feature_f(d, s1)
feature_f(t, s1)

Figure 2: Expression of a YARN structure representing “Mountains are higher than hills” as triples and quadruples.

tcicj ≤ vxa tcicj ≤ vyb

Up to this point we follow closely the formulation
of (Cai and Knight, 2013), accounting for addi-
tional variables. Most of the edges in a YARN

graph are directed or between nodes of different
types. The only exception to this rule in YARN

structures are I edges that link V vertices and that
are undirected. If ci and cj correspond to such ver-
tices, linking nodes corresponding to variables x,
y and a, b respectively then we may write:

tcicj ≤ vxa + vxb tcicj ≤ vya + vyb

Where the constraints on v insure that both right
hand side are less than or equal to 1, and that if
they are both 1, then {x, y} = {a, b}.

When clauses ci and cj correspond to relations
that may not be compared, we write

tcicj = 0

Naming the set of pairs of matrixes that follow
those constraints Λ, finding the best alignment is
equivalent to solving the ILP problem:

max(t,v)∈Λ
∑

ci∈C1,cj∈C2

tcicj

Since Λ is not empty (setting v and t equal to 0 sat-
isfies all the constraints) and the function to max-
imize is bounded by the number of comparable
clauses, the problem is well defined and can be
solved in reasonable time3 by ILP solvers.

3To give a rough estimate, computing the optimal aligne-
ment for a given pair of YARN structures takes about 20
ms on a personal laptop using the CBC solver (Forrest et al.,
2024) through the python PuLP(Mitchell et al.) ILP modeling
library.

Figure 3: A simple YARN structure achieving high aver-
age base SMATCHY score (0.55 average f-score) against
human annotated samples for unrelated sentences

Once an optimal mapping is found, we consider
clauses that match between the candidate graph and
the reference graph as true positives (TP), clauses
that are present in the candidate graph and not in
the reference graph as false positives (FP), and
clauses that are not present in the candidate graph
but are present in the reference graph as false nega-
tives (FN): we then compute recall, precision and
f-score using the usual formulas (Davis and Goad-
rich, 2006). Continuing with (Cai and Knight,
2013), we use the f1-score as the final metric.

4.2 Feature Aware SMATCHY

Using the previously introduced metric to compare
YARN structures is unsatisfactory. It leads to con-
sidering every element of the YARN structure as
equally important, either during alignment or phase.
For instance, instance clauses predicting the very
presence of a feature count as much as clauses re-
lating to how this feature acts on other elements
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Figure 4: YARN structures for “I also struggle with
passwords”, before and after filtering quant and temp

of the structure, which is not ideal. Using an an-
notated subset of 100 sentences from the English
PUD dataset (Zeman et al., 2017), the average score
of random pairs of graph was 0.45, which is unsat-
isfactory, as one would expect this number to be
closer to zero. In fact, comparing every annotated
graph with a nearly empty YARN graph composed
of only two V nodes and several common features
gives an average score of 0.55 (see Figure 3).

Additionally, YARN has the advantage of allow-
ing easily one to “switch” features (see Figure 1),
depending on what kind of semantic phenomenon
they would like to focus on. This should be re-
flected in any metric evaluating similarity of YARN

structures: we would like to have not only a score
reflecting how well two structures globally match,
but also a family of derived metrics reflecting how
they match on certain restricted set of features.

To tackle both challenges, we propose to retain
the alignment method of the SMATCHY-BASE met-
ric, but modify the scoring function, in order to
ignore certain easy or irrelevant matches. Con-
cretely, once an optimal variable matching is found
between the variables corresponding to the two
structures, we filter out the set of clauses consid-
ered for the precision and recall calculation.

Clause filtering algorithm Given a set of types
T ⊂ {S, V, F,D,E,C, L,H, I}, and a set of fea-
ture labels F, we filter clauses by: (1) removing
instance clauses defining features not in F; (2) re-

cursively removing clauses referencing variables
from removed clauses; (3) recursively removing
clauses whose variables appear only in removed
clauses; and (4) removing clauses of types not in
T. Steps 1-3 “switch off” layers, see Figure 1 and
Figure 4, while Step 4 filters the clauses considered
according to type in order to ignore easy matches.

We now give an example of this filtering process.
Let T = {V,E,H,L} and F = {quant, temp}.
We might choose this setting to evaluate how well
a parser can extract first-order logical formulas as
well as temporal features.

The YARN structure shown at the top of Figure 4
is split into the following clauses:

(1) e1 := ARG0_e(s, i)
(2) e2 := ARG1_e(s, p)
(3) feature_f(s1,m)

(4) feature_f(s1, q)
(5) feature_f(s1, t)
(6) instance_f(mod,m)

(7) instance_f(quant, q)
(8) instance_f(temp, t)
(9) instance_s(event, s1)
(10) instance_v(also, a)
(11) instance_v(i, i)
(12) instance_v(password, p)
(13) instance_v(struggle-01, s1)
(14) l1 := edge_l(m, a)

(15) l2 := exists_l(q, p)
(16) l3 := present_l(t, s1)
Let’s apply the four steps of the filtering process.

Step 1 Remove the instance clauses that define
feature variables corresponding to features that are
not in F: Remove clause (6).

Step 2 Recursively remove the clauses referenc-
ing variables defined in clauses that have been re-
moved: Remove clause (3), remove clause (14).

Step 3 Recursively remove clauses whose vari-
ables are referenced only in clauses that have been
removed: Remove clause (10): thus the set of
clause that match the second structure in Figure 4.

Step 4 Remove clauses of types that are not in T:
Remove clause (4), (5), (7), (8) and (9).

The final set of clauses is:
(1) e1 := ARG0_e(s, i)
(2) e2 := ARG1_e(s, p)
(11) instance_v(i, i)
(12) instance_v(password, p)
(13) instance_v(struggle-01, s1)
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(15) l2 := exists_l(q, p)

(16) l3 := present_l(t, s1)

To be able to compare the general proximity of
two YARN structures, we propose using our met-
ric with T = {S, V,D,E,C,L,H, I}, that is, re-
moving only clauses of type F , with no filtering
on features. With this setting, the average prox-
imity score of pairs of structures taken randomly
from our dataset drops to 0.20, while the average
score between YARN structures and the structure
presented in Figure 3 drops to 0.23. This is on
par with results obtained using SMATCH on AMR

graphs (Cai and Knight, 2013). We call the metric
obtained in this setting SMATCHY-GENERAL. To
have a metric focused on the PA substructure of
YARN structures, we propose setting T to {V,E}.
This is very similar to SMATCH, only using the
additional more complex YARN elements to guide
the variable alignment phase. We call this met-
ric SMATCHY-PA. To evaluate on the fragment of
YARN corresponding to first-order logic, we define
SMATCHY-FOL by setting T to {S, V,E,H,L}
and F to {quant, neg}. We may also set T to
{S,D} in order to evaluate discourse relations pars-
ing, or to {V } for concept and entity recognition.

5 YarnBLEU

We also extend the definition of SEMBLEU to
YARN structures. We leverage a graph translation
of YARN structures, as seen in Figure 5: every ele-
ment x of the structure is converted to a typed node
n(x), with type in {S, V, F,D,E,C, L,H, I}. Ad-
ditionally, for every edge e in the YARN structure
connecting two elements x1 and x2, we create two
unlabeled edges (n(x1), n(e)) and (n(e), n(x2)).
Like we did previously with SMATCHY, we pro-
pose a family of metrics, depending on the nodes
considered. For a set of types T and features F
applying the same process as in Figure 4.2, we
extract a YARN substructure based on F (step 1
to 3) then select only nodes corresponding to the
types in T before k-grams extraction. We then ap-
ply the same formula as SEMBLEU. We build in
this fashion the YARNBLEU-GENERAL and YARN-
BLEU-PA metrics, as well as the YARNBLEU-
FOL metrics that are analogous to SMATCHY-
GENERAL, SMATCHY-PA and SMATCHY-FOL re-
spectively. Since SEMBLEU additionally depends
on n (the maximal size of k-grams considered)
and w, we also need to set those parameters. The
value proposed by (Song and Gildea, 2019) is w to

Figure 5: The graph of the YARN structure in Figure 2.

(1/3, 1/3, 1/3) and n to 3. In order to handle the
same range of global dependencies on the PA struc-
ture while accounting for additional nodes coming
from edges, we set n to 5 and w to (1/5, ..., 1/5).

6 Experiments

6.1 Elementary modifications
We first propose a simple evaluation scheme in or-
der to evaluate the general properties of SMATCHY-
and YARNBLEU- type metrics with respect to ran-
dom modifications that simulate annotator errors.
We do not cover every type of mistake and the wide
range of possible annotation errors. Our main fo-
cus is sensitivity and bias, as we want to measure
how errors of different forms are differently pe-
nalized by such metrics. In particular, SMATCHY-
GENERAL should not penalize overly one type of
errors, while SMATCHY-PA should mostly penal-
ize errors in the PA substructure of a YARN struc-
ture.

We evaluate our more fine-grained first-order
oriented metrics SMATCHY-FOL and YARNBLEU-
FOL on the same dataset. When changing the la-
bels of V or E elements, we carefully introduce
a new distinction. As can be seen with the node
labeled “also” in Figure 4, some elements of the
YARN structure will not be present in the first-order
formula that can be extracted from a given YARN

structure: this is typically the case for modifiers
acting on elementary events. We tag such elements
as “first order irrelevant” (FOI). Other elements are
tagged “first order relevant” (FOR). As the con-
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version of YARN structures to logical formulas is
not the focus of this paper, we do not elaborate
on the specific procedure one would use to build
such formulas. We then compare the scores ob-
tained when changing the label of FOR elements
or FOI elements. Furthermore, modification of
L and H edges are also separated between those
that act on edges spanning from quantification and
negation features (considered FOR) and the others
(considered FOI), as only the former will have an
influence on the final logical formula. The results
are shown in Figure 6. As we can see, SMATCHY-
FOL and YARNBLEU-FOL are able to distinguish
between those two types of modifications, and only
penalize acting on FOR elements. However, the
general trend of fuzzier and more biased distribu-
tions for YARNBLEU metrics is still present, with
YARNBLEU-FOL penalizing more modification of
E edges than H or L edges.

6.2 Random chain of modifications
As a way to simulate the influence of more sub-
stantial annotation errors, we now apply sequences
of random transformations to the YARN structures.
This setup complements the first analysis by evalu-
ating how metric scores degrade across cumulative
and structured perturbations, rather than isolated
changes. Our transformations consist in changing
labels, and adding or removing random elements
of types E, V , F , L, H . Those transformations are
not elementary as we keep valid YARN structures at
each transformation step: if a feature F is removed,
we remove elements that are attached to the main
structure only through this feature.4 In the same
spirit, adding a new V element, also adds an E
edge linking it to the main structure. We thus keep
track of the number of elementary modification (in-
sertion, deletion of an element or change of a label)
performed. We check that restricting the type of
modifications to FOI elements doesn’t imply a drop
in YARNBLEU-FOL and SMATCHY-FOL.5 We
compute the score of the modified structures with
respect to the original ones, and plot the scores as a
function of the number of elementary modifications
performed for SMATCHY-GENERAL, SMATCHY-
PA, YARNBLEU-GENERAL and YARNBLEU-PA.
The results for a small number of trajectories are
shown in Figure 7. SMATCHY metrics degrada-
tion follow the editing distance more regularly than

4As a consequence, removing the quantification feature
will also remove every H or L edge expressing quantification.

5Not obvious as FOI elements still influence the alignment.

YARNBLEU. In particular, we observe mostly non
increasing trajectories for SMATCHY, while this is
not the case for YARNBLEU.

We note that the occasional increases observed in
YARNBLEU scores is still present when changing
the value of the n and w parameters. This seems to
come from the precision oriented approach of SEM-
BLEU and YARNBLEU: removing valid elements
from a modified structure might increase scores
if those elements are linked to wrong ones, as it
might reduce drastically the amount of wrong pre-
dicted k-grams. It is the role of the brevity penalty
factor to counter this kind of effects, but it is not
always sufficient: the formula proposed by (Song
and Gildea, 2019) seems to rely on the assumption
that AMR graphs are sparse enough that the num-
ber of k-grams extracted from them grows linearly
with size of the graph: while this has been heuristi-
cally verified by the same authors on existing AMR

datasets, it is not the case for YARN structures.

7 Discussion

The observed behavior of SMATCHY and YARN-
BLEU in our evaluation protocol leads us to favor
SMATCHY for its more predictable and controlled
response to parsing or annotation errors. SEM-
BLEU is a biased measure that penalizes mistakes
differently across various regions of a graph, de-
pending on local connectivity patterns. This bias
is even more pronounced for YARN than for AMR,
as complex YARN structures exhibit very different
topological properties in the (H,L) substructure
compared to the rest of the structure, due to spe-
cific constraints on these elements. Additionally, as
noted earlier, the brevity penalty proves insufficient
to address these issues.

Are there still reasons to favor SEMBLEU fam-
ily metrics like YARNBLEU? The main argument
appears to be computational complexity, as YARN-
BLEU can be computed without requiring a variable
alignment phase. However, alternative solutions
exist that arguably provide better approaches to
assessing graph similarity (Kachwala et al., 2024;
Sun and Xue, 2024; Shou and Lin, 2023). By focus-
ing on elementary modifications, we evaluate se-
mantic similarity on architectural grounds. YARN-
BLEU exhibits bias toward penalizing errors more
heavily in highly connected regions of the graph,
which may occasionally be desirable: in the same
way AMR top elements correspond to main verbs
and their core arguments, highly connected regions
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Figure 6: Distribution of scores for the metrics SMATCHY-GENERAL, YARNBLEU-GENERAL, SMATCHY-PA,
YARNBLEU-PA, SMATCHY-FOL and YARNBLEU-FOL

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Edit Distance

Sc
or

e

SMATCHY-GENERAL vs Edit Distance

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Edit Distance

Sc
or

e

YARNBLEU-GENERAL vs Edit Distance
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in YARN structures might correspond to elements
that are more important for sentence interpretation.

To apply SEMBLEU to YARN structures, we
leverage a graph translation approach. It would also
be possible to apply SMATCH directly to YARN

structures using this graph translation; however,
we argue this is undesirable as it would repre-
sent a quadruple a := rel(b, c) as three triples:
instance(a, rel), ϕ(b, a), and ϕ(a, c). While this
formulation suffices for checking isomorphy, it is
problematic for fine-grained similarity evaluation.
By tripling the number of clauses related to edges,
it breaks the symmetry between nodes and edges.
Additionally, compared to the quadruple formu-
lation, this approach allows partial matching of
the original edge (matching only source or target),
which is unsatisfactory.

8 Conclusion

Providing evaluation metrics is a necessary first
step toward the development of semantic parsers.
In this context, we have introduced a new fam-
ily of metrics tailored to the evaluation of pars-
ing over YARN structures, derived from SMATCH

and SEMBLEU. We have shown how to extend
those original metrics to handle the specificities of
YARN structures, and how to use it to evaluate pars-
ing on different structural aspects. Those include
the core predicative kernel of the structure with
SMATCHY-PA and YARNBLEU-PA, the general
relatedness with SMATCHY-GENERAL and YARN-
BLEU-GENERAL, or the first-order logic aspect
with SMATCHY-FOL and YARNBLEU-FOL. We
have shown that our metrics are able to distinguish
and penalize different types of modifications on
YARN structures. Our results suggest that using
alignment based methods similar to SMATCH pro-
vide a more robust way of evaluating parsing on
formalisms such YARN structures, as they seem
to be less biased and more predictable than graph
traversal methods such as SEMBLEU. We empha-
size on the fact that many other metrics can be de-
rived from the SMATCHY and YARNBLEU frame-
work, allowing to focus on very specific aspects of
semantic parsing, and to evaluate the overall per-
formance or abilities of different type of models
on those aspects. This results from the structural
richness of YARN structures, which can be used to
model a broad variety of phenomena. Furthermore,
the extreme modularity of YARN allows for many
applications: A single YARN annotated dataset is

enough to evaluate capacities of parsers and lan-
guage models across many tasks, from named en-
tity recognition and word sense disambiguation to
parsing of AMR like structures, first-order logic
formulas, discourse relations and more simply by
switching the evaluation metrics.

9 Limitations

The metrics we present inherit the same limitations
as the ones they are based on. We can hypothesise
that SMATCHY scoring systems neglect small but
semantically relevant structural differences, lead-
ing to high scores for unacceptable parses, as was
observed with SMATCH in (Opitz and Frank, 2022).
A direction for future research is to align with hu-
man judgment by learning to aggregate different
SMATCHY or YARNBLEU scores, using various
choices of F and T, with optimized weighting co-
efficients. In addition, the absence of soft concept
matching penalizes structures that contain closely
related but not identical concepts, overlooking nu-
anced semantic similarities. This limitation has
been criticized and addressed in previous work on
SMATCH and SEMBLEU (Opitz et al. (2020), Opitz
et al. (2021)). Future work could explore incor-
porating soft matching in order to provide more
permissive metrics evaluating semantic relatedness
of YARN structures.

Furthermore, the evaluation protocol presented
in this paper is biased in favor of SMATCHY be-
cause it focuses on a restricted set of modifica-
tions that induce a high variability on high level
structural features of the structure as captured by
YARNBLEU k-grams while leaving the underlying
SMATCHY variable alignment largely unaffected.
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A Appendix

AMR graph for “the boy wants to stay”
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and its triplet decomposition:

instance(w, want-01)∧
instance(b, boy)∧
instance(s, stay-01)∧
ARG0(w, b)∧
ARG0(s, b)∧
ARG1(w, s)

The same for the sentence: “the boy wants the
girl to stay”

instance(x, want-01)∧
instance(y, boy)∧
instance(z, stay-01)∧
instance(a, girl)∧
ARG0(x, y)∧
ARG0(z, a)∧
ARG1(x, z)

Highlighted triples reflect variable alignment:
blue for matching, red for non-matching. SMATCH

score between the two AMR is 0.77.

Variable
(First AMR)

Matching Variable
(Second AMR)

w y
b y
s z
(None) a
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Abstract

The ISO working group on semantic anno-
tation aims to adopt the UMR formalism to
represent dynamic information involving mo-
tions and their embedding grounds. The pa-
per details how ISO’s XML-based temporal
and spatial annotations, involving motions and
spatio-temporally conditioned event-paths, will
be converted to AMR or UMR forms. It also at-
tempts to enrich the representation of dynamic
information with the integrated spatio-temporal
annotation scheme that accommodates first-
order dynamic logic, as briefly noted. The main
motivation of such an effort is to make spatio-
temporal annotations and related dynamic in-
formation easily understandable by artificial
agents like robots to act. Our approach bridges
ISO’s richly specified standards with the task-
oriented expressiveness of UMR and dynamic
logic. This integration paves the way for seam-
less downstream use of spatio-temporal annota-
tions in dialogue systems, simulation environ-
ments, and embodied agents.

Key Words: dynamic information, dynamic
space, embedding ground, motion, spatio-temporal
annotation, UMR

1 Introduction

We propose and explore the use of UMR in ISO’s
new project on motion in dynamic space (ISO/PWI
24617-18). Given Pustejovsky et al. (2019)’s use of
AMR, the adoption of AMR for ISO’s annotation
standards is not novel. Furthermore, the adoption
of AMR or UMR has been motivated by the rapid
rise in their use in computational linguistics over
the past decade; they simplify computational an-
notation processes while maintaining scalability,
unencumbered by extensive syntactic pre-analysis.

As pointed out in Pustejovsky et al. (2019), the
strength of AMR lies in its focus on the predica-
tive core of a sentence while presenting an intuitive
representation for semantic interpretation. More

importantly, treating predicates as the root of each
AMR structure facilitates annotation processes, just
as the event-based temporal annotation of ISO-
TimeML and the motion-based spatial annotation
of ISO-Space are anchored to eventuality and mo-
tions, respectively.

The proposed project’s scope for annotating mo-
tions embedded in spatio-temporal domains encom-
passes motions, space, time, and the embedding
ground of a motion, called dynamic space. We aim
to enrich this annotation scheme by augmenting the
categorization of spatial and temporal entities with
first-order dynamic logic and an iterative program
procedure.

The paper will develop as follows. We discuss
representing semantic annotations of language in
Section 2. In Section 3, we demonstrate how ISO’s
dual annotation structures are represented in UMR.
Section 4 introduces Spatio-Temporal Markup Lan-
guage (Pustejovsky and Moszkowicz, 2011) and
Generative Lexicon-based AMR (GLAMAR) (Tu
et al., 2024) to treat motion-oriented dynamic infor-
mation with the notion of sub-events. The dynamic
logic formulates constraints on the iterative pro-
cess of motions. The paper ends with concluding
remarks.

2 Representing Semantic Annotations of
Language

2.1 Abstract Annotation Scheme vs Concrete
Physical Representation Format

Following Bunt (2010), the ISO SemAF group
has divided the specification of each annotation
scheme into two sub-components. The first sub-
component abstract syntax formally defines the
annotation structures of the scheme in abstract (set-
theoretic) terms while reflecting its conceptual de-
sign based on a metamodel. In contrast, the other
sub-component, concrete syntax, has adopted XML
as the physical format for representing annotation

49



structures. As depicted in Figure 1, a variety of
concrete syntaxes is possible for representing anno-
tation structures. Still, each of them must conform
to the proposed abstract syntax while ideally retain-
ing their logical equivalence. Hence, each concrete
specification of representing annotation structures
depends totally on the abstract syntax of an annota-
tion language.

Figure 1: Syntax of an Annotation Language:
Abstract vs. Concrete (Lee, 2023)

While introducing the two ISO standards, ISO-
TimeML and ISO-Space, Pustejovsky (2017a) and
Pustejovsky (2017b) have adopted two different
representation formats. XML was adopted to rep-
resent annotation structures in ISO-TimeML, but
a predicate-logic-like format was adopted in ISO-
Space. Nevertheless, the representation of annota-
tion structures in both representation formats con-
forms to their respective abstract specifications
(syntaxes) of temporal and spatial annotations.

Example (refexTS briefly shows how they repre-
sent annotation structures.

(1) a. Data with categorized identifiers:
Johnse1 lefte1/m1 Bostonpl1
yesterdayt1.

b. ISO-TimeML (Pustejovsky, 2017a):
<EVENT id="e1" target="w2"
pred="LEAVE" tense="PAST"/>
<TIMEX3 id="t1" target="w4"
type="DATE" value="2025-02-16"/>
<TLINK eventID="e1"
relatedToTime="t1"
relType="IS_INCLUDED"/>

c. ISO-Space (Pustejovsky, 2017b):
SPATIAL_ENTITY(id=se1,
type=PERSON,form=NAM)
MOTION(id=m1, target=w2,

motion_class=LEAVE, tense=PAST)
PLACE(id=pl1, target=w3,
cvt=CITY, form=NAM)
MOVELINK(id=mvli, trigger=m1,
mover=se1, source=pl1)

Both ISO-TimeML and ISO-Space focus on predi-
cates, which can be either events or motions. TLINK
relates the event of leaving to the time yesterday.
Triggered by the motion leftm1, MOVELINK relates
the spatial entity Johnse1 to the source Bostonpl1.

2.2 UMR as a New Representation Format
UMR adopts the AMR formalism but extends its
sentence-level representation to the document level
(UMR, 2022). Consider first the sentence-level
representation as in Example 2.

(2) a. Data:
(s / sentence
(The man left Boston yesterday
before it rained.))

b. AMR Format:

(l / leave-01
:ARG0 (m / man)
:source (b / Boston)
:temporal (y / yesterday)
:temporal (b1 / before
:op1 (r / rain))

The AMR formalism represents abstract semantic
concepts and relations that include event participant
roles, such as ARG0 or actor. In the AMR format,
as in (2b) above, the slash (/) indicates semantic
concepts while the colon (:) indicates a value of a
semantic relation. In addition to argument roles,
these relations form triplets bound to a governing
concept (e.g., l / leave-01 :ARG0 (m / man)).

UMR then adds a document-level representation
to the sentence-level representation. For example,
the sentence-level representation can be extended
to a document-level representation such as Exam-
ple 3 be added:

(3) UMR Document-level Representation

(s / sentence)
(d / document-level

:temporal (sr :before sl))

Linked to the sentence-level representation (2), the
document-level representation (3) relates the rain
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event sr to the event of John’s departure sl, in-
terpreted as stating that John’s departure occurred
before the rain.

3 Representing ISO’s Dual Annotation
Structures in UMR

3.1 Dual Structures of Annotation
ISO’s SemAF annotation schemes formally define
annotation structures, each divided into two sub-
structures: entity structures and link structures. En-
tity structures are anchored to markables in seg-
mented communicative or textual data while mark-
ing them up for specific purposes, such as anno-
tating temporal or spatial information in language.
In contrast, link structures each relate an entity
structure to a set of other entity structures.

Figure 2: Two-level Annotation Structures

3.2 Temporal Link
In ISO-TimeML, the temporal link relates two en-
tity structures annotating events temporally.

(4) a. John lefte1 befores1 it
rainede2.

b. Temporal Annotation:
<EVENT id="e1", target="w2"
pred="LEAVE"/>
<SIGNAL id=""s1’, target="w3"/>
<EVENT id="e2", target="w5"
pred="rain"/>
<TLINK eventID="e1",
relatedToEvent="e2",
relType="BEFORE",
signalID="s1"/>

TLINK can be represented in UMR at its document
level, as shown earlier in Example 3.

3.3 Quantification and Scope
Pustejovsky et al. (2019) demonstrated how quanti-
fier scoping in ISO-Space could be treated in UMR.
Example 5 shows how ISO (2014) annotates quan-
tifier scoping.

(5) a. A computerse1 is onss1 every deskse2.

b. <spatialEntity
id="se1" pred="computer"
quant="1">
<spatialEntity id="se2"
pred="desk" quant="every"
scopes="se1"/>
<event id="e1"
pred="isLocated"/>
<sRelation id="sr1"
pred="on"/>
<qsLink figure="se1"
ground="se2"
relType="on", trigger="sr1"/>
<scopeLink figure="se2"
ground="se1"
relType="wider"/>

The attribute @scopes in <spatial Entity
id="se2"/> is not an inherent property of entities
but is contextually marked up.

In Example 6, UMR represents quantifier scop-
ing at the document, better called discourse, level.

(6) Quantifier Scoping in UMR:

(s / sentence
:text "A Computer is on every desk"
(i / be-located-at-91
:theme (c / computer

:quantity 1)
:location (d / desk

:quantity every)))
(d/ discourse level

:scope (sc :wide sd))

The last line in (6), following the UMR guidelines,
is to be interpreted as follows: sc indexes the argu-
ment of sentence s denoted by c, i.e., a computer,
while sd indexes the argument of sentence s de-
noted by , i.e., every desk. This then can be para-
phrased as "every desk (sd) has a wide scope
over a computer (sc)".

In the UMR format, Gysel et al. (2021) treats
scope by introducing an inverse relation pred-of
that indicates a predicate like answer-01 as in Ex-
ample 7 is a predicate under the scope node.
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(7) "Someone didn’t answer all the questions."

(a /answer-01
:ARG0 (p /person)
:ARG1 (q /question

:quant All :polarity -)
:pred-of (s / scope

:ARG0 p :ARG1 q))

The scope node indicates that someone takes wider
scope over (not) all the questions.

As in Example 6, we may also represent the
scopal relation in Example 7 at the document, better
called discourse level of UMR.

(8) "Someone didn’t answer all the questions."

(a /answer-01
:ARG0 (p /person)
:ARG1 (q /question

:quant All :polarity -))
(d /discourse level

:scope (q :wide p))

Unlike Representation 7, Representation 8 explic-
itly states someone p has wide scope over (not) all
the questions q. Such a discourse-level represen-
tation can thus accommodate other types of scopal
relations, dual and equal, which Bunt et al. (2018)
claim to be necessary for quantification in general.

With the scopal relations thus specified, Repre-
sentations 7 and 8 both yield an identical first-order
logical form, yielding an identical interpretation:

(9) ∃p[person(p) ∧ ¬∀q[question(q) →
∃a[answer-01(a)∧ARG0(a, p) ∧
ARG1(a, q)]]]

3.4 Treating Non-consuming Tags

SpatialML (MITRE, 2010), from which ISO-Space
originated, introduces so-called non-consuming
tags for assumed places.

(10) a. Raw Data:
We drove 50 miles east of Boston. The
next day, we drove 100 miles north.1

b. Three Non-consuming PLACE Tags:
We drove PLACEpl1:target 50 miles east of
Bostonpl2:source. The next day, we drove
PLACEpl1:source PLACEpl3:target 100 miles
north.

1Taken from MITRE (2010), Section 15.

c. RLINK in SpatialML:
<RLINK id=5 source=pl2:Boston
target=pl1 distance=2:50 miles
direction=E signals=2 3/>
<RLINK id=9 source=pl1 target=pl3
distance=6:100 miles
direction=N signals=6 7

We can identify a non-consuming tag as an implicit
argument to a relation (e.g., an event) that is not
syntactically realized.

Every motion triggers a trajectory that a mov-
ing object traverses. ISO-Space (ISO, 2020) has
thus introduced a non-consuming tag, called event
path, for trajectories to replace RLINK in SpatialML
(MITRE, 2010). Consider Example 11 to see how
it is annotated by ISO (2020).

(11) a. Categorized word-segmented Data:
Johnx1:w1 drovee1:w2 50w3 milesw4

eastw5 ofw6 Bostonpl1:w7.
∅pl2:goal ∅ep1

b. entity structures:
<ENTITY id="x1" target="w1"
type="PERSON" name="John"/>
<EVENT id="e1" target="w2"
pred="DRIVE"/>
<PLACE id="pl1" target="w7"
type="CITY" name="Boston"/>
<PLACE id="pl2"/>
<EVENT_PATH id=ep1 mover="x1"
source="pl1" goal="pl2"
direction="E" distance="50 mi"
trigger="m1"/>

c. Link structure:
<MOVELINK figure="x1"
ground="ep1"
reltype="TRAVERSES"/>

Annotation 11 contains two non-consuming tags:
∅pl2:goal and ∅ep1. The first tag refers to the goal,
the second one to the event path created by the
motion of John’s driving.

Example 12 shows how these non-consuming
tags are represented in UMR.

(12) Representing an event-path in UMR:

Data (John drove 50 miles east of Boston.)
Predciate-structure level
(d / drive-01
:ARG0 (p / person
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:name (n / name
:op1 "John"))

:distance (q / distance-quantity
:quant 50
:unit (m / mile))

:direction (e / east )
:source (c / city

:name (n2 / name
:op1 "Boston"))

:goal (p1 / place)
:path (p2 / path

:dynamic
:trigger d
:mover p
:source c
:goal p1
:distance q
:direction e)

:aspect Performance
:modstr FllAff))

Discourse-structure level
:moveLink (t1 /traverse

:arg1 p
:arg2 p2
:trigger d))

As shown at the discourse-structure level of Ex-
ample 12 above, UMR successfully represents the
traversal relation between the mover p John and
the event-path p2 triggered by the motion d of
John’s driving.

3.5 Complex entity structures
In ISO (2025), some entity structures are annotated
as referring to other entity structures to specify their
temporal values. Here is an example:

(13) a. Data:
We lefte1 [t11 two weeks]t12 before
Christmast2.

b. Annotation scheme=ISO (2012):
<EVENT id="e1" pred="LEAVE"/>
<TIMEX3 id="t1"
target="two weeks"
type="DURATION" value="P2W"
beginPoint="t11" endPoint="t2"/>
<TIMEX3 id="t12"
type="DATE" value="2004-12-25"/>
<TIMEX3 id="t11"
type="DATE" value="2004-12-11"
temporalFunction="TRUE"
anchorTimeID="t1"/>

<EVENT id="e2" pred="Christmas"/>
<TLINK eventID="e1"
relatedToTime="t11"
relType="IS_INCLUDED"/>
<TLINK eventID="e2"
relatedToTime="t12"
relType="IDENTITY"/>

The entity structure <TIMEX3 id=t1> in (13b)
has two attributes, @beginPoint and @endPoint,
which refer to other entity structures for their val-
ues. The value of @beginPoint is calculated as
2024-12-11, anchored to the Christmas day t1, as
annotated in <TIMEX3 id=t11> with two attributes
@temporalFunction and anchorTimeID.

AMR can also represent how the value of
@beginPoint of a time interval, on which the mo-
tion of "our levaing" took place, is expressed:

(14)
Data (We left two weeks before Christmas.)
Predicate-structure level
(l/ left-01
:ARG0 (p / person

:ref-person 1st
:ref-number Plural)

:time (d / date-entity
:mod (t3 / temporal-interval

:quant 2 :unit (w / week))
:start (d1 / date-entity

:month 12
:day 11)

:end (d2 / date-entity))
:temporal (b/ before

:op1 (n/ name
:op2 (c/ Christmas

:date (d2 / date-entity
:month 12
:day 25))))

:aspect Performance
:modstr FllAff)

Discourse-structure level
:corefence (s / same-date

:arg1 d
:arg2 d1)

:temporal (c / contains
:arg1 d
:arg2 l))

On the entity structure level, the start of the 2-week
duration is dated December 11, for the end of the
duration is the same date of Christmas, Decem-
ber 25, as represented on the link structure level.
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The departure is also represented as occurring on
December 11 at the link structure level.

4 Motion-oriented Dynamic Information

4.1 Overview
Pustejovsky and Moszkowicz (2011) combined
TimeML (Pustejovsky et al., 2005) and Spa-
tialML (Mani et al., 2010) into the Spatio-temporal
Markup Language (STML) to annotate dynamic
information involving motions and motion paths
in language. Now, STML can be updated to ISO
(2012) and ISO (2020), which have formally de-
fined the notion of event paths triggered by mo-
tions. An event path, triggered by a motion, is
traversed by a moving object and is thus defined
as a nonempty finite directed sequence of spatio-
temporally delimited positions of a moving ob-
ject. Dynamic Interval Temporal Logic (DITL)
was adopted as the semantics of STML for reason-
ing with programs.

We work with an excerpt from a travelogue
through Central America, taken from Pustejovsky
and Moszkowicz (2011):

(15) Sample Raw Data:
John left San Cristobal de Las Casas four
days ago. He arrived in Ocosingo that day.
The next day, John biked to Agua Azul and
played in the waterfalls for 4 hours. He spent
the next day at the ruins of Palenque and
drove to the border with Guatemala the fol-
lowing day.

We first show, in Subsection 4.2, how STML anno-
tations in XML are represented in UMR.

4.2 Representing STML Annotations in UMR
For illustration, we take the first sentence from
Data 15 and segment it into words and mark up
their category identifiers.

(16) Sample Data: Categorized Segmentation
S1[Johnse1:w1 leftm1:w2 [San Cristobal
de Las Casas]pl1:w3 four dayst1:w4−5

agos1:w6].

We now apply STML to annotate Sample Data
16 in XML.

(17) <annotation id="a1" aScheme="STML">
<spatialEntity id="se1" target="w1"
type="person" name="John"/>

<motion id="m1" target="w2"

type="transition" pred="leave"/>
<place id="pl1" target="w3"
cvt="town" form="name"/>

<timeX3 id="t1" target="w4-5"
type="duration"
value="4" unit="day"
start="t11" end="t12"/>

<timeX3 id=""t11"target=""
type="date" value="2025-03-08"/>

<timeX3 id="t12" target=""
type="date" value="2025-03-12"
trigger="s1"/>

<signal id="s1" target="w6:ago"/>
<eventPath id="ep1" target=""
start="<pl1,t11>"
end="<unknown,t12>" trigger="m1"/>

<tLink id="tL1" eventID="m1"
relatedToTime="t11"
relType="DURING"/>

<moveLink id="mvL1" figure="se1"
ground="ep1" relType="traverses"/>
</annotation>

Annotation 17 above represents the information
about John’s departure from San Cristobal, which
occurred on the day marked as t11. This date
represents part of the mover’s start position <pl1,
tl1> of a 4-day duration or interval stretched to the
present utterance time, today or DCT (document
creation time).

Representation 18 now shows how Annotation
17 in XML can convert to UMR:

(18) Data (John left San Cristobal de Las
Casas four days ago.)

Predicate-structure Level
(l / leave-01
:ARG0 (s1p / person :name John)
:time (d / date-entity

:mod (t1 / temporal-interval
:duration (v / value

:quant 4
:unit day)

:start (d1 / date-entity
:year 2025
:month 3
:day 8)

:end (t2 / today)))
:source (s / start-position

:op1 (l2 / location
:name San Cristobal

de Las Casas)
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:op2 d1)
:aspect Incremental Accomplishment
:modstr FllAff)

Discourse-structure Level
(:temporal (b / before

:arg1 d :arg2 t2)
:temporal (c / contains

:arg1 d :arg2 l))

John’s departure implies a durative performance of
eventually reaching a goal. This action also devel-
ops incrementally. Hence, UMR marked the aspect
of leave-o1 as Incremental Accomplishment in
UMR Representation 18, while the ISO annotation
schemes fail to do so.

Temporal Interval vs Duration In Example 18,
the concept :time refers to the occurrence time of
the motion leave, whereas the concept :duration
is its modifier. In Example 19, on the other hand,
the duration four hours modifies John’s activity of
playing directly, meaning that it lasted four hours,
while the next day was the time of its occurrence.

(19) Data: (The next day, John biked to Agua Azul
and played in the waterfalls for 4 hours.)

Predicate-structure Level
(b \ bike

:ARG0 John
:time (d / day)
:duration (t / temporal-quantity

:quantity 4 unit:day))

4.3 Adopting GLAMR

Tu et al. (2024) propose a Generative Lexicon-
based AMR (GLAMR) to capture the dynamics
associated with change predicates. Adopting GL’s
subevent structure for verb meaning (Pustejovsky,
1995), a predicate meaning consists of a series of
subevent structures related to various transitions
triggered by motions or transactions, such as trans-
fer of possessions as in GL-VerbNet (Brown et al.,
2019). This structure provides relevant spatio-
temporal information on sub-event structures re-
lated to various transitions. It also captures the
aspectual notions of incremental accomplishment
by adding the event structure directly under the
topic predicate node, as in Example 20.

(20) t / target (John left San Cristobal
de Las Casas four days ago.)

Predicate-structure level
(l/ leave-01

:ARG0 (j / john)
:event-structure (s /subevents

:E0 (d / do
:action l)

:E1 (h / has_position
:theme j

:initial_loc (s1 / San Cristobal)
:initial_time d1)

:E2 (a / and
:op1 (m / motion

:moving-object j
:trajectory p)

:op2 (h1 / has_position)
:polarity -
:theme j
:location s2
:time d2))

:time (d / date-entity
:mod (t1 / temporal-interval
:duration (q1 / temp-quantity

:quantity 4
:unit (d3 / day))

:start (d1 / date-entity)
:end (t3 / today)))

:event-path (p / positions
:trigger m
:moving-object j
:start (p1 / position
:location s1
:time d1
:op1 (q2 / spatial-quantity

:unit meter
:quantity 0))

:next (p2 / position
:location s2
:time d1
:op1 (q3 / spatial-quantity))

:end (p3 / position))
:modstr FllAff)

Discourse-structure level
:temporal (b / before

:arg1 d1 :arg2 t3)
:spatial (g / greaterThan

:arg1 q3 :arg2 q2))

The event-structure and the event-path share values,
but from different perspectives. The sub-event E2
triggers the event-path as a trajectory of a moving
object j. John’s position changed as he moved: he
was no longer in San Cristobal’s initial location s1
but moved to the next location s2, while all these
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sub-events occurred on the same day.
At the discourse or link structure level, two re-

lations are represented: temporal and spatial. The
temporal relation states that the day d1 of John’s
departure from San Cristobal preceded the DCT
t3, today, while the duration says there was a
four-day interval between the departure day and
the DCT. The spatial relation then states that the
event-path length has lengthened from q2 to q3
while the mover moved from the start location s1
to the next location s2 or s1+1.

4.4 Applying Dynamic Interval Temporal
Logic

DITL2 formalizes the dynamic aspectual notion of
incremental accomplishment in UMR as a program
in DITL. Pustejovsky and Moszkowicz (2011)
(page 16) formulates the notion of a directed mo-
tion leaving a trail as a program, represented with
minor modifications in DITL, as in:

(21) Motion Leaving a Trail:
movetr(x) =df pos(x) := y, b := y,
p := (b); (y := z, y ̸= z, p := (p, z))+

This program states that the trail path p stretches
as the beginning point b of the mover x by the
Kleene iteration + (more than one occurrence), as
the mover x moves on. Then, the motion-triggered
dynamic path p will be a sequence of x’s positions,
incremented iteratively as time progresses. Here,
the notion of position pos(x), defined as a complex
function from time to loc(x), which is the location
of a moving object x, replaces the notion of loc(x).

4.5 Dynamic Space as Minimal Embedding
Ground

The spaces in which dynamic paths stretch out
are also constrained by their embedding ground.
Climbing over a hill creates a path tangential to
the surface shape of the hill. In contrast, flying
over a hill may create a path almost tangential but
detached from it.

(22) Minimal Embedding Grounds
a. John climbed over the hill.
b. The helicopter flew over the hill.
c. Joh swam around the lake.
d. John walked around the lake.

2Mani and Pustejovsky (2012) has a fuller version of intro-
ducing DITL.

Swimming around a lake means it takes in the
water, whereas running around the lake means a
circular activity outside the lake. Despite the same
use of spatial relators like over and around, each
action or activity is characterized by a different
embedding ground. Hence, the fine-grained char-
acterization of motions or their paths should be
specified with the type of embedding ground in
both ISO semantic annotations and UMR.

5 Concluding Remarks

There are two commonalities between ISO SemAF
standards and UMR. First, both ISO-TimeML and
ISO-Space emphasize the role of events and mo-
tions. Such a focus fits well into the structure of
AMR and UMR, both of which stress the predica-
tive core of propositional content.

Second, the dual annotation structure of ISO
semantic annotation frameworks such as ISO-
TimeML and ISO-Space conforms perfectly to the
dual level of UMR, sentence (predicate structure)-
level and document (discourse)-level.

There are, however, some differences. First, ISO
SemAF uses a semantic role link, tagged SRLINK,
to assign participant semantic roles to events. By
following neo-Davidsonian semantics, AMR/UMR
treats them as relations between event instances and
their arguments or adjuncts. ISO’s semantic link
needs to be applied repeatedly to assign a series of
participant roles. AMR/UMR, in contrast, directly
copies a series of those roles associated with each
predicate from available linguistic resources such
as PropBank.

Secondly, the degree of granularity in AMR
/UMR differs from ISO SemAF in treating dialogue
acts, discourses, and quantification. Such differ-
ences can, however, be fixed with minor but time-
consuming modifications. AMR/UMR requires
additional structural modifications to represent dia-
logue and discourse structure in a richer and more
expressive fashion, one accommodating the needs
of dialogue and discourse understanding in NLP.
Developing such further extensions to UMR based
on the work carried out within the ISO working
group is an exciting challenge, and promises to
better integrate standards specifications within the
family of AMR representations.
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Limitations

The scope of this paper is restricted. It mainly com-
pares the representation of two ISO SemAF stan-
dards, ISO-TimeML and ISO-Space, with UMR.
Our future work should be extended to other ISO
standards on dialogues, discourses, quantification,
and quantitative information in general. It should
include studying details in annotating the tense, as-
pect, and modality of predicates, the specification
of which varies much from language to language.

We have intentionally avoided evaluating UMR.
We have accepted the review by Bos (2016) for
its semantic adequacy and some articles, such as
Van Gysel et al. (2021), for learnability, scalability,
or applicability to computing applications. This
paper did not compare computational application or
scalability between ISO SemAF and AMR/UMR.
This is mainly because ISO SemAF has focused on
the abstract and theoretical formulation of semantic
annotation structures rather than on issues of direct
use in industrial applications.

We have not yet experimented with the
possibility of amalgamating UMR with DRT
or its subsequent extensions for semantic rep-
resentation. One interesting proposal is to
treat events like walk not as a functional type
e → t but a basic type e in DRSs. We then have
[instance(e, walk), instance(j, John), actor(e, j)]
in DRS as well as in UMR, instead of
[walk(e), John(x), actor(e, x)] in DRT. With
this proposal accepted, we think the UMR logical
format and the DRT representation format are
identical.

The focus of this paper on attempting to con-
vert XML-represented annotations to AMR/UMR
is motivated by the fact that most of the ISO Se-
mAF standards use XML as their representation
format (although the DialogueBank (Bunt et al.,
2016), a multilingual resource of dialogues anno-
tated according to ISO 24617-2:2012 also uses two
alternative representation formats and supports the
conversion among them.) This has made all ISO
SemAF standards interoperable with other ISO an-
notation standards on the other linguistic levels,
such as lexicology, morphology, syntax, and data
construction, all based on XML and the TEI Guide-
lines for using XML for text processing.

We understand UMR is at a developing stage
and may remain as such. Our ISO working group
on semantic annotation believes that some of our
standards cover semantic issues such as dialogues,

discourse theories, and quantification in much more
breadth and depth and hopes to contribute to the
editing of UMR guidelines in the future. The ISO
semantics group will learn much in the area of
computational applications through continued in-
teractions with the UMR group.
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Štěpánek, Jan, 1
Stone, Matthew, 30

Wein, Shira, 13

Yang, Mina, 13

Zeman, Daniel, 1

59


	Program
	Comparing Manual and Automatic UMRs for Czech and Latin
	The Role of PropBank Sense IDs in AMR-to-text Generation and Text-to-AMR Parsing
	Boosting a Semantic Parser Using Treebank Trees Automatically Annotated with Unscoped Logical Forms
	Using MRS for Semantic Representation in Task-Oriented Dialogue
	Evaluation Framework for Layered Meaning Representation
	Representing ISO-Annotated Dynamic Information in UMR

