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Abstract
Leichte Sprache ("Easy Language" or "Easy
German") is a strongly simplified version of
German geared toward a target group with lim-
ited language proficiency. In Germany, public
bodies are required to provide information in
Leichte Sprache. The initial rules for Leichte
Sprache were developed instinctively by non-
linguists, without grounding in linguistic re-
search or cognitive science, and lacked precise
criteria for assessing the complexity of linguis-
tic structures (Bock and Pappert, 2023).1 Al-
though more recent rulebooks have introduced
scientifically grounded guidelines for Leichte
Sprache (Bredel and Maaß, 2016), there re-
mains a need for a computational metric to
evaluate language complexity. In response, this
paper proposes a model for determining word
complexity by training an XGBoost classifier
using word-level linguistic features, corpus-
level distributional data, frequency information
from an in-house Leichte Sprache corpus, and
human-annotated complexity ratings. We psy-
cholinguistically validate our model by show-
ing that it captures human word recognition
times above and beyond traditional word-level
predictors. Moreover, we discuss a number of
practical applications of our classifier, such as
the evaluation of AI-simplified text and detec-
tion of CEFR levels of words. To our knowl-
edge, this is one of the first attempts to system-
atically quantify word complexity in the con-
text of Leichte Sprache and to link it directly to
real-time word processing.

1 Introduction

1.1 German Leichte Sprache
Text Simplification (TS), Complex Word identifi-
cation (CWI) and Lexical Complexity Prediction

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
1The DIN Institute’s DIN SPEC 33429:2025-03 provides an
overview and discussion of these rules, see Deutsches Institut
für Normung (DIN) (2025).

(LCP) are popular NLP tasks that have attracted
widespread attention due to increased awareness
regarding the importance of making information
easily accessible to diverse audiences. In the Euro-
pean Union, this awareness has led to legislation,
for instance, in the form of the European Accessi-
bility Act (Eur, 2019) and the German Behinderten-
gleichstellungsgesetz:2 In certain scenarios, texts
are required to be translated intralingually from
standard German into Leichte Sprache (Hansen-
Schirra et al., 2020). Leichte Sprache is a strongly
simplified version of German that uses a reduced in-
ventory of German linguistic forms and structures
(Maaß, 2020; Maaß et al., 2021; Bock and Pappert,
2023). For illustration, examples (1) and (2) show
two versions of the same text: a standard German
input text and its translation in Leichte Sprache,
created by our (t2k GmbH’s) simplification model.
As can be seen, sentences in Leichte Sprache are
shorter and avoid abstract nouns (such as “Paradig-
menwechsel”, meaning ‘paradigm change’) or com-
plex nominalisations, and also avoid complex syn-
tactic structures. Remaining compound nouns
are visually split ("Lebens-Bereich" instead of
"Lebensbereich", both meaning ‘sphere of life’)
to further facilitate processing.

1. Der mit der Konvention verbundene Paradig-
menwechsel weg von Fürsorge und Integra-
tion hin zur Inklusion betrifft alle Menschen
und nahezu jeden Lebensbereich.

2. Alle Menschen mit und ohne Behinderung
sollen sich besser um die Menschen mit Be-
hinderung kümmern. Und das in fast jedem
Lebens-Bereich.

Given the difficulty of generating Leichte
Sprache translations, an automated complexity met-
2Literally meaning "law to prevent discrimina-
tion against people with disabilities", see https:
//www.gesetze-im-internet.de/bgg/__11.html
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ric is a vital requirement not only for model devel-
opment and tuning, but also for output evaluation.
It is also required for data curation and quality-
checking AI- or human-generated simplifications.
Naturally, this metric needs to be psycholinguisti-
cally valid to actually measure processing difficulty
in human comprehenders. None of these specific
requirements has been covered by existing research
in text simplification and complex word identifica-
tion.

1.2 Word Complexity

Word complexity is considered as the perceived dif-
ficulty of a word by language users, and is typically
assessed from the perspective of a target group
with limited language proficiency, consisting of in-
dividuals with cognitive impairments, second lan-
guage learners or children (North et al., 2023). The
text simplification process, geared towards such
target groups, requires the identification of com-
plex words that can then be substituted in the final
simplified text (North et al., 2024).

1.2.1 Word Complexity in NLP
After determining CWI as a stand-alone task in
Shardlow (2013), it has been researched through
various shared tasks that focused on classifying
words or expressions as complex or non-complex,
for example CWI–2016 at SemEval (Paetzold
and Specia, 2016), CWI–2018 at BEA (Yimam
et al., 2018) and ALexS–2020 at SEPLN (Ortiz-
Zambrano and Montejo-Ráez, 2020). Later on,
CWI has been extended with the Lexical Complex-
ity Prediction (LCP) task (e.g. LCP–2021 at Se-
mEval (Shardlow et al., 2021)) which denotes the
complexity of a word or phrase on a continuous
scale rather than assigning a binary "complex" or
"non-complex" label. Both CWI and LCP tasks
have primarily focused on English (in terms of the
dataset size and the frequency of being part of such
tasks), but at times also included French, German,
and Spanish as parallel tasks. German was part
of the CWI-2018 shared task, which involved a bi-
nary classification task (predicting whether a target
word was complex or simple) and a probabilistic
classification task (predicting the probability of a
target word being complex). The best performing
system for German, which was submitted by Ka-
jiwara and Komachi (2018), used a random forest
classifier and regressor, and features such as two
types of word frequency estimates, and the length
of the word or phrase.

So far, the primary resources for German word
complexity analysis–both datasets and models–
have predominantly come from the CWI-2018
shared task. As a result, research specifically tar-
geting German remains limited, which emphasizes
the importance of our current effort.

1.2.2 Word Complexity in Psycholinguistics

A major limitation in current CWI and LCP re-
search is the lack of psycholinguistic validation.
The primary objective of simplification is to facil-
itate readability and comprehension for low lan-
guage proficiency groups (Shardlow, 2014; Al-
Thanyyan and Azmi, 2021). Most CWI and LCP
models are trained and evaluated with annotations
collected from participants who indicated which
words or phrases they found difficult for themselves
or for a specific low language proficiency group.
These annotations are untimed, however, it is key
to evaluate complexity models with real-time com-
prehension data, ideally collected from participants
with low language proficiency.3

In the domain of real-time word recognition, psy-
cholinguists seek to identify the variables that deter-
mine processing effort. A variety of methods can
be used to measure word recognition time, with the
most common being lexical decision, word nam-
ing, and reading eye-tracking (Ferrand et al., 2011;
Kliegl et al., 2010; Kuperman et al., 2013; New
et al., 2006). Of specific relevance for this study is
the lexical decision task, in which participants see
strings of letters and press different keys depending
on whether they think that a string corresponds to a
word in their language or not. Their response times
and accuracy are recorded.

The main properties that affect response times in
word recognition tasks are word length (New et al.,
2006; Barton et al., 2014), word frequency (Brys-
baert et al., 2016, 2018; Kuperman and Van Dyke,
2013; Ferrand et al., 2011; Kliegl et al., 2010), and
the size of a word’s orthographic neighborhood
(Mathey, 2001; Yarkoni et al., 2008; Schröter and
Schroeder, 2017; Chen and Mirman, 2012). While
these factors are often studied individually, a con-
tribution of the CWI word complexity metric pro-
posed here is that it combines them into a single
metric to quantitatively describe word complexity.

3Although, in some cases, real-time lexical comprehension
data are available from psycholinguistic studies with low lan-
guage proficiency groups (e.g. the lexical decision task in
Pappert and Bock, 2020), they are typically smaller in size
than the data required for training CWI or LCP models.
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Recent psycholinguistic work also shows that
properties of speakers (i.e., their language expe-
rience) can affect word recognition (Brysbaert
et al., 2016; Keuleers et al., 2015; Kuperman and
Van Dyke, 2013; Davies et al., 2017). For exam-
ple, it has been shown that corpus-based (objective)
word frequencies are worse at predicting lexical
decision times than subjective ratings, especially
with less skilled readers (Kuperman and Van Dyke,
2013). Similarly, frequency effects differ between
university students with larger vs. smaller vocabu-
laries, as well as between native vs. non-native (sec-
ond language) speakers, which suggests that differ-
ences in language experience affect word recogni-
tion (Keuleers et al., 2015; Cop et al., 2015). Be-
cause of this, it is important to create complexity
measures that are informed by the different types
of text that readers might have access to, including
simplified texts. To do this, the CWI model re-
ported in this article incorporated word frequency
estimates based on an in-house proprietary dataset
of Leichte Sprache, which may better capture the
type of linguistic input available to second lan-
guage learners, as well as individuals with lower
literacy and/or language impairments.

1.2.3 Application: CEFR Level Detection
Psycholinguistic research shows that simplifying
text at different levels of proficiency may help com-
prehension in second language learners (Crossley
et al., 2014; Rets and Rogaten, 2021). This idea
aligns naturally with the Common European Frame-
work of Reference for Languages (CEFR), a widely
accepted standard that categorizes second language
proficiency into six levels (A1–C2). These levels
help instructors design materials and courses, and
institutions/employers to understand candidates’
linguistic proficiency.

Intuitively, the CEFR levels lie between CWI
and LCP, classifying language proficiency into dis-
tinct levels yet maintaining a progressive continuity
of complexity (A1 < A2 < B1 < etc. ). Regarding
Leichte Sprache, we can expect that the vocabulary
range at the initial levels (A1, A2) complies with
its lexical requirements, while the middle levels
(B1, B2) would require more careful assessment,
and vocabulary from the advanced levels (C1, C2)
is likely to be avoided. While complexity can dif-
fer between second language learners and native
speakers, one may expect a considerable overlap
between these two groups (North and Zampieri,
2023). Moreover, Leichte Sprache is also intended

to help second language learners with limited pro-
ficiency (BMAS, 2014).

Despite the wide acceptance of CEFR levels,
the classification of a linguistic unit into a level is
usually done manually based on somewhat vague
guidelines that can lead to inconsistencies. Some
efforts have been made to automatically classify
text as per CEFR levels in many languages (e.g.,
François and Fairon, 2012; Santucci et al., 2020;
Velleman and van der Geest, 2014; Branco et al.,
2014). However, to our knowledge, only a few stud-
ies have been carried out for German (Hancke and
Meurers, 2013; Vajjala and Rama, 2018), which
were mainly targeted towards classifying bigger
segments of text (e.g. essays). This shows the need
of having a word-level classifier for German CEFR
levels.

1.3 Approach and Summary of Contributions
Language complexity can be conceptualized as
both a continuum and a multidimensional con-
struct, spanning various levels of linguistic analysis
(e.g. pragmatic, syntactic, lexical). Correspond-
ingly, the task of language simplification needs to
be approached at different points along this con-
tinuum and across different linguistic levels, de-
pending on the needs of the target audience (Maaß,
2020).

The main objective of this work is to develop
a word complexity metric tailored to the require-
ments of the target groups for Leichte Sprache—
the “Easy Language target groups” as defined
in Maaß (2020), which includes individuals with
dyslexia, cognitive disability, dementia, prelingual
hearing impairment, aphasia, functional illiteracy,
and learners of German as a second language. How-
ever, the development and evaluation of such a tool
is inherently constrained by the availability of rele-
vant resources. In our case, these resources include:
(i) the CWI dataset, annotated considering the tar-
get group involving children, language learners,
and individuals with reading impairments; (ii) the
CEFR wordlists, developed primarily for second
language learners; and (iii) the DeveL dataset, com-
piled using data from young and adult speakers.

Although the metric is constructed using data
from diverse target groups, we propose that its
quantifiable nature helps progress in mapping
word complexity along this complexity continuum.
Given that different target groups have distinct
complexity requirements, this metric holds poten-
tial for broader applicability—not only for Leichte
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Sprache, but also for other simplified language
contexts. This perspective aligns with the “chest
of drawers” approach proposed by Maaß (2020),
which advocates for differentiated simplification
strategies tailored to specific audiences.

The contributions of our article are as follows.
First, we train a novel word complexity classifier
for German and evaluate it in comparison with ear-
lier work reported in Yimam et al. (2018). Second,
since we are interested in CWI in the context of
Leichte Sprache, we extend traditionally used CWI
features using information derived from Leichte
Sprache data to better account for the specific needs
of our target group. Third, we demonstrate the
psycholinguistic validity of the model. Fourth, by
integrating various features into the model, we ef-
fectively produce a unified psycholinguistic mea-
sure of word complexity. Finally, we show that the
model can be extended to detect CEFR levels of
words.

2 CWI Model

Quantifying word complexity is not a straightfor-
ward task. Lexical complexity is subjective and it
also depends on the context. For the task of CWI
we make the simplifying assumptions that a word
has a fixed complexity level and that it can be clas-
sified as either complex or non-complex.

2.1 Dataset

We used the CWI-2018 dataset, which was released
for the second CWI shared task organized as part
of the BEA 2018 workshop (Yimam et al., 2018).
The dataset consists of offline responses where par-
ticipants rated single- and multi-word expressions
(MWE) on complexity. Participants were shown
5–10 sentences and asked to annotate words or
phrases that could pose difficulty in understanding
them for a given target reader such as children, lan-
guage learners or people with reading impairments.
The entire dataset consists of English, German,
Spanish and French, but we used only the Ger-
man part. The German dataset was annotated by
a mixture of native and non-native speakers (n=23
out of which 12 were native speakers). This led
to 7,905 words and MWEs (6,151 training, 795
development and 959 testing instances).

2.2 (Re-)Define Complex Word Label

In the CWI-2018 task a word or MWE was con-
sidered complex if at least one of the annotators

annotated it as complex. We deem this definition
overly simplistic because: (i) an instance could
get classified as complex simply because one of
the annotators by mistake labeled it complex—it
has been observed that CWI can have low inter-
annotator agreement (Zampieri et al., 2017); (ii)
many proper names such as ‘Wikipedia’, ‘UNICEF’
and ‘Hannover’ (a city in Germany) were rated as
complex.

We followed the following procedure to define
which words are complex and which are not.

(a) Complexity Threshold: We combined all occur-
rences of a word and calculated the complexity
proportion of the word as the ratio of the number
of times it was rated as complex to the number of
times it received a rating. We defined a threshold
for complexity proportion to consider the word as
complex or not; for this we again made use of the
information in our Leichte Sprache dataset.4 All
words with a complexity proportion value above
or equal to the threshold were labeled as complex,
and below as non-complex.

(b) Annotation correction: We experimented with
the classification process with an earlier version
of the CWI classifier that used heuristics and only
a subset of the final features. In the output of the
heuristics-based classifier we found that some
misclassified instances could have been labeled
incorrectly in the dataset. We manually corrected
those labels for further use of the dataset. In total
927 labels were manually corrected.

(c) Proper names are non-complex: Although, in
theory, some proper names can be more complex
than others because of their familiarity, pronuncia-
tion or cross-linguistic complexity —e.g. ‘Berlin’
vs. ‘Thiruvananthapuram’, the capital of the Indian
state of Kerala—, we limited the scope of the
model to classifying word classes that were not

4For determining the threshold we used the Leichte Sprache
training dataset which consists of input text in standard Ger-
man and output text in Leichte Sprache. For the CWI-2018
dataset we created two classes of words: words that occur in
the target texts (the negative class) and words that occur only
in the input texts (the positive class). Using the entire range
of the difficulty proportion values as the threshold and the
binary class labels as the ground truth we computed the True
Positive Rate (TPR) and False Positive Rate (FPR) for the pos-
itive class. This was done by using the roc_curve() function
from the scikit-learn library (Pedregosa et al., 2018). We
chose the optimal threshold to be the one that maximized the
difference between the TPR and FPR.
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proper names, and we assumed that all proper
names are non-complex even if some participants
rated them as complex.

(d) A1-level words are non-complex: We referred
to two wordlists for second language learners
of German at the CEFR A1-level. The first
wordlist is published by the Goethe-Institut, a
globally recognized cultural institute of the Federal
Republic of Germany that offers German language
courses, and administers German language exams.
The second wordlist is published by telc GmbH,
an organization known for its language proficiency
exams.5 We defined all words from the dataset that
occur in the wordlists to be non-complex even if
some participants rated them as complex.

(e) Drop MWEs: Since our goal was to capture
word-level complexity using lexical and sub-lexical
features, we dropped all MWEs.

2.3 Feature Selection & Engineering
For each word we used the following features.

(a) POS: Part-of-Speech tag returned by the spaCy
library employing the medium-sized German
language model de_core_news_md (Honnibal
et al., 2020). We used the Universal POS, a tagset
consistent across languages.

(b) freq_word: Word frequency estimate returned
by the wordfreq library (Speer, 2022).

(c) freq_lemma_word: The lemma frequency of
the word. For calculating the lemma frequency,
we first calculated the lemma of each word using
two libraries, spaCy and Stanza (Qi et al., 2020).
Based on the POS of the word we picked the
best lemma from the two lemmas: spaCy lemma
for nominal and punctuations (NOUN, PRON,
PROPN, NUM and PUNCT) and Stanza lemma
for the rest (in an experiments for testing the
lemmatization accuracy of spaCy and Stanza,
we found that this strategy lead to more accurate
final lemmas). To calculate the frequency of
the best lemma, we first lemmatized all words
from the wordfreq library and added the word
5The lists are available at https://www.goethe.de/
pro/relaunch/prf/de/A1_SD1_Wortliste_02.pdf
from the Goethe-Institut and https://www.telc.
net/fileadmin/user_upload/Downloads_Verlag/
Einfach_gut/Wortschatzlisten/Einfach_gut_A1_
Wortschatzliste_alphabetisch.pdf from telc GmbH.

frequency values for the same lemma entry. We
considered these cumulative frequency values to
be the frequency estimates of the best lemma.

(d) length: Word length in terms of the number of
characters.

(e) freq_LS_target: The frequency of the word
in the entire target part of the Leichte Sprache
training dataset. The rationale behind adding these
frequencies was that the more often a word occurs
in the target translation for Leichte Sprache, the
more likely it is to be a non-complex word.

(f) freq_proportion_LS: The proportion of source
to target text frequency of the word in the Leichte
Sprache training dataset. The rationale behind
adding this proportion was that if a word occurs
very frequently in the source text but very rarely in
the target text, it is probably because it is complex.

(g) is_in_LS_source: A binary value denoting if
the word occurs in the source text of the Leichte
Sprache training dataset.

(h) is_in_a1_wordlist: A binary value denoting
if the word occurs in A1 wordlists release by the
Goethe-Institute and telc GmbH.

2.4 Training & Evaluation
We combined all three splits—training, develop-
ment and testing—from the CWI-2018 dataset. Af-
ter applying the data cleaning procedure described
above (see 2.2), we were left with 4,892 unique
instances (2,316 complex and 2,576 non-complex).
We split this dataset into training (80%) and test
(20%) sets. Our dataset included a single categori-
cal variable (POS) and multiple continuous features.
To ensure consistent handling of the categorical fea-
ture, we identified all possible POS values across the
entire dataset and used that set for one-hot encoding
in subsequent experiments. Following the results
from Hartmann and dos Santos (2018), who found
that a feature-engineered XGBoost model outper-
formed multiple neural network architectures in the
CWI domain, we used the XGBClassifier in bi-
nary classification mode (Chen and Guestrin, 2016).
We carried out five-fold cross-validation to discover
an optimal set of hyperparameters. The search drew
5,000 random samples from a predefined distribu-
tions of these hyperparameters (see Table A1.1 in
Appendix B).
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Upon completion of cross-validation, the best hy-
perparameters were automatically selected accord-
ing to the highest macro-averaged F1 score. The
best model that emerged from the cross-validation
process had an F1 score of 0.85 on the held-out
test set. For an informal comparison, our classi-
fier performed much better than the best system at
CWI-2018 shared task for German, which had an
F1 score of 0.75 (Yimam et al., 2018). Since we
used a different split of the dataset for testing and
adjusted the definition of labels, the performance
of our classifier cannot be compared directly with
the ones from the CWI-2018 task; nevertheless, it
offers an approximate indication of the classifier’s
performance.

To leverage all available data, we refitted the
best model from the cross-validation process on
the entire dataset. This model was then used as
the final model for further analysis, validation and
applications of the classifier.

3 CWI Model: Validation & Applications

3.1 Lexical Complexity Prediction Using The
CWI Model

An XGBClassifier, after being trained on the
dataset, can also generate probability estimates of
a data point being of a given class; in our case the
probability of a word being “complex” or “non-
complex” based on its features. We assume that the
predicted probability of a word being “complex” is
a proxy of the complexity of the word (0 denotes
minimal complexity and 1 corresponds to maximal
complexity). We use these word complexity val-
ues for further evaluation and applications of the
model.

3.2 Psycholinguistic Validation

To provide a psycholinguistic validation of the com-
plexity estimates generated by the CWI model,
we re-analyzed a dataset of 1152 German nouns
from the Developmental Lexicon Project (DeveL,
Schröter and Schroeder, 2017). The DeveL dataset
was created by a large scale developmental study
conducted with 800 children from school grades
1–6, as well as 43 younger (20–30 years) and 41
older adults (65–75 years). We focused on the
adults, because some predictors in our analysis
(word frequency and orthographic neighborhood
size) were specific to adult populations—a sup-
plementary analysis with the child group can be
found in Appendix C. Because all adults were na-

tive German speakers with no history of reading or
language impairment, they can’t be classified as a
primary target group for Leichte Sprache. However,
given the absence of an equivalent dataset with
Leichte Sprache users, our analysis provides a first
step to validating word simplification methods—
which should be further validated with psycholin-
guistic datasets from other populations once they
become available.

All groups completed a lexical decision task and
a naming task. We analyzed the noun recognition
times from the lexical decision task. The DeveL
dataset provides the recognition time estimated for
each noun in each speaker group. We predicted
that nouns with higher CWI complexity should
increase processing difficulty and therefore elicit
longer recognition times.

As expected, more complex nouns showed
longer recognition times (Figure 1). Next, we
sought to identify the effect of CWI complexity
above and beyond the linguistic variables previ-
ously shown to predict recognition times in the
DeveL dataset by Schröter and Schroeder (2017).
For this purpose, we ran a mixed-effects linear re-
gression model with CWI complexity as a predictor
together with the following variables: noun length,
trigram frequency, noun type frequency, and or-
thographic neighborhood size.6 Note that with the
exception of trigram frequency and orthographic
neighborhood size, the other variables were used
for training the CWI model. Thus, the estimated
effect of word complexity in the statistical model
incorporating these variables as covariates should
reflect the unique contribution of CWI complexity
in explaining recognition times, i.e., the contribu-
tion of complexity in explaining variance in the
data that is not shared with the other variables.

With the exception of CWI complexity, all
other variables were taken from the DeveL dataset
(Schröter and Schroeder, 2017). Specifically, noun
length was operationalized as the number of let-
ters in each noun. Trigram frequency was based
on the childLex corpus (version 0.16, December
2015, see Schroeder et al., 2015) and it was the
sum of the frequencies of a sequence of three let-

6Following Schröter and Schroeder (2017), we initially in-
cluded two different frequency estimators: noun type (or form)
frequency and noun lemma frequency. However, type and
lemma frequency were highly correlated (i.e., above 0.93) and
caused high collinearity in the statistical model, as evidenced
by variance inflation factors above 10 (James et al., 2013). To
address this problem, only noun type frequency was kept in
the final model—reported in Table 1.
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Figure 1: Relationship between CWI complexity and
recognition time for the 1152 German nouns in the
DeveL dataset (Schröter and Schroeder, 2017). Lines
show the effect of word complexity estimated without
any covariates in a linear regression model with log-
transformed word recognition time as the dependent
variable. Ribbons show 95% confidence intervals. Dots
correspond to the mean recognition time of each noun
in the younger and older adults.

ters within a noun, treating the word beginning
and end as separate letters. Noun type (or form)
frequency was the number of occurrences of a dis-
tinct noun form per million tokens in the DWDS
corpus (Digitales Wörterbuch Deutscher Sprache,
version 0.4, January 2014; see Geyken, 2007). The
orthographic neighborhood size was estimated us-
ing the mean Levenshtein Distance from a noun to
its 20 closest orthographic neighbors in the DWDS
corpus—with this distance being a function of the
minimum number of changes, i.e. substitutions, ad-
ditions and deletions, that are required to turn one
word into another (Yarkoni et al., 2008; Schröter
and Schroeder, 2017).

All variables mentioned above, together with
CWI complexity, were entered in the statistical
model as fixed effects nested under the categori-
cal predictor "group" (younger/older adults). This
allowed estimating the effect of each variable in
the young and old groups separately. Continuous
variables were centered. Following Schröter and
Schroeder (2017), noun recognition times were
log-transformed to account for the right skew of
response time distributions. The model included a
random intercept by noun, because each noun was

seen by both the younger and older group. The
data was analyzed using the package lme4 (v.1.1-
36; Bates et al., 2015) in R (version 4.5.0, R Core
Team, 2025).

The results of the statistical model showed the
expected effects of noun length, frequency, and
orthographic neighborhood on recognition times
(Table 1). Crucially, the effect of CWI complexity
was significant after adjusting for these variables:
recognition time increased with increasing com-
plexity in both the younger and older adult groups.
These results demonstrate that the CWI complex-
ity measure predicted noun recognition difficulties,
and that it continued to do so after being adjusted
for the effects of frequency, length, and neighbor-
hood size reported in previous research (Schröter
and Schroeder, 2017).

3.3 Word Complexity for CEFR Level
Detection

In order to address the lack of a German CEFR
classifier capable of assigning words to specific
levels, we tested the CWI model on this task. The
goal was to use the word complexity values to
determine the threshold between different CEFR
levels. We assume that a word’s CEFR level is
determined by its complexity value—words from
lower CEFR levels should have lower complexity
values and complexity values should progressively
increase from level A1 (lowest level) to level C2
(highest level). Note that the CEFR framework
defines nested levels, meaning that all A1 words
are a subset of A2, which in turn is a subset of
B1, and so forth. Considering this nested structure,
we defined the classification task as follows: for a
given word the classifier has to predict the lowest
possible CEFR level that can be assigned to it. This
effectively amounts to first finding out the optimum
thresholds for the complexity value that separates
the adjacent levels, and then comparing the com-
plexity of a word with the thresholds to determine
its level.

To perform this task, we used data from various
word lists freely available online that correspond
to CEFR levels A1 through C1. Because CEFR
levels are nested and also because there are only
vague guidelines for defining the levels, these lists
initially contained overlapping words. Next, we
transformed the lists into mutually exclusive sets
by iteratively removing words already assigned to
a lower level: first, all words appearing in A1 were
removed from the A2 list, then all A2 words were
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Estimate Std. Error t-value p-value
Intercept (younger adults) 6.349 0.001 4723.517 0.000*

Older adults 0.173 0.001 124.187 0.000*
Length: younger adults 0.005 0.001 3.306 0.001*

Length: older adults 0.003 0.001 2.377 0.018*
Trigram frequency: younger adults 0.000 0.000 4.362 0.000*

Trigram frequency: older adults 0.000 0.000 3.945 0.000*
Type frequency: younger adults –0.013 0.001 –11.768 0.000*

Type frequency: older adults –0.010 0.001 –9.448 0.000*
Orthographic neighborhood size: younger adults 0.011 0.007 1.656 0.098

Orthographic neighborhood size: older adults 0.023 0.007 3.458 0.001*
CWI complexity: younger adults 0.036 0.005 6.891 0.000*

CWI complexity: older adults 0.020 0.005 3.763 0.000*

Table 1: Output of the statistical model with CWI word complexity as a predictor, together with noun length,
trigram frequency, noun type frequency, and orthographic neighborhood size. R model structure: lmer(log(Noun
recognition time) ~ Group / (Length + Trigram frequency + Type frequency + Orthographic
neighborhood size + CWI complexity) + (1 | Noun)). Effects significant at the alpha .05 level are
marked with asterisks. Further details of the model: AIC = −7781, BIC = −7701, Log Likelihood = 3905,
Number of observations = 2304, Number of groups:Noun = 1152, Variance:Noun (Intercept) = 0.000,
Variance:Residual = 0.000.

removed from B1, and so on. We did not prepare
any list for the C2 level since C2 is essentially the
entire lexicon of German; furthermore, we assume
that words that are above the B2 level are anyway
too difficult for the target group, hence it is suf-
ficient to identify C1–C2 words as being above
B2 level. This procedure yielded five distinct lists,
each capturing the lowest possible CEFR level for
the words in it. From these lists, we extracted a
held-out test set of 200 words per level and used
the remaining items for training.

An examination of these five wordlists revealed
that the A2- and B1-level words share closely re-
lated lexical and distributional properties, making
it difficult to identify a precise boundary between
them. Consequently, we merged A2 and B1 into
a single level, thereby reducing the classification
task to identifying three thresholds: (1) A1 vs. A2-
B1, (2) A2-B1 vs. B2, and (3) B2 vs. C1. We
followed the following procedure for determining
each threshold: (i) create a balanced set of words
from the train split that belonged to all levels, but
more for the two adjacent levels on either side of
the threshold, (ii) assign them binary class labels
based on the side of the threshold they are expected
to belong to, (iii) compute the F1 scores of both
classes for a range of complexity values as the
threshold and the binary class labels as the ground
truth, and finally, (iv) select the complexity value
that optimizes the performance for the two classes

CEFR levels F1 score (train) F1 score (test)
A1

0.78
0.69

A2–B1 0.9
A2–B1

0.68
0.79

B2 0.71
B2

0.56
0.81

C1 0.45

Table 2: Performance of the classification procedure on
determining the word complexity thresholds between
different CEFR levels. The F1 score (train) is the same
for both classes in each group since it is the optimum
complexity threshold selected for the two classes.

(the point where two F1 scores intersect). We eval-
uated the performance of these thresholds on the
held-out test set.

All F1 scores are listed in Table 2. Based on the
F1 scores, the thresholds distinguishing A1 from
A2–B1 and A2–B1 from B2 perform well; however,
further refinement is needed to improve discrim-
ination between words at the B2 and C1 levels.
Overall, these findings indicate that CEFR level
classification using word complexity scores effec-
tively identifies words at the A1, A2–B1, and B2
levels, and further show promising potential for
distinguishing C1-level words from those at the B2
level.
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4 General Discussion

We present a German word complexity classifier
and evaluate its performance using existing re-
sources. Given our focus on Leichte Sprache
(“Easy German”), a strongly simplified version of
German for the Easy Language target groups, we
complement the standard feature sets for complex-
ity prediction with additional features derived from
Leichte Sprache datasets. Our results confirm the
psycholinguistic validity of the resulting model,
and illustrate how the model improves downstream
tasks such as text simplification and CEFR-level
identification.

Although official guidelines for Leichte Sprache
do not quantitatively define complexity, making
texts accessible critically requires quantitative
methods to identify complex words. Our model
meets this need by offering a measure of word com-
plexity, validated through word recognition mea-
sures in humans, demonstrating its direct impact on
readability and comprehensibility. Crucially, once
complex words are identified, they can be simpli-
fied, which supports both automated text simplifi-
cation tools and human Leichte Sprache translators
in tailoring content for less proficient readers. Ex-
tending the classifier to map words onto CEFR
levels provides additional practical benefits for sec-
ond language learners of varying proficiency. By
aligning text to an appropriate CEFR level, authors
and educators can ensure more accessible reading
material that is optimally matched to the intended
audience.

Limitations

Although the word complexity metric can generate
complexity values for all word classes, our psy-
cholinguistic evaluation was restricted to nouns, as
the DeveL dataset only contains nouns. It would
be informative to extend the evaluation to other
word classes, but we are not aware of a dataset with
properties comparable to those of DeveL. Further-
more, although our findings suggest that reduced
lexical complexity can facilitate reading, this ef-
fect is yet to be validated with Leichte Sprache
users.7 Again, the absence of suitable datasets
currently prevents a direct assessment of whether
our results extend to the primary target group of
7See Schiffl (2022) who investigated the effects of individ-
ual word-level features, such as word length and frequency,
comparing a target group of participants with cognitive im-
pairments to a control group. Their study did not find any
significant effects for these individual factors.

Leichte Sprache. Finally, our proposed CEFR clas-
sification approach requires additional refinements,
particularly for identifying words beyond the B2
level. We see clear potential for improvement,
especially by integrating different computational
methodologies—such as neural network architec-
tures and word embeddings—and by using larger
and/or cleaner datasets.

Data and Code Availability

All non-proprietary data and code used
in this paper are publicly available at:
https://github.com/text2knowledge/
word-complexity-leichtesprache.

Acknowledgments

The work leading to this paper was partially funded
by the Federal German Ministry for Labour and
Social Affairs through the Civic Innovation Plat-
form8 and through the MuvAko project,9 financed
by the Sächsische Aufbaubank. We are grateful to
our colleague Felix Dittrich for providing technical
help and insightful discussion during the develop-
ment of this work, and also to Johann Seltmann and
Tobias Wittig for their contributions to the data col-
lection and curation process. We thank the anony-
mous reviewers for their insightful comments and
constructive feedback, which helped improve the
quality of this work.

References
2019. Directive (eu) 2019/882 of the european parlia-

ment and of the council on the accessibility require-
ments for products and services (european acces-
sibility act). https://eur-lex.europa.eu/eli/
dir/2019/882/oj. Official Journal of the European
Union, L 151, 7.6.2019, pp. 70–115. Accessed: 2025-
03-13.

Suha S. Al-Thanyyan and Aqil M. Azmi. 2021. Auto-
mated text simplification: A survey. ACM Comput.
Surv., 54(2).

Jason J. S. Barton, Hashim M. Hanif, Laura Eklin-
der Björnström, and Charlotte Hills. 2014. The word-
length effect in reading: A review. Cognitive Neu-
ropsychology, 31(5-6):378–412.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting Linear Mixed-Effects Models
Using lme4. Journal of Statistical Software, 67:1–48.

8https://www.knowledgegraph.de/.
9https://xr-interaction.com/projects-muvako/.

102

https://github.com/text2knowledge/word-complexity-leichtesprache
https://github.com/text2knowledge/word-complexity-leichtesprache
https://eur-lex.europa.eu/eli/dir/2019/882/oj
https://eur-lex.europa.eu/eli/dir/2019/882/oj
https://doi.org/10.1145/3442695
https://doi.org/10.1145/3442695
https://doi.org/10.1080/02643294.2014.895314
https://doi.org/10.1080/02643294.2014.895314
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://www.knowledgegraph.de/
https://xr-interaction.com/projects-muvako/


BMAS. 2014. Leichte Sprache – Ein Ratgeber. https:
//www.bmas.de/DE/Service/Publikationen/
Broschueren/a752-leichte-sprache-ratgeber.
html. Accessed: 2025-03-14.

Bettina M. Bock and Sandra Pappert. 2023. Leichte
Sprache, Einfache Sprache, verständliche Sprache.
Narr, Tübingen.

António Branco, Joao Rodrigues, Francisco Costa, Joao
Silva, and Rui Vaz. 2014. Rolling out text catego-
rization for language learning assessment supported
by language technology. In Computational Process-
ing of the Portuguese Language: 11th International
Conference, PROPOR 2014, São Carlos/SP, Brazil,
October 6-8, 2014. Proceedings 11, pages 256–261.
Springer.

U. Bredel and C. Maaß. 2016. Leichte Sprache: The-
oretische Grundlagen ?Orientierung für die Praxis.
Duden - Ratgeber. Duden.

Marc Brysbaert, Paweł Mandera, and Emmanuel
Keuleers. 2018. The Word Frequency Effect in Word
Processing: An Updated Review. Current Directions
in Psychological Science, 27(1):45–50. Publisher:
SAGE Publications Inc.

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and
Emmanuel Keuleers. 2016. The impact of word
prevalence on lexical decision times: Evidence from
the Dutch Lexicon Project 2. Journal of Experimen-
tal Psychology: Human Perception and Performance,
42(3):441–458. Place: US Publisher: American Psy-
chological Association.

Qi Chen and Daniel Mirman. 2012. Competition and
cooperation among similar representations: Toward a
unified account of facilitative and inhibitory effects of
lexical neighbors. Psychological Review, 119(2):417–
430. Place: US Publisher: American Psychological
Association.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794, New York, NY, USA. ACM.

Uschi Cop, Emmanuel Keuleers, Denis Drieghe, and
Wouter Duyck. 2015. Frequency effects in mono-
lingual and bilingual natural reading. Psychonomic
Bulletin & Review, 22(5):1216–1234.

Scott A. Crossley, H.S. Yang, and Danielle McNamara.
2014. What’s so simple about simplified texts? a
computational and psycholinguistic investigation of
text comprehension and text processing. Reading in
a Foreign Language, 26:92–113.

Rob A. I. Davies, Ruth Arnell, Julia M. H. Birchenough,
Debbie Grimmond, and Sam Houlson. 2017. Read-
ing through the life span: Individual differences
in psycholinguistic effects. Journal of Experimen-
tal Psychology. Learning, Memory, and Cognition,
43(8):1298–1338.

Deutsches Institut für Normung (DIN). 2025. DIN
SPEC 33429:2025-03 – Empfehlungen für Deutsche
Leichte Sprache. Technische Regel [NEU], PAS-
Verfahren. 60 pages. Original language: German. Ac-
cessible PDF available. English title: Guidance for
German Easy Language.

Ludovic Ferrand, Marc Brysbaert, Emmanuel Keuleers,
Boris New, Patrick Bonin, Alain Méot, Maria Au-
gustinova, and Christophe Pallier. 2011. Comparing
Word Processing Times in Naming, Lexical Deci-
sion, and Progressive Demasking: Evidence from
Chronolex. Frontiers in Psychology, 2. Publisher:
Frontiers.

Thomas François and Cédrick Fairon. 2012. An “AI
readability” formula for french as a foreign language.
In Proceedings of the 2012 joint conference on em-
pirical methods in Natural Language Processing and
computational natural language learning, pages 466–
477.

Alexander Geyken. 2007. The DWDS Corpus: A ref-
erence corpus for the German language of the 20th
century. In C. Fellbaum, editor, Idioms and collo-
cations: Corpus-based linguistics and lexicographic
studies, pages 23–41. Continuum, New York, NY.

Julia Hancke and Detmar Meurers. 2013. Exploring
cefr classification for german based on rich linguistic
modeling. Learner Corpus Research, pages 54–56.

S. Hansen-Schirra, W. Bisang, A. Nagels, S. Guter-
muth, J. Fuchs, L. Borghardt, S. Deilen, A.-K. Gros,
L. Schiffl, and J. Sommer. 2020. Intralingual transla-
tion into easy language – or how to reduce cognitive
processing costs. In S. Hansen-Schirra and C. Maaß,
editors, Easy Language Research: Text and User Per-
spectives, pages 197–225. Frank & Timme, Berlin.

Nathan Hartmann and Leandro Borges dos Santos. 2018.
NILC at CWI 2018: Exploring feature engineering
and feature learning. In Proceedings of the Thir-
teenth Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 335–340, New
Orleans, Louisiana. Association for Computational
Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Gareth James, Daniela Witten, Trevor Hastie, and
Robert Tibshirani. 2013. An Introduction to Statisti-
cal Learning: with Applications in R, second edition.
Springer Texts in Statistics. Springer.

Tomoyuki Kajiwara and Mamoru Komachi. 2018. Com-
plex word identification based on frequency in a
learner corpus. In Proceedings of the Thirteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 195–199, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

103

https://www.bmas.de/DE/Service/Publikationen/Broschueren/a752-leichte-sprache-ratgeber.html
https://www.bmas.de/DE/Service/Publikationen/Broschueren/a752-leichte-sprache-ratgeber.html
https://www.bmas.de/DE/Service/Publikationen/Broschueren/a752-leichte-sprache-ratgeber.html
https://www.bmas.de/DE/Service/Publikationen/Broschueren/a752-leichte-sprache-ratgeber.html
https://books.google.de/books?id=RD4pDAAAQBAJ
https://books.google.de/books?id=RD4pDAAAQBAJ
https://doi.org/10.1177/0963721417727521
https://doi.org/10.1177/0963721417727521
https://doi.org/10.1037/xhp0000159
https://doi.org/10.1037/xhp0000159
https://doi.org/10.1037/xhp0000159
https://doi.org/10.1037/a0027175
https://doi.org/10.1037/a0027175
https://doi.org/10.1037/a0027175
https://doi.org/10.1037/a0027175
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3758/s13423-015-0819-2
https://doi.org/10.3758/s13423-015-0819-2
https://doi.org/10.1037/xlm0000366
https://doi.org/10.1037/xlm0000366
https://doi.org/10.1037/xlm0000366
https://doi.org/10.3389/fpsyg.2011.00306
https://doi.org/10.3389/fpsyg.2011.00306
https://doi.org/10.3389/fpsyg.2011.00306
https://doi.org/10.3389/fpsyg.2011.00306
https://doi.org/10.18653/v1/W18-0540
https://doi.org/10.18653/v1/W18-0540
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/W18-0521
https://doi.org/10.18653/v1/W18-0521
https://doi.org/10.18653/v1/W18-0521


Emmanuel Keuleers, Michaël Stevens, Paweł Mandera,
and Marc Brysbaert. 2015. Word knowledge in the
crowd: Measuring vocabulary size and word preva-
lence in a massive online experiment. Quarterly Jour-
nal of Experimental Psychology, 68(8):1665–1692.

Reinhold Kliegl, Michael E. J. Masson, and Eike M.
Richter. 2010. A linear mixed model analysis
of masked repetition priming. Visual Cognition,
18(5):655–681.

Victor Kuperman, Denis Drieghe, Emmanuel Keuleers,
and Marc Brysbaert. 2013. How strongly do word
reading times and lexical decision times correlate?
Combining data from eye movement corpora and
megastudies. Quarterly Journal of Experimental Psy-
chology, 66(3):563–580. Publisher: SAGE Publica-
tions.

Victor Kuperman and Julie A. Van Dyke. 2013. Re-
assessing word frequency as a determinant of word
recognition for skilled and unskilled readers. Journal
of Experimental Psychology: Human Perception and
Performance, 39(3):802–823. Place: US Publisher:
American Psychological Association.

Christiane Maaß. 2020. Easy Language – Plain Lan-
guage – Easy Language Plus. Frank & Timme,
Berlin.

Christiane Maaß, Isabel Rink, and Silvia Hansen-
Schirra. 2021. Easy language in germany. In
Ulla Vanhatalo Camilla Lindholm, editor, Handbook
of Easy Languages in Europe, pages 191–218. Frank
& Timme, Berlin.

S. Mathey. 2001. The influence of visualization of or-
thography on the recognition of written words. Cana-
dian Journal of Experimental Psychology = Revue
Canadienne De Psychologie Experimentale, 55(1):1–
23.

Boris New, Ludovic ferrand, Christophe pallier, and
Marc brysbaert. 2006. Reexamining the word length
effect in visual word recognition: New evidence from
the English Lexicon Project. Psychonomic Bulletin
& Review, 13(1):45–52.

Kai North, Tharindu Ranasinghe, Matthew Shardlow,
and Marcos Zampieri. 2024. MultiLS: An end-to-
end lexical simplification framework. In Proceedings
of the Third Workshop on Text Simplification, Acces-
sibility and Readability (TSAR 2024), pages 1–11,
Miami, Florida, USA. Association for Computational
Linguistics.

Kai North and Marcos Zampieri. 2023. Features of
lexical complexity: insights from l1 and l2 speakers.
Frontiers in Artificial Intelligence, 6.

Kai North, Marcos Zampieri, and Matthew Shardlow.
2023. Lexical complexity prediction: An overview.
ACM Comput. Surv., 55(9).

Jenny A. Ortiz-Zambrano and Arturo Montejo-Ráez.
2020. Overview of ALexS 2020: First Workshop
on Lexical Analysis at SEPLN. In Proceedings of
ALexS 2020: First Workshop on Lexical Analysis at
SEPLN, volume 2664 of CEUR Workshop Proceed-
ings. CEUR-WS.org.

Gustavo Paetzold and Lucia Specia. 2016. SemEval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569,
San Diego, California. Association for Computa-
tional Linguistics.

Sandra Pappert and Bettina M. Bock. 2020. Easy-to-
read german put to the test: Do adults with intellec-
tual disability or functional illiteracy benefit from
compound segmentation? Reading and Writing,
33(5):1105–1131.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Andreas Müller, Joel Nothman,
Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2018. Scikit-learn: Ma-
chine learning in Python. Preprint, arXiv:1201.0490.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. Preprint, arXiv:2003.07082.

Irina Rets and Jekaterina Rogaten. 2021. To simplify
or not? facilitating english l2 users’ comprehension
and processing of open educational resources in en-
glish using text simplification. Journal of Computer
Assisted Learning, 37(3):705–717.

Valentino Santucci, Filippo Santarelli, Luciana Forti,
and Stefania Spina. 2020. Automatic classification
of text complexity. Applied Sciences, 10(20):7285.

Laura Schiffl. 2022. Lexikalische Komplexität in der
Leichten Sprache: Effekte von Länge, Frequenz und
Wiederholung auf die visuelle Wortverarbeitung einer
heterogenen Zielgruppe. PhD dissertation, Johannes
Gutenberg-Universität Mainz, Mainz.

Sascha Schroeder, Kay-Michael Würzner, Julian Heis-
ter, Alexander Geyken, and Reinhold Kliegl. 2015.
childLex—Eine lexikalische Datenbank zur Schrift-
sprache für Kinder im Deutschen. [childLex—A Lex-
ical Database for Print Language for Children in Ger-
man.]. Psychologische Rundschau, 66(3):155–165.
Place: Germany Publisher: Hogrefe Verlag GmbH &
Co. KG.

Pauline Schröter and Sascha Schroeder. 2017. The De-
velopmental Lexicon Project: A behavioral database
to investigate visual word recognition across the lifes-
pan. Behavior Research Methods, 49(6):2183–2203.

104

https://doi.org/10.1080/17470218.2015.1022560
https://doi.org/10.1080/17470218.2015.1022560
https://doi.org/10.1080/17470218.2015.1022560
https://doi.org/10.1080/13506280902986058
https://doi.org/10.1080/13506280902986058
https://doi.org/10.1080/17470218.2012.658820
https://doi.org/10.1080/17470218.2012.658820
https://doi.org/10.1080/17470218.2012.658820
https://doi.org/10.1080/17470218.2012.658820
https://doi.org/10.1037/a0030859
https://doi.org/10.1037/a0030859
https://doi.org/10.1037/a0030859
https://doi.org/10.3758/BF03193811
https://doi.org/10.3758/BF03193811
https://doi.org/10.3758/BF03193811
https://doi.org/10.18653/v1/2024.tsar-1.1
https://doi.org/10.18653/v1/2024.tsar-1.1
https://doi.org/10.3389/frai.2023.1236963
https://doi.org/10.3389/frai.2023.1236963
https://doi.org/10.1145/3557885
http://ceur-ws.org/Vol-2664/alexs_overview.pdf
http://ceur-ws.org/Vol-2664/alexs_overview.pdf
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.1007/s11145-019-09995-y
https://doi.org/10.1007/s11145-019-09995-y
https://doi.org/10.1007/s11145-019-09995-y
https://doi.org/10.1007/s11145-019-09995-y
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/2003.07082
https://arxiv.org/abs/2003.07082
https://arxiv.org/abs/2003.07082
https://doi.org/10.1111/jcal.12517
https://doi.org/10.1111/jcal.12517
https://doi.org/10.1111/jcal.12517
https://doi.org/10.1111/jcal.12517
https://doi.org/10.1026/0033-3042/a000275
https://doi.org/10.1026/0033-3042/a000275
https://doi.org/10.1026/0033-3042/a000275
https://doi.org/10.1026/0033-3042/a000275
https://doi.org/10.3758/s13428-016-0851-9
https://doi.org/10.3758/s13428-016-0851-9
https://doi.org/10.3758/s13428-016-0851-9
https://doi.org/10.3758/s13428-016-0851-9


Matthew Shardlow. 2013. A comparison of techniques
to automatically identify complex words. In 51st
Annual Meeting of the Association for Computa-
tional Linguistics Proceedings of the Student Re-
search Workshop, pages 103–109, Sofia, Bulgaria.
Association for Computational Linguistics.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications(IJACSA), Spe-
cial Issue on Natural Language Processing 2014,
4(1).

Matthew Shardlow, Richard Evans, Gustavo Henrique
Paetzold, and Marcos Zampieri. 2021. SemEval-
2021 task 1: Lexical complexity prediction. In Pro-
ceedings of the 15th International Workshop on Se-
mantic Evaluation (SemEval-2021), pages 1–16, On-
line. Association for Computational Linguistics.

Robyn Speer. 2022. rspeer/wordfreq: v3.0.

R Development Core Team. 2025. R: A Language and
Environment for Statistical Computing.

Sowmya Vajjala and Taraka Rama. 2018. Experiments
with universal CEFR classification. In Proceedings
of the Thirteenth Workshop on Innovative Use of
NLP for Building Educational Applications, pages
147–153, New Orleans, Louisiana. Association for
Computational Linguistics.

Eric Velleman and Thea van der Geest. 2014. Online
test tool to determine the cefr reading comprehension
level of text. Procedia computer science, 27:350–
358.

Tal Yarkoni, David Balota, and Melvin Yap. 2008. Mov-
ing beyond Coltheart’s N: A new measure of ortho-
graphic similarity. Psychonomic Bulletin & Review,
15(5):971–979.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi,
Gustavo Paetzold, Lucia Specia, Sanja Štajner, Anaïs
Tack, and Marcos Zampieri. 2018. A report on the
complex word identification shared task 2018. In Pro-
ceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 66–78, New Orleans, Louisiana. Association
for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Gustavo Paetzold,
and Lucia Specia. 2017. Complex word identifica-
tion: Challenges in data annotation and system per-
formance. In Proceedings of the 4th Workshop on
Natural Language Processing Techniques for Educa-
tional Applications (NLPTEA 2017), pages 59–63,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

105

https://aclanthology.org/P13-3015/
https://aclanthology.org/P13-3015/
https://doi.org/10.14569/SpecialIssue.2014.040109
https://doi.org/10.14569/SpecialIssue.2014.040109
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.5281/zenodo.7199437
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.18653/v1/W18-0515
https://doi.org/10.18653/v1/W18-0515
https://doi.org/10.3758/PBR.15.5.971
https://doi.org/10.3758/PBR.15.5.971
https://doi.org/10.3758/PBR.15.5.971
https://doi.org/10.18653/v1/W18-0507
https://doi.org/10.18653/v1/W18-0507
https://aclanthology.org/W17-5910/
https://aclanthology.org/W17-5910/
https://aclanthology.org/W17-5910/


A Sustainability Statement

All model development, training, and evaluation
were conducted on an Apple M2 laptop (8 cores),
yielding minimal carbon impact beyond ordinary
laptop use. Each training run, including the hy-
perparameter optimization, completed in under 30
minutes.

B XGBClassifier: Hyperparameter
Space

Hyperparameter Distribution

classifier__n_estimators U{100, 500}
classifier__max_depth U{5, 12}
classifier__learning_rate U [0.2, 0.5]
classifier__subsample U [0.75, 1]
classifier__colsample_bytree U [0.6, 1]

Table A1.1: The hyperparameter space used for draw-
ing 5,000 random samples during the five-fold cross-
validation of XGBClassifier.

C DeveL: Supplementary Analysis

This appendix reports the supplementary analy-
sis of the lexical decision child dataset in DeveL,
which includes recognition times from 1152 Ger-
man nouns collected from 800 children from school
grades 1–6 (Schröter and Schroeder, 2017). As
shown in Figure A2.1, the noun recognition times
from children also showed a positive relationship
with the complexity measure generated by the CWI
model: more complex nouns elicited longer recog-
nition times.

The statistical analysis of the child data was per-
formed separately from the adults, in order to use
co-predictors for the CWI complexity measure that
were appropriate for children. As with the adult
analysis, we sought to identify the effect of the
complexity measure above and beyond the linguis-
tic variables previously shown to predict recogni-
tion times in the DeveL dataset by Schröter and
Schroeder (2017). For this purpose, we ran a linear
regression model with CWI complexity as a pre-
dictor together with the following variables: noun
length, trigram frequency, noun type frequency,
noun lemma frequency, and orthographic neighbor-
hood size.

The predictors noun length and trigram fre-
quency were identical to those used in the analysis
of the adult groups. Noun length was operational-
ized as the number of letters in each noun and

trigram frequency was the sum of the frequencies
of a sequence of three letters within a noun, treat-
ing the word beginning and end as separate letters.
But in contrast with the adult groups, the type fre-
quency and lemma frequency predictors, as well as
the orthographic neighborhood size predictor, were
based on the childLex corpus, which is derived
from a set of ten million tokens drawn from 500
popular German children’s books (version 0.16,
December 2015, see Schroeder et al., 2015). This
allowed using frequency estimates that are more
reflective of the lexicon of children at earlier stages
of reading development.

The dependent measure in the model was the
recognition time estimated for each noun in the
child group. We predicted that nouns with higher
CWI complexity should increase processing diffi-
culty and therefore elicit longer recognition times.

Figure A2.1: Relationship between CWI complexity
and recognition time for the 1152 German nouns in the
child DeveL dataset (Schröter and Schroeder, 2017).
Lines show the effect of word complexity estimated
without any covariates in a linear regression model with
log-transformed word recognition time as the dependent
variable. Ribbons show 95% confidence intervals. Dots
correspond to the mean recognition time of each noun
in the child group.

The results of the statistical model showed the
expected effects of noun length, frequency, and or-
thographic neighborhood on recognition times (Ta-
ble A2.1). Crucially, the effect of CWI complexity
was significant after adjusting for these variables:
recognition time increased with increasing com-
plexity. These results demonstrate that the CWI
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Estimate Std. Error t-value p-value
Intercept (child group) 7.279 0.004 1794.832 0.000*

Length: child 0.045 0.005 8.840 0.000*
Trigram frequency: child –0.000 0.000 –8.713 0.000*

Type frequency: child –0.023 0.003 –7.129 0.000*
Orthographic neighborhood size: child –0.035 0.013 –2.640 0.008 *

CWI complexity: child 0.041 0.015 2.790 0.005*

Table A2.1: Output of the statistical model in the child data. The model used CWI word complexity as a predictor,
together with noun length, trigram frequency, noun type frequency, and orthographic neighborhood size. R
model structure: lm(log(Noun recognition time) ~ Length + Trigram frequency + Type frequency +
Orthographic neighborhood size + CWI complexity). Effects significant at the alpha .05 level are marked with
asterisks. Further details of the model: R2 = 0.26, Adjusted R2 = 0.25, Number of observations = 1152.

complexity measure predicted noun recognition
difficulties in children from different stages of read-
ing development, and that it continued to do so
after being adjusted for the effects of frequency,
length, and neighborhood size reported in previous
research (Schröter and Schroeder, 2017).
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