Analogy-Angle 2025

The 2nd Workshop on Analogical Abstraction in Cognition,
Perception, and Language (Analogy-Angle II)

Proceedings of the Workshop

August 1, 2025



©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S

Suite 400 - 134

Kerrville, TX 78028

USA

Tel: +1-855-225-1962

acl@aclweb.org

ISBN 979-8-89176-274-9



Preface by the Workshop Chairs

Welcome to the 2nd edition of the Workshop on Analogical Abstraction in Cognition, Perception, and
Language (Analogy-Angle II)!

Analogical abstraction is a fundamental human cognitive skill (Penn et al. 2008) (Penn et al. 2008; Ho-
fstadter 2001) defined as the ability to perceive and utilize the similarities between concepts, situations,
or events based on (systems of) relations rather than surface similarities (Holyoak 2012; Gentner and
Smith 2012). Analogy enables creative inferences, explanations, and generalization of knowledge and
has been used for scientific inventions (Dunbar 2012), solving problems (Gick and Holyoak 1980), and
policy-making Houghton 1998. As such, it has been the subject of cognitive theories and studies about
humans for standard processes, such as retrieving memories (Wharton et al. 1994) and problem-solving
(Gick and Holyoak 1980).

Analogical tasks have gained considerable popularity in natural language processing (NLP) and artificial
intelligence (AI), where they are often framed as tests of a model’s intelligence in comparison to human
performance. These tasks typically involve so-called word-based proportional analogies of the form (A
: B :: C: D).(Mikolov et al. 2013a; https://arxiv.org/pdf/1301.3781; Gladkova et al. 2016; Ushio et al.
2021) lend themselves well to large language models (LLMs) (Webb et al. 2023). However, controlling
for association and memorization (Stevenson et al. 2023; Lewis and Mitchell 2024) or shifting toward
more complex settings like narratives reveals limitations in scope, generalizability, and alignment with
cognitive theories (Nagarajah et al. 2022; Wijesiriwardene et al. 2023; Sourati et al. 2024).

Inspired by the richness of analogical abstraction and the wide interest in this topic from computatio-
nal linguistics, artificial intelligence, and cognitive psychology, ANALOGY-ANGLE II connects these
communities and facilitates cross-disciplinary activities. ANALOGY-ANGLE II welcomes novel contri-
butions in short, long, and review formats, as well as relevant papers accepted at top-tier venues over the
past year (so-called dissemination papers).

Topics of interest belong to four major categories:

1. Cognitive modeling, with the following sub-topics: analogy and abstraction; relation to concep-
tual metaphor, figurative language, sarcasm, and irony; cognitive frameworks of analogy; and cognitive
psychological studies on analogy involving human participants.

2. Algorithms and methods, featuring the sub-topics: studies of the analogical abilities of LL.Ms
and multimodal models; algorithmic approaches to analogy; augmentation and verification of LLMs and
multimodal models through analogy; neuro-symbolic Al architectures for analogical abstraction; and
extracting analogies from knowledge bases.

3. Tasks and benchmarks, with sub-topics: matching narratives and situational descriptions through
narratives; novel tasks and benchmarks for evaluating analogies in text and vision; analogy in longer
formats, e.g., narratives and videos; analogy and visual abstraction tasks; and analogical discovery in
computational creativity.

4. Applications , such as: personalization, explanation, and collaboration; novel applications of ana-
logical abstraction; studies of the impact of analogy in specific applications and domains, including
education, innovation, and law.

ANALOGY-ANGLE II aims to form a comprehensive picture of the current landscape of analogical ab-
straction, and point to standing challenges, evaluation methodologies, and emerging techniques of in-
terest. To this end, the workshop features two prominent speakers with complementary perspectives,
and paper sessions that cover a wide range of the envisioned topics. The multidisciplinary nature of
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ANALOGY-ANGLE II is supported by the broad skills of the organization team and the program commit-
tee, as well as the diversity principle guiding the list of topics and the invited keynotes. After a successful
first workshop at IJICAI 2024, we see ACL as an ideal venue for our second iteration. ACL is a primary
venue for cutting-edge research on analogy and abstraction, facilitating discussions with leaders at the
intersection of natural language processing, cognitive linguistics, and perception.

We received 14 novel submissions. 10 of them were submitted via direct submission, and the remaining
4 through the ARR commitment. Based on three reviews per submission, we accepted 9 novel papers,
resulting in an acceptance rate of 64%. Additionally, 3 non-archival, cross-submissions were accepted
based on two reviews per paper, assessing their relevance.

We are deeply grateful to the members of the Program Committee for their dedicated efforts. Our sincere
thanks also go to our invited speakers, Melanie Mitchell and Ekaterina Shutova, for their valuable and
inspiring contributions to this year’s program. We thank Melanie Mitchell for her talk on abstraction in
humans and Al systems and Ekaterina Shutova for her talk on metaphors.

Finally, we gratefully acknowledge the support of our funding bodies, in particular the NWO AiNed
project “Human-Centric Al Agents with Common Sense”, which funded Filip Ilievski, and the Eu-
ropean Research Council’s ABSTRACTION project (Grant agreement: ERC-2021-STG-101039777),
which funded Marianna Bolognesi and Giulia Rambelli.

The Analogy-angle II 2025 Organizing Committee
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Tore-Klose: Record Scorer, Goal Hunter, Machine?
Human Association Norms for German Personal Name Compounds

Annerose Eichel!, Tana Deeg', André Blessing', Milena Belosevic?,
Sabine Arndt-Lappe®, Sabine Schulte im Walde'
UInstitute for Natural Language Processing, University of Stuttgart
Faculty of Linguistics and Literary Studies, Department Linguistics, University of Bielefeld
3English Linguistics and Trier Center for Language and Communication, Trier University
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Abstract

We present a collection of human association
norms to German personal name compounds
(PNCs) such as Tore-Klose (‘goal-Klose’) and
corresponding full names (Miroslav Klose),
thus providing a novel testbed for PNC evalu-
ation, i.e., analogical vs. contrastive positive
vs. negative perception effects. The associa-
tions are obtained in an online experiment with
German native speakers, analyzed regarding
our novel intertwined PNC—person association
setup, and accompanied by an LLM synthetic
generation approach for augmentation.

1 Introduction

Personal name compounds (PNCs) such as Tore-
Klose (‘goal-Klose’) and Bierzelt-Soder (‘beer-
tent-Soder’), i.e., nominal compounds representing
modifications of personal names, are prevalent in
social media, news, and political discourse. Recent
work suggests that PNCs represent a rather frequent
phenomenon across languages that establishes an
evaluative function with regard to the reference
person (Belosevic and Arndt-Lappe, 2021; Belo-
sevic, 2022). More specifically, PNCs are gener-
ally perceived either as more positively or as more
negatively in comparison to the perception of the
corresponding name holder. Most recently, this
evaluative nature of name compounds has been
addressed and confirmed by regression analyses
and large language models, identifying name and
compound properties based on contextual data and
valence norms (Eichel et al., 2024).

Our work approaches PNC evaluation from a
novel perspective: based on the assumption that
human associations provide a window into lexical-
semantic representations (Kiss et al., 1973; Nelson
et al., 2004; Schulte im Walde and Melinger, 2008;
Schulte im Walde et al., 2008; de Deyne et al., 2019,
i.a.), we propose to collect and utilize associations
to PNCs and corresponding full names in order to

1

identify and measure salient evaluative characteris-
tics which go beyond previously exploited knowl-
edge sources such as contextual and valence infor-
mation. L.e., we hypothesize that (i) the evaluative
meanings of PNCs are reflected in free, sponta-
neous associations to the compounds, in analogy or
in contrast to associations to the person names, and
that (ii) the associations reveal reasons for using
the specific compound modifiers, such as individ-
ual persons’ characteristics or stances as well as
specific events. For example, our associations in-
clude elitdr (‘elitist’) and abgehoben (‘aloof’) to
Privatschul-Schwesig (‘private-school-Schwesig’);
griin (‘green’) and Privatfliige (‘private flights’)
to Bonusmeilen-Ozdemir (‘bonus-miles-Ozdemir’),
where the PNC Privatschul-Schwesig refers to the
Social Democratic Party politician Manuela Schwe-
sig who puts a political focus on child support and
family affairs but decided to send her own son
to a private rather than a public school; the PNC
Bonusmeilen-Ozdemir relates to the Green Party
politician Cem Ozdemir who was strongly criti-
cized for using business-accumulated bonus miles
for private travel.

The current paper presents our collection of as-
sociation norms for 195 German PNCs and their
corresponding full names, using PNCs from an ex-
isting target set and the domains politics, sports,
others (Belosevic and Arndt-Lappe, 2021; Eichel
et al., 2024) in an online experiment with German
native speakers. For further reference points to-
wards absolute and relative PNC evaluation, we
also ask the experiment participants to provide
(i) their familiarity with a given PNC or person
name, and (ii) their subjective positive vs. nega-
tive person judgments. Our contributions can be
summarized as follows:

* We collect and devise human free association
norms that provide a window to the mind of
a communicator for 195 German personal
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name compounds and their respective 66
names. The norms are publicly available from
https://github.com/AnneroseEichel/
pnc-association-norms.

* We present a series of analyses demonstrat-
ing that our intertwined PNC-name associ-
ation setup unmasks salient analogical vs.
contrastive assessments and thus expands re-
search perspectives on the evaluative nature
of PNCs beyond existing previous evidence.

* We outline LLM-based synthetic association
generation experiments to augment the novel
small-scale human norms.

2 Background and Related Work

Personal Name Compounds (PNCs) PNCs
such as Tore-Klose (’goal-Klose’) are nominal
compounds consisting of a modifier, typically an
appellative or onymic constituent such as Tore
(‘goals’), and a head constituent referring to a first,
last, or nickname (e.g., Klose) (Belosevic, 2022).
PNC construction follows regular patterns and
draws on contextual knowledge about the person
they refer to (Belosevic and Arndt-Lappe, 2021).
For instance, Tore-Klose refers to Miroslav Klose,
the former German soccer player who holds the
all-time top scorer title for Germany. This exam-
ple demonstrates how the compound modifier con-
tributes information about the person or events as-
sociated with them. In this case, goal implies a
positive assessment, referring to remarkable ath-
letic performance and extraordinary goaling.

Association Norms Under the assumption that
human free associations (i.e., the first word(s) that
come(s) to mind, such as white, cold, winter as as-
sociations to snow) provide a window into lexical-
semantic representations and meaning components
of the stimuli, association norms have been col-
lected across research disciplines and languages
for many decades. Prominent examples of En-
glish association norms are the Edinburgh Asso-
ciation Thesaurus as the first collection on a larger
scale (Kiss et al., 1973), the long-term collection
at the University of South Florida (Nelson et al.,
2004), and the currently largest Small World of
Words (SWOW) norms (de Deyne et al., 2019).
Earlier collections for German include the first
collection by Russell and Meseck (1959), word-
class-specific verb and noun norms collected by

Schulte im Walde et al. (2008), and previous com-
pound and constituent norms collected by Schulte
im Walde and Borgwaldt (2015) — differently to the
current collection they focus on general-language
noun compounds and their constituents, and uti-
lize the associations to assess implicit features of
(non-)compositionality.

3 Data Collection and Post-Processing

Target Stimuli Selection We start out with 215
eventive PNCs and their corresponding 85 names
devised by Eichel et al. (2024). Through a pilot
study, we assess participant familiarity with the
real-world people behind the PNCs and collect
feedback regarding study setup and target presenta-
tion (see Appendix A for details on the pilot study).
Based on the collected responses, we exclude 20
PNCs and their corresponding 19 names from the
domain politics, because they were not known by a
clear majority of participants. We randomly assign
the remaining 195 PNC and 66 name stimuli to 5
PNC and 2 name experiment lists.

Study Setup Our study was carried out via Pro-
lific' and Google Forms. We screen study partici-
pants only regarding their specified native language,
which we require to be German. Participants are
provided written study guidelines and an example
with potential responses (see Appendix B for de-
tails on the guidelines and experiment interface).
In the actual experiment, each trial consisted of a
question regarding the participant’s familiarity with
a PNC and corresponding name, or only the name,
depending on the experimental list. If they knew
the PNC/name, participants were asked to provide
3-5 associate responses to the given stimulus in
form of a word or a phrase, and to indicate how
they perceive the public figure on a scale from 0
(positive) to 5 (negative). If they had questions,
participants were provided the option to contact the
authors of the paper. Participants could complete
the study flexibly within their own schedule and
no time constraints. Average time effort per list
was 263 minutes (PNC) and 26*! minutes (name).
Each participant could only submit one response
set for a stimulus.

Post-Processing and Data Each submitted re-
sponse provides us with a stimulus, an indica-
tion of familiarity regarding a given public fig-
ure, the associate responses in the given order, a

"https://www.prolific.com/
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score perception of the public figure as well as
demographic information of the participant, e.g.,
Miroslav Klose; known; [Fuf3ballspieler, National-
mannschaft, Salto J2: 2 30-40 years.

To allow for meaningful automatic processing of
PNC and name associations, we perform manual
post-processing of participant responses such as
correcting typos, standardizing spelling variants,
delimiters, and abbreviations, and eliminating re-
sponses where participants indicate that they do
not know a PNC and/or name, as well as responses
that are clearly comments such as “no more associ-
ations”. For this, we hire a German native speaker
who has a background in computational linguistics
and is provided detailed instructions and written
guidelines regarding desired formatting and rele-
vant corrections (cf. Appendix C for details).

For PNCs, we elicit a total of 980 associate
words and 438 associate phrases® provided as first
associates, and 3,526 words and 1,353 phrases
when taking into account all associations. The
average number of first and all associates per PNC
is 23.9 and 7.4, respectively. For full names, a total
of 328 words and 127 phrases is collected as first
associates, as well as 1,229 words and 468 phrases
considering all associates. The average number of
first and all associates per full name is 25.7 and 6.9,
respectively.

Participants 90 German native speakers partic-
ipated in the experiment. 67 and 30 participants
provided valid responses for an average of 54+3
and 49*'! stimuli in the PNC and name parts of
the study, respectively. 93% and 7% of partici-
pants provided valid responses for only one or both
experiment parts, respectively.

4 Analysis of PNC and Name Associations

Distributions Table 1 presents frequency distri-
butions, i.e., how often specific associations have
been provided across target stimuli. For this, we
distinguish between first-only as well as full asso-
ciation lists across PNCs and full names. While
PNCs receive slightly more associates and single
word responses overall (cf. §3), associates tend
to differ from each other with maximum associate
frequencies of 8 and 10 among first-only and all as-
sociations. In contrast, corresponding names seem
to evoke more similar responses with maximum

2EN: “soccer player, national team, somersault’
3A phrase denotes all responses consisting of 1+ words.

FREQ. PNC | NAME

™ all | 1% all
1 0.865 0.878 | 0.721 0.800
2 0.091 0.077 | 0.127 0.099
3 0.031 0.020 | 0.068 0.040
4 0.001 0.013 0.042 0.012
5+ 0.005 0.013 0.042 0.042

Table 1: Associate frequency distribution across target
stimuli (proportions). Maximum frequency of 1 and
all associates: 8 and 10 (PNC); and 9 and 12 (name).

PoS PNC | NAME
a1t all
NOUN 035 036 | 047 0.38
NAME 0.15 0.13 | 0.19 0.18
VERB 0.07 0.09 | 0.02 0.06
ADJ 0.09 0.09 | 0.14 0.10
ADV 0.11 0.14 | 0.09 0.16
OTHERS 0.23 0.19 | 0.08 0.12

Table 2: PoS tag distributions (proportions).

associate frequencies of 9 and 12 among first-only
and all associations.

Targets with higher frequency responses among
first associates usually evoke a strongly salient asso-
ciation connected to the PNC modifier or the person
in general, such as the PNC Knast-Hoenefs (’jail-
HoeneB) eliciting the response Steuerhinterziehung
(tax evasion, freq: 6), and a variety of single first
associates related to the modifier including Knacki
(jailbird’), Steuerbetriiger (‘tax fraudster’), weil er
fiir eine Steuerhinterziehung in den Knast musste
(‘because he had to go to jail for tax evasion’),
Steuern (‘taxes’), and more generally to his per-
son such as F'C Bayern (‘FC Bayern’) and ehema-
liger Fufballspieler (‘former soccer player’). In
the case of politicians, first associates often corre-
spond to political party membership, e.g., as first
associates to the full name Alexander Gauland we
find AfD (‘AfD’, freq: 8), Politiker (‘politician’,
freq: 3), and Rassismus (‘racism’, freq: 1), while
athletes are mainly connected to their sport or club,
as first associates to the PNC Vollgas-Vettel (‘pedal-
to-the-metal-Vettel”) show: Formel 1 (‘formula 1°,
freq: 7), Rennfahrer (‘racing driver’, freq: 2), and
single responses such as Autorennen (‘car racing’),
Weltmeister (‘world champion’), Ferrari (‘ferrari’).

Morpho-Syntactic Analysis We distinguish the
collected associations with regard to the major
PoS tags: nouns, verbs, adjectives, and adverbs.
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negative.

1+ PNCs can relate to one name, e.g., Tore-Klose (‘goal-Klose’), Pokal-Klose (‘trophy-Klose’), and

Salto-Klose (‘somersault-Klose’) all referring to Miroslav Klose and more positively perceived than the name itself.

= PNC
name

30

0-19 20-29 30-39 40-49 50-59 60-69 70+

age (years)

-
&

-
o

«

Figure 2: Average familiarity with target stimuli across
age ranges. No participants below and above the age of
20 and 70 took part in the name part of the experiment.

For this, we remove all punctuation and obtain —
possibly ambiguous— PoS tags for each word and
phrase associate using spaCy (Honnibal and Mon-
tani, 2017). Table 2 presents PoS distributions as
proportions. Across target stimuli and major PoS
tags, participants provided noun and proper name
associates in the clear majority of instances, fol-
lowed by adverbs and adjectives, and finally verbs.
We also report the proportion of the sum of all other
PoS tags such as pronouns with higher prevalence
in responses to PNC than full name targets.

Perception of real-world reference person For
further reference points towards PNC evaluation,
we ask experiment participants for their personal
subjective positive vs. negative judgments regard-
ing the target stimuli. Figure 1 shows collected
judgments for PNCs and their corresponding full
names on a scale from positive (0) to negative (5).
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Regarding person names (orange dots), we gener-
ally observe domain-specific differences between
politicians and athletes gathered more on the nega-
tive (left) vs. positive (right) part of the plot, respec-
tively. The PNC-related evaluations (green dots)
diverge in individual ways from the name-related
evaluations, e.g., one of the green dots for Barack
Obama below the orange name-related dot refers
to the more negatively perceived PNC Bomben-
Obama (‘bomb-Obama’); while one of the green
dots above the orange name-related dot refers to the
more positively perceived PNC Hoffnungs-Obama
(‘hope-Obama’).

Participant age and familiarity with targets
Since many real-world people behind the PNCs
and names are older than 30, we analyze option-
ally provided participant age indications to assess
which PNCs and names are familiar across ranges.
For this, we calculate the proportion of familiar-
ity for every target, normalize by the total number
of participants who provided responses, and show
average proportional familiarity in Figure 2.

We observe that PNCs are mostly known among
participants between 20 and 40, who also represent
the largest proportion of annotators overall. Among
participants aged above 40, PNCs are more likely
to be known than a given name. This could be
due to PNCs referring to well-known politicians
such as Angela Merkel being over-represented in
comparison to e.g., athletes such as Julian Brandt
who are often aged younger (here: 28 yrs) than
many politicians.




5 LLMs for Association Generation

To augment our small-scale human norms with
synthetic data, we outline and perform pilot exper-
iments for synthetic association generation using
LLMs.

Models and Experimental Setup To provide a
glance into possibilities and limitations of LLMs
for generating associations to PNCs and corre-
sponding names, we use the multilingual instruct
fine-tuned LLM Mistral (Mistral-7B-Instruct-ve.2)
(Jiang et al., 2023). Since we focus on Ger-
man compounds, we also explore an LLM
which is based on Llama-2 (Touvron et al.,
2023) and fine-tuned for German specifically
(leo-mistral-hessianai-7b-chat)* to alleviate US-
centric bias inherent to English data and improve
model capabilities regarding German. We per-
form baseline experiments in zero-shot and few-
shot prompting setups. When experimenting with
prompts, we start with input comparable to the in-
structions for humans® and reformulate prompts
e.g., through shortening or simplification. For fur-
ther details regarding the experimental setup and
prompts, we refer to Appendix D.

Results Our findings indicate that (i) re-using
instructions for humans does not yield desired out-
puts, while generation quality improves when re-
ducing original prompt length and syntactic com-
plexity; (ii) in the given settings and across prompts,
the inspected LL.Ms seem to harness event knowl-
edge similarly to humans, but vary wrt. prompt and
PNC (cf. Appendix D for details). Further exper-
iments using e.g., automatic prompt optimization
tools such as dspy® are warranted to explore LLMs
for automatic association generation in more depth.

6 Conclusion

The presented dataset of association norms for per-
sonal name compounds and corresponding full per-
son names provides a novel way of investigating
the evaluative nature of personal name compounds,
complementing previous text-driven approaches:
The intertwined PNC—name target setup enables
the direct comparison between perceptions of char-
acteristics or events involving specific persons, in

4https ://laion.ai/blog/leo-1m/

SNote that we neither expect nor believe that the tested
LLMs show any kind of human-like behavior, and we clearly
distance ourselves from any anthropomorphism.

https://github.com/stanfordnlp/dspy

relation to perceptions of the persons per se. In
this vein, associations and properties of associa-
tions will provide salient materials, and this novel
perspective might also be useful for further lexical-
semantic tasks with dependencies between target
sets, where representation and interpretation of one
set require those of the corresponding other set.

Limitations

While the presented association norms comprise a
nascent amount of information on the characteris-
tics and mental representation of the given target
stimuli and thus a valuable testbed for PNC eval-
uation, we acknowledge the following limitations
resulting from experiment design such as screening
participants only regarding German as a native lan-
guage. Since we provide available demographic in-
formation regarding participants, future work using
the collected norms is equipped to balance associa-
tions, e.g., regarding age, self-reported participant
gender, and ethnicity. This might however be con-
nected with a potentially significant loss of data.
Moreover, we did not require participants to re-
veal information regarding their political position
or party membership. Hence, the presented associa-
tions are not suitable for analyzing the relationship
between a PNC from the domain politics, the cor-
responding reference person, a provided response,
and the political position of a participant.

Our experiments on LLMs for generating syn-
thetic associations for comparison or augmentation
of human associations are intended to provide first
insights into potential possibilities and shortcom-
ings. To draw reliable conclusions, we acknowl-
edge that more in-depth experiments including a
thorough human evaluation are required, possibly
covering a larger range of models.

Ethics Section

In the context of the conducted experiment, we
collected free associations from human partici-
pants. For this, the participants were provided an
informed consent declaration with the name and
the contact of the principal investigators; the title,
purpose and procedure of the study; risks, benefits
and compensation for participating in the study;
confirmation of confidential anonymous data han-
dling; and confirmation that participation in the
study is voluntary. The informed consent declara-
tion was signed by the participants before taking
part in the study.


https://laion.ai/blog/leo-lm/
https://github.com/stanfordnlp/dspy

Participants were provided written guidelines in-
cluding an example trial. In case of questions, par-
ticipants had the option to contact the authors of the
paper. The experiment task was carried out online
in a remote setting using Prolific and Google Ta-
bles. Participants received compensation according
to the authors’ country minimum wage regulations
for their effort.
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(‘Rolex-Chebli’) and the corresponding name such
as Sawsan Chebli. In case of familiarity, partici-
pants provided 3 to 5 associate responses to a given
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rated their personal perception of the given public
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Participants were provided written guidelines
including an example question with potential re-
sponses. In case of questions, participants had the
option to contact the authors of the paper. The
study was carried out online in a remote setting
using Google Forms and Google Tables. We re-
cruited 13 German-speaking and 1 near-native Ger-
man speaking participant. The annotation task was
completed by 2 authors and 12 externally recruited
participants who have no connection to any of the
authors’ affiliations. External participants could
choose between donating their participation or re-
ceiving minimum wage compensation for their ef-
fort according to Germany’s minimum wage reg-
ulations. 7 and 4 participants donated and were
compensated for their participation, respectively.

B Details of Main Study Setup

We collect responses through an online setup us-
ing prolific and Google Forms. In Figure 3, the
introductory text to the experiment is shown. In
this case, the target stimuli are PNCs. We use a
comparable introduction for the experiment part
where responses are collected for name targets. As
illustrated in Figure 4, participants are shown an
example trial including an example PNC and sam-
ple responses. We use the exact same design for
the actual trials.

C Manual Post-Processing

The full list of post-processing guidelines includ-
ing the list of desired corrections is available
from: https://github.com/AnneroseEichel/
pnc-association-norms. In addition to the pro-
vided instructions, the authors and the annotator
agreed on the additional correction of word class-
specific capitalization, i.e., correcting capitaliza-
tion if nouns including proper nouns and keeping
all other word classes in lower-case.

The annotator is a native speaker of German with
a background in computational linguistics and no
connection to the presented work. The correction
task could be completed fully remote and within
13 days. The required time was 7 hrs. The annota-
tor received compensation according to Germany’s
regulations regarding minimum wage.

D LLMs for Association Generation

D.1 Experimental Setup

We obtain model implementations through
huggingface’ with standard parameter settings,
and perform inference using 8 Nvidia GeForce
RTX A6000 GPUs. For instruction fine-tuning
with Mistral, prompts need be surrounded by the
special tokens [INST] and [/INST]. In the case of
LeoLM, a prompt format can be set. For Mistral,
a message can be set to define a model role. We
set the message following instructions as used for
eliciting associations for humans and provide the
same example trial:

messages = [ ”role”: ”user”, ”content”: ”Hast du
schon einmal von dem Spitznamen ”Chaos-Johnson”
gehort? Wenn ja, schreibe bitte 3-5 kurze
Assozationen auf. Bitte antworte auf Deutsch.”,

”role”: ”content”:

”assistant”, ”politisches

Chaos, Partygate, Unordnung”]

When using LeoLLM, we prepend each prompt with
the recommended system prompt:

””»Dies 1ist eine Unterhaltung zwischen einem

intelligenten, hilfsbereitem KI-Assistenten und

einem Nutzer. Der Assistent gibt ausfihrliche,

999999

hilfreiche und ehrliche Antworten.

D.2 Prompting and Results

For brevity, we focus on the following example out-
put generated using LeoLM. When experimenting
with prompts, we start with prompts comparable
to the instructions formulated for humans. Note
that we neither expect nor believe that the tested
LLMs show any kind of human-like behavior, and
we clearly distance ourselves from any anthropo-
morphism. Prompts where we ask for associations
to the PNC Tore-Klose (‘Goal-Klose’) would look
like the following example:

(pl) "Hast du schon einmal von dem Spitznamen
”"Tore-Klose” bzw. Miroslav Klose gehért? Wenn du
noch nie von dieser Person oder diesem Spitznamen
gehort hast oder dir nicht erklaren kannst, wie
dieser zustande kam, antworte bitte mit ”Kenne ich
nicht”. Wenn du Miroslav Klose und den Spitznamen
Tore-Klose kennst: Was fallt dir spontan in Bezug
Bitte gib 3-5 kurze, mit

einem Komma getrennte Assoziationen aus.”

auf ”Tore-Klose” ein?

"https://huggingface.co/
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(pl generation): [no output generated] Since
prompts such as this example did not yield any
results in the case of LeoLM, we reformulate
prompts, e.g., by shortening the prompt and sim-
plifying syntactic complexity as illustrated in the
following example prompts:

(p2) was f3llt dir spontan in Bezug auf den
Spitznamen ”Tore-Klose” fir Miroslav Klose ein?
Bitte gib 3-5 kurze, mit einem Komma getrennte
Assoziationen aus. Wenn du den Namen nicht kennst,

gib bitte ”Kenne ich nicht” aus.

(p2 generation): 1. ”Kenne ich nicht” 2. "Wer ist
das?” 3. ”Der hat aber einen seltsamen Namen...”
4. ”Ist das eine Art von Pizza?” 5. ”Wieso nennen
sie ihn ”Tore-Klose”?

(p3) Fallen dir Griinde dafiir ein, warum Miroslav
Klose der Spitzname ”Tore-Klose” gegeben wurde?
Bitte gib 3-5 Griinde an. Wenn du den Namen nicht

kennst, gib bitte ”Kenne ich nicht” aus.

(p3 generation): Miroslav Klose hat den Spitznamen
”Tore-Klose” erhalten, weil er wahrend seiner
FuBballkarriere fir seine unglaubliche Fahigkeit
bekannt war, Tore zu erzielen.2. Der Spitzname
wurde ihm verliehen, da Klose wadhrend seiner Zeit
bei Bayern Minchen und in der Nationalmannschaft
konsequent hohe Zahlen an Toren pro Spiel erzielte
und damit seine Kullanz in erzielten Toren
zeigte.3. Ein weiterer Grund fir Kloses Spitznamen
konnte sein, dass er in jeder seiner Spielzeiten
konstant hohe Zahlen an Toren pro Spiel erzielte

und damit seine Kullanz in erzielten Toren zeigte.

In contrast to (pl), results can be obtained using
(p2) and (p3). While generated associations are
non-sensical in the case of (p2), (p3) yields mean-
ingful output. This is, however, not always the case
as we observe stark differences between generated
associates for specific PNCs with output quality
decreasing for more abstract or metaphoric modi-
fiers and PNCs relating to quite specific events such
as Ferkel-Merkel (‘iglet-Merkel’) or Villen-Spahn
(‘villa-Spahn’).



»<

Studie: Assoziationen zu Spitznamen
bekannter Personen

‘Was ist Deine Aufgabe?

In diesem Experiment geht es um Spitznamen von bekannten Personen aus verschiedenen Bereichen des
Alltagslebens (Politik, Sport, etc.), wie z.B. "Chaos-Johnsen" in Bezug auf Boris Johnsoen. Die Personen haben
die Spitznamen aus einem bestimmten Grund bekommen und wir michten von dir wissen, was dir spontan
dazu einfillt, warum diese Person diesen Spitznamen bekommen hat. Deine Aufgabe ist es daher, 3-5
migliche Griinde in einem Wort oder als kurzen Satz aufzulisten, wie z.B. "Premierminister, UK, politisches
Chaos, Partygate, Tories" in Bezug auf "Chaos-Johnson".

Zeitaufwand: Das Ausfiillen der Studie dauert ca. 25 Minuten.

Infos und Einverstandniserkldrung: Bitte lies Dir die Informationen zur Studie durch und entscheide dann, ob
Du an der Studie teilnehmen machtest.

Du hast Fragen oder ein technisches Problem?

Solltest Du nicht weiterkommen, Fragen zur Studie haben oder auf ein technisches Problem stoften, schreibe
uns gerne jederzeit eine E-Mail _ Wir melden uns so schnell wie méglich bei
dir.

Vielen Dank und viel Spall!

Figure 3: Screenshot of experiment introduction to collect associate responses to PNC targets.

Beispielfrage ¥ :

Damit du dir besser vorstellen kannst, wie die Fragen aussehen und was deine Aufgabe ist, zeigen wir dir hier
beispielhaft, wie Maxi Muster die Studie durchfiihren wirde.

Nehmen wir an, Maxi Muster hat schon von Boris Johnson und dem Spitznamen "Chaos-Johnson®
gehart. Maxi verbindet mit Boris Johnson z.B. die Punkte "Premierminister,’ "UK" und "politisches
Chaos" und nimmt Boris Johnson im Allgemeinen eher negativ wahr.

Boris Johnson: Chaos-Johnson

Hast du schon einmal von dem Spitznamen “Chaos-Johnson® bzw. Boris Johnson *
gehdrt? Wenn du noch nie von dieser Person oder diesem Spitznamen gehirt

hast oder dir nicht erkldren kannst, wie dieser zustande kam, kreuze bitte an

“Kenne ich nicht” und gehe zur nichsten Person weiter.

(® Kenneich

() Kenne ich nicht

Wenn du Boris Johnson und den Spitznamen Chaos-Johnson kennst: Was féllt dir
spontan in Bezug auf “Chaos-Johnson” ein? Schreibe bitte 3-5 kurze Assoziationen
auf,

Premierminister, UK, politisches Chaos, Partygate, Tories

Wenn du Boris Johnson kennst, wie nimmst du diese Person wahr?

1 r'3 3 4 5

positiv O @ O O o negativ

Auswahl l&schen

Figure 4: Screenshot of an example trial to demonstrate how associate responses to PNC targets and personal
judgments regarding the subjective perception of the PNC and person are elicited.
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Abstract

Automatic metaphor detection has often been
inspired by linguistic procedures for manual
metaphor identification. In this work, we
test how closely the steps required by the
Metaphor Identification Procedure VU Amster-
dam (MIPVU) can be translated into prompts
for generative Large Language Models (LLMs)
and how well three commonly used LLMs are
able to perform these steps. We find that while
the procedure itself can be modeled with only
a few compromises, neither language model is
able to match the performance of supervised,
fine-tuned methods for metaphor detection. All
models failed to sufficiently filter out literal
examples, where no contrast between the con-
textual and a more basic or concrete meaning
was present. Both versions of LLaMa however
signaled interesting potentials in detecting sim-
ilarities between literal and metaphoric mean-
ings that may be exploited in further work.

1 Introduction

Metaphors, according to the Conceptual Metaphor
Theory (CMT) of Lakoff and Johnson (1980), fun-
damentally shape the way humans perceive the
world. Metaphorical language like considering
claims to be indefensible is, according to CMT, a
way how conceptual mappings in human cognition
may be observed on the surface. Several proce-
dures have been develop to systematically iden-
tify such linguistic metaphors or metaphor-related
words (MRWSs) in text, the most famous out of
which are the Metaphor Identification Procedure
(MIP) by the Pragglejaz Group (2007) and its modi-
fied version, the Metaphor Identification Procedure
VU Amsterdam (MIPVU) of Steen et al. (2010).
The automatic detection of metaphors has al-
ready received considerable interest in NLP, with
two shared tasks (Leong et al., 2018, 2020) specifi-
cally devoted to it. One line of work in automatic
metaphor detection is rooted in modeling aspects
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of guidelines for manual metaphor identification
with the help of (contextualized) language mod-
els (Mao et al., 2019; Choi et al., 2021; Babieno
et al., 2022; Zhang and Liu, 2022). More recently,
efforts were made to integrate the current genera-
tion of generative large language models (LLMs)
such as GPT (Brown et al., 2020) and LLaMa (Tou-
vron et al., 2023) into annotation processes (Tan
et al., 2024). While previous MIP(VU)-motivated
approaches to automatic metaphor detection only
approximated the instructions of manual metaphor
identification methods, prompting LL.Ms would
theoretically allow for the direct instruction of the
language models to conduct the steps required by
metaphor identification procedures.

Moreover, the analogical reasoning capabilities
of LMs have been a recent topic of interest, rang-
ing from verbal, word-level analogies of the type
“lawyer:defending :: teacher:educating” (Steven-
son et al., 2023) to drawing analogies between
high-level messages and more complex narratives
(Sourati et al., 2024). Analogy and metaphor are
strongly intertwined, since metaphor is often con-
sidered a subtype of analogy (Bowdle and Gentner,
2005) and even the most complex type of analogy
(Wijesiriwardene et al., 2023). Determining simi-
larities and analogies between two senses is also a
key part of MIPVU since, in the MIPVU manual,
Steen et al. (2010) explicitly state that two distinct
senses are considered metaphor-related if they “cap-
italize on external or functional resemblances (at-
tributes and relations) between the functions they
designate”. Consequently, a detailed evaluation
of the performance of LLMs on MIPVU, with a
particular focus on the role of similarity, would pro-
vide further insights into the reasoning capacities
of LLMs on complex analogies.

In this paper, we make the following contribu-
tions:

1. We present the first effort to adapt MIPVU for

Proceedings of the 2nd Workshop on Analogical Abstraction in Cognition, Perception, and Language (Analogy-Angle 11), pages 10-21
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its application with generative LLMs, which
we achieve with only minor tweaks to the pro-
cedure.

We evaluate state-of-the-art generative LLM
families on two large-scale datasets annotated
with MIPVU, where LLaMa performed best
but none of the models matched the perfor-
mance of supervised, fine-tuned approaches.

We present an error analysis concentrating on
the step where the models made the most mis-
takes. We find that judging the concreteness
and distinctness of two senses is a larger prob-
lem than reasoning about similarity, where
LLaMa showed interesting potential.

2 Previous Work

2.1 MIPVU

The starting point for our approach is the Metaphor
Identification Procedure VU Amsterdam (MIPVU)
by Steen et al. (2010), which we will outline in this
section. After reading and understanding the entire
text (Step 1) and dividing the text into lexical units
(Step 2), MIPVU asks the annotator on a word by
word basis to identify the contextual meaning
(Step 3a) of each word. This meaning may or may
not be found in a dictionary.

After the contextual meaning has been identified,
MIPVU requires the annotator to identify whether
a more basic meaning exists (Step 3b). Here,
Steen et al. (2010) ask the annotator to consult the
dictionary entry since they stress that a more basic
meaning according to their definition is always con-
ventionalized enough to be found in a dictionary.
Moreover, they consider a meaning to be more ba-
sic if it is more concrete, more specific, or more
human-oriented.

If such a basic meaning is found, then MIPVU
asks the annotator to decide if the two meanings
are sufficiently distinct and if they are related by
similarity (Step 3c). As a shortcut for distinctness,
Steen et al. (2010) consider two senses with two
different numbered sense descriptions in a dictio-
nary always to be sufficiently distinct. If only one
sense description is available or if the contextual
meaning is not represented in the dictionary (such
as in the case of novel metaphors), this decision is
up to the annotator.

Similarity is described by Steen et al. (2010) as
“sharing external or functional resemblances (at-
tributes and relations)”. They stress that similarity
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distinguishes metaphor from metonymies like The
White House for the US government, which ex-
presses a part-whole relationship. If the two senses
are similar, then the word should be marked as
an MRW. Additionally, MIPVU leaves room for
special cases, like MRWs that are part of direct
comparisons (/... Jlike an eagle; “direct MRWs”),
the replacement of MRWs by pronouns, personifi-
cations and borderline cases.

2.2 Automatic Metaphor Identification
inspired by MIP(VU)

Mao et al. (2019) aimed to model MIP and Se-
lectional Preference Violations (SPV) by Wilks
(1975), which detect metaphors through clashes
with their context. The MIP model uses GloVe
and ELMo embeddings and a BiLSTM, whose hid-
den states represent the contextual meaning. The
basic meaning is represented by the GloVe embed-
ding only and a concatenation of contextual and
basic meaning representation serves as input to a
classifier. SPV is modeled with the same architec-
ture and a concatenation of left- and right-context
representations. Both models achieved F1-scores
of around 74 points on the VUA18 dataset (Leong
et al., 2018) and outperformed other metaphor iden-
tification approaches at the time.

Inspired by Mao et al. (2019), Choi et al. (2021)
developed MelBERT, which aims to model MIP
and SPV with the help of contextual BERT embed-
dings. It uses two encoders, one for the entire sen-
tence, and one for the word in isolation. MelBERT
models MIP through a concatenation of the con-
textual embedding and the embedding of the word
in isolation. SPV, on the other hand, is imitated
through a concatenation of the sentence embedding
and the contextual word embedding. The output of
the SPV and MIP layers is concatenated and fed
into a linear classifier. Evaluated on VUA1S, it out-
performed Mao et al. (2019) with an F1-score of
78.5. On VUA20 (Leong et al., 2020), it achieved
an Fl-score of 73.9.

Several other authors presented further improve-
ments of MelBERT, mainly concentrating on
the representation of the basic meaning. MIss-
RoBERTaWiLDE (Babieno et al., 2022) uses a
Wiktionary entry to represent the basic meaning,
MisNet (Zhang and Liu, 2022) encodes an example
sentence from the first sense in the dictionary entry
of the target word and uses its contextual word em-
bedding as basic meaning. Li et al. (2023) search
the training set for non-metaphoric literal examples,



encode them and average the obtained embeddings
to represent the basic meaning.

2.3 LLMs and Metaphor

One early contribution to evaluate the metaphor
understanding of generative LLMs was made by
Wachowiak and Gromann (2023). They asked GPT-
3 to provide the source for examples from the Mas-
ter Metaphor List' and the English and Spanish
sections of the LCC Corpus (Mohler et al., 2016)
with prompts that include the target domain of the
metaphor and completed source-target mappings.
They also included non-metaphoric examples from
VUA to test if the model is able to distinguish
metaphoric and non-metaphoric examples. For the
simple sentences from the Master Metaphor List,
the model predicted the correct source domain with
an accuracy of 81.33%, which however went down
drastically for the more complex LCC examples.
Moreover, the non-metaphoric examples were only
singled out with an accuracy of 42.11%.

Schuster and Markert (2023) investigated cross-
lingual detection of metaphoric adjective-noun
pairs. They compared the zero-shot cross-lingual
transfer performance of various BERT and fastText-
based classifiers with the performance of ChatGPT
when given various prompts. Here, ChatGPT per-
formed best when including the MIP guidelines
in the prompt. However, already with little target
language data, smaller models were outperforming
ChatGPT.

Chen et al. (2024) extended automatic detection
with an additional reasoning task, where the mod-
els are asked to justify why they considered a token
literal or metaphoric. They prompted two vari-
ants of LLaMA3 (8B and 70B), Gemma-7B, and
ChatGPT3.5 on detecting metaphoric tokens and
reasoning. The metaphor detection performance
mostly falls short in comparison to supervised ap-
proaches, particularly on VUA, where they only
achieve F1-scores between 27 and 44 points on the
binary metaphor detection.

TSI by Tian et al. (2024) represents the most
elaborate approach to metaphor identification to
date. They prompted GPT-3.5 with a series of
questions inspired by CMT, MIP and SPV and
filled knowledge graphs with the answers. If the
graph surpasses a final comparison with the ideal
knowledge graph pattern, the example is labeled as
metaphoric. Their CMT approach performed best

"https://www.lang.osaka-u.ac.jp/
moto/MasterMetaphorList/metaphors/index.html

sugi-
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and even outperformed several fine-tuned BERT
approaches with an F1 of 82.59 on the MOH-X
dataset and 66.07 on the TroFi dataset, with MIP
ranking second with F1-scores of 79.39 and 65.60,
respectively.

The approach of Boisson et al. (2025) also ex-
tracted entire source-target mappings with gener-
ative LLMs. They represented metaphors as map-
pings involving two concept terms from each a
source and a target domain and aimed to extract
such mappings from a collection of novels, poems,
songs and speeches. For this, they provided LLMs
(GPT-4, Llama-3 and Mixtral) with prompts con-
taining a text and one of the four terms representing
the different concepts. They reported mostly satis-
factory accuracies, often over 60%.

3 Experiments

3.1 Adapting MIPVU for LLMs

In the previous section, we have already seen two
approaches that integrated MIP(VU) into LLM
prompts and achieved satisfactory performance
on a small amount of data. However, in both
Schuster and Markert (2023) and Tian et al. (2024)
the metaphor identification procedure was imple-
mented in a simple and rather counterintuitive way.
Schuster and Markert (2023) only provided the
model with the respective adjective-noun-pair with-
out context, and Tian et al. (2024) left out similarity
as a criterion.

For our application of MIPVU, we aim to repli-
cate the steps outlined in Section 2.1 as closely
as possible. We, however, do not take extra steps
for any of the aforementioned special cases. We
already deal with tokenized text, thus no prompts
for the steps 1 and 2 are needed. Step 3a, identi-
fying the contextual meaning, can be achieved in
a straightforward manner by simply providing the
LLM with the word in question and the text con-
taining the word and prompting it to provide the
meaning of the word in the given context.

Step 3b, the identification of a more basic mean-
ing, on the other hand, is more complex. It is first
necessary to decide on a resource of possible senses.
For this, we ask the model to provide us with an en-
tire dictionary entry for the word in question. After
extracting the senses, we additionally prompt the
model to identify if any of the present senses can
be considered more concrete than the contextual
meaning.

Here, we needed to make compromises. MIPVU



technically asks for a more basic meaning instead
of the most basic meaning. Thus, in theory, we
would need to conduct the next steps for all poten-
tial meanings that fulfill the “more basic” criterion,
which would be very resource-demanding. Con-
sequently, we ask the model to only extract the
most concrete candidate and proceed with this as
the more basic meaning. If no basic meaning is
available, the word is considered non-metaphoric.
If the model identified a more basic meaning,
then the two meanings need to be checked for suffi-
cient distinctness (first part of step 3c). We simply
ask the model whether the contextual and more
basic meanings refer to the same concept. If yes,
the example is considered non-metaphoric.
Otherwise, we proceed with the crucial question
on similarity between the two senses (second part
of step 3c). For this, we ask the model if the two
senses in question share aspects, functions or fea-
tures (the criteria for "similarity" as outlined by
Steen et al. (2010)) and for a short explanation. We
test a zero-shot prompt that only asks for similarity
according to Steen et al. (2010) as well as a one-
shot prompt that illustrates similarity according to
Steen et al. (2010) with examples 1 and 2, the two
senses for journey provided in the Longman Dictio-
nary of Contemporary English (Longman, 2023).

(1) an occasion when you travel from one place
to another, especially over a long distance

(2) along and often difficult process by which
someone or something changes and develops

However, given that word-sense disambigua-
tion (WSD) represents an NLP task which non-
generative language models perform well (Bevilac-
qua et al., 2021), we also test the combination of a
BERT-based WSD model and a generative LLMs.
For this, we used the fine-tuned model presented
in Yap et al. (2020). Here, for step 3b of MIPVU,
we thus extract the sense keys and their respective
glosses from WordNet (Miller, 1994) instead of
generating an entire dictionary entry and then ask
the LLM to provide us with the more basic meaning
among the extracted senses.

The fine-tuned WSD model comes into play
when checking for sufficient distinctness. We have
the WSD model predict the sense. If this predicted
sense by the WSD model and the predicted more
basic meaning by the LLM are different, then they
are considered sufficiently distinct. The final ques-
tion for similarity is then asked in the same way as
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in the procedure without WSD. An overview over
all prompts that we used is provided in Appendix
B.

3.2 Models

We evaluate three commonly used families of
LLMs in our experiments: LLaMa, Mistral and
GPT. For LLaMa, we specifically use the 8B and
70B instruction-tuned versions of LL.aMa 3.1. For
Mistral, we use the also instruction-tuned Mistral-
Small-Instruct-2409 with 22 billion parameters.
We obtain the LLaMa and Mistral models via Hug-
gingFace (Wolf et al., 2020). For GPT, given fi-
nancial constraints, we only use the lightweight
GPT-40-mini, which we access via the OpenAl
API. We used the default hyperparameters of all
the models. We ran the 8B version of LLaMa 3.1
on NVIDIA A40 GPUs, the 70B version of LLaMa
3.1 on NVIDIA H100 SXM5 GPUs and the Mistral
model was run on NVIDIA A30 GPUs.

3.3 Data

For evaluation purposes, we use two larger
metaphor datasets where the annotation followed
MIPVU very closely. On the one hand, we use
the VUA dataset in the version that was used in
the 2020 Metaphor Detection Shared Task (Leong
et al., 2020) and which is based on the original ap-
plication of MIPVU to the British National Corpus
by Steen et al. (2010).

Moreover, we use the metaphor dataset of
Reimann and Scheffler (2024) (“R&S” in the fol-
lowing), which consists of posts from Christian sub-
reddits annotated for metaphor via MIPVU. Due
to the limits of the OpenAl API and financial con-
siderations, we only use a fraction of the test data,
namely two reddit threads from R&S and one frag-
ment from VUA in the experiments involving GPT-
4o-mini. Table 1 presents an overview of the data
that we used.

Dataset Tokens MRWs
VUA 22196 3982
VUA (short) 3960 821
R&S 14437 3170
R&S (short) 3562 555

Table 1: Overview of the data.



Model Setup R &S VUA

P R FlI Acc. | P R FlI Acc

0-Shot 25 72 38 47 |21 59 31 50

1-Shot 25 79 38 44 |21 64 32 53

LLaMa 3.1 8B 0-Shot+ WSD | 32 47 38 68 |32 63 43 64
|-Shot+WSD | 32 63 43 64 |28 59 38 65

0-Shot 26 82 39 44 |21 69 33 49

1-Shot 26 84 40 43 |22 70 33 50

LLaMa3.170B 0-Shot + WSD | 27 63 38 56 |26 68 38 60
1-Shot+ WSD | 28 67 39 56 |26 68 38 60

Zero 20 19 20 76 |19 22 21 60

. One 20 11 14 79 |22 18 20 67
GPT-40-mini 0-Shot+WSD | 18 11 13 78 |27 10 15 74
|-Shot+WSD [ 17 8 11 79 |29 13 18 73

Zero 22 96 36 29 |19 95 32 27

Mistral-Smmall One 20 72 32 35 |18 74 29 35
0-Shot+WSD | 31 54 40 65 |29 55 38 68

1-Shot+ WSD [ 29 45 35 65 |28 49 36 69

MeIBERT (Choi et al., 2021) 76 69 72 - 68 60 64 -

Table 2: Precision, recall and F1 for the metaphor class and accuracy on the two datasets for all LLM setupts as
well as the results of the supervised MelBERT approach reported in Choi et al. (2021) and Reimann and Scheffler
(2024) for comparison. Best result for each metric in bold, second best in italics.

4 Results and Error Analysis

Table 2 shows our results. Overall, we can see
that neither of the LLM is actually able to achieve
satisfactory performance in any setting, with GPT-
40-mini in particular trailing behind the other two
models in all metrics except for accuracy. The
data is imbalanced (around 80% of tokens non-
metaphorical), which means that if the model con-
siders fewer tokens to be MRWs, then will auto-
matically be higher.

A general trend for LLaMa is that model size
had a positive impact on recall. The same can be
said for providing LLaMa with an example in the
last prompt since this resulted in increased recall
for almost all setup scenarios. GPT-40-mini, on the
other hand, was not at all able to profit from the
inclusion of an example and for the Mistral model,
the inclusion of an example in the prompt even
had the opposite effect and led to drastic drops in
performance.

4.1 False Positives

One more particularly striking pattern in Table 2
is the fact that both LLaMa and especially Mistral
produce a large amount of false positives, i.e. non-
metaphoric examples that were considered to be
MRWs, as seen in the low values for precision. The
way MIPVU functions may provide an explanation:
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the initial steps of MIPVU are designed to weed
out cases where no meaning can be considered
“more basic” according to the procedure or where
the contextual and the more basic meaning are too
similar. This ensures that in the last step, only
two distinct meanings are compared. However,
when the model fails to complete the previous steps
correctly, it will eventually compare two meanings
that refer to the same concept to each other and, as
a logical choice, understandably consider them to
be similar.

The example of conversation in Table 3 illus-
trates such cases, which represent the most com-
mon type of false positive. Here, both the expla-
nation of the contextual meaning and the “more
basic” meaning refer to the same concept; however,
the model did not judge the meanings to be dis-
tinct. They were then inevitably judged as related
by similarity and received the label MRW.

However, some cases of false positives were also
similar to the example of night in Table 3. Here, the
model already misinterpreted the contextual mean-
ing of night (which was used literally as the time of
day in the original sentence) as nonliteral. Based
on this propagated error, the meanings were then
judged as sufficiently distinct and, consequently,
as MRW. The wider context for both examples in
Table 3 is provided in Appendix A.



Word Contextual More Basic Similarity?

conversation In the context of this post, the word "con- a talk between two or The similarity between the two senses is
versation" refers to a meaningful and im- more people, especially  that they both refer to a talk or exchange
pactful exchange of thoughts, ideas, and  one that is friendly and  between two or more people. Sense 1
emotions between two individuals, often  informal emphasizes the depth and impact of the
leading to a deeper understanding, per- conversation, while Sense 2 provides a
sonal growth, and a sense of connection more general definition that focuses on
or revelation. the formality and tone of the conversa-

tion.
night In this context, the word "night" refers  The period of time from  The similarity between the two senses

to a period of time, specifically a dark
and potentially difficult or vulnerable
moment, often symbolizing a state of
need or crisis.

sunset to sunrise, when
it is dark outside.

of ’night’ is that they both refer to a pe-
riod of time, specifically a time when
it is dark outside. Sense 1 describes
‘night’ as a moment of need or crisis,
while Sense 2 defines it as the time from
sunset to sunrise.

Table 3: Examples for false positives, produced by the 8B version of LLaMa.

Replacing the prompt-based judgment on suf-
ficient distinctness with BERT-based word sense
disambiguation overall resulted in a stricter appli-
cation of the MRW label. However, for all models,
the improvements for precision are much smaller
than the drops in recall. This may be because the
glosses for WordNet senses may sometimes be not
informative enough or two glosses may appear too
similar for the model.

3)

water falling in drops from vapor condensed
in the atmosphere

“

drops of fresh water that fall as precipitation
from clouds

The examples 3 and 4 for rain illustrate this. They
are the glosses for two different senses in WordNet,
however, it may be argued that they denote the
same concept. The LLaMa models selected 4 as
the more basic meaning and 3 was selected by the
WSD model to be the contextual meaning. This led
the model to not dismiss the example as metaphoric
and in the last step, the meanings were considered
similar and thus wrongly labeled as MRW.

4.2 False Negatives

This implementation of MIPVU with generative
LLMs gives us, in the case of false negatives, the
opportunity to track exactly where the decisive er-
ror was made. We make use of this to better in-
terpret the results of Table 2. The results of this
analysis are provided in Table 4.

Consistently, for both instances of LLaMa, decid-
ing on distinctness appears to be the biggest prob-
lem, followed by deciding on similarity. In contrast,
the small GPT model already produces the most
false positives when prompted to decide on a more
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basic meaning. Surprisingly, the model notably pro-
duced more false negatives in the distinctness step
when evaluated on VUA, compared to the evalua-
tion on R & S. Looking into the most frequent false
negatives for VUA, we find a wide range of heav-
ily conventionalized MRW s such as make among
the most common false negatives. For these exam-
ples, the contextual and more basic meaning may
appear too similar, which possibly explains why
the models considered them to be not sufficiently
distinct.

Mistral without the added WSD model on the
other hand in general produced not many false neg-
atives, which further highlights that it was not suffi-
ciently strict to carry out MIPVU. A striking result,
however, is that when provided with the WordNet
glosses, the model wrongly sorted many MRWs out
when checking for a more basic meaning. This may
again be because the WordNet glosses were shorter
and less informative than the generated definitions.

Table 4 also further exemplifies the improvement
in recall for LLaMa. Here, we can see that for all
LLaMa models, the number of wrong classifica-
tions as non-metaphorical in the last step drops
notably in the one shot scenario. This suggests
that LLaMa indeed was able to better reason on
metaphoric similarity when provided with an ex-
ample.

This impression is also confirmed by looking at
the first two examples in Table 5, which compares
the output of several models for the zero- and few-
shot prompts for the last MIPVU step. The example
of sheep, by the 70B version of LLaMa is partic-
ularly interesting as the model, when asked to de-
scribe the contextual meaning of the word, already
mentions that it is used metaphorically. However,



Model R&S VUA
. . Sim. Sim. . . Sim. Sim.

Basic Dist. (O-shot)  (1-shot) Basic Dist. (O-shot)  (1-shot)
LLaMa-3.1-8B- | w/o WSD 193 366 250 53 170 1202 277 45
Instruct w/ WSD 153 943 551 31 139 1203 574 45
LLaMa-3.1-70B- | w/o WSD 85 304 163 86 372 743 130 99
Instruct w/ WSD 60 766 264 177 97 769 172 176
GPT-do-mini w/o WSD 345 83 19 66 526 92 5 55
w/ WSD 417 64 9 24 549 106 3 27
Mistral-Small- w/o WSD 53 71 6 769 106 105 6 805
Instruct-2409 w/ WSD 1405 8 296 | 1568 0 217 6

Table 4: Number of MRWs wrongly considered to be non-metaphorical across different steps.

when asked to reason about similarities between
the contextual and basic usage of sheep in a zero-
shot manner, it denies the question. A relation by
similarity is often considered a defining feature of
metaphor (Steen et al., 2010), which makes the
model output thus contradictory. The model given
the one-shot similarity prompt, on the other hand,
answers with yes and provides extensive reason-
ing on the similarities between the metaphorical
sheep in the sense of believers and the animal. The
metaphorical example of light in Table 5 also illus-
trates how the few-shot prompt had the completely
opposite effect for Mistral as it reasoned correctly
without the example senses. However, when pro-
vided with an example, it still understood that one
sense is abstract and one physical but failed to point
out the similarity. The context for all examples dis-
cussed in Table 5 is provided in Appendix A.

4.3 Deliberate and Direct Metaphor

Finally, we look at different subtypes of metaphors
and see if they were harder to detect for the models.
For this, we use the more detailed annotations of
Reimann and Scheffler (2024), which also indicate
if an MRW is direct or indirect and if it is used in a
potentially deliberate way (i.e. used "as metaphor")
according to the Deliberate Metaphor Identification
Procedure (DMIP) by Reijnierse et al. (2018). In
addition to direct metaphor, this also includes novel
metaphor and extended metaphor. Table 6 shows
the recall for all potentially deliberate metaphors
and direct metaphors in the most successful sce-
nario with respect to the overall recall (no external
WSD model and a one-shot prompt for similarity).

Interestingly, finding potentially deliberate

metaphors did not pose particular problems for the
LLaMa and Mistral models, which contrasts with
the results of supervised BERT-based approaches,
that struggled with several types of potentially de-
liberate metaphors. This also extends to direct
metaphor in particular, which is surprising at first
glance, given that our prompts do not cover direct
metaphor, as outlined in Section 2.1.

(5) Ijusthave to learn to wait on the lord as I feel
like a car that was Idling for so long that my
engine is just ready to go , and I need to be
calm and wait on the lord .

(6) In this context, a "car" is used metaphorically
to describe a person’s eagerness and
readiness to take action, likening their
built-up energy and anticipation to a car’s

engine idling and ready to move.

The direct MRWs in example 5 are in bold.
When asked for the contextual meaning of the word
car, the large LLaMa model provided the expla-
nation given in Example 6. Here, although not
explicitly asked, the model already generates an
explanation for the direct metaphor. This makes
the contrast between contextual and basic meaning
in further comparisons apparent and demonstrates
why direct MRWs do not seem to pose problems
for this procedure.

5 Discussion

Putting our results into the wider context of auto-
matic metaphor detection, we can, on the one hand,
see that they matched or outperformed for the most
part the approach of Chen et al. (2024), which also
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Expl. 0-Shot

Expl. 1-Shot

MRW  Contextual More Basic

deeper In the context of the given post, very wide
"deeper" refers to a more pro- and not
found or underlying level of un- very shal-
derstanding, issue, or problem, low
often requiring a more nuanced
or complex analysis.

sheep  In this context, "sheep" is a a farm
metaphorical representation of  animal that
a lost or misguided individual produces
who has strayed from their spir-  wool and is
itual path and is being called often kept
back to a higher power or sense  for its meat
of self-worth.

light "Light" in this context refers to  the natural
one’s positive influence, joy, or  brightness
faith that can be shared with oth- that comes
ers regardless of circumstances. from  the

sun, moon,
or stars

There is no similarity between
the two senses.  The first
sense refers to a more in-depth
or thorough exploration or un-
derstanding, often implying a
greater level of insight or knowl-
edge. The second sense refers
to the physical characteristics of
a river or lake, specifically its
width and depth.

Sense 1 is a metaphorical repre-
sentation, while Sense 2 refers
to the literal animal. There is no
similarity in their meanings, as
one is a figurative concept and
the other is a physical entity.

Yes, both senses of "light" in-
volve the idea of illumination
and positivity. In Sense 1,
it’s about illuminating some-
one’s spirit or life with positivity,
while in Sense 2, it’s about illu-
minating the physical environ-
ment with natural brightness.

Sense 1 and Sense 2 are sim-
ilar because in both senses,
the word "deeper" refers to
a greater extent or dimen-
sion, whether it’s a more
in-depth understanding or a
wider and less shallow body
of water.

Sense 1 and Sense 2 are sim-
ilar because in both senses,
the term ‘sheep’ refers to an
entity that can be guided or
directed, whether it’s a farm
animal being herded or a
metaphorical individual be-
ing called back to a spiritual
path.

No. Sense 1 refers to an
abstract, emotional concept,
while Sense 2 refers to a
physical phenomenon. They
do not share any aspects,
functions, or features.

Table 5: Examples wrongly considered to be non-metaphorical by the 8B (first), 70B (second) versions of LLaMa
and Mistral (third) when prompted in a zero-shot fasion and considered to be MRWs when given an example in the

prompt on similarity.

Model R (Pot. Delib.) R (Direct)
LlaMa3.18B 78 72
LlaMa 3.1 70B 87 88
GPT-40-mini 10 13
Mistrall-Small 67 68

Table 6: Recall for potentially deliberate and direct
metaphors when using the models in the scenario in-
volving a few-shot prompt and without WSD.

used generative LLMs and which evaluated all of
the VUA data. The approaches of Schuster and
Markert (2023) and Tian et al. (2024) are much
harder to compare with ours, as they used much
smaller and more balanced data sets.

Howeyver, it also becomes clear that our LLMs
emulating MIPVU massively underperform previ-
ous approaches with fine-tuned variants of BERT.
Our results demonstrate that, as of now, identify-
ing metaphors with a series of prompts inspired by
the steps of MIPVU is not a realistic alternative
for automatic metaphor detection. In order to cor-
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rectly identify metaphor, the last step of MIPVU
is heavily dependent on the correct implication of
the previous two steps and propagated errors may
result in heavy overuse of the MRW label.

Moreover, the models from the three families
performed wildly differently. This makes it harder
to draw final conclusions about the suitability of
LLMs for this task. GPT-4o0-mini overall failed,
with neither recall nor precision achieving satisfac-
tory results, and Mistral was unable to sufficiently
filter out negative examples. However, the results
of LLaMa, while far from perfect, show encourag-
ing tendencies.

Neither LLaMa version was able to filter out
negative examples in a satisfactory way due to the
aforementioned reasons, even though the picture
here is more nuanced in comparison to Mistral.
However, the improvements for both versions when
provided with an example and a qualitative inspec-
tion of the output suggested some capacities to
reason on similarity and analogy in order to cor-
rectly answer the last step of MIPVU. Paired with
better identification of the basic meaning and better
filtering of negative examples due to insufficient
distinctness, this may present potential to even-



tually be able to conduct MIPVU via generative
LLMs.

6 Conclusion and Future Work

We replicated MIPVU with LLMs as closely as
possible in two different ways. On the one hand,
with a series of prompts and only using the respec-
tive LLM and, on the other hand, via a combination
with WordNet as an external resource. We evalu-
ated four LLMs from three popular model families
on two large, realistic datasets that were manually
annotated via MIPVU and conducted an extensive
evaluation and error analysis of the output.

We found that our approach achieves competitive
performance with other LLM-based approaches on
the VUA data with LLaMa. However, it still falls
short in comparison to models that were specifi-
cally fine-tuned on the metaphor detection task in
either setup. In general, the models also differed
in their behavior, making interpretation and final
conclusions difficult. However, one point that all
models had in common were struggles to select a
basic sense and to decide on distinctness of word
senses. In contrast to the others, the LLaMa mod-
els performed satisfactory on the last question of
analogical similarity between literal and contex-
tual word senses, especially when provided with an
example mapping.

For future work, we suggest further investigation
into the steps that were problematic for the models,
namely perceiving concreteness and distinctness of
word senses. For this, and for a better evaluation
of the suitability of LLMs for MIPVU in general,
we would need more gold labels and human judge-
ments for all the steps of MIPVU instead of only
the final labels. Our prompt and MIP(VU) in gen-
eral is also relatively vague on its definition of more
concrete. Thus, extending the concreteness prompt
with a more comprehensive definition of concrete-
ness or concreteness ratings such as Brysbaert et al.
(2014) would be worth trying out. Moreover, as the
one-shot prompt already led to some improvements,
we suggest providing more examples and testing
if different examples for the few-shot experiment
would lead to different results.

Finally, we suggest exploring the analogical rea-
soning capabilities of LLaMa further in the context
of automatic metaphor identification: In this work,
we used a relatively simple prompt that asks for
similarity according to the definition of Steen et al.
(2010) only. However, the output for this question

could be evaluated in an even more systematic man-
ner by, for example, explicitly providing the model
with source and target domain terms or, for the last
MIPVU question, additionally asking it to identify
source and target terms like Boisson et al. (2025)
did.
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Azhar, Aurelien Rodriguez, Armand Joulin, Edouard alone , in the night , in need of help , during christmas.

Grave, and Guillaume Lample. 2023. Llama: Open The only person that found me in the middle of the night

and efficient foundation language models. Preprint, or would help , was a homeless man. .
arXiv:2302.13971. He gave me his shoes , and a sweater , he walked with

me for miles , and talked with me. He gave me aid
and comfort , and told me truth about my life that he
could n’t of known. I thought I was insane , I was n’t
. ( because the things he told me he could n’t know) I
have more peace now than I ever had in my life and I

Lennart Wachowiak and Dagmar Gromann. 2023. Does
GPT-3 grasp metaphors? identifying metaphor map-
pings with generative language models. In Proceed-

ings of the 61st Annual Meeting of the Association for just need to figure out how to help. I also know I am a
Computational Linguistics (Volume 1: Long Papers), Christian and can never deny Christ in my life , I know
pages 1018-1032, Toronto, Canada. Association for every blessing I have is not mine , its simply for me
Computational Linguistics. to use to help others. I went back to church , and told
my tale to the pastor , and that very day I went out to

Thilini Wijesiriwardene, Ruwan Wickramarachchi, Bi- help again and was opposed. Opposed in just the right
mal Gajera, Shreeyash Gowaikar, Chandan Gupta, way to make me fall back into my depression and hide
Aman Chadha, Aishwarya Naresh Reganti, Amit away from the world. The only reason I did n’t was a
Sheth, and Amitava Das. 2023. ANALOGICAL - christian brother was there with me and saw everything ,

he prayed and told me exactly what I needed to hear.

because what the Homeless person screamed at me , was
exactly every doubt I had about going and telling the
pastor my tale , she hit every insecurity I had about the

a novel benchmark for long text analogy evaluation
in large language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,

pages 3534-3549, Toronto, Canada. Association for conversation. My friend simply said at the time " thats
Computational Linguistics. how you know your doing the right thing" So , I have

. . . . discovered I have a heart for the homeless.
Yorick Wilks. 1975. A preferential, pattern-seeking, So from there , my standard for evaluating anything
semantics for natural language inference. Artificial became , " Does this facilitate wholeness in someone
intelligence, 6(1):53-74. ’s life? " That ’s the lens I use to view LGBT issues ,

and after breaking away from some of the Evangelical
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien propoganda , I "ve realized that whole , healthy homo-

Chaumond, Clement Delangue, Anthony Moi, Pier- sexual relationships are 100 % possible and not at all
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- uncommon.
icz, Joe Davison, Sam Shleifer, Patrick von Platen, I believe there are also examples where transitioning is

the healthiest choice for someone , but I feel like there
is a ton of deeper rooted identity dysfunction present
within the ideologies accompanying that " community /
movement / not - sure - the - right - term ", but I have
zero interest in dictating anyone ’s behavior or telling

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.

In Proceedings of the 2020 Conference on Empirical anyone how they should or should n’t live their lives.
Methods in Natural Language Processing: System I feel like our purpose as people is just to love ourselves
Demonstrations, pages 38—45, Online. Association and everyone else , live whole , healthy , happy lives ,
for Computational Linguistics. and help those around us.

Sadly marriage wo n’t solve your issues with self - worth

Boon Peng Yap, Andrew Koh, and Eng Siong Chng. which is the root of your hook up lifestyle. You ’re
2020. Adapting BERT for word sense disambigua- looking for value in relationships when Jesus has already
tion with gloss selection objective and example sen- paid the highest price for you. He loves you and wants
tences. In Findings of the Association for Compu- you fo refurn to Him. You "re a daughter in His eyes.
tational Linguistics: EMNLP 2020, pages 41-46, Go read Luke 15. You ’re the lost sheep / coin / son.

. . . : . God wants you to come back to Him. Your created value
Online. Association for Computational Linguistics. . ;
comes from Him alone , not what others think of you.

The guys you ’re hooking up with you just want what
you can give them and see no value in you. To them you
’re a means to an end , which is why you may find value
in the moment but regret it after. It ’s a vicious cycle.

Shenglong Zhang and Ying Liu. 2022. Metaphor detec-
tion via linguistics enhanced Siamese network. In
Proceedings of the 29th International Conference

on Computational Linguistics, pages 4149-4159, At least you recognize you ca n’t have one or the other.
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mittee on Computational Linguistics. , and then affirmed , confirmed , and fulfilled by The
Living Word , one can truly state that they know " of "
A Posts our Father Love
The Adam and Eve , the only 2 flesh humans that had a
Table 7 provides the post containing the examples clear recollection of their true celestial origin / heritage
in The Light

presented in Tables 3 and 5.

Table 7: Posts containing the examples discussed in
B Used Prompts Tables 3 and 5 with the respective MRWs in bold.

We provide the LLM prompts in Table 8.
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Step

Prompt

get the contextual meaning

In one sentence, describe the meaning of the given word in the context of the
given post as general as possible.
Word: [WORDY], Post: [POST]

generate the dictionary entry

Write a dictionary entry in the style of the Longman Dictionary of Contemporary
English that provides all possible senses of the given word with the given Part of
Speech.

Word: [WORD], Part-of-Speech: [POS]

decide on basic meaning

Decide if any of the dictionary senses can be considered more concrete than
the example definition. If yes, output ’yes’ and in a new line provide only the
respective sense. If no, then just provide 'no’.

Dictionary Senses: [SENSES]

decide on sufficient distinctness

Do the two senses express the same meaning or is sense 2 only a more specific
version of sense 1?7 Answer with "yes’ or 'no’ followed by a brief explanation.
Sense 1: [CONT. SENSE], Sense 2: [MORE BASIC SENSE]

decide on similarity (0-Shot)

Can you see a similarity between the senses 1 and 2? ’Similarity’ means that
the two senses denote distinct concepts that share certain aspects, functions or
features. Answer with "yes’ or 'no’ followed by a brief explanation.

Sense 1: [CONT. SENSE], Sense 2: [MORE BASIC SENSE]

decide on similarity (1-Shot)

Can you see a similarity between the senses 1 and 2?7 ’Similarity’ may also mean
that the two senses denote distinct concepts that share certain aspects, functions
or features. The following example for the word "journey’ illustrates this:
journey:

Sense 1: "an occasion when you travel from one place to another, especially over
a long distance"

Sense 2: "a long and often difficult process by which someone or something
changes and develops"

Answer: Yes. Sense 1 and Sense 2 are similar because in both senses refer to
something that takes a longer period of time.

Answer with "yes’ or 'no’ followed by a brief explanation.
Sense 1: [CONT. SENSE], Sense 2: [MORE BASIC SENSE]

Table 8: Overview over the used prompts for each step.
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Abstract

Few-shot learning via in-context learning (ICL)
is widely used in NLP, but its effectiveness
is highly sensitive to example selection, often
leading to unstable performance. To address
this, we introduce BACKGEN, a framework
for generating structured Background Knowl-
edge (BK) as an alternative to instance-based
prompting. Our approach leverages Frame Se-
mantics to uncover recurring conceptual pat-
terns across data instances, clustering exam-
ples based on shared event structures and se-
mantic roles. These patterns are then synthe-
sized into generalized knowledge statements
using a large language model (LLM) and in-
jected into prompts to support contextual rea-
soning beyond surface-level cues. We apply
BACKGEN to Sentiment Phrase Classifica-
tion (SPC), a task where polarity judgments
frequently depend on implicit commonsense
knowledge. In this setting, BK serves as an ab-
stract representation of prototypical scenarios,
enabling schematic generalization to help the
model perform analogical reasoning by map-
ping new inputs onto generalized event struc-
tures. Experimental results with Mistral-7B
and Llama3-8B demonstrate that BK-based
prompting consistently outperforms standard
few-shot approaches, achieving up to 29.94%
error reduction'.

1 Introduction

Few-shot learning has become a standard approach
in NLP, enabling models to generalize from lim-
ited labeled data. In particular, in-context learning
(ICL) (Brown et al., 2020) allows large language
models (LLMs) to perform tasks without parameter
updates, relying instead on a well-designed prompt
that includes relevant examples (Dong et al., 2024;
Liu et al., 2022a; Lu et al., 2022; Wu et al., 2023).
However, ICL suffers from high variance due to its
sensitivity to example selection (Zhang et al., 2022;

"https://github.com/crux82/BackGen
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Task: Determine the polarity (either ’positive’ or
‘negative’) of the target phrase.
Input:
- Text: "The government phases out fossil fu-
els."
- Target Phrase: "phases out fossil fuels"

Model Output: negative

(a) Example of zero-shot SPC prompt.

Task: Determine the polarity (either ’positive’ or
‘negative’) of the target phrase, using background
knowledge if helpful.

Input:
- Text: "The government phases out fossil fu-
els."
- Target Phrase: "phases out fossil fuels"

Background Knowledge:

1. The fact that a public entity wants to remove
something related to green initiatives is per-
ceived negatively.

Public entities’ intention to reduce non-
renewable energy sources is seen as a positive
step.

Model Output: positive

(b) Example of bk-shot SPC prompt with injected back-
ground knowledge.

Figure 1: Examples of prompts used for Sentiment
Phrase Classification (SPC). The zero-shot prompt lacks
external context, while the BK-injected prompt includes
relevant background knowledge that helps disambiguate
sentiment. These are abbreviated versions for illustra-
tion; full prompt templates are reported in Appendix B.

Koksal et al., 2023; Pecher et al., 2024a). Prior
research has attempted to mitigate this issue by
selecting examples based on informativeness (Liu
et al., 2022a; Liu and Wang, 2023; Koksal et al.,
2023), representativeness (Levy et al., 2023), or
learnability (Song et al., 2023), but these methods
often come at a high computational cost.

A complementary approach is knowledge
prompting, where explicit background knowledge
(BK) replaces example-based selection in prompts,
enabling analogical reasoning by mapping new in-

Proceedings of the 2nd Workshop on Analogical Abstraction in Cognition, Perception, and Language (Analogy-Angle 11), pages 22-36
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puts onto abstracted conceptual patterns derived
from semantically related instances.

Prior work has explored using LL.M-generated
knowledge for commonsense reasoning (Liu et al.,
2022b) or integrating structured knowledge from
external sources (Baek et al., 2023). In this paper,
we hypothesize that background knowledge (BK)
can be particularly useful for Sentiment Phrase
Classification (SPC), where the goal is to determine
the sentiment polarity of a target phrase in a given
text. SPC becomes especially challenging when
the sentiment of a phrase is context-dependent or
ambiguous. Figures la and 1b illustrate such a
case: given the sentence “The government phases
out fossil fuels”, the target phrase “phases out fos-
sil fuels” might be misclassified as negative in a
zero-shot setting (Figure 1a), as “phases out” of-
ten conveys abandonment. However, in the context
of environmental policy, the action of phasing out
fossil fuels is typically seen in a positive light. Fig-
ure 1b shows how injecting BK into the prompt can
guide the model toward the correct interpretation.
Statements such as “public entities’ intention to
reduce non-renewable energy sources is seen as
a positive step” help contextualize the sentiment,
enabling the model to move beyond surface-level
heuristics. This example demonstrates how BK can
resolve subtle ambiguities in sentiment interpre-
tation and reinforces our motivation for replacing
concrete examples with structured, generalizable
knowledge.

ICL typically addresses these issues and miti-
gates the negative impact of missing context by
injecting example sentences into the prompt. How-
ever, in tasks involving short texts, the relationship
between a support example and the test instance
may be weak or even nonexistent, reducing the ef-
fectiveness of example-based prompting. Instead,
structured BK provides a more reliable alternative,
as it captures the higher level generalizations that
underpin sentiment-bearing expressions.

In scenarios where we have annotated examples
but do not perform fine-tuning, an alternative ap-
proach is to transform these examples into struc-
tured knowledge statements that generalize beyond
individual instances. The goal is to construct a BK
repository where each entry captures recurring con-
ceptual patterns that can support multiple examples
from the original dataset.

To achieve this, we propose a methodology for
clustering similar examples and extracting their
underlying commonalities. Instead of selecting in-
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stances arbitrarily, we group them based on shared
semantic properties and identify the minimal con-
ceptual structure that describes their sentiment po-
larity in both positive and negative contexts. The
clustering process leverages Frame Semantics (Fill-
more, 1985), as it provides a structured representa-
tion of situations by encoding events, participants,
and their relationships. This enables us to general-
ize beyond lexical choices and focus on the core
elements that shape sentiment interpretation. Once
structured, the extracted knowledge is verbalized
using an LLLM, producing natural language state-
ments that encapsulate the core sentiment-related
concepts within each cluster. These statements are
then injected into the prompt as BK, replacing ex-
plicit few-shot examples. This approach aims at
mitigatating performance variance due to instance
selection (Zhang et al., 2022) and enhances the
model’s ability to reason over sentiment phrases in
context, particularly in ambiguous cases.

Experiments with two LLMs show that integrat-
ing BK into prompts systematically improves per-
formance over zero-shot and few-shot learning,
yielding a 26-29% error reduction. These results
confirm that structured BK enhances sentiment
classification by providing essential context and
reducing misinterpretations.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work, Section 3
describes the proposed methodology, Section 4
presents experiments and results, and Section 6
concludes with future directions.

2 Related Works

Few-shot learning via ICL. The ICL (Brown
et al., 2020) has an essential role in solving many
NLP tasks as it allows the LLM to learn some ex-
amples via specific template (then, this technique
is called as few-shot prompting) without updating
the model parameters (Dong et al., 2024; Liu et al.,
2022a; Lu et al., 2022; Wu et al., 2023). Unfortu-
nately, the classical few-shot prompting is very sen-
sitive to sample selection strategies (Zhang et al.,
2022; Koksal et al., 2023; Pecher et al., 2024a). De-
spite many techniques that have been introduced to
solve that problem (Liu et al., 2022a; Liu and Wang,
2023; Koksal et al., 2023; Levy et al., 2023; Song
et al., 2023; Pecher et al., 2024b), most of them
come at a high computational cost since the proce-
dure to retrieve complex examples should be run
for each instance, leading to a new ICL approach



Input Background <y
Annotated Frame-based Frame-bjased | Knowledge Background
Examples Parsing Clustering Generation Knowledge

7

Figure 2: The BACKGEN pipeline.

called knowledge prompting.

Knowledge Prompting. A new approach of ICL
was introduced to inject knowledge to the prompt
where the knowledge is retrieved from a particular
source or generated based on the instance. Guu
et al. (2020) and Lewis et al. (2020) inject docu-
ments to LLM so that the model can retrieve an-
swers from them. Baek et al. (2023) gives addi-
tional information to the LLM by retrieving knowl-
edge graph triplet knowledge and converting it to
strings to be injected to the prompt. Liu et al.
(2022b) generate knowledge for each instance to be
added to the prompt. In knowledge prompting via
knowledge retrieval, a problem arises if the selected
knowledge is not close enough to the instance. This
can lead the model to a confusion and later it to
give a wrong result. Meanwhile, the knowledge
generation method proposed by Liu et al. (2022b)
may produce hallucination since it simply asks the
model to generate knowledge based on the instance
only, without giving a context, thus leading the
LLM to give a wrong answer because of misinfor-
mation. Moreover, as they generate knowledge for
each instance, the computational cost of this ap-
proach is high. To address these issues, we propose
a framework that generates background knowledge
(BK) only once, as a preprocessing step. We then
integrate this BK into the prompt for all relevant
instances, eliminating the need to generate knowl-
edge for each input and reducing computational
overhead.

Background Knowledge Prompting. In con-
trast with the approaches described above, we pro-
pose to inject common-sense knowledge into the
prompt. We postulate that this approach can be
better than the classical prompting with few-shot in
terms of the number of required examples, since it
synthesizes several similar examples. As BK gen-
eralizes the information, the LLM can learn the rea-
soning from this generalization rather than focusing
on a specific input-output pair. Moreover, our pro-
posed method does not rely on specific knowledge
sources as in the case of knowledge prompting
via knowledge graph retrieval. The proposed BK
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generation is inspired by Shah et al. (2017) and
Basile et al. (2018) who propose to utilize frame
semantics theory to build default knowledge by ex-
tracting frames from raw texts, cluster them, and
finally extract the prototypical frame from that clus-
ter. Nevertheless, our approach differs from theirs
in that our goal is to synthesize the clustered frame
into BK in the form of natural language via LLM
prompting.

3 BACKGEN: A BK Generation
Framework

The BACKGEN framework is a structured pipeline
for generating Background Knowledge (BK) to
support Sentiment Phrase Classification (SPC). As
shown in Figure 2, it consists of three main steps:
(i) Frame-based Parsing, where semantic frames
and their elements are extracted from annotated
examples; (ii) Frame-based Clustering, which
groups similar frames to identify shared conceptual
structures; and (iii) Background Knowledge Gen-
eration, where a generative model verbalizes the
common information in each cluster into reusable
BK.

Frame-based Abstraction for Background
Knowledge. To generalize beyond individual ex-
amples, we rely on Frame Semantics (Fillmore,
1985), which models meaning through structured
representations called frames. A frame encapsu-
lates a conceptual scenario, consisting of a Lexical
Unit (LU) and its associated Frame Elements (FEs),
which define roles such as agents, attributes, or af-
fected entities. Unlike lexical approaches, frames
capture abstract relationships that recur across dif-
ferent linguistic expressions, enabling a more struc-
tured and reusable representation of meaning.
One of the key advantages of Frame Semantics
is its ability to disambiguate lexical meaning based
on conceptual structures. Consider the verb reduce,
which can evoke different frames depending on
the context: in “The government is reducing coal
power”, it evokes the frame CAUSE CHANGE OF
POSITION ON A SCALE, where an AGENT actively
decreases a QUANTITY. In “The army reduced
enemy resistance”, however, the verb belongs to



the frame CONQUERING, where a CONQUEROR
overcomes a THEME rather than simply decreasing
something. If we relied only on lexical similarity
we would will not be able to distinguish between
these cases, whereas with frame-based parsing we
can generalize meaning in a structured way that
aligns with conceptual distinctions rather than sur-
face word forms.

Beyond disambiguation, frames also facilitate
generalization by capturing shared prototypical
structures rather than simple text-level similarities,
and analogical reasoning through schematic gen-
eralization at inference time by providing anchors
to map unseen instances in a coherent symbolic
structure. A key property of frames is their Frame
Elements, which define the roles participating in
an event. By clustering instances based on frames
and their arguments (such as AGENT or ASSET) we
can link sentences that share the same underlying
linguistic primitive, regardless of the lexical items
they use. For example, “The government is phas-
ing out coal power” and “Public authorities are
limiting nuclear energy” both evoke the CAUSE
CHANGE OF POSITION ON A SCALE frame, de-
spite differing in lexical selection. The presence
of an AGENT (e.g., government, public authori-
ties) and an ATTRIBUTE (e.g., coal power, nuclear
energy) establishes a conceptual equivalence, al-
lowing the method to identify structurally similar
examples even when surface-level word similarity
is low. Our aim is to go beyond traditional vector-
space models, which primarily capture lexical and
distributional similarity (Reimers and Gurevych,
2019), by leveraging frame semantics to identify
deeper conceptual patterns.

Structuring Background Knowledge. A key
step in our approach is clustering examples that
evoke similar situations (frames), involve analo-
gous participants (frame elements), and exhibit
comparable role-filler relations which are obtained
from the frame parsing process. The objective
is to group instances based on deeper structural
properties, ensuring that clusters capture proto-
typical conceptual structures rather than surface-
level resemblances. To achieve this, we structure
each parsed instance as a tree representation, as
illustrated in Figure 3. In this representation, the
frame serves as the root node, while frame ele-
ments and lexical units form intermediate nodes.
The role fillers, which instantiate the semantic ar-
guments of the frame, appear as terminal nodes.
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This hierarchical encoding allows us to compare
examples not merely by their lexical content but
through their structural alignment within the frame-
semantic paradigm.

Measuring the similarity between these struc-
tured representations requires a metric sensitive to
both tree structure and semantic similarity of role
fillers. We employ the Smoothed Partial Tree Ker-
nel (SPTK) (Croce et al., 2011), which extends the
Partial Tree Kernel (Moschitti, 2006) by incorporat-
ing distributed word representations into the kernel
computation. This method evaluates the similar-
ity of two trees by counting the number of shared
substructures, while also weighting the contribu-
tion of lexically different but semantically related
elements. In this way, two instances that share the
same frame and structural configuration but differ
in the lexical realizations of their role fillers will
still be considered as similar. For example, the sen-
tences “The government is phasing out coal power”
and “Public authorities are limiting nuclear en-
ergy” both evoke the frame CAUSE CHANGE OF
POSITION ON A SCALE, with an AGENT and an
ATTRIBUTE: they are structurally analogous, and
SPTK ensures that their similarity is preserved in
the clustering process.

With a well-defined kernel function, we perform
clustering using Kernel-based k-means (Dhillon
et al., 2004), which embeds the tree structures in an
implicit feature space where each dimension cor-
responds to a possible substructure. Unlike tradi-
tional k-means, which relies on explicit Euclidean
distances, Kernel-based k-means operates in this
high-dimensional space, ensuring that structurally
similar examples are grouped together even if their
surface forms differ significantly.

Since our task involves sentiment classification,
we cluster positive and negative instances sepa-
rately to maintain polarity coherence. To deter-
mine the number of clusters k£, we follow a stan-
dard heuristic by setting it to the square root of the
number of instances in each polarity group.

Background Knowledge Generation. The final
step of BACKGEN is the generation of the struc-
tured BK from the clustered examples. At this
stage, each cluster contains instances that share
key semantic properties (such as the evoked frame,
the roles of its participants, and the fillers of these
roles) while allowing for lexical and syntactic vari-
ability. Given this structure, we employ a LLM to
generate a concise generalization that synthesizes



CAUSE CHANGE OF POSITION ON A SCALE

AGENT Lexical Unit  ATTRIBUTE
the government phasing out coal  power
PROTECTING
Protection Lexical Unit ASSET

Environmental  activists shield endangered

species

CAUSE CHANGE OF POSITION ON A SCALE

AGENT Lexical Unit ATTRIBUTE
Public  authorities limiting nuclear  energy
PROTECTING

PROTECTION Lexical Unit ASSET

Volunteers protect local  forests

Figure 3: Examples of frame-semantic parse trees obtained from parsing. Each tree represents a frame (root node)
with its frame elements (children) and lexical unit (LU).

the core meaning of each cluster.

The strong capabilities demonstrated by LLMs
in summarization and abstraction (Liu et al., 2024)
make them well-suited for this synthesis step. The
prompt, exemplified in Figure 4, instructs the
model to generate a general statement based on the
provided examples, explicitly leveraging Frame Se-
mantics. The input consists of clustered sentences
along with the identified frames, their definitions,
and the corresponding lexical units and role assign-
ments. Additionally, the prompt enforces a senti-
ment constraint, ensuring that the generated BK
aligns with the sentiment orientation of the cluster.
By providing explicit semantic constraints (such
as frame definitions, role structures, and example
sentences directly extracted from the dataset) we
also aim to mitigate the risk of hallucinations, a
common issue in open-ended text generation. This
controlled setting ensures that the generated BK
remains grounded in the linguistic and conceptual
structure of the dataset while still allowing for gen-
eralization. For the example shown in Figure 4,
where the clustered sentences evoke the PROTECT-
ING frame, the generated BK is: “The efforts of en-
vironmental activists to protect wildlife from harm
are viewed as a positive and crucial step toward
conservation.” The generated statements are then
stored as BK, forming a knowledge base that can
later be queried to enhance in-context learning.

Prompt Injection with BACKGEN’s Generated
Knowledge. Once the BK base has been pop-
ulated, the next challenge is determining how to
retrieve relevant information when processing a
new instance. Given a new example, the goal is
to retrieve BK instances that offer useful general-
izations and can be integrated into a prompt in a
one-shot or few-shot learning setting. An efficient
retrieval strategy is needed that allows selecting
representative knowledge from the BK collection.
Since the BK is structured into clusters, each con-

26

Write one sentence expressing general background
knowledge based on the provided input sentences that
are grouped by shared situations (or frames) modeled
according to Frame Semantics Theory. Each input
sentence explicitly indicates the Lexical Unit (evok-
ing the frames) and the corresponding role. Defini-
tions of the frames will also be provided to guide the
generation. Ensure that the generated text conveys
a positive sentiment.

Here are the definitions of the involved frame(s):
- Protecting: Some Protection prevents a Danger
from harming an Asset.

Here are the input texts:
1. Environmental activists shield endangered
species from extinction caused by poaching.
- Protecting:
- Lexical Unit (LU): shield
- Roles:  Asset(endangered species),
Protection(environmental activists)
2. Volunteers protect local forests from the threat
of wildfires by maintaining firebreaks.
- Protecting:
- Lexical Unit (LU): protect
- Roles: Asset(local forests), Protec-
tion(volunteers)

Answer:

Figure 4: Example prompt for generating positive Back-
ground Knowledge (BK) from clustered instances, using
frames, original text, and frame definitions. The full
prompt is in Appendix A, with a simplified version
shown here.

taining semantically related examples, retrieval can
be efficiently performed by selecting the medoid
of each cluster as an entry point. The medoid is
the instance within the cluster that is closest to the
centroid in the implicit space induced by the simi-
larity measure (Dhillon et al., 2004), ensuring that
it corresponds to a real example in the dataset. This
choice allows selecting representative knowledge
without needing to compare against all examples.

To retrieve the most relevant BK for a new in-
put, we explore two alternative similarity-based
approaches: one leveraging structural similarity
through kernel functions and another using seman-



tic similarity in a dense embedding space. The first
method is consistent with the clustering process
used in BACKGEN as it relies on the same tree-
structured representation of frames. Given a new
input sentence, its frame representation is extracted
and compared against each cluster medoid using
the adopted tree kernel function (Croce et al., 2011),
selecting those entry whose medoid maximizes the
kernel function, i.e. the similarity. This approach
captures fine-grained structural alignment between
examples, reflecting similarities in event structures
and role assignments. The main advantage is that
it ensures coherence between the retrieved BK and
the input instance. However, it requires parsing
the new input according to FrameNet, which may
introduce additional computational overhead, par-
ticularly in tasks where fast inference is required.
An alternative retrieval strategy is based on text
similarity. Instead of relying on structured frame
representations, dense vector embeddings of both
the new input and the BK entry points are com-
puted using a pre-trained language model such as
BERT (Reimers and Gurevych, 2019). The sim-
ilarity between the new instance and each clus-
ter medoid is then measured using cosine similar-
ity, based on the original, unaltered text without
frame labeling. This approach avoids the need for
explicit frame parsing, making it more adaptable
across different tasks, and captures broader con-
textual relationships beyond frame-level structures.
Each retrieval method presents a trade-off between
interpretability and efficiency. In our hypothesis,
kernel-based retrieval maintains structural coher-
ence, making it preferable when fine-grained se-
mantic consistency is required. Embedding-based
retrieval, however, provides a more flexible and
computationally efficient alternative. In the exper-
imental section, we evaluate both approaches in
terms of their effectiveness in selecting useful BK
for prompt augmentation and analyze their impact
on task performance. This approach also keeps
retrieval efficient, as the number of cluster medoids
remains at most O(y/n), where n is the number of
original instances.

4 Experimental Validation

Evaluating a Background Knowledge (BK) reposi-
tory typically involves assessing the factual accu-
racy of its statements with respect to real-world
knowledge. However, such an evaluation is beyond
the scope of this work. Instead, we assess the prac-
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Attribute Statistic
# negative phrase 1,697
# positive phrase 876
avg. span length neg. phrase 3.09
(# token) pos. phrase 2.69
# tweets no sentiment phrase 198
# tweets - total 1,500

Table 1: Data overview of the aggregated dataset for the
sentiment phrase layer.

tical utility of BACKGEN by measuring its impact
on a downstream task-Sentiment Phrase Classifi-
cation (SPC). Specifically, we examine whether
integrating BACKGEN-derived BK into prompts
improves the ability of a Large Language Model
(LLM) to classify the sentiment polarity of a given
phrase in context.

Experimental Setup. We created an SPC dataset
for the environmental sustainability domain by ex-
tending the English dataset by Bosco et al. (2023)
with additional language data from the social me-
dia platform X. The dataset consists of tweets
discussing environmental and socio-political is-
sues, where sentiment interpretation often relies
on domain-specific background knowledge. Given
the nuanced nature of these discussions, implicit
assumptions and contextual understanding play a
crucial role in correctly assessing sentiment polar-
ity. The extended dataset follows the same data
collection and annotation process as the original,
ensuring safety regarding identifying individual
people and absence of offensive content. Each mes-
sage is annotated by three native English speakers
from the crowdsourcing platform Prolific?, at a rate
of 9 GBP per hour, and the labels are aggregated
by majority voting over sequence (Rodrigues et al.,
2014). Personal information on the annotators is
not disclosed in the final dataset. After filtering out
the instances with no sentiment phrases, the dataset
comprises 2,573 phrases (Table 1).

To parse the text with Frame Semantics, we em-
ploy LOME (Xia et al., 2021), a state-of-the-art
parser for FrameNet that performs the full pipeline
from lexical unit (LU) detection to complete se-
mantic role labeling (SRL). For computing simi-
larity between frame representations, we use the
Smoothed Partial Tree Kernel (SPTK) (Croce et al.,
2011), implemented within the KELP library (Fil-
ice et al., 2018), which also provides the kernel-

2https://www.prolific.com/
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based k-means clustering algorithm (Dhillon et al.,
2004). For generating BK, we use a LLM with a
structured prompt following the example in Fig-
ure 4. The prompt template, detailed in Ap-
pendix A, is designed to extract generalizable
knowledge from clustered examples by summariz-
ing their common conceptual patterns. The binary
task distinguishes positive and negative sentiment.
Due to class imbalance, we report per-class preci-
sion, recall, and weighted F1-score. Experiments
were run on an NVIDIA A-100.

Experiment and Results. We evaluate the effec-
tiveness of BACKGEN using two state-of-the-art
open-source models, Mistral-7B? and Llama3-8B*
(Dubey et al., 2024). Each model is employed
both for generating background knowledge (BK)
and for performing sentiment phrase classification
(SPC), ensuring a consistent evaluation across the
entire pipeline. The evaluation follows a 5-fold
cross-validation setup. For each fold, BACKGEN is
applied to 4/5 of the dataset (training set) to gen-
erate a BK database, while the remaining 1/5 is
used for testing. The models are tested under dif-
ferent prompting conditions. In the 0-shot set-
ting, the LLM receives only the input text and
target phrase, without additional context. In the
few-shot setting, one (1-shot) or two (2-shot) ex-
amples from the training set are provided in the
prompt, either selected randomly (rang) Or based
on text similarity (tsim). The text similarity is com-
puted via Sentence-BERT embeddings (Reimers
and Gurevych, 2019) using all-MiniLM-L6-v2°.
For background knowledge prompting, the exam-
ples are replaced with retrieved BK entries. The re-
trieval process selects entries based either on frame-
based similarity (gemel) OF text similarity (tsim ), the
latter computed using the same Sentence-BERT
model. In both cases, the number of BK entries
matches the few-shot setting, with one or two re-
trieved statements included in the prompt. The
specific templates used for 0-shot, few-shot, and
BK-shot prompting are reported in Appendix B°.
In all cases, greedy search is used for token genera-

3https ://huggingface.co/mistralai/
Mistral-7B-Instruct-v@.2

*https://huggingface.co/meta-1lama/Llama-3.
1-8B-Instruct

5https ://huggingface.co/sentence-transformers/
all-MinilM-L6-v2

The model is expected to output Positive or Negative as
the first word. If absent, the first occurrence of either label in
the response is used; if neither is found, the instance is marked
as unanswered, lowering recall.
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tion to ensure reproducibility and robustness.
Tables 2 and 3 summarize the results in terms
of per-class precision, recall, and F score. The
weighted F score, which accounts for class imbal-
ance, provides an overall measure of performance.
As expected, few-shot prompting improves over
0-shot, with 2-shot generally outperforming 1-shot.
Additionally, selecting examples based on their
similarity to the test instance (tsim) leads to bet-
ter performance than random selection (rang), cOn-
firming that more relevant examples contribute to
better predictions. The most significant improve-
ment comes from replacing explicit examples with
structured background knowledge. In particular,
BK-based prompting consistently outperforms tra-
ditional few-shot methods, demonstrating that syn-
thesized knowledge captures generalizable patterns
that are more informative than individual training
examples. The 2-BKrsiy, configuration achieves
the best weighted [ scores across both models,
with an error reduction relative to 0-shot of 29.94%
for Mistral-7B and 26.76% for Llama3-8B. Com-
pared to the stronger 2-shotrang baseline, our pro-
posed method yields a substantial relative error
reduction, with Mistral-7B achieving 22.73% and
Llama3-8B achieving 19.59%. While the absolute
improvement in weighted I over the best few-shot
baseline may appear modest, these error reduction
rates demonstrate the practical value of integrating
structured background knowledge into the prompt.
We anticipate that this benefit could be even more
pronounced in settings where the zero-shot and
few-shot baselines are less competitive.
Comparing the two BK selection methods, text
similarity-based retrieval (BK7s;,) performs bet-
ter than frame similarity-based retrieval (BKgemer)-
This suggests that text-based embeddings provide
a more robust signal for retrieving relevant knowl-
edge, while frame-based retrieval is more sensitive
to parsing errors and the specificity of extracted
structures. Compared to the classical few-shot ap-
proach, BACKGEN requires an additional step to
generate background knowledge (BK); however,
this process is performed only once as a prepro-
cessing step. At inference time, the computational
cost of retrieving BK entries for prompting is equiv-
alent to that of selecting examples in a standard
few-shot setting, when using the same retrieval
strategy. Therefore, BACKGEN offers a practical
advantage, achieving superior performance with re-
spect to few-shot prompting while maintaining the
same inference-time computational requirements.
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Mistral-7B

Shot Negative Positive Weighted Absolute Relative Error  Relative Error

. . Fi Error Reduction Reduction

Precision Recall F Precision Recall 2t to O-shot to 2-shot

0-shot 0.966 0.923 0.944 0.886 0911 0.898 0.928 0.072 - -10.29%
1-shofrand 0.957 0.944  0.950 0917 0.876  0.896 0.931 0.069 4.46% -5.38%
2-shotrand 0.969 0.931  0.949 0.895 0919  0.907 0.935 0.065 9.33% -
1-shottsim 0.957 0.955 0.956 0.931 0.877  0.903 0.938 0.062 13.09% 4.15%
2-shottsim 0.969 0.939  0.953 0.910 0918 00914 0.940 0.060 16.30% 7.68%
1-BKemel 0.964 0.947  0.955 0.909 0925 0917 0.942 0.058 19.50% 11.21%
2-BKKemel 0.963 0.949  0.956 0913 0922 0919 0.943 0.057 20.89% 12.75%
1-BK 1sim 0.965 0.952  0.959 0917 0.927 0922 0.946 0.054 24.79% 17.05%
2-BKsim 0.968 0.956  0.962 0.922 0.930 0.926 0.950 0.050 29.94% 22.73%

Table 2: Results of 5-fold cross-validation for the Sentiment Phrase Classification (SPC) task using Mistral-7B. For
each prompting strategy, we report Precision, Recall, and Fj score for both negative and positive classes, as well
as the overall weighted F; and Absolute Error. Relative error reduction is shown with respect to both the 0-shot
and 2-shotrang baselines. Prompting methods compared include: zero-shot (no additional context), few-shot with
randomly selected (rang) Or Sentence-BERT text similarity-selected (tsim) examples, and background knowledge
(BK)-based prompting, where BK entries are retrieved either by frame-semantic kernel similarity (kemel) O text
similarity (sin). Best overall scores are highlighted in bold.

Llama3-8B

Shot Negative Positive Weighted Absolute Relative Error Relative Error

Precision  Recall Fy Precision  Recall F B Error ngl(lf:;::; tolzis:zctf:::
0-shot 0.894 0.922  0.908 0.854 0.731  0.787 0.867 0.133 - -9.79%
1-shotrand 0.866 0.954  0.908 0.888 0.706  0.786 0.866 0.134 -0.15% -9.96%
2-shotrand 0.881 0949 0914 0.884 0.749  0.810 0.879 0.122 8.92% -
1-shottsim 0.867 0.958 0910 0.901 0.707  0.792 0.870 0.130 2.40% -7.16%
2-shotrsim 0.882 0955 0917 0.900 0.751  0.819 0.884 0.116 12.89% 4.36%
1-BKkermel 0.890 0942 0915 0.873 0.767  0.816 0.881 0.119 10.87% 2.14%
2-BKKernel 0.887 0951 0919 0.893 0.759  0.820 0.885 0.115 13.87% 5.43%
1-BK 1sim 0.882 0948 0914 0.882 0.748  0.809 0.878 0.122 8.62% -0.33%
2-BK1sim 0.900 0962  0.930 0.915 0.791  0.848 0.902 0.098 26.76 % 19.59%

Table 3: 5-fold cross-validation results using Llama3-8B, following the same setup as in Table 2.

Overall, these results highlight the potential of
structured background knowledge to enhance sen-
timent phrase classification. By capturing concep-
tual generalizations rather than relying on specific
examples, BACKGEN mitigates the performance
variability associated with example selection and
provides a more stable and effective alternative to
few-shot learning.

5 Error Analysis

To better understand the impact of BK on model
predictions, we analyze cases where BK improves
classification as well as those where it introduces
errors. The goal is to identify patterns in both
helpful and harmful BK selections. Given that
Mistral-7B outperforms Llama3-8B, we conduct
this analysis using Mistral-7B with the 2-shot BK
selection based on text similarity.

BK is particularly useful when the sentiment po-
larity of a phrase depends on contextual understand-
ing. For example, in the instance “big problems

may arise if your ductwork system is not installed
correctly homeowners will encounter discomfort
poor indoor air quality inflated electricity bills
periodic repairs and in some cases complete re-
placement”, the 0-shot model incorrectly classifies
the target phrase “big problems may arise” as posi-
tive. However, a retrieved negative BK statement,
i.e., “The constant increase in expenses for vari-
ous reasons, such as pollution and gentrification,
is a major issue that negatively impacts our lives.”,
helps the model correctly reclassify the phrase as
negative by reinforcing the association between
financial burdens and negative sentiment.

Errors in BK selection primarily arise when (i)
the retrieved BK is not sufficiently similar to the
test instance, (ii) the BK is too generic, or (iii)
the BK is overly specific. In cases where the re-
trieved BK does not align closely with the input,
the model struggles to integrate it into the classi-
fication decision. Although the BK may contain
relevant commonsense knowledge, it fails to pro-
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vide meaningful guidance due to its semantic dis-
tance from the test instance. This can lead to the
model overriding a previously correct classification,
sometimes defaulting to a neutral response such as
“... The background knowledge does not provide
enough information to determine the polarity of
the target phrase.” This suggests that, beyond BK
retrieval, there is potential value in using model un-
certainty as a signal, if no sufficiently relevant BK
is found, the test instance itself may be an outlier
relative to the training data. Another failure mode
occurs when the retrieved BK is too generic. This
typically results from poor clustering, where mul-
tiple frames that are not semantically aligned are
grouped together, leading to vague or uninforma-
tive statements. For example, a BK entry such as
“Changes in policies can have a significant impact
on society” lacks specificity, making it difficult for
the model to determine sentiment in a meaning-
ful way. Overly specific BK can also introduce
bias, particularly when the generated knowledge re-
peatedly mentions the same entity across multiple
instances. Consider the instance “you do realize
bill gates is heavily invested in animal agriculture
right he has enormous feed crop landholdings for
animal ag supplying factory farms amp feedlots he
also he invests in gmo cow research”, where the
0-shot model correctly classifies the target phrase
“heavily invested” as positive. However, one re-
trieved BK statement, i.e., “The fact that Bill Gates
is involved in funding and promoting synthetic
meat, despite Jeremy’s disdain for him, is a dis-
appointing turn of events.”, introduces a negative
stereotype, leading the model to misclassify the
phrase as negative. This suggests that the model is
overfitting to entity-level associations rather than
recognizing general sentiment cues. A potential
solution is to refine the BK generation prompt to
avoid explicit mentions of named entities, ensuring
the generated knowledge remains applicable.

6 Conclusions and Future Works

We presented BACKGEN, a framework that lever-
ages Frame Semantics to generate structured Back-
ground Knowledge (BK) as a principled alternative
to example-based prompting. By clustering seman-
tically related instances and synthesizing general-
ized knowledge via LLMs, BACKGEN enables ab-
stract and robust reasoning. Applied to Sentiment
Phrase Classification (SPC), where polarity often
depends on implicit context, BK-based prompt-
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ing significantly improves performance, achieving
up to 29.94% error reduction over zero-shot and
22.73% over few-shot baselines.

While our main focus is on evaluating whether
background knowledge (BK) improves SPC perfor-
mance over few-shot prompting, we do not directly
assess the quality of the generated BK. A system-
atic evaluation of its fluency and generalizability
could inform prompt refinement and strengthen our
approach, which we leave for future work.

Further directions include exploring the applica-
tion of background knowledge (BK) in other tasks
that require commonsense, analogical, and context-
sensitive reasoning, such as question answering
or stance detection. We will also test the cross-
domain generalization of BACKGEN by evaluating
its scalability and robustness when BK is gener-
ated from domains different from the target task.
Another line of investigation will focus on identi-
fying and mitigating potential biases in both the
generated knowledge and the underlying dataset,
with the goal of increasing fairness and control in
BK construction. Additionally, we plan to com-
pare BACKGEN directly with existing knowledge
prompting methods, to assess whether it can serve
as a viable alternative beyond the classical few-
shot baseline explored in this paper. Finally, we
see promising opportunities in connecting BK with
explainability: by anchoring model predictions to
frame-based abstractions, BACKGEN could sup-
port more interpretable and cognitively grounded
language understanding.

Limitations

The applicability of the BK database produced in
this study is currently limited to the environmen-
tal sustainability domain, and its effectiveness in
other sentiment analysis tasks remains to be ex-
plored. Additionally, as BACKGEN relies on a
frame parser, the quality of the generated BK is
inherently dependent on the accuracy of the parser.

Another limitation is the lack of automatic analy-
sis of the collected BK statements, which may unin-
tentionally introduce biases. Since BK is generated
from clustered instances, certain perspectives may
be overrepresented, reinforcing pre-existing biases
in the data. Future work should focus on devel-
oping methods for detecting and mitigating such
biases, ensuring that the generated BK remains
neutral and representative across different domains.
Moreover, investigating how BK influences model



reasoning, i.e., particularly in tasks requiring ex-
plainability, could provide insights into its broader
applicability beyond sentiment analysis.

Ethical Reflections

It is important to consider the potential risks of NLP
tools like BACKGEN, particularly the possibility of
generating biased or misleading background knowl-
edge (BK). Without proper safeguards, BACK-
GEN could produce inaccurate, overly generalized,
or even harmful statements that misrepresent real-
world contexts, especially in sensitive areas like
environmental sustainability. To mitigate this risk,
prompt design should be carefully refined to en-
courage neutral and well-grounded knowledge gen-
eration. Additionally, a verification step should be
implemented to detect and filter out problematic
BK, ensuring that the generated content remains
accurate, unbiased, and contextually appropriate.
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A Prompts for Background Knowledge Generation

The BACKGEN framework employs two prompts to generate Background Knowledge (BK) from clusters
of semantically similar instances. These clusters are formed by grouping examples that evoke the same
semantic frames and share a common sentiment polarity, either positive or negative. Each cluster is then
processed using the appropriate prompt:

* Clusters of positive instances use the Positive Sentiment Knowledge Prompt (Figure A).
* Clusters of negative instances use the Negative Sentiment Knowledge Prompt (Figure B).
Each prompt follows a standardized structure to ensure consistency in BK generation:

1. Task Definition: The prompt begins with an explicit instruction, guiding the model to generate a
single sentence that captures general background knowledge from the clustered examples. This
instruction specifies that the output should reflect a stereotypical generalization, either positively or
negatively framed, depending on the sentiment of the cluster.

2. Example Cluster: The prompt includes an example cluster of semantically related instances, where
each input sentence is annotated with its corresponding frame-semantic structure. This includes:

* The Lexical Unit (LU) evoking the frame.
* The Frame Elements (roles) present in the sentence.
* The Frame Definitions to provide contextual understanding.

3. Example BK Statement: A correctly structured BK statement is provided as a reference, demonstrat-
ing the level of abstraction and generalization expected from the model. This serves as a guideline to
ensure that the output captures high-level conceptual knowledge rather than instance-specific details.

4. Target Cluster for BK Generation (‘“Your Turn”): The final section of the prompt presents a
new set of sentences from a different cluster (all sharing the same sentiment polarity and evoking
similar frames). This part of the prompt contains placeholders (e.g., {frame_n}, {text_n}, {LU},
{arguments_of_frame}) that are dynamically populated based on the actual instances and frame
annotations of the current cluster. The model is then instructed to generate a single BK statement
that generalizes the semantic properties of these instances, mirroring the structure of the provided
example.

Both prompts are designed to ensure that the model generates reliable, structured commonsense knowledge
that can be effectively injected into prompts for downstream NLP tasks. Additionally, the framework
supports variations of these prompts where the instruction is modified to generate a short paragraph instead
of a single sentence, allowing for more detailed knowledge synthesis.

B Prompts for Sentiment Phrase Classification (SPC)

To evaluate different prompting strategies in Sentiment Phrase Classification (SPC), we employed three
approaches:

» Zero-shot (Figure C): The model classifies the sentiment polarity (positive or negative) of a target
phrase within a given text without additional context. The prompt explicitly instructs the model to
provide a classification and a brief explanation.

* Few-shot (Figure D): The model is given one or two labeled examples (/-shot or 2-shot) before
classifying the target phrase. The examples are either selected randomly (rang) Or based on text
similarity (tsim) With the input instance. The model cannot explicitly reference these examples in its
explanation.
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Write one sentence expressing general background knowledge that reflects stereotypical information, based on
the input sentences provided. These sentences are grouped by shared situations (or frames) modeled according
to Frame Semantics Theory. Each input sentence explicitly indicates the Lexical Unit (evoking the frames) and
the corresponding role. Definitions of the frames will also be provided to guide the generation. Ensure that the
generated text conveys a positive sentiment and the reason for the sentiment should be made explicit.

Example:

Here are the definitions of the involved frame(s):
- Cause_change of position on_ a_scale: This frame consists of words that indicate that an Agent or
a Cause affects the position of an Item on some scale (the Attribute) to change it from an initial value
(Value_1) to an end value (Value 2).

Here are the input texts:
1. if the tourism sector is serious about reducing its footprint they should choose real emission reductions and
biodiversity protection even airlines are starting to move away from offsets fornature 4
- Cause_change of position_on_a_scale:
- Lexical Unit (LU): reducing
- Roles: Attribute(its footprint)

2. moving away from capitalism green washing is not easy under the current systems political allegiances we
live within so i commend for being bold enough to try but let us not forget that redistributing wealth and
reducing consumerism must remain 1 priorities

- Cause_change of position_on_a_ scale:
- Lexical Unit (LU): reducing
- Roles: Attribute(consumerism)
3. india reduced emission intensity of its gdp by 24 per cent in 11 yrs through 2016 un via official pollution
- Cause_change of position_on_a_ scale:
- Lexical Unit (LU): reduced
- Roles: Agent(India),Attribute(emission intensity of its GDP),Difference(by 24 per cent),
Speed(in 11 yrs),Time(through 2016),Means(un via official pollution)

Answer: Reducing material that is bad for the environment is a positive act.

Your Turn:

Here are the definitions of the involved frame(s):
- {frame_1} : {definition_of_frame_1}.

- {frame_n} : {definition_of_frame_n}

Here are the input texts:
1. {text_1}
- {frame_label_of_text_1}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_1}
- Roles: {arguments_of_frame_label_of_text_1}

n. {text_n}
- {frame_label_of_text_n}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_n}
- Roles: {arguments_of_frame_label_of_text_n}

Answer:

Figure A: Prompt for generating positive sentiment background knowledge. The input sentences are clustered based
on shared semantic frames, and the model is instructed to generate a generalized knowledge statement that reflects a
positive sentiment.

* BK-shot (Figure E): Instead of example-based prompting, the model receives background knowledge
(BK) statements generated by BACKGEN. These statements, selected using either frame similarity
(Kernel) OF text similarity (tsim), provide generalizable knowledge to guide sentiment classification.

Each prompt follows a structured format, including:
* Task Definition: the goal is to classify the sentiment polarity of a given target phrase.

¢ Instructions: Constraints are provided, including the requirement for a polarity label and an
explanation, without explicit reference to examples or BK.

 Input Information: The given text and target phrase are explicitly stated.
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Write one sentence expressing general background knowledge that reflects stereotypical information, based on
the input sentences provided. These sentences are grouped by shared situations (or frames) modeled according
to Frame Semantics Theory. Each input sentence explicitly indicates the Lexical Unit (evoking the frames) and
the corresponding role. Definitions of the frames will also be provided to guide the generation. Ensure that the
generated text conveys a negative sentiment and the reason for the sentiment should be made explicit.

Example:

Here are the definitions of the involved frame(s):
- Causation: A Cause causes an Effect.
- Destroying: A Destroyer (a conscious entity) or Cause (an event, or an entity involved in such an event)
affects the Patient negatively so that the Patient no longer exists.
- Cause_to_end: An Agent or Cause causes a Process or State to end.
- Cause_to_amalgamate: These words refer to an Agent joining Parts to form a Whole.

Here are the input texts:
1. water pollution is putting our health at risk unsafe water kills more people each year than war and all other
forms of violence combined here are six causes of water pollution as well as what we can do to reduce it
- Causation:
- Lexical Unit (LU): putting
- Roles: Cause(water pollution),Effect(our health),Cause(at risk unsafe water kills more people
each year than war and all other forms of violence combined)

2. i hope izzy one day understands that we can be against pollution in all it s forms which truly is destroying
our environment and health but also be smart enough to see through the carbon emissions global warming
shenanigans

- Destroying:
- Lexical Unit (LU): destroying
- Roles: Cause(pollution in all it s forms),Cause(which),Patient(our environment and health)

3. extinction is forever amp for all we know we have lost what we will need to fix things when it becomes
obvious we have to do something technology will not end pollution of the air water soil or the contamination
of our food earth cycles themselves will be the only way out of it

- Cause_to_end:
- Lexical Unit (LU): end
- Roles: Cause(technology),State(pollution of the air water soil)
4. water pollution is putting our health at risk unsafe water kills more people each year than war and all other
forms of violence combined here are six causes of water pollution as well as what we can do to reduce it
- Cause_to_amalgamate:
- Lexical Unit (LU): combined
- Roles: Parts(all other forms of violence)

Answer: The existence of pollution and other materials that cause damage and destroy our environment is very
negative.

Your Turn:

Here are the definitions of the involved frame(s):
- {frame_1} : {definition_of_frame_1}.

- {frame_n} : {definition_of_frame_n}

Here are the input texts:
1. {text_1}
- {frame_label_of_text_1}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_1}
- Roles: {arguments_of_frame_label_of_text_1}

n. {text_n}
- {frame_label_of_text_n}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_n}
- Roles: {arguments_of_frame_label_of_text_n}

Answer:

Figure B: Prompt for generating negative sentiment background knowledge. The model generates a background
knowledge statement that reflects the negative sentiment conveyed by the clustered examples.

» Additional Context: In few-shot prompting, examples are included; in BK-shot prompting, relevant
background knowledge statements are injected instead.
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* Expected Output: The model generates a classification followed by a justification.

Figures C, D, and E illustrate the complete templates for the zero-shot, few-shot, and BK-shot prompts.

Task: Determine the polarity (either ’positive’ or 'negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. The explanation should be clear and helpful for the user to
understand the choice.

Instructions:
- The polarity output can only be 'positive’ or 'negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Answer:

Figure C: Prompt zero-shot for SPC.

Task: Determine the polarity (either ’positive’ or 'negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. You are also provided with some examples. The explanation
should be clear and helpful for the user to understand the choice.

Instructions:
- Use the examples to help determine the polarity.
- Note the sentiment of each example as it may assist in your reasoning.
- The polarity output can only be 'positive’ or 'negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.
- The user is not aware of the examples, so you cannot refer to them explicitly in your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Examples:
1. {example text_13}. Target Phrase: {example_target_phrase_1}. Sentiment: {example_polarity_13}

{example text_n}. Target Phrase: {example_target_phrase_n}. Sentiment: {example_polarity_n}

Answer:

Figure D: Prompt few-shot for SPC.

Task: Determine the polarity (either ’positive’ or negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. You are also provided with potentially useful sentences
reflecting background knowledge. The explanation should be clear and helpful for the user to understand the
choice.

Instructions:
- Use the background knowledge to help determine the polarity.
- Note the sentiment of each background sentence as it may assist in your reasoning.
- The polarity output can only be 'positive’ or 'negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.
- The user is not aware of the background knowledge, so you cannot refer to it explicitly in your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Examples:
1. {bk text_13}. {bk_polarity_1}

{bk text n}. {bk_polarity_n}

Answer:

Figure E: Prompt BK injection shot (bk-shot) for SPC.
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Abstract

Since the advent of Large Language Models
(LLMs), much work has been devoted to com-
paring the linguistic abilities of humans and ma-
chines. Figurative language, which is known to
rely on pragmatic inferential processes as well
as lexical-semantic, sensorimotor, and socio-
cognitive information, has been often used
as a benchmark for this comparison. In the
present study, we build on previous behavioral
evidence showing that both distributional and
sensorimotor variables come into play when
people are asked to produce novel and apt
metaphors and examine the behavior of LLMs
in the same task. We show that, while distribu-
tional features still hold a special status, LLMs
are insensitive to the sensorimotor aspects of
words. This points to the lack of human-like
experience-based grounding in LLMs trained
on linguistic input only, while offering fur-
ther support to the multimodality of conceptual
knowledge involved in metaphor processes in
humans.

1 Introduction

Large language models (LLMs)’s outstanding abil-
ities to solve increasingly complex linguistic tasks
(Bubeck et al., 2023; Marvin and Linzen, 2018;
Srivastava et al., 2022; Strachan et al., 2024; Webb
et al., 2023) have given rise to a theoretical debate
on how their skills compare to those of humans
(Birhane and McGann, 2024; Mahowald et al.,
2024; Mitchell and Krakauer, 2023).

One main point of debate is that, while human
linguistic knowledge is acquired through multi-
modal (sensory, motor, emotional, verbal, etc.)
sources (Barsalou, 2008), most LLMs are trained
on huge amounts of text only (Bender and Koller,
2020; Bisk et al., 2020), questioning whether LLMs
can be considered psychologically valid models of
cognition (Bolhuis et al., 2024; Cuskley et al., 2024;
Lake and Murphy, 2023).
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Pragmatic skills, namely the ability to under-
stand the context-dependent meaning of utterances,
including non-literal expressions, have been taken
as an ideal test bed to explore the high-level lin-
guistic abilities of LLMs (Barattieri di San Pietro
et al., 2023; Liu et al., 2022). Importantly, inter-
preting non-literal meaning might require skills
beyond determining statistical regularities in lan-
guage. Theoretical pragmatic accounts have high-
lighted the context-bound nature of pragmatic
reasoning (Gumperz, 1982), the need for meta-
representation of the speaker’s intention (Sperber,
1994), and the potential presence of imagistic pro-
cesses alongside purely verbal processes (Carston,
2018; Gibbs Jr and Matlock, 2008; Paivio and
Walsh, 1993). These claims are supported by neu-
roimaging experimental evidence that showed, for
non-literal meaning processing, activations of brain
circuits linked to mental imagery (Mashal et al.,
2014) as well as Theory of Mind skills, namely the
ability to attribute mental states to others (Bambini
et al., 2011; Enrici et al., 2019; Van Ackeren et al.,
2012).

Among pragmatic phenomena, figurative lan-
guage and metaphors are of particular interest.
Metaphors are non-literal uses of language that
require a context-driven adjustment of the lexi-
cally encoded concepts to grasp the interlocutor’s
intended meaning (Wilson and Carston, 2007).
Most studies, including this one, focus on nom-
inal metaphors that involve two terms — a topic and
a vehicle — in the form “X is Y. In a metaphor
such as “Lawyers are sharks”, the concept evoked
by the vehicle “sharks” is adjusted by dropping
semantic features that are not salient based on the
context — e.g., “swims” and “has a fin” — while
promoting features leading to the intended mean-
ing, such as “aggressive” and “ruthless”. Studies
showed that, in addition to lexical-semantic pro-
cesses, sensorimotor processes also have a role in
metaphor processing (Battaglini et al., 2025; Al-
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Azary and Katz, 2021). For example, Al-Azary and
Katz (2021) showed that the bodily-action aspects
of words are active when processing low-familiar
metaphors.

The metaphoric processing abilities of LLMs
have been widely investigated (Carenini et al.,
2023; Ichien et al., 2024; Neidlein et al., 2020;
Prystawski et al., 2022; Wachowiak and Gromann,
2023). LLMs exhibit high accuracy in identifying
and interpreting metaphors, yet their performance
may rely on different mechanisms compared to
humans, as shown by different patterns of errors
(Barattieri di San Pietro et al., 2023; Liu et al.,
2022) or the need for psychologically informed
paradigms to improve their responses (Prystawski
et al., 2022).

Compared to metaphor identification and inter-
pretation, metaphor production is a less investi-
gated area, both in humans and machines. Exam-
ining how people construct metaphors, and which
semantic features guide the process of metaphorical
conceptualization, may shed further light on high-
level language skills and the role of multimodality,
and therefore is a fertile ground for comparison
with LLMs.

Katz (1989) investigated metaphor production
with a vehicle selection paradigm, (i.e., asking par-
ticipants to produce a metaphor by selecting the
metaphor vehicle word among a given set), and
found that participants tend to choose concrete
words with a moderate semantic distance from the
topic. Expanding the study of the semantic features
at work in metaphor production, Al-Azary and Katz
(2023) investigated the role of semantic richness,
namely the amount of semantic information carried
by a word (Yap et al., 2012). Specifically, they
used two variables reflecting different aspects of se-
mantic richness: Semantic Neighborhood Density
(SND) and Body-Object Interaction (BOI). SND
was defined as high (dense) or low (sparse), based
on the average distance between the word and its
semantic neighbors (Buchanan et al., 2001). Body-
Object Interaction is a normed variable, derived
from human ratings, that indicates the ease with
which a human body can physically interact with a
word’s referent (Siakaluk et al., 2008), thus reflect-
ing sensorimotor richness. Humans are more likely
to experience physical interaction with the refer-
ent of a high-BOI word such as ‘umbrella’ rather
than that of a low-BOI word such as ‘volcano’.
They found that participants prefer vehicles with
low SND and low BOI, like ‘cloud’ or ‘rainbow’
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(rather than high-BOI high-SND words like “pil-
low’), resulting in metaphors such as ‘Boredom is a
cloud’ or ‘Persuasion is a rainbow’. This indicates
that humans are sensitive to both sensorimotor and
linguistic richness, as expressed by high SND and
high BOI, in metaphor production.

In this study, we tested LLMs in the same
metaphor production task to examine whether dis-
tributional and sensorimotor features of words,
which are relevant for human participants, drive
metaphor production in LLMs as well, and whether
LLMs show the same direction of effects.

2 Methods

We reproduced the behavioral experiments of the
study by Al-Azary and Katz (2023) on LLMs by
prompting four models within the open-source fam-
ily of GPT2 models developed by OpenAl (Rad-
ford et al., 2019).

2.1 Material

Materials were taken from the original study. The
set of stimuli included 36 topics and 48 potential
vehicles. Topics were abstract words, as assessed
by low concreteness ratings in the Brysbaert et al.
(2014) dataset. Moreover, topics were balanced in
terms of SND values extracted from the WIND-
SORS database (Durda and Buchanan, 2008), with
half of them with low SND and half with high SND.
Vehicles were concrete words, as assessed by high
concreteness ratings in the Brysbaert et al. (2014)
dataset and were balanced in terms of both SND
values (Durda and Buchanan, 2008) and Body-
Object Interaction (BOI) values, extracted from
the databases by Bennett et al. (2011) and Tillot-
son et al. (2008), resulting in four combinations of
12 vehicles each. An example of each category of
topic and vehicle is provided in Table 1.

2.2 Models

We employed four pre-trained transformer-based
language models developed by OpenAl (Radford
et al., 2019): GPT2 (124M parameters), GPT2-
medium (355M parameter), GPT2-Large (774M
parameters), and GPT2-XL (1.5B parameters).
These models differ only in architecture scale: the
number of layers, hidden dimensions, and parame-
ters increases progressively, while the training data
and objectives remain constant. Specifically, these
models are trained on WebText, a large corpus of
English created by scraping 45 million links from



Topic .
(abstract) Low SND Nostalgia
High SND Empathy
Vehicle . .
High SND - High BOI | Seed
(concrete)
High SND - Low BOI | Butterfly
Low SND - High BOI | Umbrella
Low SND - Low BOI | Lighthouse

Table 1: Examples of topics and vehicles presented in
the experiment and their respective semantic conditions.
Note: SND = Semantic Neighborhood Density; BOI =
Body-Object Interaction.

Reddit. Differently from larger GPT models, GPT2
models provide access to the probability distribu-
tions over strings of words, a way of testing LLMs’
capabilities proven to be more reliable than prompt-
ing alone (Hu and Levy, 2023).

2.3 Procedure

In the original study, human participants were pre-
sented with the topic and the set of 48 vehicles, and
they were asked to choose one of the vehicles to cre-
ate a comprehensible and apt metaphor, resulting
in 36 unique metaphors produced. To replicate this
experimental paradigm, we prompted the model
with the string "TOPIC is a/an" and we collected
the likelihood scores of each candidate vehicle. For
each topic, we then extracted, the normalized prob-
ability distribution over the whole set of vehicles.
Probabilities were normalized using a softmax-like
transformation with a temperature parameter 7 =
0.05 to control sharpness. We randomized vehicle
order to reduce ordering bias and used a fixed seed
(set prior to execution) to ensure reproducibility.
The code was adapted from Carenini et al. (2023).
Even if GPT models are not explicitly instructed to
produce a metaphor, all possible candidates given
the prompt "TOPIC is a/an" form a metaphorical
expression. Thus, we expect that the models, when
completing the prompt in the most likely way as
they are trained to do, will provide us with what
the LLM consider the most comprehensible and apt
metaphor among the possible metaphorical combi-
nations.

2.4 Statistical Analysis

To test whether LLMs choose vehicles according
to the semantic features of both topics and vehi-
cles, we fit a set of Linear Mixed Models using
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Ime4 and ImerTest packages (Bates et al., 2015;
Kuznetsova et al., 2017) for each GPT2 model, sep-
arately. We consider the z-scaled probability of the
vehicle as the dependent variable and Topic SND,
Vehicle SND, and Vehicle BOI as interacting cate-
gorical predictors. A random intercept was added
to account for the variability of individual vehicles.
The resulting formula was: imer(probability ~ vehicle-SND
# vehicle-BOI * topic-SND + (Ilvehicle). Alpha level was set at

.05.

3 Results

The fitted linear mixed models showed a main ef-
fect of SND of the vehicles for GPT2-Medium (3
=0.64, t = 2.316, p = 0.025), GPT2-Large (8 =
0.612, t = 2.264, p = 0.029), and GPT2-XL (6 =
0.589, r =2.159, p = 0.036). These three models
showed a higher probability of choosing low-SND
vehicles compared to high-SND (Figure 1).

Probability of choosing vehicles

High Vehicle BOI Low Vehicle BOI

0.0

GPT Probabilities

-1.0

high low high low
Vehicle SND
topic SND high -& low

Figure 1: Effect of Vehicle SND on z-scaled probabil-
ities of choosing vehicles extracted from GPT2-Large.
Similar patterns are observed in the other GPT2 models.

Concerning GPT2, the linear mixed model
showed an interaction between Topic SND and
Vehicle SND (3 = -0.056, t = -2.321, p = 0.020),
meaning that GPT?2 assigned higher probabilities
to low-SND vehicles when completing metaphors
with high-SND topics.

No effect of vehicle BOI was found for all four
GPT?2 models, regardless of their size. Some ex-
amples of the metaphors produced by models (and



by humans from the original Al-Azary and Katz
(2023) study) can be found in Appendix A.

4 Discussion

In this work, we examined the role of distribu-
tional (SND) and sensorimotor (BOI) variables
in metaphor production by LLMs. To do so, we
prompted four models of the GPT2 family with
a metaphor production task from Al-Azary and
Katz (2023). In the original study, they found that
human participants, when asked to choose a vehi-
cle to construct an apt metaphor, tend to rely on
both SND and BOI, preferring vehicles with low
values in both variables. Differently, LLMs are
not sensitive to BOI values, equally choosing low-
and high-BOI words as vehicles, but showing a
preference for low-SND vehicles, as humans do.
In other words, LLMs align with human partici-
pants in choosing low-SND words such as ‘puz-
zle’, yet, they assign similarly high probabilities to
metaphors like "Boredom is a vacuum" (high BOI)
and "Persuasion is an eagle" (low BOI), showing
no sensitivity to BOI values — in contrast to hu-
man participants, who preferred metaphors with
low-BOI words such as "Boredom is a cloud" and
"Persuasion is a butterfly".

In their original study, Al-Azary and Katz (2023)
argued in favor of an advantage of low semantic
richness in the emergence of metaphorical mean-
ing. In line with that, Al-Azary and Buchanan
(2017) showed that semantic richness, operational-
ized as a greater number of closer semantic neigh-
bors (high SND), hinder the comprehensibility of
metaphors, in that the adjustment process to derive
the intended meaning in semantically rich concepts
is more costly compared to semantically less-rich
concepts, as many more features of the word need
to be discarded (Kintsch, 2000), hence leading to
a preference for low semantic richness (confirmed
in studies on literary metaphors (Reid et al., 2023;
Mangiaterra et al., 2024)).

Similarly, LLMs seem to adhere to the tendency
toward low semantic richness exhibited by humans
both in comprehension (Al-Azary and Buchanan,
2017) and production (Al-Azary and Katz, 2023).
However, LLMs do so by relying only on the distri-
butional features of words (SND) rather than their
sensorimotor content (BOI). This pattern did not
change across the four GPT2 models employed in
this study, suggesting that the ability to rely on
sensorimotor-relevant features is not significantly
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enhanced by simply model scale. Although we did
not find evidence of sensorimotor effects LLMs
in this task, we cannot rule out sensorimotor ef-
fects in other tasks, which can be an area of fu-
ture research. However, the lack of ability of the
four GPT2 models to modulate experience-based
aspects of vehicles is in line with previous work
tackling (embodied) cognition in language mod-
els. Xu et al. (2023) found that, while language
models have human-like representations of words
in non-sensorimotor domains, they do not align
with respect to words related to sensory and mo-
tor domains. Similarly, Lee et al. (2025) showed
that even if models could approximate human per-
ceptual ratings, they do so by relying more on lin-
guistic cues. Even multimodal LLMs fall behind
human performance in classical tasks exploring the
activation of implied sensorimotor features of con-
cepts in language processing (Jones et al., 2024).
There is also specific evidence of a poor handling
of sensorimotor experience in LLM’s processing
of metaphor. For instance, Barattieri di San Pietro
et al. (2023) found that ChatGPT performs better on
metaphors expressing a psychological characteris-
tic of the topic compared to metaphors capitalizing
on physical features. All of these studies employed
larger models compared to the GPT2 models used
in the present work, confirming that even if scaling
improves language performance, some sensorimo-
tor aspects cannot fully emerge from training on
textual input or input from visual modality only.
The role of both disembodied (SND) and em-
bodied (BOI) sources of linguistic knowledge in
metaphor production in humans (Al-Azary and
Katz, 2023) supports the theoretical account of the
“dual coding theory” (Paivio, 1979), namely the
perspective according to which the nature of con-
cepts is both symbolic and imagistic. Our results
on LLMs may provide evidence in support of these
claims about the nature of conceptual representa-
tion, as well. On the one hand, GPT2 models have
access to verbal input, and this is reflected in their
human-like behavior with respect to distributional
aspects of words, meaning that a certain portion
of linguistic abilities may have a purely disembod-
ied nature and can be acquired with exposure to
text only. On the other hand, a certain part of lin-
guistic skills in humans is linked to sensorimotor
experience, and the necessity of this experience for
human-like linguistic behavior is reflected in the
absence of these aspects in language models, which
lack this source of knowledge. This implies that



even huge amounts of linguistic input cannot re-
place the multimodal sources from which linguistic
knowledge is acquired in humans.

A suggestive hypothesis arising from the data is
that LLMs may behave in a way similar to humans
with low imagery and high vocabulary skills. Inter-
estingly, electrophysiological and behavioral stud-
ies accounting for individual differences reported
that different profiles emerge in metaphor process-
ing (Battaglini et al., 2025) and that a greater re-
liance on the semantic/distributional route may also
be present in humans. Shen et al. (2015) found
that participants with low mental imagery abili-
ties showed a greater neurophysiological response
linked to semantic mismatch and no imagery ac-
tivations when processing metaphors, while high-
vocabulary participants are found to be less sensi-
tive to sensorimotor features of words (Frau et al.,
2025) but more sensitive to their semantic neigh-
bors (Pexman and Yap, 2018).

This work confirms the importance of the study
of figurative language and metaphorical abstrac-
tion to disentangle the subtle aspects of linguistic
processing that distinguish between a formal and
a functional human-like competence of language
in large language models (Mahowald et al., 2024).
The evidence reported in this study may add to
the broader debate on which aspects of human lan-
guage abilities LLMs are actually modeling (Dove,
2024). In particular, our results suggest that LLMs
may be a valid model in cognitive science for those
linguistic aspects relying on distributional features,
while their limitations should be taken into account
when considering language skills that require a
multimodal conceptual representation.

5 Limitations

First of all, in the experiment, we chose to employ
GPT2 models and, even if scaling does not nec-
essarily improve human-like grounding (see Dis-
cussion), larger or multimodal models could pro-
vide different results for our metaphor production
task. Moreover, all of the vehicles used in the task
are concrete words and thus they potentially carry
sensorimotor information, regardless of their BOI
differences. So, the lack of sensitivity to this fine-
grained feature does not exclude the possibility of
a more general concreteness effect as found in Katz
(1989). In addition, the use of only concrete words
as vehicles did not allow us to explore the role of
other experiential variables typically found in ab-
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stract words (e.g., emotional and interocepective
properties) that may contribute to the processes
at work in metaphor production for humans and
machines.
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A Appendix

Examples of metaphors with higher probability
assigned by GPT2

Boredom is a vacuum (High BOI -Low SND)
Persuasion is an eagle (Low BOI — Low SND)
Prestige is a tiger (Low BOI — Low SND)

Destiny is a bicycle (High BOI — High SND)
Narcissism is a lighthouse (Low BOI — Low SND)
Sadness is a puzzle (High BOI — Low SND)

Examples of metaphors produced by humans
Boredom is a desert (Low BOI — Low SND)
Persuasion is a butterfly (Low BOI — Low SND)
Prestige is a rainbow (Low BOI — Low SND)
Destiny is a seed (High BOI — Low SND)
Narcissism is a volcano (Low Boi- High SND)
Sadness is a cloud (Low BOI — Low SND)
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Abstract

In this paper, we explore how large language
models (LLMs) can be used to assign soft la-
bels for metaphoricity in Popular Communica-
tion of Science (PCS) tweets written in Span-
ish. Instead of treating metaphors as a binary
yes/no phenomenon, we focus on their graded
nature and the variability commonly found in
human annotations. Through a combination of
prompt design and quantitative evaluation over
a stratified sample of our dataset, we show that
GPT-4 can assign probabilistic scores not only
for general metaphoricity but also for specific
metaphor types with consistency (Direct, In-
direct, and Personification). The results show
that, while LLMs align reasonably well with
average human judgments for some categories,
capturing the subtle patterns of inter-annotator
disagreement remains a challenge. We present
a corpus of 3,733 tweets annotated with LLM-
generated soft labels, a valuable resource for
further metaphor analysis in scientific discourse
and figurative language annotation with LLMs.

1 Introduction

Automatic metaphor detection has undergone a
significant evolution over the last decades, tran-
sitioning from traditional rule- and knowledge-
based methods to statistical and machine learning
methods, including supervised, semi-supervised,
and unsupervised techniques (Zayed, 2021). Most
recently, due to considerable advances in deep
learning, the utilization of large language models
(LLMs) has shown promising results in various
natural language understanding (NLU) tasks, in-
cluding metaphor detection and figurative language
processing (Wachowiak and Gromann, 2023; Tian
et al., 2024; Jia et al., 2025; Xu et al., 2024; Lin
et al., 2024). However, as we have previously noted
(Sanchez-Montero et al., 2025), research specifi-
cally focused on metaphor detection in Spanish
based on annotation disagreement remains signifi-
cantly limited.
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This study addresses the intricate nature of
metaphor annotation from an exploratory LLM
perspective, a task we found to be characterized
by inherent subjectivity and consequent disagree-
ments among human annotators. We assume that
these disagreements not only reflect the complex-
ity of the task, but may also be symptomatic of
the gradable nature of “metaphoricity”, where ex-
pressions possess different degrees of metaphori-
cal quality (Hanks, 2006). Particularly, we believe
that advanced LLMs, such as gpt-40 and gpt-4.1,
could be suitable for multi-label classification of
metaphors, given their ability to handle datasets
exhibiting an uneven distribution of multiple cat-
egories (Cloutier and Japkowicz, 2023; Kostina
et al., 2025), allowing us to distinguish between
different types or degrees of metaphoricity that con-
tribute to variability in annotation.

To explore this variability of interpretation and
the ability of LLMs to reflect it, we rely on
a prompted-based methodology using optimized
GPT-4 models, chosen for their demonstrated ca-
pabilities in annotating textual data (Yu et al.,
2023, 2024; Yu, 2025). Our main objective is
to investigate how different prompting strategies
may influence the LLM’s ability to identify cases
where metaphoricity is ambiguous or susceptible
to multiple interpretations, paralleling the disagree-
ments found in human annotation of Mexican
Spanish Public Communication of Science (PCS)
tweets. This approach deepens our understanding
of metaphor gradability, a core concept in analog-
ical reasoning, while also holding practical value
for NLU in Spanish, where Al systems must grasp
metaphor and figurative language to more accu-
rately interpret and respond to human communica-
tion. A key contribution of our resource lies in its
incorporation of soft labeling and the use of LLM-
based reasoning to complement human annotation.
This paper is structured as follows: Section 2 pro-
vides the necessary background on key concepts
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and related work; Section 3 details the character-
istics of the dataset used in this study; Section 4
outlines the methodology employed, including the
prompt design, the experimental setup, and the re-
sults obtained, followed by concluding remarks in
Section 5.

2 Background

2.1 Foundational Concepts

Linguistic Metaphor. According to Conceptual
Metaphor Theory (CMT), linguistic metaphor is
the manifestation in natural language of conceptual
metaphors, where one conceptual domain (source)
is used to understand another (target) through a
structured mapping of entities and relationships
(Lakoff and Johnson, 1980). Metaphors are not
mere stylistic devices or figures of speech, but fun-
damental phenomena shaping human cognition and
grounded in our bodily experiences.

Metaphor Annotation. Metaphor annotation
presents challenges due to a lack of methodologi-
cal consistency and variability in intuitions, mak-
ing comprehensive corpora characterization and
comparison across studies difficult (Veale et al.,
2016). To address this, the Metaphor Identification
Procedure Vrije Universiteit Amsterdam (MIPVU)
(Steen et al., 2010) (developed initially by (Praggle-
jaz, 2007) as Metaphor Identification Procedure, or
MIP) offers a widely adopted systematic method-
ology for identifying potentially metaphorical lin-
guistic units or metaphor-related words (MRWs),
which encompass indirect, direct, and implicit
metaphorical expressions, as well as explicit sig-
nals of metaphor and instances of personification.
Beyond MIPVU, there are other approaches, such
as the Deliberate Metaphor Identification Proce-
dure (DMIP) (Reijnierse et al., 2017), focusing on
deliberate metaphors from a semiotic and commu-
nicative perspective (Steen, 2008), and annotation
schemes that extend identification to conceptual
metaphors, annotating source and target domains
(Shutova and Teufel, 2010).

Metaphoricity. The notion of metaphoricity refers
to the gradual quality of a linguistic expression per-
ceived as metaphorical, moving away from a strict
binary categorization (Julich-Warpakowski and
Jensen, 2023). This theoretical perspective recog-
nizes the fuzzy boundaries between literal and fig-
urative language, suggesting that some metaphors
are “more metaphorical” than others (Hanks, 2006).
The degree of metaphoricity can depend on factors
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such as conventionality, the semantic or concep-
tual distance between source and target domains
or conceptual frames (Bierwiaczonek, 2024), situa-
tional context, and inter-speaker variation (Julich-
Warpakowski and Jensen, 2023). Understanding
metaphoricity as a gradable phenomenon in NLP
allows for modeling the subtleties and ambiguities
that manifest in human annotation disagreement,
derived from different interpretations of the poten-
tial metaphorical meaning of a linguistic expres-
sion.

LLMs and Prompt Engineering for Linguistic
Annotation. Large language models (LLMs) rep-
resent a significant advancement in artificial intel-
ligence, characterized by their ability to process
and generate human-like text at scale, while be-
coming “the de facto baseline models to be used”
in most NLP tasks (Zubiaga, 2024). Prompt en-
gineering has emerged as a crucial technique for
harnessing the capabilities of these models without
extensive fine-tuning, involving the strategic design
of textual inputs to guide desired outputs (Sahoo
et al., 2024). Common strategies include zero-shot
prompting (no examples), few-shot prompting (few
examples) and instruction-based prompting. LLMs
are increasingly being explored for linguistic an-
notation, including in tasks with significant human
disagreement (Brown et al., 2025), and for process-
ing phenomena such as figurative language and
metaphor (Ichien et al., 2024). By providing LLMs
with clear instructions and relevant context through
well-designed prompts, researchers have shown
that these models can perform various annotation
tasks, sometimes achieving performance compa-
rable to human annotators or outperforming them
(Gilardi et al., 2023).

Learning from Disagreement Moving away from
the traditional assumption of a single gold stan-
dard with hard labels and a single objective truth,
the ‘learning from disagreement’ approach con-
siders annotation discrepancies as valuable infor-
mation, particularly for subjective linguistic tasks,
such as figurative language annotation, where mul-
tiple interpretations coexist and intrinsic subjectiv-
ity generates variability (Uma et al., 2021). Rather
than simply aggregating annotation disagreements
into a single label and biasing models in favor of
some linguistic theory, embracing disagreements
allows for a richer representation of the inherent
variability and gradability of subjective linguistic
phenomena (Plank et al., 2014). Capturing this
variability requires going beyond traditional hard



labels, using soft labels that represent the distribu-
tion or degree of human judgment. As probabilities
or degrees of belief, soft labels can capture the
inherent uncertainty and gradience of human an-
notation. Linguistic annotation, particularly for
semantic interpretation and figurative language like
metaphor, is inherently subjective due to variations
in annotators’ backgrounds, interpretations, and bi-
ases. As observed in our previous work on annotat-
ing metaphor in Spanish PCS tweets, this subjectiv-
ity resulted in significant inter-annotator disagree-
ment (Sadnchez-Montero et al., 2024, 2025). Unlike
traditional hard metrics (e.g., F1, accuracy), soft
evaluation metrics (e.g., cross-entropy, Manhattan
distance, Euclidean distance, Jensen-Shannon di-
vergence) are designed to compare probability dis-
tributions (Rizzi et al., 2024). This makes them
suitable for evaluating models that produce soft
or probabilistic outputs, which are necessary to
capture the variability and gradable nature of sub-
jective linguistic phenomena.

3 Dataset

As discussed by (Sanchez-Mora, 2016), Public
Communication of Science (PCS) is a multidis-
ciplinary field that encompasses a range of scien-
tific disciplines and media platforms. It prioritizes
accessibility and relevance for non-specialist au-
diences, often relying on metaphors to communi-
cate complex ideas (Taylor and Dewsbury, 2018;
Cormick, 2019). Our focus on Mexican Spanish
PCS tweets stems from the scarcity of resources
in this variety and genre. There is a limited pool
of active science communicators on Twitter/X in
Mexico, which necessarily constrains corpus size
but also defines a domain that is underexplored and
culturally meaningful.

The dataset utilized in this study comprises a cor-
pus of 3733 Mexican Spanish tweets from the do-
main of Public Communication of Science (PCS),
specifically annotated for metaphor detection from
a multi-label annotation system. We have com-
piled this dataset from the timelines of 19 science
communicators based in Mexico (January 2020 -
May 2023). The information collected from these
user accounts was obtained without targeting any
specific scientific domain.

To our knowledge, this corpus is the first publicly
documented effort to annotate linguistic metaphors
specifically in Mexican Spanish PCS tweets. Al-
though there are limited resources for metaphor
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detection in Spanish, such as the CoMeta cor-
pus (Sanchez-Bayona and Agerri, 2022), and pre-
vious work has explored other variants or do-
mains (Martinez Santiago et al., 2014; Richi Pons-
Sorolla, 2020; Alvarez Mouravskaia, 2020; Uribe
and Mejia, 2024), there is a gap in publicly avail-
able linguistic metaphor corpora for Mexican Span-
ish that are suitable for exploring nuances and
variability in metaphor annotation beyond simple
binary classification of metaphorical expressions.
While we acknowledge the existence of larger cor-
pora in English, our decision to focus on Mexican
Spanish is both intentional and necessary. We con-
sider Spanish PCS tweets to offer a unique intersec-
tion of scientific and colloquial registers that pose
rich and often ambiguous metaphorical construc-
tions, ideal for examining gradable metaphoricity
and inter-annotator variation in this language vari-
ant.

The dataset was annotated by six native Mexican
Spanish-speaking linguistics students (2 female and
4 male), who independently labeled each tweet for
the presence and type of metaphor. We divided the
dataset into two halves, annotated independently
by groups of three annotators each. Given the ab-
sence of a public adaptation of MIPVU for Span-
ish, we developed specific annotation guides for
PCS tweets in Mexican Spanish, incorporating con-
cepts from CMT (source/target domains, mapping).
Annotators applied labels for the three types of
metaphor that we established: Direct Metaphor (3
labels: source unit, target unit, signal), Indirect
Metaphor (1 label: source unit) and Personification
Metaphor (2 labels: personified object, personifier).
Non-metaphorical tweets were indicated by sav-
ing them without annotations. Both our annotation
guidelines and dataset are publicly available on
our GitHub repository. The principles of the Bel-
mont Report were followed in the data annotation
process (Belmont, 1978).

In a previous study (Sdnchez-Montero et al.,
2025), we presented a binary soft-labeled dataset of
PCS tweets (metaphorical vs. non-metaphorical).
In this paper, we introduce a new layer of analysis
through fine-grained metaphor type soft annotation
(Direct, Indirect, and Personification) and LLM-
generated soft labels with reasoning traces. This ex-
panded dataset provides a complementary perspec-
tive, which enriches the original binary setup with
gradable metaphor judgments and interpretability
signals from LLMs. A more detailed explanation
of our multi-label annotation schema can be found


https://github.com/alecmontero/automaticmetaphorprocessingspanish

in Sdnchez-Montero et al. (2024).

The inherent subjectivity of metaphor identifi-
cation led to varying degrees of agreement among
the annotators. To capture the spectrum of agree-
ment and disagreement at the individual tweet level,
we generated soft labels. For each tweet and each
metaphor type (Direct, Indirect, Personification), a
soft label was calculated as the proportion of an-
notators who assigned that label at both the binary
and multi-label levels.

* For the binary level, the soft label represents
the probability of a tweet being metaphorical,
calculated as the proportion of annotators who
labeled it as such (ranging from 0/3 to 3/3).

For the multi-class level, for each tweet and
each metaphor type (Direct, Indirect, Personi-
fication), a soft label was calculated as the pro-
portion of annotators who assigned that spe-
cific label (ranging from 0/3 to 3/3). This al-
lows for tweets to potentially have soft labels
across multiple metaphor categories, reflect-
ing the possibility of containing more than
one type of metaphor.

Table 1 presents the distribution of tweets accord-
ing to annotators’ levels of agreement, represented
by the soft labels, for both binary classification
(metaphorical vs non-metaphorical tweets) and spe-
cific metaphor types. Our findings reveal a remark-
able level of disagreement among annotators in all
rating categories. Looking at the binary level, we
see that almost half of the tweets (1780 tweets or
47.7%) showed some level of disagreement among
annotators (1229 with 1/3 agreement and 551 with
2/3 agreement), in contrast to 1953 tweets (52.3%)
where there was perfect consensus, although class
0 (non-metaphorical) is the most prevalent.

When examining specific metaphor types, the
data in the ‘Disagreement’ columns (Soft Labels
0.33 and 0.66) further highlight the difficulty in con-
sistently identifying and classifying Direct (with
disagreement in 291 tweets, or 7.8%), Indirect
(1340 tweets, or 35.9%, showed disagreement),
and Personification (disagreement in 597 tweets, or
16.0%) metaphors. Furthermore, the relatively low
number of tweets where annotators achieved per-
fect positive agreement (Label 1.0) for Direct (only
8), Indirect (99), and Personification (15), espe-
cially when considering the total size of the dataset,
underscores how challenging it is to reach complete
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consensus on the specific type of metaphor in each
tweet.

Notably, across all metaphor categories analyzed,
the distribution of inter-annotator agreement fol-
lows a consistent pattern from highest to lowest
frequency in the soft labels: 0.0 > 0.33 > 0.66
> 1.0. This distribution, where perfect positive
agreement (Label 1.0) is consistently the least fre-
quent outcome, may suggest that instances of what
would be unanimously considered a clear metaphor
are relatively rare in this corpus. Taken together,
these distributions could support the perspective
that metaphoricity exists along a spectrum of grad-
ability, rather than conforming to strict, boundary-
defining categories. This rich information about
human disagreement, captured by our soft labels,
served as the basis for our prompting experiments
with LLMs.

4 Soft Metaphor Detection through
Prompting

Our research employed a multiphase experimental
methodology to explore and model the gradability
of metaphoricity and conceptual mapping in the
context of linguistic annotation with LLMs. This
graded approach allowed us to refine LLM interac-
tion strategies prior to large-scale evaluation and
final corpus annotation, aiming to understand the
LLM'’s ability to perform nuanced analogical ab-
stractions on metaphor.

4.1 Qualitative Exploration and Prompt
Design

The initial phase of our experimental approach
consisted of a qualitative exploration of various
prompting strategies to assess their potential ability
to elicit GPT-40 responses that reflected the com-
plexity and variability of metaphoricity. For this
purpose, we selected a reduced set of 30 tweets
from our dataset and applied the following prompt
settings to the GPT-40 model:

» Zero-Shot (ZS): We asked the LLM for
a binary classification (metaphorical/non-
metaphorical tweets) with probability and rea-
soning process without prior definitions or
examples.

One-Shot with Definition for Binary Classifi-
cation (1S-Def-Bin): We included a metaphor
definition (source-target domain connection)
and an example, requesting binary classifica-
tion with probability and reasoning process.



Metaphor Category Perfect Agreement Disagreement

Label 0.0 Label 1.0 Total Tweets | Label 0.33 Label 0.66 Total Tweets
Binary Classification 1753 200 1953 1229 551 1780
Direct (D) 3434 8 3442 236 55 291
Indirect (I) 2294 99 2393 1000 340 1340
Personification (P) 3121 15 3136 498 99 597

Table 1: Soft-Label Distribution by Levels of Inter-Annotator Agreement in the Dataset

* Few-Shot with Definitions for Multi-label
Classification (FS-Def-Multi): We provided
definitions and examples for metaphor types
(Direct, Indirect, Personification), requesting
multi-label classification with probabilities for
metaphorical tweets and reasoning process.

* Few-Shot with Definitions and Chain-of-
Thought for Metaphorical Tweets (FS-Def-
CoT-M): We added a step-by-step reasoning
protocol (chain-of-thought) for multi-label
classification, requesting the LLM to per-
form this process on tweets assumed to be
metaphorical. The CoT sought to break down
and guide the steps of LLM analogical rea-
soning for the fine classification of metaphor

types.

* Few-Shot with Definitions and Chain-of-
Thought for Binary and Multi-label Classifica-
tion (FS-Def-CoT-BM): Combined the initial
binary classification with multi-label classifi-
cation by metaphor type, asking for probabili-
ties and reasoning process, while applying the
chain-of-thought protocol for metaphor iden-
tification. This integrated strategy sought to
simulate a more complete analogical reason-
ing process (similar to that of human anno-
tators), from the binary identification of the
concept mapping to the detailed categoriza-
tion of its type.

» Few-shot with Definitions, Chain-of-Thought,
and Human Simulation (FS-Def-CoT-Sim): A
variation of the previous prompt where an ex-
plicit instruction was added to the LLM to
simulate the average of three human annota-
tions when determining the binary probability
and, if metaphorical, to follow the CoT pro-
cess for multi-label classification with proba-
bilities considering the same simulation.

The evaluation in this phase was primarily quali-
tative. We manually reviewed the LLM’s responses
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to observe how it interpreted the instructions, its
ability to identify potential metaphorical language
and classify metaphor types according to the pro-
vided definitions, the quality and structure of its
reasoning processes, and its capacity to assign prob-
abilities that seemed to reflect uncertainty or de-
grees of metaphoricity.

Qualitatively, the ZS prompt showed some abil-
ity to assign non-binary probabilities and note sub-
tle or conventionalized metaphors (e.g., assigning
0.6 to “plasticidad cerebral” [neuroplasticity] or
0.5 to “agujero de gusano” [wormhole], with justi-
fications acknowledging their metaphorical origin
or technical use). However, without explicit guid-
ance, the consistency and alignment with our spe-
cific theoretical framework were less assured. The
1S-Def-Bin prompt appeared to guide the LLM
more directly towards applying the provided defi-
nition based on source-target domain connection.
Yet, interestingly, this prompt seemed to introduce
more ’doubt’ in the model for some tweets per-
ceived as clearly non-metaphorical by human an-
notators (Soft Label 0.0), leading it to assign small
but non-zero probabilities more frequently than the
ZS prompt. For instance, in the case of “agujero
de gusano,” which had perfect human agreement
as metaphorical (Soft Label 1.0), the ZS prompt as-
signed a higher probability (0.5) and a justification
more open to the term’s metaphorical origin than
the 1S-Def-Bin prompt, which assigned a lower
probability (0.3) arguing its technical use made it
less metaphorical. This suggests that while a defini-
tion provides structure, it may sometimes override
other signals the LLLM captures in a zero-shot set-
ting that are relevant to human judgment, leading
to unexpected deviations.

For multi-label classification, the FS-Def-Multi
prompt successfully elicited probabilities across
different metaphor types, demonstrating the LLM’s
capacity for multi-label soft assignment and for dif-
ferentiating between distinct forms of analogical
manifestation. The addition of a Chain-of-Thought
(CoT) protocol in subsequent few-shot prompts



(like FS-Def-CoT-M and FS-Def-CoT-BM) gener-
ally led to more structured and detailed explana-
tions, where the LLM explicitly broke down its
reasoning based on domain identification and type
characteristics, simulating the steps involved in the
analogical reasoning for the classification of con-
ceptual mappings by type. The most comprehen-
sive strategy, FS-Def-CoT-BM, showed promise in
simulating a multi-stage annotation process, reflect-
ing a more complete analogical process.

For instance, for the tweet “Es como si solo tu-
vieras 93 tipos diferentes de piezas de Lego y con
ellas pudieras armar todo el universo” (“It’s as if
you only had 93 different types of Lego pieces and
with them you could assemble the entire universe”)
(Human labels: D=0.66, I=0.66), the FS-Def-Multi
prompt assigned high probability to D (1.0) but
low to Indirect (0.2), while a Few-Shot + CoT vari-
ant (referring to FS-Def-CoT(BM) here) assigned
slightly lower to D (0.9) and higher to I (0.6), more
closely reflecting the human annotators’ equal em-
phasis on both types. On another example, “Por
primera vez, los cientificos detectan los «gritos» de
las plantas cuando son cortadas” (“For the first time,
scientists detect the ’screams’ of plants when they
are cut”), there was a qualitative difference in inter-
pretation: while human annotators saw a strong In-
direct Metaphor and no Personification (Human la-
bels: I=1.0, P=0.0), the LLMs (using FS-Def-Multi,
FS-Def-CoT(BM), and FS-Def-CoT-Sim prompts)
consistently assigned high probability to Person-
ification (1.0, 1.0, 0.95 respectively) and low to
Indirect (0.2, 0.4, 0.05), highlighting a divergence
in how the models perform this specific analogical
mapping compared to the human consensus in this
instance.

The FS-Def-CoT-Sim prompt showed particu-
lar promise in its attempt to model the outcome
of collective human judgment. Qualitatively, it
sometimes produced binary probabilities that re-
flected intermediate levels of human disagreement.
For instance, for the tweet “Cuando nace una es-
trella sigue agregando materia de la nube que se
formd...” (“When a star is born it continues to add
matter from the cloud that formed it...”), which had
a human binary agreement of 0.66, this prompt
assigned a binary probability of 0.40, providing a
score within the disagreement range. Furthermore,
this prompt’s multi-label assignments sometimes
aligned well with human multi-label distributions
even when the binary was intermediate. For the
tweet “La dopamina interfiere en la funcién de tu
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E3]

reloj interno...” (“Dopamine interferes with the
function of your internal clock...”), while the hu-
man binary was 1.0, this prompt assigned 0.75;
however, its multi-label score for Indirect (0.85)
aligned closely with the human score (1.0), suggest-
ing it could capture the specific type of analogical
mapping even when its overall certainty differed.

To complement the qualitative exploration of
prompting strategies, we calculated the Mean Ab-
solute Difference (MAD) between the soft label
assigned by the LLM and the corresponding hu-
man soft label for each tweet, averaging this value
across the set of tweets tested with each prompt.
This simple metric gives us an initial indication of
the LLM’s closeness to human judgments on these
examples. It is crucial to emphasize that these re-
sults are based on very small samples and are not
generalizable to the full corpus. Table 2 presents
the MAD for the prompting strategies evaluated in
this phase, for both binary classification and the
multi-label categories. A lower MAD indicates bet-
ter preliminary alignment with human soft labels
for that category and prompt strategy on the tested
samples.

According to preliminary results, for binary clas-
sification, the strategy incorporating the Human
Simulation instruction shows the lowest MAD
(0.157), suggesting it may capture the overall
presence/absence judgment with potentially better
alignment to human consensus levels in this pre-
liminary sample. For multi-label classification, the
picture is more nuanced across categories. Looking
at the Average MAD (Multi-label) across all three
types, the “Few-shot with Definitions + CoT (Bi-
nary & Multi-label)” prompt shows a slightly lower
average MAD (0.139) compared to the “Few-shot
with Def. + CoT + Human Simulation” prompt
(0.160) and the simpler multi-label prompts with-
out CoT. While these results provide initial quanti-
tative justification for selecting the most promising
prompting strategies for larger-scale evaluation, an
important consideration when implementing com-
plex strategies like Chain-of-Thought (CoT) is the
increased token consumption. This, in turn, trans-
lates to higher computational cost. However, the
qualitative observation of more structured reason-
ing and the logical appeal of guiding the LLM
through complex classification steps strongly sug-
gest that CoT could lead to a more robust and in-
terpretable model in its analogical processing, par-
ticularly for capturing the nuances and variability
of metaphoricity. Similarly, the human simulation



Prompting Binary | Direct | Indirect | Personif. | Avg. Multi
ZS 0.285 — — — —
1S-Def-Bin 0.250 — — — —
FS-Def-Multi — 0.388 0.378 0.321 0.362
FS-Def-CoT-M — 0.118 0.337 0.351 0.269
FS-Def-CoT-BM 0.198 | 0.084 0.185 0.149 0.139
FS-Def-CoT-Sim 0.157 | 0.198 0.180 0.102 0.160

Table 2: Preliminary quantitative results comparing the Mean Absolute Deviation (MAD) between LLM predictions

and human annotators across prompting strategies.

strategy showed potential for eliciting responses
that more closely approximated patterns of human
agreement/disagreement.

4.2 Quantitative Evaluation on a Larger
Sample

Following the qualitative exploration and prelimi-
nary quantitative analysis, the second phase of our
methodology focused on conducting a more rigor-
ous quantitative evaluation of promising prompting
strategies, model configurations, and parameters on
a larger sample of the corpus. The primary objec-
tive was to obtain statistically more robust metrics
to assess the LLLM’s ability to generate soft labels
that could align with human annotation, capture
disagreement patterns, and model the gradability
of metaphoricity, with the aim of informing the
selection of the final approach for full corpus anno-
tation.

For this phase, a stratified random sample of
750 tweets (ca. 20% of the corpus) was selected
from the total 3733 tweets. Stratification ensured
that the sample represented the distribution of soft
labels observed in the full dataset, reflecting the
varying levels of human agreement encountered in
the data, from clear cases to instances of significant
disagreement. We conducted several experiments
by applying different configurations to this sample,
including baseline zero-shot prompting, few-shot
prompting with and without human simulation in-
struction and a brief reasoning protocol, prompts
that included more extensive elements from the an-
notation guide and additional few-shot examples,
as well as model and temperature tuning. For all
experiments in this phase, only the probabilistic
soft labels (binary and multi-label) were requested
as output from the LLM; reasoning processes were
not included in the output.

For each category (Binary, Direct, Indirect, Per-
sonification), we computed the Mean Absolute Dif-
ference (MAD), Pearson Correlation, and Binary
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Cross-entropy between the LLM’s soft labels and
the corresponding human soft labels across the 750-
tweet sample. Table 3 presents these metrics for all
tested configurations.

Analysis of the metrics reveals that replicating
human judgments varies significantly across con-
figurations and metaphor categories. While several
few-shot configurations achieved low MADs and
Binary Cross-entropy for Direct metaphor (indicat-
ing good average alignment), the Pearson Corre-
lation across all categories and configurations re-
mains relatively low. This highlights the challenge
in getting an advanced LLM to replicate the spe-
cific tweet-level patterns of human disagreement.

Overall, the gpt-4.1 (Few-shot + Gradable
Examples + Human Simulation) configuration
stands out in terms of capturing the overall linear
trend and variability of human judgments, partic-
ularly for the crucial binary classification (highest
Pearson Correlation). While some gpt-40 con-
figurations, especially with temperature tuning,
show competitive or slightly better MAD and CE
for certain categories, the superior binary corre-
lation of the gpt-4.1 configuration makes it the
most promising for modeling the gradability of
metaphoricity and aligning with human soft labels.
Given the importance of the binary decision as
a precursor to multi-label classification, and the
potential for better capturing the spectrum of agree-
ment, we selected the gpt-4.1 configuration for
the final corpus annotation.

4.3 Corpus Annotation with LLM

After deciding on the LLM configuration identified
and validated in the previous phase, we instructed
GPT-4.1 to annotate the full corpus of 3733 PCS
tweets. The objective was to generate a compre-
hensive dataset annotated with LLM-assigned soft
labels for metaphoricity, capturing both binary pres-
ence and multi-label classification across different
types, while also incorporating elements to facil-



Prompt Strategy
/ Model

Pearson Correlation (1)

MAD (}) Binary Cross-entropy (])

Bin Dir Ind Per

Bin

Dir Ind Per Bin Dir Ind Per

gpt-4.1 (Few-shot | 0.392 | 0.289 | 0.216 | 0.185
+ Gradable Ex +
HumSim)

gpt-40 + Few-shot
+ Guide Details
gpt-4o0 Few-shot
- Human Simula-
tion

gpt-4o0 Few-shot
+ Human Simula-
tion

gpt-4o0 temp 0.2
Few-shot + Hu-
man Simulation
gpt-4o temp 0.5
Few-shot + Hu-
man Simulation
gpt-4o temp 0.7
Few-shot + Hu-
man Simulation

gpt-40 Zero-shot

0.293 | 0.133 | 0.168 | -0.018

0.214 | 0.304 | 0.121 | 0.015

0.240 | 0.291 | 0.137 | 0.024

0.276 | 0.145 | 0.109 | -0.016

0.293 | 0.221 | 0.141 | 0.088

0.303 | 0.161 | 0.158 | 0.045

0.254 | 0.013 | 0.150 | 0.033

0.216

0.236

0.252

0.244

0.232

0.229

0.227

0.242

0.048 | 0.165 | 0.073 | 4.589 | 0.797 | 3.529 | 1.877

0.031 | 0.245 | 0.077 | 2.290 | 0.863 | 1.848 | 1.986

0.031 | 0.214 | 0.073 | 4.857 | 0.849 | 3.603 | 1.994

0.031 | 0.211 | 0.076 | 4.511 | 0.860 | 3.666 | 1.985

0.036 | 0.193 | 0.073 | 4.134 | 0.845 | 3.132 | 2.002

0.034 | 0.184 | 0.075 | 4.014 | 0.819 | 2.985 | 1.926

0.034 | 0.183 | 0.073 | 3.888 | 0.833 | 3.183 | 1.981

0.034 | 0.179 | 0.073 | 5.791 | 0.887 | 3.951 | 1.982

Table 3: Quantitative Soft Evaluation Metrics Comparison (LLM vs Human Soft Labels on 750 Tweets)

itate potential semi-supervised refinement in the
future.

The design of the final prompt, refined through
experimentation in previous phases, aimed to im-
prove the LLM’s sensitivity in automatic metaphor
detection, particularly for nuances in Direct and
Personification metaphors (which were the most
difficult to identify consistently during the previous
phases). We also sought to model responses that
reflected the inter-annotator variability observed in
the human soft labels by incorporating intermediate
examples and the explicit simulation instruction.

The optimized Few-shot prompt, including clear
definitions and examples for Direct, Indirect, and
Personification metaphors, along with the human
simulation instruction and an internal structured
reasoning process, was applied to each tweet. The
model was also instructed to simulate the average
of three human annotations and provide a binary
probability between 0 (non-metaphorical) and 1
(metaphorical). If the binary probability was > 0.5
(classified as metaphorical), soft probabilities be-
tween 0 and 1 for each of the three metaphor types
were also requested. To facilitate potential future
analysis or semi-supervised manual review, a brief
justification for the classification was included in
the output only for tweets with binary probabil-
ity > 0.3, corresponding to the lowest probability
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for considering a tweet as having some degree of
perceived metaphoricity by human annotators.

The resulting LLM-annotated corpus consists
of 3733 tweets, each associated with a binary
soft label, multi-label soft labels (if classified as
metaphorical), and a brief reasoning text (for tweets
with a perceived metaphoricity > 0.3). For the cho-
sen gpt-4.1 configuration, the metrics comparing
LLM predictions to human soft labels were:

* Binary: Pearson Correlation: 0.382, MAD:
0.215, Cross-Entropy: 4.229

e Direct: Pearson Correlation: 0.295, MAD:
0.053, Cross-Entropy: 0.769

e Indirect: Pearson Correlation: 0.279, MAD:
0.165, Cross-Entropy: 3.322

¢ Personification: Pearson Correlation: 0.124,
MAD: 0.069, Cross-Entropy: 1.735

These metrics indicate that while the LLM’s
soft labels show a degree of alignment with hu-
man soft labels (particularly low MAD for Direct
and Personification, and the highest correlation for
Binary), its ability to precisely replicate the tweet-
level variability and complex patterns of human
disagreement remains limited, as evidenced by the
low Pearson correlations across all categories. Di-
rect metaphors showed the best average alignment



(lowest MAD) and lowest probabilistic error (low-
est CE). However, based on our evaluation, Direct
and Personification categories, while sometimes
having low MAD, presented significant challenges
for the LLM in achieving high correlation with
human judgments, indicating difficulty in consis-
tently capturing the nuances of disagreement for
these specific types.

5 Conclusions and Future Work

This study explored the use of large language mod-
els (LLMs) to generate soft labels for metaphoricity
in Public Communication of Science tweets written
in Spanish, aiming to capture gradability and reflect
human annotation variability. Through a phased ap-
proach involving prompt engineering, model evalu-
ation, and annotation of a 3733-tweet corpus, we
demonstrated that LL.Ms can effectively produce
probabilistic soft labels for binary metaphoricity
and specific types (Direct, Indirect, Personification
Metaphors).

Prompt design significantly impacted perfor-
mance. Quantitative evaluation revealed that while
LLMs achieve reasonable average alignment with
human soft labels, they face challenges in consis-
tently replicating the tweet-level patterns of human
disagreement. Pearson correlations were relatively
low across all categories, highlighting this limita-
tion in modeling human variability. Despite this,
the resulting LLM-annotated corpus is a valuable
resource for analyzing metaphor and metaphoricity
in scientific discourse.

Future work should focus on strategies to im-
prove LLM alignment with the precise patterns of
human disagreement, potentially through advanced
prompting techniques, fine-tuning on soft-labeled
data, or leveraging ensemble annotation strate-
gies. Further analysis and application of the anno-
tated corpus to downstream tasks, such as studying
metaphor trends or enabling semi-supervised an-
notation pipelines, remains a promising direction.
This research validates LLMs as a scalable tool for
complex linguistic annotation, and can serve as a
basis for exploring semi-supervised approaches or
future research on LLM capabilities in complex lin-
guistic annotation tasks related to analogical map-
ping.

Although existing work has shown that LLMs
often reflect dominant or surface-level views while
failing to capture minority or nuanced perspectives
(Santurkar et al., 2023; Sourati et al., 2025), our
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findings suggest that figurative language presents
a more complex challenge than a simple major-
ity/minority opinion divide. Metaphor understand-
ing involves analogical reasoning, cultural ground-
ing, and subjective interpretation—dimensions that
do not always align with demographic or opinion
group boundaries. Nonetheless, the broader con-
cern about the homogenizing tendencies of LLMs
resonates with our observation that LLMs often
struggle to model fine-grained human disagree-
ment. As such, we see metaphor annotation as
a compelling testbed for probing alignment, inter-
pretability, and diversity in LLM behavior, and ad-
vocate for more work at the intersection of linguis-
tic theory, annotation practices, and model devel-
opment, particularly for figurative understanding
in languages beyond English.

Limitations

This study encountered several limitations inher-
ent in the application of large language models
(LLMs) to complex linguistic annotation tasks, par-
ticularly in replicating the nuances of human soft
labels for metaphoricity. A primary limitation is
the LLM’s demonstrated difficulty in consistently
capturing the fine-grained patterns of human dis-
agreement and variability at the tweet level. While
quantitative evaluation showed that the LLM could
achieve reasonable average alignment with human
soft labels for certain metaphor categories (indi-
cated by low Mean Absolute Difference and Binary
Cross-entropy), the relatively low Pearson corre-
lation coefficients across all categories highlight
that the model did not accurately replicate the spe-
cific instances of high or low human consensus for
individual tweets.

Furthermore, the performance varied across
metaphor types. While Direct metaphors gener-
ally showed better average alignment, capturing the
variability for both Direct and Personification cat-
egories proved challenging, with particularly low
correlation observed for Personification. Indirect
metaphors also presented difficulties in achieving
strong alignment across metrics. This differential
performance suggests that certain types of analog-
ical mapping may be harder for current LLMs to
model in a way that fully reflects human cognitive
processing and social consensus.

Another limitation lies in the inherent constraints
of the prompting approach. While prompt engi-
neering significantly influenced the LLM’s perfor-



mance, the specific instructions, examples, and sim-
ulation requests used may not fully capture the
multifaceted cognitive processes and contextual
factors that contribute to human metaphorical judg-
ment and inter-annotator variability. The reliance
on a specific family of LLMs (GPT models) and
the characteristics of the scientific tweet dataset
also represent potential limitations to the gener-
alizability of our findings. Future work should
address these limitations by exploring alternative
methodologies, models, and datasets to improve
the replication of human disagreement patterns in
LLM-based linguistic annotation.
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Abstract

Analogies test a model’s ability to infer im-
plicit relationships between concepts, making
them a key benchmark for evaluating reason-
ing capabilities. While large language models
(LLMs) are widely evaluated for reasoning
in English, their abilities in Indic languages
remain understudied, limiting our understand-
ing of whether these models generalize across
languages. To address this gap, we introduce
a new Hindi Analogy Test Set (HATS),
comprising 405 multiple-choice questions
sourced from Indian government exams. We
benchmark state-of-the-art multilingual LLMs
using various prompting strategies and intro-
duce a grounded Chain of Thought approach
that leverages cognitive theories of analogical
reasoning. This approach improves model
performance on Hindi analogy questions. Our
experiments show that models perform best
with English prompts, irrespective of the
prompting strategy. Our test set addresses the
lack of a critical resource to evaluate LLM
reasoning capabilities in Hindi. The test set is
publicly available for research purposes here
https://github.com/Inequilazitive/
HATS-Hindi_Analogy_Test_Set.

1 Introduction

Self-supervised learning enabled language models
to learn the notion of similarity and relatedness.
However, abstraction and conceptualization as in
analogies, are still a challenge. Growing research
on common reasoning tasks including analogies
(Ushio et al., 2021; Czinczoll et al., 2022; Bhavya
et al., 2022), Winograd Schema Challenge (Liu
et al., 2022; Emami et al., 2018), figurative text
processing (Joseph et al., 2023; Bogireddy et al.,
2023), reflects the trend to teach and evaluate
LLMs on these tasks.

“These authors contributed equally to this work.
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Assessing reasoning abilities of LLMs in low-
resource languages remains challenging (Robin-
son et al., 2023), primarily due to the scarcity and
poor quality of available linguistic data (Khade
et al., 2024), as well as the need for improved eval-
uation methodologies (Valmeekam et al., 2022;
Wijesiriwardene et al., 2023; Bender and Koller,
2020). In this paper, we address this resource and
knowledge gap by:

e Introducing HATS, a test set of 405 of in-situ
semantic analogies curated from national and
state-level administrative examinations and
their preparatory material.

Benchmarking state-of-the-art multilingual
LLMs (see Sec 3.1) with diverse prompting
strategies to evaluate LLMs’ reasoning abili-
ties in Hindi.

Proposing a grounded Chain of Thought
prompting technique that leverages cognitive
theories of analogical reasoning and improves
model performance on Hindi analogy tasks
(see Sec 3.5.2).

Existing datasets of Hindi analogies are primar-
ily developed by translating English analogies and
comprise only syntactic relations (Abdou et al.,
2018; Grave et al., 2018). The translated analo-
gies are used to test the quality of Hindi word
embeddings (Gaikwad and Haribhakta, 2020) and
LLMs trained on Hindi corpus (Kakwani et al.,
2020). These datasets lack samples illustrating se-
mantic relations between concepts specific to the
Hindi language. This reflects the urgent need for
resources to evaluate common reasoning in LLMs
in the Indic language.

In this paper, we focus on proportional analogy
comprising four words of the form A: B :: C': D
that is, A is to B as C is to D. Prior works in-
troduced word-family based analogies exploiting
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syntactic relations such as singular-plural (Abdou
et al., 2018). We focus on semantic analogies.

2 HATS: Hindi Analogy Test Set

We scraped 405 analogy questions from national
and state-level administrative service examinations
and preparatory materials, including those for
UPSC, SSC, PSC, Clerk, Defense, Railway, and
Banking exams, using BeautifulSoup (Richardson,
2024). These analogies are designed to assess the
aptitude and reasoning abilities of candidates.

qiared (Bhopal): H€O TRl (Madhya
Pradesh) :: HET-A-T%R (Bhubaneshwar): ?

A TSR (Gujarat)

B 3147 (Odisha)

C ST (Rajasthan)

D 313UITIA UeLT (Arunachal Pradesh)

Correct Answer: I (Odisha), since -
TR (Bhubaneshwar) is its capital, just as
otaTel (Bhopal) is the capital of H&T TELT
(Madhya Pradesh).

. J

The original multiple-choice questions appeared
in varied formats. We standardized them to the A :
B :: X : Y structure and replaced Y with a ques-
tion mark for model input. We also provide four op-
tions that were originally provided with these ques-
tions in examinations (See above example).

3 Benchmarking LLMs on HATS
3.1 Models

We evaluated three state-of-the-art multilingual
LLMs: Aya-expanse-8B (Dang et al.,, 2024),
Llama-3.1-8B (Grattafiori et al., 2024), and
Gemma-2-9B (Team et al., 2024). These mod-
els were selected for their strong performance on
multilingual and general-purpose language under-
standing benchmarks, and their accessibility for
academic research (Cohere For Al Team, 2024).

3.2 Task A: Find the Most Likely Answer

We create a low-demand (i.e., forced-choice over a
fixed set of answer options) task similar to (Hu and
Frank, 2024) by presenting the model with an anal-
ogy truncated at the last colon (A : B :: X : ). We
select the most likely option as the answer using di-
rect probability measurement. Since we avoid met-
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alinguistic judgment, we chose non-instruct vari-
ants of models for this task.

We measured the accuracy of the models using
normalized success rates (see Table 1). LLaMA
outperforms Aya by 7.46% and Gemma by 6.85%.
Overall, model performance in this setting remains
suboptimal.

3.3 Prompt Design and Evaluation for
Generation-Based Tasks

This section outlines the shared design principles
and evaluation methodology used across Tasks
B and C, both of which involve analogy com-
pletion using LLMs. The tasks differ in their
prompting strategies but rely on a common struc-
ture, a system and user prompt template where we
present the task-specific instructions and incom-
plete analogy with multiple-choice options. For
these instruction-centric task settings, we utilize
instruction-tuned model variants (see Appendix A
for model specifications and prompt details).
Setting: To assess the impact of language on
reasoning, prompts are evaluated under three con-
figurations: (i) Hindi-only (both system and user
prompts are in Hindi), (ii) English-only (both sys-
tem and user prompts are in English), and (iii)
Mixed (English system prompt and Hindi user
prompt).
Evaluation: To mitigate positional bias in
multiple-choice evaluations, we apply a cyclic ro-
tation of the answer options. For a question with
n options (typically n = 4). we generate n vari-
ants, each with the options shifted in position. The
model answers all n variants, and the final answer
is determined by majority voting across its n re-
sponses. A question is marked correct only if the
majority-selected answer matches the ground truth;
otherwise, it is considered incorrect. Detailed re-
sults are discussed in Section 3.6.

3.4 Task B: 0—Shot Prompting

Recent surveys and empirical studies highlight
zero-shot prompting as a standard baseline for
LLM evaluation, often used to benchmark mod-
els before exploring few-shot or fine-tuned set-
tings.(Li, 2023). In the experiments carried out
by (Reynolds and McDonell, 2021), the authors
show that well-crafted zero-shot prompts can, in
fact, surpass the performance of few-shot prompts.

This baseline setting mimics the original exam-
style format of the test set. For this task all the
instructions were presented in the system prompt.



Model Llama 3.1-8B

Aya Expanse—8B

Gemma 2-9B

46.17

Accuracy

42.96 43.20

Table 1: Accuracy (%) on Task A across all HATS samples. Each score represents the percentage of instances
where the model correctly identified the answer option with the highest predicted likelihood.

Sys + User ‘ Prompting

aya-expanse-8B  Llama-3.1-8B-instruct

gemma-2-9b-it

0-Shot 62.71 67.90 73.08
HitHi 0-Shot CoT 62.71 67.40 74.81
Grounded 0-Shot-CoT 60.74 64.93 75.31
Grounded FS-CoT 56.04 62.96 76.54
0-Shot CoT 63.70 64.69 76.05
En+Hi Grounded 0-Shot-CoT 61.23 64.93 75.80
Grounded FS-CoT 59.50 65.67 75.31
0-Shot 65.67 71.85 78.77
0-Shot CoT 65.43 66.91 78.52
En+En Grounded 0-Shot-CoT 65.43 74.56 79.75
Grounded FS-CoT 61.72 74.07 77.28
FS Translate-CoT 62.46 72.83 77.04

Table 2: Accuracy (%) across prompting strategies grouped by language setting. CoT = Chain-of-Thought, FS =
Few-Shot. Best scores per setting are bolded. Refer to Section A.2.1 for prompt details. Accuracy is calculated

only for valid analogies.

Mixed setting was not evaluated separately, as the
prompt content is equivalent to English only in
practice.

3.5 Task C: Chain of Thought Prompting

Prior work shows that prompting the model
to reason step-by-step enhances LLM perfor-
mance (Brown et al., 2020; Wei et al., 2023; Zhang
et al., 2025).

3.5.1 0—Shot Chain of Thought

For this task we have taken a similar approach to
(Kojima et al., 2023), and appended “Let’s think
step by step” at the end of the prompt.

3.5.2 Grounded 0-Shot Chain of Thought

We build on the (Wang et al., 2023) approach
to guide the model’s reasoning by presenting a
fixed sequence of steps to solve analogies in the
prompt. The steps are grounded in cognitive theo-
ries of analogical reasoning. Drawing on the (Min-
nameier, 2010) framework, the prompt integrates
abductive structure identification, inductive con-
cept mapping, and adequacy-based evaluation.

3.5.3 Grounded Few Shot Chain of Thought

Previous works use few shot examples for prompt
based grounding (Mialon et al., 2023). In this
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task we use the same prompt as in section 3.5.2
with 5 worked out examples. We guided Claude-
3.7-Sonnet" to generate Hindi examples, solved us-
ing our Grounded CoT instructions. The exam-
ples were verified and corrected by an expert of the
Hindi language.

3.5.4 Few Shot Chain of Thought (with
Translation)

Following the benchmark results, which showed
LLMs performed best in English-only settings
(see Table 2), we explored whether a translation-
based approach could further improve performance
on Hindi analogy tasks. Specifically, we im-
plemented a three-step Chain of Thought (CoT)
prompting strategy in English (see Sec 3.3):

¢ Translation: Convert the Hindi analogy and
options into English.

e Solution: Solve the analogy using the method
in Section 3.5.2.

e Mapping: Identify the correct Hindi option
based on the English solution.

*https ://www.anthropic.com/news/
claude-3-7-sonnet
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We included 5 worked out examples in the prompt.
The examples were created using the process de-
scribed in Section 3.5.3 with updated instructions.

3.6 Results

The accuracy scores are presented in Table 2.
Prompts in English-only settings consistently led
to the highest overall performance. Transitioning
from baseline 0—Shot CoT to Grounded 0—Shot
CoT resulted in an average improvement of +0.27
points across all models and settings. Gemma
was the top performer, achieving the highest accu-
racy of 79.75% with Grounded 0—Shot Chain-of-
Thought prompting (see Sec 3.5.2) in the English-
only setting. LLaMA also performed best with
Grounded 0—Shot CoT in the English-only set-
ting, reaching an accuracy of 74.56%. In con-
trast, Aya was the weakest performer, with its high-
est score being 65.67%, obtained using 0—Shot
prompting (see Sec 3.4) in the English-only set-
ting. Some models struggled to follow instructions
in Hindji, resulting in better performance with sim-
pler 0—Shot CoT prompts compared to the more
complex Grounded CoT setup.

4 Discussion

Gemma consistently outperformed other models
by an average margin of 11.46 points across all
tasks and exhibited minimal performance drop
across different prompt settings. All models per-
formed best when both system and user prompts
were in English. Chain-of-Thought (CoT) reason-
ing boosted accuracy, especially in Few-Shot set-
tings.

e While models reliably identified analogical
pairs (A : B), they often failed to transfer the
relation correctly to (C : D), highlighting lim-
itations in structured reasoning.

In the translation task, models like aya—
expanse—9b and LLaMA-3.1-8B—IT fre-
quently mistranslated critical terms. For
example, the analogy Tel : HIell 3¢ :
? (Flower : Garland :: Brick : ?) was
misinterpreted as Flower : Garland :: Eat
: 2, confusing g (Brick) with ”Eat” due to
phonetic similarity. This error was consistent
across all 10 sampled failures.

Models occasionally defaulted to ”I don’t
know” or ”None of the above,” even when cor-
rect options were available.
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e See Table A6 for model response languages
across different task settings.

5 Conclusion

We introduced a test set HATS comprising 405
semantic analogies in Hindi. The benchmarking
code and prompts for all tasks will be made pub-
licly available. We designed five tasks to eval-
uate LLMs reasoning abilities in the Hindi lan-
guage. These tasks assessed the reasoning abili-
ties of LLMs in natural language and the usabil-
ity of translation in creating low-resource language
resources. Our experiments reveal the subpar per-
formance of state-of-the-art LLMs when tested on
HATS, highlighting the need to evaluate multilin-
gual models on native language resources to better
gauge their usability for non-English languages.

Limitations

In this study, we utilized smaller versions of the
model (8B to 9B) due to resource and hardware
constraints, and we anticipate models with higher
parameters to perform better.

Ethics Statement

The test set is built from publicly available national
level QPs and preparatory material. This ensures
that the data is free from (a) anonymity concerns,
(b) obscenities and (c) any stereotyping or bias.
We have provided a Hindi language resource to
evaluate the reasoning abilities of LLMs with the
goal to make Al technology accessible to a wider
population. We have not performed model train-
ing/finetuning and therefore, no significant carbon
footprints were generated. We have chosen open
source models for this work.
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A Appendix
A.1 Model Specifications

The model specifications are provided below. We use the pre-trained models.

e Aya Expanse 8B : We set the maz_new_tokens = 1200, torch_dtype = torch.floatl6,
device_map = "auto”, do_sample = False. The model was loaded using the HuggingFace API
with the model name ‘CohereForAl/aya-expanse-8b‘. The model runs in evaluation mode, which
disables gradient updates for inference.

e Llama-3.1-8B-Instruct : We set the maz_new_tokens = 1200, torch_dtype = torch. float16,
device_map = "auto”, do_sample = False. The model was loaded using the HuggingFace API
with the model name ‘meta-Llama/Llama-3.1-8B-Instruct‘. The model runs in evaluation mode,
which disables gradient updates for inference.

e Gemma-2-9b-it : We set the max_new_tokens = 1200, torch_dtype = torch.floatl6,
device_map = "auto”, do_sample = False. The model was loaded using the HuggingFace API
with the model name ‘google/gemma-2-9b-it‘. The model runs in evaluation mode, which disables
gradient updates for inference.

A.2 Tables
A.2.1 Prompts

Prompts for Analogy Tasks

Task B: 0—Shot Prompting (from Sec 3.4)
Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B
Hi-Hi Setting

System Prompt:

15T X hITIg
T YT IR 5 YRR THIC hiT: ###3AfdH IR <3MMUh gRT A1 g fasheu>

User Prompt:
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) S0 TS

En-En Setting

System Prompt:
Complete the analogy:
You will end your answer with: ###Final Answer: <Your chosen option>

User Prompt:
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) S0 TS

Table Al: Prompts for Task B (0— Shot)

Task C: Chain of Thought Prompting (O—shot) (from Sec 3.5.1)
Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B
Hi-Hi Setting
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System Prompt:

TGy 1 ST : _
1Y {UAT IR T UhR AT hil: ###3ifaH ITR: <3MMUeh gRT AT g3 fdeneu>

User Prompt:
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) STEUTIA UST

35 heH R hed I

En-En Setting

System Prompt:
Complete the analogy:
You will end your answer with: ###Final Answer: <Your chosen option>

User Prompt:
IUTeT © HeT TR 1 AR : ?
(A) ToRTE (B) I (C) T (D) SRUTEA TS

Let’s think step by step.

Mixed Setting (En + Hi)

System Prompt:
Complete the analogy:
You will end your answer with: ###Final Answer: <Your chosen option>

User Prompt:
WIUTeT © HeT TR :: AR : ?
(A) ToRTa (B) I (C) T (D) STEUTIA UST

TS hed <X hed T

Table A2: Prompts for Task C (Chain of Thought 0— shot)

Task C: Grounded Zero-Shot Chain of Thought (from Sec 3.5.2)

Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B

Hi-Hi Setting

System Prompt:

37T Yeh THHGT (TATeIrSt) el Ut g1 o 38 & | THTT & sl o st gt gidt &, St fohelt

fordt R @ Uoh-gR & A1 @l 81

TUhHT I S8 AT bl YT AT 8, T Uge! &l QUeal & i< & Hae ehl ST It &g aht

TR 21e& TR AT AT 3R I I AT ok T <16 o)1 4T 9118

THTAT 81 S o [oIY 37 TRUT ohl UTeT ahe: TY Ugdt, Usd! af Usal (A 3R B) & &g & fafre

el oht Ugd | I8 993! foh A &1 B O o1 9EY g
Rz, It defey &l fieR 2reg (C) R AN o 3R & foh <t 2reg aram gim =nfgul

3fd #, fou 7 fashedt & T 39 fAered o1 Iu= o ST 31TUch Uga™ U &Y oh SMTYR UR AT i

eI adich ¥ QT ST 8|

Udeh TRUT H Fraegdes i< 3R sifad Ao o § uget s Ffad el wR faer &1 3 deh

Pl TE Y & UJd A1
30 3ifqw IR ol 3T T | &
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### Final Answer: (X) fdeneq
319 fAmfalRad g &t 39 d9-arufta gfeetor & g &<

User Prompt:

HIgTar T e
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) S0 USRT

Ut IdT8 718 dfi=-aRufty At o1 UTert ahech 39 T1GY i 8 e

En-En Setting

System Prompt:

You are solving an analogy problem. An analogy is a comparison between two things that are
similar in some way. Your task is to complete the analogy by finding the relationship between the
first two terms and applying that same relationship to find what the third term relates to. Follow

these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be ex-
plicit in your reasoning. Present your final answer in the format: ###Final Answer: (X) option_text

Now solve the following analogy using this three-step approach:

User Prompt:
Complete the following analogy:

IUTeT : HE U &2 AR : ?
(A) ToRTE (B) I (C) T (D) SR0TIA TS

by following the three-step method.

Mixed Setting (En + Hi)

System Prompt:

You are solving an analogy problem. An analogy is a comparison between two things that are
similar in some way. Your task is to complete the analogy by finding the relationship between the
first two terms and applying that same relationship to find what the third term relates to. Follow

these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be ex-
plicit in your reasoning. Present your final answer in the format: ###Final Answer: (X) option_text

Now solve the following analogy using this three-step approach:
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User Prompt:

Complete the analogy:

AIUTeT © HeT TR 1 AR : ?

(A) ToRTE (B) I (C) T (D) SR0TA TS

by following the three-step method

Table A3: Prompts for Task C (Grounded 0—Shot Chain of Thought)

Task C: Grounded Few Shot Chain of Thought (from Sec 3.5.3)

Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B

Hi-Hi Setting

System Prompt:
31T Yeh FHHGT (TATCIrSl) el Ut g o 8 & | FHTT & sl o st gt gidt 8, it fohet =
fohelt IRE ¥ Uh-gIR ¥ A @ret 81
3TUhHT h1d TH AT hl T AT 8, T Uget &l el & offT & Hae el AR I4T Ty i
TR 278 TR AR <A1 3R I8 qT AT foh T 1eg 1 g1 A1fgq | THHAT 8 et o g &
TRUTF ST T e

1. g9 Ugdt, U &t esel (A 3R B) & &9 o fafe deiy ot uga | ag gusi fob 0 &1 0 @ &

EERE]
2. o, I Taiy ot R 2reg (C) TR AR e 3R 3 fos =t 2reg & gi=m =i ul

3. sfa ¥, Ry My faeheat & @ 39 farehed ol T8+ &< STt 311U UgaTH 7T & & SNTYR TR U
! gt Ik § O Rl 8
Udeh ROT | AaeTHIgdes 99 iR sifaw Fofa o @ uget svg deifad deel o foar | sra= adh
I TE TY Y T e | 30 3ifaH IR &t 39 UeU H &
3ifaH I<R: (X) fehe Tgi g IaTexvr 4g 7Y &: IaTeor 1:
At gamar &t g & 7 A< e 2
(A) uda
(B) aar
(C) HETETR
(D) BeH
TROT 1: G Ugel, 3t "T" R " & offw fAfAe deiy Y ugam ol g1 i ges fafre 9 8,
3R " gTnT ot AT Aoft &1 T Yok AT e § STt TS 2065 R UG I Yok AT IaT8R0T B
TROT 2: 37d, {3 34t oy hl "fgHTerd” R AN 1 g1 afe fgwTera i &Y avg Gen fafw Iargrur
&, al g3t 391 ot ar Juft get ghft
TROT 3: 3 H, g3 U ke i ST el 8
—uda: fearera uas fafre uda sj@en 8, ik "uda" g9l ot "udd” g1 ag T SR G &k g
G Rl STER0T T g
—23r: fRuTera i 321 18T §; I8 Uah oiiferes fasivar &
—ETR; fgaTer a1 Siet Aehr S qgrRT & &hls 999 T8l gl
—Ber: fRuTers AeM & fudd §; a8 T 3= 9@ 81
sifaw 3<R: (A) uda
3180l 2:
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fAfaRaa gamar &t gl @mget @ @t e ?
(A) g1g

(B) @

(C) fAmfor

(D) &AUR

RO 1: JY Ugd, g3 "I R "Glt" & sftw fAfre dew Y uga Sl @1 e G pfy
IAIE § ST Wl i ufehar T urd giar &1 g Teh TG 3R I UTW e <t Ufehar & o o1 ey
g

TROT2: 37, G St Helel ol "AATgT" R AN heAT ¢ | TS gl dTared chl ag Qeh 341G &, al g3t llgl
UTCT e ehl UfehdT ga-it a1t

TROT 3: 3 H, g U ke i ST el &

— YTd: I8 9dTaT1 ¢ foh gt @ ¢ (Ueh erq), 7 foh 58 ohdl e feha STra g1

— @ @A g Ufehar ¢ foiaeh g1 e gedt @ urtd fohar sirar 8, S fok @<t ag ufthar 8
g2 grae urd gia1 &1 I8 8! Jee I9T4 WadT g

— fAmtor: gg ues Ut ufchar € STt g ot ST ot §, 7 fob gt hd v fohar ST g1
— HUR; I8 <ig o fad=ur § Gefdd g, 7 foh 39 Idre 91

3ifaw I (B) @4

ITER0T 3:

At amar ol qur & fieett : R @2 et : ?
(A) FH

(B)&H

(C) SmU=

(D) Sifear

TROT 1: Y U, Jt "faeedt" SR "9RA" & 9 fAfw dder i ugar ot 81 faeet wRa &
AT 81 Tg Yo ASTYTT SR Ik 420 o 1< ohT Heiy &1 TROT 2: 37, q 34t e opt "Teril” R
AT AT 81 AfE herat et hl aRE an IsTami &, ot G5t a8 431 g&rT giTl ST et ISt
&1 TROT 3: 3id H, 73t UAeh [dched il ST ot 8:

_ = =fie o ety ifSi 8, et 8T
— ®Y: ¥g &6l AT GI%h g, et T8l
— SITU; Tt ST hl ST g1 I8 feeett 3R YRd & T 969 §91Y QT 8
— il Hifar (IR a1 &feron) Fi Jeter wim a1 R §, et 7gh|
3ifam IWR: (C) S
31801 4.
fAfafRaa gamar & gy e dfter : feremn o et : 2
(A) TR
(B) Shle-TT

(C) FFM T
(D) T

69



WO 1: G Uged, g "R 3R "ferar” & = fafe ddy Fr ugmE w3+ g1 9@ T
ST & Foigent IUTT fora i feham o forg fohaT SITdT 81 I8 Top SueT SR 39 & & &
& &1 T g

TROT 2: 379, {3t St Gy opt "hall" R AN hAT 81 Al hlt df¥et <l avg Qep Juaeon 8, dt g3
et & 7 i I g1 g
TROT 3: 3id H, g3 U ke i ST el &

— U UWR Ueh 9] & o1 W s fomarr Sirar €, = ok gas fomami

— RICAT: eh1eAT a8 HA fonar g forgeh forq dheht et Suat fovar Sirar 8, S fon foremr et et
= & gl

— ST T et SRl 73] i gl gl
— 1 41 & oI SmdR W g2 3R 91t vt IuART fohar Sird 8, | foh ot el
3ifaw IR (B) apreT
3&180T 5:
fAfeifea gamar &t g & R @ S o At : ?
(A) fosrr
(B) Iq<
(C) =

(D) @d
TROT 1: T Uget, Jgt "W" 3R "SHTA” o ofi= e Geiy Fi gga™ el g1 S 98 UTepideh
ST T ITATERT & STgi TR TEd & | Tg Yeh STHaR IR Ik UTepfden [Mam ©iH & &t o1 day g1

TROT 2 e, H3t 34T GIY hl "HASeN" W AN hAT g1 Al ASel! R ohl a8 Yeh STHR 8, df g3
HSel! oh UThicdeh e QI IT a1dTaR0T <t &1 8|
TROT 3: 3id H, g3t Uk faehed i ST et 8:

— fOoRT: fUSRT U i aTdTaRon 8 STgi SI-eR] ehl T@T SI1dT 8, T8 Hel! ohl UTchideh STaTd gl
gl

— % TG 98 UTideh STelld aTdTa]ul g igi SfAhisr Asferar Edt 8, oid foh et SRY a1
UTepfden SITaTd 81
— AT A Yk S aTdTaRvl g Sl A ferdl & oy Sugad T8l 8l
— ©d: ©d FfY YA & 3R Fsferal a1 Ui smard @l g1
3ifas IR: (B) Iz
39 fAAfaRad Tarar &t 39 di9-arofig gfeentor & ga e

User Prompt:

15T O e

IUTeT : He U &2 AR : ?

(A) ToRTE (B) I (C) TSI (D) SR0TIA TS

En-En Setting

System Prompt: You are solving an analogy problem. An analogy is a comparison between two
things that are similar in some way. Your task is to complete the analogy by finding the relationship
between the first two terms and applying that same relationship to find what the third term relates
to.
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Follow these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be
explicit in your reasoning.

Present your final answer in the format: ###Final Answer: (X) option_text
Here are some examples:

Example 1: Complete the analogy: 17T : 94l :: fgarera : ?

(A) Tdd

(B) aar

(C) HeTEIR

(D) #aH

Step 1: First, I need to identify the specific relationship between "T" (Ganga) and "-&I" (river).
Ganga is a specific river, and "&" is its category or classification. This is a relationship where
the first term is a specific example of the second term.

Step 2: Next, I need to apply this same relationship to "fgHATer™@" (Himalaya). If Himalaya is a
specific example like Ganga, then I need to find its category or classification.

Step 3: Finally, let me examine each option:

- Jdd (mountain): Himalaya is a specific mountain range, and "U&d" is the category “mountain.”
This follows the same pattern as Ganga and river.

- 32T (country): Himalaya is not a country; it’s a geographical feature.

- HgI’IR (ocean): Himalaya is not related to water bodies like oceans.

- B¢ (plain): Himalaya is the opposite of a plain; it’s an elevated landform.
###Final Answer: (A)

Example 2:
Complete the analogy: aTael : @l :: &gl : ?

(A) 81g
(B) @9
(C) fRmfur

(D) AR

Step 1: First, I need to identify the specific relationship between "aT@d" (rice) and "&<t" (farming).
Rice is an agricultural product that is obtained through the process of farming. This is a relationship
between a product and the process used to obtain it.

Step 2: Next, I need to apply this same relationship to "&I" (iron). If iron is a product like rice,
then I need to find the process used to obtain iron.

Step 3: Finally, let me examine each option:

—4Td (metal): This describes what iron is (a metal), not how it’s obtained.

—¥- (mining): Mining is the process by which iron is obtained from the earth, just -as farming
is how rice is obtained. This maintains the same relationship.

—fRmfor (construction): This is a process that uses iron, not how iron is obtained.
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—MUR (trade): This relates to distribution of iron, not its production.
###Final Answer: (B) ¥4

Example 3: Complete the analogy: f&eell : YRd :: et : ?

(A) F=

B)=H

(©) Sima

(D) sifr

Step 1: First, I need to identify the specific relationship between "f&eeil" (Delhi) and "9Ra" (India).
Delhi is the capital city of India. This is a relationship between a capital city and its country.

Step 2: Next, I need to apply this same relationship to "&feR" (Tokyo). If Tokyo is a capital city
like Delhi, then I need to find the country of which Tokyo is the capital.

Step 3: Finally, let me examine each option:

—I (China): The capital of China is Beijing, not Tokyo.
—%9Y (Russia): The capital of Russia is Moscow, not Tokyo.

—SIT4T9 (Japan): Tokyo is the capital of Japan. This maintains the same relationship as Delhi and
India.

—epIfAT (Korea): The capitals of Korea (North or South) are Pyongyang or Seoul, not Tokyo.
###Final Answer: (C)

Example 4: Complete the analogy: Gl : fergmr :; &t : ?
(A) TR

(B) preAT

(OXEIE

(D) ¥t

Step 1: First, I need to identify the specific relationship between "G (pencil) and "fera=T"
(writing). A pencil is a tool used for the action of writing. This is a relationship between a tool and
its primary function.

Step 2: Next, I need to apply this same relationship to "al" (scissors). If scissors is a tool like a
pencil, then I need to find its primary function.

Step 3: Finally, let me examine each option:
- UWR (paper): Paper is an object that is worked upon, not an action.

- hIeHT (cutting): Cutting is the primary action for which scissors are used, just as writing is the
primary function of a pencil.

- 9T (making/creating): Making is not the primary function of scissors.
- T (sewing): Sewing typically uses needle and thread, not scissors.
###Final Answer: (B) <hT&ATl

Example 5:

Complete the analogy: SR : SiTTeT :: HSAT : ?
(A) fOorR

(B) 9H<
(C) ™=
(D) @q
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Step 1: First, I need to identify the specific relationship between "R" (lion) and "SiTTe" (jun-
gle/forest). A jungle is the natural habitat or environment where lions live. This is a relationship
between an animal and its natural habitat.

Step 2: Next, I need to apply this same relationship to "H&ell" (fish). If fish is an animal like a
lion, then I need to find its natural habitat.

Step 3: Finally, let me examine each option:

- fUSIRT (cage): A cage is an artificial environment where animals are kept, not the natural habitat
for fish.

- §Hg (sea/ocean): The sea/ocean is the natural aquatic environment where most fish live, just as
the jungle is the natural habitat for lions.

- = (desert): A desert is a dry environment that is not suitable for fish.
- @d (field/farm): A field is agricultural land and not the natural habitat for fish.
###Tinal Answer: (B) 94

Now solve the following analogy using this three-step approach:

User Prompt:

Complete the following analogy:

IIUTeT © HeT TR 1 AR : ?

(A) ToRTE (B) I (C) IR (D) STE0TIA USeT.

Mixed Setting (En + Hi)

System Prompt: You are solving an analogy problem. An analogy is a comparison between two
things that are similar in some way.Your task is to complete the analogy by finding the relationship
between the first two terms and applying that same relationship to find what the third term relates
to.

Follow these steps to solve the analogy:

1. First, identify the specific relationship between the first two terms (A and B). Think about how
A relates to B.

2. Next, apply this same relationship to the third term (C) to determine what the fourth term should
be.

3. Finally, examine each of the given options and select the one that best completes the analogy
based on the relationship you identified.

For each step, think carefully and consider multiple possible relationships before deciding. Be
explicit in your reasoning.

Present your final answer in the format: ###Final Answer: (X) option_text
Here are some examples:

Example 1: Complete the analogy: T : =&} :: fgaTe™ : ?

(A) gdd

(B) gar

(C) HeTEIR

(D) #aH

Step 1: First, I need to identify the specific relationship between "TT" (Ganga) and "-&Y" (river).
Ganga is a specific river, and "F&I" is its category or classification. This is a relationship where
the first term is a specific example of the second term.

Step 2: Next, I need to apply this same relationship to "f@HTe@" (Himalaya). If Himalaya is a
specific example like Ganga, then I need to find its category or classification.
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Step 3: Finally, let me examine each option:

- Jdd (mountain): Himalaya is a specific mountain range, and "Udd" is the category “mountain.”
This follows the same pattern as Ganga and river.

- &7 (country): Himalaya is not a country; it’s a geographical feature.

- HgIIIR (ocean): Himalaya is not related to water bodies like oceans.

- #&M (plain): Himalaya is the opposite of a plain; it’s an elevated landform.
###Final Answer: (A)

Example 2:

Complete the analogy: aTaet : @l :: &gl : ?

(A) oTg

B) @4

(C) fAmfor

(D) @R

Step 1: First, I need to identify the specific relationship between "dTae" (rice) and "&<t" (farming).
Rice is an agricultural product that is obtained through the process of farming. This is a relationship
between a product and the process used to obtain it.

Step 2: Next, I need to apply this same relationship to "&gT" (iron). If iron is a product like rice,
then I need to find the process used to obtain iron.

Step 3: Finally, let me examine each option:
—4Tq (metal): This describes what iron is (a metal), not how it’s obtained.

—¥- (mining): Mining is the process by which iron is obtained from the earth, just -as farming
is how rice is obtained. This maintains the same relationship.

—fRmfor (construction): This is a process that uses iron, not how iron is obtained.
—UR (trade): This relates to distribution of iron, not its production.

###Final Answer: (B) @4

Example 3: Complete the analogy: f&eeft : ¥R :: Tt : ?

(A) T

(B) &9

(C) StmaTt

(D) &ifRan

Step 1: First, I need to identify the specific relationship between "f&eeft" (Delhi) and "9Rd" (India).
Delhi is the capital city of India. This is a relationship between a capital city and its country.

Step 2: Next, I need to apply this same relationship to "&et" (Tokyo). If Tokyo is a capital city
like Delhi, then I need to find the country of which Tokyo is the capital.

Step 3: Finally, let me examine each option:
— (China): The capital of China is Beijing, not Tokyo.
—%9¥ (Russia): The capital of Russia is Moscow, not Tokyo.

=TT (Japan): Tokyo is the capital of Japan. This maintains the same relationship as Delhi and
India.

—apIAT (Korea): The capitals of Korea (North or South) are Pyongyang or Seoul, not Tokyo.
###Final Answer: (C)
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Example 4:

Complete the analogy: Uf&reT : fergem :: daft: ?
(A) TR

(B) opret

(C) 9411

(D) ¥t

Step 1: First, I need to identify the specific relationship between "Uf@ie" (pencil) and "fera=T"
(writing). A pencil is a tool used for the action of writing. This is a relationship between a tool and
its primary function.

Step 2: Next, I need to apply this same relationship to "&@l" (scissors). If scissors is a tool like a
pencil, then I need to find its primary function.

Step 3: Finally, let me examine each option:
- UTR (paper): Paper is an object that is worked upon, not an action.

- hIeAT (cutting): Cutting is the primary action for which scissors are used, just as writing is the
primary function of a pencil.

- 4TI (making/creating): Making is not the primary function of scissors.
- ¥ (sewing): Sewing typically uses needle and thread, not scissors.
###Final Answer: (B) ohleHT

Example 5:

Complete the analogy: R : SivTet :: ASedl ; ?

(A) fosrr

(B) §i«

(C) e

(D) @q

Step 1: First, I need to identify the specific relationship between "SR" (lion) and "SFTal" (jun-
gle/forest). A jungle is the natural habitat or environment where lions live. This is a relationship
between an animal and its natural habitat.

Step 2: Next, I need to apply this same relationship to "#&efi" (fish). If fish is an animal like a
lion, then I need to find its natural habitat.

Step 3: Finally, let me examine each option:

- fUSRT (cage): A cage is an artificial environment where animals are kept, not the natural habitat
for fish.

- HHg (sea/ocean): The sea/ocean is the natural aquatic environment where most fish live, just as
the jungle is the natural habitat for lions.

- (desert): A desert is a dry environment that is not suitable for fish.
-Qd (field/farm): A field is agricultural land and not the natural habitat for fish.
###Final Answer: (B) 9%

Now solve the following analogy using this three-step approach:

User Prompt:

HIgTar 1 e
WIUTST : Ae U & IR : ?
(A) ToRTE (B) I (C) TSI (D) STE0TIA TSR
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Table A4: Prompts for Task C (Grounded few-Shot Chain of Thought)

Task C: Few Shot Chain of Thought (with Translation) from Sec 3.5.4

Models: Gemma-2-9B-it, Llama-3.1-8B-Instruct, Aya-Expanse-8B

English-only Setting

System Prompt: You are solving analogy problems presented in Hindi. An analogy is a compari-
son between two things that are similar in some way.

Follow these main steps: 1. Translation: Translate the Hindi question and all options to English. 2.
Solution: Solve the translated (english) analogy using only English (detailed below). 3. Mapping:
Map your English answer back to the correct Hindi option.

For the solution process (step 2), follow these sub-steps: a) Identify the specific relationship be-
tween the first two terms (A and B).

b) Apply this same relationship to the third term (C) to determine what the fourth term should be.
¢) Examine each of the given options and select the one that best completes the analogy.
IMPORTANT: Use ONLY English words during your solution process (step 2 and its sub-steps).
Only use Hindi when referring to the original question and when giving your final answer.

For each step, think carefully and consider multiple possible relationships. Be explicit in your
reasoning.

Present your final answer in the format: ###Final Answer: (X) option_text
Here are some examples:

Example 1:

Complete the analogy: T : =&t :: fgHTe™ : ?
(A) T

(B) a=r

(C) HeTaTR

(D) &eM

Step 1 - Translation:

Question: Ganga : River :: Himalaya : ?
Options:

(A) Mountain

(B) Country

(C) Ocean

(D) Plain

Step 2 - Solution:

a) Relationship identification:

Ganga is a specific river, and River is its category. This is a specific instance to category relation-
ship.

b) Relationship application:

Now I need to apply this relationship to Himalaya. If Ganga is a specific river, then Himalaya would
be a specific instance of what category?
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¢) Option examination:

- Mountain: Himalaya is a specific mountain range, so Mountain is its category. This matches the
relationship.

- Country: Himalaya is not a country, it’s a geographical feature.

- Ocean: Himalaya is not a body of water, it’s a land formation.

- Plain: Himalaya is the opposite of a plain; it’s an elevated region.

Step 3 - Mapping:

The answer in English is ”Mountain” which corresponds to the Hindi option (A) Udd.
###Final Answer: (A)

Example 2:

Complete the analogy: f&eefl : vRa :: aerit : ?
(A) T

B)x"

(C) sa=

(D) sifar

Step 1 - Translation:

Question: Delhi : India :: Tokyo : ?

Options:

(A) China

(B) Russia

(C) Japan

(D) Korea

Step 2 - Solution:

a) Relationship identification:

Delhi is the capital city of India. This is a capital-country relationship.
b) Relationship application:

Now I need to apply this relationship to Tokyo. I'm looking for the country of which Tokyo is the
capital.

¢) Option examination:

- China: The capital of China is Beijing, not Tokyo.

- Russia: The capital of Russia is Moscow, not Tokyo.

- Japan: Tokyo is the capital of Japan. This matches the relationship.

- Korea: The capitals of North and South Korea are Pyongyang and Seoul respectively, not Tokyo.
Step 3 - Mapping:

The answer in English is “Japan” which corresponds to the Hindi option (C) SIT4T-.

###Final Answer: (C)
Example 3:

Complete the analogy: aTaet : @l :: &gl ?

(A) g1g
(B) @
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(C) fHfuT

(D) IR

Step 1 - Translation:
Question: Rice : Farming :: Iron : ?
Options:

(A) Metal

(B) Mining

(C) Construction

(D) Trade

Step 2 - Solution:

a) Relationship identification:

Farming is the process by which Rice is produced or obtained. This is a product-production process
relationship.

b) Relationship application:

Now I need to apply this relationship to Iron. I’'m looking for the process by which Iron is produced
or obtained.

¢) Option examination:
- Metal: This is a category to which Iron belongs, not a production process.

- Mining: This is the process by which Iron is obtained from the earth, similar to how Farming is
used to obtain Rice. This matches the relationship.

- Construction: This is a process that uses Iron, not how it’s produced.
- Trade: This relates to the distribution of Iron, not its production.
Step 3 - Mapping:

The answer in English is "Mining” which corresponds to the Hindi option (B) ¥&--.
###Final Answer: (B)

Example 4:

Complete the analogy: Uf&reT : forgsr :; daft : ?

(A) IR

(B) preAT

(OXEIE

(D) "

Step 1 - Translation:

Question: Pencil : Writing :: Scissors : ?

Options:

(A) Paper

(B) Cutting

(C) Making

(D) Sewing

Step 2 - Solution:

a) Relationship identification:
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A pencil is a tool used for the action of writing. This is a tool-function relationship.

b) Relationship application:

Now I need to apply this relationship to scissors. I'm looking for the primary function of scissors.
¢) Option examination:

- Paper: This is an object that is worked upon, not an action.

- Cutting: This is the primary function of scissors, just as writing is the primary function of a
pencil.

- Making: This is too general and not the specific function of scissors.

- Sewing: Sewing is done with a needle and thread, not scissors.

Step 3 - Mapping:

The answer in English is ”Cutting” which corresponds to the Hindi option (B) chTeT.

###Final Answer: (B)
Example 5:

Complete the analogy: SR : SiTTeT :: HSe! : ?
(A) fisr

(B) %

(C) =

(D) @d

Step 1 - Translation:

Question: Lion : Jungle :: Fish : ?

Options:

(A) Cage

(B) Ocean/Sea

(C) Desert

(D) Field/Farm

Step 2 - Solution:

a) Relationship identification:

A jungle is the natural habitat where lions typically live. This is an animal-habitat relationship.
b) Relationship application:

Now I need to apply this relationship to fish. I’'m looking for the natural habitat where fish typically
live.

c¢) Option examination:

- Cage: This is an artificial structure, not a natural habitat.

- Ocean/Sea: This is the natural aquatic environment for most fish, like jungle is for lions.
- Desert: Deserts are dry and unsuitable for fish.

- Field/Farm: This is land used for agriculture, not suitable for fish.

Step 3 - Mapping:

The answer in English is "Ocean/Sea” which corresponds to the Hindi option (B) ¥Hg.

79



###Final Answer: (B)
Now solve the following analogy using the same step-by-step approach. Remember to use ONLY
English in your solution process (step 2):

User Prompt:

Complete the following analogy:

WIUTST : Ae U & IAHR : ?

(A) TSRTd (B) IS (C) ISR (D) SEUTTEe TSl

Table A5: Prompts for Task C (Few Shot Chain of Thought (with translation))

A.2.2 Model Response Language across different settings

Model Setting (System+User) | 0—Shot | 0—Shot CoT | Grounded 0—Shot CoT | CoT (Few Shot) | CoT (Few Shot-Translate-EN)

Hi+Hi Hi Hi Hi Hi -
aya—expanse-8B Hi+En - Hi Hi Hi -

En+En En En En En En

Hi+Hi Hi Hi Hi Hi
Llama—3.1-8B-instruct | Hi-++En Hi Hi Hi

En-+En Hi Hi En En Hi

Hi+Hi Hi Hi Hi Hi -
gemma-—2-9b-it Hi+En - En En En -

En+En En En En En En

Table A6: Language in which each model responded across different prompting strategies and language
settings
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Abstract

Human emotional expression emerges from
a complex interplay of verbal, para-verbal,
and non-verbal cues. This paper presents
a dual-path framework for emotionally
grounded text generation in large language
models by integrating behavioral metadata
with analogical retrieval. We introduce the
MECC (Multimodal Emotionally Conditioned
Corpus), a dataset of 1,764 question-answer
pairs collected via structured interviews and an-
notated across 15 emotion categories with tone,
response time, and body language. A LLaMA-
3.1-8B-Instruct model is fine-tuned on
MECC using behavior-encoded prompts, and
inference is supported by a metadata-filtered
Retrieval-Augmented Generation (RAG)
pipeline. Detailed emotion-level analysis
reveals trade-offs between emotional fidelity
and semantic diversity, emphasizing the need
for nuanced evaluation. This study contributes
a richly annotated multimodal emotion corpus,
a metadata-driven RAG architecture, a well-
structured framework for building emotionally
aware language models.Our code is available at
https://github.com/MetaResearcher/Framework

1 Introduction

“Emotion is not opposed to reason; it is its founda-
tion.” — Antonio Damasio, Descartes’ Error
Human emotional reasoning is seldom simply
associative or reactive. Rather, it is inherently ana-
logical, shaped by past experiences, moderated by
the present context, and shaped by memory, rich
in metaphors for how they make decisions now.
In emotionally charged circumstances, people of-
ten reflect analogically: "This is like how I felt
when..." Indeed, this notion of analogical reasoning
accounts for foundational cognitive models of anal-
ogy (Gentner, 1983)(Gérdenfors, 2000)(Holyoak
and Thagard, 1995) that have been used to articu-
late concepts of affective computing and socially

intelligent systems (Picard, 1997)(Hoegen et al.,
2019)

Nonetheless, even with tremendous advance-
ments in artificial intelligence and current genera-
tive models, the state-of-the-art is underwhelmed
in its ability to replicate this level of nuance with
emotional reasoning. Given that most Large Lan-
guage Models (LLMs) leverage only surface-level
conditioning, using emotion tokens (Zhou et al.,
2018) sentiment prompts, or affective keywords
(Rashkin et al., 2019), at the surface without trans-
lating the embodied, context-sensitive nature of
a human emotional experience. Further, as with
many machines initially designed for logic or lim-
ited predictability, LLMs miss integral non-verbal
elements involved with human emotional mes-
saging: tone, timing, gesture, etc. (Mehrabian,
1971)(Wang et al., 2004).

Hi, I've been feeling overwhelmed with my life lately. ¢
| feel stressed about my job and managing my time effectively.

Lacks empathy/validation
Task-oriented, not
emotionally resonant.

&

Figure 1: Figure of ChatGPT-4o0 response where it fails
to generate an emotionally aware response

That sounds tough. Have you tried making a list of tasks
and identifying which are most urgent?

The degree of disconnection noted above is
important in human-centered areas of work like
healthcare, education, and therapy, in which emo-
tionally coherent and capturing the unique personal
connection is important. Recent applications using
generative systems to enhance empathy in clini-
cal documentation (Nag et al., 2023) and encour-
age pro-social engagement in environmental psy-
chology (Lim et al., 2024), demonstrate that more
complex cognitive-emotional capacities, such as
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introspection, empathy, and analogy, are lagging
(Ortega-Ochoa et al., 2024)(Varma et al., 2024).

Building on these research gaps, we present the
MECC (Multi-modal Emotionally Conditioned
Corpus), a behaviorally enriched data set con-
structed from a 60-item psychological interview
protocol. The data set includes 1,764 pairs (ques-
tion, response) from 31 participants, annotated
across 15 emotional categories and accompanied
by behavioral metadata such as vocal tone, re-
sponse time, and body language. By incorporating
both verbal and paraverbal dimensions, MECC en-
ables a more cognitively grounded investigation of
affective states.

Using MECC, we fine-tuned the LLaMA-
3.1-8B-Instruct model on behavior-encoded
prompts and integrated a metadata-filtered Re-
trieval Augmented Generation (RAG) pipeline.
This dual-path architecture conditions the genera-
tion on both situational context and analogically re-
trieved affective exemplars. The combined system
goes beyond surface-level fluency by generating
emotionally aligned responses that reflect behav-
ioral and situational grounding, supporting more
context-sensitive and affect-aware language gener-
ation.

2 Related Work

Recent developments in large language models
(LLMs) have had a great impact on emotion un-
derstanding tasks generally, and multimodal emo-
tion understanding tasks specifically. (Luo et al.,
2024) experimented with several LLMs for a spe-
cific variant of the Multimodal Emotion Cause Pair
Extraction with Emotion Category (MECPE-Cat)
task. After noting that ChatGLM had the high-
est performance, they reported a weighted aver-
age F1 score of 34.71 percent using just two train-
ing epochs. Prompt engineering was an important
aspect of this team’s system, and they got their
emotion-labeled data from the ECF dataset, which
contained a total of 13,619 utterances, in an over-
whelmingly constructive way with the data through
the use of prompt engineering.

(Wang et al., 2024) expanded on Luo et al. ’s
work by running team submissions for two sub-
tasks: text-based emotion-cause pair extraction
(TECPE) and multimodal emotion-cause pair ex-
traction (MECPE). For the task of TECPE, the
highest F1 score reported was 0.3223 with a com-
bination of LLaMA2 and SpanBERT. For the sub-
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task of MECPE, the highest F1 score reported was
0.3774 with an ensemble of LLaMA?2, RoBERTa,
and LLaMA, showing that multimodal models tend
to outshine unimodal models.

Nevertheless, standard unimodal methods may
not offer the complexity necessary to successfully
address authentic emotional expression. (Cheng
et al., 2024) saw the importance of this and created
the MERR dataset, which included 28,618 coarse-
grained and 4,487 fine-grained annotated examples.
Their Emotion-LLaMA model, through instruction
tuning, achieved better performance than existing
multimodal LLMs (MLLMs) across many bench-
marks. They achieved the highest scores in Clue
Overlap (7.83) and Label Overlap (6.25) on the
EMER dataset, and an F1 score of .9036 on the
MER?2023-SEMI challenge, along with good zero-
shot results on the DFEW dataset.

Another study of emotional intelligence in
LLMs was conducted by (Chen et al., 2024) with
EmotionQueen, a standardized benchmark con-
taining 10,000 statements generated by GPT-4
across five life scripts. They examined 11 major
LLMs on four tasks: Event Recognition, Mixed
Event Recognition, Implicit Emotion Recognition,
and Intention Recognition. The study found that
LLaMA-70B obtained the highest average score
(93.4), while Claude?2 was ranked first in Key Event
Recognition. While pre-trained attention-based
LLMs such as GPT-4 can achieve high accuracy on
certain emotion recognition tasks, they often fail to
translate this accuracy into responses that demon-
strate compassionate or emotionally supportive rea-
soning. That is, the models may correctly identify
emotional cues but lack the ability to respond in a
way that reflects genuine empathy or care.

In addition to these studies on recognition,
(Varma et al., 2024) introduced an emotionally
adaptive Al pipeline to generate personalized emo-
tional responses. They compared a fine-tuned
LLaMA-3 8B modulated by LoRA with an RAG
system. The fine-tuned model trained using inter-
view data containing six universal emotions outper-
formed the RAG system; all of their correlation in-
dices were greater than 0.950 (i.e., 0.850 for Anger)
with a lower MSE score overall, such as 0.0452.
Their research supports the notion that RAG sys-
tems struggle with emotional nuance. This moti-
vates our dual-path design that includes analogical
retrieval and behavioral conditioning.

Overall, the recent advances in the literature
mark an important shift towards multimodal LLMs



No. Paper/ Authors Model/Method Contribution

1 Luo et al. (2024) ChatGLM + Prompt En-  Achieved 34.71% F1 on MECPE-Cat using ECF dataset; demonstrated
gineering effective prompt design.

2 Wang et al. (2024)  LLaMAZ2 + SpanBERT; Reported highest F1 of 0.3223 (TECPE) and 0.3774 (MECPE);
Ensemble (LLaMA2, showed multimodal models outperform unimodal.
RoBERTa, LLaMA)

3 Cheng et al. (2024) Emotion-LLaMA (In- Introduced MERR dataset; achieved state-of-the-art on multiple emo-
struction Tuning) tion benchmarks.

4 Chen et al. (2024) 11 LLMs (incl. Proposed EmotionQueen benchmark; analyzed LLMs on emotional
LLaMA-70B, Claude2, intelligence tasks.
GPT-4)

5 Varma et al. (2024) Fine-tuned LLaMA-3 Developed emotionally adaptive pipeline; fine-tuned model outper-

8B (LoRA) vs. RAG

formed RAG in nuance and accuracy.

Table 1: Summary of recent literature on LLMs for emotion understanding.

and instruction tuning, aiming to capture nuanced
emotional understanding. However, there remains
a notable gap in models that can accurately identify
emotion cause relationships while simultaneously
adapting empathetically to behavioral context and
modality. This study addresses that gap through a
behavior-conditioned framework grounded in ana-
logical retrieval and affective reasoning.

3 MECC Dataset

3.1 Motivation and Theoretical Framing

Existing emotion classification corpora such as
EmpatheticDialogues (Rashkin et al., 2019) and
GoEmotions (Demszky et al., 2020) have laid the
foundational work in emotion classification, but fo-
cus exclusively on text, overlooking prosodic and
embodied dimensions central to emotional commu-
nication such as tone, timing, and gesture. This
unimodal framing limits progress towards cogni-
tively grounded emotional reasoning.

Drawing from analogical reasoning (Gentner,
1983) and affective conceptual spaces (Gérden-
fors, 2000), we argue that emotional intelligence in
LLM requires a behaviorally informed context, not
just surface level fluency. Our work addresses this
by building on nonverbal signals to support more
situated and expressive affective understanding in
generative systems.

3.2 Emotion-Centric Interview Design

We structured MECC using a 60-item psycholog-
ical questionnaire derived from affective science
frameworks. The prompts elicited responses span-
ning 15 emotion categories:

* Primary Emotions: Love & Affection,
Anger & Frustration, Fear & Anxiety, Happi-

&3

ness & Joy, Sadness & Grief, Guilt & Regret,
Loneliness & Isolation

Self-Reflective Cognition: Confidence &
Self-Belief, Decision-Making, Forgiveness
& Letting Go, Emotional Growth & Self-
Reflection

Social-Affective Constructs: Empathy &
Understanding Others, Gratitude & Content-
ment, Stress & Coping, Non-Verbal Commu-
nication

Each prompt was either introspective or scenario-
driven (e.g., “How do you process emotional fail-
ure?”, “What helps you remain resilient in uncer-
tain times?”), encouraging participants to articulate
both immediate and reflective affective states.

3.3 Interview-Based Data Collection and
Annotation

We conducted semi-structured interviews with 31
participants (ages 18-35) based on a 60-item psy-
chological questionnaire designed to elicit intro-
spective responses across 15 emotional-cognitive
categories. Each interview lasted approximately 45
minutes and was conducted in a quiet, controlled
setting. During each session, the interviewer posed
the questions while a second trained observer who
was trained in both affective psychology and be-
havioural coding. Annotations captured three key
behavioural dimensions:

Tone: calm, reflective, hesitant, defensive, etc.
Response Time: fast (1-2s), moderate (3—4s), or
slow (5-6s)

Body Language: gestures, gaze, posture shifts,
observed live during the session

The annotation protocol was designed to capture



both deliberate and spontaneous behaviors.

3.4 Speech-to-text Transcription

Sessions were audio-recorded and audio recordings
were transcribed using OpenAI’s Whisper (large-
v2), a s.o.t.a ASR system optimized for sponta-
neous and conversational speech. To ensure high
quality transcriptions suitable for downstream emo-
tion modeling we applied a multistage pipeline
comprising:

¢ Disfluency normalization: Removal of filler
words, repetition and hesitation while preserv-
ing emotional cues

¢ Manual correction: Rectification of misrec-
ognized tokens and named entities

* Quality Filtering: Removal of short or emo-
tionally uninformative responses

This pipeline preserved both semantic fidelity
and temporal expressiveness elements vital for
modeling affective grounding in language.

3.5 Emotion Labeling Strategy

Emotion labels were manually assigned during
the annotation phase, before any model training.
Rather than defaulting to the emotion implied by
the question, each response was labeled based
on the participant’s expressive intent and affec-
tive tone. For example, if a participant responded
with optimism and conviction to a question framed
around fear, the label Confidence & Self-Belief
was used instead of Fear & Anxiety. This response-
grounded labeling aligns with contemporary re-
search advocating for expression-based emotional
classification, thereby improving downstream emo-
tional alignment in generative models.

3.6 Data Representation and Structure

All annotated data was structured in a flattened
JSON format suitable for both fine-tuning and
metadata-aware retrieval in Retrieval-Augmented
Generation (RAG) systems. Behavioural metadata,
such as tone, response time, and body language,
are embedded directly into the prompt. This struc-
ture enabled the model to condition not only on
the semantic question but also on paralinguistic
and behavioral framing, a design choice critical for
emotionally coherent generation.
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3.7 Dataset Statistics
Property Value
Total Responses 1764
Unique Participants 31
Emotion Categories 15
Avg. Response Length ~ 71.3 tokens
Avg. Response Time 3.4 seconds
Entries with Metadata ~ 100%
Format JSON

Table 2: Summary statistics of the constructed dataset.

4 Methodology

This work introduces a dual-path generation frame-
work designed to simulate emotionally intelligent
language by conditioning both learning and in-
ference on behavioral context. Unlike traditional
LLM pipelines that rely solely on semantic con-
tent, our method integrates paralinguistic meta-
data—such as tone, response time, and body lan-
guage at each stage of training and generation. This
methodological design supports cognitively and
affectively aligned response generation across di-
verse emotional domains.

4.1 Overview

Our framework generates emotionally grounded
responses by integrating metadata-filtered retrieval
with an instruction-tuned large language model.
We propose the dual-path architecture shown in
Figure 2 , consisting of:

e A fine-tuned LLaMA 3.1-8 B-Instruct
model, trained on behaviour-embedded
prompts.

* A Retrieval-Augmented Generation (RAG)
pipeline, retaining and encoding responses
that retrieve semantically and affectively com-
parable exemplars from a metadata-indexed
collection.

Both modules are designed to reinforce one an-
other: while fine-tuning helps the model internalize
behavioral priors, retrieval ensures each response
remains grounded in real-world, affectively anno-
tated human data. The overall objective is to ensure
that generated responses exhibit both emotional flu-
ency and contextual appropriateness.

4.2 Behavioral Prompt Construction

MECC includes structured (Q, A) interview pairs,
annotated with multimodal behavioural metadata (
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Figure 2: Dual-Path Emotionally Aware Generation Framework via Fine-Tuning and Analogical Retrieval-

Augmented Generation

tone, response time, body language) and one of 15
target emotion categories. To support instruction-
based learning, we flatten this structure into a
JSON-style prompt, incorporating all behavioural
and affective cues, suitable for both fine-tuning and
retrieval tasks. This design ensures that the model
learns from both semantic intent and behavioral
expression, aligning generated responses with the
emotional subtext of each question.

4.3 Emotionally Aware Language Modeling

We use the LLaMA 3.1-8 B-Instruct model due
to its effective instruction-following capabilities.
For scalable fine-tuning on consumer GPUs, we
used LoRA with 8-bit NF4 quantization (via
bitsandbytes), conserving memory while main-
taining model fidelity.

The first generation path involves fine-tuning a
LLaMA 3.1-8B-Instruct model on a behaviorally
enriched dataset, enabling it to internalize pat-
terns of emotional expression beyond surface-level
language. This is achieved through Parameter-
Efficient Fine-Tuning (PEFT) using the LoRA tech-
nique.

This design enables the model to generate
responses that exhibit emotional intelligence,
grounded in the behavioral and affective context of
the prompt.

4.4 Emotionally Aligned
Retrieval-Augmented Generation(RAG)

To enrich generation with affective grounding,
we implement an Emotion-Conditioned Retrieval-
Augmented Generation (RAG) mechanism. All
training responses are indexed using FAISS (Face-
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book Al Similarity Search), an open-source library
designed for efficient similarity search and cluster-
ing of dense vectors. Sentence-level embeddings
are generated using the al1-MiniLM-L6-v2 model
from SentenceTransformers. Each document in
the index is annotated with behavioral metadata,
including emotion label, tone, response time, and
body language, enabling metadata-aware filtering
during retrieval.

4.5 Inference Flow

At inference time, the system processes each user
query through two complementary generation path-
ways:

Fine-Tuned Generation: The user’s question,
along with its associated behavioral metadata (
tone, response time, body language), is directly
passed to the fine-tuned LLaMA 3.1-8B-Instruct
model. This enables emotionally aligned gener-
ation by conditioning the response on embedded
affective signals.

RAG-Enhanced Generation: A metadata-
indexed FAISS corpus is constructed from the
MECC dataset, where each response is embed-
ded using all-MinilLM-L6-v2 and annotated with
emotion, tone, response time, and body language.
During inference, a joint scoring function identi-
fies the top-k behaviorally congruent exemplars
using semantic similarity (cosine distance), emo-
tion alignment (e.g., emotion=gratitude), tonal
and temporal congruence, and fingerprinting-based
diversity filtering. These retrieved responses are
concatenated into a context block and prepended
to the user query, forming an augmented prompt.
The final generation is then produced by the fine-



tuned LLaMA model, grounded in both semantic
and emotional context.

This dual-pathway architecture enables the sys-
tem to simulate emotionally intelligent dialogue
by internalizing affective behavior through fine-
tuning, while dynamically adapting outputs using
context-aware retrieval.

S Experimentation

5.1 Experimental Setup

To evaluate our framework’s potential for emo-
tionally grounded generation, we performed ex-
periments with the MECC dataset of behav- io-
rally annotated question-response pairs. We chose
to examine two basic generation methods: (1)
fine-tuned generation via LoRA; and, (2) emotion-
driven RAG.

We completed fine-tuning the LLaMA 3.1-8B-
In- struct model on instruction-style prompts,
which contained behavioral metadata (tone, re-
sponse time, body language) and naturally-formed
language questions. Fine-tuning was completed us-
ing parameter-efficient fine-tuning (PEFT) - specif-
ically, we applied Low-Rank Adapters (LoRA)
to the attention projection layers (q_proj, k_proj,
v_proj, o_proj) with a rank of 8, a scaling value
(alpha) of 16, and a dropout of 0.1 which allowed
us to balance regularization and performance. We
trained the model for 3 epochs with a learning rate
of 5e-5, a batch size of 2 per device, and 4 gradient
accumulation steps; defining an total batch size of
8.

The emotionally grounded RAG component
was implemented with FAISS for dense vector re-
trieval. Sentence embeddings were built with the
all-MiniLM-L6-v2 model and indexed with meta-
data - emotion, tone, response time - for each re-
sponse. For inference, the system conducted top-k
retrieval with a single score from score of semantic
similarity, emotional match, and behavioral con-
cordance. The retrievals were concatenated and
prepended to the user prompt to inform the model’s
final generation.

We ran our models and evaluated them using a
test set of 353 samples, and the responses spanned
15 emotional categories, with each of the sample
responses including behavioral metadata about re-
sponse time, tone, and body language.

All of the model responses were generated with
temperature between 0.4 and 0.7, 2048 token lim-
its, and 1.1 repetition penalty to ensure coherence.
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Assessment of models focused on emotional align-
ment, semantic relevance, and behavioral fidelity
from both generation paths.

5.2 Experimental Results

5.2.1 Performance Comparison: RAG vs.
Non-RAG

* Emotional Accuracy: The non-RAG model
yielded slightly higher emotional accuracy
(39.94%) compared to the RAG model
(38.24%).

Semantic Similarity: The non-RAG model
achieved a perfect BERTScore F1 (1.000),
whereas the RAG model achieved 0.827. This
suggests that while the non-RAG model may
be overfitting or reproducing near-identical
outputs, the RAG model is generating more
varied and competitive responses.

Cosine Similarity: Similarly, the non-RAG
model scored a perfect cosine similarity
(1.000), likely due to redundancy or training-
test overlap. The RAG model’s score of 0.443
indicates greater diversity in generated out-
puts.

Pearson Correlation & MSE: Only reported
for the RAG model. It achieved a Pearson
correlation of 0.152 (p = 0.004) and a low
mean squared error (0.091), demonstrating a
mild but statistically significant alignment be-
tween predicted and ground-truth emotional
intensities.

Perplexity: The RAG model had a slightly
higher perplexity (5.554) than the non-RAG
model (4.386), suggesting more fluent and
natural language generation.

Interpretation: While the non-RAG model per-
forms slightly better on raw accuracy and tex-
tual similarity, this comes at the cost of overfit-
ting and reduced response variability. The RAG
model, though marginally lower in accuracy, deliv-
ers richer, more behaviorally grounded responses
with statistically significant emotional alignment-
indicating more human-like emotional reasoning.
This supports our hypothesis that emotional intel-
ligence cannot be evaluated solely through label
accuracy but must consider generative diversity
and affective coherence. Figure 3 and Figure 4
shows emotion distribution of targeted and pre-
dicted emotions.



Metric RAG Model Non-RAG Model
Emotional Accuracy 0.3824 0.3994

Average BERTScore F1 0.827 1.0000

Average Cosine Similarity | 0.443 1.0000

Pearson Correlation 0.152 (p=0.004) 0.3725 (p = 0.0000)
Mean Squared Error 0.091 15.78

Average Perplexity 5.554 4.386

Table 3: Comparison of performance metrics between RAG and Non-RAG models.
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Figure 3: Target Emotion Distribution VS Predicted Emotion Distribution
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Figure 4: PCA-based clustering of predicted emotion
distributions.

5.3 Qualitative Example of Emotional
Grounding

A representative example is provided in Appendix ,
illustrating the model’s ability to generate emotion-
ally grounded responses. It shows how the system
leverages metadata to produce outputs with im-
proved emotional resonance and context sensitivity
offering insights that complement the quantitative
findings.
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5.4 Emotion-Level Analysis

Emotion F1-Score Precision Recall
Guilt and Regret 0.7000 0.5833  0.8750
Anger & Frustration 0.6667 1.0000  0.5000
Fear & Anxiety 0.6667 1.0000  0.5000
Confidence and Self Belief 0.5455 0.6000 0.5000
Gratitude and Contentment 0.5238 0.4783  0.5789
Emotional Growth and Self Reflection ~ 0.5098 0.4860  0.5361
Sadness and Grief 0.5000 0.8000  0.3636
Happiness and Joy 0.4722 1.0000  0.3091
Empathy and Understanding Others 0.2817 0.1724  0.7692
Love & Affection 0.1579 1.0000  0.0857
Decision-Making 0.0000 0.0000  0.0000
Neutral 0.0000 0.0000  0.0000
Other 0.0000 0.0000  0.0000

Table 4: Per-emotion performance metrics showing F1-
Score, Precision, and Recall for each emotion category.

6 Conclusion

This article has outlined a unified framework for
generating emotionally and behaviorally informed
responses in large language models. By fine-tuning
a LLaMA-3.1 8B-Instruct model on MECC to en-
able the AI to generate affect-aligned responses



based on more nuanced patterns of human cogni-
tion and emotion.

To optimize generative tuning, we have pro-
posed a series of steps that constitute a metadata-
filtered retrieval-augmented generation (RAG)
pipeline that allows for ongoing dynamic seman-
tically and emotionally matching responses with
common affective metadata.

The framework also has two-track paths for co-
herence concerning emotional integrity, but also
the contextual consistency of emotion. A series
of validations along emotional alignment, seman-
tic similarity measures, and regression measures
demonstrated that our system was able to gener-
ate emotionally expressive and semantically well-
grounded responses.

The proposed methodology demonstrates how
combining multimodal fine-tuning with emotion-
aware retrieval offers a scalable path toward con-
structing language models that are not only fluent
but behaviorally grounded and emotionally intelli-
gent.

7 Future Work

In addition to the possibilities outlined in our cur-
rent framework, we suggest a multi-agent architec-
ture for fine-grained emotion inference, balancing
distributed specializing with orchestrated decision-
making. This future architecture envisions 15 spe-
cialized emotion agents, each trained to detect a
specific emotional state such as joy, fear, love, or
coping with stress based on behaviorally grounded
psychological patterns. Each agent is a separate
and autonomous microservice, and each microser-
vice can evaluate its inputs in parallel with various
prompt strategies, each rooted in the focused emo-
tional space.

An Emotion Orchestrator will premise and execute
the coordination of these agents in four steps: 1)
Emotion Probability Estimates through a question
classifier 2) Task Distribution to selected emotion
agents 3) Score Aggregation through the outputs
from the emotion agents 4) Final Emotion Scoring
through weighted fusing of the input from the re-
spective agents.

In addition, we also wish to contribute a more ro-
bust dataset-level prompting framework that inte-
grates pieces of compartmentalized persona traits,
scene cues, and emotional framing—over the ex-
pected stimulus for each QA pair. These more so-
phisticated prompts will be key for both the classi-
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fication step as well as the rationale of the emotion
agents’ decision-making process, since they will
better ground the agent in a given context and priest
its affective accuracy. By combining the complaint
in specialization with the synergy of orchestration
and persona-level prompting, we aim to create a
framework that enhances the interpretability, scala-
bility, and emotional fidelity of affect-aware

8 Limitations

While our proposed framework introduces a novel
dual-path architecture for emotionally grounded
generation, several limitations must be acknowl-
edged.

* Dataset Scale and Diversity: The MECC
dataset, while rich in multimodal annotations,
is limited to 31 participants. This constrains
the model’s ability to generalize across di-
verse cultural, demographic, and communica-
tive contexts.

Emotion Coverage Imbalance: Certain emo-
tional categories such as Love & Affection and
Neutral were significantly underrepresented.
This imbalance led to skewed performance
across emotion classes and hindered the eval-
uation of low-frequency affective states.

RAG Output Variability: Although the
RAG pathway promotes semantic diversity,
it occasionally retrieves contextually mis-
aligned examples, introducing inconsistency
in emotional fidelity and response tone.

Subjectivity in Annotation: Despite trained
annotators, the labeling of emotions and be-
havioral cues such as tone, body language,
and response latency remains inherently sub-
jective, which may introduce noise in align-
ment with ground-truth labels.

Lack of Human-Centric Evaluation: The
current evaluation relies primarily on auto-
mated metrics for emotion classification and
semantic alignment. Human assessments of
emotional appropriateness, empathy, and con-
versational relevance were not incorporated
and remain a critical area for future work.

9 Ethics Statement

The final informed consent was granted by all per-
sons participating in the data collection. In ad-
herence to ethical principles of human subjects



research, the interviewer was expected to have
disclosed to the interviewees the study’s objec-
tives, data use, and their rights to withdraw from
the study at any time. A pseudonym was main-
tained for all participants. All the audio recordings
of the interviews had been transcribed and then
anonymized to maintain the confidentiality of the
participants.

Annotators were trained to identify behavioral
and emotional markers, were instructed to remain
as neutral as possible and be respectful during the
labeling process, and were instructed in the man-
agement of all such data according to their respec-
tive institutions’ policies and research guidelines.
We hope that this work will aid in creating systems
that have emotional intelligence while applying
responsible Al principles related to transparency,
dignity, and fairness.
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A Appendix

Prompt Template

<s>[INST]

<SYS>

Reply in a calm and reflective tone, reflecting the emotional state:
sadness and grief.

Behavioral cues:

- Response latency: slow

- Body language: gaze aversion, downward posture

</SYS>

How do you deal with personal loss?

[/INST]

I usually take time to sit with my feelings. Sometimes I write in
a journal or talk to a close friend, but I try not to suppress the
sadness. It helps me heal.

</s>

Dataset structure

"input": "Q: What makes you feel most loved or appreciated in a relationship?
Tone: thoughtful, calm,

Response Time: Moderate (3—4 s),

Body Language: lowered gaze, soft voice"

"output": "I feel most loved when someone accepts me as I am completely.”

LoRA Fine-Tuning Configuration

LoRA Rank 8
LoRA Alpha 16

Epochs 3

Batch Size 2 (gradient accumulation
=4)

Learning Rate 5 x 107°

Dropout 0.1

Precision FP16 + gradient check-
pointing

Optimizer AdamW (max grad norm
=0.3)

Warmup Steps  10% of total steps

Target Modules q_proj, k_proj,
V_proj, o_proj
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Example Output rag v/s non-rag

Q: How do you typically cope with feelings of loneliness? [

“tone”: “optimistic, sincere”,
“response_time”: “Moderate (3-4s)”,
“body_language”: “gentle smile, relaxed shoulders”

]
Target: happiness and joy | Predicted: happiness and joy

RAG Response: When I feel lonely, I typically cope by engaging in
activities that connect me with others and boost my mood. I might
reach out to friends or family through video calls, which helps
maintain meaningful relationships. I also find that pursuing hobbies
like reading or listening to music creates a sense of purpose and joy.
Additionally, I’ve learned that volunteering or helping others can
transform loneliness into a feeling of contribution and connection to
my community.

Non-RAG Response: I completely understand how isolating loneliness
can feel. When I experience it, I find comfort in watching movies,
especially comedies that genuinely make me laugh and remind me of
brighter moments. There was a time when I first moved away from my
family and felt so disconnected - those movies became my companions
during difficult evenings. I also make sure to call my family regularly
because hearing their voices instantly reminds me that I’m loved and
that everything will be okay, even when distance makes it hard to
remember .
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Abstract

Narratives are widely recognized as a powerful
tool for structuring information and facilitating
comprehension of complex ideas in various do-
mains such as science communication. This

paper explores whether generating narratives
can serve “as a specialized mode of thinking”
that improves the reasoning abilities of Large
Language Models (LLMs). We introduce Story
of Thought (SoT), a novel prompt-driven rea-
soning framework that guides LLMs to con-
struct narratives around the problem statement
to solve the task more effectively. SoT enables
LLMs to integrate narrative techniques such
as metaphor and analogy into their reasoning
process. Our experiments show that SoT signif-
icantly improves the LLMs’ problem-solving
abilities on various tasks including physics,
chemistry, and biology in both JEEBench and
GPQA (e.g., SoT resulted in 13% improvement
compared to CoT when using GPT-4). To vali-
date LLLM-based evaluation for generated nar-
ratives, we conduct a human annotation of the
narrative techniques used by LLMs. Our results
show strong inter-annotator agreement between
Llama 3 70B and human annotators. This work
brings LLLM reasoning closer to human cogni-
tive processes by mirroring mechanisms such
as analogical problem-solving, which are cen-
tral to how humans understand and process
complex ideas.

1 Introduction

Humans employ two fundamental modes of
thought: the logico-scientific mode which relies
on formal logic and a mathematical system of de-
scription to derive conclusions, whereas the nar-
rative mode organizes information into structured
stories, making sense of complex ideas through
causality (Bruner, 1991). Literature on human
cognition has extensively explored how the hu-
man brain processes narratives, highlighting hu-
mans’ exceptional ability to understand and reason
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A fraction represents part of a whole,
made up of a numerator and a
denominator. The numerator shows how
many parts are being considered, while
the denominator shows the total number
of equal parts. For example, in 3/4, 3 is

A

) )
N4 Y- = &
LOGICO-SCIENTIFIC \Fﬁ NARRATIVE vy
APPROACH APPROACH =

Lily was helping her mom bake
cookies and needed 3/4 cup of sugar.
Her mom explained that it meant using
3 parts of sugar out of 4 equal parts.
By filling the 1/4 cup three times, Lily
learned how fractions represent parts

the numerator, and 4 is the denominator. of a whole.

Figure 1: A comparison of narrative and logico-
scientific explanations for the concept of fractions. The
narrative approach places the concepts into a progres-
sively rolled-out story, while the logico-scientific ap-
proach presents the information objectively.

through them (Hineline, 2018; Armstrong, 2020;
Sanford and Emmott, 2012). A narrative-driven
explanation can enhance the comprehension and
retention of complex subjects compared to a sim-
ple listing of objective information (Fisher, 2021;
Abbott, 2020; Gottschall, 2012). Storytelling ef-
fectively structures information in science com-
munication (Dahlstrom, 2014; Norris et al., 2005;
Martinez-Conde and Macknik, 2017) and educa-
tion (Engel et al., 2018; Negrete and Lartigue,
2004), revealing relationships and contextual nu-
ances (Zak, 2015). Figure 1 shows an example
of the narrative approach that contextualizes facts
within a daily life scenario (story) with a planned
structure, allowing for the use of techniques such as
analogy or progressive disclosure, while the logico-
scientific approach conveys information in a con-
cise in-domain manner.

To date, one of the ways the reasoning process in
large language models (LLMs) has been enhanced
is through prompting techniques that guide them
to break tasks into smaller subtasks such as Chain-
of-Thought (CoT) (Wei et al., 2022) and its more
recent adaptations (Xia et al., 2024). The strategies
of constructing natural language rationales (Ling
et al., 2017), in the CoT context play a vital role in
LLM prompting (Ye and Durrett, 2022; Min et al.,

Proceedings of the 2nd Workshop on Analogical Abstraction in Cognition, Perception, and Language (Analogy-Angle 1I), pages 92—-107

August 1, 2025 ©2025 Association for Computational Linguistics


mailto:vahid.sadirij@uni-bonn.de
mailto:lflek@uni-bonn.de
mailto:j.trippas@rmit.edu.au
mailto:ylal@cs.stonybrook.edu

2022; Wang et al., 2022; Li et al., 2023). However,
LLMs still struggle with complex problem-solving
tasks that require the ability to integrate, structure,
and apply relevant information effectively (Qiao
et al., 2023; Wang et al., 2023).

In this work, we show that generating narratives
around the problem statement enhances the LLMs’
reasoning ability. Our method integrates narrative
techniques such as analogy into the reasoning pro-
cess with the aim of combining their effectiveness
in explaining abstract concepts with their ability to
organize information flow coherently. Therefore,
we address two main research questions:

RQ1: How to leverage LLMs to generate nar-

ratives around problem statements to facilitate

comprehension and reasoning?

RQ2: Can incorporating narratives into the rea-

soning process improve model performance on

complex problem-solving tasks?

We make the following contributions: (i) We in-
troduce a novel method, Story of Thought (SoT),
that aids LL.Ms in identifying and arranging rele-
vant information for solving complex tasks by in-
corporating narrative structures into the reasoning
process, (ii) We evaluate the effectiveness of SoT
on GPQA and JEEBench datasets of complex prob-
lems, showing superior performance to existing
prompting techniques with SotA models, and (iii)
We analyze the impact of narrative techniques to
generate narrative-based explanations and investi-
gate why they improve LLLMs’ reasoning abilities.

2 Related Work

Bruner (1991) posit that narratives are a fundamen-
tal mode of human thought, allowing individuals to
convey complex concepts in a more understandable
manner. Presenting information through narratives
can enhance learning and memory, promote en-
gagement and motivation (Willingham, 2004; Chen
et al., 2023). The development of narrative-based
educational strategies (Bower and Clark, 19609;
Mawasi et al., 2020; Norris et al., 2005) paved
the way for using them as a framework for organiz-
ing information for problem solving. The use of
narratives can break down complex problems into
sub-problems, providing a step-by-step approach to
answering a question (Szurmak and Thuna, 2013).
Sadiri Javadi et al. (2024) use different narratives
techniques to satisfy diverse requirements for con-
versational information-seeking systems.

There are a plethora of datasets focusing on
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answering questions about given contexts. Read-
ing comprehension datasets (Khashabi et al., 2018;
Welbl et al., 2018; Williams et al., 2018; Mihaylov
et al., 2018) explicitly evaluate a system’s ability to
answer questions that need information from multi-
ple sentences in a passage. NarrativeQA (Kocisky
et al., 2018) provides a dataset of 1,567 narratives
and associated QA pairs as written by human anno-
tators. ROCStories (Mostafazadeh et al., 2016) is
a collection of 5 sentence short stories over which
numerous datasets such as TellMeWhy (Lal et al.,
2021) have been built to facilitate answering ques-
tions about narratives. However, none of these
datasets use narratives as a tool of understanding,
or relate to problem solving.

Problem solving datasets focus on mathemat-
ics, physics or other scientific domains. GSM8K
(Cobbe et al., 2021) is a dataset of 8.5K high qual-
ity linguistically diverse grade school math word
problems created by human problem writers. SciQ
(Welbl et al., 2017) is built using a novel method for
obtaining high-quality, domain-targeted multiple
choice questions from crowd workers, and contains
13.7K multiple choice science exam questions. Sci-
enceQA (Lu et al., 2022) adds multimodal context
to collected elementary and high school science
questions. While there has been rapid progress
on these tasks, prior work has not integrated ed-
ucational strategies such as narratives to tackle
them, a setting which is likely to be used in the
real world. MedMCQA (Pal et al., 2022) contains
MCQ questions designed to address real-world
medical entrance exam questions. Such datasets
have been used extensively as yardsticks to mea-
sure the progress of NLP techniques.

The strength of modern LLMs, coupled with
the paradigm of prompting, has driven up perfor-
mance on problem solving tasks. In-context learn-
ing through few-shot examples has been used to
teach LLLMs about new tasks using a small number
of examples. Chain of thought prompting (Wei
et al., 2022) nudges LLMs to generate intermediate
steps to mimic an explicit reasoning process before
answering a question. Similarly, Tree of Thoughts
(ToT) (Yao et al., 2023) and Graph of Thoughts
(GoT) (Besta et al., 2024) induce intermediate rea-
soning structures, trees and graphs respectively, to
decide on an answer. However, despite the fact that
narratives have been used as a way to simplify prob-
lems, they have never been explored to improve the
problem solving abilities of LL.Ms.
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Imagine you're a detective trying to solve
a mystery ... (Persona Creation)

To embark on our quest, first we need to
understand the basic components of our
puzzle ... (Progressive Disclosure)
Think of the Grubbs catalyst as a dance
instructor at a party, our dancers are
molecules ... (Analogy)

Applying this to our racemic mixture is like
having two sets of twins at the party each
twin pairs ... (Analogical Reasoning)
The reaction pathways are like different
roads leading to the destination of product

_______________________________

________________________________

dynamics

formation ... (Metaphor)
By piecing together ...

Figure 2: A high-level overview of Story of Thought (SoT), consisting of three steps (top): (D Question Clarification
(See Section 3.1), @ Narrative Generation (See Section 3.2), Q) Problem Solving (See Section 3.3) and an actual
example of LLM output (bottom) in each step for the GPQA task. See Appendix C for prompts for each step. The
prompt designed for step 2 incorporates the narrative techniques (highlighted in blue) such as analogical reasoning,
which identifies similarities between the target concept (information being conveyed) and a more familiar concept
(analogy) and progressive disclosure which reveals information gradually throughout the narrative, rather than
presenting it all at once. See Appendix G for an example of SoT.

3 Methodology: Story of Thought

We introduce Story of Thought (SoT), a novel
prompt-driven reasoning approach that generates
narrative-based clarification to guide LLMs’ rea-
soning process. Inspired by the narrative format,
the SoT approach leverages the cognitive benefits
of storytelling, such as contextual understanding
and relational reasoning, that can help LLMs iden-
tify and maintain the information structure. Fig-
ure 2 gives an overview of SoT. It involves three
steps: (i) Question clarification (i.e., acting as
an explorer to dissect and clarify complex ques-
tions (Section 3.1)); (ii) Narrative Generation
(i.e., generating detailed narratives from the clari-
fied question components using different narrative
techniques (Section 3.2)); and (iii) Problem Solv-
ing (i.e., leveraging generated narratives by LLMs
to solve the tasks (Section 3.3)). We describe the
exact prompts used in each step in Appendix C.

3.1 Step 1: Question Clarification

In the first step, we use the LLM’s ability to explore
and clarify the question. Starting with a specialized
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prompt, the LLM breaks down the question into its
core components, identifying relevant subtopics
and areas. This detailed analysis is crucial for
generating a coherent narrative that thoroughly ad-
dresses the question.

3.2 Step 2: Narrative Generation

The second step involves generating detailed nar-
ratives based on the breakdown and clarification
performed in Step 1 (question clarification). These
narratives provide a structured context for the ques-
tions to enhance the LLM’s understanding, reason-
ing, and problem-solving abilities. Sadiri Javadi
et al. (2024) discuss different narrative techniques
required in conversational information-seeking sys-
tems. We integrate the below subset of these tech-
niques into our prompt and task LLMs to generate
a narrative, based on the information from Step 1:

1. Progressive Disclosure (PD): Reveals informa-
tion gradually, guiding the LLM step-by-step
through the problem-solving process.

2. Branching (BR): Explores different paths or ap-
proaches to understanding the problem by pro-



viding multiple perspectives.
. Analogy (AN): Uses comparisons to familiar
concepts or situations to make abstract compo-
nents more understandable.
Analogical Reasoning (AR): Facilitates under-
standing by reasoning through similarities be-
tween the problem and known situations.
. Metaphor (ME): Simplifies complex ideas
through metaphorical representation.

The selection of these narrative techniques was
grounded in cognitive science and educational psy-
chology principles, which emphasize their effec-
tiveness in enhancing comprehension and reason-
ing. Analogical reasoning and analogy were chosen
for their proven ability to map complex, abstract
problems onto familiar concepts, facilitating un-
derstanding, problem-solving (Gentner and Smith,
2013), and analogical reasoning (Holyoak and Lu,
2021). Metaphors, similarly, reveal how humans
transfer knowledge between domains through struc-
tural mapping (Chiu, 2000; Thibodeau and Borodit-
sky, 2011). Branching aligns with decision-making
frameworks that explore alternative paths to so-
lutions, mirroring human problem-solving strate-
gies (Yao et al., 2024). Progressive disclosure —
rooted in cognitive load theory (Sweller, 1988) —
reflects how humans incrementally process and in-
tegrate new information to manage cognitive load
and maintain focus (Chandler and Sweller, 1991).

3.3 Step 3: Problem Solving

In the final step, the LLM uses the narrative gener-
ated in Step 2 to solve the original QA task. The
structured and contextual understanding provided
by the narrative supports LLM in accessing relevant
aspects of the task.

4 Experimental Setup

To comprehensively evaluate the effectiveness of
our proposed approach, we conduct experiments
across a diverse set of tasks and models, employing
various prompting techniques for comparison.

4.1 Evaluation Tasks

We focus our evaluation on reasoning-intensive
tasks spanning multiple domains, including
physics, biology, math, and chemistry problem-
solving. In particular, we utilize the GPQA (Dia-
mond set) (Rein et al., 2024) and JEEBench (Arora
et al., 2023). GPQA is a Graduate-level Problem-
solving QA dataset that comprises expert-crafted
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multiple-choice questions. We use the Diamond
set of GPQA, which contains 198 questions writ-
ten by domain experts in biology, physics, and
chemistry of high quality and difficulty. JEEBench
contains 515 challenging pre-engineering mathe-
matics, physics and chemistry problems from the
highly competitive IIT JEE-Advanced exam.

4.2 Benchmarking Models

To evaluate the performance of our approach across
a wide range of Large Language Models, we exper-
iment with the following LLM families:

1. Meta: Llama-3-8B & Llam-3-70B (instruction-
tuned versions)

Mistral: Mistral 7B & Mixtral 8x7B

3. OpenAl: GPT-3.5-turbo & GPT-4-turbo

4. Microsoft: Phi-3-Medium & Phi-3-Mini
These models were selected to cover a wide spec-
trum of capabilities, sizes and families, enabling
a comprehensive evaluation of their strengths and
limitations. More details on the implementation
can be found in Appendix B.

2.

4.3 Methods Studied

We compared our proposed approach against sev-

eral prompting techniques:
Zero-shot Prompting: LLMs are prompted to
solve tasks based solely on their pre-trained
knowledge without any labeled examples or ex-
plicit guidance.
Zero-shot CoT (Wei et al., 2022): We prompt
the LLM to explicitly reason through the steps
required to arrive at an answer (i.e., "think step
by step and answer the question."). This aims
to improve the model’s ability to solve complex
problems by breaking them down into smaller,
more manageable steps.
Tree of Thoughts (Yao et al., 2023): This
method systematically explores multiple reason-
ing paths instead of a single linear progression.
In ToT, a tree-structured solution to a problem is
generated by breaking it down into sub-problems.
This enables the model to consider a broader set
of potential solutions by evaluating each branch
for correctness before proceeding further.
Graph of Thoughts (Besta et al., 2024): This
technique extends the Tree of Thoughts (ToT)
approach by allowing for a more flexible and non-
hierarchical representation of problem-solving
steps. The reasoning steps are treated as nodes,
and the connections between them are edges that
represent logical relationships or dependencies.



. Meta Mistral OpenAl Microsoft
Prompting Method - - - — - -
Llama 3 8B Llama370B Mistral 7B  Mixtral 8x7B  ChatGPT 3.5 GPT4 Phi-3 Mini Phi-3 Medium
Zero-shot 34.2 39.5 358 36.36 30.6 34.7 28.79 42.42
Zero-shot CoT 40.91 41.92 31.82 35.35 28.1 357 24.75 39.39
Tree of Thoughts 34.34 43.43 29.79 32.82 24.24 42.42 18.68 31.81
Graph of Thoughts 33.83 4343 28.78 30.30 23.23 40.90 19.69 28.78
Analogical Reasoning (3-shot) 40.91 47.47 379 26.26 28.1 4141 16.67 48.48
Ours: Knowledge Identification 40.4 48.99 35.35 37.71 27.71 40.90 20.71 37.88
Ours: Story of Thought (SoT) 43.43 51.01 38.4 38.89 30.8 48.98 22.73 36.36

Table 1: On GPQA (Diamond set), Story of Thought (SoT) consistently outperforms other techniques. We present
the performance (QA accuracy) of different methods with various LLMs on GPQA Diamond set.

Analogical Reasoning (Yasunaga et al., 2023):
This approach leverages analogies to help the
model draw parallels between known concepts
and the task at hand. By providing analogical
examples, the model is guided to understand and
apply similar reasoning patterns to new problems.
In our experiment, we allow the LLMs to self-
generate three exemplars for each question (akin
to the prompt described in their paper). This
enables them to identify relevant examples and
adapt their reasoning accordingly.

Ours: Knowledge Identification: To mea-
sure the effectiveness of our proposed approach
(i.e., utilizing narrative in reasoning), we prompt
LLM:s to solve the task based solely on the gen-
erated knowledge from Step 1 (described in Sec-
tion 3.1). This allows us to compare the model’s
capability in solving tasks using only the iden-
tified relevant knowledge versus leveraging this
knowledge to structure a coherent narrative.
Ours: Story of Thought (SoT): This approach
represents the core of our proposed method,
where we leverage the generated narratives from
Step 2 (described in Section 3.2) to solve the
given tasks.

5 Results

Our proposed SoT approach that incorporates nar-
rative structures improves over almost all previ-
ous prompting approaches across two different
problem-solving datasets. This highlights the po-
tential of using narratives to improve the ability of
LLMs to understand and reason about the given
information in various intensive reasoning tasks.

5.1 Performance on GPQA

Results on GPQA (Diamond set) are presented in
Table 1. For this task, SoT is the best method to use
with six of eight models. The open-source Llama
3 70B records the highest accuracy using the SoT
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method, achieving a score of 51.01%. This is the
highest accuracy observed among all models and
methods tested in the study. Furthermore, the GPT-
4 model shows the most notable improvement in
accuracy with SoT, compared to the zero-shot base-
line. Specifically, the accuracy for GPT-4 increased
from 34.7% under zero-shot conditions to 48.98%
with SoT (i.e., an absolute increase of 14.28%, or
a relative increase of 41% respectively).! Interest-
ingly, all reasoning strategies lead to an accuracy
drop for the Phi-3 Mini model, and all CoT strate-
gies except Analogical Reasoning also lead to the
accuracy drop of the Phi-3 Medium model com-
pared to its zero-shot baseline. We hypothesize
that this is due to the low quality of the generated
explanations and study it further in §6.1. We note
that, on average, models improve the most on bi-
ology problems when using SoT. See Appendix D
for subject-wise performance evaluation.

5.2 Performance on JEEBench

Table 2 presents detailed experimental results on
JEEBench. Our proposed method (SoT) consis-
tently improves the performance of seven out of
the eight LLMs. Using SoT, Llama 3 70B perfor-
mance surpasses even the GPT models. It obtains
the highest scores in all subjects and question types
(Except Single-Correct), with an overall aggregate
score of 0.453. This is a significant improvement
on the previous SotA, which was a strong GPT-4
model used with both CoT and Self-Consistency.
Across models, the results highlight the effective-
ness of Story of Thought (SoT) in enhancing model
performance on complex, multi-disciplinary bench-
marks like JEEBench, setting new SotA results in
several categories. The improvements are particu-
larly notable in the subject categories and question
types where the other methods struggle.

'We also find that Llama 3 70B with SoT outperforms zero-
shot ol-preview which uses CoT style reasoning internally.



Chemistry Mathematics Physics | Integer Single-Correct Multi-Correct Numeric | Total
GPT-4+CoT+SC@8* 0.463 0.308 0.449 0.293 0.618 0.410 0.234 0.389
Llama 3 8B 0.143 0.082 0.089 0.061 0.127 0.148 0.044 0.102
Llama 3 8B+CoT 0.127 0.101 0.116 0.11 0.145 0.149 0.036 0.112
Ours: Llama 3 8B+SoT 0.154 0.195 0.172 0.072 0.259 0.324 0.028 0.173
Llama 3 70B 0.324 0.189 0.274 0.171 0.345 0.316 0.131 0.25
Llama 3 70B+CoT 0.264 0.228 0.268 0.159 0.291 0.317 0.175 0.249
Ours: Llama 3 70B+SoT 0.554 0.329 0.471 0.446 0.42 0.485 0.462 0.453
Mistral 7B 0.119 0.079 0.091 0.049 0.109 0.159 0.022 0.094
Mistral 7B+CoT 0.106 0.123 0.059 0.073 0.118 0.165 0.022 0.102
Ours: Mistral 7B+SoT 0.2 0.177 0.201 0.11 0.245 0.224 0.146 0.19
Mixtral 8x7B 0.22 0.151 0.167 0.122 0.218 0.261 0.058 0.176
Mixtral 8x7B+CoT 0.237 0.142 0.152 0.061 0.209 0.27 0.08 0.173
Ours: Mixtral 8x7B+SoT 0.253 0.251 0.274 0.268 0.309 0.277 0.182 0.257
ChatGPT 3.5 0.228 0.146 0.173 0.073 0.318 0.249 0.029 0.177
ChatGPT 3.5+CoT 0.17 0.111 0.167 0.11 0.173 0.206 0.051 0.142
Ours: ChatGPT 3.5+SoT 0.189 0.128 0.189 0.073 0.291 0.204 0.051 0.161
GPT 4 0.423 0.212 0.352 0.207 0.455 0.383 0.153 0.309
GPT 4+CoT 0.468 0.280 0.335 0.256 0.473 0.448 0.175 0.350
Ours: GPT 4+SoT 0.535 0.294 0.413 0.378 0.4 0.453 0.321 0.395
Phi-3 Mini 0.256 0.12 0.199 0.146 0.255 0.224 0.08 0.18
Phi-3 Mini+CoT 0.256 0.137 0.171 0.134 0.209 0.216 0.139 0.181
Ours: Phi-3 Mini+SoT 0.224 0.209 0.181 0.183 0.282 0.234 0.124 0.207
Phi-3 Medium 0.298 0.193 0.165 0.146 0.255 0.286 0.139 0.218
Phi-3 Medium+CoT 0.253 0.195 0.199 0.171 0.236 0.274 0.139 0.214
Ours: Phi-3 Medium+SoT 0.279 0.203 0.224 0.232 0.273 0.263 0.153 0.231

Table 2: On JEEBench, Story of Thought (SoT) outperforms previous SOTA as well as other methods. We present
the aggregate score by subject as well as question type and present the overall aggregate score. The best overall
scores are highlighted in blue while the best score by method for a model is in bold. * reported in (Arora et al., 2023).

6 Analysis of SoT Aspects

6.1 Role of the Narrative Quality/Choice

The choice of narrator model (i.e., the model
that generates narratives) can impact the problem-
solving resuls. In the following experiments, we
apply the narratives generated by other large and
small open-source LLMs to the Phi-3 Mini and
Phi-3 Medium models. The results of these experi-
ments are presented in Table 3.

. Solver Models
Narrative Generator - — - -
Phi-3 Mini Phi-3 Medium
Llama 3 8B 23.74 (+1.0117)  37.88 (+1.287)
Llama 3 70B 25.25 (+2.521)  39.39 (+2.791)
Mistral 7B 2424 (+1.511) 38.38 (+1.781)

Mixtral 8x7B 24.74 (+2.017)  35.86 (-0.74))

Table 3: Applying generated narratives by open-source
models to Microsoft models to solve the tasks.

We observe that the narratives generated by
most models consistently improve the accuracy
of both Microsoft models compared to the baseline
(i.e., when both models use their own generated
narratives in Step 2 to solve the tasks, shown in
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Table 1). The absolute improvements range from
1.0% to 2.8%, with the Llama 3 70B model generat-
ing the most effective narratives. A slight decrease
in accuracy is observed with the mixture-of-experts
Mixtral 8x7B narratives for the Phi-3 Medium
model, highlighting the need for careful selection
and evaluation of narrator models to ensure com-
patibility and optimal performance. Larger models
generate narratives that break down problems to
make them more easily solvable. Unsurprisingly,
there is larger room for improving the problem
solving abilities of smaller models.

6.2 Impact of Narrative Techniques

To measure the impact of each narrative technique,
we jointly prompted on the performance of open-
source Meta models, we ablate the designed prompt
in Step 2 (of Section 3.2) to apply each of the tech-
niques separately. The results in Table 5 indicate
that employing any single narrative elements at
a time is notably less effective at boosting QA
accuracy than utilizing a combination of these
simultaneously. For both Llama models, the de-
crease in accuracy is comparably smaller (-3.0%
to -5.6%) when using only the analogical com-



Meta
Narrative Technique

Mistral

OpenAl Microsoft

Llama 3 8B Llama3 70B Mistral 7B Mixtral 8x7B  ChatGPT 3.5 GPT4 Phi-3 Mini  Phi-3 Medium

Progressive Disclosure 427 597 191 191 744 570 367 368

Branching 30 56 51 20 72 168 34 61

Analogy 418 425 117 161 498 595 569 499

Analogical Reasoning 205 191 78 108 213 336 276 206

Metaphor 249 316 103 137 811 428 418 291

> 1329 1585 540 617 2338 2097 1664 1425
Table 4: Comparing Generated Narratives - Total Number of Occurrences for each Narrative Technique (Evaluator:
Llama 3 70B)

. . Meta ‘o) Llama370 B
Narrative Technique Llama 3 8B Llama 3 70B - 10

Progressive Disclosure

34.85 (-8.58))

44.95 (-6.06].)

Branching 34.34 (-9.09]) 44.95 (-6.06))
Analogy 39.39 (-4.04]) 46.46 (-4.55])
Analogical Reasoning 40.4 (-3.03]) 4545 (-5.56))
Metaphor 41.41(-2.02)) 44.44(-6.57))
None 38.38 (-5.05)) 45.45 (-5.56])
All 43.43 51.01

Table 5: Comparing accuracy when using a single narra-
tive technique or no narrative technique (None). Values
in parentheses represent the decrease in accuracy per-
centage points compared to a combination of multiple
narrative techniques simultaneously (shown in Table 1).

ponents of the narrative (Analogy and Analogical
Reasoning) than when using only the structural in-
structions (Progressive Disclosure or Branching)
which leads to larger (-6.0% to -9.1%) accuracy
loss. However, reasoning alone does not perform
on par with the full narrative generation listing all
the techniques. Prompting for Metaphor usage only
leads to a larger accuracy loss in the 70B model
(-6.6%) compared to the smaller one (-2.0%). The
None condition, where no narrative technique is
mentioned in the prompt, results in an accuracy
drop (-5.0% to -5.6%). This makes it difficult to
determine how the narrative techniques relate to
each other. We study this going forward.

6.3 Analyzing Generated Narratives

To gain deeper insights into the generated narra-
tives, we prompt Llama 3 70B to annotate the num-
ber of times each narrative technique appears (i.e.,
the number of occurrences) in each generated nar-
rative across all models used in our experiments.
We can better interpret how the model executed the
narrative generation prompt, by asking it to label
if and where the mentioned techniques are used in
the generated narrative. A proportion of the narra-
tive techniques and their correlation can provide us
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Figure 3: Correlation coefficients among all narrative
elements (PD = Progressive Disclosure, BR = Branch-
ing, AN = Analogy, AR = Analogical Reasoning, ME
= Metaphor) used in the SoT approach for GPT 4 and
Llama 3 70B in solved and unsolved tasks.

with a better picture of LLM’s interpretation of the
instruction as well. The instructions can be found
in Appendix C. We aim to uncover patterns and
variations in the use of narrative techniques across
different LLMs. Table 4 compares the total number
of occurrences for each narrative technique across
various LLMs.

Variability in Utilization of Narrative Tech-
niques Across Models: In our designed prompt
in Step 2 (i.e., Narrative Generation), LLMs gener-
ate narrative using all 5 narrative techniques. How-
ever, as Table 4 indicates, not all elements were em-
ployed equally. This reveals that while some tech-
niques like Analogy and Progressive Disclosure
were consistently utilized, others such as Branching
were applied less frequently. We observe a trend
across all LLM families where models with larger
capacities, such as Llama 3 70B and GPT-4, con-
sistently show higher occurrences of narrative tech-



R . BertScore ROUGE-L BLEU
Similarity Metric - - - - - -
SoT Reasoning  CoT Reasoning  SoT Reasoning  CoT Reasoning  SoT Reasoning CoT Reasoning
Llama 3 8B 0.28 0.06 0.19 0.11 6.57 0.19
Llama 3 70B 0.3 0.04 0.2 0.1 8.18 0.06
Mistral 7B 0.27 0.33 0.18 0.2 8.12 4.65
Mixtral 8x7B 0.3 0.34 0.19 0.21 8.92 8.14
ChatGPT 3.5 0.3 0.24 0.19 0.16 6.1 6.07
GPT 4 0.31 0.34 0.19 0.2 8.84 6.73
Phi-3 Mini 0.27 0.31 0.17 0.19 6.54 6.36
Phi-3 Medium 0.3 0.35 0.2 0.21 7.13 84

Table 6: Comparison of generated Story of Thought (SoT) and Chain of Thought (CoT) reasoning with Human
Explanations on the GPQA (Diamond set) using BERTScore, ROUGE-L, and BLEU metrics across various large
language models. Bold values indicate the reasoning approach that is more similar to human explanations for each

model and metric pair.

niques compared to their smaller counterparts. Fur-
thermore, ChatGPT 3.5 & GPT-4 demonstrate the
highest total occurrences of narrative techniques,
with 2,338 and 2,097, respectively with a notable
emphasis on Metaphors and Analogies.

Correlation Among Narrative Techniques: To
further investigate the dynamics of narrative tech-
niques, we compute correlations between the fre-
quencies of narrative techniques across solved and
unsolved tasks, as shown in Figure 3. This analy-
sis aims to uncover if the models consistently use
certain narrative techniques together or vary signif-
icantly. Our initial results indicate diverse correla-
tion patterns, suggesting that the effectiveness of
narrative techniques in solving tasks across various
LLMs needs to be further analyzed.

6.4 Human Evaluation

To assess the reliability of the LLM-based annota-
tion method (described in Section 6.3), we conduct
a human evaluation of narrative techniques used
by LLMs in generated narratives. We provide 3
annotators with 15 narratives generated by 8 dif-
ferent models, resulting in a total of 120 narratives.
Annotators were instructed to identify and count
how many times each narrative technique appeared
in each narrative. The aggregated annotations were
then analyzed using the Krippendorff Alpha Coeffi-
cient to assess inter-annotator agreement.

The average agreement score across all tech-
niques was 0.72, indicating strong inter-annotator
agreement, with Llama 3 70B aligning closely
with human anneotators, validating the use of
LLM-based evaluation for assessing narrative
techniques. While annotators show the highest
agreement in Branching and Analogy, with average
scores of 0.75 and 0.79, respectively, they have in
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Metaphor and Analogical Reasoning lower agree-
ment scores (0.69 and 0.68). The extended results
can be found in Appendix F.

6.5 Analyzing SoT Reasoning

Table 6 compares the similarity of SoT and CoT
reasoning outputs to human explanations for differ-
ent language models on the GPQA (Diamond set)
dataset, using BertScore, ROUGE-L, and BLEU.

The differences between ROUGE-L values are
insignificant and do not display any clear trends.
However, according to BLEU scores, using SoT
results in explanations closer to humans and the dif-
ferences are more pronounced. As per BertScore
Llama 3 models’ explanations are more similar to
human ones when using SoT reasoning across all
three metrics. However, Mistral models, GPT-4,
and Phi-3 Mini generate explanations more similar
to human explanations when using CoT reason-
ing across all metrics. The semantic similarity of
narratives generated by Llama 3 70B to human
explanations combined with their effect of improv-
ing smaller models indicates that these narratives
present information about the problems in a simpli-
fied manner.

7 Conclusion

Inspired by findings from human cognitive pro-
cesses explored in didactics research, in this work,
we propose to use narratives in LLMs prompting.
We present strong evidence on public benchmark
datasets that narratives have the potential to notably
enhance the reasoning abilities of LLMs in com-
plex problem-solving tasks. By incorporating narra-
tive structures, which mimic human cognitive pro-
cesses of organizing and interpreting information,
LLMs can achieve higher levels of performance
and provide more contextually enriched responses.



Limitations

Dataset limitations. So far, we used only GPQA
and JEEBench problems as the most challenging
set of problem-solving benchmarks we were aware
of. Other comparable benchmarks, such as MGSM,
are much closer to human or superhuman accu-
racy already without reasoning prompts and will
be explored in future work.

Analysis limitations. The occurrences of narra-
tive techniques do not necessarily imply the quality
or effectiveness of the generated narratives; rather,
they provide insights into the models’ tendencies
and preferences in employing these techniques.
Therefore, answering the question of why narra-
tive is helping LLMs is more complex and needs to
be further investigated by looking into different re-
search areas such as cognitive and communication
theories.
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A Robustness of LLM Predictions

In the original GPQA dataset used for our experi-
ments, the correct answers are always presented
as the first option among the multiple choices.
However, To further evaluate the robustness of
the LLMs, we conduct an additional experiment
where the correct answers are placed in the sec-
ond option instead. Table 7 presents the results
of these experiments, comparing the performance
of various prompting methods across six different
open-source LLMs. We observe that most LLMs
experience a significant drop in accuracy when the
correct answer is moved to the second option. How-
ever, despite the overall decrease in accuracy, our
proposed approach, Story of Thought (SoT), con-
sistently outperforms the baseline methods for most
LLMs. The SoT method achieves the highest accu-
racy for the Meta Llama 3 8B, Meta Llama 3 70B,
Mistral 8x7B, and Microsoft Phi-3 Medium mod-
els, demonstrating its effectiveness in enhancing
the robustness of LLMs to changes in the problem
structure.

B Model Implementation Details

All experiments, except for those involving Ope-
nAl models, were conducted on local machines
equipped with GPUs. The models were run locally
on a GPU setup without quantization using the
Hugging Face Transformer library®. For OpenAI’s
GPT-3.5-turbo (gpt-3.5-turbo-0125) and GPT-4-
turbo (gpt-4-turbo-2024-04-09) models, we use
the OpenAl API to generate outputs. Across all
models, the results are averages over 5 runs with a
temperature of 1.0 and a maximum number of to-
kens of 8,000. The other parameters are set to their
default values. To ensure consistency in the model
outputs, we utilized the Jsonformer Python pack-
age’, resulting in structured JSON outputs. A t-test
was performed, yielding a p-value of 0.032, indi-
cating statistical significance at the conventional
0.05 level.

C Prompts Used in Story of Thought

We describe the prompts used for each stage in the
SoT framework.

thtps://huggingface.co/docs/transformers
Shttps://github.com/1rgs/jsonformer

C.1 Question Clarification

You are an explorer who wants to identify and
collect different related and specialized
subject areas to clarify the question. Your

goal is to narrow down the question and
provide relevant areas of knowledge and
experience you have that help clarify the
question mentioned below. You should not
answer the question.

<question>

C.2 Narrative Generation

You are an expert in narrative-based
explanations for science communication.
Your goal is to clarify the following
question in a narrative way through the
interconnected information provided below
to enable a non-expert to comprehend the
question in a more coherent and
contextually rich manner. You should not
answer the question.

Make sure to use all of these narrative
techniques when clarifying the question
through the interconnected information:
Progressive Disclosure, Branching, Analogy,

Analogical Reasoning, and Metaphor.

<question>

<generated information in the previous step>

C.3 Problem Solving

You are an expert in analyzing narrative-based
explanations for solving tasks. Please
answer the following question based on the
following narrative-based clarification:

<question>

Options:
<options>

<generated narrative in the previous step>

C.4 Analyzing Generated Narratives

You are an expert in analyzing narrative-based
explanations for science communication.
Your goal is to find out which narrative
techniques have been used in the following
narrative-based explanation.

Label the narrative-based explanation using the
following narrative-based techniques:

Progressive Disclosure

Branching

. Analogy

. Analogical Reasoning

Metaphor

g~ w N =

<generated narrative>
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. Meta Mistral Microsoft
Prompting Method - - - — - -
Llama 3 8B Llama 3 70B Mistral 7B Mixtral 8x7B Phi-3 Mini Phi-3 Medium
Zero-shot 30.81(-3.39)) 31.31(-8.19)) 19.7(-16.1}) 18.18 (-18.18])  29.8 (+1.011) 21.72 (-20.7))

Zero-shot CoT
Analogical Reasoning

27.27 (-13.64]) 33.33 (-8.59))
2778 (-13.13)) 4091 (-6.56)

22.73 (-9.09))
10.61 (-27.29])

17.17 (-18.18))
19.19 (-7.07))

32.32 (+7.571)
35.86 (+19.191)

21.21 (-18.18))
16.67 (-31.81})

Ours: Knowledge Identification
Ours: Story of Thought (SoT)

32.32(-8.08)) 42.4(-6.59))
34.85(-8.58)) 454 (-5.61])

16.67 (-18.68)
20.2 (-18.2))

14.65 (-23.12))
20.2 (-18.69)

28.28 (+7.571)
27.7 (+4.9771)

23.26 (-14.62))
25.75 (-10.85))

Table 7: Performance of various LLMs across different prompting methods on GPQA (Diamond set). Correct
answers are presented in the second option. Values in parentheses indicate the change in accuracy compared to the
original setting in Table 1 where the correct answer was in the first option.

D Subject-wise Performance Evaluation

Figure 4 presents the subject-wise performance of
different models on both GPQA and JEEBench
when using SoT across the different problem do-
mains. We observe that, on average, models im-
prove the most on biology problems when using
SoT in GPQA. We hypothesize that this is because
it is easier to simplify information for graduate-
level biology problems that can be used by models
to come up with a solution.

In JEEBench, on average, model performance
is highest on Chemistry problems when using SoT.
This is in contrast to findings on GPQA and could
occur due to the difference in the degree of dif-
ficulty of problems in the two datasets (graduate
level vs high school level). Regardless, improve-
ments on Biology problems are not far behind those
for Chemistry.

E Performance on JEEBench
F Huamn Evaluation

Table 9 presents the Krippendorff Alpha coeffi-
cient measuring inter-annotator agreement between
three human annotators and Llama 3 70B across
five narrative techniques: Progressive Disclosure
(PD), Branching (BR), Analogy (AN), Analogi-
cal Reasoning (AR), and Metaphor (ME). Higher
values indicate stronger agreement. The overall av-
erage agreement of 0.72 shows a strong correlation
between LLM-based and human annotations, sup-
porting the validity of the LLM-based evaluation
method.

Annotator Recruitment and Demographics:
We recruited three master’s students in computer
science, aged between 24 and 27 (one female, two
males). The annotators were compensated fairly
for their time, ensuring alignment with appropri-
ate compensation standards. Each annotator was
provided with 120 narratives and given detailed

instructions, including the definitions of each narra-
tive technique as described in Section 3.2, to ensure
a consistent evaluation process. Each annotation
was performed independently to minimize bias and
ensure reliability.

G Story of Thought (SoT) vs. Chain of
Thought (CoT)
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Chemistry Mathematics Physics | Integer Single-Correct Multi-Correct Numeric | Total
GPT-4+CoT+SC@8* 0.463 0.308 0.449 0.293 0.618 0.410 0.234 0.389
Llama 3 8B 0.143 0.082 0.089 0.061 0.127 0.148 0.044 0.102
Llama 3 8B+CoT 0.127 0.101 0.116 0.11 0.145 0.149 0.036 0.112
Llama 3 8B+Analogical Reasoning (3-shot) 0.139 0.111 0.128 0.11 0.145 0.165 0.058 0.124
Ours: Llama 3 8B+Knowledge Identification 0.199 0.099 0.134 0.073 0.227 0.171 0.058 0.137
Ours: Llama 3 8B+SoT 0.154 0.195 0.172 0.072 0.259 0.324 0.028 0.173
Llama 3 70B 0.324 0.189 0.274 0.171 0.345 0.316 0.131 0.25
Llama 3 70B+CoT 0.264 0.228 0.268 0.159 0.291 0.317 0.175 0.249
Llama 3 70B+Analogical Reasoning (3-shot) 0.314 0.24 0.295 0.195 0.318 0.349 0.19 0.276
Ours: Llama 3 70B+Knowledge Identification 0.317 0.226 0.254 0.195 0.345 0.323 0.146 0.26
Ours: Llama 3 70B+SoT 0.554 0.329 0.471 0.446 0.42 0.485 0.462 0.453
Mistral 7B 0.119 0.079 0.091 0.049 0.109 0.159 0.022 0.094
Mistral 7B+CoT 0.106 0.123 0.059 0.073 0.118 0.165 0.022 0.102
Mistral 7B+Analogical Reasoning (3-shot) 0.157 0.084 0.116 0.073 0.155 0.169 0.029 0.114
Ours: Mistral 7B+Knowledge Identification 0.109 0.055 0.063 0.037 0.091 0.117 0.022 0.073
Ours: Mistral 7B+SoT 0.2 0.177 0.201 0.11 0.245 0.224 0.146 0.19
Mixtral 8x7B 0.22 0.151 0.167 0.122 0.218 0.261 0.058 0.176
Mixtral 8x7B+CoT 0.237 0.142 0.152 0.061 0.209 0.27 0.08 0.173
Mixtral 8x7B+Analogical Reasoning (3-shot) 0.202 0.155 0.197 0.122 0.191 0.281 0.066 0.179
Ours: Mixtral 8x7B+Knowledge Identification 0.184 0.129 0.144 0.122 0.155 0.237 0.044 0.15
Ours: Mixtral 8x7B+SoT 0.253 0.251 0.274 0.268 0.309 0.277 0.182 0.257
ChatGPT 3.5 0.228 0.146 0.173 0.073 0.318 0.249 0.029 0.177
ChatGPT 3.5+CoT 0.17 0.111 0.167 0.11 0.173 0.206 0.051 0.142
ChatGPT 3.5+Analogical Reasoning (3-shot) 0.208 0.125 0.148 0.098 0.2 0.216 0.073 0.156
Ours: ChatGPT 3.5+Knowledge Identification 0.155 0.141 0.167 0.122 0.209 0.188 0.073 0.151
Ours: ChatGPT 3.5+SoT 0.189 0.128 0.189 0.073 0.291 0.204 0.051 0.161
GPT 4 0.423 0.212 0.352 0.207 0.455 0.383 0.153 0.309
GPT 4+CoT 0.468 0.280 0.335 0.256 0.473 0.448 0.175 0.350
GPT 4+Analogical Reasoning (3-shot) 0.479 0.286 0.396 0.305 0.4 0.43 0.307 0.371
Ours: GPT 4+Knowledge Identification 0.481 0.287 0.386 0.293 0.373 0.452 0.314 0.373
Ours: GPT 4+SoT 0.535 0.294 0.413 0.378 0.4 0.453 0.321 0.395
Phi-3 Mini 0.256 0.12 0.199 0.146 0.255 0.224 0.08 0.18
Phi-3 Mini+CoT 0.256 0.137 0.171 0.134 0.209 0.216 0.139 0.181
Phi-3 Mini+Analogical Reasoning (3-shot) 0.205 0.159 0.195 0.146 0.264 0.218 0.088 0.182
Ours: Phi-3 Mini+Knowledge Identification 0.168 0.091 0.106 0.073 0.136 0.181 0.044 0.118
Ours: Phi-3 Mini+SoT 0.224 0.209 0.181 0.183 0.282 0.234 0.124 0.207
Phi-3 Medium 0.298 0.193 0.165 0.146 0.255 0.286 0.139 0.218
Phi-3 Medium+CoT 0.253 0.195 0.199 0.171 0.236 0.274 0.139 0.214
Phi-3 Medium+Analogical Reasoning (3-shot) 0.258 0.181 0.173 0.159 0.218 0.276 0.117 0.202
Ours: Phi-3 Medium+Knowledge Identification 0.288 0.163 0.205 0.207 0.236 0.235 0.161 0.211
Ours: Phi-3 Medium+SoT 0.279 0.203 0.224 0.232 0.273 0.263 0.153 0.231

Table 8: On JEEBench, Story of Thought (SoT) outperforms previous SOTA as well as other methods. We present
the aggregate score by subject as well as question type and present the overall aggregate score. * denotes SOTA
results taken from the original paper (Arora et al., 2023).

Narrative Technique

Model Name - - - - -
Progressive Disclosure (PD)  Branching (BR)  Analogy (AN)  Analogical Reasoning (AR)  Metaphor (ME)

Llama 3 8B 0.69 0.84 0.68 0.68 0.93
Llama 3 70B 0.77 0.68 0.82 0.61 0.73
Mistral 7B 0.65 0.76 0.97 0.65 0.62
Mixtral 8x7B 0.67 0.78 0.74 0.82 0.76
ChatGPT 3.5 0.6 0.69 0.67 0.68 0.69
GPT 4 0.64 0.81 0.82 0.8 0.6
Phi-3 Mini 0.69 0.73 0.79 0.62 0.61
Phi-3 Medium 0.66 0.69 0.79 0.61 0.61
Average 0.67 0.75 0.79 0.68 0.69

Table 9: Krippendorff Alpha Coefficient for Human and LLM Annotations.
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Figure 4: Performance of Story of Thought (SoT) on GPQA and JEEBench across various LLMs and domains.
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Q: Racemic 3-methylpent-1-ene
is treated with Grubbs catalyst.
How many possible products are
there (excluding ethene)?

Let's take a journey into the world of chemistry to unravel the mysteries hidden within our question.
Imagine chemistry as a grand puzzle, each piece representing a different aspect of the scientific world.
Our quest today is to understand the potential products formed when a racemic mixture of 3-methylpent-
1-ene reacts with the Grubbs catalyst.

To embark on our quest, we need to understand the basic components of our puzzle.

To clarify the given question and identify relevant areas of
knowledge, the following subjects and concepts would be
helpful:
1. Organic Chemistry:

- Alkene chemistry

- Stereochemistry

- Reaction mechanisms

- Grubbs catalyst and its applications
2. Stereochemistry:

- Chirality

- Racemic mixtures

- Stereoisomerism (cisitrans, E/Z)
3. Organometallic Chemistry:

- Olefin metathesis reactions

- Mechanism of Grubbs catalyst

- Selectivity and stereochemical outcomes
4. Reaction Kinetics and Thermodynamics:

- Reaction pathways

- Energetics of different products

- Stability of products
5. Analytical Techniques:

- Identification and characterization of products

- Spectroscopic methods (NMR, IR, MS)

- Separation techniques (chromatography)
6. Retrosynthetic Analysis:

- Identifying possible products from the given starting

material

- Predicting reaction pathways and outcomes
With knowledge and experience in these areas, one can better
understand the reaction conditions, predict the potential
products, and analyze the stereochemical outcomes when a
racemic alkene is treated with the Grubbs catalyst.

Organic y: s like the art of crafting molecules, where we play with structures such as alkenes:
Alkenes are hydrocarbons with a special bond called a double bond. In our case, the molecule 3-
methylpent-1-ene has a double bond and a branching point with a methyl group.

Next, we venture into Stereochemistry, which tells us about the spatial arrangement of atoms within
molecules, like how the pieces fit in a 3D puzzle. For alkenes, stereochemistry can show us different
forms (isomers) that look the same on paper but are different in 3D space. These include cistrans or
E/Z isomers, and can also involve chirality, where molecules are like left and right hands - mirror
images but not superimposable.

Our path now leads us into the intriguing realm of Organometallic Chemistry, where we encounter the
Grubbs catalyst. This catalyst is a magical weaver that reconfigures the threads of our molecular
tapestry. It specializes in olefin metathesis, a reaction where double bonds are broken and reformed,
creating new combinations of molecules. Imagine the Grubbs catalyst as a dance instructor at a party,
changing dance partners mid-dance to form new pairings.

In this dance party analogy, our dancers are molecules. When the Grubbs catalyst starts its instruction, it
can pair up molecules in various ways, creating new combinations. Applying this to our racemic 3-
methylpent-1-ene, a racemic mixture is like having two sets of twins at the party, each twin pair looking
identical but being mirror images of each other.

The reaction pathways here are like different roads leading to the destination of product formation. Some
roads are longer, some shorter, each with its own scenic route. Reaction Kinetics and
Thermodynamics help us understand these roads - kinetics tells us the speed of travel, while
thermodynamics tells us which road leads to the most stable and comfortable destination, or product.

When 3-methylpent-1-ene, in its racemic form, meets the Grubbs catalyst, several new roads (or
products) emerge. Each possible product depends on how the catalyst rearranges the double bonds and
which molecular dancers pair up. We use Analytical Techniques like NMR, IR, and MS to see the
footprints of these new dancers, identifying who they are and how they formed. Retrosynthetic Analysis
then allows us to look back at the dance, predicting the steps and paths that led to each product.

So, the ultimate question is: how many possible products can emerge from this dance, excluding the
simplest one, ethene? To answer this, you need to consider all possible combinations and
rearrangements of the original molecules, bearing in mind their racemic nature and the nature of the
Grubbs catalyst's weaving. Each unique pathway and its stereochemical outcome contribute to the final
count of possible products.

By piecing together our understanding of organic chemistry, stereochemistry, organometallic reactions,
and the principles of reaction kinetics and thermodynamics, we embark on this analytical jourey to
uncover the complete spectrum of possible products.

{To determine the number of possible products formed when racemic 3-methylpent-1-ene

reacts with the Grubbs catalyst, we need to understand the mechanism and outcomes of
olefin metathesis, particularly focusing on the potential combinations and sterecisomers
that can arise.

Understanding Olefin Metathesis with Grubbs Catalyst:

The Grubbs catalyst facilitates the exchange of alkylidene fragments (double-bonded
carbons) between alkenes, leading to new alkene products. For 3-methylpent-1-ene, olefin
metathesis will likely result in the formation of various possible products based on how the
double bonds are reformed

Racemic Mixture and Stereochermistry:
A racemic mixture contains equal amounts of two enantiomers. Since 3-methylpent-1-ene
has a chiral center, it exists as two enantiomers, which can participate independently in
the metathesis reactions.

Analyzing Potential Products:
Here's the detailed breakdown:

1. Initial Structures

- 3-methylpent-1-ene: CH2=CH-CH2-CH(CH3)-CH3
2. Metathesis Reaction:

- When two molecules of 3-methylpent-1-ene react, they can form different products
depending on how the double bonds are broken and reformed.

3. Possible Product Structures:

- One common product would be the symmetric product formed by the intermolecular
reaction:

- 4,5-dimethyl-2-heptene: This product results from two 3-methylpent-1-ene molecules
linking at their double bonds.

- Since the original molecule is racemic, each product can also have stereoisomers:

- (E)-4,5-dimethyl-2-heptene: Trans configuration around the double bond.
- (2)-4,5-dimethyl-2-heptene: Cis configuration around the double bond.
Counting the Products:
- For each possible product, there are stereoisomers:

- 4,5-dimethyl-2-heptene (both E and Z forms).

However, considering the racemic nature of the starting material, each product
configuration (E/Z) is counted only once because they are indistinguishable in the racemic
mixture.

Conclusion:
Given the racemic nature and possible stereoisomers formed via olefin metathesis, the
potential products would be:

- (E)-4,5-dimethyl-2-heptene

- (2)-4,5-dimethyl-2-heptene

Each stereoisomer counts as one distinct product since the starting material is racemic,
leading to a total of 2 unique products.

Therefore, the correct answer is: 1. 2

I Chain of Thought (CoT) I

-

To determine the number of possible products formed when racemic 3-methylpent-1-ene is treated with the Grubbs catalyst, let's consider the following steps:

Step 1: Understanding the Reaction
Grubbs catalyst is used in olefin metathesis reactions. In this process, alkenes undergo a redistribution of alkylidene groups. Essentially, two alkenes
exchange their substituents to form new alkenes.

Step 2: Structure of Racemic 3-Methylpent-1-ene

The structure of 3-methylpent-1-ene is:

\[ text{CH}_2=CH-\text{CH)_2-\text{CH)(\text{CH}_3)-\text{CH} 3 \]
Racemic indicates that we have both enantiomers in equal amounts.

Step 3: Possible Metathesis Outcomes
When two molecules of 3-methylpent-1-ene undergo metathesis, the reaction can yield several different products depending on how the alkylidene fragments
rearrange.

Step 4: Identifying Different Metathesis Combinations:
Consider the double bond positions and the substituents:
1. The reaction involves splitting each alkene into two fragments, then recombining these fragments.
2. Each molecule of 3-methylpent-1-ene can splitinto two fragments:
- CH_2=CH-
- -CH_2-CH(CH_3)-CH_3
Step 5: Combining Fragments
These fragments can recombine in several ways:

1. Symmetric recombination (self-metathesis):

- Combining two identical fragments.
- This leads to the same product as the starting material.

So, the correct answer is 4.

- Combining different fragments from different molecules.
Let's enumerate the products:
- Combining CH_2=CH- with itself:
- Leads back to the starting material, which is counted as one unique product (1).
- Combining CH_2=CH- with -CH_2-CH(CH_3)-CH_3:
- Leads to new product: CH_2=CH-CH_2-CH=CH-CH_3
- Combining -CH_2-CH(CH_3)-CH_3 with tself:
- Leads to the product: CH_3-CH=CH-CH_2-CH(CH_3)-CH_3
Step 6: Counting Products
1. From symmetric recombination:
- Starting material: 1 product.
2. From asymmetric recombination:
- Different new alkenes can be formed when fragments from different molecules combine.
Summary of Products:
- The unique alkenes can be:
- The starting material (racemic 3-methylpent-1-ene)
- The recombination product CH_2=CH-CH_2-CH=CH-CH_3
- The recombination product from two -CH_2-CH(CH_3)-CH_3 fragments.
After accounting for all possibilities, we should recognize that symmetric recombinations do ot change the count.

Therefore, the total number of unique products, excluding ethene (produced as a byproduct), is: 4

(%)

Figure 5: An actual example of SoT.
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Abstract

Language and Vision-Language Models exhibit
impressive language capabilities akin to hu-
man reasoning. However, unlike humans who
acquire language through embodied, interac-
tive experiences, these models learn from static
datasets without real-world interaction. This
difference raises questions about how they con-
ceptualize abstract notions and whether their
reasoning aligns with human cognition. We
investigate spatial conceptualizations of LLMs
and VLMs by conducting analogy prompting
studies with LLMs, VLMs, and human par-
ticipants. We assess their ability to generate
and interpret analogies for spatial concepts.
We quantitatively compare the analogies pro-
duced by each group, examining the impact
of multimodal inputs and reasoning mecha-
nisms. Our findings indicate that generative
models can produce and interpret analogies
but differ significantly from human reasoning
in their abstraction of spatial concepts — vari-
ability is influenced by input modality, model
size, and prompting methods, with analogy-
based prompts not consistently enhancing align-
ment. Contributions include a methodology for
probing generative models through analogies,
a comparative analysis of analogical reasoning
among models, and humans, and insights into
the effect of multimodal inputs on reasoning.!

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing, achieving re-
markable language proficiency and emergent abili-
ties that seem to parallel human reasoning (Brown
et al., 2020; Achiam et al., 2023; Kojima et al.,
2022). Trained on vast corpora of text — or
paired text and images for vision-language models
(VLMs) — these models’ learning paradigms funda-
mentally differ from human language acquisition,

!Code available at:
https://github.com/cisnlp/spatial_intuitions
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Provide an analogy and pick
AB.C.D

Figure 1: Human participants (e.g., participant #02),
LLMs (e.g., GPT-4) and VLMs (e.g., Qwen2-VL) are
prompted to provide an analogy for their choice of 1 of
4 items (T, J, <=, —) that best represents 1 of 30 words.

raising questions about how they represent mean-
ing, form abstract ideas, and structure knowledge.

LLMs learn from static, digital artifacts, pro-
cessing accumulated language data without real-
time interaction or sensory experience. Their train-
ing spans weeks to months using massive compu-
tational resources (Hoffmann et al., 2022; Scao
et al., 2023). In contrast, human language ac-
quisition is an embodied process: children learn
through dynamic interactions with their environ-
ment — observing, testing, and experiencing the
world around them (Mandler, 1992). First words
emerge around 12 months, alongside nonverbal
communication (Bretherton and Bates, 1979; Iver-
son, 2010), and foundational language abilities de-
velop over approximately five years, with sensory
experiences and social interactions playing crucial
roles (Clark and Casillas, 2015).

Despite these differences, both LLMs and hu-
mans produce language artifacts and exhibit rea-
soning grounded in language. This raises a fun-
damental question: How can LLMs exhibit rea-
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soning abilities seemingly analogous to human
cognition when their training procedures are
so fundamentally different? Addressing this is
crucial as we integrate LLMs/VLMs into systems
where reasoning and understanding are essential.

Studies have highlighted limitations in LLM rea-
soning capabilities — they often struggle with com-
plex reasoning tasks (Mondorf and Plank, 2024;
Stechly et al., 2023), arithmetic operations (Gam-
bardella et al., 2024), planning (Valmeekam et al.,
2022), and other challenges (Sobieszek and Price,
2022). One potential issue is how LLMs abstract
from their knowledge. It is argued that human cog-
nition largely relies on analogical reasoning, i.e.,
understanding abstract concepts by relating them
to familiar ones (Gentner, 1983; Hofstadter, 2001).
Analogies facilitate learning and are a crucial com-
ponent for human cognitive development (Vosni-
adou and Ortony, 1989; Holyoak, 2012).

We focus on analogical reasoning to investigate
whether LLMs and VLMs can generate and in-
terpret analogies like humans to understand ab-
stract spatial associations. Specifically, we address:
(RQ1): How do LL.Ms and VLMs conceptualize
semantic notions through spatial analogies com-
pared to humans? (RQ2): How do multimodal
inputs (e.g., text and images) affect the models’
analogical reasoning? To answer these questions,
we conduct analogy prompting studies (i.e., requir-
ing to produce an analogy to answer a question)
with LLMs, VLMs, and human participants. We
systematically categorize and compare the analo-
gies generated by each group. Our experiments
examine the influence of different modalities, test-
ing state-of-the-art VLMs with image inputs to
assess how sensory information impacts reasoning
outcomes. Our contributions are:

1. Methodology for probing conceptualization
in models through analogy generation;

2. Comparative analysis of analogical reasoning
abilities of LLMs, VLMs and humans, using
both quantitative and qualitative approaches;

3. Insights into how multimodal inputs influence
models toward human-like reasoning;

4. Evaluation of whether different types of mod-
els, e.g., those with enhanced reasoning, im-
prove analogy and conceptual understanding.

2 Related Work

2.1 Analogical Reasoning in Cognition

Analogical reasoning is a key cognitive strategy
which allows individuals to draw parallels between
disparate domains by mapping relational structures.
Gentner’s structure-mapping theory posits that anal-
ogy involves aligning relational structures from
a base domain to a target domain, emphasizing
the importance of systematic correspondences over
mere attribute similarities. Gust et al. (2008) ar-
gue that analogies underpin key cognitive abilities —
memory adaptation, transfer learning, reasoning,
and creativity — by enabling the application of prior
knowledge to novel contexts; they propose that
analogical reasoning is fundamental for integrating
diverse cognitive processes in large-scale systems.
Evidence for the connection between human rea-
soning and analogies comes from several psycholin-
guistic studies (Richardson et al., 2001; Beitel et al.,
2001; Gibbs et al., 1994). They provide evidence
that certain linguistic representations are grounded
in spatial schemas, which operate as analogical
structures for language comprehension.

2.2 Analogical Reasoning in AI Models

Analogical reasoning in Al has gained attention
through various benchmarks and methodologies, re-
vealing both the strengths and limitations of LLMs.
Sultan and Shahaf (2022) detail a mechanism to
extract analogies from a corpus of data describ-
ing a situation or a process. The entities of these
texts are extracted and a mapping between these
entities, or a cluster of entities, is build, connect-
ing two texts in an analogy-like relation. Sourati
et al. (2024) introduce the Analogical Reasoning on
Narratives (ARN) benchmark, which extends tradi-
tional analogy evaluations by integrating narrative
elements. This framework distinguishes near from
far analogies, demonstrating LLMs’ proficiency
in surface mappings yet exposing their limitations
with abstract, far analogies under zero-shot condi-
tions. Another benchmark is the AnaloBench (Ye
et al., 2024), which tests the capabilities of LLMs
to find analogies in a large dataset of texts. Short
sentence analogies and analogies contained in a
larger paragraph of text are tested, and the authors
demonstrate that models like GPT3.5 and GPT4
still struggle to recognize analogies, especially with
an increase in text size.

In this context, Yu et al. (2023) propose Thought
Propagation (TP), a method that leverages the gen-
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eration and resolution of analogous problems to
iteratively refine model outputs, thereby achieving
significant improvements over conventional base-
lines. Furthermore, Yuan et al. (2024) develop a
knowledge base containing analogies, and show
that training language models on this database im-
proves the model’s ability to recognize and gener-
ate analogies. Complementing these approaches,
Webb et al. (2023) compare LLM performance
with human reasoning across varied analogy tasks,
showing that while models like GPT-3 rival hu-
mans in structured analogies, they struggle with
causal and cross-domain reasoning. Furthermore,
Petersen and van der Plas (2023) align model
evaluations with human-like paradigms, and Hu
et al. (2023) show how encoding visual informa-
tion into textual representations enhances LLMs’
performance on visual analogical reasoning, as they
demonstrate with Raven’s Progressive Matrices.

Chain-of-thought (CoT) prompting encourages
step-by-step reasoning in zero-shot settings (Ko-
jima et al., 2022). In few-shot settings, when ex-
amples contain analogies, the model is explicitly
guided to apply analogical reasoning (Wei et al.,
2022b,a). Moreover, the term "analogy prompting"
has already been used by Yasunaga et al. (2024),
albeit in a different context. The authors further the
idea of chain-of-thought by prompting the model to
find similar math or coding problems in its knowl-
edge base before trying to solve a given problem.
They show that this methodology improves the abil-
ity of the model to solve math and coding prob-
lems in comparison to zero-shot and few-shot CoT.
In the context of this paper, however, "analogy
prompting" refers to prompting the model to gener-
ate analogies.

2.3 Spatial Schemas

Understanding how LLMs and VLMs conceptu-
alize foundational spatial schemas is crucial for
robust, intelligent systems. These schemas are the
basic building blocks that infants use for spatial in-
tegration — a process described by Mandler (1992)
as synthesizing perceptual experiences into concep-
tual representations via analogical reasoning.
Zhang et al. (2025) test the spacial reasoning of
VLMs by asking spacial-related questions about a
given image, i.e., "Is the blue ball in front of the
red ball?", and "From the blue ball’s point of view,
is the red ball to the right of the blue ball?". They
find that VLMSs’ answers tend to not be robust and
consistent, especially when they are asked to adopt

a different frame of reference.

Richardson et al. (2001) study spatial schemas
in adults and finds that commonly used verbs are
consistently associated with a specific spatial direc-
tion (horizontal vs. vertical), which highlights the
importance of spatial schemas in semantic repre-
sentations even after the developmental stage.

Wicke and Wachowiak (2024) and Wicke et al.
(2024) focus on the same stimuli used in Richard-
son et al. (2001) and assess whether a suite of
LLMs and VLMs exhibits word-direction associa-
tions similar to humans’. Our work substantially
extends their effort by using analogy-based prompt-
ing to gain deeper insights into model reasoning,
incorporating state-of-the-art VLMs, and conduct-
ing a human subject study that not only validates
previous results but also provides human analogies
for direct comparison with those of models.

3 Methods
3.1 Experimental Setup

Our aim is to explore spatial intuitions in both hu-
mans and multimodal models by bridging a psy-
cholinguistic study with computational modeling.
We build upon the original study by Richardson
et al. (2001), which provides the experimental stim-
uli of words and schematic directions (up, down,
left, right) but has not been reproduced in over 20
years and did not explore the use of analogies. We
conduct a human subject experiment where partic-
ipants associate words with schematic directions
and, additionally, provide the analogies they use for
these associations (see Fig. 1). We query a variety
of LLMs and VLMs — including GPT-40 (OpenAl,
2024a), Llama3 (Al@Meta, 2024), Molmo (Deitke
et al., 2024), Qwen2-VL (Wang et al., 2024b), and
others — with regular and analogy (i.e., explicitly
asking the model to provide an analogy and to use
it to provide its answer) prompts. We quantify
the correlation between model and human schema
selection in both prompting conditions and sys-
tematically compare the analogies generated by
humans and models. These comparisons provide
insights into how prompting strategies, modalities,
and model architectures affect spatial associations.

Stimuli and Modalities In order to keep our
results comparable to those by Richardson et al.
(2001), we use the same stimuli as the original
study (depicted in Fig. 2). The original stimuli
include 30 verbs and pictures showing arrows. In
Richardson et al.’s study, participants were asked
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3:‘ A argued with  pointed at
E gordnbed pullﬁdd
—~ — e pushe
,Q‘ </\_”T ( /’4—7 flew regretted
o floated respected
O gave to rested
T hoped rushed
hunted sank
b o~ impacted showed
- W, increased smashed
6 lifted succeeded
= obeyed tempted
a4 offended walked
g ) owned wanted
N perched warned

Figure 2: Left: Schematic directions used in all exper-
iments. Right: Action words as experimental items.
Both sets are adapted from Richardson et al. (2001).

to choose a preferred arrow (spatial schema) to rep-
resent each verb. In case of our studies, we present
these spatial schemas in three different renderings:
i) a reproduction of the original images (visual con-
dition), ii) an equivalent Unicode version (T, |, <,
—) of the arrows (pseudo-visual condition), and
iii) a textual description (up, down, left, right) of
the spatial schemas (fextual condition).

3.2 Human Subject Study

We replicate the experiment by Richardson et al.
(2001) with two key modifications designed to en-
hance both the task setup and subsequent analysis.

First, we introduce a one-shot example that di-
verges from the original relational schema (up,
down, left, right) but retains a similar structure, de-
signed to familiarize participants with the task with-
out revealing the target relations (see App. Fig. 6).
Second, we ask participants to provide an anal-
ogy explaining their choice before selecting one
of the four options (see App. Fig. 7). Participants
are asked to provide informed consent and demo-
graphic information (reported in App. A.2). We
recruit 24 native English speakers, resulting in a
total of 240 responses (30 items with 8 responses
per item).

Schema Choice Evaluation To compare the re-
sults of our human study with those of Richardson
etal. (2001), we calculated item-level agreement us-
ing a normalized concentration metric. This metric
is based on the squared proportions of values within
each distribution, ensuring it ranges from O (com-
plete disagreement) to 1 (complete agreement). To
account for sample size differences, scores were
weighted by the number of observations (N) in both
datasets. Overall agreement was computed as the
weighted average across all items, with variability

assessed via standard deviation, offering insights
into the consistency of item-level distributions.

Labeling Analogies To facilitate comparisons
between human and model-generated analogies,
we design a classification schema that categorizes
them into four types (more details in App. A.4):

* Physical Action Representation

* Interaction or Relationship Between Entities
* Cultural or Conventional Associations

* No Analogy or Direct Explanation Provided

The creation of these labels was guided by prior
NLP work in analogy classification (Mikolov et al.,
2013; Gladkova et al., 2016; Drozd et al., 2016),
as well as recent advancements in analogy eval-
uation (e.g., Wijesiriwardene et al., 2025). With
guidance from these sources and insights from their
analysis, our labels account for semantic and prag-
matic influences on the structure of the analogy.

To label our dataset of +7,000 analogies, we
employ LLMs as judges while acknowledging
their limitations in reliability (Zheng et al., 2023;
Bavaresco et al., 2024). On samples of 3x30 analo-
gies from both human and LLLM data, two annota-
tors achieve an agreement of Cohen’s k = 0.6277
after three annotation schema revisions, indicating
their substantial agreement (Cohen, 1960).

When prompted according to this revised
schema, GPT-40 achieves an agreement with two
human annotators of Fleiss’ k = 0.6024 (Fleiss
and Cohen, 1973) (see details in App. A.4).

3.3 Generative Model Study

Large Language Models We select a diverse
set of state-of-the-art LLMs, including both
open-source and proprietary architectures. As
open-source models, we include two variants
of Llama 3.1 - Llama-70B and Llama-70B-
Instruct (Al@Meta, 2024) — and DeepSeek’s R1-
Distill-Llama (DeepSeek-Al et al., 2025), based
on Llama-3.3-70B-Instruct. As proprietary mod-
els, we evaluate GPT-3.5-Turbo (OpenAl, 2023),
GPT-40, GPT-40-Mini (OpenAl, 2024a), and GPT-
ol-Preview (OpenAl, 2024b), accessed via the
OpenAl API. LLMs were prompted by passing
schemas as textual and pseudo-visual renderings.

Vision-language Models Given the documented
limitations of vision-language models in spatial rea-
soning (Kamath et al., 2023; Wang et al., 2024a),
we conduct a preliminary analysis to verify their
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ability to correctly process the input images used
in the main experiment (see App. B.2 for more de-
tails). VLMs from the LLaVA family (Liu et al.,
2024c,a,b) were found to be incapable of reliably
identifying our stimuli, and therefore excluded
from our main experiment. Our selection of VLMs
includes Molmo-7B, Molmo-72B (Deitke et al.,
2024), Qwen2-VL-7B, and Qwen2-VL-72B (Wang
et al., 2024b). These models were prompted with
schemas in their visual rendering (as images).

Prompts We test both LLMs and VLMs in two
prompting conditions (all with temperature 0, ex-
cept for GPT-01). In regular prompting, models
are simply asked to provide their chosen schema
for each verb; in the analogy prompting condition,
they are asked to rely on an analogy to choose a
schema, and to include both analogy and chosen
schema in their response. Both kinds of prompts
are one-shot, i.e., they include an example question,
in-line with the human subject study. The complete
list of prompts used for all models is provided in
App. B.3. As suggested by Aher et al. (2023), we
employ prompt validation to enhance the validity
of model responses (see App. B.1 for more details).
Despite these mitigation efforts, some invalid re-
sponses persisted (see App. B.4 for details).

3.4 Evaluation Metrics

We evaluate our models along two main dimen-
sions: schema selection (textual, pseudo-visual,
and visual) and labeled analogies.

For both dimensions, we compare model outputs
and human responses with Spearman correlations
and F1 scores (see App. A.6 and B.5 for more
details). While the schema selection evaluation
was performed against both human datasets, the
one regarding analogy labels is only applicable to
our dataset, because Richardson et al.’s data does
not include human-generated analogies.

In addition to these task-level comparisons, we
perform item-level analyses. For the human data,
we assess the agreement between our human sam-
ples and the original data using item-level agree-
ment measures. Moreover, we examine the item-
level correlations of analogy types between se-
lected models by comparing their outputs to our
human-sampled analogies.

4 Results and Discussion

4.1 Human Subject Study

Our human study partially aimed to replicate
Richardson et al. (2001), albeit with significant
procedural differences. The item-level agreement
analysis that we performed to compare Richardson
et al.’s results to ours yields an overall weighted
agreement of 0.49 (£0.15) for Richardson et al.’s
schema choices and 0.62 (£0.26) for ours. Notably,
items such as pointed at (0.80), pushed (0.78), and
bombed (0.76) obtain the highest agreement in the
Richardson dataset, whereas our dataset shows per-
fect agreement for items like fled, pulled, sank, and
increased, albeit with a smaller sample size.
Altogether, our results indicate that the overall
item-level agreement for our data is higher than that
reported by Richardson et al. (2001). For further
details, please refer to App. Tab. 2. We interpret the
higher agreement in our dataset as suggesting that
analogy prompting induces participants to deeply
engage their knowledge about spatial schemas, as
opposed to relying on simpler associations.

4.2 Generative Model Study

Our study with generative models focuses on com-
paring model outputs with human responses on two
levels. First, we investigate how strongly the spa-
tial schemas chosen by models align with those
chosen by human participants from both our exper-
iment and Richardson’s. Second, we explore the
similarity between analogies generated by models
and those provided by participants in our study.

4.2.1 Alignment of Spatial Schema Selection

We quantify alignment between models’ and hu-
mans’ schema choices by computing Spearman
correlations and F1 scores. The former are shown
in Fig. 3 and consider answer distributions aggre-
gated per main direction (‘horizontal’ vs. ‘verti-
cal’); this choice was favored over considering all
four spatial schemas as it yielded more statistically
significant correlations. F1 scores are reported in
Tab. 1 and were calculated considering all four
spatial schemas (up, down, left, right). Both Spear-
man correlations and F1 scores were computed per
prompting condition (regular and analogy) and in-
put type (textual, pseudo-visual, and visual).

Regular vs. analogy prompting Since we ex-
plicitly instructed our participants to employ ana-
logical reasoning while Richardson et al. did not,
we expected analogy-prompting model responses
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Figure 3: Spearman correlations between model and human chosen-concept distributions in the textual, pseudo-
visual, and visual condition for our and Richardson et al.’s data. Values were computed per direction (‘horizontal’:
up/down and ‘vertical’: left/right). Note that the x-axis range in the visual condition is different from the other two.

to align more closely with our dataset, and regular-
prompting ones to be more aligned with Richard-
son et al.’s dataset. However, the Spearman cor-
relations visualized in Fig. 3 indicate that none
of the prompting conditions results in systemati-
cally stronger correlations with human responses.
Moreover, the effect of the prompting condition
is inconsistent even when the same model out-
puts are compared with different human datasets.
As an example of this, in the textual condition,
analogy prompting results in GPT-40 correlating
more strongly with Richardson’s data than ours
(PRich. = 0.45 > pours = 0.29). A similar ef-
fect can also happen for the same model in differ-
ent experimental conditions — e.g., for Llama-70B
analogy prompting yields higher correlations with
our dataset than regular prompting in the textual
condition (p Anatog. = 0.70 > pRreg. = 0.57), but
the reversed trend is observed in the pseudo-visual
condition (pAnaiog. = 0.60 < prey. = 0.82). Re-
garding the schema-wise F1 scores reported in
Tab. 1, they do not indicate a systematic advantage
of analogy prompting for our human data. How-
ever, an interesting trend is that, albeit with a few
exceptions, analogy prompting tends to result in
higher F1 scores for Richardson et al.’s data. Taken
together, these findings suggest that models may
process analogical relationships differently from
humans, potentially relying more on learned asso-
ciative patterns than true analogical reasoning.

Effect of input type Spearman correlations vi-
sualized in Fig. 3 allow a comparison among be-
tween input types (textual, pseudo-visual, visual).
Overall, we observe stronger correlations in the
pseudo-visual condition (p = 0.56-0.90) than in
the textual condition (p = 0.58-0.85), but the trend

Textual condition

Model Our Richardson
R A R A
GPT-3.5 0.46 049 0.60 0.63
GPT-40 0.33 029 040 045
GPT-40-Mini 046 035 045 040
GPT-01-Preview 035 044 035 049
Llama-70B 0.50 0.38 0.51 0.40
Llama-70B-Inst 0.33 037 041 048
R1-Distill-Llama-70B 045 041 0.53 0.58

Pseudo-visual condition

Model Our Richardson
R A R A
GPT-3.5 0.35 0.50 0.53 0.61
GPT-40 041 042 058 0.63
GPT-40-Mini 0.48 045 0.64 0.63
GPT-o01-Preview 0.50 046 0.64 0.67
Llama-70B 0.34 047 044 0.51
Llama-70B-Inst 046 049 06 0.63
R1-Distill-Llama-70B 049 0.45 0.69 0.63
Visual condition
Model Our Richardson
R A R A
Molmo-72B 0.05 0.16 0.05 0.15
Qwen2-VL-7B 023 022 0.18 0.34
Qwen2-VL-72B 0.35 0.38 041 0.51

Table 1: Weighted F1 scores between human and mod-
els’ concept preferences in the textual, pseudo-visual
and visual conditions. Scores are reported for both our
collected dataset and Richardson’s, and for the two dif-
ferent prompting conditions (R indicates regular prompt-
ing and A analogy prompting). Figures were computed
concept-wise, i.e., considering all four spatial schemas.

is not systematic. A similar trend can be detected in
the F1 scores (Tab. 1), whose range is 0.29-0.63 in
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the textual condition and 0.34-0.69 in the pseudo-
visual condition. One plausible explanation for this
is that Unicode symbols reduce semantic ambigu-
ities — particularly for words like "right" — which,
in textual contexts, could be conflated with its "cor-
rectness" meaning. By providing a less ambiguous
representation, pseudo-visual prompts may thus
facilitate more accurate analogical mappings. Fi-
nally, correlations achieved by VLMs in the visual
condition are, in general, lower than those achieved
by LLMs in the other conditions (p = 0.28-0.79).
This may be due to the visual condition posing the
extra challenge of decoding the content of the vi-
sual stimuli. In other words, while LLMs receive
abstract textual or pseudo-visual stimuli — which
they can directly combine with their pretraining
knowledge — VLMs are first tasked with mapping
the different image(s) to abstract spatial notions
and, only after completing this initial step, can they
engage with their pretraining knowledge.

F1 scores and unbalanced concept productions
For some models, we observe systematic con-
cept over- and underproductions, which affect the
weighted F1 scores provided in Tab. 1. For exam-
ple, Molmo-72B never produces ‘down’ and ‘right’
in the regular-prompt setup, while overproducing
the answer ‘up’ (in 97% of its outputs); this results
in an extremely low F1 score (0.05) for both our
human responses and Richardson et al.’s. Simi-
larly, Qwen2-VL-7B generates ‘up’ in 73% of the
cases in the regular-prompting setup. Across all
LLMs, there is a systematic trend to underproduce
the concept ‘left’, and in some cases ‘down’. This
tendency is especially extreme, e.g., for GPT-3.5
regular-prompted in the pseudo-visual condition
(5% of ‘left’ responses), GPT-40 analogy-prompted
in the textual condition (9% of ‘left’ responses),
and Llama-70B regular-prompted in the pseudo-
visual condition (8% of ‘down’ responses); in these
cases, unbalanced model responses are again re-
flected in comparatively low F1 scores. Notably,
while human participants also underproduce ‘left’
(19% in both datasets), this imbalance is not sub-
stantial enough to suggest a bias in the stimuli
themselves. Instead, the models’ consistent un-
derrepresentation of ‘left’ is more likely an artifact
of biases in training data.

4.2.2 Human- vs. Model-generated Analogies

The Spearman correlations quantifying the similar-
ity between analogies provided by human partici-

pants and models are visualized in Fig. 4. Although
correlations are non-significant, some interesting
trends emerge. First, the types of analogies gener-
ated by VLMs are the most aligned with those pro-
vided by humans (p = 0.23-0.55). Second, LLMs
do not systematically generate more human-like
analogies in the textual vs. pseudo-visual condition
(prext. = 0.00-0.17, ppseudo—vis = 0.00-0.20).
Finally, it is interesting that the types of analogies
produced by GPT-o1-Preview — the only reason-
ing model — are the least similar to the human-
provided ones, with a Spearman correlation of 0 in
the pseudo-visual condition. These findings sug-
gest that multimodal pretraining, while not result-
ing in models closely mirroring human schema
choices, may help VLMs generate analogy types
that are more similar to human ones than LLMs’
(examples of generated analogies in App. Tab. 4).
In a more focused analysis, we pick one LLM
(GPT-40) and check whether the items where its
schema preferences align with the human ones are
also those for which it generates more human-like
analogy types. The results of this analysis are dis-
played in Fig. 5, which shows item-wise Spearman
correlations with spatial schemas and analogy la-
bels for the pseudo-visual condition. The correla-
tions reveal a marked divergence between the mod-
els’ analogical mappings and schema selections for
several verbs (e.g., gave to, impacted, obeyed).

Analogy Label Correlations

Molmo-72B -
Qwen2-VL-7B A
Qwen2-VL-72B A
Llama-70B A
Llama-70B-Instruct A
R1-Distill-Llama-70B
GPT-3.5 A

GPT-40 A

GPT-40-mini
GPT-01-preview A

Text
Pseudo-Visual
Visual

0.0 0.2 0.4 0.6 0.8 1.0
Average Spearman Correlation

Figure 4: Correlations of the model’s chosen analogy
types with those analogy types chosen by humans.

These differences may be due to two possible
scenarios. First, a model might produce analo-
gies similar to human analogical associations while
choosing different spatial schemas; this would sug-
gest a decoupling between analogical similarity
and spatial mapping within the model’s reasoning
process. Alternatively, a model might arrive at a
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Figure 5: Spearman correlations for GPT-4o in the pseudo-visual condition, comparing human-model alignment

on analogy labels (teal) and schema selection (

) responses for 30 words. Highlighted bars and labels denote

words where analogy and direction correlations are opposed, showing cases of potential decoupling of the two.

similar directional assignment as humans, yet the
underlying analogical reasoning, as reflected in the
label correlation, diverges markedly from human
responses. Both of these scenarios occur 8 times in
our example (highlighted bars and words in Fig. 5).

Overall, both model-wise correlations (Fig. 4)
and the item-level analysis (Fig. 5) seem to point
towards a similar conclusion, i.e., that models’
ability to produce analogies that resemble human
ones does not necessarily result in human-aligned
spatial-schema choices, and vice versa. This di-
vergence is especially critical given that the words
span abstract to concrete concepts, suggesting that
the integration of analogical and spatial reasoning
may be more fragile in contexts where multiple
interpretative routes coexist.

4.3 Summary of Findings

Our analyses compare humans’ and generative
models’ spatial intuitions on multiple levels
(schema selection & analogy types) and con-
sider two main experimental factors (prompting &
modality). We now turn to our research questions.

RQ1 - Conceptualization of Abstract Notions
through Analogies Our experiments reveal sub-
stantial discrepancies between models’ and hu-
mans’ spatial conceptualizations. At the level of
alignment between spatial choices, we do not ob-
serve a systematic improvement associated with
analogy vs. regular prompting. These findings, to-
gether with a comparison between analogy types
generated by humans and models, show that, even
when models generate analogies similar to the
human ones, these do not result in more human-
aligned spatial schema choices. More importantly,
this is true even when considering our human
dataset, which was collected by explicitly asking

participants to rely on analogical reasoning. The
discrepancies we document suggest that the pro-
found differences between humans’ and models’
concept-learning processes are indeed reflected in
spatial schemas, which appear to be supported by
analogical reasoning in humans and simpler associ-
ations in models.

RQ2 - Effect of Multimodal Inputs on Analogi-
cal Reasoning Our comparisons between experi-
mental conditions employing different input types
(textual, pseudo-visual, and visual) reveal three
interesting trends. First, LLMs tend to produce
more human-aligned schema choices in the pseudo-
visual condition, which is likely due to reduced se-
mantic ambiguity. Second, VLMs’ schema choices
are, in general, less human-aligned than LLMs’
ones. Indeed, while images should be, in princi-
ple, the least semantically ambiguous input type,
they still posit the extra challenge of extracting ab-
stract meaning from the input stimuli. Finally, we
observe that VLMs tend to generate types of analo-
gies that are more similar to the human ones than
LLMs. Taken together, these findings suggest that
VLMs’ ability to process visual inputs proves ad-
vantageous in terms of producing human-like ana-
logical reasoning. However, when focusing solely
on associations between words and spatial schemas,
Unicode arrows are the stimulus type associated
with the most human-like choices; this may be due
to them being abstract enough to not require per-
ceptual processing and, at the same time, being less
semantically ambiguous tokens than words.

5 Conclusions

Our study evaluates a suite of LLMs and VLMs
concerning their ability to use analogical reason-
ing to support associations between verbs and spa-
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tial schemas, a core component of human con-
cept learning processing. We employ regular and
analogy prompts to elicit these associations and
compare them with human data from Richardson
et al. (2001) and a set of newly collected human
responses which, in contrast to Richardson et al.,
include human-written analogies. In addition, we
explore how stimulus types varying in their degree
of abstractness (textual, pseudo-visual, visual) in-
fluence model responses. Our experiments reveal
substantial discrepancies between models’ ability
to generate analogies similar to the human ones and
their ability to associate verbs to spatial schemas
in a human-like way. LLMs and VLMs are increas-
ingly applied in domains beyond language, includ-
ing robotics, navigation, medicine, scientific dis-
covery, and autonomous systems. However, their
limitations in complex tasks suggest that perfor-
mance gaps cannot be solely attributed to model
size. While scaling improves alignment with hu-
man responses, our findings indicate that underly-
ing analogical structures and spatial intuitions may
diverge from human reasoning. This study high-
lights the need to examine fundamental conceptual-
ization mechanisms to better understand these dis-
crepancies and refine future models accordingly.

Limitations

A key limitation of our study is the potential for
data contamination in Richardson et al.’s dataset.
While it is unlikely that proprietary LLMs were
explicitly fine-tuned on this dataset, it is possi-
ble that Richardson et al.’s paper was included
in the pretraining data of certain models. This
raises concerns that some observed correlations
may not reflect genuine analogical reasoning, but
rather memorized associations from training cor-
pora. At present, a key mitigation effort is the
dataset collected in our study, which was not pub-
licly available during our evaluation phase and thus
was not included in the training data of any model.

Additionally, differences in experimental de-
sign between our dataset and Richardson et al.’s
may introduce confounds. Our explicit analogy-
based prompting method engages different cogni-
tive strategies than the spontaneous associations
likely employed in Richardson et al.’s experiment.
While we anticipated that this methodological dis-
tinction would result in stronger correlations for
analogy-prompted responses in our dataset, our
findings did not consistently support this hypothe-

sis. This discrepancy highlights the need for further
research into how different prompting strategies in-
teract with model architectures and training data to
shape analogical reasoning performance.

We employed LLMs as annotation judges to as-
sist in labeling our analogy dataset. This process
followed an iterative refinement of the label classi-
fication schema, involving two human annotators,
three rounds of revision, and the development of a
carefully engineered prompt to ensure substantial
agreement (Cohen, 1960). While we acknowledge
the reliability limitations of LLM-based annota-
tion (Zheng et al., 2023; Bavaresco et al., 2024),
this approach offered certain advantages over hu-
man annotators, particularly in mitigating inconsis-
tencies that arose even within the same annotator.

While our study examines the reasoning capabil-
ities of models, we include only a single designated
“reasoning model” (ol-Preview). We acknowledge
that such models may provide additional insights
into underlying reasoning processes. However, as
of now, they rely on advanced, predefined reason-
ing templates that are non-deterministic and not
openly accessible. Furthermore, our focus is on
capturing the models’ intuitions after a single ana-
logical reasoning step, rather than tracing multiple,
potentially opaque reasoning iterations.

Responsible Research

Use of Artifacts We use both open and propri-
etary language models in our work. For all models,
we include model cards or references to their re-
spective providers, which specify their licenses and
intended usage. Additionally, we use GitHub Copi-
lot, powered by OpenAl Codex, and ChatGPT to
generate code snippets. These tools provide outputs
that are licensed for free use, ensuring compliance
with their intended access conditions.

We also utilize research data from Richardson
et al. (2001) and Wicke and Wachowiak (2024),
which are publicly available research papers. The
data derived from these sources is used strictly
within research contexts, in accordance with their
original access conditions. To the best of our knowl-
edge, the use of all artifacts aligns with their speci-
fied terms, ensuring compliance with licensing and
intended use policies.

Use of AI Assistance We used Al assistance
tools (ChatGPT, OpenAl Playground, and GitHub
Copilot) to aid in rewriting code, filter large
datasets to identify additional trends, and refining
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our labeling schema. All Al-generated content was
thoroughly reviewed and verified by the authors.
Al was not used to generate new research ideas
or original findings; rather, it served as a support
tool to improve clarity, efficiency, and organization.
In accordance with ACL guidelines, our use of Al
aligns with permitted assistance categories, and we
have transparently reported all relevant usage in
this paper. While Al contributed to enhancing the
quality of the work, no direct research outputs are
the result of Al assistance.
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A  Human Study

A.1 Survey Design

The survey was conducted using Google Forms.
All participants provided their informed consent
to participate in our study. No names, addresses,
IPs or traceable information was collected, and
the participants could decide to end the study at
any point. In order to familiarize the participants
with the task, an example task was provided (Fig.
6). The example task used the same format as
the real task, but the symbols and the direction
(diagonal as opposed to vertical/horizontal) were
different. We tested the survey design with peers
before collecting responses from non-peers. The
test responses have not been included in the final
data collection.

Analogy *

"stopping” often involves ol ing or halting the prog| of something. Raising both
arms and crossing them defensively to physically block someone, for example.

Choice *

® A
OsB
Oc
Obo

Figure 6: All participants in the study are presented
with an example item (one-shot) at the start of the ques-
tionnaire. This allows the participants to familiarize
themselves with the task, while not providing a priming
effect due to the use of a different directionality (di-
agonal as opposed to vertical/horizontal) and different
symbols (triangles as opposed to circle/square).

For each of the 30 items, we generated a question
shown in Fig. 7. We use the same visual stimuli
as Richardson et al. (2001) for our human subject
study. We note that in the original study, the par-
ticipants were presented with the entire list of 30
items at once (next to the same picture, which we
repeat for each item).

Consider the event "o fled o" and the four images below (A, B, C, D). Think be
of an analogy to help you answer the following question: Which of the

images best represents the event? Explain the analogy, then provide your
image choice.

Description (optional)

Image title

A B
c D .
-
Analogy *

Short answer text

Choice *
A
B
c

Figure 7: Example item presented to the participants.
First, they are asked to provide an analogy, then they

are asked to choose one of four images that best relates
to the options (A, B, C, D).

A.2 Demographics

Age Distribution

D

# Participants
N B

20 40 60
Age

Figure 8: Distribution of age for N = 24 participants.
Average age is 35.54.
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We sampled N = 24 participants with two restric-
tions: (i) Native English speakers, (ii) no prior
knowledge about this research. To the best of our
knowledge, no participant self-reported significant
or severe visual or cognitive impairments.

Age Distribution (KDE)

0.03
2
® 0.02
]
a

0.01

0.00

0 20 40 60 80
Age

Figure 9: Kernel density estimate (KDE) to represent
participants’ (/N = 24) age as spectrum, with an average
around 35 years.

Gender Distribution
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Figure 10: Gender distribution of all N = 24 partici-
pants: Male: 14 participant(s), female: 8 participant(s),
other: 1 participant, prefer not to say: 1 participant.
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Figure 11: All participants declared that they are na-
tive English speakers. The regional distribution is as
follows: Europe: 13 participant(s), North America: 6
participant(s), Africa: 1 participant, Asia/Pacific: 3 par-
ticipant(s), Prefer not to say: 1 participant.

A.3 Human Study Results

Comparison of human choices from 2001 (Richardson et al.) vs. 2025 (our study)

fled

pointed at

pulled

pushed

walked

hunted

impacted

perched

showed

smashed

bombed

floated

lifted

sank

argued with

gave to

offended

rushed

warned

owned

regretted

rested

tempted

wanted

hoped

increased

obeyed

respected

succeeded

2001 | 2025

cOto

2001 | 2025

D:0O0
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2001 | 2025
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Figure 12: Comparison of the data by Richardson et al.
(2001) with the human choices gathered in our study.
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A.4 Analogy Annotation Methodology

We sampled 30 analogies (15 human-created,
15 GPT-40-generated) and classified them
into four categories: “Physical Action,” “Cul-
tural/Convention,” “Interactive Entities,” or “No
Analogy/Explanation.” In a second round, two
authors annotated a different set of 30 analogies
using this scheme. Annotator agreement was
measured using Cohen’s s (Cohen, 1960). After
three revisions of the annotation scheme, we
achieved x = 0.6277, indicating substantial
agreement. All annotation schema versions are
available in the code repository. The final schema,
incorporating these revisions as additional rules,
was then formalized into a prompt:

Task: You will be provided with an explanation that
uses a directional or movement analogy to describe
an event, action, or reaction. Your job is to carefully
read the explanation, assess the type of analogy it
employs, and select one of the following labels that
best corresponds to it:

* Physical Action — This label applies if the ex-
planation relies on tangible movements, forces,
or physical processes.

* Cultural/Convention — This label applies if the
explanation relies on societal norms, symbolic
interpretations, or culturally shared meanings
related to direction or movement.

 Interactive Entities — This label applies if the
explanation emphasizes the interaction or rela-
tionship between distinct entities (e.g., square
and circle).

* No Analogy/Explanation — This label applies
if the explanation is purely descriptive, with
no directional, movement-based, or analogical
content.

Additional rules:

”»

* If the explanation mentions “square” or “circle,
it is always labeled Interactive Entities.

If the explanation does not mention these shapes
implicitly or explicitly, and no entities are
present, then it is not Interactive Entities.

If the explanation mentions “culture,” it is al-
ways Cultural/Convention.

If the explanation includes technical or scien-
tific analogies (e.g., diagrams or systems), it is
always Cultural/Convention.

If the explanation references gravity, understand
gravity as a physical action and assign Physical
Action.

Here is the explanation: Explanation

Based solely on your analysis of the explanation
above, provide only one label from the following:
Physical Action, Cultural/Convention, Interactive
Entities, or No Analogy/Explanation.

A.5 Choice Coherence

Item Richardson Our (w/ analogy)
pointed at 0.80 0.78
pushed 0.78 1.00
lifted 0.77 0.78
bombed 0.76 1.00
fled 0.67 1.00
gave to 0.67 0.78
perched 0.60 0.78
pulled 0.59 1.00
sank 0.57 1.00
increased 0.57 1.00
smashed 0.53 0.62
hunted 0.52 0.50
obeyed 0.48 0.53
walked 0.47 0.34
showed 0.47 0.34
argued with 0.44 0.59
warned 0.44 0.38
floated 0.43 0.78
wanted 0.43 1.00
impacted 0.42 0.62
owned 0.39 0.47
respected 0.39 0.28
rushed 0.38 0.53
flew 0.36 0.34
hoped 0.34 0.41
rested 0.32 0.28
tempted 0.32 0.28
succeeded 0.32 0.41
regretted 0.29 0.28
offended 0.29 0.59
Overall 0.49 (x0.15) 0.62 (x0.26)

Table 2: Item-wise agreement scores for the choice
(of direction) measure computed using a normalized
concentration metric (i.e., squared proportions weighted
by the number of observations, yielding values from
0 to 1). This metric quantifies how concentrated the
responses are for each item -— scores near 1 signify that
nearly all raters converge on the same label (indicating
high consensus), whereas lower values reflect greater
variability in judgments. “Richardson” refers to the
human data reported by Richardson et al. (2001) and
“Our” refers to the data collected in the present study.
The final row gives the overall weighted agreement and
its standard deviation.

A.6 Label Evaluation

For each word, we first compute frequency dis-
tributions over the four label categories from hu-
man responses (8 responses) and model responses
(24 responses). These distributions are then con-
verted into ranked vectors by ordering categories
according to their frequencies. Spearman correla-
tion is computed between the human and model
ranked frequency vectors, quantifying the mono-
tonic agreement in label usage. In parallel, for each
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category, the F1 score is calculated via

2 X min(countyyman, COUNtmeder )

by = ey

counthyman + countpmodel

(with a default score of 1 when both counts are
Zero).

Model Condition  Int. Coh.  JSDiv.|{  Entr. |
Human Reference ~ Ref. 0.550 — 1.760
gpt-3.5 Pseudo 0.933 0.436 0.920
gpt-4 Pseudo 0.876 0.443 0.883
gpt-4-mini Pseudo 0.839 0.443 0.904
1lama-70b Pseudo 0.929 0.399 0.830
1lama-70b-inst Pseudo 0.922 0.436 0.642
gpt-3.5 Text 0.907 0.417 0.813
gpt-4 Text 0.861 0.449 0.981
gpt-4-mini Text 0.874 0.450 0.678
llama-70b Text 0.929 0.409 0.885
1lama-70b-inst Text 0.856 0.443 0910

Table 3: Evaluation metrics for five LLM configura-
tions under Pseudo and Text conditions compared to
a human reference. “Int. Coh.” (Internal Coherence)
is the average fraction of label agreement per item, re-
flecting labeling consistency. “Entr.” (Entropy) quanti-
fies the diversity of the label distribution, and “JS Div.”
(Jensen-Shannon Divergence) measures the similarity
of the model’s distribution to that of humans.

A.7 Label Examples
B Model Studies

B.1 Validation Scores

In order to improve model responses, we tested dif-
ferent prompt endings and calculated a validation
score that measured how often the model, when
given a regular prompt, produced a valid response.
To achieve this, we generated a model response for
each of the 30 action words using the following
prompt:

Given the concepts: ’'X’, -7,
Y, /. For the concept
that best represents the event

’stopped’, what concept would
you choose?

[ending]: X’

Given the concepts: ’[concept]’.
For the concept that Dbest
represents the event ’[event]’,

what concept would you choose?
[ending]:

where [ending] is one possible prompt ending
(e.g., “CONCEPT”, “Choice”, and ‘“selection”),

[concept] refers to the four spatial concepts, and
[event] is an action word. We employed Llama3.1-
8B (Al@Meta, 2024) as the LLM for this experi-
ment, based on the rationale that if a smaller model
can produce a valid answer with a specific ending,
then larger models are likely to do so as well. As
described in Wicke and Wachowiak (2024), the
validity score is calculated as follows:

> plalk) )
acV
for a specific prompt &k and a set of valid answers
V.

This evaluation was conducted under both tex-
tual and pseudo-visual conditions, and an average
validation score was computed for each ending. As
a result, the ending “concept” was selected, achiev-
ing a 74% validation score. The full list of prompt
endings, along with their corresponding validation
scores, is presented in Table 5.

B.2 Vision-language Models Validation

The task considered in our main experiment is chal-
lenging even for current vision-language models
for two main reasons. First, it requires correctly
distinguishing the arrow depictions mainly based
on their spatial orientation. Second, it requires the
ability to process multiple images simultaneously.
Since most state-of-the-art VLMs still struggle with
spatial reasoning (Kamath et al., 2023; Wang et al.,
2024a) or are simply not trained for multi-image
inference, we designed a simple validation task to
help us select VLMs that could be suitably included
in our main experiment. The task consisted in re-
sponding correctly to the four possible variations
of the prompt:

Which of the following is the [up,

down, left, right]ward-pointing
arrow?

Image SHTL: <image up>

Image XHWK: <image down>

Image AKRC: <image left>

Image ZHRN: <image right>

Please respond with the

four-letter image id.

The following similar prompt was used for a
single-image scenario, where all the concepts were
provided within the same image:

Which is the [up, down, left,
right]ward-pointing arrow? SHTL,
XHWK, AKRC or ZHRN?
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Action Contributor Example Analogy Assigned Label

wanted Human circle wants square. as circle is first its on the left, furthermore  Interactive Entities
the arrow should point towards the square as it shows circle
acting towards square

fled GPT-3.5 "Fled’ often involves moving quickly away from a dangerous  Physical Action

seudo-visual . L
P ) or threatening situation. An analogy could be a person run-
ning away from a predator in a straight line to escape.

pointed at gi;ﬁg__gzgal) ’Pointing at’ something typically involves directing attention ~ Physical Action
towards a specific object or direction, often using a finger
or hand to indicate where to look. The action of pointing is
about indicating a specific location or item in space.
pulled gl:g:;z—visual) ’Pulling’ often involves drawing something towards oneself ~ Physical Action
or in a specific direction. When you pull an object, you
typically exert force to bring it closer to you or to move it
in a desired direction. In a directional sense, pulling can be
associated with moving something from a lower position to a
higher one, as if lifting or drawing it upwards.
showed g:;;;ls) ’showing’ often involves presenting or revealing something  Physical Action
in a particular direction. For example, pointing towards a
specific direction to indicate where something is located.
GPT-40-mini s ., . . . . .
obeyed (textual) obeying’ often involves following directions or commands, Cultural/Convention
which can be likened to moving in a specific direction as
instructed. When someone is told to go ’up’, they are com-
plying with a directive, just as one would follow orders or
rules in a broader sense.
rushed ((t}f);l;;lt(l)) ’Rushing’ often involves moving quickly and with urgency  Cultural/Convention

towards a destination or goal. It implies a sense of forward

momentum and progress, similar to how one might move in

a straight line without hesitation. In many contexts, moving

’up’ can symbolize advancement, progress, or moving to-

wards a goal, as it is often associated with positive movement

or elevation.

argued with Qwen-VL-72b ’argued with’ often involves opposing or challenging some- Interactive Entities
one’s views. A debate between two people, for example, is a
common representation of this event.

No Analogy /

hoped Qwen-VL-7b hoping’ involves having a desire or wish for something to Explanation

happen. It’s like having a goal or aspiration.

Table 4: Examples of different collected analogies from different contributors. Selection was focused on represent-
ing different assigned labels. Full collection of analogies is available at https://github.com/anonymousACL/
analogy_prompting.

The models tested in the multi-image

Ending Textual Pseudo Avg. scenario ~ were  Qwen2-VL-7B-Instruct?
and 1lava-onevision-qwen2-7b-ov-hf>.

SESESE 822 82; 823 The models tested in the single-image

hoi 0'70 0'77 0'73 scenario were: Molmo-7B-D-0924%,

EE(E(I:ECCTION 0.66 0'73 0.69 1lama3-1lava-next-8b-hf>,

Selection 0'69 0'75 0'72 1lava-v1.6-mistral-7b-hf®,

selection 0.68 0.75 0.71

CONCEPT 0.68 0.75 0.71 *https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

Concept 0.69 0.73 0.71 3https://huggingface.co/1lava-hf/

concept 0.73 0.76 0.74 1lava-onevision-qwen2-7b-ov-hf

*https://huggingface.co/allenai/
Table 5: Overview of the validation scores for each M015m0‘ 7B-D-0924
possible prompt-ending, for textual and pseudo-visual https://huggingface.co/llava-hf/

prompts, along with their average. llagna3_llava_ne)<,t_8b_hf
https://huggingface.co/llava-hf/llava-vi1.

6-mistral-7b-hf
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https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
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https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf
https://huggingface.co/allenai/Molmo-7B-D-0924
https://huggingface.co/allenai/Molmo-7B-D-0924
https://huggingface.co/llava-hf/llama3-llava-next-8b-hf
https://huggingface.co/llava-hf/llama3-llava-next-8b-hf
https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

1lava-onevision-qwen2-7b-si-hf’, ,
llava-interleave-qwen-7b-hf3, and
Qwen2-VL-7B-Instruct’.

The only models which were able to respond
correctly to all variants of the prompts were
Molmo-7B-D-0924 in the single-image scenario
and Qwen2-VL-7B-Instruct in the multi-image
scenario. Given the satisfactory performance of
these 7B-parameter models, we decided to in-
clude their largest versions (Molmo-72B-0924!°
and Qwen2-VL-72B-Instruct-AWQ'!) as well in
the main experiment.

B.3 Prompts

The prompts used for the LLMs and vision-
language models are reported, respectively, in Ta-
bles 6, 7, and 8. To avoid selection bias (e.g., the
model always choosing the option appearing as
first), for each prompt we constructed variations
corresponding to all the possible label permutations
(4! = 24).

Note that, since the preview Molmo version
available when experiments were conducted (Fall
2024) did not support multi-image inference, this
model was prompted with a single image including
all four spatial schemas. As for the Qwen2-VL
models, they were found incapable of discriminat-
ing between schemas when they were provided
within the same image; therefore, each schema was
provided within a separate image.

B.4 Parsing of Model Outputs

Despite our efforts to validate the prompts, there
were still cases where model-generated responses
did not exactly match the expected structure. When
this occurred, we first tried to exploit other regular-
ities (e.g., the model outputting choice: instead
of concept:) to isolate the relevant part of the
output. When no such regularity was present, we
adopted a simpler single-matching approach: if a
single concept could be identified in the output,
we considered that as a valid answer; if not, or in
the case where multiple concepts were present, we
considered the output invalid.

"https://huggingface.co/1lava-hf/
llava-onevision-gqwen2-7b-si-hf

8http://11ava-hf/llava—interleave-qwen—7b—hf

*https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

10https://huggingface.co/allenai/
Molmo-72B-0924

11https://huggingface.co/Qwen/
Qwen2-VL-72B-Instruct-AWQ

To obtain comparable label distributions, we re-
placed the invalid answers with the prevalent valid
answer for the action word. If no valid answer was
returned for a specific action word, we excluded the
action word from further comparisons with human
preferences. The percentage of invalid answers
never exceeded 5%. We report the percentage of in-
valid responses yielded by each model in Table 15.

B.5 Evaluation Metrics

For each model, we obtained 24 outputs for each
verb-stimulus (corresponding to all possible per-
mutations). This allowed us to obtain a percent-
age of ‘up’, ‘down’, ‘left’ and ‘right’ responses
for each verb. Similarly, response distributions
could be obtained for the human datasets based on
multiple participants’ answers. Spearman corre-
lations quantifying the alignment between human
and model responses were computed between the
human and model-generated answer distributions
per each spatial schema. Since most correlations
were non-significant when considering all four spa-
tial schemas, in the main paper we show correla-
tions per direction (‘vertical’ vs. ‘horizontal’). In
the following sections, we report complete results,
including both per-schema and per-direction corre-
lation.

Regarding F1 scores, they were computed be-
tween human and model-generated schema prefer-
ences. For each verb, the schema preference was
defined as the schema appearing in most permuta-
tions or indicated by the majority of participants.

B.6 Extended Results

In Tables 9, 10, and 11 the Spearman correlations
for the LLMs and VLMs are represented. F1 scores
for these models can be seen in Tables 12, 13, and
14.

B.7 Compute Resources

Running our experiments required a total of ap-
proximately 37 hours on an A100 NVIDIA GPU
and 10 hours on an H100 NVIDIA GPU. Labeling
the analogies with GPT-40 using OpenAI’s API
access required approximately 3 hours.
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Model Prompt

Llama (R) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’X’, ’-’, ’)’, ’/’. For the concept that
best represents the event ’stopped’, what concept would you
choose?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

concept: ’X’<|eot_id|><|start_header_id|>user<|end_header_id|>
Given the concepts: "[concept]’. For the concept that best
represents the event ’[event]’, what concept would you choose?

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

concept:

Llama (A) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: X, =, Yy, /. For the concept
that best represents the event ’stopped’, what  concept
would you choose? Explain the analogy, then provide one

choice.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
analogy: ’stopping’ often involves obstructing or halting the
progress of something. Raising both arms and crossing them

defensively to physically block someone for example.

concept: ’X’<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would
you choose? Explain  the analogy, then provide one

choice.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

analogy:

Llama (Z) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you
choose? Give the chosen concept by surrounding it with

TH#it’ . <|eot_id|><|start_header_id|>assistant<|end_header_id|>

Let’s think step by step.

Table 6: Prompts used for the Llama 3.1 models. The R1-Distill-Llama model used the same prompt as the
regular Llama models. The letters in brackets after the model names refer to the experimental condition (Regular
vs. Analogical vs. Zero-shot.)
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Model Prompt

GPT (R) SYSTEM_PROMPT :

You are a participant in a research experiment. Even if the
answer is subjective, provide it. Do not say it is subjective. Follow
the given structure.

USER_PROMPT :

EXAMPLE TASK: Given the concepts: ’X’, ’-’, ’)’, ’/’. For the
concept that best represents the event ’stopped’, what concept would
you choose?
concept: X’

TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
concept:

GPT (A) SYSTEM_PROMPT :
You are a participant in a research experiment. Even if the

answer is subjective, provide it. Do not say it is subjective. Follow
the given structure.

USER_PROMPT :

EXAMPLE TASK: Given the concepts: ’X’, ’-’, ’)’, ’/’. For the
concept that best represents the event ’stopped’, what concept would
you choose? Explain the analogy, then provide one choice.

analogy: ’stopping’ often involves obstructing or halting the progress
of something. Raising both arms and crossing them defensively to
physically block someone for example.

concept: "X’

TASK: Given the concepts: "[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
Explain the analogy, then provide one choice.

analogy:

GPT (2) You are a participant in a research experiment. Even if the answer is
subjective, provide it. Do not say it is subjective. Follow the given
structure. TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
Give the chosen concept by surrounding it with ’##’. Let’s think step
by step.

Table 7: Prompts used for the GPT models. The letters in brackets after the model names refer to the experimental
condition (Regular vs. Analogical. vs. Zero-shot.)
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Model Prompt

Molmo Example task: Consider the event ‘threw’ and the four images below
R) (SHTL, XHWK, AKRC, ZHRN). Which of the images best represents the
event?
Image: XHWK

Task: Consider the event ‘[event]’ and the four images below
(SHTL, XHWK, AKRC, ZHRN). Which of the images best represents the
event?
Image:

Qwen2-VL  Example task: Consider the event ’stopped’ and these four images:

(R) SHTL [image], XHWK [image], AKRC [image], ZHRN [image]. Which of the
images best represents the event?
Image: SHTL

Task: Consider the event ’stopped’ and these four images: [image
label][image], [image labell<image>, [image labell<image>, [image
labell<image>. Which of the images best represents the event?

Image:
Molmo Example task: Consider the event ‘threw’ and the four images below
A) (SHTL, XHWK, AKRC, ZHRN). Think of an analogy to help you answer the

following question: Which of the images best represents the event?
Explain the analogy, then provide your image choice.

Analogy: ‘throwing’ often involves launching an object in a horizontal
direction. The trajectory followed by the object could be represented
as a rightward-pointing arrow.

Image: XHWK

Task: Consider the event [event] and the four images below
(SHTL, XHWK, AKRC, ZHRN). Think of an analogy to help you answer the
following question: Which of the images best represents the event?
Explain the analogy, then provide your image choice.

Analogy:

Qwen2-VL  Example task: Consider the event ‘stopped’ and these four images:
(A) SHTL <image>, XHWK <image>, AKRC <image>, ZHRN <image>. Think of
an analogy to help you answer the following question: Which of the
images best represents the event? Explain the analogy, then provide
your image choice.
Analogy: ‘stopping’ often involves obstructing or halting the progress
of something. Raising both arms and crossing them defensively to
physically block someone for example.
Image: SHTL

Task: Consider the event ‘[event]’ and these four images: [image
labell<image>, [image label]<image>, [image labell<image>, [image
label]<image>. Think of an analogy to help you answer the following
question: Which of the images best represents the event? Explain the
analogy, then provide your image choice.

Analogy:

Table 8: Prompts used for the vision-language models. The letters in brackets after the model names refer to the
experimental condition (Regular vs. Analogical.)
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Llama-70B Llama-70B-Inst R1-Distill-Llama-70B
R A R A v/ R A
Up 0.45% 0.53%(+) | 0.67% 0.57%(-) 0.61% () | 0.48*%  0.63% (+)
Down 0.47% 031() | 031 027() 033(+) | 0.37%  0.44% (+)
Left 0.34  0.44%(+) | 036 046%(+) 0.07() | 0.25 0.47* (+)
S Right 0.58* 0.56%(-) | 0.58* 0.57%(-) 0.62%(+) | 0.62%  0.61% ()
2 1 0.67% 0.58%(-) | 0.72% 0.66% (-) 0.68%(-) | 0.68*  0.57% ()
R 0.66% 0.38%(-) | 0.48% 0.49%(+) 0.48%(=) | 0.58*  0.62% (+)
5z 0.12  0.61% (+) | 0.42% 0.44%(+) 033() | 043*  0.62% (+)
- 0.47% 0.61% (+) | 0.67% 0.72% (+) 0.77*% (+) | 0.69%  0.68% (-)
Hor/Vert.” | 0.56% 0.73% (+) | 0.72% 0.70% (-) 0.72% (=) | 0.76%  0.79% (+)
Hor/Vert.” | 0.81% 0.76% (1) | 0.89% 0.86* (-) 0.88%(-) | 0.85%  0.87* (+)
Up 0.57% 0.58% (+) | 0.56% 0.51%(-) 0.48* () | 047%  0.58% (+)
Down 0.47% 0.45%(-) | 0.43*% 0.40%(-) 0.40%(-) | 0.53*  0.57%(+)
Left 0.38% 0.42%(+) | 0.39*  036() 0.17() | 0.36%  0.49% (+)
Right 0.47% 0.41%(-) | 037%  035() 0.37%(=) | 0.36* 0.33 (1)
g 1 0.70%  0.52% (-) | 0.64* 0.60% (-) 0.66% (+) | 0.64*  0.50% ()
8 | 0.60% 0.51%(-) | 0.52% 0.53%(+) 0.52%(=) | 0.50*  0.50% (=)
— 0.12  0.59% (+) | 0.38% 0.53% (+) 0.44% (+) | 0.44*  0.55% (+)
- 0.37%  0.45% (+) | 0.50% 0.52% (+) 0.56% (+) | 0.53*  0.41% ()
Hor/Vert.T | 0.57% 0.70% (+) | 0.64% 0.65% (+) 0.62%(-) | 0.64*  0.64* (=)
Hor/Vert.” | 0.82% 0.60% (-) | 0.74*% 0.77% (+) 0.70%* (-) | 0.66*  0.65% ()

Table 9: Spearman correlations between concept distributions by humans and the open-source models (Llama3.1
and DeepSeek R1 Distill Llama). The last four rows report results aggregated into two main directions (‘up’ and
‘down’ into ‘vertical’ and ‘left’ and ‘right’ as ‘horizontal’), for textual (") and pseudo-visual (P) concepts. Values
in the ‘R’ column refer to the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates
zero-shot prompting. The signs in brackets indicate whether analogy prompting results in an improved correlation
with respect to regular prompting (+), remained the same (=), or didn’t improve (-). Asterisks mark statistical
significance (p < 0.05).
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GPT-3.5 GPT-40 GPT-40-Mini GPT-01-Preview
R A R A R A R A Z
Up 0.63* 0.48*(-) | 0.59*% 0.61* (+) | 0.61* 0.63* (+) | 0.60* 0.58* (-) 0.57* (-)
Down 0.51*  035(-) | 0.41* 0.45*(+) | 0.26 0.22(-) | 0.41*% 0.34 (-) 0.35(-)
Left 0.43* 0.52*%(+) | 032 045*(+) | 036 047%(+) | 035 045*(+) 0.26(-)
§ Right 0.69*% 0.68* (-) | 0.52* 0.65*% (+) | 0.59* 0.60* (+) | 0.59* 0.69* (+) 0.55* (-)
c 1 0.58* 047*%(-) | 0.73% 0.68* (-) | 0.69* 0.63* (-) | 0.64* 0.69* (+) 0.66* (+)
j:: 1 0.55*  032() | 0.59*% 0.52*%(-) | 0.56* 0.36(-) | 0.59* 0.52*%(-) 0.47*(-)
2 023 029(H) | 036 0.49*(+) | 0.52*% 0.43*(-) | 0.46* 0.53*(+) 0.21(-)
— 0.69* 0.63*% (-) | 0.68*% 0.64* (-) | 0.74* 0.76* (+) | 0.70* 0.68* (-)  0.67* (-)
Hor/Vert.T | 0.72% 0.73* (+) | 0.65% 0.77* (+) | 0.71* 0.77% (+) | 0.71* 0.85% (+) 0.74* (+)
Hor./Vert.r | 0.72%  0.71% () | 0.85*% 0.85* (=) | 0.85% 0.87* (+) | 0.89% 0.90* (+) 0.86* (-)
Up 0.60* 0.44%*(-) | 0.63* 0.58%(-) | 0.61* 0.56* (-) | 0.55* 0.49*(-) 0.49* (-)
Down 0.62* 0.44*(-) | 0.49*% 041*%(-) | 0.33 037*(+) | 0.54* 0.48*(-) 0.45*(-)
Left 0.36* 0.56* (+) | 0.38* 0.38* (=) | 0.38* 0.50%(+) | 0.24  0.36 (+) 0.10 (-)
Right 0.47*% 0.50* (+) | 0.37*  036(-) | 0.40* 0.40* (=) | 0.43* 0.57* (+) 0.44* (+)
Z 7 0.54* 0.46* (-) | 0.63* 0.67* (+) | 0.59* 0.64* (+) | 0.55* 0.56* (+) 0.58* (+)
5 1 0.54* 036(-) | 0.55% 0.54%(-) | 0.58* 0.45*(-) | 0.59* 0.51*(-) 0.39* (-)
— 025 028(+) | 034 0.54* (+) | 0.50% 0.42*(-) | 0.51* 0.54*(+) 0.35()
— 0.52* 0.42*%(-) | 0.44*% 047* (+) | 0.50% 0.54% (+) | 0.48* 0.48* (=) 0.50* (+)
Hor/Vert.T | 0.76% 0.58% (-) | 0.64* 0.59% (-) | 0.69% 0.65% (-) | 0.64* 0.72% (+) 0.59* (-)
Hor./Vert.? | 0.58* 0.56* (-) | 0.74% 0.67* (-) | 0.72% 0.73% (+) | 0.71% 0.67*%(-) 0.65* (-)

Table 10: Spearman correlations between concept distributions by humans and the GPT models. The last four
rows report results aggregated into two main directions (‘up’ and ‘down’ into ‘vertical’ and ‘left’ and ‘right’ as
‘horizontal’), for textual (7") and pseudo-visual (P) concepts. Values in the ‘R’ column refer to the regular prompting
condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot prompting. The signs in brackets
indicate whether analogy prompting results in an improved correlation with respect to regular prompting (+),
remained the same (=), or didn’t improve (-). Asterisks mark statistical significance (p < 0.05).

Molmo-7B Molmo-72B Qwen2-VL-7B Qwen2-VL-72B

R A R A R A R A
Up 011 029(+) | 0.19  032(+) | 022 0.56* (+) | 0.53* 0.37*(-)
£ Down 036 -0.17(-)| - -0.04 | 0.45% 0.52% (+) | 0.50%  0.42% (-)
T Left - - 027 -0.07(+) | 005 0.11(+) | 031  0.36(+)
£ Right 034 -026()| - 015 | 019 022(+) | 0.44* 0.52(+)
& Hor/Vert. | 033 -025(-) | 030 0.52%+) | 0.66* 0.79%(+) | 0.71% 0.67* (-)
Up -0.05 0.03(+) | 0.17 030(+) | 030 0.46* (+) | 0.44* 0.28(-)
Down 011 -008(-) | - -0.11 | 026 044*(+) | 031  0.37*(+)
£ Left - - -0.15 -0.10(-) | 025  0.13(-) | 0.41% 0.37*(-)
& Right 030 -024(-)| - 005 | 006 006 | 030 0.33(+)
Hor./Vert. | 023 -022(-) | 0.28 0.37*(+) | 0.61% 0.73* (+) | 0.59* 0.56* (-)

Table 11: Spearman correlations between concept distributions by humans and vision-and-language models. Results
are reported both per-concept and per-direction, i.e., aggregating ‘up’ and ‘down’ into ‘vertical’ and ‘left’ and ‘right’
into ‘horizontal’. Values in the ‘R’ columns refer to the regular prompting condition, while ‘A’ indicates analogy
prompting. The signs in brackets signal whether analogy prompting results in an improved correlation with respect
to regular prompting (+) or not (-). Asterisks mark statistical significance (p < 0.05).
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Llama-70B Llama-70B-Inst R1-Distill-Llama-70B
R A R A Z R A
S Concept” | 051 040(-) | 041 048(+) 0.36(-) | 0.53 0.58 (+)
'§ Concept” | 044 051(+) | 0.60 0.63(+) 0.60 (=) | 0.69 0.63 (-)
j:: Direction” | 0.73 0.64(-) | 0.65 0.72(+) 0.53(-) | 0.83 0.87 (+)
& Direction” | 0.60 0.70 (+) | 0.83 0.90(+) 0.80(-) | 0.93 0.90 (-)
Concept’” | 0.50 038(-) | 033 037(+) 033(=) | 0.45 0.41 (-)
£ Concept!” | 034 047(+) | 046 049(+) 042(-) | 0.49 0.45 (-)
5 Direction” | 0.67 0.71 (+) | 0.58 0.72(+) 0.67 (+) | 0.77 0.73 (-)
Direction” | 0.52 0.70 (+) | 0.70 0.77 (+) 0.67(-) | 0.73 0.70 (-)

Table 12: Weighted F1 scores between human and the open-source models’ concept preferences. The first two rows
report results considering all four concepts (up, down, left, right) for textual (7°), and (7, |, -, —) for pseudo-visual
(P), while the last two rows aggregating them into two main directions (horizontal and vertical). Values in the ‘R’
column refer to the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot
prompting. The signs in brackets indicate whether analogy prompting results improved F1 score with respect to
regular prompting (+), remained the same (=), or didn’t improve (-).

GPT-3.5 GPT-40 GPT-40-Mini GPT-o0l1-Preview
R A R A R A R A Z
S Concept” | 0.60 0.63(+) | 0.40 0.45(+) | 045 0.40(-) | 035 0.49(+) 0.40+)
'§ Concept” | 0.53 0.61 (+) [ 0.58 0.63(+) | 0.64 0.63(-) | 0.64 0.67 (+) 0.67 (+)
:_.-‘j Direction” | 0.87 0.90 (+) | 0.76 0.76 (=) | 0.55 0.68 (+) | 0.55 0.64(+) 0.60 (+)
& Direction” | 0.80 0.90 (+) | 0.90 0.87(-) | 0.90 0.76(-) | 0.80 0.90 (+) 0.83 (+)
Concept” | 046 049 (+) | 033 0.29(-) | 046 0.35(-) | 035 044 (+) 0.35(=)
g Concept” | 035 0.50(+) | 041 0.42(+) | 048 045(-) [ 0.50 046(-) 0.46(-)
& Direction” | 0.80 0.63(-) | 0.62 0.55(-) | 0.62 0.61(-) | 0.62 0.71 (+) 0.67 (+)
Direction” | 0.67 0.76 (+) | 0.77 0.67(-) | 0.76 0.69(-) | 0.73 0.70(-) 0.70 (-)

Table 13: Weighted F1 scores between human and GPT’s concept preferences. The first two rows report results
considering all four concepts (up, down, left, right) for textual (1), and (7, |, <—, —) for pseudo-visual (P), while the
last two rows aggregating them into two main directions (horizontal and vertical). Values in the ‘R’ column refer to
the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot prompting. The
signs in brackets indicate whether analogy prompting results improved F1 score with respect to regular prompting
(+), remained the same (=), or didn’t improve (-).

Molmo-7B Molmo-72B | Qwen2-VL-7B  Qwen2-VL-72B
R A R A R A | R A

Concept | 030 0.15(-) | 0.05 0.15(+) | 0.18 034(+) | 041 0.51 (+)
Direction | 0.39 0.25(+) | 0.33 0.68(+) | 0.60 0.55(-) | 0.60 0.90 (+)

Concept | 020 0.12(-) | 0.05 0.16(+) | 023 0.22(-) | 0.35 0.38 (+)
Direction | 0.44 0.32(-) | 040 0.61(+) | 0.60 0.62(+) | 0.52  0.69 (+)

Ours | Rich.

Table 14: Weighted F1 scores between VLM and human concept preferences from both Richardson’s and our
dataset. Results are reported for both concept preferences and direction preferences. Values in the ‘R’ columns refer
to the regular prompting condition, while ‘A’ indicates analogy prompting. The signs in brackets signal whether
analogy prompting results in an improved F1 score with respect to regular prompting (+) or not (-).
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Model % Inv. Resp. | # AWs w/ Inv. Resp. | | # Removed AWs |
R A Z | R A Z R A Z
Llama-70B” 944 1389 - |14 18 - 0 0 -
Llama-70B” 250 972 - |10 14 - 0 0 -
Llama-70B-Inst” 0 069 1940 2 9 0 0 0
Llama-70B-Inst” 0 028 6940 2 16 0 0 0
R1-Distill-Llama-70B” 0 028 - | 0 1 - 0 0 -
R1-Distill-Llama-70B” 0.14 0.69  — 1 2 - 0 0 -
GPT-3.57 0.14 153 - 1 3 - 0 0 -
GPT-3.57 0 042 - |0 1 - 0 0 -
GPT-40” 222 0 - 1 0 - 0 0 -
GPT-40" 0 0 - 10 o0 - 0 0 -
GPT-40-Mini” 0 0 - 10 o0 - 0 0 -
GPT-40-Mini” 0 0 - 10 o - 0 0 -
GPT-0l1-Preview” 0 0 0 1 0 0 0 0 0
GPT-01-Preview” 0 0 0 1 0 0 0 0 0
Molmo-7B" 17 0 - |5 0 - 5 0 -
Molmo-72BY 0 0 - 10 o - 0 0 -
Qwen2-VL-7BY 0 0 - 10 o0 - 0 0 -
Qwen2-VL-72BY 0 0 - 10 o - 0 0 -

Table 15: Overview of invalid responses in the Regular, Analogy, and Zero-shot prompting conditions, for the
textual (7"), pseudo-visual (P), and visual (V') conditions. The first column contains the overall percentage of invalid
responses, the second the number of action words for which at least one invalid response was generated, and the last
the number of action words that were removed because none of the generated answers was valid. A “~” indicates
that the model was not evaluated under the corresponding prompting condition.
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