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Abstract

This work presents the first investigation into
Spontaneous Isolated Sign Language Recog-
nition for Catalan Sign Language (LSC). Our
work is grounded on the derivation of a dataset
of signs and their glosses from a corpus of spon-
taneous dialogues and monologues. The recog-
nition model is based on a Multi-Scale Graph
Convolutional network fitted to our data. Re-
sults are promising since several signs are rec-
ognized with a high level of accuracy, and an
average accuracy of 71% on the top 5 predicted
classes from a total of 105 available. An in-
teractive interface with experimental results is
also presented. The data and software are made
available to the research community.

1 Introduction

There remains a barrier of accessibility to informa-
tion for communities of low-resource languages,
and this is particularly acute for Sign Language
(SL) users. The World Federation of the Deaf re-
ported that there are approximately 70 million deaf
people (Sign.mt Project, 2023) for many of whom
SL is their main communication means, many of
whom would benefit from being able to access pub-
lic information, education, and media through a
given SL.

Several natural language applications such as
speech recognition or machine translation are at
an advanced stage of development, thanks state
of the art machine learning methods. Sign Lan-
guage Technology research aims to develop usable
technology with the deaf community in to aid com-
munication and accessibility.

This type of research has been demonstrated by
recent EU projects such as EASIER (Fox et al.,
2025) and SignON (Vandeghinste et al., 2023).
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However, the provision of technology for sign lan-
guages remains a hard nut to crack due to several
factors including the limited number of available
corpora to train SL applications (De Sisto et al.,
2022), the small size of these resources, and the
multimodal characteristics of SLs.

SLs are the primary method of communica-
tion for deaf and hard-of-hearing (DHH) people.
They are produced in the visual-spatial modality
(rather than the oral-auditory modality of spoken
languages) using manual articulators (the hands),
and non-manual articulators such as facial expres-
sion, eye gaze and the physical space on and around
the signer. SLs have structure and complexity com-
parable to spoken languages with rules and gram-
mars ruling the way in which signs are formed and
sequenced. They also undergo similar phenomena
to spoken languages, including sociolinguistic vari-
ation (Lucas and Bayley, 2016), language acquisi-
tion patterns and psycholinguistic encoding (Baker
et al., 2016).

Sign language processing (Yin et al., 2021) aims
to uncover linguistic structures from a multimodal
stream of information. There is added complexity
in that signs may be produced simultaneously, i.e.
one on each hand. This fact means that SL tools
must also tackle simultaneity of input from multi-
ple information streams. The field of SL processing
has long been the concern of computer vision (CV)
research sometimes without involvement of NLP:
Tasks such as SL detection (Borg and Camilleri,
2019), identification (Monteiro et al., 2016) and
segmentation (Renz et al., 2021) have all been ad-
dressed within a CV paradigm.

In this paper we are concerned with the devel-
opment of technology for the recognition and clas-
sification of "spontaneous" signs extracted from
conversations or monologues. This is a challeng-
ing endeavour when compared to the recognition
of non-spontaneous isolated signs (Núñez-Marcos
et al., 2023). Here we address this challenge for
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Catalan Sign Language1 or LSC which has, to be
best of our knowledge, never been addressed before
in this context.

The two main contributions of this paper are as
follows2:

• The creation of the first dataset of isolated
signs derived from an available LSC corpus
of continuous signing.

• The first exploratory Machine Learning based
computer vision experiments on the LSC Cor-
pus showing the promises and challenges of
the task.

The rest of the paper is organized as follows: In
the next Section we describe work related to Sign
Language recognition with an emphasis on the ap-
proaches on which this work is based. Then, in
Section 3 we briefly describe Catalan Sign Lan-
guage and the dataset used in our experiments. In
Section 4 we describe the methodology, including
aspects related to the data processing and a descrip-
tion of our interface. This interface allows a user
to explore the extracted data by searching by sign
name (i.e., gloss). Then, in Section 5 we report
experimental results and analysis. In Section 6 we
discuss limitations and ethical considerations of
our approach, finally closing the paper in Section 7
with a conclusion.

2 Related Work

Sign Language recognition (SLR) has made
marked progress in recent years (Rastgoo et al.,
2021; Núñez-Marcos et al., 2023). Continuous
work on creating and collecting new datasets, in-
cluding both isolated signs and continuous sign
language, has greatly contributed to this advance-
ment (Albanie et al., 2021; Duarte et al., 2021;
Forster et al., 2014). These datasets provide es-
sential resources for training SLR systems, and
improving their robustness and accuracy. To pro-
cess and analyse these signs effectively, different
deep learning models are applied such as trans-
formers (Camgöz et al., 2020; Liu et al., 2023) or
LSTMs (Buttar et al., 2023). One important contri-
bution introduces the Word-Level American Sign
1Llengua de signes catalana.
2The data and software produced in this research can be
found in Github (https://github.com/LaSTUS-TALN-UPF/
Spontaneous-LSC-Recognition) and soon to be incorpo-
rated into the main LSC Corpus (https://lsc.iec.cat/en/
1214/).

Language (WLASL) dataset (Li et al., 2020). This
dataset is comprised of over 21,000 video samples
of 2,000 American Sign Language (ASL) signs per-
formed by more than 100 signers, making it one of
the largest publicly available resources for word-
level ASL recognition. The study evaluates various
deep learning methods, including holistic visual
appearance-based models (Rasiwasia and Vascon-
celos, 2012) and 2D human pose-based methods.
Among the evaluated models, the Inflated 3D Con-
vNet (I3D) achieves the highest performance. In
the WLASL dataset with 300 classes, it reaches
a top-1 accuracy of 56.14% and a top-5 accuracy
of 79.94%. When scaled to 2,000 classes the per-
formance decreases, obtaining a top-1 accuracy of
32.48% and a top-5 accuracy of 57.31%. Simi-
larly, ASL Citizen (Desai et al., 2023b) is a large-
scale dataset consisting of 83,399 videos covering
2,731 isolated signs performed by 52 signers. How-
ever, a key distinction is that ASL Citizen is built
through a community-based crowd-sourcing ap-
proach (Bragg et al., 2022), allowing for a more di-
verse range of signing styles, environmental condi-
tions, and recording setups. Our work is closely re-
lated to research on Spanish Sign Language (LSE)
recognition (Vázquez-Enríquez et al., 2024). This
work created a dataset – SWL-LSE – consisting
of 8,000 instances of 300 isolated signs related
to health, elicited from 124 participants through
an online application. The signs were annotated
using key points extracted with MediaPipe Holis-
tic (Lugaresi et al., 2019). SWL-LSE specifically
targets LSE and a health-related vocabulary, pro-
viding a domain-specific resource for improving
accessibility in medical contexts. Additionally, this
work has improved upon previous models by utiliz-
ing the Multi-Scale Graph Convolutional Network
(MSG3D) instead of I3D, demonstrating enhanced
performance in recognizing sign language glosses.
It achieves a maximum accuracy of 92.83% with-
out pre-training, which improved to 94.50% with
ASL Citizen pre-training. Building upon these
works, our research focuses on extracting gloss
annotated signs from spontaneous LSC and clas-
sifying them using MSG3D. Using the strengths
of existing datasets and methodologies, we aim to
enhance the recognition of spontaneous LSC signs.

3 Catalan Sign Language

According to Romano (2016), Catalan Sign Lan-
guage is used by approximately 30,000 people.
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LSC is an official language recognized by the Cata-
lan government with a first grammar published
relatively early (Quer et al., 2005) and recently
extended in Quer et al. (2020). LSC is legally3

recognized which enables its use as a means of
communication, learning, teaching and informa-
tion access.

With regards to its origins, it is likely in the Fran-
cosign family (Quer, 2012; Hammarström et al.,
2024), meaning that it shares some features with
ASL and many European SLs. Like other SLs, LSC
fulfils all possible communicative functions and,
like any living language, has characteristics that dis-
tinguish it. LSC has evolved since its beginnings
and continues to evolve through its interaction with
other signed and spoken languages.

3.1 Annotation
There are various notation systems for SLs, rang-
ing from phonemic transcription methods to a more
abstract semi-phonemic alphabets to capture signs.
Examples include SignWriting image-like repre-
sentation4, HamNoSys (Hanke, 2004) - a univer-
sal system based on the linear annotation of signs
based on hand shape, hand location and movement -
or the Stokoe notation (Stokoe et al., 1965) for ASL
- composed of information on location, hand-shape,
movement, and orientation. However, these writing
systems are not used in a standardised way across
datasets and studies, nor are they widely known
by signers themselves. SL writing systems tend to
be cumbersome to use and complex. In addition,
signers tend to use writing systems based on a spo-
ken language when it is necessary to communicate
through text (Jantunen et al., 2021).

Glosses, a lexeme-based representation of a sign,
are a commonly used system to transcribe SL into
the ambient hearing society language where the SL
is used - such as English in the United States, where
ASL is mainly used or Spanish for LSE. There are
many well-established issues with glossing, such
as its inability to capture the full representation
of a sign (e.g. movement in space), or a suitably
rich semantic representation (Núñez-Marcos et al.,
2023). Moreover, in order to gloss a stream of
signs, a standard well-established gloss lexicon or
dictionary is needed, which is, for the time being,
3See LLEI 17/2010, del 3 de juny, de la llengua de signes cata-
lana: https://portaljuridic.gencat.cat/eli/es-ct/
l/2010/06/03/17
4https://www.signwriting.org/archive/docs9/
sw0821_SignWriting_Basics_Instruction_Manual_
Sutton.pdf

not available for most SLs. However, the dataset
we rely on provides rich gloss annotations that we
use for sign classification. The data is annotated
following the ELAN file specification (Max Planck
Institute for Psycholinguistics, 2024; Wittenburg
et al., 2006).

3.2 Corpus
The Catalan Sign Language (LSC) Corpus (Institut
d’ Estudis Catalans, 2025) project was initiated in
2012 with the goal of creating a comprehensive ref-
erence resource. The project aimed to collect video
recordings from a number of elicitation tasks as
well as free conversation. They aim to capture the
linguistic diversity of LSC, considering variation
based on the age and geographical background of
the signers.

Data in this corpus is stored and presented in the
format found in signbanks (Cassidy et al., 2018).
One of the key strengths of this dataset is that
the videos have been manually annotated with
glosses using an ELAN application (Wittenburg
et al., 2006). These annotations provide the lexical
diversity and linguistic richness of LSC, making
the corpus an essential resource for research and
sign language processing.

4 Methodology

4.1 Sign Extraction
To obtain isolated signs, each video was processed
using its corresponding annotations in ELAN soft-
ware (Wittenburg et al., 2006). This allows for
precise marking of the each sign’s start and end
points. Through this method, individual signs were
extracted and subsequently analysed. Since the
representation of a gloss can vary depending on
factors such as sentence structure, context, or dis-
course (De Sisto et al., 2022), each extracted in-
stance requires careful examination to ensure accu-
rate classification (see Figure 1).

Figure 1: The ELAN application,with each gloss anno-
tated with the precise time.

Unlike the previously mentioned datasets, where
signers face the camera directly and produce each
gloss in isolation, this dataset originates from con-
tinuous conversations. As a result, the camera
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angles are not always frontal, and sign produc-
tion may be influenced by preceding or subsequent
signs within the discourse. This introduces addi-
tional complexity, as the natural flow of conversa-
tion can affect the articulation and visual features of
each sign, making their extraction and classification
more challenging compared to datasets containing
strictly isolated signs.

A total of 45,587 videos corresponding to 6,527
different glosses were collected. This large number
of videos is due to the fact that glosses used to
identify the signs are distinguished not only by their
base form (e.g. lemma) but also by their variations
in conjugation, phonological specification, among
other factors.

As shown in Figure 2, the same gloss can appear
with different specifications, such as hand position
or the context in which it is used. By grouping
all the variations of the same gloss, 1,885 main
classes can be defined. In previous SL translation
studies, a similar grouping is performed during pre-
processing. Gloss variants only tend to be retained
for different senses (Östling et al., 2017; McGill
et al., 2024).

To analyze the variation in gloss representations,
it was necessary to examine how frequently differ-
ent forms of the same gloss appear in the dataset.
The initial results indicate that many glosses ap-
pear with only a single variation. However, this
is largely due to the fact that some glosses inher-
ently have only one possible representation. To
obtain a more realistic measure for this analysis,
only glosses with more than 50 video samples were
considered.

As shown in Figure 3, most glosses exhibit be-
tween three and 15 variations, with each variation
typically represented by six to eight video samples.
However, certain glosses display a much higher de-
gree of variability. For instance, the gloss VEURE5

appears in 74 different forms, while DONAR6 has
49 variations. These cases suggest that some signs,
particularly those frequently used in continuous
signing, are more susceptible to variation. This
could be influenced by factors such as coarticula-
tion effects, signer-specific differences, or contex-
tual adaptations within spontaneous communica-
tion.

The number of videos per gloss is not uniform,
as some signs appear more frequently in conversa-

5‘To see.’
6‘To give.’

Word 
Conjugation

Specifications Hand 
position

AGAFAR

1AGAFAR2

3AGAFAR1 AGAFAR-2m

AGAFAR-rep

AGAFAR-punt

AGAFAR(Q)

AGAFAR(B)

AGAFAR(5)

Figure 2: Variations of the sign agafar (i.e. to take): Sub-
ject/Object variation (e.g., grammatical person), Speci-
fications (e.g. repetition), and hand configuration.

tions due to their recurrent use in the corpus (e.g.
pronouns). Most glosses have between one and
three variations, which is an insufficient amount to
consider the sign well-defined or to provide enough
data for a model to be properly learned. Due to this
limitation, only glosses with more than 50 video in-
stances were selected for further recognition tasks.
This threshold was established based on the number
of videos used in the previous studies. In Figure 4,
it can be observed that the number of glosses with
a large number of videos has a skewed distribution.

4.2 Sign Processing

Once the signs (and glosses) are extracted, pose
estimation and keypoint detection are applied to
analyse their movement and structure. This pro-
cess is performed using MediaPipe (Lugaresi et al.,
2019), which detects key body landmarks, includ-
ing hand positions and body posture, from video
data. Depending on project requirements, differ-
ent keypoint sets can be extracted, including hands,
body, and facial features.

These keypoints are then processed and trans-
formed into a format suitable for model training
and analysis. Additionally, derived features such
as joint angles, bones, and movement patterns are
computed, creating a structured dataset for tasks
like gesture recognition and motion analysis. The
visual example of a representation of that dataset is
shown in Figure 5.

4.3 Interface

To facilitate the visualization of LSC Corpus Sign
videos (the complete dialogues and monologues
can be accessed through the LSC Corpus itself),
an interface has been developed (see Figure 6).
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Figure 4: Number of videos per gloss

Mediapipe

Figure 5: A pose estimation from MediaPipe from a
video frame.

This interface allows users to view the segmented
glosses, which are organized by gloss lemma (e.g.
AGAFAR7). Additionally, for each video, the cor-
responding pose estimation extracted using Medi-
aPipe is available. This tool provides a structured
and interactive way to explore the dataset, ensur-
ing accessibility to both the raw video data and the
extracted motion features. This code is available
on GitHub 8. In addition, these tools will be in-

7‘To take, to catch, to grasp.’
8https://github.com/LaSTUS-TALN-UPF/
Spontaneous-LSC-Recognition

tegrated into the main LSC Corpus 9 space in the
near future.

5 Experiments and Results

A model was trained using the code provided in
the SWL-LSE study10 (Vázquez-Enríquez et al.,
2024), adapting it to the specific characteristics of
this dataset. In this study, the MSG3D (Multi-Scale
Graph Convolutional 3D) (Liu et al., 2020) model
is used. This model operates on skeletal keypoints,
making it particularly suited to ISLR. It utilizes
Graph Convolution Networks (GCNs) to model
spatial and temporal relationships between joints,
capturing hand movements and body dynamics.

Since the data was extracted from continuous
conversations, instances of the same sign can ap-
pear in varied forms. Some may be conjugated
differently depending on the phrase and referent
structure, while others may show variations in hand
positioning between different signers.

To address these challenges, the dataset was orga-
nized into 105 classes. The objective is to train the
model to recognize glosses regardless of these vari-
ations (i.e. "AGAFAR" instead of "3AGAFAR1",
"AGAFAR-2n", etc. as seen in Figure 2), focus-
ing on identifying the intended gloss lemma rather
than its specific articulation in a given context. Hy-
pothesizing that variations could be identified when
context is made available to the model, we leave
the identification of variations to future work.

The dataset consists of 15,000 video samples
classified into 105 different classes, divided into
training, validation, and test sets following a 70-
15-15% split. Initially, the model was trained

9https://lsc.iec.cat/en/1214/
10https://github.com/mvazquezgts/SWL-LSE
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Figure 6: Screenshot of the interface, of the ‘AGAFAR’ (i.e., to take or grasp) page.

from scratch using only this dataset (From Scratch
configuration). However, to assess whether pre-
training could improve performance, additional ex-
periments were conducted using pre-trained mod-
els on datasets such as SWL-LSE and ASL Citizen
(Desai et al., 2023a) (Pre-trained configuration).

5.1 Experimental Configurations
Various hyperparameter configurations were ex-
plored to optimize the training process. The final
selection was based on empirical results and best
practices in action recognition.

• Optimizer: Stochastic Gradient Descent
(SGD) with Nesterov momentum.

• Learning Rate & Scheduler: The initial learn-
ing rate was set to 0.01, with a ReduceLROn-
Plateau scheduler that adaptively reduces the
learning rate by a factor of 0.5 when no im-
provement is observed for 10 epochs.

• Batch Size: A batch size of 16 was used for
training, validation, and testing, which corre-
sponds to the maximum capacity of the avail-
able GPU memory.

• Number of Epochs & Early Stopping: The
model was trained for a maximum of 250
epochs, with early stopping applied if no im-
provement was observed for 30 consecutive
epochs, thereby preventing overfitting and re-
ducing computational costs.

5.2 Results and Analysis
The headline results of these experiments, compar-
ing training form scratch versus pre-training on ex-
ternal datasets, are shown in Table 1. These results
indicate that pre-training on the SWL-LSE dataset

improves the model’s ability to recognize signs.
The Top-1 accuracy increased by 6.61%, while the
Top-5 accuracy improved by 4.62%. This suggests
that pre-training allows the model to generalize
better, leveraging learned representations from a
similar sign language dataset. To better understand
where the model performs well and where it strug-
gles, the accuracy per class was calculated. This
analysis provides the strengths and weaknesses of
the model’s recognition capability. As shown in the
Figure 7 the top 10 best-recognized signs achieved
good accuracy: Between 72.5% and 90%, indicat-
ing that these signs are well-distinguished by the
model. On the other hand, there are signs that show
substantially lower accuracy with some of them
featuring less than 10% accuracy. To further ana-
lyze the model’s limitations, the lowest performing
results were examined. The low accuracy of ’COM’
(i.e. as), for example, can be attributed to its depen-
dency on sentence context, as its articulation varies
greatly based on preceding and following signs,
making the sign articulation different depending on
the context. In the case of ’SI’ (i.e., affirmation),
although the facial expressions clearly indicates
affirmation, the variation in hand movement makes
it difficult for the model to recognize it. This is due
to the model primarily relying on hand motion.

6 Limitations and Ethics

Data limitation is evident for the experiments re-
ported in this paper. The fact that conversations
and monologues were elicited by prompting the
signers on specific topics constrains the lexical di-
versity of the discourses, and therefore limiting the
scope of the sign recognition system. Moreover,
task type may also limit the variety of syntactic
structures in the utterances and the signs within
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Configuration Top-1 Accuracy Top-5 Accuracy
Scratch 42.63% 67.65%

Pre-trained (SWL) 49.24% 72.27%

Table 1: Results of the MSG3D model trained from sratch or from a pre-trained.
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Figure 7: Best and Worst top-10 accuracies

them. Note, however, that several datasets for the
study of SL linguistics have adopted similar data
gathering methodologies (Shterionov et al., 2024).
Only looking at the spans of the produced sign is
a key limitation of the approach, since it does not
allow the proposed method to use left and right
context for a better-informed prediction. We will
address this in future work by considering frames
to the left and right of the actual sign. In relation
to ethics, SL data in videos carry personal infor-
mation which can lead to the identification of the
signer, therefore specific care should be taken when
manipulating the data. The corpus we have used
is licenced under Creative Commons (CC BY 4.0)
which allows the present work to be shared and
adapted. It is worth noting that the dataset features
native signers following recommendations for sign
language research (Leeson et al., 2024).

7 Conclusion and Future Work

Providing language technology for sign languages
contributes to a more inclusive and accessible soci-
ety in compliance with the United Nations Human
Rights Council.

In this paper we have presented the creation
of a new dataset of spontaneous Signs in Catalan
Sign Language, derived from a Corpus of sponta-
neous dialogues and monologues. We have carried
out the first experiments on sign language recogni-
tion which achieved positive results when consid-
ering the challenging (i.e., spontaneous extracted

from continuous signing) characteristics of the data
when compared to other elicited datasets (i.e., non-
spontaneous generated in isolation). We have tested
two contemporary approaches to the task showing
that by pre-training the models with diverse sign
language data has a positive impact in recognition
performance.

There are however many areas to explore in this
field: (i) we plan to address the problem of sign
segmentation from conversations, (ii) perform con-
tinuous sign language recognition over conversa-
tions, and (iii) develop translation technology to
translate the output into Catalan language.
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