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Abstract

Large Language Models (LLMs) possess a
huge amount of knowledge but struggle with
multi-step planning even in toy environments
due to the limitations of their static internal
world model. We introduce a novel approach
where an LLM serves as a “world model
builder”, constructing and iteratively refining
an explicit, external world model. The core
of our approach is a state transition function,
that is initially generated by the LLM and is re-
fined using feedback from interactions with the
environment. This refinement is made possi-
ble by accumulating test cases from past expe-
riences allowing us to treat the construction
of the world model as a program synthesis
problem. We demonstrate the efficacy of our
method on the Blocksworld benchmark and
introduce a novel ColorMixing dataset that
is designed to evaluate multi-step reasoning
and planning. Our experimental results show
that our method, using GPT-4 and LLaMA3-
70B, achieves perfect accuracy on Blocksworld
tasks and significantly outperforms baseline
methods, especially in terms of planning suc-
cess and LLM queries. This paper presents a
robust methodology for enhancing LLM plan-
ning via a learnable external world model and
contributes a new benchmark for evaluating
such capabilities.1

1 Introduction

Large Language Models (LLMs), trained on ex-
tensive internet data, have acquired broad com-
monsense knowledge that enables their applica-
tion across diverse domains. These models are
increasingly employed in critical areas such as
medical diagnosis, autonomous driving, chemi-
cal experimentation, and intelligent assistance sys-
tems. Despite their versatility, reasoning remains a

1The code for our method and the ColorMixing dataset
is available at https://github.com/edweenie123/
WorldModelBuilder

fundamental limitation for LLMs, particularly in
complex, multi-step decision-making tasks (Palla-
gani et al., 2024; Kambhampati et al., 2024). To
address this, various prompt-based methods, in-
cluding Chain-of-Thought (CoT)(Wei et al., 2022),
Self-consistency CoT(Wang et al., 2023), Tree of
thoughts (Yao et al., 2023a), ReAct (Yao et al.,
2023b), and Reflexion (Shinn et al., 2023), have
been developed to enhance LLMs’ reasoning ca-
pabilities. These approaches have demonstrated
significant improvements in structured tasks like
arithmetic reasoning. However, prompt-based rea-
soning methods lack the ability to explicitly predict
future states, which is essential for effective plan-
ning.

LLMs still struggle with tasks requiring multi-
step planning or domain-specific knowledge, ex-
hibiting several key limitations (Xiang et al., 2023;
Huang et al., 2024). First, they frequently generate
plans containing non-existent objects or impermis-
sible actions, as they lack specific knowledge about
the target environment. Second, their plans often
prove suboptimal due to insufficient understand-
ing of the underlying task mechanisms. Multiple
planning benchmarks have revealed limitations in
LLMs’ performance across diverse problem do-
mains (Valmeekam et al., 2023; Xie et al., 2024).

To enhance both the feasibility and optimality
of generated plans, researchers have increasingly
adopted world models to capture system dynam-
ics. These models enable the prediction of action
outcomes, which can be systematically integrated
into the planning process to generate more reli-
able solutions. This capability is especially cru-
cial for long-horizon decision-making tasks, where
world models can be iteratively refined through
accumulated experience to adapt to environmental
changes.

Some studies utilize pre-existing simulators as
world models (Liu et al., 2023), while others lever-
age LLMs as commonsense world models (Hao
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et al., 2023; Zhao et al., 2023) or construct the
world model (Guan et al., 2023).

Inspired by using LLM as the world model (Hao
et al., 2023), we propose a novel approach that
learns an external world model from LLM interac-
tion trajectories. This model encodes past experi-
ences as reusable functions, enabling more efficient
planning. The framework specifically learns state
transition dynamics and action prediction mecha-
nisms from historical interactions. Through pro-
gressive refinement from simple to complex scenar-
ios, the world model mimics human-like learning
and adaptation in novel environments.

This work makes two key contributions: First,
we develop and validate an effective world model
learning methodology, demonstrating its perfor-
mance on the established Blocksworld benchmark.
Second, we introduce a new ColorMixing dataset
specifically designed to evaluate LLM planning
capabilities in complex, multi-step scenarios.

Our method can be used for scenario planning
in hospital resource management, as well as other
real-world scenario planning problems. Scenario
planning involves creating a set of plausible but
distinct future “scenarios” based on key uncertain-
ties, trends, and drivers of change. Our approach
takes these distinct scenarios as initial conditions
and goals and uses the dynamics model to develop
plans to achieve these goals.

2 Related work

LLM-based planning systems face three core chal-
lenges: grounding, plan generation, and adapt-
ability. For grounding, agents utilize the LLM’s
inherent commonsense knowledge (Huang et al.,
2022) to bridge abstract concepts with environmen-
tal specifics. In plan generation, LLMs typically
function as policy networks that propose contex-
tually appropriate next actions (Hao et al., 2023;
Zhao et al., 2023). Planning can rely on the inher-
ent reasoning capabilities of LLMs (Krishna et al.,
2023) or enhance these abilities by combining Re-
Act and Reflexion prompting while retrieving rel-
evant examples from memory (Zhao et al., 2024).
To improve planning efficacy, researchers often
employ LLMs as world models for state prediction
(Hao et al., 2023) and integrate Monte Carlo Tree
Search (MCTS) to efficiently explore large action
spaces (Zhao et al., 2023; Zhou et al., 2024), while
skill transfer from past experiences helps reduce
computational complexity (Wang et al., 2024; Sun

et al., 2023). The system’s adaptability emerges
through continuous plan refinement based on envi-
ronmental feedback (Sun et al., 2023; Zhou et al.,
2024).

The importance of world models in planning
tasks has been recognized in various studies. For
instance, Mind’s Eye (Liu et al., 2023) employs
a simulator as its world model, while RAP (Hao
et al., 2023) leverages the world model in LLMs
for simple reasoning tasks. When presented with
a physical reasoning question, Mind’s Eye (Liu
et al., 2023) employs a computational physics en-
gine (e.g., DeepMind’s MuJoCo) to simulate po-
tential outcomes. These simulation results are then
integrated into the input, enabling language models
to perform more accurate and grounded reasoning.

World models should possess the ability to plan,
predict, and reason effectively about physical sce-
narios. LLM-DM (Guan et al., 2023) constructs
an explicit world (domain) model using Planning
Domain Definition Language (PDDL), a formal
language for representing planning problems. Lan-
guage models are primarily employed to translate
natural language into PDDL, while domain experts
provide feedback to refine the PDDL construction.

LLM-MCTS leverages the commonsense knowl-
edge of LLMs to reduce the search space in large-
scale task planning (Zhao et al., 2023). It treats the
LLM as a commonsense world model to provide
prior belief, which is updated with each action and
observation in the real world. During tree search,
LLM-MCTS heuristically selects promising action
branches by querying the LLM. MCTS samples
from the belief state (probability distribution over
states) to estimate the value of actions.

RAP (Hao et al., 2023) framework employs
LLMs’ internal world models for reasoning and
planning across diverse tasks. As a gray-box ap-
proach, RAP analyzes token-level probabilities,
along with state confidence and self-evaluation
heuristics, to guide the planning process. How-
ever, this method requires frequent LLM queries,
resulting in computational inefficiency and high
costs, particularly for proprietary models.

Unlike RAP and LLM-MCTS, our approach
learns an external world model from past expe-
riences. This model predicts future states and eval-
uates actions to enable efficient planning. While
prior work has explored using LLMs to learn and
refine functions, such as learning continuous func-
tions for symbolic regression (Merler et al., 2024),
our work focuses on learning a transition function

19



for discrete multi-step decision-making.

3 Method

Our proposed method enhances the planning ca-
pabilities of LLMs by using the LLM as a “world
model builder”. This approach extends concepts
from frameworks such as RAP (Hao et al., 2023),
but with a key distinction: instead of utilizing the
LLM’s static internal world model, our method fo-
cuses on building an external model through LLM-
driven generation and refining it over time with
environmental interactions. Figure 1 provides an
overview of our approach, illustrating the key com-
ponents and workflow of the system. The figure
depicts our three-stage process: first, the LLM
generates an initial state transition function based
on task descriptions; second, this function is itera-
tively refined through real-world interactions and
feedback; and finally, the refined world model en-
ables efficient planning by predicting future states
without requiring additional LLM queries during
execution.

3.1 World Model Architecture

The world model consists three key components.

1. State Transition Function (fST ): This func-
tion takes the current state st and an ac-
tion at as input, and predicts the next state
ŝt+1 = fST (st, at). Initially, the LLM is
prompted to generate this function, for in-
stance, as a Python program given a rough
description of the environment and the pos-
sible actions within the environment. This
function is the main subject of the iterative
refinement process detailed in Section 3.3.

2. State Value Function (fSV ): This function
estimates the utility or value of a given state s
with respect to a user-defined goal. It outputs
a scalar value v(s) = fSV (s), which guides
the search process towards desirable states. In
the current method, fSV is implemented as a
hard-coded heuristic tailored to the specific
task domain and goal structure.

3. Action Suggestion Function (fAS): Given a
state s, this function suggests a set of promis-
ing actions Ap(s) = fAS(s) that are worth
exploring. This helps to prune the search
space by focusing on relevant actions. Similar
to fSV , fAS is hard-coded based on domain

knowledge to identify potentially useful ac-
tions.

The user provides the initial state and the goal. The
core innovation of our method lies in the LLM-
driven generation and subsequent experience-
based iterative refinement of fST . While fSV and
fAS are presently fixed, their design is crucial for
effective planning.

3.2 Planning with the Learned World Model

Once the components of the world model are estab-
lished, and an overall goal is defined for the task,
the planning process proceeds as follows:

1. From the current state scurr, the Action Sug-
gestion Function fAS(scurr) is invoked to
generate a set of promising actions Ap(scurr).

2. For each action a ∈ Ap(scurr), the State Tran-
sition Function fST (scurr, a) is used to pre-
dict the resulting next state ŝ′.

3. This process is applied recursively to con-
struct a search tree, where nodes represent
states and edges represent actions.

4. The State Value Function fSV (ŝ
′) is used to

evaluate the desirability of states encountered
in the search tree (like ŝ′), particularly leaf
nodes or states at a certain depth, in relation
to the overall goal.

5. A search algorithm (e.g., Depth-First Search
(DFS), Monte Carlo Tree Search (MCTS)) tra-
verses this tree to identify an action sequence
(a0, a1, . . . , ak) that is expected to lead to a
state with the highest value or achieve the
goal.

This planning mechanism relies on the explicit
world model functions, allowing for systematic ex-
ploration of future possibilities towards the given
goal. Leveraging the learned world model, our
method uses a search algorithm to explore mul-
tiple world branches and estimate the value of a
sequence of actions.

3.3 Iterative Refinement of the State
Transition Function

A key aspect of our method is the continuous im-
provement of the State Transition Function (fST )
based on experiences gathered from interacting
with the real environment. This process treats the
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Figure 1: Overview of our proposed method for enhancing LLM planning capabilities with an external world
model. The approach consists of three main components: (1) LLM-driven generation of a state transition function,
(2) iterative refinement based on environmental interactions, and (3) efficient planning using the learned world
model. This framework enables more accurate multi-step reasoning while reducing computational costs compared
to approaches that rely solely on LLM queries for state prediction.

generation of fST as an iterative program synthesis
problem.

1. Experience Collection: The agent executes
an action (e.g., the first action a0 from the gen-
erated plan) in the real environment. The envi-
ronment then transitions from state st to a true
subsequent state st+1 according to its ground-
truth dynamics. This interaction yields an ex-
perience tuple ((st, at), st+1), which serves
as a test case for fST . These test cases are
accumulated in a “transition bank”.

2. Evaluation: The current fST is evaluated
against all test cases stored in the transi-
tion bank. A test case ((st, at), st+1) is con-
sidered a failure if the predicted next state
ŝt+1 = fST (st, at) does not match the ob-
served next state st+1, or if the actual next
state st+1 is sufficiently different from the
predicted next state ŝt+1 according to some
user-defined state similarity metric.

3. LLM-based Refinement: The set of failing
test cases (i.e., input-output pairs that fST in-
correctly predicted) is provided as feedback to
the LLM. The LLM is then prompted to revise
or debug the fST (e.g., its Python code imple-
mentation) to correctly handle these failing
instances, while ideally preserving its accu-
racy on previously successful cases.

4. Iteration: The refined fST is then re-
evaluated against the transition bank. This

cycle of evaluation and LLM-based refine-
ment is repeated, progressively improving the
accuracy of fST . The process can continue
until all test cases pass, a predefined accuracy
threshold is met, or a computational budget
(e.g., number of LLM queries) is exhausted.

Through this iterative loop, the fST becomes an
increasingly accurate approximation of the real
world’s state transition dynamics.

Our world model refinement loop is compatible
with both deterministic and probabilistic transition
rules. It can iteratively query the LLM, validate
predicted outcomes against examples, and revise
the rule as needed. This flexibility makes our ap-
proach directly applicable to planning under uncer-
tainty—not just in fully deterministic settings.

3.4 Addressing Limitations of Existing
Approaches

Our proposed methodology directly addresses sev-
eral limitations observed in prior LLM-based plan-
ning approaches, such as RAP:

1. Performance Improvement with Experi-
ence: Unlike systems where the LLM’s inter-
nal world model remains static, our approach
allows the explicit fST to be continuously re-
fined and improved as more interaction data
is collected. This enables the agent’s planning
accuracy to increase with experience, mimick-
ing a crucial aspect of human learning.
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2. Reduced LLM Query Cost during Plan-
ning: In RAP, generating the search tree of-
ten requires querying the LLM at each state
to predict outcomes of actions. Our method
shifts the primary LLM usage to the initial
generation and subsequent off-line refinement
of the fST . Once fST is learned (e.g., as an
executable Python function), it can be called
repeatedly during the planning phase (Sec-
tion 3.2) without incurring additional LLM
query costs for each state transition predic-
tion. This significantly reduces the compu-
tational expense and latency associated with
LLM queries during the search process, mak-
ing deeper and broader searches more feasible
and aligning with the objective of maximizing
performance while minimizing LLM interac-
tions.

By externalizing and refining the world model, par-
ticularly the state transition dynamics, our method
aims to achieve more robust, adaptable, and effi-
cient planning with LLMs.

4 Experiments

We evaluate our method and the baselines on
two datasets: the classic Blocksworld bench-
mark (Valmeekam et al., 2023), widely used for
goal-conditioned symbolic planning and reasoning
tasks, and our own ColorMixing dataset.

4.1 Blocksworld

Blocksworld is a classic symbolic planning domain
involving a set of colored blocks stacked on a table.
The agent’s goal is to transform an initial block con-
figuration into a specified goal configuration using
a sequence of primitive actions such as pick up, put
down, stack, and unstack. We employ subsets of
this benchmark, specifically 30% from three-step
problems (step 2, step 4, and step 6), to train our
world model, reserving the remaining 70% for test-
ing. In Blocksworld, the state encodes the configu-
ration of blocks (e.g., on, clear, ontable), and
actions include the standard operations: pick-up,
put-down, stack, and unstack.

4.2 ColorMixing

The ColorMixing Dataset is a synthetic benchmark
developed to assess the reasoning and planning
capabilities of LLMs in a controlled color mixing
environment. In this setting, an agent interacts with

six virtual beakers, each described by color con-
tents and volume, and is tasked with achieving a
specified target color in a chosen beaker through a
sequence of actions. The initial state of the environ-
ment includes five beakers prefilled with primary
and neutral colors: red, green, blue, white, and
black, and one empty beaker designated for mixing.
We use a discrete action space composed of sym-
bolic operations with arguments defined by integer
values (e.g., beaker indices and paint amounts).
Figure 2 illustrates the color mixing process. Each
state is represented as a list of strings in the
form: contains <beaker_id> <R> <G>
<B> <amount>, where <beaker_id> is an in-
teger from 1 to 6, <R>, <G>, and <B> are RGB
values ranging from 0 to 255, and <amount> de-
notes the volume (0 - 200). The goal state, also
in this format, specifies the desired color mixture
and amount in a target beaker. The ColorMixing
environment enables evaluation of both low-level
world model predictions and high-level planning
behavior.

Figure 2: Visualization of the color mixing task. The ini-
tial state includes five prefilled beakers and one empty
beaker. The agent aims to produce a target color in a
designated beaker through sequential actions.

In the ColorMixing task, each state represents
the color and volume of paint in six beakers. Ac-
tions include operations: pour and done. We
generated 100 data files, each containing the initial
color states of six beakers along with a correspond-
ing target (goal) color state. We randomly selected
30% of the files as training data, and used the re-
maining 70% as test cases.

While the ColorMixing environment is determin-
istic at the transition level, it introduces uncertainty
in the number of actions required to reach the goal.
The agent must explore and compare action se-
quences of varying lengths, reflecting a form of
procedural uncertainty that aligns closely with the
goals of scenario planning.
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4.3 Results on Blocksworld
The following subsections present the results of our
method on the Blocksworld domain, focusing on
both the training (refinement) phase of the world
model and the task performance on the testing data.

4.3.1 Training Phase
The quality of the refined world model is evaluated
using two metrics: experience accuracy, measured
by the pass rate across individual state-action tran-
sitions in the transition bank, and state transition
accuracy, which assesses the model’s ability to
simulate full state trajectories given sequences of
actions from the test set. List 1 in Appendix A
shows an example of a state transition function for
Blocksworld refined by GPT-4.

Figure 3 illustrates the training progression of
the world model in our method, refined using GPT-
3.5 on the Blocksworld. The top subplot depicts the
number of LLM queries made per training instance.
Each dot corresponds to a specific training level,
with red markers indicating instances where the
algorithm failed to achieve the goal state. Notably,
many levels required up to 15 GPT-3.5 queries to
refine the state transition function, highlighting the
limited capability of GPT-3.5 in generating accu-
rate state transition functions. The middle subplot
shows the accuracy of the world model’s learned
state transition function fST , measured by compar-
ing the predicted next state to the ground-truth next
state for each (st, at) in the transition bank, during
training. This metric reflects the model’s internal
learning quality across training iterations. A sharp
improvement is observed around the 16th training
level, after which the accuracy plateaus, indicating
that further refinement yields diminishing returns.
Despite continued LLM queries, GPT-3.5 fails to
consistently improve the quality of the learned tran-
sition function beyond this point.

The bottom subplot shows state transition ac-
curacy on the held-out test set. Given an initial
state and ground-truth action sequence, the learned
world model predicts the resulting state after each
action, and accuracy is computed as the average
similarity across all predicted and ground-truth
next states. Notably, goal achievement and tran-
sition accuracy may diverge, as goal completion
is based on a partial specification (e.g., “on a
c” and “on b a”), while state transition accu-
racy evaluates the entire predicted state, includ-
ing predicates like “handempty”, “clear d”,
“ontable d”, and others. Thus, a goal may be

achieved even if the overall state prediction accu-
racy is relatively low.
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Figure 3: Training progression of the world model in
our method, refined using GPT-3.5, on the Blocksworld.
The x-axis denotes the training instances (levels).

We observe that GPT-3.5 demonstrates some
reasoning capability in refining the world model.
However, even after multiple refinement steps, the
state transition accuracy remains below 0.8, indi-
cating its limited effectiveness in learning accu-
rate transition dynamics. Figure 5 in Appendix
B presents the training progression of the world
model in our method, refined using GPT-4. Com-
pared to the case with GPT-3.5, GPT-4 demon-
strates significantly stronger reasoning capabilities.
Notably, the world model is successfully refined
with only a single LLM query (specifically, updat-
ing the state transition function). After this refine-
ment, the model consistently predicts accurate next
states when paired with the search algorithm.

Figure 6 in Appendix B illustrates the training
progression of the world model when refined us-
ing LLaMA3-70B. In this case, the model is re-
fined based on feedback from only two training
instances, requiring a total of 9 LLM queries. Com-
pared to GPT-4, LLaMA3-70B achieves lower ac-
curacy in modeling the state transition function,
but it still outperforms GPT-3.5 in both experience
and test accuracy.

4.3.2 Testing Phase
For overall task performance, we report the goal
achievement accuracy, defined as the ratio of suc-
cessful instances (i.e., the final state matches the
goal) to the total number of test instances. Our
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method was evaluated on the testing set, consist-
ing of 70% of the instances from each step. Ta-
ble 1 presents a comparison between our approach
and several baselines: GPT-3.5 + CoT, GPT-4 +
CoT, and RAP (Hao et al., 2023). Since RAP cur-
rently supports only LLaMA-based models, we use
LLaMA3-70B as the backbone for the RAP base-
line. All baseline implementations are obtained
from the LLM Reasoners benchmark (Hao et al.,
2024). Following the evaluation protocol used for
GPT-3.5 + CoT, GPT-4 + CoT, and RAP, we use the
VAL tool, a command-line validator for checking
the correctness of plans in classical PDDL-based
planning domains (Fox and Long, 2003), to assess
each method’s performance.

As shown in Table 1, all three variants of our
method consistently outperform the two CoT-based
GPT baselines across all steps. The world model re-
fined with GPT-3.5 achieves lower accuracy, while
those refined using GPT-4 and LLaMA3-70B reach
perfect accuracy, surpassing RAP. Although the
CoT-based baselines are less accurate, they require
only a single LLM query. In contrast, RAP is-
sues two LLM queries per candidate action, one
for action generation and one for next-state predic-
tion, resulting in approximately N × d× 2 = 80
LLaMA3 queries for N = 10 rollouts and d = 4
actions. Our method requires only 9 LLaMA3
queries for refinement, as shown in Figure 6 in Ap-
pendix B. Notably, RAP cannot support GPT-based
models due to its reliance on token-level log prob-
abilities, which are not accessible via the OpenAI
API, making direct comparison infeasible.

Method Accuracy

Step 2 Step 4 Step 6 Avg.

GPT-3.5
+ CoT 20.00% 13.50% 4.69% 12.73%

GPT-4
+ CoT 20.01% 14.50% 4.94% 13.15%

RAP
(LLaMA3) 89.47% 85.00% 80% 84.49%

Ours
(GPT-3.5) 95.24% 87.5% 78.75% 87.16%

Ours
(GPT-4) 100% 100% 100% 100%

Ours
(LLaMA3) 100% 100% 100% 100%

Table 1: Performance comparison across Step 2, Step
4, and Step 6 tasks for our three methods and three
baselines.

4.3.3 Runtime Analysis
Table 2 compares training and inference times of
our methods against several baselines. All experi-
ments were conducted on a machine equipped with
an Intel Xeon W-2255 CPU (10 cores, 20 threads,
3.70 GHz) and an NVIDIA Quadro RTX 6000
GPU with 24 GB of memory. Among our variants,
the world model refined using GPT-4 achieves the
lowest overall runtime, requiring only 38.57 sec-
onds for training and 1.18 seconds for inference. In
contrast, the LLaMA3-70B variant incurs the high-
est training time (3084.02 seconds) due to its local
execution, but maintains a comparable inference
time of 1.28 seconds. Despite the higher upfront
cost, our method with LLaMA3-70B significantly
outperforms overall efficiency of RAP. This effi-
ciency stems from our approach refining the world
model using LLaMA3-70B only during the train-
ing phase, after which a symbolic DFS planner
is used at test time. In contrast, RAP repeatedly
queries LLaMA3-70B during planning, resulting
in substantially higher cumulative runtime.

Method Training Time (s) Inference Time (s)

GPT-3.5 + CoT† – 593.8
GPT-4 + CoT† – 586.6
RAP (LLaMA3) – 1,518,120
Ours (GPT-3.5)† 675.97 1.17
Ours (GPT-4)† 38.57 1.18
Ours (LLaMA3) 3084.02 1.28

Table 2: Comparison of training and inference times (in
seconds) for different methods. Training time refers to
the refinement of the world model, while inference time
measures the execution time of the model (or refined
model) for task-solving. †Inference for API-based mod-
els (GPT-3.5 and GPT-4) includes network latency and
remote GPU processing.

4.4 Results on ColorMixing
In the ColorMixing benchmark, we use a similarity
score to measure the closeness between a predicted
state and its corresponding ground-truth state. Sim-
ilarity is computed by comparing corresponding
beakers based on both RGB color and paint volume.
Specifically, we define a weighted similarity func-
tion that combines color similarity, measured by
the Euclidean distance in RGB space, and volume
similarity, measured by the normalized absolute
difference. A higher weight is assigned to the color
component. The overall similarity between two
states is computed as the average of the beaker-
wise similarities. The world model is considered
sufficiently accurate if the similarity between the
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predicted final state and the goal state exceeds a
threshold of 0.95.

4.4.1 Training Phase
We evaluate the refinement quality of the world
model using three metrics: experience similarity
score, state transition similarity score, and goal
state similarity score. These metrics respectively,
assess the model’s accuracy on training state tran-
sitions, its ability to generalize to unseen action
sequences, and its alignment with the desired goals.
List 2 in Appendix A presents an example of a state
transition function for ColorMixing, refined using
GPT-4.

In the ColorMixing experiments, we use GPT-4
to refine the world model and compare our method
with the GPT-4 + CoT baseline. Figure 4 presents
the training progression of our approach. Similar
to the Blocksworld, the top subplot shows the num-
ber of LLM queries required to refine the world
model. The second subplot presents the average
similarity score across all state transitions observed
during training episodes, reflecting how accurately
the model predicts intermediate states. A predicted
color is considered a successful match if its simi-
larity exceeds a threshold of 0.95. Matched cases
are colored green, while failed instances are red.

The third subplot captures the testing perfor-
mance of the learned state transition function. Un-
like Blocksworld, where action sequences are fixed,
we randomly sample a state–action pair and com-
pare the predicted next state with the ground-truth.
This simulates a realistic setting where the number
of mixing steps is not predefined and must be in-
ferred by the model. In both training and testing
evaluations, the state transition function achieves
an average similarity score above 0.97, indicat-
ing strong predictive accuracy. The fourth subplot
shows the number of steps taken to reach the goal.
Notably, although the average state similarity dur-
ing testing is above the threshold (0.95), there are
cases where the algorithm still fails to achieve the
goal. This discrepancy is highlighted in the bot-
tom subplot, which shows the final goal similarity
score, computed based solely on the target beaker.

The mismatch arises because the similarity score
for the state transition reflects the average similar-
ity across all six beakers, while goal achievement
is determined only by the similarity of the target
beaker. Thus, if the target beaker’s similarity falls
below the threshold, the episode is marked as a
failure, even if the average similarity across all

beakers remains high.
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Figure 4: Training progression of the world model in
our method, refined using GPT-4, on the ColorMixing
Data.

4.4.2 Testing Phase

We evaluate the task performance based on two
metrics: the average goal state similarity score
and the pass rate, defined as the ratio of instances
where the goal similarity score exceeds a prede-
fined threshold to the total number of instances.

Table 3 presents the testing results of our method
compared to the GPT-4 + CoT baseline. Due to the
increased complexity of the ColorMixing task rela-
tive to Blocksworld, both GPT-3.5 and LLaMA3-
70B fail to produce reliable state transition func-
tions. Additionally, RAP cannot be used as a base-
line in this setting, as it currently supports only
LLaMA-based LLMs. Another potential baseline
involves using the LLM’s internal world model to
simulate state transitions directly; however, this
approach is prohibitively expensive, as it requires
repeated LLM queries for each action and state
transition, resulting in substantial computational
overhead. For this reason, we exclude it from our
evaluation. Consequently, we exclusively employ
GPT-4 for refining the world model in this setting.
The results in Table 3 highlight the superior perfor-
mance of our approach, which achieves a perfect
pass rate across all test instances.
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Method Goal Similarity Score Pass Rate

GPT-4 + CoT 53.45% 0%
Ours (GPT-4) 98.10% 100%

Table 3: Comparison between GPT-4 + CoT and our
method using GPT-4 on the ColorMixing task.

5 Conclusion

LLMs have shown promise as policies for com-
plex decision-making tasks, but their effectiveness
is limited by inaccuracies in their internal world
models, leading to inefficient planning. To address
this, we propose learning an external world model
that dynamically improves multi-step reasoning
by predicting future states at each decision point.
Our experiments on Blocksworld and ColorMix-
ing demonstrate significant improvements, achiev-
ing perfect success rates across all difficulty levels
in Blocksworld while outperforming LLM-based
world models.

Our work introduces both a novel approach to
enhancing LLM-based planning and a new dataset
for evaluating multi-step decision-making tasks.
However, our experiments are currently focused on
the Blocksworld and ColorMixing datasets. Fur-
ther evaluation on more diverse and complex en-
vironments, such as VirtualHome or GSM8k, is
necessary to fully assess the generalizability and
effectiveness of our method. In future work, we
plan to integrate our external world model with
more efficient search algorithms to better handle
tasks with large and complex action spaces.

Our method involves learning a dynamics model
using the LLM and then utilizing the model to
plan. It can be used for human-led scenario plan-
ning. Here, a human devises plausible but uncer-
tain future scenarios, such as a shortage of gold
flake paint or an increase in the cost of gold flake
paint due to commodity fluctuations. This leads to
a different set of initial conditions, which can be
explored using our model-based planner. In this
case, our method is used as a simulator for sce-
nario planning under uncertainty. Since the world
model is learned through interaction with the envi-
ronment, the simulator can adapt to different initial
conditions.

Limitations

Our approach, while delivering promising results,
has several limitations that offers avenues for future
work. Currently, the LLM is only responsible for
generating and refining the State Transition Func-

tion (fST ), while the State Value (fSV ) and Action
Suggestion (fAS) functions are hard coded. Ex-
tending the LLM’s involvement to also learn these
components of the world model would enhance
autonomy and may improve performance. More-
over, the current system only plans on a predefined
set of low-level actions; future work could explore
enabling the LLM to learn higher-order actions
consisting of several low-level actions allowing for
hierarchical planning and potentially improving
planning ability in complex environments.
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A Refined State Transition

A.1 State Transition for Blocksworld

Listing 1: Refined state transition function for the
Blocksworld domain refined using GPT-4.
def state_transition(self, state, action

):
words = action.split()
action_type = words[0]
params = words[1:]
next_state = set(state)

if action_type == "pick-up":
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block = params[0]
if f"clear {block}" in

next_state and f"ontable {block}" in
next_state and "handempty" in

next_state:
next_state.discard(f"clear {

block}")
next_state.discard(f"ontable

{block}")
next_state.discard("

handempty")
next_state.add(f"holding {

block}")

elif action_type == "put-down":
block = params[0]
if f"holding {block}" in

next_state:
next_state.discard(f"holding

{block}")
next_state.add(f"ontable {

block}")
next_state.add(f"clear {

block}")
next_state.add("handempty")

elif action_type == "stack":
block, target = params
if f"holding {block}" in

next_state and f"clear {target}" in
next_state:

next_state.discard(f"holding
{block}")

next_state.discard(f"clear {
target}")

next_state.add(f"on {block}
{target}")

next_state.add(f"clear {
block}")

next_state.add("handempty")

elif action_type == "unstack":
block, base = params
if f"on {block} {base}" in

next_state and f"clear {block}" in
next_state and "handempty" in
next_state:

next_state.discard(f"on {
block} {base}")

next_state.discard(f"clear {
block}")

next_state.discard("
handempty")

next_state.add(f"holding {
block}")

next_state.add(f"clear {base
}")

return next_state

A.2 State Transition for ColorMixing

Listing 2: State transition function for the ColorMixing
environment refined using GPT-4.
def state_transition(self, state, action

):
def find_element(my_set, condition):

for element in my_set:

if condition(element):
return element

return None

words = action.split()
action_type = words[0]
params = words[1:]

new_state = set(state)

if action_type == "pour":
src_idx, tgt_idx, amt = [int(x)

for x in params]
src_contains = find_element(

state, lambda x: x.split()[1] == str
(src_idx))

tgt_contains = find_element(
state, lambda x: x.split()[1] == str
(tgt_idx))

src_r, src_g, src_b, src_amt = [
int(x) for x in src_contains.split()
[2:]]

tgt_r, tgt_g, tgt_b, tgt_amt = [
int(x) for x in tgt_contains.split()
[2:]]

# Calculate the amount of paint
after pouring

new_src_amt = src_amt - amt
new_tgt_amt = tgt_amt + amt

# Calculate the new color in the
target beaker

new_tgt_r = (tgt_r * tgt_amt +
src_r * amt) // new_tgt_amt

new_tgt_g = (tgt_g * tgt_amt +
src_g * amt) // new_tgt_amt

new_tgt_b = (tgt_b * tgt_amt +
src_b * amt) // new_tgt_amt

# Update the state with the new
values

new_state.discard(src_contains)
new_state.discard(tgt_contains)

new_state.add(f"contains {
src_idx} {src_r} {src_g} {src_b} {
new_src_amt}")

new_state.add(f"contains {
tgt_idx} {new_tgt_r} {new_tgt_g} {
new_tgt_b} {new_tgt_amt}")

return new_state

B Training Performance on Blocksworld
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Figure 5: Training progression of the world model in
our method, refined using GPT-4, on the Blocksworld
domain.
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Figure 6: Training progression of the world model in the
Blocksworld domain, refined using LLaMA3-70B. The
plot illustrates how the model improves over training
iterations.
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