ACL 2020

The 58th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the System Demonstrations

July 5- July 10, 2020

(©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@Qaclweb.org

ISBN 978-1-952148-04-0

ii

Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 58th Annual Meeting of the Association for Computational
Linguistics on July 5th - July 10th, 2020. This year the ACL 2020 will be an online conference.

The ACL 2020 demonstrations track invites submissions ranging from early research prototypes to
mature production-ready systems. We received 122 submissions this year, of which 43 were selected
for inclusion in the program (acceptance rate of 35%) after reviewed by three members of the program
committee. We would like to thank the members of the program committee for their timely help in
reviewing the submissions.

Lastly, we thank the many authors that submitted their work to the demonstrations track. This year, the
ACL conference is completely virtual. The demonstrations paper talks are pre-recorded (12 minutes) and
will be presented during the two live Q&A video sessions at different times, and a linked RocketChat
channel. Each day we will have 2 demonstration track Q&A sessions in different time zones across the
world.

Best,
Asli Celikyilmaz and Tsung-Hsien Wen
ACL 2020 Demonstration Track Chairs

iii

Organizers:

Asli Celikyilmaz, Microsoft Research
Tsung-Hsien Wen, Poly-Al

Program Committee:

Malihe Alikhani, University of Pittsburgh

Pepa Atanasova, University of Copenhagen

Awais Athar, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-
EBI)

Sumit Bhatia, IBM Research

Georgeta Bordea, Université de Bordeaux

Shulin Cao, Tsinghua University

Yun-Nung Chen, National Taiwan University

Lu Chen, Shanghai Jiao Tong University

Xiang Gao, Microsoft Research

Ridong Jiang, Institute for Infocomm Research

Nikita Moghe, University of Edinburgh

Pei-Hao Su, PolyAl

Stergos Afantenos, IRIT and CNRS, University of Toulouse
Chaitanya Ahuja, Carnegie Mellon University

Hassan Alhuzali, The University of Manchester

Cecilia Ovesdotter Alm, Rochester Institute of Technology
Malik H. Altakrori, McGill University /Mila

Prithviraj Ammanabrolu, Georgia Institute of Technology
Mihael Arcan, National Universith of Ireland Galway
Arkady Arkhangorodsky, DiDi Labs

Eleftherios Avramidis, German Research Center for Artificial Intelligence (DFKI)
He Bai, University of Waterloo

Pratyay Banerjee, Arizona State University

Ritwik Banerjee, Stony Brook University

Siqi Bao, Baidu

Mohaddeseh Bastan, Stony Brook University

Timo Baumann, Universitit Hamburg

Nuria Bel, Universitat Pompeu Fabra

Meriem Beloucif, University of Hamburg

Gébor Berend, University Of Szeged

Leon Bergen, University of California, San Diego

Archna Bhatia, Florida Institute for Human and Machine Cognition
Parminder Bhatia, Amazon

Wei Bi, Tencent AI Lab

Sebastian Bischoff, Technical University of Munich
Rexhina Blloshmi, Sapienza University of Rome

Chris Brockett, Microsoft Research

Jill Burstein, ETS

Andrew Caines, University of Cambridge

Ilias Chalkidis, Athens University of Economics and Business
Guan-Lin Chao, Carnegie Mellon University

Hanjie Chen, University of Virginia

Jun Chen, Baidu Inc

Shizhe Chen, Renmin University of China

Alok Debnath, International Institute of Information Technology, Hyderabad
Louise Deléger, INRAE - Université Paris-Saclay

Shumin Deng, Zhejiang University

Yuntian Deng, Harvard University

Mihail Eric, Amazon Alexa Al

Lucie Flek, Mainz University of Applied Sciences

Varun Gangal, Carnegie Mellon University

Andrew Gargett, Science and Technology Facilities Council
Maram Hasanain, Qatar University

Bjorn Hoffmeister, Apple

Julie Hunter, LINAGORA

Varun Kumar, Amazon Alexa

Jiaqi Li, Harbin Institute of Technology

Pierre Lison, Norwegian Computing Centre

José Lopes, Heriot Watt University

Alex Marin, Microsoft Corporation

Héctor Martinez Alonso, Apple Inc

Mohsen Mesgar, UKP Lab, Technische Universitit Darmstadt
Junta Mizuno, NICT

Zheng-Yu Niu, Baidu Inc.

Vasile Rus, The University of Memphis

Ethan Selfridge, Interactions LL.C

Igor Shalyminov, Heriot-Watt University

Jun Xu, Harbin Institute of Technology

Xiaohui Yan, Huawei

Yujiu Yang, tsinghua.edu.cn

Semih Yavuz, Salesforce Research

Koichiro Yoshino, Nara Institute of Science and Technology
Erion Cano, Institute of Formal and Applied Linguistics, Charles University in Prague
Abdalghani Abujabal, Amazon Alexa Al

Manoj Acharya, Rochester Institute of Technology
Shubham Agarwal, Heriot Watt University

Rodrigo Agerri, IXA Group, HiTZ Centre, University of the Basque Country UPV/EHU
Zeljko Agié, Corti

Roee Aharoni, Google

Mohammad Amin Alipour, University of Houston

Miguel A. Alonso, Universidade da Corufa

Rafael Anchiéta, University of Sao Paulo

Diego Antognini, EPFL

Jun Araki, Bosch Research

Rahul Aralikatte, University of Copenhagen

Hiba Arnaout, Max Planck Institute for Informatics

Akari Asai, University of Washington

Rohit Babbar, Aalto University

Ashutosh Baheti, The Ohio State University

Jorge Balazs, University of Tokyo

Ioana Baldini, IBM Research

Sameer Bansal, Bloomberg LP

vi

James Barry, ADAPT Centre DCU

Valerio Basile, University of Turin

Tilman Beck, UKP Lab, Technische Universitidt Darmstadt
Ahmad Beirami, Facebook Al

Fernando Benites, Zurich University of Applied Sciences
Eduardo Blanco, University of North Texas

Rishi Bommasani, Cornell University

Laura Ana Maria Bostan, IMS, University of Stuttgart
Florian Boudin, Université de Nantes

Ed Cannon, Expedia Group

Qingqing Cao, Stony Brook University

Spencer Caplan, University of Pennsylvania

Angel Chang, Simon Fraser University

Chung-Chi Chen, Department of Computer Science and Information Engineering National Taiwan
University, Taipei, Taiwan

Guanyi Chen, Utrecht University

Huiyuan Chen, Case Western Reserve University

Fenia Christopoulou, School of Computer Science, The University of Manchester
George Chrysostomou, The University of Sheffield
Yagmur Gizem Cinar, Univ. Grenoble Alpes

Shaobo Cui, Alibaba Group

Xiang Dai, University of Sydney

Forrest Davis, Cornell University

Luciano Del Corro, Max Planck Institute for Informatics
Ning Ding, Tsinghua University

Ondfej Dusek, Charles University

Zhenxin Fu, Peking University

Saadia Gabriel, University of Washington

Matt Gardner, Allen Institute for Artificial Intelligence
Rahul Goel, Google

Sharath Chandra Guntuku, University of Pennsylvania
Mandy Guo, Google

Matthew Henderson, PolyAl

Benjamin Hoover, IBM Research; MIT-IBM Lab
Hen-Hsen Huang, Department of Computer Science, National Chengchi University
Binxuan Huang, CMU

Ali Hiirriyetoglu, Ko¢ University

Jeff Jacobs, Columbia University

Feng Ji, Alibaba Group

Pei Ke, Tsinghua University

Joo-Kyung Kim, Amazon Alexa Al

Gunhee Kim, Seoul National University

Ekaterina Lapshinova-Koltunski, Universitit des Saarlandes
Xintong Li, The Ohio State University

Yanran Li, The Hong Kong Polytechnic University

Yang Li, Google

Maolin Li, University of Manchester

Jinchao Li, Microsoft Research

Qian Liu, Beihang University

Andrea Madotto, The Hong Kong University Of Science and Technology
Alexandros Papangelis, Uber Al

vii

Baolin Peng, Microsoft Research

Oleksandr Polozov, Microsoft Research

Stephen Pulman, Apple Inc.

Matthew Purver, Queen Mary University of London
Eugénio Ribeiro, INESC-ID / IST

Lei Shu, Department of Computer Science, University of Illinois at Chicago
Jian Sun, Alibaba Group

Hisami Suzuki, Microsoft Corporation

Ivan Vuli¢, University of Cambridge

Xianchao Wu, Microsoft

Chien-Sheng Wu, Salesforce

Bowen Wu, Platform and Content Group, Tencent
Caiming Xiong, Salesforce

Zhen Xu, Tencent PCG

Dian Yu, University of California, Davis

Tianyu Zhao, Kyoto University

viii

Table of Contents

Xiaomingbot: A Multilingual Robot News Reporter
Runxin Xu, Jun Cao, Mingxuan Wang, Jiaze Chen, Hao Zhou, Ying Zeng, Yuping Wang, Li Chen,
Xiang Yin, Xijin Zhang, Songcheng Jiang, Yuxuan Wangand Lei Li............................... 1

TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing
Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang Che, Ting Liu, Shijin Wang and Guoping Hu9

Syntactic Search by Example
Micah Shlain, Hillel Taub-Tabib, Shoval Sadde and Yoav Goldberg.......................... 17

Tabouid: a Wikipedia-based word guessing game
Timothée Bernard e 24

Talk to Papers: Bringing Neural Question Answering to Academic Search
Tiancheng Zhao and Kyusong Lee. i e 30

Personalized PageRank with Syntagmatic Information for Multilingual Word Sense Disambiguation
Federico Scozzafava, Marco Maru, Fabrizio Brignone, Giovanni Torrisi and Roberto Navigli. .. 37

PYBART: Evidence-based Syntactic Transformations for IE
Aryeh Tiktinsky, Yoav Goldberg and Reut Tsarfaty................ccoiiiiiiiiiiiinn.... 47

EVIDENCEMINER: Textual Evidence Discovery for Life Sciences
Xuan Wang, Yingjun Guan, Weili Liu, Aabhas Chauhan, Enyi Jiang, Qi Li, David Liem, Dibakar
Sigdel, John Caufield, Peipei Ping and Jiawei Han......... i i, 56

Trialstreamer: Mapping and Browsing Medical Evidence in Real-Time
Benjamin Nye, Ani Nenkova, Iain Marshall and Byron C. Wallace........................... 63

SyntaxGym: An Online Platform for Targeted Evaluation of Language Models
Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian and Roger Levy 70

GAIA: A Fine-grained Multimedia Knowledge Extraction System
Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan, Spencer Whitehead, Brian Chen, Bo Wu,
Heng Ji, Shih-Fu Chang, Clare Voss, Daniel Napierski and Marjorie Freedman 77

Multilingual Universal Sentence Encoder for Semantic Retrieval
Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant, Gustavo Hernandez
Abrego, Steve Yuan, Chris Tar, Yun-hsuan Sung, Brian Strope and Ray Kurzweil 87

BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab
Yonghao Jin, Fei Liand Hong Yu. ... 95

Stanza: A Python Natural Language Processing Toolkit for Many Human Languages
Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton and Christopher D. Manning............. 101

jiant: A Software Toolkit for Research on General-Purpose Text Understanding Models
Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason Phang, Phu Mon Htut, Alex Wang, Ian Tenney
and Samuel R. Bowman. e 109

X

The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding
Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng, Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao and Jianfeng Gao.......................cooiienan. 118

LinggleWrite: a Coaching System for Essay Writing
Chung-Ting Tsai, Jhih-Jie Chen, Ching-Yu Yang and Jason S. Chang 127

CLIReval: Evaluating Machine Translation as a Cross-Lingual Information Retrieval Task
Shuo Sun, Suzanna Siaand Kevin Duh 134

ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and Diagnosing Dialogue Systems
Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi Takanobu, Jinchao Li, Baolin Peng, Jianfeng
Gao, Xiaoyan Zhu and Minlie Huang. i e 142

OpusFilter: A Configurable Parallel Corpus Filtering Toolbox
Mikko Aulamo, Sami Virpioja and Jorg Tiedemann 150

Label Noise in Context
Michael Desmond, Catherine Finegan-Dollak, Jeff Boston and Matt Arnold 157

exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformer Models
Benjamin Hoover, Hendrik Strobelt and Sebastian Gehrmann 187

Nakdan: Professional Hebrew Diacritizer
Avi Shmidman, Shaltiel Shmidman, Moshe Koppel and Yoav Goldberg 197

Photon: A Robust Cross-Domain Text-to-SQL System
Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi, Richard Socher, Caiming Xiong, Michael Lyu and
Irwin KNG . . o oo e 204

Interactive Task Learning from GUI-Grounded Natural Language Instructions and Demonstrations
Toby Jia-Jun Li, Tom Mitchell and Brad Myers........... ... i, 215

MixingBoard: a Knowledgeable Stylized Integrated Text Generation Platform
Xiang Gao, Michel Galley and Bill Dolan........... ... 224

NLP Scholar: An Interactive Visual Explorer for Natural Language Processing Literature
Saif M. Mohammad. e 232

Stimulating Creativity with FunLines: A Case Study of Humor Generation in Headlines
Nabil Hossain, John Krumm, Tanvir Sajed and Henry Kautz 256

Usnea: An Authorship Tool for Interactive Fiction using Retrieval Based Semantic Parsing
Ben Swanson and Boris SmuUs e 263

DIALOGPT : Large-Scale Generative Pre-training for Conversational Response Generation
Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu and Bill Dolan. oo 270

ADVISER: A Toolkit for Developing Multi-modal, Multi-domain and Socially-engaged Conversational
Agents

Chia-Yu Li, Daniel Ortega, Dirk Vith, Florian Lux, Lindsey Vanderlyn, Maximilian Schmidt,
Michael Neumann, Moritz Volkel, Pavel Denisov, Sabrina Jenne, Zorica Kacarevic and Ngoc Thang

Prta: A System to Support the Analysis of Propaganda Techniques in the News
Giovanni Da San Martino, Shaden Shaar, Yifan Zhang, Seunghak Yu, Alberto Barrén-Cedefio and
Preslay INaKOV e 287

Clinical-Coder: Assigning Interpretable ICD-10 Codes to Chinese Clinical Notes
Pengfei Cao, Chenwei Yan, Xiangling Fu, Yubo Chen, Kang Liu, Jun Zhao, Shengping Liu and
Weifeng Chongo e e e e 294

ESPnet-ST: All-in-One Speech Translation Toolkit
Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki Karita, Nelson Yalta, Tomoki Hayashi and
Shinji Watanabeo e 302

Penman: An Open-Source Library and Tool for AMR Graphs
Michael Wayne Goodmanttt e 312

Embedding-based Scientific Literature Discovery in a Text Editor Application
Onur Gokee, Jonathan Prada, Nikola I. Nikolov, Nianlong Gu and Richard H.R. Hahnloser ... 320

MMPE: A Multi-Modal Interface using Handwriting, Touch Reordering, and Speech Commands for
Post-Editing Machine Translation

Nico Herbig, Santanu Pal, Tim Diiwel, Kalliopi Meladaki, Mahsa Monshizadeh, Vladislav Hna-
tovskiy, Antonio Kriiger and Josef van Genabith............ 327

Torch-Struct: Deep Structured Prediction Library
Alexander Rusho 335

Conversation Learner - A Machine Teaching Tool for Building Dialog Managers for Task-Oriented Dia-
log Systems

Swadheen Shukla, Lars Liden, Shahin Shayandeh, Eslam Kamal, Jinchao Li, Matt Mazzola, Thomas
Park, Baolin Peng and Jianfeng Gao. 343

NSTM: Real-Time Query-Driven News Overview Composition at Bloomberg
Joshua Bambrick, Minjie Xu, Andy Almonte, [gor Malioutov, Guim Perarnau, Vittorio Selo and Iat
Chong Chamno e e e e e e e e e e e e e e 350

SUPPAI: finding evidence for supplement-drug interactions
Lucy Wang, Oyvind Tafjord, Arman Cohan, Sarthak Jain, Sam Skjonsberg, Carissa Schoenick,
Nick Botner and Waleed AMMAT.ouut ittt e e e 362

LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation
Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Seyeon Lee, Qinyuan Ye, Elizabeth Boschee,
Leonardo Neves and Xiang Ren. e e 372

What’s The Latest? A Question-driven News Chatbot
Philippe Laban, John Canny and Marti A. Hearsto, 380

X1

Xiaomingbot: A Multilingual Robot News Reporter

Runxin Xu'; Jun Cao?, Mingxuan Wang?, Jiaze Chen?, Hao Zhou?
Ying Zeng?, Yuping Wang?, Li Chen?, Xiang Yin?, Xijin Zhang?
Songcheng Jiang?, Yuxuan Wang?, and Lei Li?

1 School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2 ByteDance Al Lab, Shanghai, China
runxinxu@gmail.com

{caojun.sh, wangmingxuan.89, chenjiaze, zhouhao.nlp

zengying.ss,
yinxiang.stephen,

wangyuping,
zhangxijin,

chenli.cloud,
jiangsongcheng

wangyuxuan.ll, lileilab}@bytedance.com

Abstract

This paper proposes the building of Xiaom-
ingbot, an intelligent, multilingual and multi-
modal software robot equipped with four inte-
gral capabilities: news generation, news trans-
lation, news reading and avatar animation. Its
system summarizes Chinese news that it au-
tomatically generates from data tables. Next,
it translates the summary or the full article
into multiple languages, and reads the multi-
lingual rendition through synthesized speech.
Notably, Xiaomingbot utilizes a voice cloning
technology to synthesize the speech trained
from a real person’s voice data in one input
language. The proposed system enjoys several
merits: it has an animated avatar, and is able to
generate and read multilingual news. Since it
was put into practice, Xiaomingbot has written
over 600,000 articles, and gained over 150,000
followers on social media platforms.

1 Introduction

The wake of automated news reporting as an emerg-
ing research topic has witnessed the development
and deployment of several robot news reporters
with various capabilities. Technological improve-
ments in modern natural language generation have
further enabled automatic news writing in certain
areas. For example, GPT-2 is able to create fairly
plausible stories (Radford et al., 2019). Bayesian
generative methods have been able to create de-
scriptions or advertisement slogans from structured
data (Miao et al., 2019; Ye et al., 2020). Summa-
rization technology has been exploited to produce
reports on sports news from human commentary
text (Zhang et al., 2016).

While very promising, most previous robot re-
porters and machine writing systems have limited

*The work was done while the author was an intern at
ByteDance Al Lab.
f Corresponding author.

1

News

News
Reading
A

Generation
X

Avatar]
'—)I A

X

News
Translation
A
Neural Machine Text-To-Speech
Generation Translation Synthesis
Text
Summarization

Figure 1: Xiaomingbot System Architecture

Data-To-Text Lip
Syncing

Cross-lingual

{ Voice Cloning

Body-cloth
Render

capabilities reports on sports news that only focus
on text generation. We argue in this paper that an in-
telligent robot reporter should acquire the following
capabilities to be truly user friendly: a) it should
be able to create news articles from input data;
b) it should be able to read the articles with lifelike
character animation like in TV broadcasting; and
c¢) it should be multi-lingual to serve global users.
None of the existing robot reporters are able dis-
play performance on these tasks that matches that
of a human reporter. In this paper, we present Xi-
aomingbot, a robot news reporter capable of news
writing, summarization, translation, reading, and
visual character animation. In our knowledge, it
is the first multilingual and multimodal Al news
agent. Hence, the system shows great potential for
large scale industrial applications.

Figure 1 shows the capabilities and components
of the proposed Xiaomingbot system. It includes
four components: @) a news generator, b) a news
translator, c) a cross-lingual news reader, and d) an
animated avatar. The text generator takes input in-
formation from data tables and produces articles in
natural languages. Our system is targeted for news
area with available structure data, such as sports
games and financial events. The fully automated
news generation function is able to write and pub-
lish a story within mere seconds after the event
took place, and is therefore much faster compared
with manual writing. Within a few seconds after
the events, it can accomplish the writing and pub-
lishing of a story. The system also uses a pretrained

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1-8
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Text
Summarization

Generated News

=1 [E==]
FIRIAERRO-OFSHEF A ! WAHEFEM

JERIE201958A25023:, FFAE24E, FMAEHEHIEEMTA. LEFAG, TomastE—Rah
TELERARICAT, BEHILTTE. MubarakE—RAfFLLRARBIT, WEFIHLRT 8k, MR
7, BE—ERNKEMEINFRIR, BT BERAERARID, WMAIRT FF. HibBLE, Didac
ERAMELERARICAT, WEFIHT TR, AlebE—RMELLRAMILAT, REHLTTEE. X5
SREEEEIREANSNA], BEARS, BRAURSTS LS. &L, ARHEAZTTI0HHNERE,
KIERF#HK, MABRT —HTR.

[teEER]

BIRIEET EHTMEEN BER, A LBEFAP #1415, HPEHRE45, THHNESREN.
BEYF NGO R2IKUATE, E205EMRF19HED2IR, BEAFI95%, HP12i5A2.55K,

(G 5er)]

B75%, TomasiEil, BFMERA, WHALTHES. $4058, MubarakiBil, BFHIER

K, BEFIHTEMES, $555%, DidaclM, BMTFMERK, BBEHILTHEMES. $H565, AL
FRIRA, JoselufgEiEManuitiis,

Summary

Machine
Translation

7/l

JERESE120198F25H23 %, FRE24E, PN EHIBETEIFA. MRS, PBE—EONIEE
AR, BHFESRAMABRER], WHTRT EF, EUFALMOLLR2RANTE, 72045

BMBRF19UHED2IR, BEARI5%, HA1215K2.58%
Avatar
Animation

Text-To-Speech

Translation, Speech, Animation

Summary (Chinese)

JERASIEI2019F8 A25H23, FFRE24E, AL EHIPEFYE
FA. MERF, BE—EONSEMR SR, BEFES
RERGEREH], WATRT FF. BEUEFAGHRILEEIRIA
WAE, E05EMBEB19HED2R, BMEIATIS%, HP1285K
2.58k,

3
LI

Translation (English)

. At 23: 00 Beijing time on August 25, 2019, in the second round of La
Liga, Alaves played at home against the Spaniard. There was a
certain chance to threaten each other's goal, but due to luck, both
sides did not break the goal, and the two sides were tied. The
Spaniard's recent game was not bad within 2 goals, with at least 2
goals in 19 games in nearly 20 games, with a probability of 95%,
including 12 big 2.5 goals

Figure 2: User Interface of Xiaomingbot. On the left is a piece of sports news, which is generated from a Ta-
ble2Text model. On the top is the text summarization result. On the bottom right corner, Xiaomingbot produces

the corresponding speech and visual effects.

text summarization technique to create summaries
for users to skim through. Xiaomingbot can also
translate news so that people from different coun-
tries can promptly understand the general meaning
of an article. Xiaomingbot is equipped with a cross
lingual voice reader that can read the report in dif-
ferent languages in the same voice. It is worth men-
tioning that Xiaomingbot excels at voice cloning. It
is able to learn a person’s voice from audio samples
that are as short as only two hours, and maintain
precise consistency in using that voice even when
reading in different languages. In this work, we
recorded 2 hours of Chinese voice data from a fe-
male speaker, and Xiaomingbot learnt to speak in
English and Japanese with the same voice. Finally,
the animation module produces an animated car-
toon avatar with lip and facial expression synchro-
nized to the text and voice. It also generates the
full body with animated cloth texture. The demo
video is available at https://www.youtube.com/
watch?v=zNfaj_Dvé-E. The home page is avail-
able at https://xiaomingbot.github.io.

The system has the following advantages: a) It
produces timely news reports for certain areas and
is multilingual. ») By employing a voice cloning
model to Xiaomingbot’s neural cross lingual voice

reader, we’ve allowed it to learn a voice in different
languages with only a few examples c) For better
user experience, we also applied cross lingual vi-
sual rendering model, which generates synthesis
lip syncing in consistent with the generated voice.
d) Xiaomingbot has been put into practice and pro-
duced over 600, 000 articles, and gained over 150k
followers in social media platforms.

2 System Architecture

The Xiaomingbot system includes four components
working together in an pipeline, as shown in Fig-
ure 1. The system receives input from data table
containing event records, which, depending on the
domain, can be either a sports game with time-line
information, or a financial piece such as tracking
stock market. The final output is an animated avatar
reading the news article with a synthesized voice.
Figure 2 illustrates an example of our Xiaomingbot
system. First, the text generation model generates
a piece of sports news. Then, as is shown on the
top of the figure, the text summarization module
trims the produced news into a summary, which
can be read by users who prefer a condensed ab-
stract instead of the whole news. Next, the machine
translation module will translate the summary into

the language that the user specifies, as illustrated
on the bottom right of the figure. Relying on the
text to speech (TTS) module, Xiaomingbot can
read both the summary and its translation in differ-
ent languages using the same voice. Finally, the
system can visualize an animated character with
synchronized lip motion and facial expression, as
well as lifelike body and clothing.

3 News Generation

In this section, we will first describe the automated
news generation module, followed by the news
summarization component.

3.1 Data-To-Text Generation

Our proposed Xiaomingbot is targeted for writing
news for domains with structured input data, such
as sports and finance. To generate reasonable text,
several methods have been proposed(Miao et al.,
2019; Sun et al., 2019; Ye et al., 2020). However,
since it is difficult to generate correct and reliable
content through most of these methods, we employ
a template based on table2text technology to write
the articles.

Table 1 illustrates one example of soccer game
data and its generated sentences. In the example,
Xiaomingbot retrieved the tabled data of a single
sports game with time-lines and events, as well
as statistics for each player’s performance. The
data table contains time, event type (scoring, foul,
etc.), player, team name, and possible additional at-
tributes. Using these tabulated data, we integrated
and normalized the key-value pair from the table.
We can also obtain processed key-value pairs such
as “Winning team”, “Lost team”, “Winning Score”
, and use template-based method to generate news
from the tabulated result. Those templates are writ-
ten in a custom-designed java-script dialect. For
each type of the event, we manually constructed
multiple templates and the system will randomly
pick one during generation. We also created com-
plex templates with conditional clauses to generate
certain sentences based on the game conditions.
For example, if the scores of the two teams differ
too much, it may generate “Team A overwhelms
Team B.” Sentence generation strategy are classi-
fied into the following categories:

e Pre-match Analysis. It mainly includes the
historical records of each team.

e In-match Description. It describes most im-
portant events in the game such as “some-

one score a goal”, “someone received yellow
card”.

e Post-match Summary. It’s a brief summary
of this game , while also including predictions
of the progress of the subsequent matches.

3.2 Text Summarization

For users who prefer a condensed summary of the
report, Xiaomingbot can provide a short gist ver-
sion using a pre-trained text summarization model.
We choose to use the said model instead of gen-
erating the summary directly from the table data
because the former can create more general content,
and can be employed to process manually written
reports as well. There are two approaches to sum-
marize a text: extractive and abstractive summariza-
tion. Extractive summarization trains a sentence se-
lection model to pick the important sentences from
an input article, while an abstractive summarization
will further rephrase the sentences and explore the
potential for combining multiple sentences into a
simplified one.

We trained two summarization models. One is
a general text summarization using a BERT-based
sequence labelling network. We use the TTNews
dataset, a Chinese single document summarization
dataset for training from NLPCC 2017 and 2018
shared tasks (Hua et al., 2017; Li and Wan, 2018).
It includes 50,000 Chinese documents with human
written summaries. The article is separated into a
sequence of sentences. The BERT-based summa-
rization model output 0-1 labels for all sentences.

In addition, for soccer news, we trained a special
summarization model based on the commentary-
to-summary technique (Zhang et al., 2016). It con-
siders the game structure of soccer and handles
important events such as goal kicking and fouls
differently. Therefore it is able to better summarize
the soccer game reports.

4 News Translation

In order to provide multilingual news to users, we
propose using a machine translation system to trans-
late news articles. In our system, we pre-trained
several neural machine translation models, and em-
ploy state of the art Transformer Big Model as
our NMT component. The parameters are exactly
the same with (Vaswani et al., 2017). In order
to further improve the system and speed up the
inference, we implemented a CUDA based NMT
system, which is 10x faster than the Tensorflow

Table 1: Examples of Sports News Generation

Time Category Player Team

Generated Text

Translated Text

23’ Score Didac Espanyol

F23 B, B A
JHIEFEITA—EK

In the 23rd minute, Es-
panyol Didac scored a
goal.

35’ Yellow Card Mubarak Alavés

B350, PR 4EHT | In
BEREIZE —5KE
f

the 35th minute,
Alavés Mubarak re-
ceived a yellow card.

approach !. Furthermore, our machine translation
system leverages named-entity (NE) replacement
for glossaries including team name, player name
and so on to improve the translation accuracy. It
can be further improved by recent machine trans-
lation techniques (Yang et al., 2020; Zheng et al.,
2020).

Transformer Encoder

AN

Transformer Decoder

BYFA
Espanyol

Named Entity
Replacement

Figure 3: Neural Machine Translation Model.

We use the in-house data to train our machine
translation system. For Chinese-to-English, the
dataset contains more than 100 million parallel sen-
tence pairs. For Chinese-to-Japanese, the dataset
contains more than 60 million parallel sentence
pairs.

S Multilingual News Reading

In order to read the text of the generated and/or
translated news article, we developed a text to
speech synthesis model with multilingual capabil-
ity, which only requires a small amount of recorded
voice of a speaker in one language. We devel-
oped an additional cross-lingual voice cloning tech-
nique to clone the pronunciation and intonation.
Our cross-lingual voice cloning model is based on
Tacotron 2 (J. Shen, 2018), which uses an attention-
based sequence-to-sequence model to generate a
sequence of log-mel spectrogram frames from an

"https://github.com/bytedance/byseqlib

input text sequence (Wang et al., 2017). The ar-
chitecture is illustrated in Figure 4, we made the
following augmentations on the base Tacotron 2
model:

e We applied an additional speaker as well as
language embedding to support multi-speaker
and multilingual input.

e We introduced a variational autoencoder-style
residual encoder to encode the variational
length mel into a fix length latent representa-
tion, and then conditioned the representation
to the decoder.

o We used Gaussian-mixture-model (GMM) at-
tention rather than location-sensitive attention.

e We used wavenet neural vocoder (Oord et al.,
2016).

For Chinese TTS, we used hundreds of speak-
ers from internal automatic audio text processing
toolkit, for English, we used libritts dataset (Zen
et al., 2019), and for Japanese we used JVS corpus
which includes 100 Japanese speakers. As for in-
put representations, we used phoneme with tone
for Chinese, phoneme with stress for English, and
phoneme with mora accent for Japanese. In our
experiment, we recorded 2 hours of Chinese voice
data from an internal female speaker who speaks
only Chinese for this demo.

6 Synchronized Avatar Animation
Synthesis

We believe that lifelike animated avatar will make
the news broadcasting more viewer friendly. In this
section, we will describe the techniques to render
the animated avatar and to synchronize the lip and
facial motions.

Waveform
Samples

!

WaveNet
Vocoder

Mel Spectrogram

a

Language & . T
Speaker id Embedding Decoder

()

Latent GMM c
Representation Attention
Mel Spectrogram T T
i .
s O . Residual Encoder
Encoder
b

Character

Embedding

Input Text

Figure 4: Voice Cloning for Cross-lingual Text-to-
Speech Synthesis.

6.1 Lip Syncing

The avatar animation module produces a set of lip
motion animation parameters for each video frame,
which is synced with the audio synthesized by the
TTS module and used to drive the character.

Since the module should be speaker agnostic
and TTS-model-independent, no audio signal is re-
quired as input. Instead, a sequence of phonemes
and their duration is drawn from the TTS mod-
ule and fed into the lip motion synthesis module.
This step can be regarded as tackling a sequence
to sequence learning problem. The generated lip
motion animation parameters should be able to
be re-targeted to any avatar and easy to visual-
ize by animators. To meet this requirement, the
lip motion animation parameters are represented
as blend weights of facial expression blendshapes.
The blendshapes for the rendered character are de-
signed by an animator according to the semantic
of the blendshapes. In each rendered frame, the
blendshapes are linear blended with the weights
predicted by the module to form the final 3D mesh
with correct mouth shape for rendering.

Since the module should produce high fidelity

animations and run in real-time, a neural network
model that has learned from real-world data is in-
troduced to transform the phoneme and duration
sequence to the sequence of blendshape weights.
A sliding window neural network similar to Taylor
et al. (2017), which is used to capture the local
phonetic context and produce smooth animations.
The phoneme and duration sequence is converted
to fixed length sequence of phoneme frame accord-
ing to the desired video frame rate before being
further converted to one-hot encoding sequence
which is taken as input to the neural network in a
sliding widow the length of which is 11. Three are
32 mouth related blendshape weights predicted for
each frame in a sliding window with length of 5.
Following Taylor et al. (2017), the final blendshape
weights for each frame is generated by blending ev-
ery predictions in the overlapping sliding windows
using the frame-wise mean.

The model we used is a fully connected feed for-
ward neural network with three hidden layers and
2048 units per hidden layer. The hyperbolic tan-
gent function is used as activation function. Batch
normalization is used after each hidden layer (Ioffe
and Szegedy, 2015). Dropout with probability of
0.5 is placed between output layer and last hidden
layer to prevent over-fitting (Wager et al., 2013).
The network is trained with standard mini-batch
stochastic gradient descent with mini-batch size of
128 and learning rate of le-3 for 8000 steps.

The training data is build from 3 hours of video
and audio of a female speaker. Different from Tay-
lor et al. (2017), instead of using AAM to parame-
terize the face, the faces in the video frames are pa-
rameterized by fitting a blinear 3D face morphable
model inspired by Cao et al. (2013) built from
our private 3D capture data. The poses of the 3D
faces, the identity parameters and the weights of
the individual-specific blendshapes of each frame
and each view angle are joint solved with a cost
function built from reconstruction error of the fa-
cial landmarks. The identity parameters are shared
within all frames and the weights of the blend-
shapes are shared through view angles which have
the same timestamp. The phoneme-duration se-
quence and the blendshape weights sequence are
used to train the sliding window neural network.

6.2 Character Rendering

Unity, the real time 3D rendering engine is used to
render the avatar for Xiaomingbot.

multi-lingual phoneme deep mouth re-target
cloned and neural blendshape to
voice duration network weights avatar
phoneme begin duration
03 0 0.05 \) N
¥4 NL/ /!
r3 0.05 0.075 .‘\ﬂn’- = ,“6 " *wﬁ)
m3 0.2 0.075

Figure 5: Avatar animation synthesis: a) multi-lingual voices are cloned. b) A sequence of phonemes and their
duration is drawn from the voices. c) A sequence of blendshape weights is transformed by a neural network model.
d) Lip-motion is synthesized and re-targeted synchronously to avatar animation.

For eye rendering, we used Normal Mapping to
simulate the the iris, and Parallax Mapping to sim-
ulate the effect of refraction. As for the highlights
of the eyes, we used the GGX term in PBR for
approximation. In terms of hair rendering, we used
the kajiya-kay shading model to simulate the dou-
ble highlights of the hair (Kajiya and Kay, 1989),
and solved the problem of translucency using a
mesh-level triangle sorting algorithm. For skin
rendering, we used the Separable Subsurface Scat-
tering algorithm to approximate the translucency
of the skin (Jimenez et al., 2015). For simple cloth-
ing materials, we used the PBR algorithm directly.
For fabric and silk, we used Disney’s anisotropic
BRDF (Burley and Studios, 2012).

Since physical-based cloth simulation algorithm
is more expensive for mobile, we used the Spring-
Mass System(SMS) for cloth simulation. The spe-
cific method is to generate a skeletal system and
use SMS to drive the movement of bones (Liu et al.,
2013). However, the above approach may cause the
clothing to overlap the body. To address this prob-
lem, we deployed some new virtual bone points
to the skeletal system, and reduced the overlay us-
ing the CCD IK method (Wang and Chen, 1991),
which displayed great performance in most cases.

7 Conclusion

In this paper, we present Xiaomingbot, a multilin-
gual and multi-modal system for news reporting.
The entire process of Xiaomingbot’s news report-
ing can be condensed as follows. First, it learns
how to write news articles based on a template

based table2text technology, and summarize the
news through an extraction based method. Next, its
system translates the summarization into multiple
languages. Finally, the system produces the video
of an animated avatar reading the news with synthe-
sized voice. Owing to the voice cloning model that
can learn from a few Chinese audio samples, Xi-
aomingbot can maintain consistency in intonation
and voice projection across different languages. So
far, Xiaomingbot has been deployed online and is
serving users.

The system is but a first attempt to build a fully
functional robot reporter capable of writing, speak-
ing, and expressing with motion. Xiaomingbot is
not yet perfect, and has limitations and room for im-
provement. One such important direction for future
improvement is the expansion of areas that it can
work in, which can be achieved through a promis-
ing approach of adopting model based technologies
together with rule/template based ones. Another
direction for improvement is to further enhance
the ability to interact with users via a conversation
interface.

Acknowledgments

We would like to thank Yuzhang Du, Lifeng Hua,
Yujie Li, Xiaojun Wan, Yue Wu, Mengshu Yang,
Xiyue Yang, Jibin Yang, and Tingting Zhu for help-
ful discussion and design of the system. The name
Xiaomingbot was suggested by Tingting Zhu in
2016. We also wish to thank the reviewers for their
insightful comments.

References

Brent Burley and Walt Disney Animation Studios.
2012. Physically-based shading at disney. In ACM
SIGGRAPH, volume 2012, pages 1-7.

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and
Kun Zhou. 2013. Facewarehouse: A 3d facial ex-
pression database for visual computing. IEEE Trans-
actions on Visualization and Computer Graphics,
20(3):413-425.

Lifeng Hua, Xiaojun Wan, and Lei Li. 2017. Overview
of the NLPCC 2017 shared task: Single document
summarization. In Natural Language Processing
and Chinese Computing - 6th CCF International
Conference, NLPCC 2017, Dalian, China, Novem-
ber 8-12, 2017, Proceedings, volume 10619 of Lec-
ture Notes in Computer Science, pages 942-947.
Springer.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
pages 448-456.

R. J. Weiss M. Schuster N. Jaitly Z. Yang Z. Chen
Y. Zhang Y. Wang R. Skerry-Ryan et al. J. Shen,
R. Pang. 2018. Natural TTS synthesis by con-
ditioning wavenet on mel spectrogram predictions.
ICASSP.

Jorge Jimenez, Karoly Zsolnai, Adrian Jarabo, Chris-
tian Freude, Thomas Auzinger, Xian-Chun Wu,
Javier der Pahlen, Michael Wimmer, and Diego
Gutierrez. 2015. Separable subsurface scattering.
Comput. Graph. Forum, 34(6):188-197.

James T Kajiya and Timothy L Kay. 1989. Rendering
fur with three dimensional textures. ACM Siggraph
Computer Graphics, 23(3):271-280.

Lei Li and Xiaojun Wan. 2018. Overview of the
NLPCC 2018 shared task: Single document sum-
marization. In Natural Language Processing and
Chinese Computing - 7th CCF International Con-
ference, NLPCC 2018, Hohhot, China, August 26-
30, 2018, Proceedings, Part II, volume 11109 of
Lecture Notes in Computer Science, pages 457-463.
Springer.

Tiantian Liu, Adam W Bargteil, James F O’Brien, and
Ladislav Kavan. 2013. Fast simulation of mass-
spring systems. ACM Transactions on Graphics

(TOG), 32(6):1-7.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. CGMH: Constrained sentence generation
by metropolis-hastings sampling. In the 33rd AAAI
Conference on Artificial Intelligence (AAAI).

Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. 2016. Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

Zhaoyue Sun, Jiaze Chen, Hao Zhou, Deyu Zhou, Lei
Li, and Mingmin Jiang. 2019. GraspSnooker: Auto-
matic Chinese commentary generation for snooker
videos. In the 28th International Joint Conference
on Artificial Intelligence (IJCAI), pages 6569-6571.
Demos.

Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe
Mahler, James Krahe, Anastasio Garcia Rodriguez,
Jessica Hodgins, and Tain Matthews. 2017. A deep
learning approach for generalized speech animation.
ACM Transactions on Graphics (TOG), 36(4):1-11.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Stefan Wager, Sida Wang, and Percy S Liang. 2013.
Dropout training as adaptive regularization. In Ad-
vances in neural information processing systems,
pages 351-359.

L-CT Wang and Chih-Cheng Chen. 1991. A combined
optimization method for solving the inverse kine-
matics problems of mechanical manipulators. /EEE
Transactions on Robotics and Automation, 7(4):489—
499.

Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stan-
ton, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy
Bengio, Quoc V. Le, Yannis Agiomyrgiannakis, Rob
Clark, and Rif A. Saurous. 2017. Tacotron: Towards
end-to-end speech synthesis. In Interspeech 2017,
18th Annual Conference of the International Speech
Communication Association, Stockholm, Sweden,
August 20-24, 2017, pages 4006—4010.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020.
Towards making the most of BERT in neural ma-
chine translation. In the 34th AAAI Conference on
Artificial Intelligence (AAAI).

Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, and
Lei Li. 2020. Variational template machine for data-
to-text generation. In International Conference on
Learning Representations (ICLR).

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J.
Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. 2019.
Libritts: A corpus derived from librispeech for text-
to-speech. In Interspeech 2019, 20th Annual Con-
ference of the International Speech Communication
Association, Graz, Austria, 15-19 September 2019,
pages 1526-1530.

Jianmin Zhang, Jin-ge Yao, and Xiaojun Wan. 2016.
Towards constructing sports news from live text
commentary. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1361—
1371, Berlin, Germany. Association for Computa-
tional Linguistics.

Zaixiang Zheng, Hao Zhou, Shujian Huang, Lei Li,
Xin-Yu Dai, and Jiajun Chen. 2020. Mirror-
generative neural machine translation. In Interna-
tional Conference on Learning Representations.

TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural
Language Processing

Ziqing Yang', Yiming Cui'’, Zhipeng Chen',
Wanxiang Che!, Ting Liu*, Shijin Wang'®, Guoping Hu'

fState Key Laboratory of Cognitive Intelligence, iFLYTEK Research, China
tResearch Center for Social Computing and Information Retrieval (SCIR),

Harbin Institute of Technology, Harbin, China

$iFLYTEK AI Research (Hebei), Langfang, China
W{zqyangS,ymcui,zpchen,sjwangB,gphu}@iflytek.com
Hymcui, car,tliu}@ir.hit.edu.cn

Abstract

In this paper, we introduce TextBrewer, an
open-source knowledge distillation toolkit de-
signed for natural language processing. It
works with different neural network mod-
els and supports various kinds of super-
vised learning tasks, such as text classifica-
tion, reading comprehension, sequence label-
ing. TextBrewer provides a simple and uni-
form workflow that enables quick setting up
of distillation experiments with highly flexible
configurations. It offers a set of predefined dis-
tillation methods and can be extended with cus-
tom code. As a case study, we use TextBrewer
to distill BERT on several typical NLP tasks.
With simple configurations, we achieve results
that are comparable with or even higher than
the public distilled BERT models with similar
numbers of parameters. |

1 Introduction

Large pre-trained language models, such as GPT
(Radford, 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b) and XLNet (Yang
et al., 2019) have achieved great success in many
NLP tasks and greatly contributed to the progress
of NLP research. However, one big issue of these
models is the high demand for computing resources
— they usually have hundreds of millions of param-
eters, and take several gigabytes of memory to train
and inference — which makes it impractical to de-
ploy them on mobile devices or online systems.
From a research point of view, we are tempted
to ask: is it necessary to have such a big model
that contains hundreds of millions of parameters
to achieve a high performance? Motivated by the
above considerations, recently, some researchers
in the NLP community have tried to design lite
models (Lan et al., 2019), or resort to knowledge

'"TextBrewer: http://textbrewer.hfl-rc.com

9

distillation (KD) technique to compress large pre-
trained models to small models.

KD is a technique of transferring knowledge
from a teacher model to a student model, which is
usually smaller than the teacher. The student model
is trained to mimic the outputs of the teacher model.
Before the birth of BERT, KD had been applied to
several specific tasks like machine translation (Kim
and Rush, 2016; Tan et al., 2019) in NLP. While the
recent studies of distilling large pre-trained mod-
els focus on finding general distillation methods
that work on various tasks and are receiving more
and more attention (Sanh et al., 2019; Jiao et al.,
2019; Sun et al., 2019a; Tang et al., 2019; Liu et al.,
2019a; Clark et al., 2019; Zhao et al., 2019).

Though various distillation methods have been
proposed, they usually share a common workflow:
firstly, train a teacher model, then optimize the stu-
dent model by minimizing some losses that are
calculated between the outputs of the teacher and
the student. Therefore it is desirable to have a
reusable distillation workflow framework and treat
different distillation strategies and tricks as plu-
gins so that they could be easily and arbitrarily
added to the framework. In this way, we could
also achieve great flexibility in experimenting with
different combinations of distillation strategies and
comparing their effects.

In this paper, we introduce TextBrewer, a
PyTorch-based distillation toolkit for NLP that
aims to provide a unified distillation workflow, save
the effort of setting up experiments and help users
to distill more effective models. TextBrewer pro-
vides simple-to-use APIs, a collection of distilla-
tion methods, and highly customizable configura-
tions. It has also been proved able to distill BERT
models efficiently and reproduce the state-of-the-
art results on typical NLP tasks. The main features
of TextBrewer are:

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 9—-16
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

e Versatility in tasks and models. It works
with a wide range of models, from the RNN-
based model to the transformer-based model, and
works on typical natural language understanding
tasks. Its usability in tasks like text classification,
reading comprehension, and sequence labeling
has been fully tested.

Flexibility in configurations. The distillation
process is configured by configuration objects,
which can be initialized from JSON files and
contain many tunable hyperparameters. Users
can extend the configurations with new custom
losses, schedulers, etc., if the presets do not meet
their requirements.

Including various distillation methods and
strategies. KD has been studied extensively in
computer vision (CV) and has achieved great
success. It would be worthwhile to introduce
these studies to the NLP community as some
of the methods in these studies could also be
applied to texts. TextBrewer includes a set of
methods from both CV and NLP, such as flow of
solution procedure (FSP) matrix loss (Yim et al.,
2017), neuron selectivity transfer (NST) (Huang
and Wang, 2017), probability shift and dynamic
temperature (Wen et al., 2019), attention matrix
loss, multi-task distillation (Liu et al., 2019a). In
our experiments, we will show the effectiveness
of applying methods from CV on NLP tasks.

Being non-intrusive and simple to use. Non-
intrusive means there is no need to modify the
existing code that defines the models. Users
can re-use the most parts of their existing train-
ing scripts, such as model definition and initial-
ization, data preprocessing and task evaluation.
Only some preparatory work (see Section 3.3)
are additionally required to use TextBrewer to
perform the distillation.

TextBrewer also provides some useful utilities
such as model size analysis and data augmentation
to help model design and distillation.

2 Related Work

Recently some distilled BERT models have been
released, such as DistilBERT (Sanh et al., 2019),
TinyBERT (Jiao et al., 2019), and ERNIE Slim?.
DistilBERT performs distillation on the pre-
training task, i.e., masked language modeling.

*https://github.com/PaddlePaddle/ERNIE

10

TinyBERT performs transformer distillation at both
the pre-training and task-specific learning stages.
ERNIE Slim distills ERNIE (Sun et al., 2019b,c)on
a sentiment classification task. Their distillation
code is publicly available, and users can replicate
their experiments easily. However, it is laborious
and error-prone to change the distillation method
or adapt the distillation code for some other models
and tasks, since the code is not written for general
distillation purposes.

There also exist some libraries for general model
compression. Distiller (Zmora et al., 2018) and
PaddleSlim? are two versatile libraries supporting
pruning, quantization and knowledge distillation.
They focus on models and tasks in computer vision.
In comparison, TextBrewer is more focused on
knowledge distillation on NLP tasks, more flexible,
and offers more functionalities. Based on PyTorch,
It provides simple APIs and rich customization for
fast and clean implementations of experiments.

3 Architecture and Design

Figure 1 shows an overview of the main function-
alities and architecture of TextBrewer. To support
different models and different tasks and meanwhile
stay flexible and extensible, TextBrewer provides
distillers to conduct the actual experiments and con-
figuration classes to configure the behaviors of the
distillers.

3.1 Distillers

Distillers are the cores of TextBrewer. They
automatically train and save models and sup-
port custom evaluation functions. Five distillers
have been implemented: BasicDistiller
is used for single-task single-teacher distilla-
tion; GeneralDistiller in addition sup-
ports more advanced intermediate loss functions;
MultiTeacherDistiller distills an ensem-
ble of teacher models into a single student
model; MultiTaskDistiller distills multi-
ple teacher models of different tasks into a sin-
gle multi-task student model (Clark et al., 2019;
Liu et al., 2019a). We also have implemented
BasicTrainer for training teachers on labeled
data to unify the workflows of supervised learning
and distillation. All the distillers share the same
interface and usage. They can be replaced by each
other easily.

*https://github.com/PaddlePaddle/PaddleSlim

Configurations Distillers
General MultiTeacher

Distiller Distiller

Distiller

G

()

Figure 1:
adaptors inside a distiller.

3.2 Configurations and Presets

The general training settings and the distilla-
tion method settings of a distiller are specified
by two configurations: TrainingConfig and
DistillationConfig.

TrainingConfig defines the settings that are
general to deep learning experiments, including
the directory where logs and student model are
stored (Log_dir, output_dir), the device to
use (device), the frequency of storing and evalu-
ating student model (ckpt _frequencey), etc.

DistillationConfig defines the settings that
are pertinent to distillation, where various
distillation methods could be configured
or enabled. It includes the type of KD
loss (kd-loss_type), the temperature and
weight of KD loss (temperature and
kd_-loss_weight), the weight of hard-label
loss (hard_-label _weight), probability shift
switch, schedulers and intermediate losses, etc.
Intermediate losses are used for computing the
losses between the intermediate states of teacher
and student, and they could be freely combined
and added to the distillers. Schedulers are used to
adjust loss weight or temperature dynamically.

The available values of configuration options
such as loss functions and schedulers are defined as
dictionaries in presets. For example, the loss func-
tion dictionary includes hidden state loss, cosine
similarity loss, FSP loss, NST loss, etc.

All the configurations can be initialized from
JSON files. In Figure 3 we show an exam-
ple of DistillationConfig for distilling
BERTg3,sE, to a 4-layer transformers. See Section
4 for more details.

v)

lTeacher model ‘ lStudent model ‘

V.

| Teacher adaptor | | Student adaptor |
v
Utilities {‘logits’ : ..., {‘logits’ : ...,
Basic ‘inputs_mask’:..., ‘inputs_mask’:...,
. ‘losses’: ..., ‘losses’: ...,
Trainer ‘hidden’:..., ‘hidden’:...,
‘attention’: ... } ‘attention’: ... }

11

.| Calculate loss
and optimize

(b)

(a) An overview of the main functionalities of TextBrewer. (b) A sketch that shows the function of

from textbrewer import GeneralDistiller
from textbrewer import TrainingConfig, DistillationConfig

We omit the initialization of models, optimizer, and dataloader.
teacher_model : torch.nn.Module = ...

student_model : torch.nn.Module = ...

dataloader : torch.utils.data.DatalLoader = ...

optimizer : torch.optim.Optimizer = ...

scheduler : torch.optim.lr_scheduler = ...

©NOU A WN R

©

def simple_adaptor(batch, model_outputs):
We assume that the first element of model_outputs
is the logits before softmax
return {'logits': model_outputs[0]}
train_config = TrainingConfig()
distill_config = DistillationConfig()
distiller = GeneralDistiller(
train_config=train_config, distill_config = distill_config,
model_T = teacher_model, model_S = student_model,
adaptor_T = simple_adaptor, adaptor_S = simple_adaptor)
distiller.train(optimizer, scheduler,
dataloader, num_epochs, callback=None)

Figure 2: A code snippet that demonstrates the mini-
mal TextBrewer workflow.

3.3 Workflow

Before distilling a teacher model using TextBrewer,
some preparatory works have to be done:

1. Train a teacher model on a labeled dataset.
Users usually train the teacher model with
their own training scripts. TextBrewer also
provides BasicTrainer for supervised
training on a labeled dataset.

Define and initialize the student model.

. Build a dataloader of the dataset for distilla-
tion and initialize the optimizer and learning
rate scheduler.

The above steps are usually common to all deep
learning experiments. To perform distillation, take
the following additional steps:

1. Initialize training and distillation configura-
tions, and construct a distiller.

2. Define adaptors and a callback function.

3. Call the t rain method of the distiller.

A code snippet that shows the minimal workflow
is presented in Figure 2. The concepts of callback
and adaptor will be explained below.

{"temperature": 8,
"temperature_scheduler":
"hard_label_weight": 0,
"hard_label_weight_scheduler":
"kd_loss_type": "ce",
"kd_loss_weight": 1,
"kd_loss_weight_scheduler":
"probability_shift": False,
"intermediate_matches": [

'none’

'none’',

'none’,

{'layer_T':0, 'layer_S':0, 'feature':'hidden’,

'loss': 'hidden_mse', 'weight' : 1,'proj':['linear',312,7681},
{'layer_T':3, 'layer_S':1, 'feature':'hidden’,

'loss': 'hidden_mse', ‘'weight' : 1,'proj':['linear',312,7681},
{'layer_T':6, 'layer_S':2, 'feature':'hidden’,

'loss': 'hidden_mse', ‘'weight' : 1,'proj':['linear',312,768]1},
{'layer_T':9, 'layer_S':3, 'feature':'hidden’,

‘loss': 'hidden_mse', ‘weight' : 1,'proj':['linear',312,7681},
{'layer_T':12, 'layer_S':4, 'feature':'hidden’,

'loss': 'hidden_mse', ‘'weight' : 1,'proj':['linear',312,7681},
{'layer_T':[0,0], 'layer_S':[0,0], 'feature':'hidden',

‘loss': 'nst', ‘'weight': 1}
{'layer_T1':[3,3], 'layer_S':[1,1], 'feature':'hidden',

‘loss': 'nst', ‘'weight': 1}

{'layer_T7':[6,6], 'layer_S':[2,2], 'feature':'hidden',
'loss': 'nst', 'weight': 1}

{'layer_T':[9,9], 'layer_S':[3,3], 'feature':'hidden',
'loss': 'nst', 'weight': 1}

{'layer_T':[12,12], 'layer_S':[4,4],
‘loss': 'nst', 'weight': 1}]}

‘feature':'hidden',

Figure 3: An example of distillation configura-
tion. This configuration is used to distill a 12-layer
BERTg,sx: to a 4-layer T4-tiny.

3.3.1 Callback Function

To monitor the performance of the student model
during training, people usually evaluate the stu-
dent model on a development set at some check-
points besides logging the loss curve. For exam-
ple, in the early stopping strategy, users choose
the best model weights checkpoint based on the
performance of the student model on the develop-
ment set at the end of each epoch. TextBrewer
supports such functionality by providing the call-
back function argument in the train method,
as shown in line 24 of Figure 2. The callback
function takes two arguments: the student model
and the current training step. At each checkpoint
step (determined by num_train_epochs and
ckpt_frequencey), the distiller saves the stu-
dent model and then calls the callback function.

Since it is impractical to implement evaluation
metrics and evaluation procedures for all NLP
tasks, we encourage users to implement their own
evaluation functions as the callbacks for the best
practice.

12

3.3.2 Adaptor

The distiller is model-agnostic. It needs a translator
to translate the model outputs into meaningful data.
Adaptor plays the role of translator. An Adaptor
is an interface and responsible for explaining the
inputs and outputs of the teacher and student for
the distiller.

Adaptor takes two arguments: the model inputs
and the model outputs. It is expected to return a
dictionary with some specific keys. Each key ex-
plains the meaning of the corresponding value, as
shown in Figure 1 (b). For example, 1ogits is the
logits of final outputs, hidden is intermediate hid-
den states, attention is the attention matrices,
inputs_mask is used to mask padding positions.
The distiller only takes necessary elements from
the outputs of adaptors according to its distillation
configurations. A minimal adaptor only needs to
explain logits, as shown in lines 11-14 of Figure 2.

3.4 Extensibility

TextBrewer also works with users’ custom modules.
New loss functions and schedulers can be easily
added to the toolkit. For example, to use a custom
loss function, one first implements the loss function
with a compatible interface, then adds it to the loss
function dictionary in the presets with a custom
name, so that the new loss function becomes avail-
able as a new option value of the configuration and
can be recognized by distillers.

4 Experiments

In this section, we conduct several experiments
to show TextBrewer’s ability to distill large pre-
trained models on different NLP tasks and achieve
results are comparable with or even higher than the
public distilled BERT models with similar numbers
of parameters. *

4.1 Settings

Datasets and tasks. We conduct experiments
on both English and Chinese datasets. For En-
glish datasets, We use MNLI (Wang et al., 2019)
for text classification task, SQuAD1.1 (Rajpurkar
et al., 2016) for span-extraction machine read-
ing comprehension (MRC) task and CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003) for
named entity recognition (NER) task. For Chi-
nese datasets, we use the Chinese part of XNLI

* More results are presented in the online documentation:
https://textbrewer.readthedocs.io

Dataset Task Metrics #Train #Dev
MNLI Classification Acc 393K 20K
SQuAD MRC EM/F1 88K 11K
CoNLL-2003 NER F1 23K 6K
XNLI Classification Acc 393K 25K
LCQMC Classification Acc 203K 8.8K
CMRC 2018 MRC EM/F1 10K 34K
DRCD MRC EM/F1 27K 3.5K
Table 1: A summary of the datasets used in experi-

ments. The size of CoNLL-2003 is measured in num-
ber of entities.

(Conneau et al., 2018), LCQMC (Liu et al., 2018),
CMRC 2018 (Cui et al., 2019b) and DRCD (Shao
et al., 2018). XNLI is the multilingual version of
MNLI. LCQMC is a large-scale Chinese question
matching corpus. CMRC 2018 and DRCD are two
span-extraction machine reading comprehension
datasets similar to SQuAD. The statistics of the
datasets are listed in Table 1.

Models. All the teachers are BERTz55x-based
models. For English tasks, teachers are initialized
with the weights released by Google’ and converted
into PyTorch format via Transformers®. For Chi-
nese tasks, teacher is initialized with the pre-trained
RoBERTa-wwm-ext ’ (Cui et al., 2019a). We test
the performance of the following student models:

e T6 and T3 are BERTy, s With fewer layers of
transformers. Especially, T6 has the same struc-
ture as DistilBERT (Sanh et al., 2019).

e T3-small is a 3-layer BERT with half BERT-
base’s hidden size and feed-forward size.

e T4-tiny is the same as TinyBERT, a 4-layer
model with an even smaller hidden size and feed-
forward size.

e BiGRU is a single-layer bidirectional GRU. Its
word embeddings are taken from BERTgagE.

T3-small and T4-tiny are initialized randomly. The
model structures of the teacher and students are
summarized in Table 3.

Training settings. To keep experiments sim-
ple, we directly distill the teacher model that has
been trained on the task, while we do not perform
task-irrelevant language modeling distillation in ad-
vance. The number of epochs ranges from 30 to
60, and the learning rate of students is 1e-4 for all
distillation experiments.

Shttps://github.com/google-research/bert

Shttps://github.com/huggingface/transformers
"https://github.com/ymcui/Chinese-BERT-wwm

13

MNLI SQuAD CoNLL-2003

Model m mm EM Fl Fl
BERTgxsg 83.7 84.0 815 88.6 91.1
Public
DistilBERT 81.6 81.1 79.1 86.9 -
TinyBERT 80.5 81.0 - - -

+DA 82.8 829 727 82.1 -
TextBrewer
BiGRU - - - - 85.3
T6 83.6 84.0 80.8 88.1 90.7
T3 81.6 825 763 84.8 87.5
T3-small 81.3 81.7 723 814 78.6
T4-tiny 82.0 826 737 825 77.5

+DA - - 75.2 84.0 89.1

Table 2: Performance of BERTy s (teacher) and var-
ious students on the development sets of MNLI and
SQuAD, and the test set of CoNLL-2003. m and mm
under MNLI denote the accuracies on matched and mis-
matched sections respectively.

Distillation settings. Temperature is set to 8 for
all experiments. We add intermediate losses uni-
formly distributed among all the layers between
teacher and student (except BiGRU). The loss func-
tions we choose are hidden_mse loss which com-
putes the mean square loss between two hidden
states, and NST loss which is an effective method in
CV. In Figure 3 we show an example of distillation
configuration for distilling BERTg g to a T4-tiny.
Since their hidden sizes are different, we use proj
option to add linear layers to match the dimensions.
The linear layers will be trained together with the
student automatically. We experiment with two
kinds of distillers: GeneralDistiller and
MultiTeacherDistiller.

4.2 Results on English Datasets

We list the public results (DistilBERT and Tiny-
BERT) and our distillation results obtained by
GeneralDistiller in Table 2. We have the
following observations.

First, teachers can be distilled to T6 models with
minor losses in performance. All the T6 models
achieve 99% performance of the teachers, higher
than the DistilBERT.

Second, T4-tiny outperforms TinyBERT though
they share the same structure. This is attributed
to the NST losses in the distillation configuration.
This result proves the effectiveness of applying KD
method developed in CV on NLP tasks.

Third, although T4-tiny has less parameters than
T3-small, T4-tiny outperforms T3-small in most

Model # Layers Hidden size Feed-forward size # Parameters Relative size
BERTgz,sx (teacher) 12 768 3072 108M 100%
T6 6 768 3072 65M 60%
T3 3 768 3072 44M 41%
T3-small 3 384 1536 1M 16%
T4-tiny 4 312 1200 14M 13%
BiGRU 1 768 - 31IM 29%

Table 3: Model sizes of teacher and students. The number of parameters includes embeddings but does not include

output layers.

MNLI SQUAD CoNLL-2003
Model m mm EM Fl Fl
Teacher I 83.6 840 81.1 88.6 91.2
Teacher2 83.6 842 812 88.5 90.8
Teacher3 837 83.8 812 887 913
Ensemble 84.3 847 823 89.4 915
Student 84.8 853 835 90.0 91.6

Table 4: Results of multi-teacher distillation. All the
models are BERTy,5;. Different teachers are trained
with different random seeds. For each task, the ensem-
ble is the average of three teachers’ results.

cases. It may be a hint that narrow-and-deep mod-
els are better than wide-and-shallow models.

Finally, data augmentation (DA) is critical. For
the experiments in the last line in Table 2, we use
additional datasets during distillation: a subset of
NewsQA (Trischler et al., 2017) training set is used
in SQuAD; passages from the HotpotQA (Yang
et al., 2018) training set is used in CoNLL-2003.
The augmentation datasets significantly improve
the performance, especially when the size of the
training set is small, like CoNLL-2003.

We next show the effectiveness of
MultiTeacherDistiller, which dis-
tills an ensemble of teachers to a single student
model. For each task, we train three BERTgase
teacher models with different seeds. The student is
also a BERTg, sz model. The temperature is set to
8, and intermediate losses are not used. As Table 4
shows, for each task, the student achieves the best
performance, even higher than the ensemble result.

5 Results on Chinese Datasets

The results on Chinese datasets are presented in
Table 5. We notice that T4-tiny still outperforms
T3-small on all tasks, which is consistent with their
performance on English tasks. In the experiments
with DA, CMRC 2018 and DRCD take each other’s
dataset as data augmentation. We observe that since

14

Model XNLI LCQMC CMRC2018 DRCD
ode Acc Acc EM FI EM FI
RoBERTa-wwm 79.9 89.4 688 864 865 925
T3 784 89.0 634 824 767 852
+DA . . 664 842 782 864
T3-small 760 881 461 710 714 822
+DA - - 580 793 758 84.8
T4-tiny 762 884 543 768 755 849
+DA - . 61.8 818 773 86.1

Table 5: Development set results for the teacher and
various students on Chinese tasks.

CMRC 2018 has a relatively small training set, DA
has a much more significant effect.

6 Conclusion and Future Work

In this paper, we present TextBrewer, a flexible
PyTorch-based distillation toolkit for NLP research
and applications. TextBrewer provides rich cus-
tomization options for users to compare different
distillation methods and build their strategies. We
have conducted a series of experiments. The re-
sults show that the distilled models can achieve
state-of-the-art results with simple settings.

TextBrewer also has its limitations. For exam-
ple, its usability in generation tasks such as ma-
chine translation has not been tested. We will
keep adding more examples and tests to expand
TextBrewer’s scope of application.

Apart from the distillation strategies, the model
structure also affects the performance. In the future,
we aim to integrate neural architecture search into
the toolkit to automate the searching for model
structures.

Acknowledgments

We would like to thank all anonymous reviewers for
their valuable comments on our work. This work
was supported by the National Natural Science
Foundation of China (NSFC) via grant 61976072,
61632011, and 61772153.

References

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931-5937, Florence, Italy.
Association for Computational Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475-2485,
Brussels, Belgium. Association for Computational
Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Ziqing Yang, Shijin Wang, and Guoping Hu. 2019a.
Pre-training with whole word masking for chinese
BERT. CoRR, abs/1906.08101.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao,
Zhipeng Chen, Wentao Ma, Shijin Wang, and Guop-
ing Hu. 2019b. A span-extraction dataset for Chi-
nese machine reading comprehension. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5886—5891, Hong
Kong, China. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zehao Huang and Naiyan Wang. 2017. Like what you
like: Knowledge distill via neuron selectivity trans-
fer. CoRR, abs/1707.01219.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling BERT for natural lan-
guage understanding. CoRR, abs/1909.10351.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317-1327, Austin,
Texas. Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2019. ALBERT: A lite BERT for self-
supervised learning of language representations.
CoRR, abs/1909.11942.

15

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Improving multi-task deep neural
networks via knowledge distillation for natural lan-
guage understanding. CoRR, abs/1904.09482.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng,
Jing Chen, Dongfang Li, and Buzhou Tang. 2018.
LCQMC:a large-scale Chinese question matching
corpus. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1952-1962, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Chih-Chieh Shao, Trois Liu, Yuting Lai, Yiying
Tseng, and Sam Tsai. 2018. DRCD: a chinese
machine reading comprehension dataset. CoRR,
abs/1806.00920.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
43234332, Hong Kong, China. Association for
Computational Linguistics.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng,
Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
Hao Tian, and Hua Wu. 2019b. ERNIE: en-
hanced representation through knowledge integra-
tion. CoRR, abs/1904.09223.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng,
Hao Tian, Hua Wu, and Haifeng Wang. 2019c.
ERNIE 2.0: A continual pre-training framework for
language understanding. CoRR, abs/1907.12412.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and
Tie-Yan Liu. 2019. Multilingual neural machine
translation with knowledge distillation. In 7zh Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Raphael Tang, Yao Lu, and Jimmy Lin. 2019. Natu-
ral language generation for effective knowledge dis-
tillation. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 202-208, Hong Kong, China.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142-147.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191-200, Vancouver, Canada. Association for Com-
putational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7tk
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Tiancheng Wen, Shenqi Lai, and Xueming Qian. 2019.
Preparing lessons: Improve knowledge distillation
with better supervision. CoRR, abs/1911.07471.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. CoRR, abs/1906.08237.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369-2380, Brussels, Belgium. Association
for Computational Linguistics.

Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo
Kim. 2017. A gift from knowledge distillation:
Fast optimization, network minimization and trans-
fer learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 7130-7138.

Sanqgiang Zhao, Raghav Gupta, Yang Song, and Denny
Zhou. 2019. Extreme language model compres-
sion with optimal subwords and shared projections.
CoRR, abs/1909.11687.

Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and
Gal Novik. 2018. Neural network distiller.

16

Syntactic Search by Example

Micah Shlain'? Hillel Taub-Tabib'

Shoval Sadde! Yoav Goldberg'?

1 Allen Institute for Al Tel Aviv, Israel
2 Bar Ilan University, Ramat-Gan, Israel
{micahs,hillelt, shovals, yoavg}QRallenai.org yogo@cs.biu.ac.il

Abstract

We present a system that allows a user to
search a large linguistically annotated cor-
pus using syntactic patterns over dependency
graphs. In contrast to previous attempts to this
effect, we introduce a light-weight query lan-
guage that does not require the user to know
the details of the underlying syntactic represen-
tations, and instead to query the corpus by pro-
viding an example sentence coupled with sim-
ple markup. Search is performed at an interac-
tive speed due to an efficient linguistic graph-
indexing and retrieval engine. This allows
for rapid exploration, development and refine-
ment of syntax-based queries. We demon-
strate the system using queries over two cor-
pora: the English wikipedia, and a collec-
tion of English pubmed abstracts. A demo of
the wikipedia system is avilable at: https:
//allenai.github.io/spike/ .

1 Introduction

The introduction of neural-network based models
into NLP brought with it a substantial increase in
syntactic parsing accuracy. We can now produce
accurate syntactically annotated corpora at scale.
However, the produced representations themselves
remain opaque to most users, and require substan-
tial linguistic expertise to use. Patterns over syn-
tactic dependency graphs' can be very effective
for interacting with linguistically-annotated cor-
pora, either for linguistic retrieval or for informa-
tion and relation extraction (Fader et al., 2011; Ak-
bik et al., 2014; Valenzuela-Escarcega et al., 2015,

'In this paper, we very loosely use the term “syntactic”
to refer to a linguistically motivated graph-based annotation
over a piece of text, where the graph is directed and there is
a path between any two nodes. While this usually implies
syntactic dependency trees or graphs (and indeed, our system
currently indexes Enhanced English Universal Dependency
graphs (Nivre et al., 2016; Schuster and Manning, 2016)) the
system can work also with more semantic annotation schemes
e.g, (Oepen et al., 2015), given the availability of an accurate
enough parser for them.

17

2018). However, their use in mainstream NLP as
represented in ACL and affiliated venues remain
limited. We argue that this is due to the high barrier
of entry associated with the application of such pat-
terns. Our aim is to lower this barrier and allow also
linguistically-naive users to effectively experiment
with and develop syntactic patterns. Our proposal
rests on two components:
(1) A light-weight query language that does not
require in-depth familiarity with the underlying
syntactic representation scheme, and instead lets
the user specify their intent via a natural language
example and lightweight markup.
(2) A fast, near-real-time response time due to effi-
cient indexing, allowing for rapid experimentation.
Figure 1 (next page) shows the interface of our
web-based system. The user issued the query:

()founder:[e]Paul of

()entity:[e]Microsoft.

was a t:[w]founder

The query specifies a sentence (Paul was a
founder of Microsoft) and three named captures:
founder, t and entity. The founder and entity
captures should have the same entity-type as the
corresponding sentence words (PERSON for Paul
and ORGANIZATION for Microsoft, indicated
by [e]), and the ¢ capture should have the same
word form as the one in the sentence (founder)
(indicated by [w]). The syntactic relation between
the captures should be the same as the one in
the sentence, and the founder and entity captures
should be expanded (indicated by ()).

The query is translated into a graph-based query,
which is shown below the query, each graph-node
associated with the query word that triggered it.
The system also returned a list of matched sen-
tences. The matched tokens for each capture group
(founder, t and entity) are highlighted. The user
can then issue another query, browse the results, or
download all the results as a tab-separated file.

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 17-23
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Syntactic Search D

Query
<>founder:[e]Paul was a t:[w]founder of <>entity:[e]Microsoft

Kfounder> (entity=PERSON]
Paul

founder

nsubj nmod [entity> (entity=ORGANIZATION

Microsoft

Anderson| who is the | founder| and director of the| ‘World Education Foundation| , currently engages in research and implementation of sustainable

developmental projects , globally .
2321036

Anderson and co-organized with entrepreneur | Robin Bates| Who is the | founder| and CEO of | Caf e de la Soul| and La Jolie Noire Media , and co-founder of
founder entity

Black Paris Divas .

[ndrn] e i of e o]
founder t entity

2349619

2352872

2497762

Ananda Kar| is the | founder| of the | Hemlock Society | , that teaches aspirants how to successfully commit suicide .
founder hd Hﬂi

Figure 1: Syntactic Search System

2 Existing syntactic-query languages

While several rich query languages over linguis-
tic tree and graph structure exist, they require a
substantial amount of expertise to use.” The user
needs to be familiar not only with the syntax of
the query language itself, but to also be intimately
familiar with the specific syntactic scheme used in
the underlying linguistic annotations. For exam-
ple, in Odin (Valenzuela-Escércega et al., 2015), a
dedicated language for pattern-based information
extraction, the same rule as above is expressed as:

label: Person

type: token

pattern
[entity="PERSON"]+

label: Organization

type: token

pattern
[entity="ORGANIZATION"]+

label: founded

type: dependency

pattern
trigger [word=founded]
founder:Person >nsubj
entity:0Organization >nmod

The Spacy NLP toolkit® also includes pattern
matcher over dependency trees,using JSON based
syntax:

[{"PATTERN" "ORTH": "founder"}
"SPEC": {"NODE_NAME": "t"}}
{"PATTERN": {"ENT_TYPE": "PERSON"}}
"SPEC": {"NODE_NAME": "founder"
"NBOR_RELOP": ">nsubj"

2We focus here on systems that are based on dependency
syntax, but note that many systems and query languages
exist also for constituency-trees, e.g., TGREP/TGREP2,
TigerSearch (Lezius et al., 2002), the linguists search engine
(Resnik and Elkiss, 2005), Fangorn (Ghodke and Bird, 2012).

*https://spacy.io/

18

"NBOR_NAME": "t"}}
{"PATTERN": {"ENT_TYPE": "ORGANIZATION"}
"SPEC" "NODE_NAME": "entity"
"NBOR_RELOP": ">nmod"
"NBOR_NAME": "t"}}]

Stanford’s Core-NLP package (Manning et al.,
2014) includes a dependency matcher called SEM-
GREX,* which uses a more concise syntax:
{ner:PERSON}=founder

<nsubj ({word foqndor} t

>nmod {ner:0RG}=entity)

The dep_search system® from Turku university
(Luotolahti et al., 2017) is designed to provide
a rich and expressive syntactic search over large
parsebanks. They use a lightweight syntax and sup-
port working against pre-indexed data, though they
do not support named captures of specific nodes.

PERSON <nsubj founder >nmod ORG

While the different systems vary in the verbose-
ness and complexity of their own syntax (indeed,
the Turku system’s syntax is rather minimal), they
all require the user to explicitly specify the de-
pendency relations between the tokens, making it
challenging and error-prone to write, read or edit.
The challenge grows substantially as the complex-
ity of the pattern increases beyond the very simple
example we show here.

Closest in spirit to our proposal, the PROP-
MINER system of Akbik et al. (2013) which lets the
user enter a natural language sentence, mark spans
as subject, predicate and object, and have a rule be

*https://nlp.stanford.edu/software/
tregex.shtml
Shttp://bionlp-www.utu.fi/dep_search/

generated automatically. However, the system is re-
stricted to ternary subject-predicate-object patterns.
Furthermore, the generated pattern is written in a
path-expression SQL variant (SerQL, (Broekstra
and Kampman, 2003)), which the user then needs
to manually edit. For example, our query above
will be translated to:

SELECT subject, predicate, object

FROM predicate.3 nsubj subject,
predicate.3 nmod object,

WHERE subject POS NNP

AND predicate.3 POS NN

AND object POS NNP

AND subject TEXT PAUL

AND predicate.3 TEXT founder

AND object TEXT Microsoft

AND subject FULL_ENTITY

AND object FULL_ENTITY

All these systems require the user to closely in-
teract with linguistic concepts and explicitly spec-
ify graph-structures, posing a high barrier of entry
for non-expert users. They also slow down expert
users: formulating a complex query may require
a few minutes. Furthermore, many of these query
languages are designed to match against a provided
sentence, and are not indexable. This requires it-
erating over all sentences in the corpus attempting
to match each one, requiring substantial time to
obtain matches from large corpora.

Augustinus et al. (2012) describe a system for
syntactic search by example, which retrieves tree
fragments and which is completely Ul based. Our
system takes a similar approach, but replaces the
Ul-only interface with an expressive textual query
language, allowing for richer queries. We also
return node matches rather than tree fragments.

3 Syntactic Search by Example

We propose a substantially simplified language,
that has the minimal syntax and that does not re-
quire the user to know the underlying syntactic
schema upfront (though it does not completely hide
it from the user, allowing for exposure over time,
and allowing control for expert users who under-
stand the underlying syntactic annotation scheme).

The query language is designed to be linguis-
tically expressive, simple to use and amenable to
efficient indexing and query. The simplicity and in-
dexing requirements do come at a cost, though: we
purposefully do not support some of the features
available in existing languages. We expect these
features to correlate with expertise.> At the same

SExample of a query feature we do not support is quantifi-

19

time, we also seamlessly support expressing arbi-
trary sub-graphs, a task which is either challenging
or impossible with many of the other systems.
The language is based on the following principles:
(1) The core of the query is a natural language
sentence.

(2) A user can specify the tokens of interest and
constraints on them via lightweight markup.

(3) While expert users can specify complex token
constraints, effective constraints can be specified
by pulling values from the query words.

The required syntactic knowledge from the user,
both in terms of the syntax of the query language
itself and in terms of the underlying linguistic for-
malism, remains minimal.

4 Graph Query Formalism

The language is structured around between-token
relations and within-token constraints, where to-
kens can be captured.

Formally, our query G = (V, E) is a labeled di-
rected graph, where each node v; € V' corresponds
to a token, and a labeled edge e = (v;,v;,/) € E
between the nodes corresponds to a between-token
syntactic constraint. This query graph is then
matched against parsed target sentences, looking
for a correspondence between query nodes and
target-sentence nodes that adhere to the token and
edge constraints.

For example, the following graph specifies three
tokens, where the first and second are connected via
an ‘xcomp’ relation, and the second and third via
a ‘dobj’ relation. The first token is unconstrained,
while the second token must have the POS-tag of
VB, and the third token must be the word home.

<ws @nything)} *°"P @5 pos=veyy Y

Sentences whose syntactic graph has a subgraph
that aligns to the query graph and adheres to the
constraints will be considered as matches. Example
of such matching sentences are:

- John wanted,, to go, homey, after lunch.

- Itwas a place she @cidedw to call, her homey,.
The <w>, <v> and <h> marks on the nodes denote
named captures. When matching a sentence, the
sentence tokens corresponding to the graph-nodes
will be bound to variables named ‘w’, ‘v’ and ‘h’,
in our case {w=wanted, v=go, h=home} for
the first sentence and {w=decided, v=call,
h=home} for the second. Graph nodes can also be

“[<h> (word=home)

cation, i.e., “nodes a and b should be connected via a path that
includes one or more ‘conj’ edges”.

unnamed, in which case they must match sentence
tokens but will not bind to any variable. The graph
structure is not meant to be specified by hand,’ but
rather to be inferred from the example based query
language described in the next section (an example
query resulting in this graph is “They w:wanted to
v:[tag]go h:[word]home”).

Between-token constraints correspond to labeled
directed edges in the sentence’s syntactic graph.

Within-token constraints correspond to proper-
ties of individual sentence tokens.® For each prop-
erty we specify a list of possible values (a disjunc-
tion) and if lists for several properties are provided,
we require all of them to hold (a conjunction). For
example, in the constraint tag=VBD|VBZ&lemma=buy
we look for tokens with POS-tag of either VBD or
VBZ, and the lemma buy. The list of possible values
for a property can be specified as a pipe-separated
list (tag=VBD|VBZ|VBN) or as a regular expression
(tag=/VB[DZN]/).

S Example-based User-friendly Query
Language

The graph language described above is expressive
enough to support many interesting queries, but it
is also very tedious to specify query graphs G, es-
pecially for non-expert users. We propose a simple
syntax that allows to easily specify a graph query
G (constrained nodes connected by labeled edges)
using a textual query ¢ that takes the form of an
example sentence and lightweight markup.

Let s = wy, ..., wy, be a proper English sentence.
Let D be its dependency graph, with nodes w; and
labeled edges (w;, w;,). A corresponding textual
query q takes the form ¢ = q1, ..., gn, Where each
q; is either a word ¢; = w;, or a marked word
q;i = m(w;). A marking of a word takes the form:
:word (unnamed capture) name:word (named cap-
ture) or name:[constraints]word , :[constraints]word .
Consider the query:

John w:wanted to v:[tag=VB] go h:[word=home] home

corresponding to the above graph query. The
marked words are:

q2 =w:wanted (unconstrained, name:w)
q4 =v:[tag=VB]go (cnstr:tag=VB, name:v)
q5 =h:[word=home]home (cnstr:word=home, name:h)

"Indeed, we currently do not even expose a textual repre-
sentation of the graph.

8Currently supported properties are word-form (word),
lemma (lemma), pos-tag (tag) or entity type (entity). Ad-
ditional types can be easily added, provided that we have
suitable linguistic annotators for them.

20

Each of these corresponds to a node v; in the query
graph above.

Let m be the set of marked query words, and

m™ be a minimal connected subgraph of D that
includes all the words in m. When translating g
to GG, each marked word w; € m is translated to a
named query graph node v,, with the appropriate
restriction. The additional words w; € m™ \ m are
translated to unrestricted, unnamed nodes Vg, - We
add a query graph edge (vg,, vg,, £) for each pair in
V for which (w;, w;,¥) € D.
Further query simplifications. Consider the
marked word h:[word=home] home. The constraint
is redundant with the word. In such cases we allow
the user to drop the value, which is then taken from
the corresponding property of the query word. This
allows us to replace the query:

John w:wanted to v:[tag=VB]go h:[word=home]home
with:
John w:wanted to v:[tag]go h:[word]home

This further drives the “by example” agenda, as
the user does not need to know what the lemma,
entity-type or POS-tag of a word are in order to
specify them as a constraint. Full property names
can be replaced with their shorthands wilt,e:

John w:wanted to v:[t]go h:[w]home

Finally, capture names can be omitted, in which
case an automatic name is generated based on the
corresponding word:

John :wanted to :[t]go :[wlhome

Anchors. In some cases we want to add a node
to the graph, without an explicit capture. In such
cases we can use the anchor $ ($John). These are
interpreted as having a default constraint of [w],
which can be overriden by providing an alternative
constraint ($[e]John), or an empty one ($[]John).

Expansions When matching a query against a
sentence the graph nodes bind to sentence words.
Sometimes, we may want the match to be expanded
to a larger span of the sentence. For example, when
matching a word which is part of a entity, we of-
ten wish to capture the entire entity rather than the
word. This is achieved by prefixing the term with
the “expansion diamond” (). The default behavior
is to expand the match from the current word to the
named entity boundary or NP-chunk that surrounds
it, if it exists. We are currently investigating the
option of providing additional expansion strategies.

Summary To summarize the query language
from the point of view of the user: the user starts
with a sentence w1, ..., w,, and marks some of the
words for inclusion in the query graph. For each
marked word, the user may specify a name, and op-
tional constraints. The user query is then translated
to a graph query as described above. The results list
highlights the words corresponding to the marked
query words. The user can choose for the results to
highlight entire entities rather than single words.

6 Interactive Pattern Authoring

An important aspect of the system is its interactiv-
ity. Users enter queries by writing a sentence and
adding markup on some words, and can then refine
them following feedback from the environment, as
we demonstrate with a walk-through example.

A user interested in people who obtained degrees
from higher education institutions may issue the
following query:

subj:John obtained his d:[w]degree from inst:Harvard

Here, the person in the “subj” capture and the
institution in the “inst” capture are placehold-
ers for items to be captured, so the user uses
generic names and leaves them unconstrained.
The “degree” (“d”) capture should match exactly,
as the user specified the “w” constraint (exact
word match). When pressing Enter, the user
is then shown the resulting query-graph and a re-
sult list. The user can then refine their queries

based on either the query graph, the result list,

or both. For the above query, the graph is:
<subj> (anything)]~ nsubj W’(?anﬂhing)% dobj ﬂ<d> (word=degree) <inst> (anxthing}
John obtained degree Harvard

Note that the query graph associates each graph
node with the query word that triggered it. The
word “obtained” resulted in a graph node even
though it was not marked by the user as a cap-
ture. The user makes note to themselves to go back
to this word later. The user also notices that the
word “from” is not part of the query.

Looking at the result list, things look weird:

In completed his medical)
inst | subj d

In 1884 earned his at , afterwards returning to Heiden to practice medicine .

subj d inst

In| 1884 earned his at Leipzig , afterwards returning to Heiden to practice medicine .
inst | subj d

In 9 received the of Ph.
inst |l subj d

Maybe this is because the word from is not in the
graph? Indeed, adding a non-capturing exact-word
anchor on “from” solves this issue:

21

subj:John obtained his d:[w]degree $from inst:Harvard

In 1898 received a master ' s degree from Pnncelon He left in 1901 to pursue a master ' s degre
suhj mst

In 1898, received his bachelor 's from the Ohio State , and continued there ,

subj d inst

In 1886 obtained his from the under the direction of Michele Lessona -LRB-
subj d inst

from Tulane ; the next year , he became the first

d inst

However, the resulting list contains many non-
names in the subj capture. Trying to resolve this,
the user adds an “entity-type” constraint to the subj
capture:

In 1887, earned his law

subj

subj:[e]ldohn obtained his $from

inst:Harvard

d:[w]degree

Note that the user didn’t specify an exact type, yet
the query graph correctly resolved PERSON.
The user is interested in the full name of the person
and organization, so they change from single-word
capture to expanded capture, with the default
expansion level (using the diamond prefix ()):

subj:[e]dohn
inst:Harvard

In 1952 Man.hd received a Bachelors d:grce from Texas Western College
subj inst
In 1949 Schopler earned his bachelors degree from ﬂ1e Umve]slly of Chicago| -
subj
In 1949 , Tom recelved a deg,ee in finance from |.he Umvmny of Detroit| -
subj d inst
n 1950 , eamned a in international relations from the [Complutense University of Madrid| in Spain .
subj d inst

These are the kind of results the user expected, but
now they are curious about degrees obtained by
females, and their representation in the Wikipedia
corpus. Adding the pronoun to the query, the user
then issues the following two queries, saving the
result-sets from each one as a CSV for further
comparative analysis.

obtained his d:[w]degree $from

subj:[e]John
inst:Harvard

obtained $his d:[w]degree $from

subj:[e]John
inst:Harvard

obtained $her d:[w]degree $from

Our user now worries that they may be missing
some results by focusing on the word degree.
Maybe other things can be obtained from a univer-
sity? The user then sets an exact-word constraint
on “Harvard”, adds a lemma constraint to “obtain”
and clears the constraint from “degree’:

subj:[e]John
inst:[w]Harvard

[lobtained his d:degree $from

Browsing the results, the d capture includes words
such as “BA, PhD, MBA, certificate”. But the

result list is rather short, suggesting that either
Harvard or obtain are too restrictive. The user
seeks to expand the “obtain” node’s vocabulary,
adding back the exact word constraint on “degree”
while removing the one from “obtain’:

subj:[e]John
inst:[w]Harvard

[lobtained his d:[w]degree $from

Looking at the result list in the o capture, the
user chooses the lemmas “receive, complete, earn,
obtain, get”, adds them to the o constraint, and
removes the degree constraint.

subj:[e]lJohn
o:[l=receive|complete|earn|obtain|get]obtained
his d:degree $from ()inst:[w]Harvard

The returned result-set is now much longer, and
we select additional terms for the degree slot and
remove the institution word constraint, resulting in
the final query:

subj:[e]John
o:[l=receive|complete|earn|obtain|get]obtained his d
[w=degree|MA|BA|MBA|doctorate|masters|PhD]degree
$from ()inst:Harvard

The result is a list of person names earning
degrees from institution, and the entire list can be
downloaded as a tab-separated file which includes
the named captures as well as the source sentences
(over Wikipedia, this list has 6197 rows).”

d.fir o loe inst_ it las! o_fist_o_last_ subl_first subl I
6 6 8 o 3 a 2 2

The query can also be further refined to capture
which degree was obtained, e.g.:
his

subj:[e]John ol kind:law

d:[w=...]degree $from

...]obtained]
inst:Harvard

capturing under kind words like law, chemistry,
engineering and DLitt but also bachelors, masters
and graduate.

This concludes our walk-through.

7 Additional Query Examples

To whet the reader’s appetite, here are a sample
of additional queries, showing different potential

°The list can be even more comprehensive had we selected
additional degree words and obtain words, and considered
also additional re-phrasings.

22

use-cases. Over wikipedia:

- p:[e]Sam $[l=win|receive]won an $Oscar.

p:[e]Sam $[I=win|receive]lwon an $Oscar $for
thing:something

- $fish $such $as ()fish:salmon

hero:[t|Spiderman $is a $superhero

- | like kind:coconut $oil

- kind:coconut $oil is $used for purpose:eating

Over a pubmed corpus, annotated with the SciS-
pacy (Neumann et al., 2019) pipeline:

- ()x:[e]aspirin $inhibits ()y:thing
- a $combination of ()d1:[e]aspirin and

d2:[e]alcohol $:[llcauses ()t:thing
patients:[t]rats were $injected $with ()what:drugs

8 Implementation Details

The indexing is handled by Lucene.'® We currently
use Odinson (Valenzuela-Escdrcega et al., 2020),11
an open-source Lucene-based query engine devel-
oped at Lum.ai, as a successor of Odin (Valenzuela-
Escércega et al., 2015), that allows to index syn-
tactic graphs and issue efficient path queries on
them. We translate our queries into an Odinson
path query that corresponds to a longest path in
our query graph. We then iterate over the returned
Odinson matches and verify the constraints that
were not on the path. Conceptually, the Odinson
system works by first using Lucene’s reverse-index
for retrieving sentences for which there is a token
matching each of the specified token-constraints,
and then verifying the syntactic between-token con-
straints. To improve the Lucene-query selectivity,
tokens are indexed with incoming and outgoing
syntactic edge label information, which is incorpo-
rated as additional token-constraints to the Lucene
engine. The system easily supports millions of
sentences, returning results at interactive speeds.

9 Conclusions

We introduce a simple query language that allows
to pose complex syntax-based queries, and obtain
results in an interactive speed.

A search interface over Wikipedia sentences
is available at https://allenai.github.io/
spike/. We intend to release the code as open
source, as well as providing hosted open access to
a PubMed-based corpus.

Ohttps://lucene.apache.org
"https://github.com/lum-ai/odinson/

Acknowledgments

We thank the team at LUM.ai and the University
of Arizona, in particular Mihai Surdeanu, Marco
Valenzuela-Escdrcega, Gus Hahn-Powell and Dane
Bell, for fruitful discussion and their work on the
Odinson system.

This project has received funding from the Eu-
ropoean Research Council (ERC) under the Eu-
ropoean Union’s Horizon 2020 research and inno-
vation programme, grant agreement No. 802774
(iEXTRACT).

References

Alan Akbik, Oresti Konomi, and Michail Melnikov.
2013. Propminer: A workflow for interactive in-
formation extraction and exploration using depen-
dency trees. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 157-162, Sofia, Bul-
garia. Association for Computational Linguistics.

Alan Akbik, Thilo Michael, and Christoph Boden.
2014. Exploratory relation extraction in large text
corpora. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguis-
tics: Technical Papers, pages 2087-2096.

Liesbeth Augustinus, Vincent Vandeghinste, and
Frank Van Eynde. 2012. Example-based treebank
querying. In LREC.

Jeen Broekstra and Arjohn Kampman. 2003. Sergl:
A second generation rdf query language. In Proc.
SWAD-Europe Workshop on Semantic Web Storage
and Retrieval, pages 13—14.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the conference on empir-
ical methods in natural language processing, pages
1535-1545. Association for Computational Linguis-
tics.

Sumukh Ghodke and Steven Bird. 2012. Fangorn: A
system for querying very large treebanks. In Pro-
ceedings of COLING 2012: Demonstration Papers,
pages 175-182, Mumbai, India. The COLING 2012
Organizing Committee.

Wolfgang Lezius, Hannes Biesinger, and Ciprian-
Virgil Gerstenberger. 2002. Tigersearch manual.

Juhani Luotolahti, Jenna Kanerva, and Filip Ginter.
2017. Dep_search: Efficient search tool for large
dependency parsebanks. In Proceedings of the 21st
Nordic Conference on Computational Linguistics,
pages 255-258, Gothenburg, Sweden. Association
for Computational Linguistics.

23

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55-60.

Mark Neumann, Daniel King, 1z Beltagy, and Waleed
Ammar. 2019. Scispacy: Fast and robust models for
biomedical natural language processing.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkov4, Dan Flickinger, Jan
Haji¢, and Zdetika UreSovd. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915-926, Denver, Colorado. Association for Compu-
tational Linguistics.

Philip Resnik and Aaron Elkiss. 2005. The Linguist’s
Search Engine: An overview. In Proceedings of the
ACL Interactive Poster and Demonstration Sessions,
pages 33-36, Ann Arbor, Michigan. Association for
Computational Linguistics.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371-2378.

Marco A Valenzuela-Escarcega, Ozgiin Babur, Gus
Hahn-Powell, Dane Bell, Thomas Hicks, Enrique
Noriega-Atala, Xia Wang, Mihai Surdeanu, Emek
Demir, and Clayton T Morrison. 2018. Large-scale
automated machine reading discovers new cancer-
driving mechanisms. Database, 2018.

Marco A. Valenzuela-Escarcega, Gus Hahn-Powell,
and Dane Bell. 2020. Odinson: A fast rule-based in-
formation extraction framework. In Proceedings of
the Twelfth International Conference on Language
Resources and Evaluation (LREC 2020), Marseille,
France. European Language Resources Association
(ELRA).

Marco A Valenzuela-Escarcega, Gus Hahn-Powell, Mi-
hai Surdeanu, and Thomas Hicks. 2015. A domain-
independent rule-based framework for event extrac-
tion. In Proceedings of ACL-IJCNLP 2015 System
Demonstrations, pages 127-132.

Tabouid: a Wikipedia-based word guessing game

Timothée Bernard
National Institute of Advanced Industrial Science and Technology (AIST), Japan
timothee.bernard@ens-lyon.org

Abstract

We present Tabouid, a word-guessing game
automatically generated from Wikipedia.
Tabouid contains 10,000 (virtual) cards in
English, and as many in French, covering
not only words and linguistic expressions
but also a variety of topics including artists,
historical events or scientific concepts. Each
card corresponds to a Wikipedia article, and
conversely, any article could be turned into a
card. A range of relatively simple NLP and
machine-learning techniques are effectively
integrated into a two-stage process. First, a
large subset of Wikipedia articles are scored
— this score estimates the difficulty, or alter-
natively, the playability of the page. Then, the
best articles are turned into cards by selecting,
for each of them, a list of banned words based
on its content. We believe that the game we
present is more than mere entertainment and
that, furthermore, this paper has pedagogical
potential.!

1 Introduction

Thanks to its considerable size — a total of more
than 50 million articles in 300 different languages
today — and its availability online, Wikipedia has
found many uses other than those of the traditional
encyclopaedia. It is indeed frequently used for
research in Al and natural language processing
(NLP). For example, various large-scale machine-
readable knowledge bases have been generated
from the online encyclopedia, including YAGO
(Suchanek et al., 2007), YAGO2 (Hoffart et al.,
2013) or DBpedia (Bizer et al., 2009), in addition
to reading comprehension datasets such as SQuUAD
(Rajpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017). The plain text from Wikipedia articles has
also been used directly as the only source of knowl-

!The work presented in this paper is a personal project and
is not directly related to my research at AIST.

24

edge for Question-Answering systems such as the
one developed by Chen et al. (2017).

This article presents a system which uses
Wikipedia to generate the content of an applica-
tion that is inspired by Taboo, a word-guessing
board game originally published by Parker Broth-
ers in 1989. To play our version of the game, called
“Tabouid”, all the group (of at least two) players
require is a single electronic device (typically a
smartphone). The game is divided in turns. Dur-
ing her turn (the length of which is defined by a
countdown), the player looks at the card displayed
on the screen. A card is composed of a title and
a list of additional banned words (the words in-
cluded in the title are considered banned words).
See Figures 1 and 2 for two screenshots of the ap-
plication (the circle around the title of the card acts
as a countdown). The player sets out to make the
other players guess the title on the card (in its exact
wording). To do so, she has to describe the concept
to the other players but without using any of the
banned words, nor any words constructed with the
same stems (translations of the words into other
languages are not allowed either). Once a title has
been guessed, the player continues on to the next
card. The player has to skip the current card as
soon as she mentions a banned word.

The originality of Tabouid lies in the fact that
its content has been automatically generated from
Wikipedia using a range of NLP and machine learn-
ing techniques. This automated process means that
Tabouid can benefit from a wealth of 10,000 cards
in English, and as many in French, covering not
only words and linguistic expressions but also a va-
riety of topics including artists, historical events or
scientific concepts. In addition, all cards in Tabouid
are associated with a difficulty score. This allows
the difficulty level of the game to be set in a straight-
forward way. With such an adaptable difficulty, the
game can accommodate various groups of players,

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 24-29
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Movie star

film
actors
public
names
promotional
Asia
Khan
Company
Hollywood
fame

Figure 1: Screenshot of the application with the card
Movie Star.

which could include individuals such as children
or foreigners, whose level of proficiency or knowl-
edge of the culture associated with the target lan-
guage may vary. In addition, we believe that the
work presented here can have some pedagogical
value by defining an implementation project for stu-
dents enrolled in NLP or computational linguistic
programs.

In this article, we describe how the cards were
generated. Each card corresponds to a Wikipedia
page. The title of the card is the title of the page,
and the additional banned words (or expressions)
are extracted from the text (and links) of the page.
The automatic process is divided into two parts.
First, we compute a difficulty score for each page
of (a large subset of) Wikipedia as described in
Section 2. Then, for the best pages (i.e., the easiest
ones), we select a list of banned words as described
in Section 3.

You can currently play Tabouid in English and
French. The game is available as an Android” and
iOS? application that is entirely free and does not

https://play.google.com/store/apps/
details?id=com.tot.tabouid

Shttps://apps.apple.com/us/app/

25

George R. R. Martin

Award
fiction
series
science
writer
fantasy
story
novel
Wild Cards
Book

Figure 2: Screenshot of the application with the card
George R. R. Martin.

contain any advertisement. The cards have been
pre-generated and packaged with the application;
an internet connection is not required during the
game.

2 Page scoring

The computation of difficulty scores is the most
complex, and probably also the most crucial,
part of the process. Indeed, almost all of the
pages in Wikipedia would make for very poor
cards, and so represent little to no interest to
the game. They broadly fall into two categories.
The first category is that of pages referring to
entities lying very far from what we can con-
sider common knowledge. For example (taken
randomly from Wikipedia), Smrekovec Lodge,
described as “a mountain hostel on the southern
slope of the Smrekovec Mountains” (in Slove-
nia). The other category comprises pages that
do refer to relatively familiar concepts, but that
are way too specific and technical to be actu-
ally guessed in the context of the game. For ex-
ample, Taekwondo at the 2016 Summer
Olympics - Men’s +80 kg. Wikipedia

tabouid/1id1477994156

contains a very large number of pages for sport
events of all kinds and in many variations — while
some hardcore sport fans might actually enjoy play-
ing such cards, we will assume than most players
would quickly get bored after having a good laugh
(at best).

By contrast, here are several examples of
pages that will make for good cards: Saturday,
Feminism, Christopher Columbus and
Bangladesh. In the middle, pages such as
List of scientists who disagree
with the scientific consensus
on global warming and History of
mathematical notation can be found,
which are definitely challenging but still playable
and fun for individuals used to the game. We
therefore want to compute difficulty scores that
reflect this natural gradient.

To do so, we use a neural network that takes as
input a vector representation of a page and com-
putes a real-valued score between 0 and 1. The
lower the score, the more difficult the page.* We
first start by describing how the vector representa-
tion of each page is computed before turning to the
neural network itself before describing the annota-
tion collection.

2.1 Page representation

Each page vector can be divided in two subvectors:
a vector of categories and title features, contain-
ing information about both the categories the page
belong to and its title’, and a vector of various
features.

There are 10 various features: (1) the number of
visits to the page between January 1% 2015 and De-
cember 31" 2018, (2) the variance of the monthly
distribution of the number of visits between these
two dates divided by its squared mean (this is a
measure of dispersion of the distribution), (3) the
size of the page, (4) the date of creation of the page,
(5) the date of last modification of the page, (6)
the number of modifications of the page since its

4 Alternatively, the score can be interpreted as a playability
score: the higher the score, the higher the playability of the
page.

5In Wikipedia, each page belong to zero, one or more cat-
egories such as 20th-century women scientists,
Naturalized citizens of France or People
from Warsaw, to name a few of the 58 categories the
Marie Curie page belongs to. These categories define
a hierarchy that is at the heart of knowledge-bases such as
(Suchanek et al., 2007) and YAGO2 (Hoffart et al., 2013), in
addition to taxonomies, such as WikiTaxonomy (Ponzetto and
Strube, 2011) and WikiNet (Nastase et al., 2010).

26

creation, (7) the number of translations of the page
in other versions of Wikipedia, (8) whether the title
contains the name of a month, (9) whether the title
is a date (matching some regular expression), and
(10) whether the title contains foreign characters.
Except for the three last of these, which are binary,
each feature is formatted as a real value which is
then linearly transformed so that the corresponding
distribution over all pages has mean 0 and standard
deviation 1.

The categories and title vectors are computed as
follows. We first build the title word assignment
matrix W containing one line for each page and
where rows represent words, such that W; ; = 1 if
the title of page 4 contains word j and 0 otherwise.®
We also build the category assignment matrix C' in
a similar way, such that C; ; = 1 if page i belongs
to a category containing word j, and 0 otherwise.
Then, we concatenate these two matrices and apply
a dimensionality reduction algorithm. More specif-
ically, we use the TruncatedSVD algorithm im-
plemented in the Scikit-learn library (Pedregosa
et al., 2011) to produce a vector of size 50 for each

page.’

2.2 Neural network

We use a very simple architecture for the neural
network. The reason is that, as explained below,
we have very little annotated data to train the sys-
tem on. Therefore, to prevent overfitting, we define
a model with a small number of parameters and
such that some of these parameters are (to a certain
extent) interpretable. One of the advantages of in-
terpretable parameters is that we can manually set
them to sensible values at the beginning of the train-
ing process. By doing so, we want to encourage
the network to leverage actual correlations of the
underlying distribution rather than mere artefacts
of the training set.

Let u be a page vector (of dimension 60). It
is first sent through a square affine layer, o’
A-u~+ B, the result of which is then used to perform
an element-wise multiplication, v = u * v/. Finally,
this vector is sent through a sigmoid layer of height
1 to produce the difficulty score, s = o(a - v + b).

This model contains only 3,844 parameters and

%We ignore stop words and words appearing in less than
0.1% of the page titles. We use a set of one million randomly
selected pages.

"This algorithm is based on singular value decomposition
(SVD; Halko et al., 2011), which is also at the heart of latent
semantic analysis (LSA; Dumais et al., 1988).

allows direct multiplicative interaction between
each pair of coefficients of the input vector. In
addition, if we expand the score as

s = J(Z(alulBl + a;u; ZAi,juj) + b) (D)

i J

we can notice the linear a;u;B; terms. We recall
that, for 0 < ¢ < 9, we know exactly what wu;
means.® For all of them, we can intuitively guess
whether they have a positive or negative impact on
the difficulty or playability of the corresponding
card, which allows us to initialise the product a; B;
in a sensible way. For example, we assume that, all
other things being equal, the higher the popularity
of the page, the lower the difficulty of the card.
Similarly, a high dispersion in the visitor distribu-
tion might indicate a temporary fame of the page,
which would have possibly made an interesting
card for a short period after the peak of the distri-
bution, but likely to become obsolete after that. So,
we initialise ag By with a positive value and a1 B,
with a negative one. More precisely, we initialise
a; = 1 for all 7 and then set by = 1, by = —0.5,
bo = 1,b3 = —1, by = 0.5, b5 = 0.5, bg = 1,
b7 = —0.5, bg = —0.5, by = —1. Note that these
weights will be trained with all other parameters,
potentially (in)validating our intuitions.

Given a training set D = (x;, y;); where x; is a
Wikipedia article and y; is its annotated score, we
train the model to minimise the cross-entropy over
D, L ==Y s(:)log(y:) + (1 — s(as)) log(1 —
s(x;)). The training is done by stochastic gradient
descent with momentum, using L2 regularisation.

2.3 Annotation and results

To train the model described above, we collect
annotations for a very small subset of Wikipedia.
Pages are annotated with a real-valued score be-
tween O (hard/unplayable) and 1 (easy). Because,
as explained above, Wikipedia is strongly imbal-
anced towards unplayable pages, manually anno-
tating random pages chosen from a uniform distri-
bution would be a very inefficient process. Instead,
we implement an active learning process.

In short, we start by scoring the 100 most visited
pages, as they contain a high proportion of easy
pages. This forms our initial dataset. We train
the model on this dataset and use it to score some

8The interpretability of the other coefficients is dependent
on the result of the dimensionality reduction, which we will
not discuss here.

27

unlabelled pages among which we select some in-
stances to be scored by a human annotator. We add
these 10 instances to the dataset and reiterate.

The query strategy that we adopt is the follow-
ing: if the average score in the dataset is below 0.5,
we select the 10 pages with the highest predicted
score, otherwise we select the 10 lowest ones. The
rational of this choice was to keep the dataset bal-
anced. In retrospect, more principled techniques
such as expected model change or uncertainty sam-
pling (Settles, 2009; Fu et al., 2013) might have
been tried, but this basic strategy yielded satisfying
results, so we stuck to it.

After having annotated around 2300 instances
in this way, the 500 pages with highest predicted
scores were sent to human annotators. Once this
process was completed, we trained the model on
70% of the scored pages, dividing the remaining
30% for early stopping and evaluation. One possi-
ble way to quantify the performance of this model
is to discretise the score space ([0, 1]) into two cat-
egories (s < 0.5 and s > 0.5) and to compute
the accuracy as in a binary classification task. On
10 trained models with the interpretable weights
initialised as explained above, the best accuracy is
85.0%, the mean accuracy is 83.5% and the stan-
dard deviation is 1.1%. On 10 trained models with-
out the initialisation procedure, the best accuracy
is 84.4%, the mean accuracy is 82.9% and the stan-
dard deviation is 1.3%. This tends to show that our
initialisation procedure is justified and makes the
training more effective and reliable.

By manually inspecting the weights of a ran-
domly chosen trained network, we can compute
the a; B; products for the 10 various features. We
will not comment on most values, which are un-
surprising but only mention that contrary to our
expectations, the product for the size feature is
very low (a2 By = 0.03) and the one for the num-
ber of translations too (agBg = 0.02). This does
not mean, however, that these features do not have
a positive effect on the score of the page, as they
are also involved in the multiplicative terms (see
1.

The 10,000 pages with the highest scores
(this includes pages annotated by humans) —
from Donald Trump (1.0) to Landscape
painting (0.59) — have been included as cards
in the game. The selection of the banned words for

9See for instance the work of Lipton (2018) about the
difficulty of interpreting even simple models.

each page is the subject of the next section. The
players can set a difficulty setting that determines
which cards are shown during the game: if the
difficulty is set as d € [1,10000], only the d easi-
est cards are used (in random order). This setting,
however, has no effect on each card’s list of banned
words.

3 Banned words selection

A simplified version of our banned words selec-
tion algorithm is as follows. For a given Wikipedia
article, its text is first tokenised. Tokens are then
stemmed and all stop words are removed. Finally,
we select the 10 most frequent stems in the page
and use their most frequent tokens (one for each) as
banned words. Tokenisation and stemming are per-
formed with the NLTK library (Bird et al., 2009).

There are two main differences between this sim-
plification and the actual algorithm we use. The
first is that we add rules to NTLK’s stemmer in or-
der to map strongly related words that are stemmed
differently to the same class. For example, we send
words stemmed as lawyer to the law class. We
send the words stemmed as pole or poland (but
starting with a capital letter) to the polish class. For
all stems ending in pean, we remove the final ean
(e.g., European is sent to europ). Around 25 rules
have been manually defined during the develop-
ment of the English version of the game.

Second, we do not ban only single words, but
also longer expressions. We detect links pointing
to other Wikipedia articles and consider their titles
as potential banned expressions. Also, because it
appears that entities having a Wikipedia page of
their own are usually very informative even when
they have comparatively few mentions in the text,
we count them with a factor 1.5. Given the name of
a Wikipedia article linked in the current page, each
of its occurrences counts not only as 1 occurrence
for each of the tokens it is composed of but also
as 1.5 occurrences of the full name. For example,
each occurrence of Serge Gainsbourg will count
as 1 occurrence of Serge, 1 occurrence of Gains-
bourg and 1.5 occurrences of Serge Gainsbourg.
An occurrence of a single word entity name, such
as Madonna, simply counts as 1.5 occurrences of
Madonna. During the final step of the algorithm,
when selecting the banned words or expressions,
were two words composing the name of an entity
to be selected, we only select this name instead.

This algorithm is not perfect; some important

28

words might be missed because of the way we
analyse the page or simply because they do not
even appear in the text. In addition, even with
our hand-crafted rules supplementing the stem-
ming algorithm, different forms of the same word
(or words that, although different, are so strongly
related that, according to the rules of the game,
banning one is equivalent to banning the other)
might be selected as distinct banned words. It is
to compensate for such limitations that we build
lists of 10 banned words or expressions. Such
a relatively high number tends to favour the in-
troduction of false positives, but these are not a
major problem. They are only an annoyance in
that they unnecessarily slow the player, who has
to read them. While we have not performed any
quantitative evaluation of this algorithm, it has
been, however, extensively tested during various
parties, family gatherings, commuting trips and
scientific conferences (among others). In addition
to the two cards shown in Figures 1 and 2, here
are a few other cards present in the game. World
War I (score 1) with banned words France, Rus-
sia, British Army, forces, Allied Powers, Battle,
Britain, Ottoman, Germany, and United States,
Rihanna (score 1) with banned words album,
music, released, single, Billboard, Girl, song,
record, Awards, and featured, and Artificial
intelligence (score 0.98) with banned words
Al, human, machine, research, learning, computer,
problems, systems, networks, and algorithms.

4 Conclusion

In this paper, we have shown how a range of rel-
atively simple NLP and machine-learning tech-
niques can be integrated effectively to automat-
ically generate the content of Tabouid, a word-
guessing game freely available on Android and
10S devices. Although easy to understand and im-
plement, these techniques can be developed and
improved on in many ways. They also naturally
lead to a wide range of practical and theoretical
questions relevant to NLP (e.g., data collection
and annotation, and model interpretability). In this
respect, this work could inspire implementation
projects in NLP or computational linguistic pro-
grams. Concerning the game itself, we believe
that Tabouid is more than just a fun game and can
develop and help reinforce general knowledge for
players of all backgrounds. It also appears to be
an engaging way to practice speaking for language

learners.

In addition to improving the banned words selec-
tion process, future work on Tabouid includes gen-
erating specific lists of cards based on school pro-
grams to use the game as an educational tool, using
the category system of Wikipedia to let users select
more or less specific categories to play with, and
adapting the algorithms to leverage the wide variety
of languages Wikipedia is available in beyond En-
glish and French. Currently, the content of Tabouid
aims to reflect the diversity of Wikipedia’s ency-
clopaedic knowledge.” As a consequence, some
cards include words related to topics that might be
deemed inappropriate for children. As suggested
by an anonymous reviewer, another possible addi-
tion to the game could then be to predict the age
appropriateness of a given topic, allowing for cards
to be filtered on the basis of an age setting.

Acknowledgements

Many thanks to Elise Dessaux for her work on the
graphic design of the application!

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sren
Auer, Christian Becker, Richard Cyganiak, and Se-
bastian Hellmann. 2009. DBpedia - A crystalliza-
tion point for the Web of Data. Journal of Web Se-
mantics, 7(3):154-165.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to Answer Open-
Domain Questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870-
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deer-
wester, and R. Harshman. 1988. Using latent seman-
tic analysis to improve access to textual information.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’88, pages
281-285, Washington, D.C., USA. Association for
Computing Machinery.

Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A survey
on instance selection for active learning. Knowledge
and Information Systems, 35(2):249-283.

N. Halko, P. G. Martinsson, and J. A. Tropp. 2011.
Finding Structure with Randomness: Probabilistic

29

Algorithms for Constructing Approximate Matrix
Decompositions. SIAM Review, 53(2):217-288.

Johannes Hoffart, Fabian M. Suchanek, Klaus
Berberich, and Gerhard Weikum. 2013. YAGO2: A
spatially and temporally enhanced knowledge base
from Wikipedia. Artificial Intelligence, 194:28-61.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1601-1611,
Vancouver, Canada. Association for Computational
Linguistics.

Zachary C. Lipton. 2018. The Mythos of Model Inter-
pretability. ACM Queue, 16(3):1-27.

Vivi Nastase, Michael Strube, Benjamin Boerschinger,
Caecilia Zirn, and Anas Elghafari. 2010. WikiNet:
A Very Large Scale Multi-Lingual Concept Net-
work. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta. European Language Re-
sources Association (ELRA).

. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Simone Paolo Ponzetto and Michael Strube. 2011.
Taxonomy induction based on a collaboratively
built knowledge repository. Artificial Intelligence,
175(9):1737-1756.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383-2392,
Austin, Texas. Association for Computational Lin-
guistics.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin—Madison.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. YAGO: A Core of Semantic Knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, WWW 07, pages 697—
706, New York, NY, USA. ACM. Event-place:
Banff, Alberta, Canada.

Talk to Papers: Bringing Neural Question Answering to Academic Search

Tianchang Zhao and Kyusong Lee *
SOCO Al
{tonyzhao, kyusongl}@soco.ai

Abstract

We introduce Talk to Papers', which exploits
the recent open-domain question answering
(QA) techniques to improve the current ex-
perience of academic search. It’s designed
to enable researchers to use natural language
queries to find precise answers and extract in-
sights from a massive amount of academic pa-
pers. We present a large improvement over
classic search engine baseline on several stan-
dard QA datasets, and provide the community
a collaborative data collection tool to curate
the first natural language processing research
QA dataset via a community effort.

1 Introduction

Natural language processing (NLP) is one of the
fastest growing field in computational linguistics
and artificial intelligence, e.g. ACL has experi-
enced a 140% growth from 2017 (1419 submis-
sions) to 2020 (3429 submissions). Plus, there are
more than 4000 pre-prints published at ArXiv in
2019. As aresult, it has become increasingly stress-
ful for researchers to keep up with the evolution
of new methods. Today, the common way for re-
searchers to find relevant papers is via searching
keywords in Google Scholar? or Semantic Scholar’.
Although these search engines are great at curat-
ing all the papers, they are limited in the following
ways: (1) they are based on classic information re-
trieval methods, and do not handle natural language
queries well, e.g. what effects can we get from
label smoothing? (2) they are designed to find rele-
vant documents (title and abstract) instead of direct
answers to users’ questions. Often researchers are
looking for answers on specific research questions,
e.g, how to prevent posterior collapse in VAE? or

Both authors contributed equally
"https://ask.soco.ai
https://scholar.google.com/
Shttps://www.semanticscholar.org/

30

how much is it to label sentences via crowdsourc-
ing? With current search engine, it requires one to
read several papers to find these answer. Therefore,
it is necessary to create better tools for researchers
to find answers from the scientific publications in a
more efficient manner.

Meanwhile, machine reading comprehension
(MRC), aka question answering (QA) has advanced
significantly. Pretrained and then fine-tuned trans-
former models (Devlin et al., 2018) have surpassed
human performance on a number of datasets, e.g.
SQuAD (Rajpurkar et al., 2016). Further, Chen
et al. (2017) extended single document MRC to ma-
chine reading at scale (MRS), combining the chal-
lenges of document retrieval with reading compre-
hension. Their open-domain QA system is able to
find precise answers from millions of unstructured
documents using natural language queries and has
successfully been applied to the entire Wikipedia
which contains more than 5 million articles.

The goal of Talk to Papers is to create a new
way of finding answers from scientific publications
and advance QA research. Concretely, we first
adapted MRS techniques to create a conversational
search portal that enable users to ask natural lan-
guage questions to find precise answers and extract
insights from the last 3 year papers published in
top-tier NLP conferences, including ACL, NAACL,
EMNLP and etc. Second, an initial corpus on these
papers is collected and will be released as a pub-
licly available dataset for QA research. We also
developed a collaborative annotation toolkit that
enable any researcher to contribute to this dataset
so that more potential answers from these papers
can be annotated. The annotation results will be
fed back to the QA corpus after manual validation.

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 30-36
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Q: what is BERT?

sentence 1 +
context

K sentence answer 1 ————»! Maching Phrase answer 1| !
‘ Encoder Retriever ' Reader !
Y, '
sentence 2 + :
— _ > !
— context — :
sentence answer K ——», Maching Phrase answer K| :
: Reader !
J '
sentence N +

context

Figure 1: Overall workflow of the proposed SOCO framework. The machine reading step in the dashed box is

optional.

2 Related Work

Developing question answering system with
text knowledge base has been studied for
decades (Voorhees and Tice, 1999). Many of the
classic system as well as recent MRC-based open-
domain QA systems have relied a pipeline ap-
proach (Ferrucci et al., 2010; Chen et al., 2017;
Lee et al., 2018; Yang et al., 2019): (1) a infor-
mation retrieval-based retriever module first finds
relevant passages from all the documents and then
(2) a reader component (computationally more ex-
pensive) extracts precise answer spans from the
retrieved passages. Yang et al. (2019) has shown
that using paragraphs as the unit of passage outper-
form sentences or documents. Lee et al. (2019a)
proposes a trainable first-stage retriever that im-
proves the recall performance.

Pipeline-based system often suffer from error
propagation (Zhao and Eskenazi, 2016). Thus an-
other line of research has been finding an end-to-
end approach that enable precise-answer extraction
from the entire dataset instead of only the output
from the first-stage retriever. Seo et al. (2019) in-
troduced the phrase level representation model that
index every potential answer span as vector repre-
sentation and exploited approximate nearest neigh-
bour (ANN) methods to retrieve the final answer
span directly from a large vector index (Slaney and
Casey, 2008). Ahmad et al. (2019) argued that
phrase-level answer may not always be required or
preferred. Instead they proposed to find the right
“sentence” as an answer from large body of text, and
used universal sentence encoder (Cer et al., 2018)
to retrieved the correct sentence given a question.

Our approach follows the sentence-level QA sys-
tem from (Ahmad et al., 2019) for two reasons: (1)
answers to many research questions cannot be cov-

31

ered in a short phrase-level span, and a sentence
answer can provide more context to deliver relevant
solutions. (2) our preliminary study found that it is
important to have a trainable retriever that goes be-
yond TF-IDF keyword matching to ensure enough
recall in the paper domain. Nonetheless, we keep a
machine reader as optional post-process to extract
phrase-level span from the sentences.

3 The Proposed QA Toolkits: SOCO

We first introduce SOCO (Search Oriented COnver-
sation), which we used to build our Talk to Paper.
SOCO # is an answer-engine platform that enables
developers to easily build universal question an-
swering systems with unstructured documents as
its knowledge base. Figure 1 shows the overall ar-
chitecture of SOCO engine. It’s designed to enable
users to use natural language queries to find precise
answers and extract insights from massive amount
of text data. The typical workflow is as following:

1. Split documents into sentences and convert
each sentence with its context into semantic
index (i.e. a collection of answer embedding,
sparse features and other semantic features).

Use natural language to query the index,
which first converts the query into semantic
embedding and then retrieves all the high prob-
able answers.

. (Optional) Run machine reader to narrow
down to phrase-level answers.

3.1 SOCO-Question Answering

We define a frame to be the basic building block of
SOCO. Each frame contains f; = [a;,¢;, Q] @ €

*nttps://docs.soco.ai/

A Crowdsourced Frame

Disambiguation Corpus with... n“

»

xorre ooy

tiple frames with score
dence with which each 1
This allows us to demo1
prominent feature of frame wsamvrguauon;-wiur
many cases where more than one possible frame
can apply to the same word. Finally, we present an
evaluation of several frame disambiguation mod-
els using evaluation metrics that leverage the mul-
tiple answers and their confidence scores, and
show that even a model that always predicts the
top crowd answer will not always have the best
performance.

2 Corpus Collection & Analysis

2.1 Data Preprocessing

Our corpus consists of 5,042 candidate word-
sentence pairs from Wikipedia (which has since

How much does it cost to run in crowdsourcing ?

"...1is correct. We used 15 workers/sentence that were paid $0.05 for
each judgment, and a total cost of $1.35 per sentence (after factoring
in the additional AMT costs). 2 To..."

to the sentence-word pairs as sentences in the rest
of the paper.

2.2 Crowdsourcing Setup

We ran the task on Amazon Mechanical Turk,
where the workers were asked to select all frames
that fit the sense of the highlighted word in a sen-
tence from the multiple choice candidate list, or
that none of the frames is correct. We used 15
workers/sentence that were paid $0.05 for each
judgment, and a total cost of $1.35 per sentence
(after factoring in the additional AMT costs).

To aggregate the results of the crowd while also

capturing inter-annotator disagreement, we use the
CrawdTeth matrine} Mumitracha at al 018k

Figure 2: In-paper Search Page of Talk to Paper.

N, where N is the total number of frames, a; is
the potential answer sentence, ¢; is surrounding
context of a;, and (); is a set of questions that are
manually/synthetically associated with the answer
a;. Note that (); is optional and often only a small
set of frames are manually labelled.

There are two neural network models involve
in SOCO QA. The first model h, = F,(a,c) is
an answer encoder that takes both the answer sen-
tence and its surround context to create a context-
sensitive answer embeddings h,. The second
model is a question encoder h, = Fy(q) that takes
a query as input and maps it to a question embed-
ding vector of the same size. Last, we define the
relevance between a query and an answer frame to
be s = cos(hq, hy).

3.1.1 Training

These two models are trained jointly via supervised
learning on existing QA dataset with cross entropy
loss, i.e.

L=— % log(s;)— Y log(l—s;) (1)

JE€JIpos JE€Ineg

where Jpos is the set of ground truth question-
answer pairs, and Jyeg i8 the set of negative ex-
amples with randomly sampled noisy answers.

Given these two models and a set of frames,
SOCO creates an index by encoding both the an-
swers and annotated questions using F,, and 'y, and
save the resulting vectors D for nearest neighbour
retrieval. Since Fj and [y, are trained to map the
input text into the same embedding space, question-
to-answer relevance and question-to-question rele-
vance can be computed and compared in the same
scale via cosine similarity.

3.1.2 Inference

At inference stage, SOCO first encodes the input
query ¢’ via hy = Fy(q’). Then each answer in
the QA-index is scored by the cosine similarity
between the query embedding and each answer
embedding with a weighted auxiliary score from
classic BM25 score (Robertson et al., 2009).

yi = cos(hi, hy) + aBM25(a;,q") i € |D|
2)

Note that an answer may have more than one vec-
tors in the index because of the optional annotated
question () set in the frame, i.e. [hq, {hs}] ¢ € Q.
We merge the scores for the same answers via max
pooling. Eventually, SOCO outputs the top K an-
swers based on the final score.

3.2 SOCO-Question Generation

One common issue for new users to use question
answering system is that they may not know what
kind of questions they can ask. Question gener-
ation (Du et al., 2017) is one of the solutions to
this issue by suggesting users potential questions
they may enter. Concretely, we created a ques-
tion generator by fine-tuning a GPT-2 language
model (Radford et al., 2019). We train the model
by concatenating question answers pairs [a, ¢| from
QA corpus and fine tune a GPT-2 by maximizing
the conditional log likelihood log P(g|a). The re-
sults questions are added to the () set of each frame
and is used to provide auto completion and FAQs
in the search interface.

3.3 Implementation Details

The SOCO python package (soco-core-python) is
publicly available and can be installed as a Python

32

package by running pip3 install soco-core-python.
Internally, SOCO uses Elastic search (ES) (Gorm-
ley and Tong, 2015) as its index backbone. ES
has built-in support for vector search, BM25 as
well as context filtering. The answer and ques-
tion encoder are trained on publicly available QA
datasets, including SQuAD (Rajpurkar et al., 2016),
Natural Questions (Kwiatkowski et al., 2019) and
MSMARCO (Nguyen et al., 2016).

4 Talk to Paper

Now we are ready to describe the proposed Talk
to Paper application, powered by our SOCO QA
framework.

4.1 Data Source

Talk to Paper’s data source contains NLP papers
published last 3 years in ACL, NAACL, EMNLP
and SiGdial in ACL Anthology>, which attributes
to 3897 papers published in the proceedings of
these conferences (we will continuously expand
the database by adding more papers from previous
years as well as new published papers). We first
use SOCO’s document parser to extract text data
from the PDFs and converted them into the frame
format defined in the previous section. Then we
use soco-core-python to index the frames and query
for answers via its RESTful API endpoint. The
indexing process takes about 2 hours.

4.2 User Interfaces

Talk to Paper is an web app that can be used on any
modern browser. There are three major pages:

e Main search page
e In-paper search page
e Annotation page.

Main Search page: The main search page is
similar to the standard Google-like search interface
as shown in Figure 3, including input search box
and query auto completion (based on generated
questions from GPT-2).The responding answers
will be highlighted in each returned results.

In-paper Search Page: Previously, people
search information in the paper by clicking Con-
trol+F, which is a well-known shortcut key often
used to find text in the current page using the exact
character matching or regular expression. It is often

Shttps://www.aclweb.org/anthology/

33

¥l whatis BERT?

B USE SOCO.AI

B) to be labelled as general or specific, whereas we argue that specificity is relative. Fine-tuned
BERT. We compare our baselines with a fine-tuned BERT model (Devin et al., 2018). BERT is
a pre-trained deep bidirectional transformer model that can encode sentences into dense
vector representations. |t s trained on large un-annotated corpora such as Wikipedia and the
BooksCorpus (Zhu et al., 2015) using two different learing objectives, namely masked
language model and next sentence. cu

§ Facebook

Figure 3: Main search page of Talk to Paper.

used to input a keyword and highlight the matched
string and allow to navigate the next matching or
previous matching. We provide a similar interface
to find the answer inside a specific paper as shown
in Figure 2. Instead of searching information using
a keyword, the proposed method allow to find the
information using natural language queries. The
retrieved answers are highlighted and it is also al-
lowed to navigate next answer or previous answer.
It will be useful to find multiple answers in the
paper.

Annotation Page: We allow to annotate the
question and answer spans in the in-paper search
page as shown in Figure 4. All annotated data are
visible in the preview page. If a user wants to anno-
tate the data, the user can simply drag the text and
write a question. The data will be automatically
saved in the database. Unlike other open-domain
QA datasets, we cannot ask to crowd workers, stu-
dents, or part-time contractors to annotate on aca-
demic papers because it is hard to annotate without
the domain knowledge. Therefore, we will wel-
come contributions from the research community
to make useful resources together for the further
research.

{a1,...,am}, where a; € {1,..., n} returns the |
index of a word aligned to concept 7. J=—======="
ple, a; = 3.]

All three model components 1 How did you encode the kentences?
directional LSTM encoders (Schuster,
1997). We denote states of BiLST}
catenation of forward and backward L
ash, € R (k€ {1,...,
encoder takes pre-trained fixed word

initiali lemma ings, part-of-
speech and named-entity tag embeddings.

€ Cancel || @ Save

22 Method overview

Figure 4: Annotation page of Talk to Paper.

4.3 Use Cases
The typical use cases are as following:
1. A user asks a question or click one of FAQs

in the main search page. The N-best results
will be presented with the highlighted answer

Examples

Paragraphs

Q: what are pretraining objectives?
A: that pretraining will improve downstream
tasks with fine-tuning on the entire available data

Title: Pretraining Methods for Dialog Con-
text Representation Learning

The pretraining objectives are assessed un-
der four different hypotheses: (1) that pretrain-
ing will improve downstream tasks with fine-
tuning on the entire available data, (2) that pre-
training will result in better convergence, ...

Q: what is LSTM?
A: Long Short-Term Memory Network

Title: Reasoning with Sarcasm by Reading
In-between

. The filter width is 3 and number of filters f
= 100. LSTM is a vanilla Long Short-Term
Memory Network. The size of the LSTM cell
is set tod = 100. ATT-LSTM (Attention-based
LSTM) is a LSTM model with a neural attention
mechanism applied to all the...

Q: What is the best system for NLI?

A: Currently, one of the best performing NLI
models (e.g., on the SNLI dataset) for three way
classification is (Liu et al., 2019).

Title: Identification of Tasks, Datasets,
Evaluation Metrics, and Numeric Scores for
Scientific Leaderboards Construction

... Our work differs in the information extracted
and consequently in what context and hypothe-
sis information we model. Currently, one of
the best performing NLI models (e.g., on the
SNLI dataset) for three way classification is
(Liu et al., 2019). The authors apply deep neural
networks and make use of BERT (Devlin et al.,
2019),...

Table 1: Example results from real user queries

with its previous and next context. The related
FAQs are also presented with the ”You may
also want to know” message. The user can
also uses filters to narrow down to the answer
in one or more specific paper.

. the user clicks the ”view in document” to
check the answer with the original paper. The
in-paper search page will be shown. The user
can either read the paper or uses in-paper
search, e.g. what is the main contribution?
to let Talk to Paper auto scroll and highlight
relevant answer spans (Figure 2).

. the user may think certain span in the paper
contains important information and uses the
annotation function to add related questions to
this span. This new annotations will be saved
in to databases and will be added to the public
dataset after manual inspection.

. the user may uses the dataset as way to train
and test performance of a question answering
system. The Talk to Paper dataset is differ-
ent from existing corpus because it contains
highly technical text data that are substantially
different from Wikipedia, which is a major
source of most of the existing QA datasets.

34

5 Experiments and Results

In this section, we first present quantitative pre-
liminary evaluation results the effectiveness of the
proposed SOCO-QA framework on a number of
standard QA datasets. Then we show results on the
data collected from our initial user study.

5.1 Results for SOCO-QA performance

This preliminary studies focuses on comparison
between SOCO-QA against classic BM25 (Robert-
son et al., 2009). BM25-based methods remain
to be the mainstream methods for document re-
trieval in industry. Previous work in open do-
main question answering has shown that BM25
is a difficult baseline to surpass when questions
were written by workers who have prior knowl-
edge of the answer (Lee et al., 2019a). We will
leave more comprehensive comparisons against
other learning-based methods to future work, since
the main goal of this demo paper is to present the
system along with its dataset. We use the built-in
elastic search (Gormley and Tong, 2015) BM-25
implementation with standard English anazlyer.
Evaluation Methods: we compared perfor-
mance on four QA datasets, i.e. SQuAD (Ra-
jpurkar et al., 2016), Natural Questions

Index Size Num of Queries
SQuAD | 10,250 11,426
NQ 7,020 1,772
MARCO | 52,933 13,557
Trivia 26,345 8,165

Table 2: Statistics on the evaluation datasets.

BM25 SOCO

MRR R@5 | MRR R@5
SQuAD | 58.0 69.0 | 60.9 73.2
Trivia 29.0 38.7 | 34.0 59.2
NQ 19.7 25.1 | 69.3 87.3
MARCO | 20.7 27.0 | 73.2 92.8

Table 3: Main evaluation results.

(NQ) (Kwiatkowski et al., 2019), MS
MARCO (Nguyen et al, 2016) and Trivia
QA (Joshi et al., 2017). We break documents from
the development set into sentence-level answer
frames, and uses the queries in the development
set to compute Mean Reciprocal Rank (MRR) and
Recall at 5 (R@5) as the evaluation metrics. The
data statics are summarized in Table 2.

Quantitative Results: Table 3 shows the main
results. The proposed SOCO-QA model is able
to significantly outperform the baseline BM25 on
all datasets. The proposed method is particularly
powerful on real query data, e.g. NQ and MARCO
where the question writer does not the exact an-
swer they are looking for, so that there is often a
low word overlapping between the question and
the answer. Table 3 shows a striking 251% and
253.6% relative MRR improvement on the NQ and
MARCO dataset. On the other hand, SOCO is also
able to beat BM25 on SQuAD and Trivia dataset,
where there is significant more question-to-answer
word lapping.

Qualitative Results: to provide better un-
derstanding between BM25-based search versus
SOCO-QA, the following are some example side-
by-side comparisons:

e SOCO: We compare our baselines with a
fine-tuned BERT model (Devlin et al., 2018).
BERT is a pre-trained deep bidirectional
transformer model that can encode sen-
tences into dense vector representations. It
is trained on large un-annotated corpora such
as Wikipedia and the BooksCorpus (Zhu et
al., 2015).

o ES Default (BM25): for the claim pairs with
distance values 2 to 5 as shown in Table 3. We
find that BERT model is consistently the best
performing model for all distance pairs. As
we increase the distance, the models achieve
higher prediction performance.

The main observations is that BM25 falls short in
understanding the intent of the query. Although
it is also able to find sentences that are relevant
to the query terms, it does not rank sentences that
can “answer’” the query higher. On the other hand,
SOCO-QA is able to recognize target answer a
query is looking for, e.g. a definition, and rank
sentences that can directly resolves the questions
higher.

5.2 Data Analysis

We asked NLP researchers via social network, e.g.
Twitter, to try out Talk to Paper and we are able
to collect 3137 queries in roughly two weeks. The
logged query data and its annotation will soon be
made publicly available). Table 1 shows example
queries where the system is able to find relevant
answers to real user queries. Analysis shows that
the most frequent query type were asking about the
objectives or the meaning of terms (e.g., what are
pretraining objectives, what is LSTM?). Another
popular question type is to ask about the state-of-
the-art method to solve a particular problem, e.g.
What is the best system for NLI?.

We also found that the generated questions that
are presented as auto-completion and FAQs are
particularly popular. About 51.7% of queries were
from the suggested questions. This results is inline
with research work in human-computer interaction
that utilizes machine intelligent systems to assist
human users to better discover knowledge (Lee
etal., 2019b).

6 Conclusion

We present Talk to Paper, a QA system for NLP
papers powered by SOCO-QA. Experiments con-
firm the effectiveness of our proposed approach
and show superior search experience compared to
traditional search engine. We welcome contribu-
tions from the research community to curate useful
resources together for the further research. Future
work include (1) expanding the database to more
papers (2) improving the QA model using the col-
lected data to better handle question answering in
the context of research domain.

Acknowledgments

We would like to acknowledge the joint effort
from SOCQO’s development team, including Haolin
Wang, Yanran Han and Omer Riaz to make this
work possible.

References

Amin Ahmad, Noah Constant, Yinfei Yang, and
Daniel Cer. 2019. Reqa: An evaluation for end-
to-end answer retrieval models. arXiv preprint
arXiv:1907.04780.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1342—
1352.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building watson: An overview
of the deepqa project. Al magazine, 31(3):59-79.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: the definitive guide: a distributed real-time
search and analytics engine. ~ O’Reilly Media,
Inc.”.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics,

7:453-466.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. arXiv preprint arXiv:1810.00494.

36

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019a. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint
arXiv:1906.00300.

Mina Lee, Tatsunori B Hashimoto, and Percy Liang.
2019b. Learning autocomplete systems as a commu-
nication game. arXiv preprint arXiv:1911.06964.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: a human-generated machine read-
ing comprehension dataset.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends®) in Information Re-
trieval, 3(4):333-389.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski,
Ankur P Parikh, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2019. Real-time open-domain question
answering with dense-sparse phrase index. arXiv
preprint arXiv:1906.05807.

Malcolm Slaney and Michael Casey. 2008. Locality-
sensitive hashing for finding nearest neighbors [lec-
ture notes]. IEEE Signal processing magazine,
25(2):128-131.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vol-
ume 1999, page 82. Citeseer.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Tiancheng Zhao and Maxine Eskenazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
In Proceedings of the 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 1-10.

Personalized PageRank with Syntagmatic Information
for Multilingual Word Sense Disambiguation

Federico Scozzafava'>, Marco Maru'->3, Fabrizio Brignone*,
Giovanni Torrisi*, and Roberto Navigli'-

'Sapienza NLP Group
?Department of Computer Science, Sapienza University of Rome
3Department of Literature and Modern Cultures, Sapienza University of Rome
“Babelscape, Italy

firstname.lastname@uniromal.it,

Abstract

Exploiting syntagmatic information is an
encouraging research focus to be pursued
in an effort to close the gap between
knowledge-based and supervised Word Sense
Disambiguation (WSD) performance. We
follow this direction in our next-generation
knowledge-based WSD system, SyntagRank,
which we make available via a Web in-
terface and a RESTful API. SyntagRank
leverages the disambiguated pairs of co-
occurring words included in SyntagNet, a
lexical-semantic combination resource, to
perform state-of-the-art knowledge-based
WSD in a multilingual setting. Our service
provides both a user-friendly interface,
available at http://syntagnet.org/,
and a RESTful endpoint to query the
system programmatically (accessible at
http://api.syntagnet.org/).

1 Introduction

In Natural Language Processing, Word Sense Dis-
ambiguation (WSD) is an open problem concern-
ing lexical ambiguity. It is aimed at determining
which sense — among a finite inventory of many —is
evoked by a given word in context (Navigli, 2009).

This challenge has been tackled by exploiting
huge amounts of hand-annotated data in a super-
vised fashion (Raganato et al., 2017b; Bevilacqua
and Navigli, 2019; Vial et al., 2019; Bevilacqua and
Navigli, 2020) or, alternatively, by harnessing struc-
tured information (Agirre et al., 2014; Moro et al.,
2014; Scarlini et al., 2020), such as that available
within existing lexical knowledge bases (LKBs)
like WordNet (Fellbaum, 1998). Despite achieving
better overall results, supervised systems require
tremendous efforts in order to produce data for
several languages (Navigli, 2018; Pasini, 2020),
whereas knowledge-based approaches can easily
be applied in multilingual environments due to the

37

lastname@babelscape.com

wide array of languages covered by LKBs like Ba-
belNet' (Navigli and Ponzetto, 2012), or the Open
Multilingual WordNet (Bond and Foster, 2013).
Moreover, it is widely acknowledged that the per-
formance of a knowledge-based WSD system is
strongly correlated with the structure of the LKB
employed (Boyd-Graber et al., 2006; Lemnitzer
et al., 2008; Navigli and Lapata, 2010; Ponzetto
and Navigli, 2010). In fact, the knowledge avail-
able within LKBs reflects the fact that words can be
linked via two types of semantic relations: paradig-
matic relations — i.e. the most frequently encoun-
tered relations in LKBs — concern the substitution
of lexical units, and determine to which level in
a hierarchy a language unit belongs by semantic
analogy with units similar to it; conversely, syn-
tagmatic relations concern the positioning of such
units, by linking elements belonging to the same
hierarchical level (e.g., words), which appear in
the same context (e.g., a sentence). As a case in
point, a paradigmatic relation exists, independently
of a given context, between the words farm,, and
workplace,, (where a farm is a type of workplace),
whereas a syntagmatic relation is entertained be-
tween the words work, and farm,, e.g., in the sen-
tence ‘her husband works in a farm as a labourer’

In our most recent study (Maru et al., 2019, Syn-
tagNet), we provided further evidence that the na-
ture of LKBs impacts on system performance: the
injection of syntagmatic relations — in the form
of disambiguated pairs of co-occurring words —
into an existing LKB biased towards paradigmatic
knowledge enables knowledge-based systems to
rival their supervised counterparts.

To make the above results accessible to the re-
search community, in this paper we introduce a
Web interface and a RESTful API for SyntagRank,
our multilingual WSD system, which applies the

"https://babelnet.org/

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 37—46
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Personalized PageRank (PPR) algorithm (Haveli-
wala, 2002) to an LKB made up of WordNet, the
Princeton WordNet Gloss Corpus (PWNG) and the
lexical-semantic syntagmatic combinations avail-
able in the SyntagNet resource. SyntagRank is the
first system to perform multilingual WSD by lever-
aging an underlying LKB connecting a sizeable
amount of syntagmatically-related concepts.

2 Preliminaries

Our disambiguation algorithm relies on an LKB, i.e.
a graph in which each node represents a concept,
and each connection between nodes represents a
semantic relation. In this Section we describe the
LKBs whose resulting union we use as our refer-
ence graph, and then go on to provide details of the
PPR algorithm.

2.1 Lexical Knowledge Bases

WordNet (Fellbaum, 1998) is a lexical-semantic
database of English, in which concepts are ex-
pressed by means of sets of cognitive synonyms
(synsets) that are interlinked to form a semantic
network through relation edges.

Relations in WordNet are mainly of a hier-
archical, and thus paradigmatic nature, with
the most frequently encoded relation being the
super-subordinate relation (instantiated in terms
of hypernymy and hyponymy; see also Section
1). Other relations linking concepts in WordNet
include part-whole relations (meronymy, e.g.
between wheel,, and cary), antonymy relations
and cross-part-of-speech relations holding among
semantically similar words sharing a stem with the
same meaning (e.g. between speed,, and speedy,,).
As of today, WordNet is the most widely used and
de facto standard sense inventory for the WSD task
(Raganato et al., 2017a).

Princeton WordNet Gloss Corpus (PWNGQG) is
the semantically-annotated gloss corpus made
available by WordNet since its 3.0 release.’
Glosses are short definitions providing proper
meanings for synsets, and in PWNG they have
been tagged according to the senses in WordNet.
Following Agirre et al. (2014), we induce new
WordNet relations from PWNG by linking the
synset to which the gloss refers to each of the
synsets that have been tagged in the gloss itself.

http://wordnetcode.princeton.edu/
glosstag.shtml

38

In this way, additional contextual relations are
provided, inadvertently covering syntagmatic
relations, too.

SyntagNet (Maru et al., 2019) is a database
containing almost 90,000 pairs of manually-
disambiguated lexical collocations and free word
associations. Pairs in SyntagNet link nouns to other
nouns or verbs tagged according to the WordNet
3.0 sense inventory and such pairs can therefore be
exploited as new relation paths connecting nodes
(synsets) in a WordNet-based semantic network.
For our purposes, we are especially interested in
the fact that SyntagNet is the only high-quality
resource to systematically provide syntagmatic in-
formation in the form of lexical-semantic combi-
nations. This kind of information becomes par-
ticularly valuable when used to enrich semantic
networks otherwise biased towards paradigmatic
knowledge, by creating direct routes between those
concepts whose lexicalizations tend to appear to-
gether in the same context more often than by mere
chance.

2.2 Personalized PageRank

The original PageRank (Brin and Page, 1998) is an
algorithm which uses the connectivity of a graph to
assess the probability that each of its nodes has to
be reached and visited starting from a random posi-
tion. As the probability mass (distribution) over the
graph nodes is uniform, then, iteratively, the num-
ber of ingoing and outgoing connections serves as
a means to increase or decrease the relative weight
of each node. In order to apply this approach to
WSD, following Agirre et al. (2014), SyntagRank
uses a variant of the PageRank algorithm, the Per-
sonalized PageRank (PPR), in which the initial
probability mass is distributed over a restricted set
of specific nodes (i.e. the nodes representing the
content words to be disambiguated in a given con-
text’). Hence, given an initial set of nodes, the
outcome of the PPR algorithm is a vector encod-
ing all the information concerning the probability
distributions of all the nodes in the graph.

3 Architecture of SyntagRank

SyntagRank is a knowledge-based disambiguation
system which uses the PPR algorithm to determine

3In SyntagRank, a context is equivalent to a single whole
sentence. Therefore, given an input paragraph made up of, say,
three sentences, the system will perform the disambiguation
task separately for each of these three sentences.

the most appropriate sense of a given word in con-
text. This approach, already discussed by Agirre
and Soroa (2009), is here presented in an optimized,
rebuilt version, employing the LKBs described in
Section 2.1 to achieve state-of-the-art knowledge-
based performance across five languages: English,
German, French, Spanish, and Italian. Our archi-
tecture (Figure 1) is composed of three main mod-
ules: (i) multilingual NLP pipeline, (ii) candidate
retrieval, and (ii1) disambiguator.

3.1 Multilingual NLP Pipeline

In order to allow the user to provide an unprocessed
text as input for SyntagRank to disambiguate, our
system employs a multilingual NLP pipeline which
preliminarily performs the functions of tokeniza-
tion, sentence splitting, lemmatization and Part of
Speech (PoS) tagging. Depending on the input
language, SyntagRank utilizes either the Stanford
CoreNLP suite* (Manning et al., 2014), or the mod-
els provided by The Italian NLP Tool (Palmero
Aprosio and Moretti, 2016, TINT).

3.2 Candidate Retrieval

English Candidate Retrieval With each token
in the input text already pre-processed, and consid-
ering that each node in our graph corresponds to
a unique WordNet synset (see Section 2), in this
phase we can retrieve, for each content word (target
word) in a single sentence, all those candidate con-
cepts (synsets) for which a coincident lexicalization
exists. In doing so, in line with the word-to-word
heuristics described in (Agirre et al., 2014), we
exclude the target word when retrieving the candi-
date concepts so as to avoid the probability mass
being distributed across the most frequent sense
of the target word. The resulting set of collected
concepts C, which will now include all the pos-
sible senses for the non-target words in the input
sentence, thus establishes the starting nodes for the
PPR algorithm.

In view of the fact that, according to the Lin-
earity Theorem (Jeh and Widom, 2003), the PPR
vector computed starting from a set of nodes C
is equivalent to the weighted average of the PPR
vectors calculated using each of the nodes in C' as
single starting points, all the PPR vectors in Synta-
gRank have been preliminarily determined for each

“Except for the English language, for which the Stanford
CoreNLP pipeline has full coverage, in order to perform the
lemmatization for German, French, and Spanish, we use in-
stead TreeTagger (Schmid, 1995).

39

Input text

(pre-processed) Input text (raw)

Sentence splitter
| Stanford | TINT |
Tokenizer
Multilingual | Stanford | TINT |
MNLP pipeline POS tagger
| Stanford | TINT |
Lemmatizer
\ Stanford, TINT, TreeTaggel|
Candidate = "FEE?JQEEJ;"

retrieval

Weighted average

Probability
Disambiguator ‘ assessment

Sense selection

Output

Figure 1: Architecture diagram of SyntagRank.

node in the graph, with the purpose of minimizing
execution times’. Thus, the PPR vector for a pre-
cise context (i.e. an input sentence) is calculated
simply by determining the weighted average of the
pre-computed PPR vectors for each of its nodes®.
The weight factor p(w, s), for each candidate s as-
sociated with a content word w, is computed as
follows:

1
T N x |senseswy|

p(w, s) frequs 1)

where IV is the number of content words in the
input sentence and senses,, is the set of sense can-
didates associated with w. Moreover, since the
graph connectivity gets denser around most fre-
quent senses (MFS) — according to their distribu-
tion in SemCor’ (Miller et al., 1993) —, and in view

3All the pre-computed PPR vectors are stored in binary
format, and are accessed via a memory-mapped file supported
by a Least Recently Used (LRU) cache.

®With regard to our PPR implementation details, we opted
for a damping factor of 0.85. In addition, the algorithm per-
forms a variable number of iterations (random walks) over
the graph until reaching convergence, i.e. when the difference
between the scores of any node computed at two successive
iterations falls below a threshold of 107,

’SemCor is the largest, manually sense-annotated corpus
of English, and is currently the de facto standard reference
dataset for several WSD applications.

Edison invento la lampadina &

Thomas Alva Edison

inventare
Thomas Invents

Italian

DISAMBIGUATE

s Bl
View

3

B!

lampadina

lampadina

Bulbo di vetro contenente un
f

tungsteno che

Figure 2: User interface of SyntagRank when the Italian language is selected and the sentence ‘Edison invento
la lampadina’ (Edison invented the light bulb) is typed as input query. Disambiguation results are displayed in
extended view by default. Overlaying letters over the image are detailed in Section 4.

of the fact that unsupervised systems tend to have a
strong bias towards the MFS (Calvo and Gelbukh,
2015; Postma et al., 2016; Pasini et al., 2020), we
accounted for potential skew towards MFS by in-
cluding the parameter freq,s, i.e. the normalized
value resulting from the number of occurrences for
a given word sense in SemCor, divided by the to-
tal number of occurrences for all the senses of the
same word.

Multilingual Candidate Retrieval Concepts
represented in a semantic network are language
independent by definition. Still, in order to retrieve
sense candidates for words in specific languages,
we need the nodes in the graph to be mapped with
lexicalizations in those languages. As mentioned in
Section 2.1, WordNet provides this information for
the English language only, therefore, in order to re-
trieve the lexicalizations in languages other than En-
glish we exploited the BabelNet semantic network,
which inherently aligns lexicalizations in 284 dis-
tinct languages to the original WordNet 3.0 synsets.
Nevertheless, two main flaws lie in this approach:
(1) the lexicalizations in BabelNet are induced from
automatically-linked resources, hence, their quality
might be sub-optimal, and (ii) no SemCor equiv-
alent exists for other languages, which means we
do not have any accessible MFS information to
exploit when computing the weighted average be-
tween vectors. In order to address both these flaws

40

concurrently, we devised a strategy to mimic the
MES ranking function by associating a confidence
score with each of the lexical resources from which
BabelNet derives its lexicalizations (e.g. Wikidata,
OmegaWiki or Wikipedia, among others). To this
end, after conducting an empirical study to assess
the quality of random translation samples provided
by each individual resource mapped to BabelNet,
we assigned a normalized confidence score to them.
Consequently, for each unique lexicalization, we
have been able to compute its “MFS” score as the
average confidence among all the resources provid-
ing that lexicalization for a specific concept.

3.3 Disambiguator

After retrieving the PPR vectors for each candidate
sense and computing their weighted average (as
described in Section 3.2), the last module of Syn-
tagRank serves as a means to finally: (i) extract
the probability values for the senses of the target
word from the averaged PPR vector, and (ii) select
the sense with the highest probability value as the
result of the disambiguation for the target word.

4 Web Interface

Figure 2 shows the Web interface of SyntagRank.
Its components are explained below.

mouse
—R £, n. body
4 &
mouse @ n. ear
noun
Any of numerous small rodents .
typically resembling diminutive rats @ n. expe”mem
having pointed snouts and small ears
on elongated bodies with slender
usually hairless tails
&; n. nest

mouse

noun

A hand-operated electronic device
that controls the coordinates of a
CUFSOT ON YOUT COMpUIer Screen as
you move it around on a pad; on the

bottom of the device is a ball that rolls
on the surface of the pad

. ball
. computer
e n. trackball

v. roll

COLLOCATE

n. ca " n. cheese
@ @
‘; n. elephant o n. embryo
n. hole @ n. house
e n. rat @ n. trap
‘ n. button :n n. click
5. n. cursor n. pad
v. move Q V. operate
V. snap V. use

Figure 3: User interface of the SyntagNet Explorer when the English word mouse is typed as input query.

A. Query The system takes as input the text to
be processed®. Users can enter either single words,
multiword expressions (MWEs), or full sentences
as input queries. In the event that the input text
is a sentence, this will be processed by the disam-
biguator and the system will return a disambiguated
sentence (see Paragraph C). Otherwise, if the query
matches an entry in the SyntagNet database, the
interface will switch to the SyntagNet Explorer
(see Section 4.1) to display all the lexical-semantic
combinations available for all the senses of the
word/MWE provided as input query.

B. Language Selection The drop down menu al-
lows the user to select the language in which the in-
put text is provided. Currently, SyntagRank offers
disambiguation in five different languages: English,
German, French, Spanish and Italian.

C. Disambiguated Sentence If an input text has
been provided, the interface will display the results
of the disambiguation here, with tokens highlighted
in different colors for Concepts (blue) and Named
Entities (orange).

D. Disambiguated Token FEach disambiguated
token is accompanied by a tooltip which shows the
image, word sense and definition, as retrieved from
the corresponding entry in BabelNet 4.0.

8The Web interface only allows raw text as input.

41

E. View Selection The Web interface allows the
user to display the disambiguated sentence in ex-
tended or compact form. In the extended view, the
focus is placed on the tokens: the disambiguated
sentence is shown as a horizontal slider, naviga-
ble by means of arrows located on the left and
right ends of the container, and the user is thereby
given a means to quickly leaf through all the disam-
biguation results at the same time. Instead, when
selecting the compact view, the focus is shifted to
the sentence. In this mode, the information associ-
ated with the disambiguated tokens will be shown
only if the user hovers the mouse cursor over a
highlighted token.

4.1 SyntagNet Explorer

In addition to the SyntagRank disambiguation sys-
tem, our Web interface also provides users with full
access to the SyntagNet database. By typing into
the query bar a word or MWE which is present in
SyntagNet” (an autocomplete function will provide
the user with search suggestions), the interface will
switch to the SyntagNet Explorer (Figure 3). The
SyntagNet Explorer displays a list of boxes, each
containing a sense of the input word/MWE. Senses
in the list are ordered according to (i) PoS tag and

? At the time of writing, the SyntagNet Explorer is available
for the English language only.

. Multilingual
English SemEval-13 SemEval-15
System Sens2 Sens3 Sem0O7 Seml3 Seml5| Al | IT ES DE FR IT ES All
Babelfy 67.0 635 51.6 66.4 703 | 65.5 | 66.6 69.5 694 569 - - -
UKB 68.8 66.1 53.0 68.8 703 | 673 | - - - - - - -
SyntagRank | 71.6 72.0 59.3 72.2 75.8 | 71.7 | 721 741 764 703 69.0 634 | 71.2

Table 1: F1 scores (%) for English all-words fine-grained WSD (left) and for multilingual all-words fine-grained
WSD (right). Statistically-significant differences against our results are underlined according to a x? test, p < 0.01.
Results under “All” refer to the concatenation of the English (left) and multilingual (right) datasets.

(i1) sense frequency (in line with BabelNet 4.0).
On the left side (blue background), the boxes show
information for word senses, along with PoS tags,
sense definitions and illustrations. By clicking on
a sense name, the corresponding BabelNet entry
will open in a separate tab. On the right side (white
background), all the lexical-semantic items (collo-
cates) linked with the corresponding word senses
via SyntagNet are listed. Further information about
collocates is provided by hovering the mouse over
each item. Finally, clicking on a collocate will start
a new query with the selected word.

4.2 Usage of the RESTful API

The RESTful API we provide can be used effec-
tively to query the SyntagRank system program-
matically. Unlike the Web interface, our API allows
the user to input a pre-processed text in addition to
performing standard queries with raw text. For the
full documentation of the RESTful API, along with
the required parameters description, please refer to
Appendix A: API Documentation.

5 Evaluation

In order to assess its performance, we tested Syn-
tagRank on the five English all-words WSD evalu-
ation datasets standardized according to WordNet
3.0 in the framework of Raganato et al. (2017a),
namely: Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Snyder and Palmer, 2004), SemEval-
2007 (Pradhan et al., 2007), SemEval-2013 (Nav-
igli et al., 2013), and SemEval-2015 (Moro and
Navigli, 2015). As regards the appraisal of Synta-
gRank in a multilingual setting, we used the Ger-
man, Spanish, French and Italian annotations avail-
able in the amended version of the SemEval-2013
and SemEval-2015 evaluation datasets'®, which is
accordant with the BabelNet API 4.0.1 graph and

UMade available at https://github.com/
SapienzaNLP/mwsd-datasets.

42

enables testing on a larger number of instances than
hitherto.

In Table 1, we report F1 scores for SyntagRank
in the English (left), and multilingual (right) set-
tings, along with comparisons to the best configu-
rations of two distinct graph-based disambiguation
systems: Babelfy (Moro et al., 2014) and UKB
(Agirre et al., 2014). As can be seen, SyntagRank
outperforms its direct competitors by a consider-
able margin'!, on both the English and multilingual
settings. These results substantiate the idea that ap-
plying the PPR algorithm to a graph injected with
high-quality syntagmatic knowledge is crucial to
enhancing disambiguation performances.

6 Conclusion

In this paper we presented and described the
architecture of SyntagRank, our state-of-the-art
knowledge-based system for multilingual Word
Sense Disambiguation using syntagmatic informa-
tion. We also provided details concerning the
use of SyntagRank’s Web interface and RESTful
API, accessible at http://syntagnet.org/ and
http://api.syntagnet.org, respectively.

Acknowledgments

The authors gratefully acknowledge
the support of the ERC Consolidator
Grant MOUSSE No. 726487 and the
ELEXIS project No. 731015 under
the European Union’s Horizon 2020
research and innovation programme.

This work was supported in part by the MIUR
under the grant “Dipartimenti di eccellenza 2018-
2022” of the Department of Computer Science of
Sapienza University.

"For the purpose of these experiments, we set a threshold
T = 0.4 for the PPR values of any given sense; for values
failing to reach the threshold, the MFS was chosen instead as
the result of the disambiguation.

References

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random Walks for Knowledge-Based Word
Sense Disambiguation. Computational Linguistics,
40(1):57-84.

Eneko Agirre and Aitor Soroa. 2009. Personalizing
PageRank for Word Sense Disambiguation. In Proc.
of EACL, pages 3341, Athens, Greece.

Michele Bevilacqua and Roberto Navigli. 2019. Quasi
Bidirectional Encoder Representations from Trans-
formers for Word Sense Disambiguation. In Proc.
of RANLP, pages 122—-131, Varna, Bulgaria.

Michele Bevilacqua and Roberto Navigli. 2020. Break-
ing the 80% Glass Ceiling: Raising the State of the
Art in Word Sense Disambiguation by Incorporating
Knowledge Graph Information. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, Seattle, WA, USA.

Francis Bond and Ryan Foster. 2013. Linking and ex-
tending an open multilingual Wordnet. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1352-1362, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Os-
herson, and Robert Schapire. 2006. Adding Dense,
Weighted Connections to WordNet. In Proceedings
of the third international WordNet conference, pages
29-36, South Jeju Island, Korea.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual web search engine. Com-
puter networks and ISDN systems, 30(1-7):107-117.

Hiram Calvo and Alexander Gelbukh. 2015. Is the
Most Frequent Sense of a Word Better Connected
in a Semantic Network? In Proc. of ICIC, pages
491-499, Fuzhou, China.

Philip Edmonds and Scott Cotton. 2001. SENSEVAL-
2: Overview. In Proceedings of SENSEVAL-
2 Second International Workshop on Evaluating
Word Sense Disambiguation Systems, pages 1-5,
Toulouse, France.

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press, Cambridge,
MA, USA.

Taher H. Haveliwala. 2002. Topic-Sensitive PageRank.
In Proceedings of the 11th international conference
on World Wide Web, pages 517-526, Honolulu, HI,
USA.

Glen Jeh and Jennifer Widom. 2003. Scaling Person-
alized Web Search. In Proceedings of the 12th in-
ternational conference on World Wide Web, pages
271-279, Budapest, Hungary.

43

Lothar Lemnitzer, Holger Wunsch, and Piklu Gupta.
2008. Enriching GermaNet with verb-noun relations
- a case study of lexical acquisition. In Proceedings
of the Sixth International Conference on Language
Resources and Evaluation, LREC 2008, May 28-30,
2018, pages 156—160, Marrakech, Morocco.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55-60, Bal-
timore, MD, USA.

Marco Maru, Federico Scozzafava, Federico Martelli,
and Roberto Navigli. 2019. SyntagNet: Challeng-
ing Supervised Word Sense Disambiguation with
Lexical-Semantic Combinations. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3532-3538, Hong Kong,
China.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A Semantic Concordance. In
Proc. of HLT, pages 303-308, Plainsboro, NJ, USA.

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 task 13: Multilingual all-words sense disam-
biguation and entity linking. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 288-297, Denver, CO, USA.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. TACL, 2:231-244.

Roberto Navigli. 2009. Word Sense Disambiguation:
A Survey. ACM Computing Surveys, 41(2):1-69.

Roberto Navigli. 2018. Natural Language Understand-
ing: Instructions for (Present and Future) Use. In
Proc. of IJCAI, pages 5697-5702, Stockholm, Swe-
den.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 Task 12: Multilingual Word
Sense Disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 222-231, Atlanta, GA, USA.

Roberto Navigli and Mirella Lapata. 2010. An ex-
perimental study of graph connectivity for unsuper-
vised word sense disambiguation. [EEE Transac-

tions on Pattern Analysis and Machine Intelligence,
32(4):678-692.

Roberto Navigli and Simone P. Ponzetto. 2012. Ba-
belNet: The Automatic Construction, Evaluation
and Application of a Wide-Coverage Multilingual
Semantic Network. Artificial Intelligence Journal,
193:217-250.

Alessio Palmero Aprosio and Giovanni Moretti. 2016.
Italy goes to Stanford: a collection of CoreNLP mod-
ules for Italian. ArXiv e-prints.

Tommaso Pasini. 2020. The Knowledge Acquisition
Bottleneck Problem in Multilingual Word Sense Dis-
ambiguation. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI-20, Yokohama, Japan.

Tommaso Pasini, Federico Scozzafava, and Bianca
Scarlini. 2020. CIuBERT: a Cluster-Based Ap-
proach for Learning Sense Distributions in Multiple
Languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
Seattle, WA, USA.

Simone P. Ponzetto and Roberto Navigli. 2010.
Knowledge-Rich Word Sense Disambiguation Ri-
valing Supervised Systems. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1522-1531, Uppsala,
Sweden.

Marten Postma, Ruben Izquierdo, Eneko Agirre, Ger-
man Rigau, and Piek Vossen. 2016. Addressing
the MFS Bias in WSD systems. In Proc. of LREC,
pages 1695-1700, Portoroz, Slovenia.

Sameer S. Pradhan, Edward Loper, Dmitriy Dligach,
and Martha Palmer. 2007. SemEval-2007 Task 17:
English Lexical Sample, SRL and All Words. In
Proc. of SemEval-2007, pages 87-92, Stroudsburg,
PA, USA.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017a. Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empiri-
cal Comparison. In Proc. of EACL, pages 99-110,
Valencia, Spain.

Alessandro Raganato, Claudio Delli Bovi, and Roberto
Navigli. 2017b. Neural Sequence Learning Mod-
els for Word Sense Disambiguation. In Proc. of
EMNLP, pages 1167-1178, Copenhagen, Denmark.

Bianca Scarlini, Tommaso Pasini, and Roberto Navigli.
2020. SensEmBERT: Context-Enhanced Sense Em-
beddings for Multilingual Word Sense Disambigua-
tion. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence, New York, NY, USA.

Helmut Schmid. 1995. Improvements In Part-of-
Speech Tagging With an Application To German. In
Proc. of the ACL SIGDAT-Workshop, pages 47-50,
Dublin, Ireland.

Benjamin Snyder and Martha Palmer. 2004. The En-
glish all-words task. In In Proceedings of the 3rd
International Workshop on the Evaluation of Sys-
tems for the Semantic Analysis of Text (SENSEVAL-
3), pages 41-43, Barcelona, Spain.

Loic Vial, Benjamin Lecouteux, and Didier Schwab.
2019. Sense Vocabulary Compression through the
Semantic Knowledge of WordNet for Neural Word

44

Sense Disambiguation. In Proc. of Global Wordnet
Conference, Wroclaw, Poland.

A API Documentation

In what follows we describe the typical usage of
our RESTful API and its parameters. The Syn-
tagRank API allows the user to perform two dis-
tinct requests: (i) Disambiguate Text and (ii)
Disambiguate Tokens.

Disambiguate Text With Disambiguate
Text, SyntagRank will process a raw text
provided as input, given a target language among
the five currently supported: EN (English), DE
(German), FR (French), ES (Spanish), and IT
(Italian).

Method type, URL, parameters and response
description are specified in detail in Table 2. Figure
4 shows an example of a success response for the
Disambiguate Text query.

Code: 200
- Content: {
language: "EN"
- tokens: [
- {
senselD: "wn:02604760v"

- position: {
charOffsetBegin: 5
charOffsetEnd: 7

}

senselD: "wn:06387980n"
- position: {
charOffsetBegin: 10
charOffsetEnd: 14

Figure 4: Example of a success response for
Disambiguate Text when the language chosen is
English and the input text is “this is a text”.

Disambiguate Tokens With Disambiguate
Tokens, SyntagRank will accept a pre-processed
text as input to be disambiguated.

As for Disambiguate Text, language specifi-
cation is required. Each token must show informa-
tion concerning index (id), word form (word),
lemma form (lemma), POS tag (pos), and a
boolean indicating whether the token is a content
word to be disambiguated (1sTargetWord). In
Table 3, we provide exhaustive details concern-
ing method type, URL parameters, token parame-
ters and response description for Disambiguate
Tokens. Additionally, Figures 5 and 6 show, re-
spectively, an example of a typical request, and its
success response.

45

lang: "EN"
words: [
- A
id: "0"
word: "this"
lemma: “this"
pos: "X"

isTargetWord: false

id: "1"

word: “is"

lemma: "be”

pos: "VERB"
isTargetWord: true

id: 2"

word: "a"

lemma: "a"

pos: "X"
isTargetWord: false

id: "3"

word: “first”
lemma: “first"

pos: "ADJ"
isTargetWord: true

id: "4"

word: "test"
lemma: “test"

pos: "NOUN"
isTargetWord: true

Figure 5: A request example in English for
Disambiguate Tokens.

Code: 200
Content: {
result: [

id: "3"
synset. "wn:06387980n"

id: "1"
synset: "wn:02604760v"

Figure 6: Success response with Disambiguate
Tokens for the input shown in Figure 5.

‘ Disambiguate Text ‘
Method GET/POST

URL http://api.syntagnet.org/disambiguate?lang=languagestext=text

‘ URL Parameters ‘

text (String) The text to be disambiguated (max length: 1,500 characters). E.g.: text=this is a text.
lang (String) The language of the input text, among the currently supported: EN, DE, FR, ES and IT.

‘ Response description ‘

language The language of the disambiguated tokens.

tokens Contains a list of disambiguated tokens.

senselD Identifies the WordNet 3.0 offset for the concept assigned to the token.
position Contains information concerning the token positioning.

charOffsetBegin Highlights the position where a given term instance starts. Expressed as char offset.

charOffsetEnd Highlights the position where a given term instance ends. Expressed as char offset.

Table 2: Details for the Disambiguate Text request.

‘Disambiguate Tokens ‘
Method POST

URL http://api.syntagnet.org/disambiguate_tokens

‘URL Parameters ‘

lang (String) The language of the input text, among the currently supported: EN, DE, FR, ES and IT.
words (List<Token>) Contains a list of words, each representing a single token of the input text.

‘Token Parameters ‘

id (String) Identifies the position of the token in the input text.
word (String) Identifies the token, as it appears in the input text.
lemma (String) The lemmatized form of the token.

pos (String) The Part of Speech (PoS) of the token.

isTargetWord (boolean) If true, identifies a token (for a content word) to be disambiguated.

‘Response description

result Contains a list of disambiguated tokens.
id Identifies the position of the disambiguated token according to the input text.
synset Identifies the WordNet 3.0 offset for the concept assigned to the token.

Table 3: Details for the Disambiguate Tokens request.

46

pYBART: Evidence-based Syntactic Transformations for IE

Aryeh Tiktinsky

Yoav Goldberg

Reut Tsarfaty

Allen Institute for Al, Tel Aviv, Israel
Bar Ilan University, Ramat-Gan, Israel
{aryeht, yoavg, reutt}@allenai.org

Abstract

Syntactic dependencies can be predicted with
high accuracy, and are useful for both
machine-learned and pattern-based informa-
tion extraction tasks. However, their utility
can be improved. These syntactic dependen-
cies are designed to accurately reflect syntac-
tic relations, and they do not make semantic
relations explicit. Therefore, these representa-
tions lack many explicit connections between
content words, that would be useful for down-
stream applications. Proposals like English
Enhanced UD improve the situation by extend-
ing universal dependency trees with additional
explicit arcs. However, they are not available
to Python users, and are also limited in cov-
erage. We introduce a broad-coverage, data-
driven and linguistically sound set of transfor-
mations, that makes event-structure and many
lexical relations explicit. We present pyBART,
an easy-to-use open-source Python library for
converting English UD trees either to En-
hanced UD graphs or to our representation.
The library can work as a standalone package
or be integrated within a spaCy NLP pipeline.
When evaluated in a pattern-based relation ex-
traction scenario, our representation results in
higher extraction scores than Enhanced UD,
while requiring fewer patterns.

1 Introduction

Owing to neural-based advances in parsing tech-
nology, NLP researchers and practitioners can
now accurately produce syntactically-annotated
corpora at scale. However, the use and empirical
benefits of the dependency structures themselves
remain limited. Basic syntactic dependencies en-
code the functional connections between words
but lack many functional and semantic relations
that exist between the content words in the sen-
tence. Moreover, the use of strictly-syntactic re-
lations results in structural diversity, undermining
the efforts to effectively extract coherent semantic
information from the resulting structures.

47

Thus, human practitioners and applications that
“consume” these syntactic trees are required to
devote substantial efforts to processing the trees
in order to identify and extract the information
needed for downstream applications, such as in-
formation and relation extraction (IE). Meanwhile,
semantic representations (Banarescu et al., 2013;
Palmer et al., 2010; Abend and Rappoport, 2013;
Oepen et al., 2014) are harder to predict with suf-
ficient accuracy, calling for a middle ground.

Indeed, De Marneffe and Manning (2008) in-
troduced collapsed and propagated dependencies,
in an attempt to make some semantic-like relations
more apparent. The Universal Dependencies (UD)
project' similarly embraces the concept of En-
hanced Dependencies (Nivre et al., 2018)), adding
explicit relations that are otherwise left implicit.
Schuster and Manning (2016) provide further en-
hancements targeted specifically at English (En-
hanced UD).? Candito et al. (2017) suggest further
enhancements to address diathesis alternations.’

In this work we continue this line of thought,
and take it a step further. We present pyBART, an

lunj_versaldepdenencies .org

*In this paper we do not distinguish between the Univer-
sal Enhanced UD and Schuster and Manning (2016)’s En-
hanced++ English UD. We refer to their union on English as
Enhanced UD.

3Efforts such as PropS (Stanovsky et al., 2016) and Pred-
Patt (White et al., 2016), share our motivation of extract-
ing predicate-argument structures from treebank-trainable
trees, though outside of the UD framework. Efforts such
as KNext (Durme and Schubert, 2008) automatically extract
logic-based forms by converting treebank-trainable trees, for
consumption by further processing. HLF (Rudinger and
Van Durme, 2014), DepLambda (Reddy et al., 2016) and
UDepLambda (Reddy et al., 2017) attempt to provide a for-
mal semantic representation by converting dependency struc-
tures to logical forms. While they share a high-level goal
with ours — exposing functional relations in a sentence in a
unified way — their end result, logical forms, is substantially
different from pyBART structures. While providing substan-
tial benefits for semantic parsing applications, logical forms
are less readable for non-experts than labeled relations be-
tween content words. As these efforts rely on dependency
trees as a backbone, they could potentially benefit from py-
BART’s focus on syntactic enhancements on top of (E)UD.

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 47-55
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Z
o (..........u:::------._x

o, the STATE a hero,
A A §4.4 !
|
'. \ B
'. e {eop) e /
'.\ !
N v B 7

§4.3

,---{compound}--.}

e

Wl H
for chasing this army of

Robots
1
; e

Figure 1: Representation of Neo, the One, is a hero, for chasing this army of Robots. The arcs above the sentence
are BART additions. The ones below are EUD. Red arcs are removed in BART while black are retained.

easy-to-use Python library which converts English
UD trees to a new representation that subsumes the
English Enhanced UD representation and substan-
tially extends it. We designed the representation
to be linguistically sound and automatically recov-
erable from the syntactic structure, while expos-
ing the kinds of relations required by IE applica-
tions. Some of these modifications are illustrated
in Figure 1.* We aim to make event structure ex-
plicit, and cover as many linguistically plausible
phenomena as possible. We term our representa-
tion BART (The BIU-AI2 Representation Trans-
formation).

To assess the benefits of BART with respect to
UD and other enhancements, we compare them in
the context of a pattern-based relation extraction
task, and demonstrate that BART achieves higher
F scores while requiring fewer patterns.

The python conversion library, pyBART, inte-
grates with the spaCy” library, and is available un-
der an open-source Apache license. A web-based
demo for experimenting with the converter is also
available. https://allenai.github.io/
pybart/.

2 The BART Representation

We aim to provide a representation that will be
useful for downstream NLP tasks, while retaining
the following key properties. The proposal has to
be (i) based on syntactic structure and (ii) use-
ful for information seeking applications. As a
consequence of (ii), we also want it to (iii) make
event structure explicit and (iv) allow favoring
recall over precision.

Being based on syntax as the backbone would
allow us to capitalize on independent advances in

4Some preserved UD relations are omitted for readability.
‘https://spacy.io

4&8

syntactic parsing, and on its relative domain in-
dependence. We want our representation to be
not only accurate but also useful for information
seeking applications. This suggests a concrete
methodology (§2.1) and evaluation criteria (§5):
we choose which relations to focus on based on
concrete cases attested in relation extraction and
QA-corpora, and evaluate the proposal based on
the usefulness in a relation extraction task.

In general, information-seeking applications fa-
vor making events explicit. Current syntactic
representations prefer to assign syntactic heads as
root predicates, rather than actual eventive verb.
In contrast, we aim to center our representation
around the main event predicate in the sentence,
while indicating event properties such as aspectu-
ality (Sam started walking) or evidentiality (Sam
seems to like them) as modifiers of rather than
heads. To do this in a consistent manner, we in-
troduce a new node of type STATE for copular
sentences, making their event structure parallel to
those containing finite eventive verbs (§4.4)

Finally, downstream users may prefer to favor
recall over precision in some cases. To allow for
this, we depart from previous efforts that refrain
from providing any uncertain information. We
chose to explicitly expose some relations which
we believe to be useful but judge to be uncer-
tain, while clearly marking their uncertainty in
the output. This allows users to experiment with
the different cases and assess the reliability of
the specific constructions in their own application
domain. We introduce two uncertainty marking
mechanisms, discussed in §2.3.

2.1 Data-driven Methodology

Our departure point is the English EUD represen-
tation (Schuster and Manning, 2016) and related

efforts discussed above, which we seek to extend
in a way which is useful to information seeking ap-
plications. To identify relevant constructions that
are not covered by current representations, we use
a data-driven process. We consider concrete re-
lations that are expressed in annotated task-based
corpora: a relation extraction dataset (ACEOQS,
(Walker et al., 2006)), which annotates relations
and events, and a QA-SRL dataset (He et al., 2015)
which connects predicates to sentence segments
that are perceived by people as their (possibly im-
plied) arguments. For each of these corpora, we
consider the dependency paths between the anno-
tated elements, looking for cases where a direct re-
lation in the corpus corresponds to an indirect de-
pendency path in the syntactic graph. We identify
recurring cases that we think can be shortened, and
which can be justified linguistically and empiri-
cally. We then come up with proposed enhance-
ments and modifications, and verify them empir-
ically against a larger corpus by extracting cases
that match the corresponding patterns and brows-
ing the results.

2.2 Formal Structure

As is common in dependency-based represen-
tations, BART structures are labeled, directed
multi-graphs whose nodes are the words of a sen-
tence, and the labeled edges indicate the relations
between them. Some constructions add additional
nodes, such as copy-nodes (Schuster and Man-
ning, 2016) and STATE nodes (§4.4).

An innovative aspect of our approach is that
each edge is associated with additional informa-
tion beyond its dependency label. This informa-
tion is structured as follows:

SRC: a field indicating the origin of this edge—
either “UD” for the original dependency edges,
or a pair indicating the type and sub-type of the
construction that resulted in the BART edge (e.g.,
{SRC=(conj,and)} or {SRC=(adv,while)}).

UNC, ALT: optional fields indicating uncertainty,
described below.

2.3 Embracing uncertainty

Some syntactic constructions are ambiguous with
respect to the ability to propagate information
through them. Rather than giving up on all am-
biguous constructions, we opted to generate the
edges and mark them with an UNC=TRUE flag,
deferring the decision regarding the validity of the
edge to the user:

> nlp =

10 doc =
11 me_token =
2 for par_tok in me_token._.parent_list:

I # Load a UD-based english model
spacy.load ("en_ud_model")

4 # Add BART converter to spaCy’s pipeline
5 from pybart.api import converter

6 converter =
7 nlp.add_pipe (converter,

converter(...)
name="BART")

) # Test the new converter component
nlp ("He saw me while driving")

doc[2]

print (par_tok)

15 # Output:

16 {"head’: 2, ’'rel’:’"dobj’, ’'src’:’"UD’}

17 {"head’: 5, ’"rel’: ’'nsubj’,
"src’:("advcl’,’while’), ’"alt’:’0'}

Figure 2: Usage example of pyBART’s spaCy-pipeline
component.

;oo {ONCH-,
She acted, trusting her instincts
In some cases, we can identify that one of two
options is possible, but cannot determine which.
In these cases we report both edges, but mark them
explicitly as alternatives to each other. This is
achieved with an ALT=X field on both edges, with
X being a number indicating the pair.
o-o(nsubj{ALT=0}}---- . oo {nsubj{ALT=T]--o-- .
i i

v v B v v H
You saw me while driving, Sue saw Sam after returning

3 Python code and Web-demo

The pyBART library provides a Python converter
from English UD trees to BART. pyBART sub-
sumes the enhancements of the EUD Java imple-
mentation provided in Stanford Core-NLP,° and
extends them as described in §4. While py-
BART’s default performs all enhancements, it can
be configured to follow a more selective behav-
ior. pyBART has two modes: (1) a converter
from CoNLLU-formatted UD trees to CoNLLU-
formatted BART structures;’ and (2) a spaCy
(Honnibal and Montani, 2017) pipeline compo-
nent.® After registering pyBART as a spaCy
pipeline, tokens on the analyzed document will
have a ._.parent_list field, containing the

*https://nlp.stanford.edu/software/
stanford-dependencies.html

"The extra edge information is linearized into the depen-
dency label after a ‘@ * separator.

8This requires a spaCy model trained to produce UD trees,
which we provide.

list of parents of the token in the BART structure.
Each item is a dictionary specifying—in addition
to the parent-token id and dependency label—also
the extra information described in §2.2. See Figure
2 for an illustration of the APIL

A web-based demo that parses sentences into
both EUD and BART graphs, visualizes them, and
compares their outputs, is also provided.’

4 Coverage of Linguistic Phenomena

BART conversion consists of four conceptual
changes from basic UD. The first type prop-
agates shared arguments between predicates in
nested structures. The second type shares ar-
guments between parallel structures. The third
type attempts to unify syntactic alternations to
reduce diversity, making structures that carry sim-
ilar meaning also similar in structure. Finally, the
forth type is designed to make event structure ex-
plicit in the syntactic representation, allowing fi-
nite verbs that indicate event properties to act as
event modifiers rather than root predicates. In ac-
cordance with that, we further introduce a new
STATE node, that acts as the main predicate node
for stative (copular, verb-less) sentences.

4.1 Nested Structures

Our first type of conversions propagates an exter-
nal core argument to be explicitly linked as the
subject of a subordinate clause.

Complement control: The various EUD repre-
sentations explicitly indicate the external subjects
of xcomp clauses containing a fo marker. We
embrace this choice and extend it to cover also
clauses without a fo marker, including imperative
clauses and clauses with controlled gerunds.

Let my people go!
(xcomp)

Noun-modifying clauses: Similarly, EUD links
the empty subject of a finite relative clause to
the corresponding argument of the external clause.
We extend this behavior to also cover reduced rel-
ative clauses (2a), and we follow Candito et al.
(2017) in also including other relative clauses such

as noun-modifying participles (2b).

2 b.

(1

a.

dobj

v | v |
The neon god they made A vision softly creeping

The dependency graph visualization component uses the
TextAnnotationGraphs (TAG) library (Forbes et al., 2018).

Adverbial clauses and “dep”: Adverbial modi-
fier clauses that miss a subject, often modify the
subject of the main clause. We propagate the
external subject to be the subject of the internal
clause.'”

3)

We observe that many dep edges empirically
behave like adverbial clauses, and treat them sim-
ilarly. We mark these edges as “uncertain”.

v
You shouldn’t text while driving

4.2 Parallel structures

The second type of conversions identifies parallel
structures in which the latter instance is elliptical,
and share the missing core argument contributed
by the former instance.

Apposition: Similarly to the PropS proposal
(Stanovsky et al., 2016), we share relations across
apposition parts, making the two, currently hier-
archical, phrase, more duplicate-like.

(4) E.T., the Extraterrestrial, phones home
\ nsubj

Modifiers in conjunction: In modified coordi-
nated constructions, we share prepositional (5)
and possessive (6) modifiers between the coordi-
nated parts. Since dependency trees are inher-
ently ambiguous between conjoined modification
and single-conjunt modification, (e.g, compare (5)
to “Mogly was lost and raised by wolves”, or (6)
to “my Father and E.T.”), we mark both as UNC.

) I was taught and rais:ed by woives
\ (mod)
P (i —
(6) B/Ey father and mother met here

nmod:poss

Elaboration/Specification Clauses: For noun
nominal modifiers that have the form of an elab-
oration or specification, we share the head of the
modified noun with its dependent modifier. That
is, if the modification is marked by like or such as
prepositions, we propagate the head noun to the
nominal dependent.

)

1°In external clauses that include a subject and an object,
ambiguity may arise as to which is to be modified. We prop-
agate both and mark the edges as alternates (ALT, (§2.3)).

Indexicals: the interpretation of locative and tem-
poral indexicals such as here, there and now de-
pends on the situation and the speaker, and often
modify not only the predicate but the entire situ-
ation. We therefore share the adverbial modifica-
tion from the noun to the main verb. Due to their
situation-specific nature, we mark these as UNC.

; Y

) He wonders in these woods here
\ (rmod) /

Compounds: Shwartz and Waterson (2018) show
that in many cases, compounds can be seen as hav-
ing a multiple-head. Therefore, we share the exist-
ing relations across the compound parts.

9) I uséﬁ caI;OIa oil

dobj
As many compounds do have a clear head (e.g. [
used baby oil, where baby is clearly not the head),

we mark these as uncertain.

4.3 Syntactic Alternations

This type of conversions aim to unify syntactic
variability. We identify structures that are syntacti-
cally different but share (some) semantic structure,
and add arcs or nodes to expose the similarity.
The Passivization Alternation: Following Can-
dito et al. (2017) we relate the passive alteration to
its active variant.

The Sheriff was shot by Bob

Hyphen reconstruction: Noun-verb Hyphen
Constructions (HC) which are modifying a nom-
inal can be seen as conveying the same informa-
tion as a copular sentence wherein the noun is the
subject and the verb is the predicate. To explicitly
indicate this, we add to all modifying noun-verb
HCs a subject and a modifier relation originating
at the verb-part of the HC.

(10)

g by

A Miami - based company
Adjectival modifiers: Adjectival modification
can be viewed as capturing the same information
as a predicative copular sentence conveying the
same meaning (so, “a green apple” implies that
“an apple is green”). To explicitly capture this
productive implication, we add a subject relation
from each adjectival modifier to its corresponding
modified noun.

1D

3

. Al

(12) I see dead people

Genitive Constructions: Genitive cases can be
alternatively expressed as a compound. We add a
compound relation to unify the expression of gen-
itives across X of Y and compound structures.

(13)

; ¥
Army of zombies

4.4 Event-Centered Representations
In many sentences, the finite root predicate does

not indicate the main event. Instead, a verb in
the subordinated clause expresses the event, and
the finite verb acts as its modifier. For exam-
ple, in sentences like “He started working”, “He
seems to work there”, the main event indicated
is “work”, while the root predicates (“started”,
“seemed”) modify this event. Here, we present a
chain of changes that puts emphasis on events by
delegating copular and tense auxiliaries (is, was),
evidentials (seem, say) and various aspectual verbs
(started, continued) to be clausal modifiers, rather
than heads of the sentence. This creates a further
challenge, since there is a prevalent discrepancy
between predicative sentences such as “He works”
and copular sentences as “He is smart”. The UD
structure for the latter lacks a node that clearly in-
dicates a stative event (in Vendler (1957)’s termi-
nology). We remedy this by adding a node to rep-
resent the STATE and have tense, aspect, modality
and evidentiality directly modifying it.!!

Copular Sentences and Stative Predicates: We
added to all copula constructions new node named
STATE, which represents the stative event intro-
duced by the copular clause. This node becomes
the root, and we rewire the entire clause around
this STATE. By doing so we unify it with the struc-
tures of clauses with finite predicative. Once we
added the STATE node, we form a new relation,
termed ev, to mark event/state modifications. The
resulting structure is as follows:

T

j B TS .‘

\4 v s A
(14) Tomorrow is STATE another day

A »]

\ M feopf e 7

R [/

Evidential reconstructions: We can now explic-
itly mark properties of events as dependents of the
verbal or stative root by means of the label ev. We
do so, using verbs’ white-lists, for verbs marking

"Pragmatically, some users prefer to not have non-word

nodes. pyBART supports this by providing a mode that treats
the copula as the head, retaining the other modifications.

evidentiality (15) and for reported-speech (16).
(15)

\4 14 K 14 L ~

Sam seems to like them. They seem STATE nice.

A [A A I A

................
14 B
(16) The Media reported that peace was achieved
ccomp f

Aspectual constructions: Finally, we can now
also mark aspectual verbs as modifying the com-
plement (matrix) verb denoting the main event.
The complement (matrix) verb becomes the root
of the dependency structure, and we add the new
ev relation to mark the aspectual modification of
the event.

v v g
He started talking
~ I\ 4

A7

funny

5 Evaluation

Our proposed representation attempts to target
information-seeking applications, but is it effec-
tive? We evaluate the resulting graph structures
against the UD and Enhanced UD representations,
in the context of a relation-extraction (RE) task.
Concretely, we evaluate the representations on
their ability to perform pattern-based RE on the
TACRED dataset (Zhang et al., 2017).

We use an automated and reproducible method-
ology: for each of the representations, we use the
RE train-set to acquire extraction patterns. We
then apply the patterns to the dev-set, compute
F1-scores, and, for each relation, filter the pat-
terns that hurt F1-score. We then apply the filtered
pattern-set to the test-set, and report F1 scores.

To acquire extraction patterns, we use the fol-
lowing procedure: given a labeled sentence con-
sisting of a relation name and the sentence indices
of the two entities participating in the relation, we
compute the shortest dependency path between the
entities, ignoring edge directions. We then form an
extraction pattern from the directed edges on this
path. We consult a list of trigger words (Yu et al.,
2015) collected for the different relations. If a trig-
ger word or its lemma is found on the path, we
form an unlexicalized path except for the trigger
word (i.e. E1 <nsubj “founded” >dobj >compound
E2). If no trigger-word is found, the path is lex-
icalized with the word’s lemmas (i.e. E1 <nsubj
“reduce” >dobj “activity” >compound E2).

3

H Representation Precision Recall Fl H
UD 76.53 30.65 43.77
Enhanced UD 77.63 32.37 45.69
Ours(w/o-Enhanced) 73.96 33.48 46.09
Ours 74.62 36.65 49.15

Table 1: Effectiveness of the different representations
on the TACRED relation extraction task.

0.35
0.30 { 7"
0.25

0.20 A

Recall

0.15 A

—— Basic Dependencies
Enhanced Dependencies

—— Our Representation

---- Economy (e.g. ~30.7% Recall)

0.10 A

0.05 A

20

T T T T
40 60 80 100
Of Patterns Needed

T T
120 140

Figure 3: Economy comparison: Recall vs number of
patterns, for the different representations.

We use this procedure to compare UD, En-
hanced UD (EUD), BART without EUD enhance-
ments, and full BART, which is a superset of En-
hanced UD (Table 1). BART achieves a substan-
tially higher F1 score of 49.15%, an increase of
5.5 F1 points over UD, and 3.5 F1 points above
Enhanced UD. It does so by substantially improv-
ing recall while somewhat decreasing precision.

We also consider economy: the number of dif-
ferent patterns needed to achieve a given recall
level. Figure 3 plots the achieved recall against
the number of patterns. As the curves show, En-
hanced UD is more economic than UD, and our
representation is substantially more economic than
both. To achieve 30.7% recall (the maximal recall
of UD), UD requires 112 patterns, EUD requires
77 patterns, while BART needed only 52 patterns.

6 Conclusion

We propose a syntax-based representation that
aims to make the event structure and as many lex-
ical relations as possible explicit, for the benefit
of downstream information-seeking applications.
We provide a Python API that converts UD trees
to this representation, and demonstrate its empiri-
cal benefits on a relation extraction task.

Acknowledgements

This project has received funding from the Eu-
ropean Research Council (ERC) under the Euro-
pean Union’s Horizon2020 research and innova-
tion programme, grant agreement 802774 (iEX-
TRACT) and grant agreement 677352 (NLPRO).

References

Omri Abend and Ari Rappoport. 2013. Universal con-
ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228-238.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 178—186.

Marie Candito, Bruno Guillaume, Guy Perrier, and
Djamé Seddah. 2017. Enhanced UD dependencies
with neutralized diathesis alternation. In Proceed-
ings of the Fourth International Conference on De-
pendency Linguistics (Depling 2017), pages 42-53,
Pisa,Italy. Linkoping University Electronic Press.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Benjamin Durme and Lenhart Schubert. 2008. Open
knowledge extraction through compositional lan-
guage processing. Proceedings of the 2008 Confer-
ence on Semantics in Text Processing.

Angus Forbes, Kristine Lee, Gus Hahn-Powell,
Marco A. Valenzuela-Escrcega, and Mihai Sur-
deanu. 2018. Text annotation graphs: Annotat-
ing complex natural language phenomena. In Pro-
ceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC’18),
Miyazaki, Japan. European Language Resources
Association (ELRA).

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
643-653, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal de-
pendency treebanks: A case study. In Proceedings
of the Second Workshop on Universal Dependencies
(UDW 2018), pages 102-107, Brussels, Belgium.
Association for Computational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Haji¢, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the Sth International Workshop on
Semantic Evaluation (SemEval 2014), pages 63-72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Martha Palmer, Daniel Gildea, and Nianwen Xue.
2010. Semantic role labeling. Synthesis Lectures
on Human Language Technologies, 3(1):1-103.

Siva Reddy, Oscar Tackstrom, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics, 4:127-140.

Siva Reddy, Oscar Tckstrm, Slav Petrov, Mark Steed-
man, and Mirella Lapata. 2017. Universal semantic
parsing.

Rachel Rudinger and Benjamin Van Durme. 2014.
Is the Stanford dependency representation seman-
tic? In Proceedings of the Second Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 54-58, Baltimore, Maryland,
USA. Association for Computational Linguistics.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371-2378.

Vered Shwartz and Chris Waterson. 2018. Olive oil is
made of olives, baby oil is made for babies: Inter-
preting noun compounds using paraphrases in a neu-
ral model. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 218-224,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Gabriel Stanovsky, Jessica Ficler, Ido Dagan, and Yoav
Goldberg. 2016. Getting more out of syntax with
props. arXiv preprint arXiv:1603.01648.

Zeno Vendler. 1957. Verbs and times. The Philosophi-
cal Review, 66(2):143-160.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, LDC2006T06.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016.
Universal Decompositional Semantics on Universal
Dependencies. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1713—1723, Austin, Texas. Asso-
ciation for Computational Linguistics.

Dian Yu, Heng Ji, Sujian Li, and Chin-Yew Lin. 2015.
Why read if you can scan? trigger scoping strategy
for biographical fact extraction. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1203—
1208, Denver, Colorado. Association for Computa-
tional Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D. Manning. 2017. Position-
aware attention and supervised data improve slot
filling. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2017), pages 35-45.

A Appendix
A.1 Additional examples of BART structures

The following are additional examples that we
could not fit into the space constraints of the pa-
per.

Complement control Example (1) shows an ex-
ample of linking the external subject to a con-
trolled finite verb. The following complementary
example shows linking the subject to a controlled

gerund:

(18) I decided gging home
o e '
Elaboration/Specification Clauses Exam-

ple (7) shows a specification clause connected
as an object to the root. The following is
a complementary example of using the like
elaboration-preposition, in which the modifier
noun is a subject dependant of its head. The
modified noun inherits the subject relation from

its modifier head.
(19) [A DN

nsubj

People llke you should feel lucky
........
Adjectival modifier
(amod] [m'\ /‘M‘\
(20) The smart one waited patently
ot

Copular Sentences and Stative Predicates

We

show additional examples of these transforma-

with explicit comparison to UD.

tions,
21) UD: BART :
i ,. -‘_ =)
' i
v
Sally is smart Sally 1s STATE smart

(22) UD BART :
;- Y
| :‘ @\ i L
Vo vovo b v
He is the man He is STATE the man
23) UD: BART :

,I [] H H

! case \! i :,‘:
v v P v

They are STATE from Israel

1
)
)
I
I
I
Voo

They are from Israel

24) UD BART :
,-—\xcomp -+
A
1
L T o,
(osubl) £ | ‘ I Ao ﬂ
vV oy ;
Sam is to Sam 1s to be STATE a man
25 UD:

Sam sounds STATE funny

fscomp),
v Vo v
Sam sounds funny

(26) UD :

Sam seems happy

Sam seems STATE happy

27) UD:
v

v i
Sam seems to like them

Sam seems to hke them

28) UD: :
o .

v Vo ¥ v Vv H /
Sally began walking home

Sally began walking home

v

EVIDENCEMINER: Textual Evidence Discovery for Life Sciences

Xuan Wang!, Yingjun Guan?, Weili Liu!, Aabhas Chauhan', Enyi Jiang', Qi Li°,
David Liem*, Dibakar Sigdel*, J. Harry Caufield*, Peipei Ping*, Jiawei Han'

'Department of Computer Science, University of Illinois at Urbana-Champaign
2School of Information Sciences, University of Illinois at Urbana-Champaign
3Department of Computer Science, lowa State University
1School of Medicine, University of California, Los Angeles
12{xwang174,yingjun2,weilil2,aabhasc2,enyij2,hanj } @illinois.edu, 3qli @iastate.edu,
4{dliem,dsigdel,jcaufield,pping } @ mednet.ucla.edu

Abstract

Traditional search engines for life sciences
(e.g., PubMed) are designed for document re-
trieval and do not allow direct retrieval of spe-
cific statements. Some of these statements
may serve as textual evidence that is key to
tasks such as hypothesis generation and new
finding validation. We present EVIDENCEM-
INER, a web-based system that lets users query
anatural language statement and automatically
retrieves textual evidence from a background
corpora for life sciences. EVIDENCEMINER
is constructed in a completely automated way
without any human effort for training data an-
notation. It is supported by novel data-driven
methods for distantly supervised named entity
recognition and open information extraction.
The entities and patterns are pre-computed
and indexed offline to support fast online
evidence retrieval. The annotation results
are also highlighted in the original document
for better visualization. EVIDENCEMINER
also includes analytic functionalities such as
the most frequent entity and relation summa-
rization. EVIDENCEMINER can help scien-
tists uncover essential research issues, lead-
ing to more effective research and more in-
depth quantitative analysis. The system of
EVIDENCEMINER is available at https://
evidenceminer.firebaseapp.com/l.

1 Introduction

Search engines on scientific literature have been
widely used by life scientists for discoveries based
on prior knowledge. Each day, millions of users
query PubMed? and PubMed Central® (PMC) for
their information needs in biomedicine (Allot et al.,
2019). However, traditional search engines for life
sciences (e.g., PubMed) are designed for document
'A brief demo of EVIDENCEMINER is available at
https://youtu.be/iYuQ6gsr——1I.

https://www.ncbi.nlm.nih.gov/pubmed/
Shttps://www.ncbi.nlm.nih.gov/pmc/

56

retrieval and do not allow direct retrieval of spe-
cific statements (Lu, 2011; Ren et al., 2017; Shen
et al., 2018). With the results from those search
engines, scientists still need to read a large number
of retrieved documents to find specific statements
as textual evidence to validate the input query. This
textual evidence is key to tasks such as develop-
ing new hypotheses, designing informative experi-
ments, or comparing and validating new findings
against previous knowledge.

While the last several years have witnessed sub-
stantial growth in interests and efforts in evidence
mining (Lippi and Torroni, 2016; Wachsmuth et al.,
2017; Stab et al., 2018; Chen et al., 2019; Majithia
et al., 2019; Chernodub et al., 2019; Allot et al.,
2019), little work has been done for evidence min-
ing system development in the scientific literature.
A significant difference between evidence in the
scientific literature and evidence in other corpora
(e.g., the online debate corpus) is that scientific
evidence usually does not have a strong sentiment
(i.e., positive, negative or neutral) in the opinion
it holds. Most scientific evidence sentences are
objective statements reflecting how strongly they
support a query statement. Therefore, if scien-
tists are interested in finding textual evidence for
“melanoma is treated with nivolumab”, they may
expect a ranked list of statements with the top ones
like “bicytopenia in primary lung melanoma treated
with nivolumab” as the textual evidence that sup-
ports the input query.

This paper presents EVIDENCEMINER, a web-
based system for textual evidence discovery for
life sciences (Figure 1). Given a query as a nat-
ural language statement, EVIDENCEMINER auto-
matically retrieves sentence-level textual evidence
from a background corpora of biomedical litera-
ture. EVIDENCEMINER is constructed in a com-
pletely automated way without any human effort
for training data annotation. It is supported by

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 56—62
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

novel data-driven methods for distantly supervised
named entity recognition and open information
extraction. EVIDENCEMINER relies on external
knowledge bases to provide distant supervision
for named entity recognition (NER) (Shang et al.,
2018b; Wang et al., 2018b, 2019). Based on the
entity annotation results, it automatically extracts
informative meta-patterns (textual patterns contain-
ing entity types, e.g., CHEMICAL inhibit DIS-
EASE) from sentences in the background corpora.
(Jiang et al., 2017; Wang et al., 2018a; Li et al.,
2018a,b). Sentences with meta-patterns that bet-
ter match the query statement is more likely to be
textual evidence. The entities and patterns are pre-
computed and indexed offline to support fast on-
line evidence retrieval. The annotation results are
also highlighted in the original document for bet-
ter visualization. EVIDENCEMINER also includes
analytic functionalities such as the most frequent
entity and relation summarization. The contribu-
tions and features of the EVIDENCEMINER system
are summarized as follows.

1. We build EVIDENCEMINER, a web-based sys-
tem for textual evidence discovery for life
sciences. EVIDENCEMINER is supported by
novel methods for distantly supervised named
entity recognition and pattern-based open in-
formation extraction.

. The retrieved evidence sentences can be easily
located in the original text. The entity and rela-
tion annotation results are also highlighted in
the original document for better visualization.

. Analytic functionalities are included such as
finding the most frequent entities/relations
for given entity/relation types and finding the
most frequent entities given a relation type
with another entity.

2 Related Work

Search engines performing sentence-level retrieval
have been developed in the biomedical domain.
For example, Textpresso (Miiller et al., 2004) high-
lights the query-related sentences in the retrieved
documents. However, the sentence highlighting is
only based on query word matching, which does
not necessarily find sentences semantically related
to the input query. Another example is LitSense
(Allot et al., 2019), which retrieves semantically
similar sentences in biomedical literature given

57

=]

Corpora

w

[]
o
User

Knowledge Bases

.~ Algorithm Pool N

Distantly-supervised NER:
AutoNER, AutoBioNER, PeNNER

Meta-pattern Discovery:
MetaPAD, TruePIE, CPIE, WWPIE

EvidenceMiner

p \
! Text Evidence Retrieval
|

\
\
i
'
:_—>: | Annotation Result Visualization |
'
I
I
'
|

Index | Entity/Relation Summarization | ,:

]
I
'
\

Figure 1: System architecture of EVIDENCEMINER.

a query sentence. It returns best-matching sen-
tences using a combined approach of traditional
word matching and neural embedding. However,
their neural embeddings are noisy and thus nega-
tively impact the effectiveness in retrieving query-
specific evidence sentences. EVIDENCEMINER is
more effective compared with LitSense for textual
evidence retrieval in biomedical literature.

Similar tools are also developed for other do-
mains, such as claim mining and argument mining
tools on Twitter or news articles. PerspectroScope
(Chen et al., 2019) allows users to query a nat-
ural language claim and extract textual evidence
in support or against the claim. ClaimPortal (Ma-
jithia et al., 2019) is an integrated infrastructure for
searching and checking factual claims on Twitter.
TARGER (Chernodub et al., 2019) is an argument
mining framework for tagging arguments in the
free input text and keyword-based retrieval of argu-
ments from the argument-tagged corpus. Most of
these tools rely on fully supervised methods that re-
quire human-annotated training data. It is difficult
to directly apply these systems to other domains,
such as life sciences since it is non-trivial to re-
trieve the set of human-annotated articles and the
annotations are prone to errors (Levy et al., 2017).

3 System Description

EVIDENCEMINER consists of two major compo-
nents: an open information extraction pipeline and
a textual evidence retrieval and analysis pipeline.
The open information extraction pipeline includes
two functional modules: (1) distantly supervised
NER, and (2) meta-pattern-based open information
extraction; whereas the textual evidence retrieval
and analysis pipeline includes three functional mod-
ules: (1) textual evidence search, (2) annotation

Background corpora | Cancers | Heart Diseases
#PubMed abstracts 48,201 11,766
#PMC full-text papers 7,130 1,151
#Sentences in total 1,466,091 246,106
#Entity instances 3,315,092 400,327
#Relation instances 29,160 9,576

Table 1: Basic statistics of background corpora. It in-
cludes PubMed abstracts and PMC full-text papers re-
lated to cancers and heart diseases published in 2019.

result visualization in the original document, and
(3) the most frequent entity and relation summa-
rization. Figure 1 shows the system architecture
of EVIDENCEMINER. The functional modules are
introduced in the following sections.

3.1 Open Information Extraction

The open information extraction pipeline extracts
entities with distant supervision from knowledge
bases and relations with automatic meta-pattern
discovery methods. In particular, to extract high-
quality entities and relations, we design noise-
robust neural models for distantly supervised
named entity recognition (Shang et al., 2018b;
Wang et al., 2019) and wide-window meta-pattern
discovery methods to deal with the long and com-
plex sentences in biomedical literature (Wang et al.,
2018a; Li et al., 2018b).

Data Collection. To obtain the background cor-
pora for EVIDENCEMINER, we collect the ti-
tles and abstracts of 26M papers from the entire
PubMed* dump, and the full-text contents of 2.2M
papers from PubMed Central® (PMC). For the
demonstration purpose, we select a subset of docu-
ments published in 2019 that are specifically related
to two important diseases (cancers and heart dis-
eases) to form the background corpora. The subset
of documents are selected by concept matching on
MeSH®, a biomedical concept ontology with the
concepts related to cancers (Neoplasms) and heart
diseases (Cardiovascular Diseases). Table 1 sum-
marizes the statistics of the background corpora.
Distantly Supervised Named Entity Recogni-
tion. EVIDENCEMINER relies on UMLS’, a com-
prehensive biomedical knowledge base to pro-
vide distant supervision for named entity recog-
nition. We select 5 major biomedical entity types
(Organism, Fully Formed Anatomical Structure,

4https
Shttps

://pubmed.gov/pubmed
://pubmed.gov/pmc
*https://www.nlm.nih.gov/mesh/
"https://www.nlm.nih.gov/research/
umls/index.html

58

Chemical, Physiologic Function, and Pathologic
Function) including 17 fine-grained entity types
(Archaeon, Bacterium, Eukaryote, Virus, Body
Part/Organ/Organ Component, Tissue, Cell, Cell
Component, Gene or Genome, Chemical, Organ-
ism Function, Organ or Tissue Function, Cell
Function, Molecular Function, Disease or Syn-
drome, Cell or Molecular Dysfunction, Experimen-
tal Model of Disease, and Pathological Function)
from UMLS as the entity types to be annotated. To
tackle the problem of limited coverage of the input
dictionary, we first apply a data-driven phrase min-
ing algorithm, AutoPhrase (Shang et al., 2018a),
to extract high-quality phrases as additional entity
candidates. Then we automatically expand the dic-
tionary with a novel dictionary expansion method
(Wang et al., 2019). The expanded dictionary is
used to label the input corpora with the 17 fine-
grained entity types to train a neural model. We
apply AutoNER (Shang et al., 2018b), a state-of-
the-art distantly supervised NER method that effec-
tively deals with noisy distant supervision. Com-
paring with PubTator (Wei et al., 2013), a state-
of-the-art BioNER system trained with extensive
human annotation on 5 biomedical entity types,
EVIDENCEMINER can automatically annotate 17
fine-grained entity types with high quality without
any human effort for training data annotation.

Meta-pattern Discovery. Based on the entity an-
notation results above, meta-patterns can be auto-
matically discovered from the corpora to support
textual evidence discovery. Meta-patterns are de-
fined as sub-sequences in an entity-type-replaced
corpus with at least one entity type token in it. For
example, “PPAR gamma agonist” and “caspase 1
agonist” are two word-sequences in the raw cor-
pus. If we replace all the entities (i.e., “PPAR
gamma” and “caspase 1) with their correspond-
ing entity types (i.e., $§GENE) in the raw corpus,
“PPAR gamma agonist” and “caspase 1 agonist”
are represented as one meta-pattern “$SGENE ag-
onist” in the entity-type-replaced corpus. Meta-
patterns containing at least two entity types (e.g.,
“$CHEMICAL induce $DISEASE”) are relational
meta-patterns. Quality relational meta-patterns can
serve as informative textual patterns that guide tex-
tual evidence discovery. We apply two state-of-the-
art meta-pattern discovery methods, CPIE (Wang
et al., 2018a) and WW-PIE (Li et al., 2018b), to
extract high-quality meta-patterns from the NER-
tagged corpora. Both methods are specifically de-

signed to better deal with the long and complex
sentence structures in the biomedical literature. In
EVIDENCEMINER, we combine the meta-pattern
extraction results from CPIE and WW-PIE as our
informative meta-patterns to guide textual evidence
retrieval. We use Elasticsearch® to create the index
for each sentence for fast online retrieval. In addi-
tion to indexing the keywords, we index each sen-
tence with the meta-patterns it matches and the cor-
responding entities extracted by the meta-patterns
in the sentence.

3.2 Textual Evidence Retrieval and Analysis

The textual evidence retrieval and analysis pipeline
retrieves textual evidence given a user-input query
statement and the indexed corpora. The retrieved
evidence sentence can be easily located in the orig-
inal text. The entity and relation annotation results
are also highlighted in the text for better visual-
ization. EVIDENCEMINER also includes analytic
functionalities such as finding the most frequent
entities and relations as summarization.
Textual Evidence Search. Given a user-input
query statement and the indexed corpora, EVI-
DENCEMINER retrieves and ranks the candidate
sentences with a combined approach of keyword
weighting and meta-pattern weighting. Sentences
with meta-patterns that better match the query state-
ment are ranked higher as textual evidence. This
ranking mechanism is more effective compared
with existing methods (e.g., LitSense) for textual
evidence retrieval in biomedical literature (see Sec-
tion 4). We use Elasticsearch to support keyword
and meta-pattern search over the indexed corpora.
In Figure 2, we show an example of our search
interface. For example, if scientists are interested
in finding the textual evidence for “melanoma is
treated with nivolumab”, they can search it in EVI-
DENCEMINER and see the top results such as “bi-
cytopenia in primary lung melanoma treated with
nivolumab” (Figure 2a). If they click one of the
top results, the retrieved sentence is highlighted in
the original article (Figure 3) on the annotation in-
terface. Moreover, EVIDENCEMINER allows more
flexible queries, such as a mixture of keywords and
relational patterns. For example, if scientists are
interested in finding the diseases that can be treated
with the chemical “nivolumab’, but are not sure
which disease to search, they may input a query like
“nivolumab, DISEASEORSYNDROME treat with

$https://www.elastic.co/

59

CHEMICAL”. EVIDENCEMINER automatically
finds all the textual evidence indicating a “treat-
ment” relationship with the chemical “nivolumab”
(Figure 2b).

Annotation Result Visualization. The annotation
interface shows all the annotated entities and re-
lations for better visualization. For example, in
Figure 3, we color all the annotated entities with
different colors for different types. We use five
different colors for the five major biomedical entity
types and two additional colors for two specific fine-
grained types, “Gene or Genome” and “Disease or
Syndrome”, since those two are the most frequent
biomedical entity types. In Figure 3, we see that
the “melanoma” is colored as a “Disease or Syn-
drome” and “nivolumab” is colored as a “Chem-
ical”. We also list all the meta-pattern instances
and meta-patterns that match the sentences in the
article. If the user clicks the meta-pattern instances,
the corresponding sentences are also highlighted
in the article. In Figure 3, a meta-pattern “DIS-
EASEORSYNDROME patient treat with CHEM-
ICAL” captures the entity pair “melanoma” and
“nivolumab” in the article.

Entity and Relation Summarization. To make
our system more user-friendly and interesting, we
add analytic functionalities for the most frequent
entity and relation summarization. For example,
in Figure 4, if scientists are interested in finding
the most frequent diseases, they can search “en-
tity_type = DISEASEORSYNDROME?” in our an-
alytic interface and see the top entities such as
tumor and breast cancer. Similarly, if scientists are
interested in finding the most frequent chemical-
disease pairs with a treatment relation, they can
search “pattern = DISEASEORSYNDROME treat
with CHEMICAL” in our analytic interface and see
the top entity pairs such as HCC &sorafenib. More
interestingly, if researchers are interested in find-
ing the most frequent diseases that can be treated
by a specific chemical (e.g., nivolumab), they can
search “entity = nivolumab & pattern = DISEASE-
ORSYNDROME treat with CHEMICAL” in our
analytic interface and see the most frequent dis-
eases, such as melanoma and NSCLC, that can be
treated with nivolumab. With these analytic func-
tionalities, EVIDENCEMINER can help scientists
uncover important research issues, leading to more
effective research and more in-depth quantitative
analysis.

melanoma is treated with nivolumab Q Example : NSCLC is treated with nivolumab, HCC is treated with sorafenib, prostate cancer is treated with androgen

& Sentence 22 Analytics

"melanoma is treated with nivolumab" (Total: 7000, Took: 134ms)
~ Atmost 10 results are shown per page ~

a Treated with Nivolumab. . R
Label Coloring & Frequent Associated Entities
] cine (Tokyo, Japan) & & Ayumu, Takahashi ¥
~ Organism
Predicting marker for early progression in unresectable me¢ treated with nivolumab. v Eukaryote

v
+ EvidenceScore 2552 [IPITUIMN - [N inig i 2 Tomohiro,Kondo | ¥ Virus

~ Fully Formed Anatomical Structure

reated with nivolumab. v Body Part, Organ, or Organ Component

METHODS: A retrospective review was performed on 39 consecutive patients with unresectable mela ith ni A
Contert v Tissue

% 2019 B Internationaljournal of clinical oncology & PMID30168088 & Tomohiro,Kondo ¥ v Cell
v Cell Component
v Gene or Genome

Title: Predicting marker for early p fonin treated with nivolumab.

A 49-year-old patient with metastatic

3
S
&
5
=4
i
o
=
@
1<%
2.
=
=3
.
=
=N
S
&}
o
o
(e}
B
=3
<
S

— =R v Chemical

V EvidenceScore 2433 i 2019 B Clinical & & Micheline, Razzouk-Cadet ¥ ~ Physiologic Function

Title: Nivolumab-Induced Pneumonitis in Patient With Metastatic Melanoma Showing Complete Remission on 18F-FDG PET/CT. v Organism Function
v Organ or Tissue Function

Response to imatinib in vaginal melanoma with KIT pVal559Gly mutation previously treated with nivolumab, pembrolizumab and ~ Cell Function
~ Molecular Function

+ EvidenceScore 2399 @ 2019 H The logy & & Takayoshi, i ¥ -

No dose response relation has been observed in patients treated with intravenous nivolumab dosed from 0.1 to 10 mg/kg. v e “A,;‘__“_.rl;‘_____:“

(a) Query: melanoma is treated with nivolumab
nivolumab, DISEASEORSYNDROME treat with CHEMICAL Q Example : NSCLC is treated with nivolumab, HCC is treated with sorafenib, prostate cancer is treated with androgen

= Sentence &2 Analytics

"nivolumab, DISEASEORSYNDROME treat with CHEMICAL" (Total: 7000, Took: 140ms)

~ Atmost 10 results are shown per page ~

METHODS: A retrospective review was performed on 39 consecutive patients with unresectable melanoma treated with nivolumab.

Label Coloring & Frequent Associated Enti

OISRl & 2019 8 Internationaljournalof clinical oncology & PMID30168088 & Tomohiro, Kondo ¥ ~ Organism

Title: Predicting marker for early progression in unresectable melanoma treated with nivolumab. v Eukaryote
v Virus

studied gut microbiome in NSCLC patients treated with nivolumab and in healthy people [78]. ~ Fully Formed Anatomical Structure

8 2010 8 sttt ol lrss & PTR— « Body Part, Organ, or Organ Component
v Tissue

A 49-year-old patient with metastatic melanoma was treated with nivolumab (Opdivo v Cell

@ 2019 B Clinicalnuclear medicine & PMID31306191 & Micheline, Razzouk-Cadet ¥ v Cell Component

Title: Nivolumab-Induced Pneumonitis in Patient With Metastatic Melanoma Showing Complete Remission on 18F-FDG PET/CT. v Geneor Genome

v Chemical

OBJECTIVE: To comprehensively evaluate the clinical presentation of endocrine IRAEs in patients with [ung cancer treated with Physiologic Function

>

~ Organism Function
v Organ or Tissue Function
Title: Nivolumab-induced thyroid dysfunction in patients with lung cancer. v Cell Function

~ Molecular Function

v EvidenceScore 2925 @ 2019 B inologia, di icion & & AnaM,Ramos-levi ¥

We report four cases of a: carcinoma with peritoneal it s treated with nivolumab.

¥ EvidenceScore 2895 @ 2019 B Hinyokikaki icalaponica & & Tekuya Hida ¥
v

ome

Title: [Clinical Effect of Nivolumab on Advanced Renal Cell Carcinoma with Peritoneal Metastasis]. o Al aeRAala,

(b) Query: (nivolumab, DISEASEORSYNDROME treat with CHEMICAL)

T O AT S

Figure 2: The search interface with the textual evidence retrieved. The evidence score indicates the confidence of
each retrieved sentence being a supporting evidence of the input query.

objective response of 55% (95% Cl 45-66). The median duration of intracranial response has not been reached. Meta-pattern Extractions
Ipilimumab monotherapy has been studied in a phase Il study in 72 patients with melanoma and tastases [22].
Patients received four doses of 10 mg/kg intravenous ipilimumab once every 3 weeks. Patients who were clinically stable
at week 24 were eligible to receive 10 mg/kg ipilimumab every 12 weeks. Patients in cohort A were neurologically

Label Coloring & Entity Counts asymptomatic and were not receiving corticosteroids at inclusion. Patients in cohort B were symptomatic and received a

EvidenceMiner

Instances Meta Pattern

* melanoma DISEASEORSYNDROME

stable dose of corticosteroids. The primary endpoint was the proportion of patients with disease control, defined as « nivol b patient treat with
complete response, partial response or stable disease after 12 weeks, assessed with modified WHO criteria. The above niveluma CHEMIC
- mentioned clinical trials clearly demonstrated intracranial responses of patients with melanoma brain metastase « melanoma DISEASEORSVNDROME
treated |ntravenous|yw|lh immune checkpoint inhibitors. Four other clinical trials with nivolumab and ipilimumab in + brain patient with
~ Organism patients with i rain < are ongoing [23]. In a phase Il trial nivolumab and ipilimumab is combined motastases DISEASEORSYNDROME
~ Eukaryote with radiotherapy (NCT03340129). In a phase Il trial nivolumab and ipilimumab are combined with fotemusune
1NCT02460068) Recently, a phase I/1b trial (NCTO30:) of concurrent i and i for * Tumor DISEASEORSYNDROME
~ Fully Formed Anatomical Structure patients with leptomeningeal metastases has started. IgG4 antibodies can undergo Fab (Fragment antigen binding)- o lymphocytes | Dfirating CELL
 Body Part, Organ, or Organ arm exchange [24, 25]. Fab-exchange can be prevented by introducing amutation i the hinge region of the antibody, as)
Component has been done for nivolumab [25, 26]. The constant region fragment (Fc) of the antibody determines the effector e brain DISEASEORSYNDROME
N e NS - . s treat with CHEMICAL
v Cell functions and kinetics [27]. Antibodies with neonatal Fc receptor (FcRn) binding can enter cells y \d are bt
o inhibitors

prevented from degradation by the FcRn, resulting in a prolonged elimination half-life [27-29]. Nivolumab s an IgG4

~ Cell Component N) e e AR 5 . N
antibody with FcRn binding [30]. 1gG4 antibodies like nivolumab have a low potential to induce antibody dependent cell

melanoma DISEASEORSYNDROME

v Geneor Genome

mediated (ADCC) or complement dependent (CDC) [27, 30). This prevents toxic effects of " atient trea
i o nivolumab B CAL

v Chemical i the and thereby preserves T cell function. Nivolumab binds to native PD-1 CHEMICAL
~ Physiologic Function molecules expressed on activated T cells with an EC50 of 0.64 nM [30].

~ Organism Function Q No dose response relation has been observed in melanoma patients treated with intravenous nivolumab dosed

~ Organ or Tissue Function from 0.1to 10 mg/kg.

~ Cell Function The receptor of ni has beeni i at adose range from 0.1-10 mg/kg. The median PD-1

~ Molecular Function receptor occupancy by nivolumab was 64-70% across all dose levels. These results demonstrate that the majority of

PD-1 receptors are bound by nivolumab at the lowest dose level tested (0.1 mg/kg). No effect between dose and
receptor occupancy was observed within the studied dose range. A sustained receptor occupancy above 70% of
‘ ¢ nivolumab on PD-1on circulating T cells has been observed for more than 2 months after nlvolumab mfus\on despite a
~ Cell or Molecular Dysfunction serum half-life of nivolumab of 12 to 20 days reg: f dose [26]. Ni phar is dosed
~ Experimental Model of Disease intravenously and has linear pharmacokinetics within the studied dose range of 0.1-10 mg/kg [2]. Based on population
pharmacokinetic analysis at steady state at dose level 3 mg/kg every 2 weeks, the clearance, terminal half-life and

Figure 3: The annotation interface with all the entity and relation annotation results.

60

Entity Type: DISEASEORSYNDROME

Top-10 Entities Based on Sentence Counts

tumor

Entities
Entity-pairs

(a)

Pattern: DISEASEORSYNDROME treat with CHEMICAL

Top-10 Entity-pairs Based on Sentence
Counts

2 3 4 5
Sentence Counts

(b)

Pattern: DISEASEORSYNDROME treat with CHEMICAL, Entity: Nivolumab

Top-10 Entity-pairs Based on Sentence
Counts

Entities

2 3 4
Sentence Counts

©

Figure 4: The analytic interface with the entity and relation summarization results. The queries used are (a)
entity _type=DISEASEORSYNDROME, (b) pattern=DISEASEORSYNDROME treat with CHEMICAL, and (c)
entity=nivolumab&pattern=DISEASEORSYNDROME treat with CHEMICAL.

Method / nDCG @1 @5 @10
BM25 0.714 | 0.720 | 0.746
LitSense 0.599 | 0.624 | 0.658
EVIDENCEMINER | 0.855 | 0.861 | 0.889

Table 2: Performance comparison of the textual evi-
dence retrieval systems with nDCG@1,5,10.

4 Evaluation

To demonstrate the effectiveness of EVIDENCEM-
INER in textual evidence retrieval, we compare its
performance with the traditional BM25 (Robert-
son et al., 2009) and a recent sentence-level search
engine, LitSense (Allot et al., 2019). The back-
ground corpus is the same PubMed subset for all
the compared methods. We first ask domain ex-
perts to generate 50 query statements based on
the relationships between three biomedical entity
types (gene, chemical, and disease) in the Com-
parative Toxicogenomics Database’. Then we ask
domain experts to manually label the top-10 re-
trieved evidence sentences by each method with
three grades indicating the confidence of the evi-
dence. We use the average normalized Discounted
Cumulative Gain (nDCG) score to evaluate the tex-
tual evidence retrieval performance. In Table 2, we
observe that EVIDENCEMINER always achieves
the best performance compared with other meth-
ods. It demonstrates the effectiveness of using
meta-patterns to guide textual evidence discovery
in biomedical literature.

S Further Development

In some cases, a strict query matching may not
find sufficiently high-quality answers due to the
stringent search requirements or limited available
entities that match the search queries. In this case, a

‘http://ctdbase.org

61

smart query processor should automatically kick-in
to do an approximate match, such as a graph-based
approximate match or an embedding-based seman-
tic match. In other cases, a user may query a set
of entities (e.g., genes or diseases) or a timeline.
We need to conduct a summary of the major dif-
ferences among the set of entities or over time by
analyzing large text.

6 Conclusion

We build EVIDENCEMINER, a web-based system
for textual evidence discovery for life sciences. The
retrieved evidence sentences can be easily located
in the background corpora for better visualization.
EVIDENCEMINER also includes analytic function-
alities such as the most frequent entity and relation
summarization. We incorporated another corpus
on COVID-19 in EVIDENCEMINER to help boost
the scientific discoveries (Wang et al., 2020b,a).
We are further developing EVIDENCEMINER to be
a more intelligent system that can assist in more
efficient and in-depth scientific discoveries.

Acknowledgment

Research was sponsored in part by US DARPA
KAIROS Program No. FA8750-19-2-1004 and
SocialSim Program No. WO911NF-17-C-0099,
National Science Foundation IIS 16-18481, IIS
17-04532, and IIS-17-41317, and DTRA HD-
TRA11810026. Any opinions, findings, and con-
clusions or recommendations expressed herein are
those of the authors and should not be interpreted
as necessarily representing the views, either ex-
pressed or implied, of DARPA or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for government
purposes notwithstanding any copyright annotation
hereon.

References

Alexis Allot, Qingyu Chen, Sun Kim, Roberto Vera Al-
varez, Donald C Comeau, W John Wilbur, and Zhiy-
ong Lu. 2019. Litsense: making sense of biomedical
literature at sentence level. Nucleic acids research.

Sihao Chen, Daniel Khashabi, Chris Callison-Burch,
and Dan Roth. 2019. Perspectroscope: A window
to the world of diverse perspectives. page 129134.

Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenre-
ich, Alexander Bondarenko, Matthias Hagen, Chris
Biemann, and Alexander Panchenko. 2019. Targer:
Neural argument mining at your fingertips. In ACL:
System Demonstrations, pages 195-200.

Meng Jiang, Jingbo Shang, Taylor Cassidy, Xiang Ren,
Lance M Kaplan, Timothy P Hanratty, and Jiawei
Han. 2017. Metapad: Meta pattern discovery from
massive text corpora. In KDD, pages 877-886.
ACM.

Ran Levy, Shai Gretz, Benjamin Sznajder, Shay Hum-
mel, Ranit Aharonov, and Noam Slonim. 2017. Un-
supervised corpus—wide claim detection. In Proc.
Work. Arg. Min., pages 79-84.

Qi Li, Meng Jiang, Xikun Zhang, Meng Qu, Timo-
thy P Hanratty, Jing Gao, and Jiawei Han. 2018a.
Truepie: Discovering reliable patterns in pattern-
based information extraction. In KDD, pages 1675—
1684. ACM.

Qi Li, Xuan Wang, Yu Zhang, Qi Li, Fei Ling, Cathy
Wu H, and Jiawei Han. 2018b. Pattern discov-
ery for wide-window open information extraction in
biomedical literature. In BIBM. 1EEE.

Marco Lippi and Paolo Torroni. 2016. Margot: A web
server for argumentation mining. Expert Systems
with Applications, 65:292-303.

Zhiyong Lu. 2011. Pubmed and beyond: a survey
of web tools for searching biomedical literature.
Database, 2011.

Sarthak Majithia, Fatma Arslan, Sumeet Lubal,
Damian Jimenez, Priyank Arora, Josue Caraballo,
and Chengkai Li. 2019. Claimportal: Integrated
monitoring, searching, checking, and analytics of
factual claims on twitter. In ACL: System Demon-
strations, pages 153—158.

Hans-Michael Miiller, Eimear E Kenny, and Paul W
Sternberg. 2004. Textpresso: an ontology-based in-
formation retrieval and extraction system for biolog-
ical literature. PLoS Biol., 2(11):e309.

Xiang Ren, Jiaming Shen, Meng Qu, Xuan Wang, Ze-
giu Wu, Qi Zhu, Meng Jiang, Fangbo Tao, Saurabh
Sinha, David Liem, et al. 2017. Life-inet: A struc-
tured network-based knowledge exploration and an-
alytics system for life sciences. In ACL: System
Demonstrations, pages 55-60.

62

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. FnT Inf. Ret., 3(4):333-389.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R Voss, and Jiawei Han. 2018a. Automated
phrase mining from massive text corpora. TKDE.

Jingbo Shang, Liyuan Liu, Xiang Ren, Xiaotao Gu,
Teng Ren, and Jiawei Han. 2018b. Learning named
entity tagger using domain-specific dictionary. In
EMNLP. ACL.

Jiaming Shen, Jinfeng Xiao, Xinwei He, Jingbo Shang,
Saurabh Sinha, and Jiawei Han. 2018. Entity set
search of scientific literature: An unsupervised rank-
ing approach. In SIGIR, pages 565-574. ACM.

Christian Stab, Johannes Daxenberger, Chris Stahlhut,
Tristan Miller, Benjamin Schiller, Christopher
Tauchmann, Steffen Eger, and Iryna Gurevych. 2018.
Argumentext: Searching for arguments in heteroge-
neous sources. In Proceedings of the 2018 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: demonstrations,
pages 21-25.

Henning Wachsmuth, Martin Potthast, Khalid
Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani
Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff,
and Benno Stein. 2017. Building an argument
search engine for the web. In Proceedings of the 4th
Workshop on Argument Mining, pages 49-59.

Xuan Wang, Weili Liu, Aabhas Chauhan, Yingjun
Guan, and Jiawei Han. 2020a. Automatic textual
evidence mining in covid-19 literature.

Xuan Wang, Xiangchen Song, Yingjun Guan,
Bangzheng Li, and Jiawei Han. 2020b. Com-
prehensive named entity recognition on cord-19
with distant or weak supervision. arXiv preprint
arXiv:2003.12218.

Xuan Wang, Yu Zhang, Qi Li, Yinyin Chen, and Jiawei
Han. 2018a. Open information extraction with meta-
pattern discovery in biomedical literature. In BCB,
pages 291-300. ACM.

Xuan Wang, Yu Zhang, Qi Li, Xiang Ren, Jingbo
Shang, and Jiawei Han. 2019. Distantly supervised
biomedical named entity recognition with dictionary
expansion. In 2019 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages
496-503. IEEE.

Xuan Wang, Yu Zhang, Qi Li, Cathy H. Wu, and Jiawei
Han. 2018b. PENNER: pattern-enhanced nested
named entity recognition in biomedical literature. In
BIBM, pages 540-547.

Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu. 2013.
Pubtator: a web-based text mining tool for assist-
ing biocuration. Nucleic Acids Res., 41(W1):W518-
W522.

Trialstreamer: Mapping and Browsing Medical Evidence in Real-Time

Benjamin E. Nye
Northeastern University
nye.blhusky.neu.edu

Iain J. Marshall
King’s College London

iain.marshall@kcl.ac.uk

Abstract

We introduce Trialstreamer, a living database
of clinical trial reports. Here we mainly de-
scribe the evidence extraction component; this
extracts from biomedical abstracts key pieces
of information that clinicians need when ap-
praising the literature, and also the relations
between these. Specifically, the system ex-
tracts descriptions of trial participants, the
treatments compared in each arm (the inter-
ventions), and which outcomes were mea-
sured. The system then attempts to infer which
interventions were reported to work best by
determining their relationship with identified
trial outcome measures. In addition to sum-
marizing individual trials, these extracted data
elements allow automatic synthesis of results
across many trials on the same topic. We apply
the system at scale to all reports of randomized
controlled trials indexed in MEDLINE, power-
ing the automatic generation of evidence maps,
which provide a global view of the efficacy of
different interventions combining data from all
relevant clinical trials on a topic. We make all
code and models freely available' alongside a
demonstration of the web interface.’

1 Introduction and Motivation

The highest-quality evidence to inform healthcare
practice comes from randomized controlled trials
(RCTs). The results of the vast majority of these
trials are communicated in the form of unstruc-
tured text in journal articles. Such results accu-
mulate quickly, with over 100 articles describing
RCTs published daily, on average. It is difficult for
healthcare providers and patients to make sense of
and keep up with this torrent of unstructured liter-
ature.

Consider a patient who has been newly diag-
nosed with diabetes. She would like to con-

Uhttps://github.com/bepnye/evidence_extraction/
Zhttp://bit.ly/trialstreamer

63

Ani Nenkova
UPenn

nenkova@seas.upenn.edu

Byron C. Wallace
Northeastern University

b.wallace@northeastern.edu

Effect of Interventions on Outcomes
Increased|, Unaffected , [Decreased

Glucose Plasma Bod

y Attention
Weight _Postprandial ...

Hypoglycemiz

Fasting Lipids Safety

Blood
Pressure

Msﬂw@@@ e Co C co (O
P‘MC CXE e G Oe en oo
i (0 Qo C a o o o

Figure 1: A portion of an example evidence mapping
Interventions and their inferred efficacy for Outcomes,
given the condition (or Population) of Type II Diabetes.
These maps are generated automatically using the NLP
system we describe in this work.

sult (in collaboration with her healthcare provider)
the available evidence regarding her treatment op-
tions. But she may not even be aware of what her
treatment options are. Further, she may only care
about particular outcomes (for instance, managing
her blood pressure). Currently, it is not straight-
forward to retrieve and browse the evidence per-
taining to a given condition, and in particular to
ascertain which treatments are best supported for
a specific outcome of interest.

Trialstreamer is a first attempt to solve this
problem, making evidence more browseable via
NLP technologies. Figure 1 shows one of the key
features of the system: an automatically gener-
ated evidence map that displays treatments (verti-
cal axis) and outcomes (horizontal) identified for a
condition specified by the user (here, migraines).
We elaborate on this particular example to illus-
trate the use of the system in Section 3.

Trialstreamer aims to facilitate efficient evi-
dence mapping with a user friendly method of pre-
senting a search across a broad field (here, being
a clinical condition) (Miake-Lye et al., 2016). We
use NLP technologies to provide browseable, in-
teractive overviews of large volumes of literature,
on-demand. These may then inform subsequent,
formal syntheses, or they may simply guide ex-

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 63—69
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

ploration of the primary literature. In this work
we describe an open-source prototype that enables
evidence mapping, using NLP to generate interac-
tive overviews and visualizations of all RCT re-
ports indexed by MEDLINE (and accessible via
PubMed).

When mapping the evidence one is generally in-
terested in the following basic questions:

What interventions and outcomes have been
studied for a given condition (population)?

How much evidence exists, both in terms of the
number of trials and the number of participants
within these?

Does the evidence seem to support use of a par-
ticular intervention for a given condition?

In the remainder of this paper we describe a
prototype system that facilitates interactive explo-
ration and mapping of the evidence base, with
an emphasis on answering the above questions.
The Trialstreamer mapping interface allows struc-
tured search over study populations, interven-
tions/comparators, and outcomes — collectively
referred to as PICO elements (Huang et al., 2006).
It then displays key clinical attributes automati-
cally extracted from the set of retrieved trials. This
is made possible via NLP modules trained on re-
cently released corpora (Nye et al., 2018; Lehman
et al., 2019), described below.

2 System Overview

The evidence extraction pipeline is composed of
four primary phases. First, text snippets that con-
vey information about the trial’s treatments (or in-
terventions), outcome measures, and results are
extracted from abstracts. Relations between these
snippets are then inferred to identify which treat-
ments were compared against each other, and
which outcomes were measured for these compar-
isons. The extracted relations and evidence state-
ments are then used to infer an overall conclusion
about the comparative efficacy of the trial’s inter-
ventions. Finally, the clinical concepts expressed
in the extracted spans are normalized to a struc-
tured vocabulary in order to ground them in an ex-
isting knowledge base and allow for aggregations
across trials.

A typical RCT report would pertain to a single
clinical condition (the population), but might re-
port multiple numerical results, each concerning a

64

particular intervention, comparator, and outcome
measure (which we describe as an ICO triplet).

Because the end-to-end task combines NLP
subtasks that are supported by different datasets,
we collected new development and test sets — 160
abstracts in all, exhaustively annotated — in order
to evaluate the overall performance of our system.
Two medical doctors® annotated these documents
with the all of the expressed entities, their men-
tions in the text, the relations between them, the
conclusions reported for each ICO triplet and the
sentence that contains the supporting evidence for
this (Lehman et al., 2019).

We were unable to obtain normalized concept
labels for the ICO triplets due to the excessive dif-
ficulty of the task for the annotators.

Modeling decisions were informed by the 60
document development set, and we present evalu-
ations of the first four information extraction mod-
ules with regard to the 100 documents in the un-
seen test set.

2.1 Preprocessing

Enabling search over RCT reports requires first
compiling and indexing all such studies. This is,
perhaps surprisingly, non-trivial. One may rely on
“Publication Type” (PT) tags that codify study de-
signs of articles, but these are manually applied by
staff at the National Library of Medicine. Conse-
quently, there is a lag between when a new study
is published and when a PT tag is applied. Re-
lying on these tags may thus hinder access to the
most up-to-date evidence available. Therefore, we
instead use an automated tagging system that uses
machine learning to classify articles as RCT re-
ports (or not). This model has been validated ex-
tensively in prior work (Marshall et al., 2018), and
we do not describe it further here.

Next, we replace all abbreviations with their
long forms using the Ab3P algorithm (Sohn et al.,
2008). Using long forms has the complementary
advantages of improving PICO labeling accuracy
while also reducing the amount of context needed
for prediction by downstream model components.

2.2 Study Descriptor Recognition
PICO Elements

In order to identify the spans of text corresponding
to the PICO elements of the trial, we use the EBM-
NLP corpus (Nye et al., 2018). This is a dataset

3Hired via Upwork (http://www.upwork .com).

Label Spans Extract ICO Relations Infer Conclusions
Rank I+
Evidence Statements L B | agmax @ Infer
I|__:| ;:) 9 c == [increased [with respect to .
- L] > o I—
It £ o: =3 Support:
Abstract] - Ev:
—_—
Background s o]
Lorem ipsum [amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam.] g | @3
Duis aute irure dolor in reprehenderit in voluptate velit S S P . i
[Jcillum dolore eu I__LI pariatur. Excepteur sint CCZD BoIo c:. @ — [decreased [with respect to .
‘occaecat cupidatat non proident = 5 — 0. 3 Support:)
[| S —
Results e oo :
Lorem ipsum dolor sit amet, consectetur adipiscing -
e, 00 40 eiusmod tempole e T T ot
Ut enim ad| veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo.
conseauat Dus avte L T T rmmy memy
voluptateJesse cillum dolore eu fugiat nulla pariatur. === 'r-_-_-_l . 3
Excepteur sint occaecat cupidatat non proident, sunt in o222 NN . idn’ i
culpa qui officia deserunt mollit [E]id est laborum. [[} —_— c = — [didn’t affect 0 with respect to .
[T | o= Support: [
o] = [V S——
- ool

Figure 2: Overview of the evidence extraction pipeline, applied to all RCT article abstracts automatically identified.
Text spans are first extracted from these abstracts, then assembled into relations that reflect the structure of the trials,
and finally used to infer the effect interventions were reported to have on measured outcomes, as compared to the
control treatment.

F1 Precision Recall F1 Precision Recall
Tokens 0.63 0.56 0.72 Evidence 0.69 0.53 0.97
Clinical Entities 0.67 0.55 0.87

Table 2: Performance for identifying evidence-bearing
Table 1: Macro-averaged scores for ICO span predic- gentences.

tion at both the token and clinical entity level.

Evidence Statements
comprising ~5,000 abstracts of RCT reports that
have been annotated to demarcate textual spans
that describe the respective PICO elements. In ad-
dition to these spans, it contains more granular an-
notations on information within spans (e.g., spe-

In addition to PICO elements, we extract all sen-
tences in the abstract that are predicted to con-
tain evidence concerning the relative efficacy of
an Intervention. Our training data for this model
)))) is sourced from the Evidence-Inference corpus
cific Population attributes like age and sex). (Lehman et al., 2019), which comprises ~10,000

We follow our prior work (Nye et al., 2018) annotated ‘prompts’ across ~2,400 unique full-
in training a BILSTM-CRF model that learns to text articles. Each prompt specifies an Interven-
jointly predict each PICO element using EBM- tjon, a Comparator, and an Outcome. Doctors
NLP. Recent work has shown the efficacy of have annotated the prompts for each article, sup-
BERT (Devlin et al., 2018) representations in this plying an extracted snippet that presents the con-
space, e.g., Beltagy er al. achieved state-of- clusion for these ICO elements, as well as an infer-
the-art performance on EBM-NLP using this ap- ence concerning whether the Outcome increased,
proach (2019). Therefore, for all text encoding we decreased, or remained the same in the interven-

use BioBERT (Lee et al., 2019), which was pre- tjon group (as compared to the comparator group).

; 4
trained on PubMed documents. We frame evidence identification as a sentence

Results for Interventions/Comparators and Out- classication task, and train a linear classification
comes on our test set are reported in Table 1. Since layer on top of BioBERT outputs. Our posi-
these spans will serve as inputs to downstream tive training examples are the sentences contain-
models in the pipeline, high recall at the expense ing evidence snippets in Evidence-Inference, and
of precision is preferable; we will allow subse- we draw an equal number of length-matched neg-
quent classifiers to discard spurious spans. We atives randomly from the rest of the document. As
achieve 0.87 recall at the clinical concept level. shown in Table 2, we achieve extremely high re-

call on the test set, but only middling precision.

*For PICO tagging on EBM-NLP we found that BioBERT On inspection, many of these false positives are
performed comparably to SciBERT (Beltagy et al., 2019). sentences from the conclusion that provide a high-

65

level summary of the evidence, but aren’t the best
evidence statement — as provided by the annota-
tor — for any given ICO prompt.

2.3 Relation Extraction

To transform the extracted spans into a semantic
representation of the trial that can be used to con-
struct an evidence map, we must identify all in-
stances of an outcome being reported, and infer
which two treatments were being directly com-
pared as the intervention and comparator with re-
spect to said outcome. Finally, given each assem-
bled ICO prompt, we can then predict the trial’s
findings regarding whether the outcome increased,
decreased, or was not statistically different un-
der the intervention versus the comparator. In ef-
fect, we are aiming to jointly extract ICO prompts
and infer the directionality of the results reported
concerning these, whereas prior work (Nye et al.,
2018; Lehman et al., 2019) has considered these
problems only in isolation.

Our strategy for assembling ICO prompts is in-
formed by the style in which results are commonly
described in abstracts.When results are described
in an article the outcome is typically referenced
explicitly, while the intervention and especially
the comparator are often referenced either indi-
rectly (“Mean headache duration was similar be-
tween groups”), or not at all (“No significant dif-
ference was observed for recovery time”). In the
fully annotated dev set collected for this work,
87% of outcomes were described explicitly in an
evidence span, while only 28% of treatments were
explicit.

Motivated by this observation, we use the (ex-
plicit) outcomes extracted from an evidence snip-
pet as a starting point; for each of these out-
comes, the associated intervention and compara-
tor are then inferred. This has the significant ad-
vantage of explicitly linking each outcome to the
evidence that will be used to infer the direction-
ality of the reported finding. This also provides
the end-user with an interpretable rationale for the
inference concerning treatment efficacy.

To link candidate extracted treatments to spe-
cific outcome mentions, we train a model that
takes in a candidate treatment, an evidence state-
ment containing the outcome, and the surround-
ing context from the document, and predicts if the
treatment is the participating intervention, the par-
ticipating comparator, or if it is not involved in

66

F1 Precision Recall
No Difference 0.91 0.94 0.89
Increased 0.73 0.69 0.77
Decreased 0.76 0.75 0.78

Table 3: Per-class prediction scores for each outcome
in the test set.

this particular evaluation. We use the evidence-
inference corpus to provide training examples for
the first two classes, and manually generate neg-
ative samples for the final class. The negatives
are constructed to mimic common errors that the
treatment extraction module made on the dev set,
including: mislabeling an outcome as a treatment;
extracting compound phrases containing multiple
individual treatments; and, finally, extracting spu-
rious spans that don’t represent a study descriptor.

The model is a linear classifier on top of
BioBERT. Inputs are constructed as: [CLS]
TREATMENT [SEP] EVIDENCE. CONTEXT. [SEP].
We experimented with different slices of the doc-
ument as the context, and achieved the highest dev
performance using the first four sentences of the
article. The class probabilities from this model are
used to rank the possible interventions and com-
parators for each outcome, and when sufficiently
probable candidates are identified we generate a
complete ICO prompt.

After assembling all ICO prompts in a docu-
ment, we feed them to a final classifier to predict
the directionality of findings for each outcome,
with respect to the given intervention and com-
parator. This model is trained over the evidence-
inference corpus using the provided I, C, and O
spans coupled with the sentences that contain the
corresponding evidence statement. Empirically,
we found that signal for the classifier is domi-
nated by the outcome text and evidence span, with
almost no contribution from the intervention and
comparator. This is unsurprising given the regular-
ity of the language used to describe conclusions.
The reported directionality of the result is almost
exclusively framed with respect to the interven-
tion, and only 4.0% of all outcomes ever have dif-
ferent results for another I+C linking within the
same document. The best performing model input
was simply [CLS] OUTCOME [SEP] EVIDENCE
[SEP], and the results on the test set are reported
in Table 3.

Strict Precision Recall
Extracted spans 0.26 0.24
Expert spans 0.23 0.26
Relaxed Precision Recall
Extracted spans 0.32 0.34
Expert spans 0.31 0.34

Table 4: Performance for predicting an article’s ex-
act MeSH terms using the rule-base system, run on
both the automatically extracted spans and the expert-
provided test spans.

2.4 Normalizing PICO Terms

In order to standardize the language used to cat-
egorize the articles with respect to their PICO el-
ements, we turn to the structured vocabulary pro-
vided by the National Libaray of Medicine (NLM)
in the form of Medical Subject Heading (MeSH)
terms. This resource codifies a comprehensive set
of medical concepts into an ontology that includes
their descriptions, properties, and the structured
relationships between them. Each article in the
MEDLINE database maintained by the NLM is
annotated with the relevant MeSH terms by expert
library scientists (subject to the same lag that ne-
cessitates an RCT classifier instead of relying on
annotated Publication Types).

To induce relevant MeSH terms for an extracted
text span, we reproduced the method described in
the Metamap Lite paper (Demner-Fushman et al.,
2017) to extract MeSH terms describing the PICO
elements. In short, we generated a large dictio-
nary of synonyms for medical terms algorithmi-
cally using data from the UMLS Metathesaurus,
with synonyms being matched to unique identi-
fiers pertaining to concepts in the MeSH vocab-
ulary. We used this dictionary to map matching
strings in our extracted PICO text to MeSH terms,
yielding a set of normalized concepts describing
each of the population, intervention, and outcome
spans in the documents.

To evaluate the accuracy of this approach, we
compare the differences between the MeSH terms
produced by our system against those provided by
the NLM for the 191 articles that comprise the test
set for EBM-NLP.

The test articles are provided with an average
of 14.8 MeSH terms per article, while our system
induces 14.0 terms on average. The strictest eval-
uation for this module is to require exact matches
between the predicted MeSH terms and the offi-
cial MEDLINE terms — a daunting task given the
30,000 possible labels we have to chose from.

67

False Neg False Pos
Name / Count Name / Count

Humans 185 Patients 115
Middle Aged 93 Aging 42
Adult 84 Therapeutics 42
Aged 62 Weights/Measures 33
Double-Blind 50 Placebos 33
Method

Treatment Outcome 42 Time 21
Adolescent 39 Serum 17
Prospective Studies 27 Safety 17
Time Factors 20 Pain 16
Child, Preschool 20 Women 14

Table 5: Ten most common over- and under-predicted
MeSH terms for the test set of 191 articles.

However, because the concepts in the ontology ex-
ist in varying levels of specificity (for example Mi-
graine with Aura is a subset of Migraine Disor-
ders), it is often the case that the predicted MeSH
term is sufficiently close to the provided MeSH
term for practical purposes, but differs in the level
of specificity.

To better characterize the performance of our
approach, we therefore also consider relaxing the
equivalence criteria to include matching immedi-
ate parents or children in the MeSH hierarchy.
This modification results in a 42% relative in-
crease in recall and a 23% increase in precision,
as shown in Table 4.

We observe that while the absolute accuracy is
not high, this technique generally captures the key
terms for the PICO elements. The most common
mistakes, shown in Table 5, mostly involve miss-
ing age or publication type terms, and systematic
differences between the general MeSH terms com-
monly applied to articles (for example, we might
apply Patients rather than Humans).

A more sophisticated aligment between the way
MeSH terms are applied by experts and the terms
produced by our system has the potential to im-
prove the overall effectiveness of the tool; we in-
tend to pursue this in future work.

3 Illustrative Example

To illustrate the envisioned use of our automatic
mapping system, we return to the example we
began with at the outset of this paper: seeking
evidence concerning treatment of Type II Dia-
betes. To begin, the user specifies a condition
(Population) of interest. We rely on Medical
Subject Headings (MeSH) terms,’ which as dis-

Shttps://www.ncbi.nlm.nih.gov/mesh

Trial Filters

x
Participants Diabetes Mellit...
.

N 0
Interventions Metformin Exercise Diet

ol x

x
Outcomes Glucose Plasma Blood Pressure Lipids
s

Figure 3: View of a collected set of concepts used to
specify trials of interest. The search interface allows
concepts to be combined using and/or operators.

Exenatide: first-in-class incretin mimetic for the treatment of Type 2
diabetes mellitus.

Exenalide) is the first-in-class incretin mimetic for the treatment of Type 2 diabetes mellitus.) Mechanistically, it mimics several of
the glucoregulatory effects of glucagon-like peptide-1 including: 1) glucose-dependent insulin secretion via the glucose-dependent
glucagon-like peptide-1 pancreatic receptor; 2) suppression of elevated plasma glucagon levels; 3) reduction in the rate of
appearance of glucose into the systemic circulation by normalizing the accelerated rate of gastric emptying often present in Type 2
diabetes mellitus; 4) reduction of food intake, which in tum promotes weight loss; 5) stimulation of the glucagon-like peptide-1
receptor. A 1 C reductions of approximately 1% can be expected with a baseline A 1 C of 8.0-8.5%. ([Exenatide] significantly reduces
postprandial glucose levels), while having only a modest effect on the (fasting plasma glucose. | (Hypoglycemic risk] is no different
o placebo) when combined with (mefformin] or a thiazolidinediones, but is higher when combined with a sulfonylurea, possibly
requiring reduction in the sulfonylurea dose. [Exenatide | may cause gastrointestinal side effects upon initiation, which usually lessen
over time. (Gastrointestinal side effects) can be reduced by starting exenatide 5 pg subcutaneously twice daily before meals; if
tolerated, titration to 10 g twice daily before meals at 1 month may further improve glycemia and weight loss.

Extracted Conclusions

postprandial glucose levels) were by (Exenatide] with respect to [placebo
Support: Exenatide significantly reduces (postprandial glucose levels . while having only a modest effect on the fasting plasma
glucose.

Figure 4: Detailed view of selected abstracts that con-
tribute to the evidence map. These are automatically
annotated with all extracted information.

cussed above is a structured vocabularly main-
tained by the NLM. We allow users to enter a
search string and provide auto-complete options
from the MeSH vocabulary. Users can addition-
ally provide interventions or outcomes of interest
to further narrow the search. We show an example
of a constructed set of filters in Figure 3.

Once a set of search terms is specified, relevant
RCTs are retrieved from the comprehensive and
up-to-date database.® The interface then displays
counts of unique interventions and outcomes cov-
ered by the retrieved trials. Each bar in these plots
can be clicked to explicitly include that concept
in the search terms, allowing for a data-driven ap-
proach to building up the search parameters via it-
erative refinement.

At this point, the evidence map shown in Fig-
ure 1 is also displayed, providing a summary of
the evidence available for the effectiveness of the
selected interventions with respect to their co-
occurring outcomes. The user can mouse-over
plot elements to view tooltips that include snip-
pets of contributing evidence from the underlying
abstracts, or click through to browse these texts
annotated with all of the extracted information, as
shown in Figure 4.

We update this database nightly by scanning MEDLINE
for new RCT reports using our RCT classifier (Marshall et al.,
2018).

68

4 User Study

To evaluate the system’s utility for a real-world
task, we provided the tool to a team of researchers
at Cures Within Reach for Cancer (CWR4C).”
Domain experts reviewed the extracted ICO con-
clusions and automatically generated plots for a
randomly selected subset of documents pertain-
ing to cancer trials, a domain that is particularly
challenging given the prevalence of complex com-
pound interventions that often share individual
components between trial arms.

The reviewers were asked to evaluate the types
of mistakes made by the system as well as the
overall precision and recall of the extracted con-
clusions for each document. Across 21 documents
average precision was 54% and average recall was
75%, and the team expressed excitement about the
efficacy of the system for their purposes. CWR4C
has continued to work with this tool as a source of
information about cancer-related clinical trials.

5 Conclusions

We have presented the evidence extraction com-
ponent of Trialstreamer, an open-source prototype
that performs end-to-end identification of pub-
lished RCT reports, extracts key elements from
the texts (intervention and outcomes descriptions),
and performs relation extraction between these,
1.e., attempts to determine which intervention was
reported to work for which outcomes.

We use this pipeline to provide fast, on-demand
overviews of all published evidence pertaining to
a condition of interest. Moving forward, we hope
to refine the linking of extracted snippets to struc-
tured vocabularies to run a more comprehensive
user-study to evaluate the use of the system in
practice by different types of users. We also hope
to develop a joint extraction and inference model,
rather than relying on the current pipelined ap-
proach.

Acknowledgements

This work was funded in part by the National Insti-
tutes of Health (NIH) under the National Library
of Medicine (NLM) grant 2RO1LMO012086, and
by the National Science Foundation (NSF) CA-
REER award 1750978.

"https://www.cwrdc.org/

References

Iz Beltagy, Arman Cohan, and Kyle Lo. 2019. Scibert:
Pretrained contextualized embeddings for scientific
text. arXiv preprint arXiv:1903.10676.

Dina Demner-Fushman, Willie J Rogers, and Alan R
Aronson. 2017. Metamap lite: an evaluation of
a new java implementation of metamap. Journal
of the American Medical Informatics Association,
24(4):841-844.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xiaoli Huang, Jimmy Lin, and Dina Demner-Fushman.
2006. Evaluation of pico as a knowledge represen-
tation for clinical questions. In AMIA annual sym-
posium proceedings, volume 2006, page 359. Amer-
ican Medical Informatics Association.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. CoRR, abs/1901.08746.

Eric Lehman, Jay DeYoung, Regina Barzilay, and By-
ron C. Wallace. 2019. Inferring Which Medical
Treatments Work from Reports of Clinical Trials. In
Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL), pages 3705-3717.

lain J Marshall, Anna Noel-Storr, Joél Kuiper, James
Thomas, and Byron C Wallace. 2018. Machine
learning for identifying randomized controlled tri-
als: an evaluation and practitioner’s guide. Research
synthesis methods, 9(4):602-614.

Isomi M Miake-Lye, Susanne Hempel, Roberta Shan-
man, and Paul G Shekelle. 2016. What is an ev-
idence map? a systematic review of published evi-
dence maps and their definitions, methods, and prod-
ucts. Syst. Rev., 5:28.

Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei
Yang, Iain J Marshall, Ani Nenkova, and Byron C
Wallace. 2018. A corpus with multi-level annota-
tions of patients, interventions and outcomes to sup-
port language processing for medical literature. In
Proceedings of the conference. Association for Com-
putational Linguistics. Meeting, volume 2018, page
197. NIH Public Access.

Sunghwan Sohn, Donald C Comeau, Won Kim, and
W John Wilbur. 2008. Abbreviation definition iden-
tification based on automatic precision estimates.
BMC bioinformatics, 9(1):402.

69

SyntaxGym:
An Online Platform for Targeted Evaluation of Language Models

Jon Gauthier!, Jennifer Hu!, Ethan Wilcox?, Peng Qian', and Roger Levy!

! Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
2 Department of Linguistics, Harvard University
jon@gauthiers.net,wilcoxeg@g.harvard.edu
{jennhu, pgian, rplevy}@mit.edu

Abstract

Targeted syntactic evaluations have yielded in-
sights into the generalizations learned by neu-
ral network language models. However, this
line of research requires an uncommon con-
fluence of skills: both the theoretical knowl-
edge needed to design controlled psycholin-
guistic experiments, and the technical profi-
ciency needed to train and deploy large-scale
language models. We present SyntaxGym,
an online platform designed to make targeted
evaluations accessible to both experts in NLP
and linguistics, reproducible across comput-
ing environments, and standardized follow-
ing the norms of psycholinguistic experimen-
tal design. This paper releases two tools of in-
dependent value for the computational linguis-
tics community:

1. A website, syntaxgym.org, which
centralizes the process of targeted syntac-
tic evaluation and provides easy tools for
analysis and visualization;

. Two command-line tools, syntaxgym
and 1m-zoo, which allow any user to
reproduce targeted syntactic evaluations
and general language model inference on
their own machine.

1 Introduction

Recent work in evaluating neural network lan-
guage models focuses on investigating models’
fine-grained prediction behavior on carefully de-
signed examples. Unlike broad-coverage language
modeling metrics such as perplexity, these evalu-
ations are targeted to reveal whether models have
learned specific knowledge about the syntactic
structure of language (see e.g. Warstadt et al., 2020;
Futrell et al., 2019; Marvin and Linzen, 2018).
Research in this line of work requires an un-
common intersection of skills: a) the engineering
strength of NLP researchers necessary to train and

70

g SyntaxGym

/» Open results

Automatic
evaluation

Linguists — Experiments

Visualization
+Analysis

NLP/ML
researchers

—

Models

Long-Distance Dependencies
100

Agreement Licensing

40

20

Garden-Path Effects Center Embedding

Gross Syntactic State

GPT-2 XL RNNG Vanilla LSTM

Figure 1: SyntaxGym allows linguists to easily design
and run controlled experiments on the syntactic knowl-
edge of language models, and allows NLP experts to
test their own models against these standards. Users
submit targeted syntactic evaluation experiments to the
site, and they are automatically evaluated on language
models available in the Gym. SyntaxGym analyzes and
visualizes these evaluation results.

deploy large-scale neural network language models,
and b) the linguistic knowledge of language scien-
tists necessary to design controlled, theoretically
interesting psycholinguistic experiments.

In this paper, we introduce SyntaxGym: an
online platform and open-source framework that
makes targeted syntactic evaluations more ac-
cessible to experts in NLP and linguistics (Fig-
ure 1). The core of SyntaxGym is a website,
syntaxgym. org, that automates the entire eval-
uation pipeline: collecting tests and models, run-
ning evaluations, and displaying results through
interactive visualizations. Language scientists can
use the site to design and submit targeted syntactic
evaluations, testing whether language models have
derived human-like syntactic knowledge. Indepen-

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 70-76
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

dently, NLP experts can submit their own language
models for evaluation on these assays. By separat-
ing the tasks performed by these two user groups,
the SyntaxGym site lowers the barrier to entry for
the broader community of language researchers.

While SyntaxGym will serve as a centralized
repository of syntactic evaluations and language
models, we also release a set of command-line
tools that allow users to reproduce the site’s eval-
uations offline. The computation underlying the
SyntaxGym site is structured around a command-
line tool syntaxgym, which allows any user to
run targeted syntactic evaluations on their own com-
puter. We accomplish this by developing a new
standard API for interacting with state-of-the-art
neural network language models, operationalized
in a second tool 1m-zoo.

Taken together, these tools create a platform that
makes the process of targeted syntactic evaluation
more standardized, reproducible, and accessible
to the broader communities of NLP experts and
language scientists. Our goal is for SyntaxGym
to facilitate the advancement of language model
evaluation, leading to the development of models
with more human-like linguistic knowledge.

2 Background

Before presenting the SyntaxGym framework, we
briefly introduce the targeted syntactic evaluation
paradigm as a way to assess the quality of neural
language models.

2.1 Perplexity

Standard left-to-right language models are trained
to predict the next token given a context of previous
tokens. Language models are typically assessed by
their perplexity, the inverse geometric mean of the
joint probability of words w1, . . ., wy in a held-out
test corpus:

z2l=

PPL(C) = p(wy,wa, ... wy) (D

However, a broad-coverage metric such as per-
plexity may not be ideal for assessing whether a
language model has human-like syntactic knowl-
edge. Recent empirical results suggest that models
with similar perplexity measures can still exhibit
substantial variance in syntactic knowledge (Hu
et al., 2020; van Schijndel et al., 2019), accord-
ing to evaluation paradigms described in the next
section.

71

2.2 Targeted tests for syntactic generalization

Alternatively, a language model can be evaluated
on its ability to make human-like generalizations
for specific syntactic phenomena. The targeted
syntactic evaluation paradigm (Linzen et al., 2016;
Lauetal., 2017; Gulordava et al., 2018; Marvin and
Linzen, 2018; Futrell et al., 2019; Warstadt et al.,
2020) incorporates methods from psycholinguistic
experiments, designing sentences which hold most
lexical and syntactic features of each sentence con-
stant while minimally varying features that deter-
mine grammaticality or surprise characteristics of
the sentence. For example, the following minimal-
pair sentences differ in subject—verb agreement:

)]
@

The farmer near the clerks knows many people.

*The farmer near the clerks know many people.

A model that has learned the proper subject—verb
number agreement rules for English should assign
a higher probability to the grammatical plural verb
in the first sentence than to the ungrammatical sin-
gular verb in the second (Linzen et al., 2016).

3 SyntaxGym

The targeted syntactic evaluation paradigm allows
us to focus on highly specific measures of language
modeling performance, which more directly distin-
guish models with human-like representations of
syntactic structure. SyntaxGym was designed to
serve as a central repository for these evaluations,
and to make the evaluations reproducible and ac-
cessible for users without the necessary technical
skills or computational resources.

Section 3.1 first describes the standards we de-
signed for specifying and executing these targeted
syntactic evaluations. Section 3.2 then offers a tour
of the SyntaxGym site, which is built around these
standards.

3.1 Standardizing targeted syntactic
evaluation

We represent targeted syntactic evaluations as fest
suites, visualized in Figure 2. These test suites are
the core component of psycholinguistic assessment,
and should be familiar to those experienced in psy-
cholinguistic experimental design. We will present
the structure of a test suite using the running exam-
ple of subject—verb agreement, introduced in the
previous section. We describe the components of a
test suite from bottom-up:

Condition Regions
intro np_subj prep the prep_np | matrix_verb : continuation

match_sing The farmer near the clerks knows 3 many people |
mismatch_sing The farmer near the clerks know 3 many people
mismatch plural | The farmers near the clerk knows % many people - ftem 1
match_plural The farmers near the clerk know 3 many people |

match_sing The manager to the side of the architects 3 likes to gamble
mismatch_sing | The manager to the side of the architects 3 like to gamble
mismatch_plural | The managers to the side of the architect ‘ likes to gamble - ftem 2
match_plural The managers to the side of the architect like to gamble

match_sing .matrix_verb < mismatch sing .matrix,verb)
Prediction:

& match_plural

_matrix_verb < mismatch_plural .matrix,verb)

Figure 2: SyntaxGym test suites evaluate predictions about language models’ surprisal values (negative log-
probabilities) within regions (columns above) across experimental conditions (leftmost column). A prediction
can assert the conjunction of multiple inequalities across conditions. Prediction results are aggregated across items
(vertical blocks above) to yield overall accuracy estimates.

Regions The atomic unit of a test suite is a
region: a (possibly empty) string, such as the
matrix_verb region in Figure 2. Regions can
be concatenated to form full sentences.

Conditions Regions vary systematically across
experimental conditions, shown as colored pill
shapes in Figure 2. Here the matrix_verb and
np_subj regions vary between their respective
singular and plural forms, as described by the con-
dition.

Items Items are groups of related sentences
which vary across experimental conditions. An
item is characterized by its lexical content and
takes different forms across conditions. For ex-
ample, The farmer near the clerk knows and *The
farmer near the clerk know are different sentences
under two conditions of the same item.

Predictions Test suites are designed with a hy-
pothesis in mind: if a model has correctly learned
some relevant syntactic generalization, then it
should assign higher probability to grammatical
continuations of sentences. Test suite predic-
tions operationalize these hypotheses as expected
inequalities between total model surprisal val-
ues in different experimental conditions (i.e., be-
tween rows within item blocks in Figure 2). The
SyntaxGym standard allows for arbitrarily complex
disjunctions and conjunctions of such inequalities.
Figure 2 shows a prediction with two inequalities
between model surprisals at mat rix_verb across

two pairs of conditions.

We designed a standard JSON schema for de-
scribing the structure and content of test suites
using the above concepts. Interested readers can
find the full schema and documentation on the
SyntaxGym site.!

3.1.1 A standard API for language models

Reproducing research results with modern neural
network architectures can be notoriously difficult,
due to variance in computing environments and due
to each individual project’s tangled web of pack-
age dependencies. In addition, inconsistencies in
data preprocessing — for example, in tokenization
practices and the management of out-of-vocabulary
items — often make it difficult to evaluate even the
same model on different datasets. In order to ad-
dress these difficulties, we designed a standardized
API for interacting with trained language models,
built to solve these reproducibility issues and allow
for highly portable computing with state-of-the-art
language models. Users can easily connect with
this API through the 1m—zoo command-line tool,
described later in Section 4.

The standard is built around the Docker con-
tainerization system. We expect each language
model to be wrapped in a Docker image, includ-
ing a thin API exposing a set of standardized bi-
nary commands: tokenize, which preprocesses
natural-language sentences exactly as a language

"http://docs.syntaxgym.org

72

model expects; get—surprisals, which com-
putes per-token language model surprisals on natu-
ral language input; and unk i £y, which indicates
exactly which tokens in an input text file are in-
vocabulary for the language model.

Language model creators or third-party main-
tainers can produce such Docker images wrapping
language model code. At present, this API is de-
signed to mainly serve the needs of the SyntaxGym
evaluation process. In the future, however, we plan
to extend the API for other common uses of lan-
guage models: for example, to extract the next-
word predictive distributions from the model, and
to extract the model’s internal word and sentence
representations. This standard is documented in
fullat cpllab.github.io/1lm-zoo.

3.2 The SyntaxGym website

The SyntaxGym website provides a centralized do-
main for collecting targeted syntactic evaluations
and evaluating them on state-of-the-art language
models. It provides intuitive, user-friendly tools
for visualizing the behavior of any language model
on any syntactic test suite, and also exposes all of
the resulting raw data to interested advanced users.
This section presents a brief tour through the major
features of the SyntaxGym site.

Create test suites Non-technical users can use
SyntaxGym’s browser-based interface to design
and submit their own psycholinguistic test suites
(Figure 3). Separately, the site supports uploading
pre-made test suites as a JSON-formatted file. This
functionality may be useful for advanced users who
prefer to automatically generate test suites.”

NP VP
’} =1
Plural The men eat
(match)
olura
Plural The men eats

(mismatch)

Figure 3: Non-technical users can design their own test
suites with a browser-based form.

Submit language models Users interested in
evaluating their own language models first cre-
ate a public Docker image conforming to the

’In a future release, we will also allow users to import test
suites from spreadsheets as CSV-formatted files.

API specified by the SyntaxGym standard (Sec-
tion 3.1.1). After users submit these language mod-
els on the SyntaxGym site, the models are automat-
ically validated for conformity to the API by the
SyntaxGym backend. Valid models are added to
the SyntaxGym collection, and will be evaluated
on all past and future available test suites in the
Gym.

Automatic evaluation Whenever novel test
suites or language models are submitted,
SyntaxGym automatically evaluates the relevant
suites and models in the cloud. For each test
suite and model, the evaluation yields a prediction
accuracy — the number of items for which the
prediction holds. These prediction accuracies,
along with the raw surprisal data, are stored in
the SyntaxGym database and made available in
visualizations such as Figure 4b.

Visualization and data analysis The site pro-
vides a variety of interactive charts that allow users
to visualize results at different levels of granularity.
On the coarsest level, users can compare aggregate
performance across language models and groups
of theoretically related test suites called rags (see
Figure 1). Users can also compare accuracy across
models on a single test suite (Figure 4a), across tags
for a single model, and across test suites within
a single tag. On the finest level, users can view
raw region-by-region surprisal values to analyze in-
depth performance of a particular language model
on a particular test suite (Figure 4b).

3.3 Seed data and results

We have seeded the SyntaxGym website with a
collection of test suites and language models by
aggregating prior research. These materials and
relevant evaluation results are separately presented
in Hu et al. (2020). Here we provide only a brief
summary in order to illustrate the features of the
SyntaxGym website.

1. We wrapped 8 modern neural network lan-
guage models (summarized in Table 1) to be
compatible with the 1m—zoo standard, using
open-source research code or standard Python
frameworks such as Hugging Face Transform-
ers (Wolf et al., 2019).

2. We aggregated past research on targeted syn-
tactic evaluation into 33 test suites, each prob-
ing language models’ performance on distinct
grammatical phenomena.

Distribution of prediction accuracy across models

Prediction
irprisal in regic

Sum

(a) The site automatically evaluates language
models on test suites and visualizes summary
results (here, for a subject—verb number agree-
ment test). (click to see page)

v Subject-Verb Number Agree™

I mismatch

Region

(b) Users can also view all of the raw language model data behind these
analyses (here, average per-region surprisal values of GPT-2 for a subject—
verb number agreement test) and download the raw data for further analysis.
(click to see page)

Figure 4: Screenshots of example visualizations from the SyntaxGym website.

Model Reference \ Training data (# tokens)
GPT-2 Radford et al. (2019) WebText (~8B)
GPT-2 XL Radford et al. (2019) WebText (~8B)
Transformer XL Dai et al. (2019) WikiText-103 (103M)
JRNN Jozefowicz et al. (2016) | 1B Benchmark (1.04B)
GRNN Gulordava et al. (2018) | Wikipedia (90M)
Ordered Neurons ~ Shen et al. (2019) BLLIP (42M)
LSTM Hochreiter and Schmid- | BLLIP (42M)

huber (1997)
RNNG Dyer et al. (2016) BLLIP (42M)

Table 1: Language models currently supported in the
SyntaxGym framework.

Interested readers can find more details on
these test suites and language models, along with
the evaluation results and visualizations, on the
SyntaxGym site.

4 Command-line tools

While the SyntaxGym website allows for easy cen-
tralization of test suites and public access to results,
all of its underlying infrastructure is also available
independently for researchers to use. We release
two command-line tools, available to any user with
Python and Docker installed.

4.1 1m-zoo: black-box access to SOTA
language models

We first designed a general command-line tool for
interacting with state-of-the-art neural language
models, called 1m-zoo. Figure 5b demonstrates
how this tool can be used to easily extract pre-
diction data from an arbitrary language model.
Full documentation and installation instructions are
available at cpllab.github.io/1lm-zoo.

74

4.2 syntaxgym: targeted syntactic
evaluation

Users can completely reproduce the targeted syn-
tactic evaluation paradigm of SyntaxGym outside
of the website using a second command-line tool,
syntaxgym, shown in Figure 5a. This tool
does the work of converting test suites into ac-
tual natural-language sentences appropriately for-
matted for a particular language model, execut-
ing the model, and mapping the results back to a
SyntaxGym-friendly format ready for analysis. It
deals with the wide variation in tokenization and
out-of-vocabulary token handling across models.
Full documentation and installation instructions are
available at syntaxgym.org/cli.

5 Related work

Marvin and Linzen (2018) release a dataset of
minimal-pair sentences designed to test language
models’ syntactic generalization capabilities. How-
ever, the syntactic coverage of the dataset is limited
to a small set of phenomena: subject-verb agree-
ment, reflexive anaphor licensing, and negative po-
larity items.

Warstadt et al. (2020) release a large dataset ag-
gregating a broad collection of targeted syntactic
evaluations from prior research, known as BLiMP.
Like the Marvin and Linzen dataset, BLiMP con-
sists of a collection of minimal-pair sentences
which contrast in grammaticality, following the
standard shown in Examples (1) and (2). The
BLiMP evaluation requires that language models
assign a higher total probability to the grammatical
(1) than the ungrammatical (2). The authors de-
sign abstract templates which specify grammatical—

o <

syntaxgym list models

$ syntaxgym list suites
number rc, number-src, mvrr, ...
Evaluate model "gpt-2" on suite "mvrr"
$ syntaxgym evaluate gpt-2 mvrr

uracy: 0.78 (22/2 rrect)

Evaluate arbitrary model on custom suite
syntaxgym evaluate \

> docker://me/my-model my-suite.json
uracy: 0.5 (23/40 correct)

0 3

(a) The syntaxgym tool allows users to evaluate language
models on test suites — both models and suites hosted by
SyntaxGym, and models and suites created by the user.

$ echo "This is a sentence." > foo.txt

$ Im-zoo list models
gpt , gpt x1l, tr sformer-x1, ...

$ lm-zoo tokenize transformer-xl foo.txt
hi g ent

$ lm-zoo get-surprisals transformer-xl foo.txt
ence_id token_id oke surprisal
1 This 0.000
1 .
1

(b) The 1lm-zoo tool provides lower-level access to
SyntaxGym-hosted language models, allowing users to retrieve
models’ predictions, tokenization choices, and more.

Figure 5: We built SyntaxGym around command-line tools for probing and evaluating neural network language
models, which can be used independently of the SyntaxGym site.

ungrammatical pairs for many linguistic phenom-
ena, and then generate example sentences based on
these templates.

While BLiMP and SyntaxGym are similarly mo-
tivated, they differ slightly in methodology. First,
BLiMP requires models to satisfy only a single in-
equality between sentence probabilities. While the
SyntaxGym system can support such predictions,
it is designed to support much stricter tests of lan-
guage models, such as the conjunction of inequali-
ties across multiple conditions (see Figure 2). Sec-
ond, BLiMP compares model judgments about to-
tal sentence probabilities. In contrast, SyntaxGym
is designed to compare model judgments only in
critical test regions, which allows us to more fairly
evaluate language model predictions only in pre-
specified spans of interest. Finally, the BLiMP sen-
tences are automatically generated from abstract
grammars exemplifying syntactic phenomena of in-
terest. Since automatic methods can easily yield a
large number of sentences, they can help us control
for other possible sources of noise in test materials.
However, many grammatical phenomena of interest
are fiendishly difficult to capture in abstract gram-
mars, and require careful design by native speak-
ers.> This BLiMP data is thus complementary to
the hand-designed test suites currently presented
on the SyntaxGym site. We plan to adapt such
large-scale test suites on SyntaxGym in the future.

3For example, one such phenomenon is the garden-path
disambiguation effect (Futrell et al., 2019), which is highly
sensitive to nuanced lexical and world-knowledge features of
sentences.

6 Conclusion

This paper presented SyntaxGym, an online plat-
form and open-source framework for targeted syn-
tactic evaluation of neural network language mod-
els. SyntaxGym promises to advance the progress
of language model evaluation by uniting the theo-
retical expertise of linguists with the technical skills
of NLP researchers. The site is fully functional at
syntaxgym.org, and the entire framework is
available as open-source code.

SyntaxGym is continually evolving: we plan to
add new features to the site, and to develop further
in response to user feedback. In particular, we plan
to incorporate human performance as a reference
metric, integrating psycholinguistic experimental
results and supporting easy experimental design
starting from the test suite format.

We also plan to further incorporate language
models into the 1m—zoo tool, allowing broader ac-
cess to state-of-the-art language models in general.
We welcome open-source contributions to the web-
site and to the general framework, and especially
encourage the NLP community to contribute their
models to the 1m-zoo repository.

Acknowledgments

J.G. is supported by an Open Philanthropy Al Fel-
lowship. J.H. is supported by the NIH under award
number T32NS105587 and an NSF Graduate Re-
search Fellowship. R.L. is supported by a Google
Faculty Research Award. This work was also sup-
ported by the MIT-IBM Watson Al Lab.

75

References

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-x1: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978-2988.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT, pages
199-2009.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32—42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of NAACL-HLT, pages 1195-1205.

1997.
Neural Computation,

Sepp Hochreiter and Jirgen Schmidhuber.
Long short-term memory.
9(8):1735-1780.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment of
syntactic generalization in neural language models.
In Proceedings of the Association of Computational
Linguistics.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probabil-
ity: A probabilistic view of linguistic knowledge.
Cognitive Science, 5:1202—-1247.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. In Transactions of
the Association for Computational Linguistics, vol-

ume 4, pages 521-535.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192-1202,
Brussels, Belgium. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

76

Marten van Schijndel, Aaron Mueller, and Tal Linzen.
2019. Quantity doesn’t buy quality syntax with
neural language models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5835-5841.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
International Conference on Learning Representa-
tions.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. BLiMP: A benchmark of linguis-
tic minimal pairs for English. In Proceedings of the
Society for Computation in Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

GAIA: A Fine-grained Multimedia Knowledge Extraction System

Manling Li'; Alireza Zareian?; Ying Lin', Xiaoman Pan', Spencer Whitehead',
Brian Chen?, Bo Wu?, Heng Ji', Shih-Fu Chang?
Clare Voss®, Daniel Napierski*, Marjorie Freedman*
"University of Illinois at Urbana-Champaign >Columbia University
3US Army Research Laboratory “Information Sciences Institute
{manling2, hengji}@illinois.edu, {az2407, sc250}Qcolumbia.edu

Abstract

We present the first comprehensive, open
source multimedia knowledge extraction sys-
tem that takes a massive stream of unstruc-
tured, heterogeneous multimedia data from
various sources and languages as input, and
creates a coherent, structured knowledge base,
indexing entities, relations, and events, follow-
ing a rich, fine-grained ontology. Our sys-
tem, GAIA !, enables seamless search of com-
plex graph queries, and retrieves multimedia
evidence including text, images and videos.
GAIA achieves top performance at the recent
NIST TAC SM-KBP2019 evaluation®. The
system is publicly available at GitHub® and
DockerHub?, with complete documentation®.

1 Introduction

Knowledge Extraction (KE) aims to find entities,
relations and events involving those entities from
unstructured data, and link them to existing knowl-
edge bases. Open source KE tools are useful for
many real-world applications including disaster
monitoring (Zhang et al., 2018a), intelligence anal-
ysis (Li et al., 2019a) and scientific knowledge
mining (Luan et al., 2017; Wang et al., 2019). Re-
cent years have witnessed the great success and
wide usage of open source Natural Language Pro-
cessing tools (Manning et al., 2014; Fader et al.,
2011; Gardner et al., 2018; Daniel Khashabi, 2018;
Honnibal and Montani, 2017), but there is no com-
prehensive open source system for KE. We release

*These authors contributed equally to this work.

'System page: http://blender.cs.illinois.edu/
software/gaia-ie

*http://tac.nist.gov/2019/SM-KBP/index . html

3GitHub: https://github.com/GAIA-AIDA

“DockerHub: text knoweldge extraction components
are in https://hub.docker.com/orgs/blendernlp/
repositories, visual knowledge extraction components are
inhttps://hub.docker.com/u/dannapierskitoptal

>Video: http://blender.cs.illinois.edu/aida/
gaia.mp4

77

"\\.

Ukrainian
Flag

Cross-media coreference
“... They put troops on the boarder, what for? ...

”

Figure 1: An example of cross-media knowledge fu-
sion and a look inside the visual knowledge extraction.

a new comprehensive KE system, GAIA, that ad-
vances the state of the art in two aspects: (1) it ex-
tracts and integrates knowledge across multiple lan-
guages and modalities, and (2) it classifies knowl-
edge elements into fine-grained types, as shown in
Table 1. We also release the pretrained models®
and provide a script to retrain it for any ontology.
GAIA has been inherently designed for multi-
media, which is rapidly replacing text-only data in
many domains. We extract complementary knowl-
edge from text as well as related images or video
frames, and integrate the knowledge across modal-
ities. Taking Figure 1 as an example, the text en-
tity extraction system extracts the nominal mention
troops, but is unable to link or relate that due to
a vague textual context. From the image, the en-
tity linking system recognizes the flag as Ukrainian
and represents it as a NationalityCitizen relation in
the knowledge base. It can be deduced, although
not for sure, that the detected people are Ukrainian.
Meanwhile, our cross-media fusion system grounds
the troops to the people detected in the image. This
establishes a connection between the knowledge

®Pretrained models: http://blender.cs.illinois.
edu/resources/gaia.html

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 77-86
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

- - Query: Target: finykosuua (Yanukovych) Number of Events: 2
Event Search
Automated Summary: Knowledge Elements based Ranking Incorporating User Feedback
CronkHoBeHus 20 (heBPans CTanV OAHAM U3 KNIOHEBbIX ¢axmpos BB MpeauneHTa YKpanksi BUkTopa SHYKOBUYA NOMTI Ha s
noanucanne CornateHus 06 yperynmpoBaHuv § gigicpe f0Bepusi K CaMOMy STHYKOBUYY 1 K ReCOme nd ed Events
nepechopMaTUPOBaHMIO NAPAAMEHTCKONO 60; 15 NOCTAHOBAGHME O 3ANPETE NPUMEHEHIS CUbI ount

ry country
BnacTbio (Translation: The clashes on February Event Su mma kd President of Ukraine Viktor Yanukovych to
sign the Agreement on the settlement of the politita 0 gerite in Yanukovich himself and the reformatting of
the parliamentary majority, which issued a resolution on the evening of February 20 bannlng the use of force) , 4To cornacHo Bcem
VIMEIOWWMMCS Y/INKaM Te MU/LMOHEPbI 11 ABMOHCTPAHTBI , YTO CTaM KepTBaMY CHAINEPCKOro orHs ,
cHalinepamu (Translation: that according to all available evidence, those policemen and demonstratore--~ Source DOC &

A) Visual Entity Linking § Text Extraction Result

Date

Instrument
Type of Attack

Source Doc Translation

HC000T6CP, 2011-01-19

eusaeatt| GPECountc
alBorcrmtou Kpacsoro, rpecra Vrpaams onzanesfill G
[{ Other]
© “LoCPosition Reglon] 1| The case of Kiev snipers
NepBYIO MOMOLUL PaHEHOMy Ha UHCTUTYTCKOIA ynuLie B Havane 2| Red Cross Volunteers of Ukraine provide first aid to a wounded man on Institutska
\ e the beginning of the eleventh hour on February 20, 2014
B o cobau : o W 3| Self-defenders carry out comrade on Institutskaya Street to the rear at the end of
com: 423" - oauHHaauaToro waca 20 bespans 2014 roaa eleventh hour on February 20
4|Mark 13 on a pierced bullet on Street, pasted by criminologists near
the side opposite the Maidan
5| The case of Kiev snipers question about the organizers and perpetrators of sniper
and at the same time law enforcement officers in Kiev on
20, 2014, wmch killed 53 people (49 protesters and 4 law enforcement officers)

opoliticalEnti

Visual Entity Extraction

Fiac

7 CamM00B6OPOHOBLIbI BLIHOCST TOBAPMLLA N0 VIHCTUTYTCKO yAMLE B

Type
¥ A Date 201402

r 3 - el Location

"ﬁ 'Y ackers

g 1% R Instrument

. ﬂ " 4 Type of Attack

Event Arguments

Dat = tack ‘ e Type of Ata Event Type
201402 Unknown Unknown SHyKo! (Yar Unknown Conflict.Attack

Figure 2: User-facing views of knowledge networks constructed with events automatically extracted from multi-
media multilingual news reports. We display the event arguments, type, summary, similar events, as well as visual
knowledge extracted from the corresponding image and video.

extracted from the two modalities, allowing to infer The knowledge base extracted by GAIA can
that the troops are Ukrainian, and They refers to the ~ support various applications, such as multimedia
Ukrainian government. news event understanding and recommendation.

Compared to coarse-grained event types of We use Russia-Ukraine conflicts of 2014-2015 as a

previous work (Li et al, 2019a), we follow Ca5€ study, and develop a knowledge exploration
a richer ontology to extract fine-grained types interface that recommends events related to the

which are crucial to scenario understanding and user’s ongoing search based on previously-selected
event prediction. For example, an event of attribute values and dimensions of events being

. 7 . . .
type Movement.TransportPerson involving an en- viewed', as .shown n Elgure 2 Thus‘, this sys-
tity of type PER.Politician.HeadOfGovernment tem automatically provides the user with a more
differs in implications from the same event comprehensive exposure to collected events, their
type involving a PER.Combatant.Sniper entity importance, and their interconnections. Extensions
Gie., a political trip versus a military deploy- of this system to real-time applications would be
ment). Similarly, it is far more likely that particularly useful for tracking current events, pro-
an event of type ConflictAttack.Invade will viding alerts, and predicting possible changes, as

lead to a Contact.Negotiate.Meet event, while well as topics related to ongoing incidents.
a Conflict.Attack.Hanging event is more likely
to be followed by an event of type Con-
tact.FuneralVigil. Meet. The architecture of our multimedia knowledge ex-
traction system is illustrated in Figure 3. The sys-
tem pipeline consists of a Text Knowledge Extrac-
tion (TKE) branch and a Visual Knowledge Extrac-

RE;:tiith 273 16817 tion (VKE) branch (Sections 3 and 4 respectively).
Event 47 144 Each branch takes the same set of documents as in-
put, and initially creates a separate knowledge base
Table 1: Compared to the coarse-grained knowledge (KB) that encodes the information from its respec-

extraction of previous work, GAIA can support fine- ————

: : : : : "Event recommendation demo: http://blender.cs
grained entity, relation, and event extraction with types e : : - . e
h £ th . . illinois.edu/demo/video_recommendation/index_
that are a superset of the previous coarse-grained types. i1k dark.html

2 Overview

Coarse-grained Types Fine-grained Types

78

4 Visual Entity Extraction

Faster R-CNN ClassActivation

Multimedia News

Visual Entity Linking Visual Entity Coreference

FaceNet Flag Generic Face
Recognition Features Features
Landmark Matching DBSCAN Heuristics
Clustering Rules

F i
ensemble Map Model
R P'OWI:“. 9'\‘ ' } i
- § - MTCNN Face _ Fusion and
Images and Video Key Frames Detector Pruning
English- Russian Ukrainian —
. r~ Freebase
Multi-lingual Text Content
1 Ge@Names

Background KB

v
-
S——————————
’ Visual KB

v v

ﬁ'extual Mention Extraction

ELMo-LSTM CRF
Entity Extractor

Textual Entity Coreference

Collective Entity Linking
and NIL Clustering

extual Relation Extraction Cross-Media Fusion

Assembled CNN Extractor Visual Grounding

Textual Event Extraction

Coarse-Grained Event Extraction

Bi-LSTM CRFs CNN
g Trigger Extractor Argument Extractor

H Fine-Grained Event Typing

FrameNet & Dependency based Rule based
E Fine-Grained Event Typing Fine-Grained Event Typing

\l""'"'"'"'"'"'"'"'"'"'"'""""""""""""‘I

Textual Event Coreference
e

Attentive Fine-Grained Contextual Dependency based b o (L4
Entity Typing Nominal Coreference Fine-Grained Relation Typing (Sl e Sy AR
) ' ! V

= @ O
_——

Multimedia KB

Textual KB

Graph based

Coreference Resolution

Applications
News Recommendation

Figure 3: The architecture of GAIA multimedia knowledge extraction.

tive modality. Both output knowledge bases make
use of the same types from the DARPA AIDA on-
tology®, as referred to in Table 1. Therefore, while
the branches both encode their modality-specific
extractions into their KBs, they do so with types
defined in the same semantic space. This shared
space allows us to fuse the two KBs into a single,
coherent multimedia KB through the Cross-Media
Knowledge Fusion module (Section 5). Our user-
facing system demo accesses one such resulting
KB, where attack events have been extracted from
multi-media documents related to the 2014-2015
Russia-Ukraine conflict scenario. In response to
user queries, the system recommends information
around a primary event and its connected events
from the knowledge graph (screenshot in Figure 2).

3 Text Knowledge Extraction

As shown in Figure 3, the Text Knowledge Ex-
traction (TKE) system extracts entities, relations,
and events from input documents. Then it clusters
identical entities through entity linking and coref-
erence, and clusters identical events using event
coreference.

$https://tac.nist.gov/tracks/SM-KBP/2019/
ontologies/LDCOntology

79

3.1 Text Entity Extraction and Coreference

Coarse-grained Mention Extraction We extract
coarse-grained named and nominal entity mentions
using a LSTM-CREF (Lin et al., 2019) model. We
use pretrained ELMo (Peters et al., 2018) word
embeddings as input features for English, and pre-
train Word2 Vec (Le and Mikolov, 2014) models on
Wikipedia data to generate Russian and Ukrainian
word embeddings.

Entity Linking and Coreference We seek to
link the entity mentions to pre-existing entities
in the background KBs (Pan et al., 2015), in-
cluding Freebase (LDC2015E42) and GeoNames
(LDC2019E43). For mentions that are linkable to
the same Freebase entity, coreference information
is added. For name mentions that cannot be linked
to the KB, we apply heuristic rules (Li et al., 2019b)
to same-named mentions within each document to
form NIL clusters. A NIL cluster is a cluster of
entity mentions referring to the same entity but do
not have corresponding KB entries (Ji et al., 2014).
Fine-grained Entity Typing We develop an atten-
tive fine-grained type classification model with la-
tent type representation (Lin and Ji, 2019). It takes
as input a mention with its context sentence and
predicts the most likely fine-grained type. We ob-
tain the YAGO (Suchanek et al., 2008) fine-grained

types from the results of Freebase entity linking,
and map these types to the DARPA AIDA ontol-
ogy. For mentions with identified, coarse-grained
GPE and LOC types, we further determine their
fine-grained types using GeoNames attributes fea-
ture_class and feature_code from the GeoNames
entity linking result. Given that most nominal men-
tions are descriptions and thus do not link to entries
in Freebase or GeoNames, we develop a nominal
keyword list (Li et al., 2019b) for each type to in-
corporate these mentions into the entity analyses.
Entity Salience Ranking To better distill the in-
formation, we assign each entity a salience score
in each document. We rank the entities in terms
of the weighted sum of all mentions, with higher
weights for name mentions. If one entity appears
only in nominal and pronoun mentions, we reduce
its salience score so that it is ranked below other
entities with name mentions. The salience score is
normalized over all entities in each document.

3.2 Text Relation Extraction

For fine-grained relation extraction, we first apply a
language-independent CNN based model (Shi et al.,
2018) to extract coarse-grained relations from En-
glish, Russian and Ukrainian documents. Then we
apply entity type constraints and dependency pat-
terns to these detected relations and re-categorize
them into fine-grained types (Li et al., 2019b). To
extract dependency paths for these relations in the
three languages, we run the corresponding lan-
guage’s Universal Dependency parser (Nivre et al.,
2016). For types without coarse-grained type train-
ing data in ACE/ERE, we design dependency path-
based patterns instead and implement a rule-based
system to detect their fine-grained relations directly
from the text (Li et al., 2019b).

3.3 Text Event Extraction and Coreference

We start by extracting coarse-grained events and ar-
guments using a Bi-LSTM CRF model and a CNN-
based model (Zhang et al., 2018b) for three lan-
guages, and then detect the fine-grained event types
by applying verb-based rules, context-based rules,
and argument-based rules (Li et al., 2019b). We
also extract FrameNet frames (Chen et al., 2010) in
English corpora to enrich the fine-grained events.
We apply a graph-based algorithm (Al-
Badrashiny et al., 2017) for our language-
independent event coreference resolution. For each
event type, we cast the event mentions as nodes in
a graph, so that the undirected, weighted edges be-

80

tween these nodes represent coreference confidence
scores between their corresponding events. We
then apply hierarchical clustering to obtain event
clusters and train a Maximum Entropy binary clas-
sifier on the cluster features (Li et al., 2019b).

4 Visual Knowledge Extraction

The Visual Knowledge Extraction (VKE) branch of
GAIA takes images and video key frames as input
and creates a single, coherent (visual) knowledge
base, relying on the same ontology as GAIA’s Text
Knowledge Extraction (TKE) branch. Similar to
TKE, the VKE consists of entity extraction, linking,
and coreference modules. Our VKE system also
extracts some events and relations.

4.1 Visual Entity Extraction

We use an ensemble of visual object detection and
concept localization models to extract entities and
some events from a given image. To detect generic
objects such as person and vehicle, we employ
two off-the-shelf Faster R-CNN models (Ren et al.,
2015) trained on the Microsoft Common Objects
in COntext (MS COCO) (Lin et al., 2014) and
Open Images (Kuznetsova et al., 2018) datasets.
To detect scenario-specific entities and events, we
train a Class Activation Map (CAM) model (Zhou
et al., 2016) in a weakly supervised manner using
a combination of Open Images with image-level
labels and Google image search.

Given an image, each R-CNN model produces a
set of labeled bounding boxes, and the CAM model
produces a set of labeled heat maps which are then
thresholded to produce bounding boxes. The union
of all bounding boxes is then post-processed by
a set of heuristic rules to remove duplicates and
ensure quality. We separately apply a face detector,
MTCNN (Zhang et al., 2016), and add the results
to the pool of detected objects as additional person
entities. Finally, we represent each detected bound-
ing box as an entity in the visual knowledge base.
Since the CAM model includes some event types,
we create event entries (instead of entity entries)
for bounding boxes classified as events.

4.2 Visual Entity Linking

Once entities are added into the (visual) knowledge
base, we try to link each entity to the real-world
entities from a curated background knowledge base.
Due to the complexity of this task, we develop
distinct models for each coarse-grained entity type.

Face Recognition Landmark Recognition Flag Recognition
(a) (b) (c)

Figure 4: Examples of visual entity linking, based on
face recognition, landmark recognition and flag recog-
nition.

For the type person, we train a FaceNet model
(Schroff et al., 2015) that takes each cropped hu-
man face (detected by the MTCNN model as men-
tioned in Section 4.1) and classifies it in one or
none of the predetermined identities. We compile a
list of recognizable and scenario-relevant identities
by automatically searching for each person name
in the background KB via Google Image Search,
collecting top retrieved results that contain a face,
training a binary classifier on half of the results,
and evaluating on the other half. If the accuracy
is higher than a threshold, we include that person
name in our list of recognizable identities. For ex-
ample, the visual entity in Figure 4 (a) is linked to
the Wikipedia entry Rudy Giuliani °.

To recognize location, facility, and organization
entities, we use a DELF model (Noh et al., 2017)
pre-trained on Google Landmarks, to match each
image with detected buildings against a predeter-
mined list. We use a similar approach as mentioned
above to create a list of recognizable, scenario-
relevant landmarks, such as buildings and other
types of structure that identify a specific location,
facility, or organization. For example, the visual
entity in Figure 4 (b) is linked to the Wikipedia
entry Maidan Square '°

Finally, to recognize geopolitical entities, we
train a CNN to classify flags into a predetermined
list of entities, such as all the nations in the world,
for detection in our system. Take Figure 4 (c) as an
example. The flags of Ukraine, US and Russia are
linked to the Wikipedia entries of corresponding
countries. Once a flag in an image is recognized,
we apply a set of heuristic rules to create a nation-
ality affiliation relationship in the knowledge base
between some entities in the scene and the detected
country. For instance, a person who is holding a
Ukrainian flag would be affiliated with the country

‘https://en.wikipedia.org/wiki/Rudy_
Giuliani

Yhttps://en.wikipedia.org/wiki/Maidan_
Nezalezhnosti

81

Ukraine.

4.3 Visual Entity Coreference

While we cast each detected bounding box as an
entity node in the output knowledge base, we re-
solve potential coreferential links between them,
since one unique real-world entity can be detected
multiple times. Cross-image coreference resolution
aims to identify the same entity appearing in multi-
ple images, where the entities are in different poses
from different angles. Take Figure 5 as an example.
The red bounding boxes in these two images refer
to the same person, so they are coreferential and
are put into the same NIL cluster. Within-image
coreference resolution requires the detection of du-
plicates, such as the duplicates in an collage image.
To resolve entity coreference, we train an instance-
matching CNN on the Youtube-BB dataset (Real
et al., 2017), where we ask the model to match an
object bounding box to the same object in a differ-
ent video frame, rather than to a different object.
We use this model to extract features for each de-
tected bounding box and run the DBSCAN (Ester
et al., 1996) clustering algorithm on the box fea-
tures across all images. The entities in the same
cluster are coreferential, and are represented using
a NIL cluster in the output (visual) KB. Similarly,
we use a pretrained FaceNet (Schroff et al., 2015)
model followed by DBSCAN to cluster face fea-
tures.

j.

Unknown peopl# f

Figure 5: The two green bounding boxes are coreferen-
tial since they are both linked to “Kirstjen Nielsen”, and
two red bounding boxes are coreferential based on face
features. The yellow bounding boxes are unlinkable
and also not coreferential to other bounding boxes.

We also define heuristic rules to complement the
aforementioned procedure in special cases. For
example, if in the entity linking process (Section
4.2), some entities are linked to the same real-world
entity based on entity linking result, we consider
them coreferential. Besides, since we have both
face detection and person detection which result in
two entities for each person instance, we use their
bounding box intersection to merge them into the
same entity.

S Cross-Media Knowledge Fusion

Given a set of multimedia documents which con-
sist of textual data, such as written articles and
transcribed speech, as well as visual data, such as
images and video key frames, the TKE and VKE
branches of the system take their respective modal-
ity data as input, extract knowledge elements, and
create separate knowledge bases. These textual and
visual knowledge bases rely on the same ontology,
but contain complementary information. Some
knowledge elements in a document may not be
explicitly mentioned in the text, but will appear
visually, such as the Ukrainian flag in Figure 1.
Even coreferential knowledge elements that exist
in both knowledge bases are not completely re-
dundant, since each modality has its own unique
granularity. For example, the word troops in text
could be considered coreferential to the individuals
with military uniform detected in the image, but the
uniforms being worn may provide additional visual
features useful in identifying the military ranks,
organizations and nationalities of the individuals.

To exploit the complementary nature of the two
modalities, we combine the two modality-specific
knowledge bases into a single, coherent, multime-
dia knowledge base, where each knowledge ele-
ment could be grounded in either or both modalities.
To fuse the two bases, we develop a state-of-the-art
visual grounding system (Akbari et al., 2019) to
resolve entity coreference across modalities. More
specifically, for each entity mention extracted from
text, we feed its text along with the whole sen-
tence into an ELMo model (Peters et al., 2018) that
extracts contextualized features for the entity men-
tion, and then we compare that with CNN feature
maps of surrounding images. This leads to a rele-
vance score for each image, as well as a granular
relevance map (heatmap) within each image. For
images that are relevant enough, we threshold the
heatmap to obtain a bounding box, compare that
box content with known visual entities, and assign
it to the entity with the most overlapping match.
If no overlapping entity is found, we create a new
visual entity with the heatmap bounding box. Then
we link the matching textual and visual entities
using a NIL cluster. Additionally, with visual link-
ing (Section 4.2), we corefer cross-modal entities
that are linked to the same background KB node.

82

Component Benchmark Metric Score
Mention Extraction CoNLL-2003 F; 91.8%
Relation English ACE&ERE F, 65.6%
Extraction Russian AIDA Fi 724%
Ukrainian AIDA Fi 68.2%

En Trigger ERE Fi 654%

Argument ERE Fi 85.0%

Event Trigger AIDA Fi 56.2%
Extraction Argument AIDA Fi 582%
Uk Trigger AIDA Fi 59.0%

Argument AIDA F, 61.1%

Visual Entity Objects MSCOCO mAP 43.0%
Extraction Faces FDDB Acc 95.4%
Visual Entity Faces LFW Acc 99.6%
Linking Landmarks Oxf105k mAP 88.5%
Flags AIDA Fi. 72.0%

Visual Entity Coreference ~ YoutubeBB ~ Acc 84.9%
Crossmedia Coreference Flickr30k Acc 69.2%
Table 2: Performance of each component. The

benchmarks references are: CoNLL-2003 (Sang and
De Meulder, 2003), ACE (Walker et al.,, 2006),
ERE (Song et al., 2015), AIDA (LDC2018E01:AIDA
Seedling Corpus V2.0), MSCOCO (Lin et al., 2014),
FDDB (Jain and Learned-Miller, 2010), LFW (Huang
et al., 2008), Oxfl05k (Philbin et al., 2007),
YoutubeBB (Real et al., 2017), and Flickr30k (Plum-
mer et al., 2015).

6 Evaluation

6.1 Quantitative Performance

The performance of each component is shown in
Table 2. To evaluate the end-to-end performance,
we participated with our system in the TAC SM-
KBP 2019 evaluation!!. The input corpus con-
tains 1999 documents (756 English, 537 Russian,
703 Ukrainian), 6194 images, and 322 videos. We
populated a multimedia, multilingual knowledge
base with 457,348 entities, 67,577 relations, 38,517
events. The system performance was evaluated
based on its responses to class queries and graph
queries'?, and GAIA was awarded first place.
Class queries evaluated cross-lingual, cross-
modal, fine-grained entity extraction and corefer-
ence, where the query is an entity type, such as
FAC.Building. GovernmentBuilding, and the result
is a ranked list of entities of the given type. Our
entity ranking is generated by the entity salience
score in Section 3.1. The evaluation metric was
"http://tac.nist.gov/2019/SM-KBP/index.html

Phttp://tac.nist.gov/2019/SM-KBP/guidelines.
html

Average Precision (AP), where AP-B was the AP
score where ties are broken by ranking all Right
responses above all Wrong responses, AP-W was
the AP score where ties are broken by ranking all
Wrong responses above all Right responses, and
AP-T was the AP score where ties are broken as in
TREC_Eval'®.

Class Queries Graph Queries

AP-B AP-W AP-T Precision Recall F;

48.4% 474% 47.7% 47.2% 21.6% 29.7%

Table 3: GAIA achieves top performance on Task 1 at
the recent NIST TAC SM-KBP2019 evaluation.

Graph queries evaluated cross-lingual, cross-
modal, fine-grained relation extraction, event ex-
traction and coreference, where the query is
an argument role type of event (e.g., Victim of
Life.Die.DeathCausedByViolentEvents) or relation
(e.g., Parent of PartWhole.Subsidiary) and the re-
sult is a list of entities with that role. The evaluation
metrics were Precision, Recall and F;.

6.2 Qualitative Analysis

To demonstrate the system, we have selected
Ukraine-Russia Relations in 2014-2015 for a case
study to visualize attack events, as extracted from
the topic-related corpus released by LDC'4. The
system displays recommended events related to the
user’s ongoing search based on their previously-
selected attribute values and dimensions of events
being viewed, such as the fine-grained type, place,
time, attacker, target, and instrument. The demo
is publicly available!®> with a user interface as
shown in Figure 2, displaying extracted text en-
tities and events across languages, visual entities,
visual entity linking and coreference results from
face, landmark and flag recognition, and the results
of grounding text entities to visual entities.

7 Related Work

Existing knowledge extraction systems mainly fo-
cus on text (Manning et al., 2014; Fader et al., 2011;
Gardner et al., 2018; Daniel Khashabi, 2018; Hon-
nibal and Montani, 2017; Pan et al., 2017; Li et al.,
2019a), and do not readily support fine-grained

Bhttps://trec.nist.gov/trec_eval/

“LDC2018E01, LDC2018E52, LDC2018E63,
LDC2018E76, LDC2019E77

Shttp://blender.cs.illinois.edu/demo/video_
recommendation/index_attack_dark.html

83

knowledge extraction. Visual knowledge extrac-
tion is typically limited to atomic concepts that
have distinctive visual features of daily life (Ren
et al., 2015; Schroff et al., 2015; Fernandez et al.,
2017; Gu et al., 2018; Lin et al., 2014), and so
lacks more complex concepts, making extracted
elements challenging to integrate with text. Exist-
ing multimedia systems overlook the connections
and distinctions between modalities (Yazici et al.,
2018). Our system makes use of a multi-modal on-
tology with concepts from real-world, newsworthy
topics, resulting in a rich cross-modal, as well as
intra-modal connectivity.

8 Conclusion

We demonstrate a state-of-the-art multimedia mul-
tilingual knowledge extraction and event recom-
mendation system. This system enables the user to
readily search a knowledge network of extracted,
linked, and summarized complex events from mul-
timedia, multilingual sources (e.g., text, images,
videos, speech and OCR).

Acknowledgement

This research is based upon work supported in part
by U.S. DARPA AIDA Program No. FA8750-18-
2-0014 and KAIROS Program No. FA8750-19-2-
1004. The views and conclusions contained herein
are those of the authors and should not be inter-
preted as necessarily representing the official poli-
cies, either expressed or implied, of DARPA, or
the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

References

Hassan Akbari, Svebor Karaman, Surabhi Bhargava,
Brian Chen, Carl Vondrick, and Shih-Fu Chang.
2019. Multi-level multimodal common semantic
space for image-phrase grounding. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 12476—12486.

Mohamed Al-Badrashiny, Jason Bolton, Arun Tejasvi
Chaganty, Kevin Clark, Craig Harman, Lifu Huang,
Matthew Lamm, Jinhao Lei, Di Lu, Xiaoman Pan,
et al. 2017. Tinkerbell: Cross-lingual cold-start
knowledge base construction. In TAC.

Desai Chen, Nathan Schneider, Dipanjan Das, and
Noah A Smith. 2010. Semafor: Frame argument
resolution with log-linear models. In Proceedings of

the 5th international workshop on semantic evalua-
tion, pages 264-267. Association for Computational
Linguistics.

Ben Zhou Tom Redman Christos Christodoulopou-
los Vivek Srikumar Nicholas Rizzolo Lev Ratinov
Guanheng Luo Quang Do Chen-Tse Tsai Subhro
Roy Stephen Mayhew Zhili Feng John Wieting Xi-
aodong Yu Yangqiu Song Shashank Gupta Shyam
Upadhyay Naveen Arivazhagan Qiang Ning Shaoshi
Ling Dan Roth Daniel Khashabi, Mark Sammons.
2018. Cogcompnlp: Your swiss army knife for nlp.
In 11th Language Resources and Evaluation Confer-
ence.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei
Xu, et al. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226-231.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information
extraction. In Proceedings of the Conference of
Empirical Methods in Natural Language Processing

(EMNLP ’11), Edinburgh, Scotland, UK.

Delia Fernandez, David Varas, Joan Espadaler, Is-
sey Masuda, Jordi Ferreira, Alejandro Woodward,
David Rodriguez, Xavier Gir6-i Nieto, Juan Car-
los Riveiro, and Elisenda Bou. 2017. Vits: video
tagging system from massive web multimedia col-
lections. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages
337-346.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint arXiv:1803.07640.

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick,
Caroline Pantofaru, Yeqing Li, Sudheendra Vijaya-
narasimhan, George Toderici, Susanna Ricco, Rahul
Sukthankar, et al. 2018. Ava: A video dataset
of spatio-temporally localized atomic visual actions.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6047—
6056.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. 7o appear, 7(1).

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric
Learned-Miller. 2008. Labeled faces in the wild:
A database forstudying face recognition in uncon-
strained environments.

Vidit Jain and Erik Learned-Miller. 2010. Fddb: A
benchmark for face detection in unconstrained set-
tings. Technical report, UMass Ambherst technical
report.

84

Heng Ji, Joel Nothman, Ben Hachey, et al. 2014.
Overview of tac-kbp2014 entity discovery and link-
ing tasks. In Proc. Text Analysis Conference
(TAC2014), pages 1333-1339.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Ka-
mali, Stefan Popov, Matteo Malloci, Tom Duerig,
et al. 2018. The open images dataset v4: Uni-
fied image classification, object detection, and vi-
sual relationship detection at scale. arXiv preprint
arXiv:1811.00982.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-

tional conference on machine learning, pages 1188—
1196.

Manling Li, Ying Lin, Joseph Hoover, Spencer White-
head, Clare Voss, Morteza Dehghani, and Heng Ji.
2019a. Multilingual entity, relation, event and hu-
man value extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 110-115.

Manling Li, Ying Lin, Ananya Subburathinam,
Spencer Whitehead, Xiaoman Pan, Di Lu, Qingyun
Wang, Tongtao Zhang, Lifu Huang, Heng Ji, Alireza
Zareian, Hassan Akbari, Brian Chen, Bo Wu, Emily
Allaway, Shih-Fu Chang, Kathleen McKeown, Yixi-
ang Yao, Jennifer Chen, Eric Berquist, Kexuan Sun,
Xujun Peng, Ryan Gabbard, Marjorie Freedman, Pe-
dro Szekely, T.K. Satish Kumar, Arka Sadhu, Ram
Nevatia, Miguel Rodriguez, Yifan Wang, Yang Bai,
Ali Sadeghian, and Daisy Zhe Wang. 2019b. Gaia at
sm-kbp 2019 - a multi-media multi-lingual knowl-
edge extraction and hypothesis generation system.
In Proceedings of TAC KBP 2019, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740-755. Springer.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6198—
6203.

Ying Lin, Liyuan Liu, Heng Ji, Dong Yu, and Jiawei
Han. 2019. Reliability-aware dynamic feature com-
position for name tagging. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 165-174.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with
semi-supervised neural tagging. arXiv preprint
arXiv:1708.06075.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55-60.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
vl: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias
Weyand, and Bohyung Han. 2017. Large-scale im-
age retrieval with attentive deep local features. In
Proceedings of the IEEE international conference on
computer vision, pages 3456-3465.

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,
and Kevin Knight. 2015. Unsupervised entity link-
ing with abstract meaning representation. In Pro-
ceedings of the 2015 conference of the north amer-
ican chapter of the association for computational
linguistics: Human language technologies, pages
1130-1139.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proc. the 55th Annual Meeting of the Association
for Computational Linguistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227-2237.

James Philbin, Ondrej Chum, Michael Isard, Josef
Sivic, and Andrew Zisserman. 2007. Object re-
trieval with large vocabularies and fast spatial match-
ing. In 2007 IEEE conference on computer vision
and pattern recognition, pages 1-8. IEEE.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pages
2641-2649.

Esteban Real, Jonathon Shlens, Stefano Mazzocchi,
Xin Pan, and Vincent Vanhoucke. 2017. Youtube-
boundingboxes: A large high-precision human-
annotated data set for object detection in video. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5296-5305.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In

85

Advances in neural information processing systems,
pages 91-99.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint ¢s/0306050.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815-823.

Ge Shi, Chong Feng, Lifu Huang, Boliang Zhang,
Heng Ji, Lejian Liao, and Heyan Huang. 2018.
Genre separation network with adversarial training
for cross-genre relation extraction. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1018-1023.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light to
rich ere: annotation of entities, relations, and events.
In Proceedings of the the 3rd Workshop on EVENTS:
Definition, Detection, Coreference, and Representa-
tion, pages 89-98.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. Yago: A large ontology from
wikipedia and wordnet. Journal of Web Semantics,
6(3):203-217.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57.

Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin
Knight, Heng Ji, Mohit Bansal, and Yi Luan. 2019.
Paperrobot: Incremental draft generation of scien-
tific ideas. arXiv preprint arXiv:1905.07870.

Adnan Yazici, Murat Koyuncu, Turgay Yilmaz, Saeid
Sattari, Mustafa Sert, and Elvan Gulen. 2018. An
intelligent multimedia information system for multi-
modal content extraction and querying. Multimedia
Tools and Applications, T7(2):2225-2260.

Boliang Zhang, Ying Lin, Xiaoman Pan, Di Lu,
Jonathan May, Kevin Knight, and Heng Ji. 2018a.
Elisa-edl: A cross-lingual entity extraction, linking
and localization system. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 41-45.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and
Yu Qiao. 2016. Joint face detection and alignment
using multitask cascaded convolutional networks.
IEEFE Signal Processing Letters, 23(10):1499-1503.

Tongtao Zhang, Ananya Subburathinam, Ge Shi, Lifu
Huang, Di Lu, Xiaoman Pan, Manling Li, Boliang
Zhang, Qingyun Wang, Spencer Whitehead, Heng

Ji, Alireza Zareian, Hassan Akbari, Brian Chen,
Ruiqgi Zhong, Steven Shao, Emily Allaway, Shih-
Fu Chang, Kathleen McKeown, Dongyu Li, Xin
Huang, Kexuan Sun, Xujun Peng, Ryan Gabbard,
Marjorie Freedman, Mayank Kejriwal, Ram Nevatia,
Pedro Szekely, T.K. Satish Kumar, Ali Sadeghian,
Giacomo Bergami, Sourav Dutta, Miguel Rodriguez,
and Daisy Zhe Wang. 2018b. Gaia - a multi-media
multi-lingual knowledge extraction and hypothesis
generation system. In Proceedings of TAC KBP
2018, the 25th International Conference on Compu-
tational Linguistics: Technical Papers.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude
Oliva, and Antonio Torralba. 2016. Learning deep
features for discriminative localization. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 2921-2929.

86

Multilingual Universal Sentence Encoder for Semantic Retrieval

Yinfei Yang®', Daniel Cer®’, Amin Ahmad®, Mandy Guo®?,
Jax Law®, Noah Constant®, Gustavo Hernandez Abrego®, Steve Yuan®, Chris Tar?,
Yun-Hsuan Sung?, Brian Strope?, Ray Kurzweil®

“Google Al
Mountain View, CA

Abstract

We present easy-to-use retrieval focused mul-
tilingual sentence embedding models, made
available on TensorFlow Hub. The models em-
bed text from 16 languages into a shared se-
mantic space using a multi-task trained dual-
encoder that learns tied cross-lingual repre-
sentations via translation bridge tasks (Chi-
dambaram et al., 2018). The models achieve
a new state-of-the-art in performance on
monolingual and cross-lingual semantic re-
trieval (SR). Competitive performance is ob-
tained on the related tasks of translation pair
bitext retrieval (BR) and retrieval question an-
swering (ReQA). On transfer learning tasks,
our multilingual embeddings approach, and in
some cases exceed, the performance of En-
glish only sentence embeddings.

1 Introduction

We introduce three new multilingual members in
the universal sentence encoder (USE) (Cer et al.,
2018) family of sentence embedding models. The
models target performance on tasks that involve
multilingual semantic similarity and achieve a new
state-of-the-art in performance on monolingual and
cross-lingual semantic retrieval (SR). One model
targets efficient resource usage with a CNN model
architecture (Kim, 2014). Another targets accuracy
using the Transformer architecture (Vaswani et al.,
2017). The third model provides an alternative
interface to our multilingual Transformer model
for use in retrieval question answering (ReQA).
The 16 languages supported by our multilingual
models are given in Table 1.!

1 Corresponding authors:

{yinfeiy, cer}@google.com
"Language coverage was selected based, in part, on the

ease of obtaining data for the tasks used to train our models.

Due to character set differences, we treat Simplified Chinese,
zh, and Traditional Chinese, zh-tw, prominently used in Tai-
wan, as two languages within our model.

87

*Google

Cambridge, MA
Languages Family
Arabic (ar) Semitic
Chinese (PRC) (zh) Sino-Tibetan
Chinese (Taiwan) (zh-tw)
Dutch(nl) English(en) Germanic
German (de)
French (fr) Italian (it) Latin
Portuguese (pt) Spanish (es)
Japanese (ja) Japonic
Korean (ko) Koreanic
Russian (ru) Polish (pl) Slavic
Thai (th) Kra-Dai
Turkish (tr) Turkic

Table 1: Multilingual universal sentence encoder’s
supported languages (ISO 639-1). Multilingual
sentences are mapped to a shared semantic space.

2 Model Toolkit

Our multilingual models are implemented in Ten-
sorFlow (Abadi et al., 2016) and made publicly
available on TensorFlow Hub.” Listing 1 illustrates
the easy-to-use generation of multilingual sentence
embeddings. The models conveniently only rely on
TensorFlow without requiring additional libraries
or packages. Listing 2 demonstrates using the ques-
tion answering interface. Responses are encoded
with additional context information such that the
resulting context aware embeddings have a high
dot product similarity score with the questions they
answer. This allows for retrieval of indexed candi-
dates using efficient nearest neighbor search.’

3 Encoder Architecture

3.1 Multi-task Dual Encoder Training

Similar to Cer et al. (2018) and Chidambaram
et al. (2018), we target broad coverage using a

https://www.tensorflow.org/hub/, Apache
2.0 license, with models available as saved TF graphs.

3Popular efficient search tools include FAISS https:
//github.com/facebookresearch/faiss, Annoy
https://github.com/spotify/annoy, or FLANN
https://www.cs.ubc.ca/research/flann.

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 87-94
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

i

Fully Connected

| Fully | Fully

Connected Connected

I (Penc’ Henc’ |Penc_Henc|’ Penc*Henc) |
V\H s T
anc A‘enc enc \ enc i“c Enc
|
Shared ‘l Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder |‘

Question Answer Premiese Hypothesis Source Tal}get

[oueston Answer__|

(en,es,zh ..)

(en, es, zh ...)

(en-es, en-zh, ...)

Figure 1: Multilingual universal sentence encoder model training architecture using multi-task training
over: (i) retrieval question-answering (ReQA), natural language inference (NLI) and translation ranking.
Transformer or CNN based sentence embedding models provide a shared encoder across all tasks.

import tensorflow_hub as hub

odule hub.Module ("https://tfhub.dev/google/"
"universal-sentence-encoder-multilingual/1")

ultilingual_embeddings = module ([

"Hola Mundo!", "Bonjour le monde!",

"Hello World!", "Hallo Welt!", "Hallo Wereld!",

" EFEF r, TIpuser, mup!", "!‘QJL«JLj Lo ya"])

"Ciao mondo!"

Listing 1: Python code mapping multilingual
sentences into a shared semantic embedding space.

odule hub.Module ("https://tfhub.dev/google/"
"universal-sentence-encoder-multilingual-ga/1")

query_embeddings module (
dict (text=["What is your age?"]),
signature="question_encoder", as_dict=True)
candidate_embeddings = module (
dict (text=["I am 20 years old."],
context=["I will be 21 next year."]),
signature="response_encoder", as_dict=True)

Listing 2: Python code embedding a question and
answer for retrieval Question-Answering (ReQA).

multi-task dual-encoder training framework, with
a single shared encoder supporting multiple down-
stream tasks. The training tasks include: a multi-
feature question-answer prediction task,* a transla-
tion ranking task, and a natural language inference
(NLI) task. Additional task specific hidden layers
for the question-answering and NLI tasks are added
after the shared encoder to provide representational
specialization for each type of task. The model
training architecture is illustrated at figure 1.

*Question-answer prediction is similar to conversational-
response prediction (Yang et al., 2018). We treat the question
as the conversational input and the answer as the response. For
improved answer selection, we provide a bag-of-words (BoW)
context feature as an additional input to the answer encoder.
For our models, we use the entire paragraph containing the
answer as context. The context feature is encoded using a
separate DAN encoder.

88

3.2 SentencePiece

SentencePiece tokenization (Kudo and Richardson,
2018) is used for all of the 16 languages supported
by our models.” A single 128k SentencePiece vo-
cabulary is trained from 8 million sentences sam-
pled from our training corpus and balanced across
the 16 languages. For validation, the vocab is used
to process a development set, separately sampled
from the sentence encoding model training corpus.
We find the development set character coverage is
higher than 99% for all languages, with less than
1% out-of-vocabulary tokens. Each token in the vo-
cab is mapped to a fixed length embedding vector.®

3.3 Shared Encoder

Two distinct architectures for the sentence encod-
ing models are provided: (i) transformer (Vaswani
et al., 2017), targeted at higher accuracy at the cost
of resource consumption; (ii) convolutional neural
network (CNN) (Kim, 2014), designed for efficient
inference but obtaining reduced accuracy.

Transformer The transformer encoding model
embeds sentences using the encoder component of
the transformer architecture (Vaswani et al., 2017).
Bi-directional self-attention is used to compute
context-aware representations of tokens in a sen-
tence, taking into account both the ordering and
the identity of the tokens. The context-aware token
representations are then averaged together to obtain
a sentence-level embedding.

CNN The CNN sentence encoding model feeds
the input token sequence embeddings into a con-
Shttps://github.com/google/

sentencepiece
0ut-of-vocabulary characters map to an <UNK> token.

Task Name ‘ Task Type Data Source ‘ Native or Not
Retrieval Question-Answering (ReQA) | Ranking Web Crawled Native + MT
Translation Ranking Ranking Web Crawled Native

Natural Language Inference (NLI)

3 way classification

Human Written | Native (en) + MT

Table 2: Training tasks for the multilingual sentence encoder. For better coverage across languages, we
combine native text with machine translated (MT) data. For NLI, native data is only used for English (en).

QA Translation NLI
Lang Tj:;g;feg Native Translated
ar 60M 158M 570K
de 75M 517M 570K
en 2.7B - 570K
es 340M 416M 570K
fr 92M 586M 570K
it 103M 261M 570K
ja 384M 6OM 570K
ko 60M 57TM 570K
nl 60M 574M 570K
pt 180M 536M 570K
pl 60M 292M 570K
ru 112M 148M 570K
th 60M 70M 570K
tr 6OM 415M 570K
zh 1B 112M 570K
zh-t 147M 112M 570K

Table 3: Training examples by task for each of the
16 languages understood by our models.

volutional neural network (Kim, 2014). Similar to
the transformer encoder, average pooling is used
to turn the token-level embeddings into a fixed-
length representation. Sentence embeddings are
then obtained by passing the averaged representa-
tion through additional feedforward layers.

4 Training and Configuration

4.1 Training Corpus

Training data consists of mined question-answer
pairs,” mined translation pairs,® and the Stanford
Natural Language Inference (SNLI) corpus (Bow-
man et al., 2015).> SNLI only contains English
data. The number of mined questions-answer pairs
also varies across languages with a bias toward a
handful of top tier languages. To balance train-
ing across languages, we use Google’s translation
system to translate SNLI to the other 15 languages.

"QA pairs are mined from online forums and QA websites,
including Reddit, StackOverflow, and YahooAnswers.

8The translation pairs are mined using a system similar to
the approach described in Uszkoreit et al. (2010).

“MultiNLI (Williams et al., 2018), a more extensive corpus,
contains examples from multiple sources but with different
licences. Employing SNLI avoids navigating the licensing
complexity of using MultiNLI to training public models.

&9

Model Quora AskUbuntu Average
USErrans 89.1 423 65.7
USEcnn 89.2 39.9 64.6
Gillick et al. (2018) 87.5 37.3 62.4

Table 4: MAP@100 on SR (English). Models are
compared with the best models from Gillick et al.
(2018) that exclude in-domain training data.

We also translate a portion of question-answer pairs
to ensure each language has a minimum of 60M
training pairs. For each of our datasets, we use 90%
of the data for training, and the remaining 10% for
development/validation. Table 2 and 3 lists the
details of data used for each task / langauge.

4.2 Model Configuration

Input sentences are truncated to 256 tokens for
the CNN model and 100 tokens for transformer.
The CNN encoder uses 2 CNN layers with filter
width of [1, 2, 3, 5] and 256 filters per width. The
Transformer encoder employs 6 transformer lay-
ers, with 8 attentions heads, hidden size 512, and
filter size 2048. Similar to our prior work (Cer
et al., 2018), we configure our models with the
intention of making them small and fast enough
to be used directly within many downstream ap-
plications without the need for model distillation.
Model hyperparameters are tuned on development
data sampled from the same sources as the training
data. We export sentence encoding modules for our
two encoder architectures: USEqpans and USEcnn.
We also export a larger graph for QA tasks from our
Transformer based model that includes QA specific
layers and support providing context information
from the larger document as USEQA Trans+Cxt-*

5 Experiments on Retrieval Tasks

In this section we evaluate our multilingual en-
coding models on semantic retrieval, bitext and

OWhile USEQa Trans+cxt uses the same underlying shared
encoder as USErns but with additional task specific layers,
we anticipate that the models could diverge in the future.

Model en-es en-fr en-ru en-zh
USErtrans 86.1 833 889 78.8
USEcnw 85.8 82.7 874 795
Yang et al. (2019) | 89.0 86.1 89.2 87.9

Table 5: P@1 on UN translation pair bitext retrieval
(BR). Yang et al. (2019) is a specialized translation
retrieval model and the current state-of-the-art.

retrieval question answer tasks.

5.1 Semantic Retrieval (SR)

Following Gillick et al. (2018), we construct seman-
tic retrieval (SR) tasks from the Quora question-
pairs (Hoogeveen et al., 2015) and AskUbuntu (Lei
et al., 2016) datasets. The SR task is to identify all
sentences in the retrieval corpus that are semanti-
cally similar to a query sentence.'!

For each dataset, we first build a graph connect-
ing each of the positive pairs, and then compute
its transitive closure. Each sentence then serves
as a test query that should retrieve all of the other
sentences it is connected to within the transitive
closure. Mean average precision (MAP) is em-
ployed to evaluate the models. More details on the
constructed datasets can be found in Gillick et al.
(2018). Both datasets are English only.

Table 4 shows the MAP @100 on the Quora and
AskUbuntu retrieval tasks. We use Gillick et al.
(2018) as the baseline model, which is trained
using a similar dual encoder architecture. The
numbers provided here are for models without fo-
cused in-domain training data. 12 Both USEcnN
and USEr,s outperform the prior state-of-the-
art. USErys and USEcnn perform comparably
on Quora. However, USEr,s performs notably
better than USEcnn on AskUbuntu, suggesting the
AskUbuntu data could be more challenging.

5.2 Bitext Retrieval (BR)

Bitext retrieval performance is evaluated on the
United Nation (UN) Parallel Corpus (Ziemski et al.,
2016), containing 86,000 bilingual document pairs
matching English (en) documents with with their
translations in five other languages: French (fr),

"'The task is related to paraphrase identification (Dolan
et al., 2004) and Semantic Textual Similarity (STS) (Cer et al.,
2017), but with the identification of meaning similarity being
assessed in the context of a retrieval task.

>The model for Quora is trained on Paralex (http:
//knowitall.cs.washington.edu/paralex) and
AskUbuntu data. The model for AskUbuntu is trained on
Paralex and Quora.

90

Spanish (es), Russian (ru), Arabic (ar) and Chinese
(zh). Document pairs are aligned at the sentence-
level, which results in 11.3 million aligned sentence
pairs for each language pair.

Table 5 shows sentence-level retrieval preci-
sion@1 (P@1) for the proposed models as well
as the current state-of-the-art results from Yang
et al. (2019), which uses a specialized translation
pair retrieval model. USEr,,s is generally better
than USEcnN, performing lower than the SOTA
but not by too much with the exception of en-zh.'?

Model | SQUAD Dev SQuAD Train
Paragraph Retrieval

USEQA Trans+cxt 63.5 53.3

BM25 (baseline) 61.6 52.4
Sentence Retrieval

USEQA Trans+Cxt 53.2 43.3

USEryans 47.1 37.2

Table 6: P@1 for SQUAD ReQA. Models are not
trained on SQuAD. Dev and Train only refer to the
respective sections of the SQuAD dataset.

5.3 Retrieval Question Answering (ReQA)

Similar to the data set construction used for the SR
tasks, the SQuAD v1.0 dataset (Rajpurkar et al.,
2016) is transformed into a retrieval question an-
swering (ReQA) task.!* We first break all docu-
ments in the dataset into sentences using the sen-
tence splitter distributed with the ReQA evaluation
suite.!> Each question of the (question, answer
spans) tuples in the dataset is treated as a query.
The task is to retrieve the sentence designated
by the tuple answer span. Search is performed
on a retrieval corpus consisting of all of the sen-
tences within the corpus. We contrast sentence and
paragraph-level retrieval using our models, with
the later allowing for comparison against a BM25
baseline (Jones et al., 2000).'°

Bperformance is degraded from Yang et al. (2019) due to
using a single sentencepiece vocabulary to cover 16 languages.
Languages like Chinese, Korean, Japanese have much more
characters. To ensure the vocab coverage, sentencepiece tends
to split the text of these languages into single characters, which
increases the difficulty of the task.

!4The retrieval question answering task was suggested by
Chen et al. (2017) and then recently explored further by
Cakaloglu et al. (2018). However, Cakaloglu et al. (2018)’s
use of sampling makes it difficult to directly compare with
their results and we provide our own baseline based on BM25.

Bhttps://github.com/google/
retrieval-ga-eval

1 BM25 is a strong baseline for text retrieval tasks.
Paragraph-level experiments use the BM25 implementa-

Model | en | ar de e fr it ja ko nl pt pl ru th tr zh/zh-t
Cross-lingual Semantic Retrieval (cl-SR)
Quora
USE frans 89.1 | 83.1 85.5 86.3 86.7 86.8 85.1 82.5 83.8 86.5 82.1 85.7 85.8 82.5 84.8
USEcnN 89.2 | 799 83.7 85.0 85.0 85.5 824 77.6 81.3 852 783 83.8 835 799 819
LASER 79.7 82.2 83.5 83.1 837 - 734 82.8 83.6 823 82.6 78.6 79.9 -
AskUbuntu
USErtrans 42.3 | 382 40.0 39.9 39.3 40.2 40.6 40.3 39.5 39.8 38.4 39.6 40.3 37.7 40.1
USEcnN 39.9 | 33.0 35.0 35.6 352 36.1 35.5 35.1 345 35.6 329 352 352 328 34.6
LASER 245 26.1 264 265 27.0 - 22.0 262 262 257 25.6 23.8 25.0 -
Average
USEtrans 65.7 | 60.7 62.8 63.1 63.0 63.5 63.8 624 61.7 63.2 60.7 62.7 63.1 60.1 62.5
USEcnN 64.6 | 56.5 59.4 60.3 60.1 60.8 59.0 56.4 57.9 60.4 556 59.5 594 564 583
LASER 52.1 542 550 548 554 - 477 545 549 540 54.6 512 525 -
Cross-lingual Retrieval Question Answering (cl-ReQA)
SQuAD train
USEQa Trans+cxe | 43.3 | 33.2 352 372 37.0 37.0 329 31.1 36.6 37.7 345 332 369 323 327

Table 7: Cross-lingual performance on Quora/AskUbuntu cl-SR (MAP) and SQuAD cl-ReQA (P@1).
Queries/questions are machine translated, while retrieval candidates remain in English.

We evaluated ReQA using the SQuAD dev and
train sets and without training on the SQuAD
data.!” The sentence and paragraph retrieval P@1
are shown in table 6. For sentence retrieval,
we compare encodings produced using context
from the text surrounding the retrieval candidate,
USEQA Trans+Cxt» t0 sentence encodings produced
without contextual cues, USEr,,s. Paragraph re-
trieval contrasts USEqa Trans+cxt With BM25.

5.4 Cross-lingual Retrieval

Our English retrieval experiments are extended
to explore cross-lingual semantic retrieval (cl-SR)
and cross-lingual retrieval question answering (cl-
ReQA). SR queries and ReQA questions are ma-
chine translated into other languages, while keep-
ing the retrieval candidates in English.'® Table
7 provides our cross-lingual retrieval results for
our transformer and CNN multilingual sentence
encoding models. We compare against the state-of-
the-art LASER multilingual sentence embedding

tion: https://github.com/nhirakawa/BM25, with
default parameters. We exclude sentence-level BM25, as
BM25 generally performs poorly at this granularity.

7For sentences, the resulting retrieval task for development
set consists of 11,425 questions and 10,248 candidates, and
the retrieval task for train set is consists of 87,599 questions
and 91,703 candidates. For paragraph retrieval, there are 2,067
retrieval candidates in the development set and 18,896 in the
training set. To retrieve paragraphs with our model, we first
run sentence retrieval and use the retrieved nearest sentence to
select the enclosing paragraph.

8Poor translations are detected and rejected when the orig-
inal English text and English back translation have a cosine
similarity < 0.5 according our previously released English
USErtans model (Cer et al., 2018).

library (Artetxe and Schwenk, 2019).1

On both the Quora and AskUbuntu cI-SR tasks,
USErtrans outperforms USEcny and LASER on all
datasets, except the Polish (pl) Quora data where
LASER achieves slightly better performance.?’
USEcnN tends to outperform LASER on Quora
and always outperforms LASER by a sizable mar-
gin on AskUbuntu. We note that our CNN based
model not only outperforms LASER, but also re-
lies on simpler model architecture than LASER’s
LSTM based archtitecture. Given the similar level
of performance on Quora between USEcnN and
LASER, we suspect the notably better performance
on AskUbuntu over LASER is due to differences
in the training data provided to encoding models.

6 Experiments on Transfer Tasks

For comparison with prior USE models, English
task transfer performance is evaluated on SentE-
val (Conneau and Kiela, 2018). For sentence clas-
sification transfer tasks, the output of the sentence
encoders are provided to a task specific DNN. For
the pairwise semantic similarity task, the similarity
of sentence embeddings v and v is assessed using
— arccos (W) , following Yang et al. (2018).
In table 8, our multilingual models show competi-
tive transfer performance when compared to state-
of-the-art sentence embedding models. USEraps
performs better than USEcny on all tasks. Our new

Phttps://github.com/facebookresearch/
LASER

2Results are not presented for LASER on ja and zh due
unicode errors.

91

STS Bench

Model MR CR SUBJ MPQA TREC SST (dev / test)
USE mutlilingual models
USEcnn 73.8 832 90.1 87.7 964 781 0.829/0.809
USErtransformer 78.1 87.0 92.1 89.9 96.6 809 0.837/0.825
The state-of-the-art English embedding models
InferSent (Conneau et al., 2017) 81.1 863 924 90.2 882 84.6 0.801/0.758
Skip-Thought LN (Ba et al., 2016) 794 83.1 93.7 89.3 - - -
Quick-Thought (Logeswaran and Lee, 2018) 824 86.0 94.8 90.2 924 87.6 -
USEpan for English (Cer et al., 2018) 722 785 92.1 86.9 88.1 77,5 0.760/0.717
USErtranstormer for English (Cer et al., 2018) 822 842 95.5 88.1 932 837 0.802/0.766

Table 8: Performance on English transfer tasks from SentEval (Conneau and Kiela, 2018).

CPU Time vs. Sentence Length

GPU Time vs. Sentence Length

Memory vs. Sentence Length

14000 A 4000 A A
3500]
12000 2000
3000 —_
m 100001 -+ Trans > 2500 -+ Trans C§n 15001 A"”/
E sooo] = CNN S = CNN < /
2 2 2000 / S
= 6000 + A = 1500 ‘ % 1000 / 4 Trans
4000 = / o CNN °
20001 , & ‘ . 1000 . “ e coo0 “// .
e .0 500 & ’0 @
gmee— mo-o— =0 ©

0O 10 20 30 40 50

Sentence Length

60

(a) CPU Inference Time

0O 10 20 30 40 50 60

Sentence Length

(b) GPU Inference Time

0

10 20 30 40 50 60
Sentence Length

(c) Memory Footprint

Figure 2: Resource usage for the multilingual Transformer and CNN encoding models.

multilingual USEr,,s model outperforms our best
previously released English only model, USET;ans
for English (Cer et al., 2018), on some tasks.

7 Resource Usage

Figure 2 provides compute and memory usage
benchmarks for our models.?! Inference times on
GPU are 2 to 3 times faster than CPU. Our CNN
models have the smallest memory footprint and are
the fastest on both CPU and GPU. The memory
requirements increase with sentence length, with
the Transformer model increasing more than twice
as fast as the CNN model.”> While this makes
CNNss an attractive choice for efficiently encoding
longer texts, this comes with a corresponding drop
in accuracy on many retrieval and transfer tasks.

8 Conclusion

Easy-to-use retrieval focused multilingual models
for embedding sentence-length text are made avail-

2ICPU benchmarks are run on Intel(R) Xeon(R) Platinum
8173M CPU @ 2.00GHz. GPU benchmarks were run on an
NVidia v100. Memory footprint was measured on CPU.

ZTransformer models are ultimately governed by a time
and space complexity of O(n?). The benchmarks show for
shorter sequence lengths the time and space requirements are
dominated by computations that scale linearly with length and
have a larger constant factor than the quadratic terms.

able on TensorFlow Hub. Our models embed text
from 16 languages into a shared semantic embed-
ding space and achieve a new state-of-the-art in
performance on monolingual and cross-lingual se-
mantic retrieval (SR). The models achieve good per-
formance on the related tasks of translation pair bi-
text retrieval (BR) and retrieval question answering
(ReQA). Monolingual transfer task performance
approaches, and in some cases exceeds, English
only sentence embedding models. Our models are
freely available under an Apache license with ad-
ditional documentation and tutorial colaboratory
notebooks at:

https://tfhub.dev/s?g=universal-
sentence-encoder-multilingual

Acknowledgments

We thank our teammates from Descartes and other
Google groups for their feedback and suggestions.
Special thanks goes to Muthu Chidambaram for
his early exploration of multilingual training, Taku
Kudo for the SentencePiece model support, Chen
Chen for the templates used to perform the transfer
learning experiments and Mario Guajardo for an
early version of the ReQA tutorial Colab.

92

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of USENIX OSDI’16, OSDI’ 16, pages
265-283.

Mikel Artetxe and Holger Schwenk. 2019. Massively mul-
tilingual sentence embeddings for zero-shot cross-lingual
transfer and beyond. Transactions of the Association for
Computational Linguistics, 7:597-610.

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016.
Layer normalization. CoRR, abs/1607.06450.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and
Christopher D. Manning. 2015. A large annotated corpus
for learning natural language inference. In Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 632—642.

Tolgahan Cakaloglu, Christian Szegedy, and Xiaowei Xu.
2018. Text embeddings for retrieval from a large knowl-
edge base. CoRR, abs/1810.10176.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-Gazpio,
and Lucia Specia. 2017. SemEval-2017 task 1: Seman-
tic textual similarity multilingual and crosslingual focused
evaluation. In Proceedings of the 11th International Work-
shop on Semantic Evaluation (SemEval-2017), pages 1-14.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole
Limtiaco, Rhomni St. John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope,
and Ray Kurzweil. 2018. Universal sentence encoder for
English. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing: System
Demonstrations, pages 169—174.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bor-
des. 2017. Reading Wikipedia to answer open-domain
questions. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1870-1879.

Muthuraman Chidambaram, Yinfei Yang, Daniel Cer, Steve
Yuan, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Learning cross-lingual sentence representations via
a multi-task dual-encoder model. CoRR, abs/1810.12836.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An eval-
uation toolkit for universal sentence representations. In
Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC-2018).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Bar-
rault, and Antoine Bordes. 2017. Supervised learning of
universal sentence representations from natural language
inference data. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
pages 670-680, Copenhagen, Denmark. Association for
Computational Linguistics.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Unsuper-
vised construction of large paraphrase corpora: Exploiting
massively parallel news sources. In COLING 2004: Pro-
ceedings of the 20th International Conference on Compu-
tational Linguistics, pages 350-356.

93

Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar.
2018. End-to-end retrieval in continuous space. CoRR,
abs/1811.08008.

Doris Hoogeveen, Karin M. Verspoor, and Timothy Baldwin.
2015. Cqadupstack: A benchmark data set for community
question-answering research. In Proceedings of the 20th
Australasian Document Computing Symposium, ADCS °15,
pages 3:1-3:8.

K. Sparck Jones, S. Walker, and S. E. Robertson. 2000. A
probabilistic model of information retrieval: Develop-

ment and comparative experiments. Inf. Process. Manage.,
36(6):779-808.

Yoon Kim. 2014. Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746-1751.

Taku Kudo and John Richardson. 2018. SentencePiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66—
71.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola,
Kateryna Tymoshenko, Alessandro Moschitti, and Lluis
Marquez. 2016. Semi-supervised question retrieval with
gated convolutions. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 1279-1289.

Lajanugen Logeswaran and Honglak Lee. 2018. An efficient
framework for learning sentence representations. In Inter-
national Conference on Learning Representations (ICLR).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy
Liang. 2016. SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 2383-2392.

Jakob Uszkoreit, Jay Ponte, Ashok Popat, and Moshe Dubiner.
2010. Large scale parallel document mining for machine
translation. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010), pages
1101-1109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, L. ukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceed-
ings of NIPS, pages 6000-6010.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018.
A broad-coverage challenge corpus for sentence under-
standing through inference. In Proceedings of the 2018
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112-1122.

Yinfei Yang, Gustavo Herndndez Abrego, Steve Yuan, Mandy
Guo, Qinlan Shen, Daniel Cer, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2019. Improving multilingual
sentence embedding using bi-directional dual encoder with
additive margin softmax. CoRR, abs/1902.08564.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah
Constant, Petr Pilar, Heming Ge, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. Learning semantic textual
similarity from conversations. In Proceedings of The Third
Workshop on Representation Learning for NLP, pages 164—
174.

Michat Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel corpus v1.0.
In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016), pages
3530-3534.

94

BENTO: A Visual Platform for Building Clinical NLP Pipelines
Based on Codal.ab

Yonghao Jin, Fei Li and Hong Yu
Department of Computer Science, University of Massachusetts
Lowell, MA, USA

Abstract

CodaLab' is an open-source web-based plat-
form for collaborative computational research.
Although CodalLab has gained popularity in
the research community, its interface has lim-
ited support for creating reusable tools that
can be easily applied to new datasets and
composed into pipelines. In clinical domain,
natural language processing (NLP) on med-
ical notes generally involves multiple steps,
like tokenization, named entity recognition,
etc. Since these steps require different tools
which are usually scattered in different publi-
cations, it is not easy for researchers to use
them to process their own datasets. In this pa-
per, we present BENTO, a workflow manage-
ment platform with a graphic user interface
(GUI) that is built on top of CodaLab, to fa-
cilitate the process of building clinical NLP
pipelines. BENTO comes with a number of
clinical NLP tools that have been pre-trained
using medical notes and expert annotations
and can be readily used for various clinical
NLP tasks. It also allows researchers and de-
velopers to create their custom tools (e.g., pre-
trained NLP models) and use them in a con-
trolled and reproducible way. In addition, the
GUI interface enables researchers with limited
computer background to compose tools into
NLP pipelines and then apply the pipelines
on their own datasets in a “what you see is
what you get” (WYSIWYG) way. Although
BENTO is designed for clinical NLP applica-
tions, the underlying architecture is flexible to
be tailored to any other domains.

1 Introduction

With the machine learning research going deep,
computational models are becoming increasingly
large with intensive hyper-parameters tuning, mak-
ing the research difficult to reproduce. To tackle

!codalab.org

95

Codalab

Reverse-Proxy Server [« Web Interface

J

Figure 1: The architecture of BENTO. The BENTO
back end stores the description files of various tools
(e.g., pre-trained NLP models), processes static con-
tents of the application and handles compilation of the
user-defined pipelines. The CodalLab back end stores
the datasets (bundles) and executes computational jobs.
The two back end servers are brought behind a single
domain name using a reverse proxy server.

BENTO Back End

o tools ¥ compiling

= static contents

this problem, researchers have developed CodalL.ab
as an open-source platform for researchers and soft-
ware developers. However, Codal.ab has limited
support for reusable tools that can be easily ap-
plied to different datasets and be composed into
computational pipelines.

Building pipelines is essential for the research
of certain domains. Take the medical informatics
research as an example, a complete NLP analysis
on medical notes often involves multiple steps like
tokenization, de-identification (Dernoncourt et al.,
2017; Liu et al., 2017), entity recognition (Li et al.,
2018; Xu et al., 2017; Jagannatha and Yu, 2016)
and normalization (Li et al., 2019, 2017; Cho et al.,
2017), relation extraction (Li et al., 2018; He et al.,
2019), etc. Since these steps require different tools
and these tools are usually scattered in different
publications, it is far from trivial to leverage these
tools on new datasets even though the authors have
released the source code. Therefore, we developed
a user-friendly workflow management platform,

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 95—-100
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

BiomEdical Nlp TOolkits (BENTO), to facilitate
the process of building and applying of clinical
NLP pipelines.

The architecture of BENTO is illustrated in
Figure 1. BENTO has three main components.
The web interface is supported by two back ends
brought together by a reverse-proxy server. The
CodaLab back end stores the datasets and exe-
cutes computational jobs. The BENTO back end
serves tool information and transforms user-defined
pipelines to Codal.ab commands.

The advantages of such architecture are two-fold.
First, it is flexible to use CodalLab as the back end
for adding custom tools (e.g., pre-trained NLP mod-
els) and processing data in a controlled and repro-
ducible way. All the tools are containerized with
Docker?, which makes the platform to keep a uni-
fied interface to manage the models and not need
to maintain different operating environment for dif-
ferent models. Second, the web interface makes it
easier for users to construct NLP pipelines through
editing flowcharts and then apply the pipelines to
their data. The web-based architecture also makes
the platform widely accessible without complex
installation and configuration.

In this paper, we also show the examples of
using BENTO to integrate several clinical NLP
applications such as hypoglycemia detection (Jin
et al., 2019) and adverse drug event extraction (Li
et al., 2018), and build pipelines based on these
tools. BENTO helps build NLP pipelines, which
is a promising system to accelerate the medical
informatics research.

2 Related Work

Galaxy (Afgan et al., 2018) is a similar computa-
tional platform that is focused in bioinformatics and
computational biology, whose interface inspires the
design of ours. The main restriction of the Galaxy
platform is that users can only access the tools man-
aged by administrators and cannot define their own
tools. In linguistic research community, other re-
lated platforms include lingvis.io (El-Assady et al.,
2019), which is focused on integrating NLP oper-
ations with visualizations , and Argo (Rak et al.,
2012), a web-based text mining workbench based
on the UIMA framework. Stanford CoreNLP (Man-
ning et al., 2014) provides a commonly used NLP
tool set. On the library level, NLTK (Hardeniya
et al., 2016) is a popular Python library that inte-

2docker.com

96

grates multiple widely used NLP tools. OpenNLP
(Morton et al., 2005) is a Java library that provides
machine learning based toolkits for NLP tasks. Fu-
danNLP (Qiu et al., 2013) is a Java based library
which integrates the machine learning models and
datasets for Chinese NLP.

In the medical domain, NILE (Yu and Cai, 2013)
is a Java package which includes rule based NLP
methods for information extraction from medical
notes. Apache cTAKES (Apache cTAKES, 2018)
and CLAMP (Soysal et al., 2018) are two clinical
NLP systems with pipeline-based architecture in
the UIMA framework. Both systems have a graphi-
cal user interface, allowing users to build pipelines
from build-in UIMA components. However, the
UIMA framework has a steep learning curve. It is
also not widely used in the machine-learning-based
NLP research. Furthermore, most NLP applica-
tions are often released as command line programs.
Therefore, it is hard to extend applications that use
the UIMA framework with new models. In con-
trast, tools on our BENTO platform are based on
command line programs and users can easily define
their own tools with little restriction.

3 System Description

BENTO mainly comprises three parts: a front-end
web application, a BENTO back end server and a
CodaLab back end. As shown in Figure 1, BENTO
has a web-based user interface, from which users
can upload data, edit tools, submit jobs and perform
various other operations. The BENTO back end is a
web server that is mainly used for storing the tools,
including the user-defined ones, so they can be
accessed in different sessions. The Codalab back
end is used for execution of each computational
job. When a tool is being executed, BENTO will
generate a series of CodalLab commands based on
the tool information and the input bundles. The
outputs of the tool are the run bundles generated
from those commands which can be passed on to
the down-stream tools and inspected by the users
on the CodaLab interface.

3.1 Web Interface

As shown in Figure 2, the user interface of our
platform is a web application that can be roughly
divided into three panels from left to right: tool
panel, canvas panel and worksheet panel. The tool
panel lists the current available tools on the plat-
form organized in a hierarchical file system struc-

&= User Tools
User directory

&> Relation Extraction
Author: Li Fei

> Tool
<none>

<> Example Result
<none>

© Hypoglycemia
‘Yonghao Jin

¢ Prediction Tool

<> Example
<none>

& Canvas

Execution Plan

</>default_config @ 0 & x ‘
data ¢

<[> Input Data Z DS x
data %@

<> NER Pre-
trained Model

08 x

/>RE_config

Z0D8 x

& | @ k| 8|+ ||+ #® | &2

Your worksheet: home »

Public Home
data &

€| L

Welcome to Codalab! This page (whichis a editable

<»NER
© config
© input
1 pretrained_model

worksheet) shows the bundles and worksheets in
the system.

</>Relation
Extraction

S Pending bundles

config

uuid[0:8]

input name size

result %€ ined_madel

data %x¢

e DelD
De-identification

HYPEExamp... 7.1m

code

result *¢ EvalDeid-8

«/» RunBERT
<none>

<f* Eval Deld model

<rones

+/>REPre-trained & 0 & %

Bertdeid-6

EvalDeid-8

data %4 Bertdeid-&

<> Pipeline
<none>

O NER
<none>

& PublcTools

Public directory

EvalDeid-8

Bertdeid-é

EvalDeid-8
Bertdeid-&

Figure 2: BENTO Web Interface. The interface can be roughly divided into three parts from left to right: tool
panel, canvas panel and worksheet panel. The tool panel lists the current available tools organized in a tree view.
The canvas panel contains the flowchart of the current pipeline. Every node represents a tool or dataset and each
connection indicates the data flow in the pipeline.> This figure shows an example of the pipeline for entity and
relation extraction. The worksheet panel displays the content of the CodaLab worksheet such as bundles and their

UUIDs.

ture along with the meta information. Users can
edit the User Tools folder using the buttons listed
on the top menu bar. To run a tool, users can simply
drag it to the canvas panel to the right and a tool
node will appear on the canvas. A node, shown
in the workflow Figure 2, contains several input
and output ports, corresponding to the inputs and
outputs of the tool.

Tool nodes can be linked together to form a
pipeline and the connections represent the data flow
during execution (Figure 2). A connection starts
from an output port and ends in an input port. An
input port accepts only a single connection while an
output port can initiate one or multiple connections.
Users can edit the tool by clicking the Editor but-
ton (&) on the top right corner and the node will be
toggled to an editor interface (Figure 3). The editor
contains the expression of the tool (Section 3.3),
which can be modified by the users. The rightmost
part is the worksheet panel that displays the content
of the current selected worksheet. Worksheets are
editable markup documents provided by Codal ab.
Dragging a bundle entry from the worksheet panel
to the canvas will create a data node. A data node
is similar to the tool node except that it does not
have any input port which naturally represents a
data entity in a computational pipeline.

3For simplicity, pre-processing steps like tokenization is
built-in in each tool.

97

3.2 Codalab Back End

An important design goal of BENTO is flexibil-
ity. Users should be able to easily define their own
tools on the BENTO platform and customize exist-
ing tools at the command line level. For this reason,
we use CodaLab as the back end for tool execution
on the BENTO platform. CodaL.ab is a cloud-based
platform designed for running computational ex-
periments in data-oriented research. In CodaLab,
researchers can easily set up a reproducible environ-
ment and run arbitrary command line by specifying
a docker image and bundle dependencies. In Co-
dalLab, bundles are immutable objects that hold the
content of datasets. The output files produced by
that command will be saved into a new bundle and
can be further passed to down-stream experiments.

All datasets in BENTO are stored as Codalab
bundles. The tools and pipelines will be compiled
into Codal.ab commands. Users could submit com-
mands to the CodaLab back end via the web inter-
face. Such design makes the computational results
of the BENTO platform reproducible through Co-
dalab. Since Codal.ab will record dependency
information in run bundles, it is also easy to recre-
ate the pipeline on our platform from existing re-
sult bundles. Using CodaL.ab as the back end also
mitigates the engineering challenges such as job
scheduling and data management.

</>NER Z 0%

! config: bundle
i

,| input: bundle
,[(pretrained_model: bundle
=>

-rquest-docker-image fox1f823/end2end_ner_norm_re
-request-gpus 1
-request-memory 10g

#

python §code}train.py predict
~save_riodel

-config[$config
-input_data [$input)

Cancel m

Figure 3: The Codal.ang expression for the tool NER in
Figure 2. The expression can be roughly split into three
sections indicated by the dashed squares. The first sec-
tion declares the arguments of this tool. As seen, the
tool takes three bundles as inputs: config, input and
pretrained_model. The second section declares a con-
stant code which is initialized with an existing bundle.
The third section is a string template for generating the
CodalLab command.

3.3 BENTO Back End

The BENTO back end is for storing tools and
generating CodalLab commands from the pipeline
graphs.

3.3.1 CodaLang: A Tool Configuration
Language

The tools in BENTO are described via our custom
language called CodaLang* Tt acts as an intermedi-
ate layer between the web interface and Codal.ab.
It has a succinct syntax for specifying the inter-
faces of a tool, i.e. the inputs and outputs. It also
provides a string template mechanism for creating
CodalLab commands from input arguments. For
example, the CodaLang expression for the node
NER in Figure 2 is shown in Figure 3.

The configuration is composed of three sections
which are highlighted with dotted squares. The
first section declares the arguments of the tool, cor-
responding to the three input ports of the node.
The second section creates a constant variable code
which is assigned an existing bundle. The third
section is a string template for generating the Co-

*A thorough introduction be found at

https://github.com/jyh1/codalang .

can

98

$(c1 run --name NER-7 --request-docker-image fox1f823
/end2end_ner_norm_re --request-gpus 1 --request-memory 10g
InputData-2:0x6ec8604ebe7b490584041cbfel16c9055 NER-code-6
:0x3740b56b5a1542919cc159b8242beae2 NERPretrainedModel-3
s a3f4604c3cac 4d599dc3 default_config-1
:0xd586daa6583e421585057a327542747b ' python NER-code-6/train.py
predict --save_model NERPretrainedModel-3

--input_data InputData-2 ')

[TTZ7 bundle_1=$(cl run ~--name RelationExtraction-9 -“request-docker

-image fox1f823/end2end_ner_norm_re --request-gpus 2

--request-memory 10g NER-7: RE_config-5

:0x76b3e@a9f cef4d1f9fd3e9a02a68f531 RelationExtraction-code-8

:0x3740b56b5a1542919cc159b8242beae2 ' python RelationExtraction

-code-8/re.py predict --config RE_config-5 --input NER-7

--model pretrained_model --mode fast D)

NER

--config default_config

Relation
Extraction

Figure 4: The CodalLab commands generated from the
pipeline in Figure 2. Two CodalLab commands are gen-
erated based on two steps in the pipeline, namely NER
and relation extraction. The bundle dependency infor-
mation is highlighted in orange and the shell commands
are colorized in red. The results in the first step are
saved in the variable bundle_0 (circled in blue squares),
which is used as a bundle dependency in the command
of the second step.

daLLab command. It includes execution options
(e.g., request-docker-image) and tool bash com-
mands. The template variables are circled by the
squares in the same color with their declarations.
Once the values of the tool arguments are deter-
mined, a CodalLab command can be easily gen-
erated based on the command template. The run
bundle created by the command will be used as
results and can be passed on to down-stream tools
in the pipeline. Through Codalang, users can eas-
ily modify existing tools or create their own tools.
The tool configuration can also be automatically
generated from the dependency information of a
bundle.

3.3.2 Pipeline Execution

We have described how BENTO transforms a sin-
gle tool to a CodalLab command. In this section,
we will describe how BENTO transforms a tool
pipeline into multiple CodalLab commands. In a
tool pipeline, tools are connected together to form
a directed acyclic graph. During execution, tools
are transformed to CodalLab commands according
to their topological order in the graph. Take the
pipeline in Figure 2 as an example, its correspond-
ing Codal.ab commands shown in Figure 4.

As shown in Figure 4, the bundle dependency
information is highlighted in orange and the shell
commands are colorized in red. The two Codal.ab
commands correspond to the two tool nodes in the
pipeline of Figure 2. The first command is gener-
ated from the tool NER based on its tool configura-
tion in Figure 3. The results of this command are
saved in the variable bundle_0, which will be em-

ployed as a bundle dependency in the command of
the tool for relation extraction. The web interface
takes the responsibility of submitting the gener-
ated commands to Codal.ab. When the pipeline
begins to run, the worksheet panel will display the
information of the newly created run bundles.

4 Tools Integrated in BENTO

In this section, we list the tools that have already
been integrated to our platform, including:

e Hypoglycemic Event Detection (Jin et al.,
2019): Hypoglycemic events are common and
potentially dangerous conditions among pa-
tients being treated for diabetes. This tool can
be used to automatically detect hypoglycemic

events from EHR notes.

Clinical Entity Recognition (Li et al., 2018):
This tool has been built to recognize 9 types
of clinical entities such as medications, indi-
cations and adverse drug events (ADEs).

Clinical Relation Extraction (Li et al., 2018):
This tool is able to extract 7 types of relations
between clinical entities such as medications
and their durations, dosages and frequencies.

Disease Name Normalization (Li et al., 2019):
This tool can be used to normalize disease
names to some controlled vocabularies such
SNOMED?” and MEDIC (Davis et al., 2012).

De-identification: This tool is able to recog-
nize 18 types of protected health information
that needs to be removed to de-identify pa-
tient notes. We employed BERT (Devlin et al.,
2019) to build a de-identification model whose
performance is comparable with the state-of-
the-art system (Dernoncourt et al., 2017).

We provide examples and instructions to use
these tools on the demo page of our platform. For
convenience, these tools all take plain text files as
inputs and have the pre-processing and tokeniza-
tion components built-in. In the future, we will
integrate stand-alone components dedicated for pre-
processing and tokenization to BENTO which can
be shared by different application tools. We also
plan to incorporate more NLP tools developed by
our group(Rumeng et al., 2017; Rawat et al., 2019;
Lalor et al., 2019; Zheng and Yu, 2018).

>https://www.snomed.org

99

5 Conclusion

In this paper, we have described the design of
the workflow management platform BENTO. To
the best of our knowledge, BENTO represents the
first web-based workflow management platform
for NLP research. Using BENTO, researchers can
make use of existing tools or define their own tools.
Computational pipelines can be configured through
a web-based user-interface and then automatically
executed on CodaLab. BENTO includes a number
of clinical NLP tools to facilitate the process of
EHR notes. A demo of our platform is available at
bio-nlp.org/bentodemo/.

References

Enis Afgan, Dannon Baker, Bérénice Batut, Marius
Van Den Beek, Dave Bouvier, Martin Cech, John
Chilton, Dave Clements, Nate Coraor, Bjorn A
Griining, et al. 2018. The galaxy platform for ac-
cessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic acids research,
46(W1):W537-W544.

TM Apache cTAKES. 2018.
knowledge extraction system.

clinical text analysis

Hyejin Cho, Wonjun Choi, and Hyunju Lee. 2017. A
method for named entity normalization in biomedi-
cal articles: application to diseases and plants. BMC
bioinformatics, 18(1):451.

Allan Peter Davis, Thomas C Wiegers, Michael C
Rosenstein, and Carolyn J Mattingly. 2012. Medic:
a practical disease vocabulary used at the compara-
tive toxicogenomics database. Database, 2012.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner,
and Peter Szolovits. 2017. De-identification of pa-
tient notes with recurrent neural networks. Journal
of the American Medical Informatics Association,
24(3):596-606.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mennatallah El-Assady, Wolfgang Jentner, Fabian
Sperrle, Rita Sevastjanova, Annette Hautli, Miriam
Butt, and Daniel Keim. 2019. lingyvis. io-a linguistic
visual analytics framework. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
13-18.

Nitin Hardeniya, Jacob Perkins, Deepti Chopra,
Nisheeth Joshi, and Iti Mathur. 2016. Natural Lan-
guage Processing: Python and NLTK. Packt Pub-
lishing Ltd.

Bin He, Yi Guan, and Rui Dai. 2019. Classifying med-
ical relations in clinical text via convolutional neural
networks. Artificial intelligence in medicine, 93:43—
49.

Abhyuday N Jagannatha and Hong Yu. 2016. Struc-
tured prediction models for rnn based sequence la-
beling in clinical text. In Proceedings of the confer-
ence on empirical methods in natural language pro-
cessing. conference on empirical methods in natural
language processing, volume 2016, page 856. NIH
Public Access.

Yonghao Jin, Fei Li, Varsha G Vimalananda, and Hong
Yu. 2019. Automatic Detection of Hypoglycemic
Events From the Electronic Health Record Notes of
Diabetes Patients: Empirical Study. JMIR medical
informatics, 7(4):e14340.

John P Lalor, Beverly Woolf, and Hong Yu. 2019. Im-
proving electronic health record note comprehen-
sion with noteaid: Randomized trial of electronic
health record note comprehension interventions with

crowdsourced workers. Journal of medical Internet
research, 21(1):e10793.

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, and Hong Yu. 2019. Fine-
Tuning Bidirectional Encoder Representations From
Transformers (BERT)-Based Models on Large-
Scale Electronic Health Record Notes: An Empiri-
cal Study. JMIR medical informatics.

Fei Li, Weisong Liu, and Hong Yu. 2018. Extraction of
Information Related to Adverse Drug Events from
Electronic Health Record Notes: Design of an End-
to-End Model Based on Deep Learning. JMIR med-
ical informatics.

Haodi Li, Qingcai Chen, Buzhou Tang, Xiaolong
Wang, Hua Xu, Baohua Wang, and Dong Huang.
2017. Cnn-based ranking for biomedical entity nor-
malization. BMC bioinformatics, 18(11):79-86.

Zengjian Liu, Buzhou Tang, Xiaolong Wang, and Qing-
cai Chen. 2017. De-identification of clinical notes
via recurrent neural network and conditional random
field. Journal of biomedical informatics, 75:S34—
S42.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual meet-
ing of the association for computational linguistics:
system demonstrations, pages 55—60.

Thomas Morton, Joern Kottmann, Jason Baldridge, and
Gann Bierner. 2005. Opennlp: A java-based nlp
toolkit. In Proc. EACL.

100

Xipeng Qiu, Qi Zhang, and Xuan-Jing Huang. 2013.
Fudannlp: A toolkit for chinese natural language
processing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 49-54.

Rafal Rak, Andrew Rowley, William Black, and Sophia
Ananiadou. 2012. Argo: an integrative, interactive,
text mining-based workbench supporting curation.
Database, 2012.

Bhanu Pratap Singh Rawat, Fei Li, and Hong Yu. 2019.
Naranjo question answering using end-to-end multi-
task learning model. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2547-2555.

Li Rumeng, N Jagannatha Abhyuday, and Yu Hong.
2017. A hybrid neural network model for joint pre-
diction of presence and period assertions of medi-
cal events in clinical notes. In AMIA Annual Sympo-
sium Proceedings, volume 2017, page 1149. Ameri-
can Medical Informatics Association.

Ergin Soysal, Jinggi Wang, Min lJiang, Yonghui
Wu, Serguei Pakhomov, Hongfang Liu, and Hua
Xu. 2018. Clamp-a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association, 25(3):331-336.

Kai Xu, Zhanfan Zhou, Tianyong Hao, and Wenyin Liu.
2017. A bidirectional 1stm and conditional random
fields approach to medical named entity recognition.
In International Conference on Advanced Intelligent
Systems and Informatics, pages 355-365. Springer.

S Yu and T Cai. 2013. Nile: fast natural language
processing for electronic health records. Preprint at
https://arxiv. org/abs/1311.6063.

Jiaping Zheng and Hong Yu. 2018. Assessing the read-
ability of medical documents: a ranking approach.
JMIR medical informatics, 6(1):el7.

Stanza: A Python Natural Language Processing Toolkit
for Many Human Languages

Peng Qi*

Yuhao Zhang*

Yuhui Zhang

Jason Bolton Christopher D. Manning
Stanford University
Stanford, CA 94305

{pengqi,
{jebolton,

Abstract

We introduce Stanza, an open-source Python
natural language processing toolkit support-
ing 66 human languages. Compared to ex-
isting widely used toolkits, Stanza features
a language-agnostic fully neural pipeline for
text analysis, including tokenization, multi-
word token expansion, lemmatization, part-of-
speech and morphological feature tagging, de-
pendency parsing, and named entity recogni-
tion. We have trained Stanza on a total of
112 datasets, including the Universal Depen-
dencies treebanks and other multilingual cor-
pora, and show that the same neural architec-
ture generalizes well and achieves competitive
performance on all languages tested. Addition-
ally, Stanza includes a native Python interface
to the widely used Java Stanford CoreNLP
software, which further extends its function-
ality to cover other tasks such as coreference
resolution and relation extraction. Source
code, documentation, and pretrained models
for 66 languages are available at https://
stanfordnlp.github.io/stanza/.

1 Introduction

The growing availability of open-source natural lan-
guage processing (NLP) toolkits has made it easier
for users to build tools with sophisticated linguistic
processing. While existing NLP toolkits such as
CoreNLP (Manning et al., 2014), FLAIR (Akbik
et al., 2019), spaCyl, and UDPipe (Straka, 2018)
have had wide usage, they also suffer from several
limitations. First, existing toolkits often support
only a few major languages. This has significantly
limited the community’s ability to process multilin-
gual text. Second, widely used tools are sometimes
under-optimized for accuracy either due to a focus
on efficiency (e.g., spaCy) or use of less power-
ful models (e.g., CoreNLP), potentially mislead-

*Equal contribution. Order decided by a tossed coin.
"https://spacy.io/

yuhaozhang,

101

yuhuiz}@stanford.edu
manning}@stanford.edu

Bonjour! a7 Hallo!

Tokenization & Sentence Split

jHola!
Multi-word Token Expansion

xin chao!

Lemmatization Multilingual: 66 Languages

POS & Morphological Tagging

Native Python Objects

TOKEN

LEMMA | POS HEAD | DEPREL

Dependency Parsing

Named Entity Recognition

Fully Neural: Language-agnostic

Figure 1: Overview of Stanza’s neural NLP pipeline.
Stanza takes multilingual text as input, and produces
annotations accessible as native Python objects. Be-
sides this neural pipeline, Stanza also features a
Python client interface to the Java CoreNLP software.

ing downstream applications and insights obtained
from them. Third, some tools assume input text has
been tokenized or annotated with other tools, lack-
ing the ability to process raw text within a unified
framework. This has limited their wide applicabil-
ity to text from diverse sources.

We introduce Stanza?, a Python natural language
processing toolkit supporting many human lan-
guages. As shown in Table 1, compared to existing
widely-used NLP toolkits, Stanza has the following
advantages:

e From raw text to annotations. Stanza fea-
tures a fully neural pipeline which takes raw
text as input, and produces annotations includ-
ing tokenization, multi-word token expansion,
lemmatization, part-of-speech and morpholog-
ical feature tagging, dependency parsing, and
named entity recognition.

Multilinguality. Stanza’s architectural de-
sign is language-agnostic and data-driven,
which allows us to release models support-

The toolkit was called StanfordNLP prior to v1.0.0.

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 101-108
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

System # Human Programming Raw Text Fully Pretrained State-of-the-art
Languages Language Processing Neural Models Performance

CoreNLP 6 Java v v

FLAIR 12 Python v v v

spaCy 10 Python v v

UDPipe 61 C++ v v v

Stanza 66 Python v v v v

Table 1: Feature comparisons of Stanza against other popular natural language processing toolkits.

ing 66 languages, by training the pipeline on
the Universal Dependencies (UD) treebanks
and other multilingual corpora.

o State-of-the-art performance. We evaluate
Stanza on a total of 112 datasets, and find its
neural pipeline adapts well to text of different
genres, achieving state-of-the-art or competi-
tive performance at each step of the pipeline.

Additionally, Stanza features a Python interface
to the widely used Java CoreNLP package, allow-
ing access to additional tools such as coreference
resolution and relation extraction.

Stanza is fully open source and we make pre-
trained models for all supported languages and
datasets available for public download. We hope Sta
nza can facilitate multilingual NLP research and ap-
plications, and drive future research that produces
insights from human languages.

2 System Design and Architecture

At the top level, Stanza consists of two individual
components: (1) a fully neural multilingual NLP
pipeline; (2) a Python client interface to the Java
Stanford CoreNLP software. In this section we
introduce their designs.

2.1 Neural Multilingual NLP Pipeline

Stanza’s neural pipeline consists of models that
range from tokenizing raw text to performing syn-
tactic analysis on entire sentences (see Figure 1).
All components are designed with processing many
human languages in mind, with high-level design
choices capturing common phenomena in many
languages and data-driven models that learn the dif-
ference between these languages from data. More-
over, the implementation of Stanza components is
highly modular, and reuses basic model architec-
tures when possible for compactness. We highlight
the important design choices here, and refer the
reader to Qi et al. (2018) for modeling details.

102

(fr) L’ Association des Hotels

(en) The Association of Hotels

(fr) Il y a des hotels en bas de la rue
(en) There are hotels down the street

Figure 2: An example of multi-word tokens in French.
The des in the first sentence corresponds to two syntac-
tic words, de and les; the second des is a single word.

Tokenization and Sentence Splitting. When
presented raw text, Stanza tokenizes it and groups
tokens into sentences as the first step of processing.
Unlike most existing toolkits, Stanza combines tok-
enization and sentence segmentation from raw text
into a single module. This is modeled as a tagging
problem over character sequences, where the model
predicts whether a given character is the end of a
token, end of a sentence, or end of a multi-word
token (MWT, see Figure 2).> We choose to predict
MWTs jointly with tokenization because this task
is context-sensitive in some languages.

Multi-word Token Expansion. Once MWTs
are identified by the tokenizer, they are expanded
into the underlying syntactic words as the basis
of downstream processing. This is achieved with
an ensemble of a frequency lexicon and a neural
sequence-to-sequence (seq2seq) model, to ensure
that frequently observed expansions in the training
set are always robustly expanded while maintaining
flexibility to model unseen words statistically.

POS and Morphological Feature Tagging. For
each word in a sentence, Stanza assigns it a part-
of-speech (POS), and analyzes its universal mor-
phological features (UFeats, e.g., singular/plural,
1t/274/3™ person, etc.). To predict POS and UFeats,
we adopt a bidirectional long short-term mem-
ory network (Bi-LSTM) as the basic architecture.
For consistency among universal POS (UPOS),

*Following Universal Dependencies (Nivre et al., 2020),
we make a distinction between fokens (contiguous spans of
characters in the input text) and syntactic words. These are
interchangeable aside from the cases of MWTs, where one
token can correspond to multiple words.

treebank-specific POS (XPOS), and UFeats, we
adopt the biaffine scoring mechanism from Dozat
and Manning (2017) to condition XPOS and
UFeats prediction on that of UPOS.

Lemmatization. Stanza also lemmatizes each
word in a sentence to recover its canonical form
(e.g., did—do). Similar to the multi-word token ex-
pander, Stanza’s lemmatizer is implemented as an
ensemble of a dictionary-based lemmatizer and a
neural seq2seq lemmatizer. An additional classifier
is built on the encoder output of the seq2seq model,
to predict shortcuts such as lowercasing and iden-
tity copy for robustness on long input sequences
such as URLs.

Dependency Parsing. Stanza parses each sen-
tence for its syntactic structure, where each word
in the sentence is assigned a syntactic head that
is either another word in the sentence, or in the
case of the root word, an artificial root symbol. We
implement a Bi-LSTM-based deep biaffine neural
dependency parser (Dozat and Manning, 2017). We
further augment this model with two linguistically
motivated features: one that predicts the lineariza-
tion order of two words in a given language, and
the other that predicts the typical distance in linear
order between them. We have previously shown
that these features significantly improve parsing
accuracy (Qi et al., 2018).

Named Entity Recognition. For each input sen-
tence, Stanza also recognizes named entities in it
(e.g., person names, organizations, etc.). For NER
we adopt the contextualized string representation-
based sequence tagger from Akbik et al. (2018).
We first train a forward and a backward character-
level LSTM language model, and at tagging time
we concatenate the representations at the end of
each word position from both language models
with word embeddings, and feed the result into a
standard one-layer Bi-LSTM sequence tagger with
a conditional random field (CRF)-based decoder.

2.2 CoreNLP Client

Stanford’s Java CoreNLP software provides a com-
prehensive set of NLP tools especially for the En-
glish language. However, these tools are not easily
accessible with Python, the programming language
of choice for many NLP practitioners, due to the
lack of official support. To facilitate the use of
CoreNLP from Python, we take advantage of the

103

existing server interface in CoreNLP, and imple-
ment a robust client as its Python interface.

When the CoreNLP client is instantiated, Stanz
a will automatically start the CoreNLP server as a
local process. The client then communicates with
the server through its RESTful APIs, after which
annotations are transmitted in Protocol Buffers, and
converted back to native Python objects. Users can
also specify JSON or XML as annotation format.
To ensure robustness, while the client is being used,
Stanza periodically checks the health of the server,
and restarts it if necessary.

3 System Usage

Stanza’s user interface is designed to allow quick
out-of-the-box processing of multilingual text. To
achieve this, Stanza supports automated model
download via Python code and pipeline customiza-
tion with processors of choice. Annotation results
can be accessed as native Python objects to allow
for flexible post-processing.

3.1 Neural Pipeline Interface

Stanza’s neural NLP pipeline can be initialized
with the Pipeline class, taking language name
as an argument. By default, all processors will be
loaded and run over the input text; however, users
can also specify the processors to load and run with
a list of processor names as an argument. Users
can additionally specify other processor-level prop-
erties, such as batch sizes used by processors, at
initialization time.

The following code snippet shows a minimal us-
age of Stanza for downloading the Chinese model,
annotating a sentence with customized processors,
and printing out all annotations:

import stanza
download Chinese

download Chinese

stanza.download (’

")

initialize Chinese neural pipeline

nlp = stanza.Pipeline(’zh’, processors='tokenize,
pos,ner’)

run annotart i on over a sentence

doc = nlp (" FrHiER—FIR IR AR 1)

print (doc)

After all processors are run, a Document in-
stance will be returned, which stores all annotation
results. Within a Document, annotations are fur-
ther stored in Sentences, Tokens and Words
in a top-down fashion (Figure 1). The following
code snippet demonstrates how to access the text
and POS tag of each word in a document and all
named entities in the document:

POS of words

and 11
for sentence doc.sentences:
for word in sentence.words:
print (word.text, word.pos)

the text

a

print

K all entities
print (doc.entities)

in the document

Stanza is designed to be run on different hard-
ware devices. By default, CUDA devices will be
used whenever they are visible by the pipeline, or
otherwise CPUs will be used. However, users can
force all computation to be run on CPUs by setting
use_gpu=False at initialization time.

3.2 CoreNLP Client Interface

The CoreNLP client interface is designed in a way
that the actual communication with the backend
CoreNLP server is transparent to the user. To an-
notate an input text with the CoreNLP client, a
CoreNLPClient instance needs to be initialized,
with an optional list of CoreNLP annotators. After
the annotation is complete, results will be accessi-
ble as native Python objects.

This code snippet shows how to establish a
CoreNLP client and obtain the NER and corefer-
ence annotations of an English sentence:

from stanza.server import CoreNLPClient

start a client
with CoreNLPClient (annotators=[’tokenize’,’ssplit
’,’'pos’,’lemma’, ' ner’,’'parse’,’coref’])

client:
run annotatior
ann client.annotate ('Emily said that she
liked the movie.’)

all entities

for sent in ann.sentence:

print (sent.mentions)

CoreNLP

as

1 over

input

coreference annotations

(ann.corefChain)

With the client interface, users can annotate text
in 6 languages as supported by CoreNLP.

3.3 Interactive Web-based Demo

To help visualize documents and their annotations
generated by Stanza, we build an interactive web
demo that runs the pipeline interactively. For all
languages and all annotations Stanza provides in
those languages, we generate predictions from the
models trained on the largest treebank/NER dataset,
and visualize the result with the Brat rapid annota-
tion tool.* This demo runs in a client/server archi-
tecture, and annotation is performed on the server
side. We make one instance of this demo publicly
available at http://stanza.run/. It can also be
run locally with proper Python libraries installed.

*nttps://brat.nlplab.org/

104

— Text to annotate —
Bundeskanzlerin Merkel ist am Dienstag in die USA gereist.

— Annotations —

parts-of-speech | | named entities % | [lemmas x | [dependency parse x
— Language —

German

Submit

Part-of-Speech:

BN N9 VARNJAPPR) (ART) [N) APPR)ART) NE) (WP
Bundeskanzlerin Merkel ist an dem Dienstag in die USA gereist .

Lemmas:

(Bundeskanzierin] (Merkel) [Sein] (an] (der] [Dienstag) [n) [der) (USA] [reisen) (]
Bundeskanzlerin Merkel ist an dem Dienstag in die USA gereist .

Named Entity Recognition:

Bundeskanzlerin Merkel ist an dem Dienstag in die USA gereist .

Basic Dependencies:

ob.
case case \
[NOUN/" ™" PROPN [AHXKDP]@“I PROPN hnp@““\?mpnr‘m‘ VERB """ PUNGT)

1| Bundeskanzlerin i USA gereist

Merkel ist an dem Dienstag in die

Figure 3: Stanza annotates a German sentence, as Vvi-
sualized by our interactive demo. Note am is expanded
into syntactic words an and dem before downstream
analyses are performed.

An example of running Stanza on a German sen-
tence can be found in Figure 3.

3.4 Training Pipeline Models

For all neural processors, Stanza provides
command-line interfaces for users to train their
own customized models. To do this, users need
to prepare the training and development data in
compatible formats (i.e., CONLL-U format for the
Universal Dependencies pipeline and BIO format
column files for the NER model). The following
command trains a neural dependency parser with
user-specified training and development data:

$ python -m stanza.models.parser \
——train_file train.conllu \
——eval_file dev.conllu \
--gold_file dev.conllu \
——output_file output.conllu

4 Performance Evaluation

To establish benchmark results and compare with
other popular toolkits, we trained and evaluated
Stanza on a total of 112 datasets. All pretrained
models are publicly downloadable.

Datasets. We train and evaluate Stanza’s tokeniz-
er/sentence splitter, MWT expander, POS/UFeats
tagger, lemmatizer, and dependency parser with
the Universal Dependencies v2.5 treebanks (Ze-
man et al., 2019). For training we use 100 tree-
banks from this release that have non-copyrighted
training data, and for treebanks that do not include
development data, we randomly split out 20% of

Treebank System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS

Overall (100 treebanks) ~ Stanza ~ 99.09 86.05 98.63 9249 91.80 89.93 92.78 80.45 75.68

. Stanza 9998 8043 97.88 9489 9175 91.86 93.27 8327 79.33
Arabic-PADT .

UDPipe 9998 82.09 9458 90.36 84.00 84.16 88.46 72.67 68.14

. Stanza 92.83 98.80 92.83 89.12 8893 92.11 92.83 72.88 69.82
Chinese-GSD .

UDPipe 9027 99.10 9027 84.13 84.04 89.05 90.26 61.60 57.81

Stanza 99.01 81.13 99.01 9540 9512 96.11 9721 86.22 83.59

English-EWT UDPipe 9890 7740 9890 9326 92.75 94.23 95.45 80.22 77.03

spaCy 9730 61.19 9730 86.72 90.83 - 87.05 - -

Stanza 99.68 9492 9948 97.30 - 96.72 97.64 91.38 89.05

French-GSD UDPipe 99.68 9359 9881 9585 - 95.55 96.61 87.14 84.26

spaCy 9834 7730 94.15 86.82 - - 87.29 67.46 60.60

Stanza 99.98 99.07 9998 98.78 98.67 98.59 99.19 9221 90.01

Spanish-AnCora UDPipe 9997 9832 9995 9832 9813 98.13 98.48 88.22 85.10

spaCy 9947 9759 9895 94.04 - - 79.63 86.63 84.13

Table 2: Neural pipeline performance comparisons on the Universal Dependencies (v2.5) test treebanks. For our

system we show macro-averaged results over all 100 treebanks. We also compare our system against UDPipe and
spaCy on treebanks of five major languages where the corresponding pretrained models are publicly available. All
results are F; scores produced by the 2018 UD Shared Task official evaluation script.

the training data as development data. These tree-
banks represent 66 languages, mostly European
languages, but spanning a diversity of language
families, including Indo-European, Afro-Asiatic,
Uralic, Turkic, Sino-Tibetan, etc. For NER, we
train and evaluate Stanza with 12 publicly avail-
able datasets covering 8 major languages as shown
in Table 3 (Nothman et al., 2013; Tjong Kim Sang
and De Meulder, 2003; Tjong Kim Sang, 2002;
Benikova et al., 2014; Mohit et al., 2012; Taulé
et al., 2008; Weischedel et al., 2013). For the
WikiNER corpora, as canonical splits are not avail-
able, we randomly split them into 70% training,
15% dev and 15% test splits. For all other corpora
we used their canonical splits.

Training. On the Universal Dependencies tree-
banks, we tuned all hyper-parameters on several
large treebanks and applied them to all other tree-
banks. We used the word2vec embeddings released
as part of the 2018 UD Shared Task (Zeman et al.,
2018), or the fastText embeddings (Bojanowski
et al., 2017) whenever word2vec is not available.
For the character-level language models in the NER
component, we pretrained them on a mix of the
Common Crawl and Wikipedia dumps, and the
news corpora released by the WMT19 Shared Task
(Barrault et al., 2019), except for English and Chi-
nese, for which we pretrained on the Google One
Billion Word (Chelba et al., 2013) and the Chi-

105

nese Gigaword corpora’, respectively. We again
applied the same hyper-parameters to models for
all languages.

Universal Dependencies Results. For perfor-
mance on UD treebanks, we compared Stanza
(v1.0) against UDPipe (v1.2) and spaCy (v2.2) on
treebanks of 5 major languages whenever a pre-
trained model is available. As shown in Table 2, St
anza achieved the best performance on most scores
reported. Notably, we find that Stanza’s language-
agnostic architecture is able to adapt to datasets of
different languages and genres. This is also shown
by Stanza’s high macro-averaged scores over 100
treebanks covering 66 languages.

NER Results. For performance of the NER com-
ponent, we compared Stanza (v1.0) against FLAIR
(v0.4.5) and spaCy (v2.2). For spaCy we reported
results from its publicly available pretrained model
whenever one trained on the same dataset can be
found, otherwise we retrained its model on our
datasets with default hyper-parameters, follow-
ing the publicly available tutorial.® For FLAIR,
since their downloadable models were pretrained

5https ://catalog.ldc.upenn.edu/
LDC2011T13

*https://spacy.io/usage/training#ner
Note that, following this public tutorial, we did not use
pretrained word embeddings when training spaCy NER
models, although using pretrained word embeddings may
potentially improve the NER results.

Language Corpus # Types Stanza FLAIR spaCy

Arabic AQMAR 4 743 74.0 -
Chinese OntoNotes 18 79.2 - -
Dutch CoNLLO02 4 89.2 903 73.8
WikiNER 4 948 948 909
English ~ CoNLLO3 4 921 92.7 81.0
OntoNotes 18 88.8 89.0 854"
French WikiNER 4 929 925 83.8"
German CoNLLO03 4 819 825 639
GermEvall4 4 852 854 684
Russian ~ WikiNER 4 929 - -
Spanish ~ CoNLLO02 4 88.1 873 775
AnCora 4 88.6 88.4 76.1

Table 3: NER performance across different languages
and corpora. All scores reported are entity micro-
averaged test F;. For each corpus we also list the num-
ber of entity types. * marks results from publicly avail-
able pretrained models on the same dataset, while oth-
ers are from models retrained on our datasets.

on dataset versions different from canonical ones,
we retrained all models on our own dataset splits
with their best reported hyper-parameters. All test
results are shown in Table 3. We find that on all
datasets Stanza achieved either higher or close Fy
scores when compared against FLAIR. When com-
pared to spaCy, Stanza’s NER performance is much
better. It is worth noting that Stanza’s high per-
formance is achieved with much smaller models
compared with FLAIR (up to 75% smaller), as we
intentionally compressed the models for memory
efficiency and ease of distribution.

Speed comparison. We compare Stanza against
existing toolkits to evaluate the time it takes to an-
notate text (see Table 4). For GPU tests we use a
single NVIDIA Titan RTX card. Unsurprisingly,
Stanza’s extensive use of accurate neural models
makes it take significantly longer than spaCy to
annotate text, but it is still competitive when com-
pared against toolkits of similar accuracy, espe-
cially with the help of GPU acceleration.

5 Conclusion and Future Work

We introduced Stanza, a Python natural language
processing toolkit supporting many human lan-
guages. We have showed that Stanza’s neural
pipeline not only has wide coverage of human lan-
guages, but also is accurate on all tasks, thanks
to its language-agnostic, fully neural architectural
design. Simultaneously, Stanza’s CoreNLP client
extends its functionality with additional NLP tools.

Stanza UDPipe FLAIR
Task
CPU GPU CPU CPU GPU
UD 10.3x 3.22x 4.30% - -
NER 17.7x 1.08 % - 51.8x 1.17x

Table 4: Annotation runtime of various toolkits rela-
tive to spaCy (CPU) on the English EWT treebank and
OntoNotes NER test sets. For reference, on the com-
pared UD and NER tasks, spaCly is able to process 8140
and 5912 tokens per second, respectively.

For future work, we consider the following areas
of improvement in the near term:

e Models downloadable in Stanza are largely
trained on a single dataset. To make mod-
els robust to many different genres of text,
we would like to investigate the possibility of
pooling various sources of compatible data to
train “default” models for each language;

e The amount of computation and resources
available to us is limited. We would there-
fore like to build an open “model zoo” for
Stanza, so that researchers from outside our
group can also contribute their models and
benefit from models released by others;

e Stanza was designed to optimize for accuracy
of its predictions, but this sometimes comes at
the cost of computational efficiency and lim-
its the toolkit’s use. We would like to further
investigate reducing model sizes and speed-
ing up computation in the toolkit, while still
maintaining the same level of accuracy.

e We would also like to expand Stanza’s func-
tionality by adding other processors such as
neural coreference resolution or relation ex-
traction for richer text analytics.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their comments, Arun Chaganty for
his early contribution to this toolkit, Tim Dozat for
his design of the original architectures of the tagger
and parser models, Matthew Honnibal and Ines
Montani for their help with spaCy integration and
helpful comments on the draft, Ranting Guo for the
logo design, and John Bauer and the community
contributors for their help with maintaining and
improving this toolkit. This research is funded in
part by Samsung Electronics Co., Ltd. and in part
by the SAIL-JD Research Initiative.

106

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations). Asso-
ciation for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics. Associa-
tion for Computational Linguistics.

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1). Association for Computational
Linguistics.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. NoSta-D named entity annotation for Ger-
man: Guidelines and dataset. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Rep-
resentations (ICLR).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.

Behrang Mohit, Nathan Schneider, Rishav Bhowmick,
Kemal Oflazer, and Noah A Smith. 2012. Recall-
oriented learning of named entities in Arabic
Wikipedia. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and

107

Daniel Zeman. 2020. Universal dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the Twelfth International Conference
on Language Resources and Evaluation (LREC’20).

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R Curran. 2013. Learning mul-
tilingual named entity recognition from Wikipedia.
Artificial Intelligence, 194:151-175.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CONLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Association for
Computational Linguistics.

Mariona Taulé, M. Antonia Marti, and Marta Recasens.
2008. AnCora: Multilevel annotated corpora for
Catalan and Spanish. In Proceedings of the Sixth
International Conference on Language Resources
and Evaluation (LREC’08). European Language Re-
sources Association (ELRA).

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. OntoNotes release 5.0. Lin-
guistic Data Consortium.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Association for Computational
Linguistics.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noémi
Aepli, Zeljko Agié, Lars Ahrenberg, Gabrielé Alek-
sandravic¢itté, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, Colin

Batchelor, John Bauer, Sandra Bellato, Kepa Ben-
goetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
Agné Bielinskiené, Rogier Blokland, Victoria Bo-
bicev, Loic Boizou, Emanuel Borges Volker, Carl
Borstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Kristina Brokaité, Aljoscha
Burchardt, Marie Candito, Bernard Caron, Gauthier
Caron, Tatiana Cavalcanti, Giilsen Cebiroglu Ery-
igit, Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomir Céplé, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinkova,
Aurélie Collomb, Cagri Coltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Elvis
de Souza, Arantza Diaz de Ilarraza, Carly Dicker-
son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, Tomaz Erjavec, Aline Eti-
enne, Wograine Evelyn, Richiard Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Claudia Fre-
itas, Kazunori Fujita, Katarina GajdoSovd, Daniel
Galbraith, Marcos Garcia, Moa Girdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, lakes
Goenaga, Koldo Gojenola, Memduh Gokirmak,
Yoav Goldberg, Xavier Gémez Guinovart, Berta
Gonzalez Saavedra, Bernadeta Griciute, Matias Gri-
oni, Normunds Griizitis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan Ha-
ji¢ jr., Mika Héamdldinen, Linh Ha M§, Na-Rae
Han, Kim Harris, Dag Haug, Johannes Heinecke, Fe-
lix Hennig, Barbora Hladk4, Jaroslava Hlavacov4,
Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, Ol4jidé
Ishola, Tomas Jelinek, Anders Johannsen, Fredrik
Jgrgensen, Markus Juutinen, Hiiner Kagikara, An-
dre Kaasen, Nadezhda Kabaeva, Sylvain Kahane,
Hiroshi Kanayama, Jenna Kanerva, Boris Katz,
Tolga Kayadelen, Jessica Kenney, Viclava Ket-
tnerovd, Jesse Kirchner, Elena Klementieva, Arne
Ko6hn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta
Kovalevskaité, Simon Krek, Sookyoung Kwak,
Veronika Laippala, Lorenzo Lambertino, Lucia
Lam, Tatiana Lando, Septina Dian Larasati, Alexei
Lavrentiev, John Lee, Phuong Lé Héng, Alessandro
Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying
Li, Josie Li, Keying Li, KyungTae Lim, Maria Li-
ovina, Yuan Li, Nikola Ljubesi¢, Olga Loginova,
Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christo-
pher Manning, Ruli Manurung, Catalina Méran-
duc, David MarecCek, Katrin Marheinecke, Héc-
tor Martinez Alonso, André Martins, Jan Masek,
Yuji Matsumoto, Ryan McDonald, Sarah McGuin-
ness, Gustavo Mendonca, Niko Miekka, Mar-
garita Misirpashayeva, Anna Missild, Catilin Mi-
titelu, Maria Mitrofan, Yusuke Miyao, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Tomohiko Morioka, Shin-
suke Mori, Shigeki Moro, Bjartur Mortensen,
Bohdan Moskalevskyi, Kadri Muischnek, Robert

108

Munro, Yugo Murawaki, Kaili Miiiirisep, Pinkey
Nainwani, Juan Ignacio Navarro Horfiiacek, Anna
Nedoluzhko, Gunta NesSpore-Bérzkalne, Luong
Nguyén Thi, Huyén Nguyén Thi Minh, Yoshi-
hiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Adédayo
Oluokun, Mai Omura, Petya Osenova, Robert
Ostling, Lilja @vrelid, Niko Partanen, Elena Pas-
cual, Marco Passarotti, Agnieszka Patejuk, Guil-
herme Paulino-Passos, Angelika Peljak-Lapiriska,
Siyao Peng, Cenel-Augusto Perez, Guy Perrier,
Daria Petrova, Slav Petrov, Jason Phelan, Jussi
Piitulainen, Tommi A Pirinen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnina, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiérkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Rédbis, Alexandre Rademaker, Loganathan Ra-
masamy, Taraka Rama, Carlos Ramisch, Vinit Rav-
ishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan
Riabov, Michael RieBler, Erika Rimkuté, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-
manenko, Rudolf Rosa, Davide Rovati, Valentin
Rosca, Olga Rudina, Jack Rueter, Shoval Sadde,
Benoit Sagot, Shadi Saleh, Alessio Salomoni, Tanja
Samardzi¢, Stephanie Samson, Manuela Sanguinetti,
Dage Sirg, Baiba Saulite, Yanin Sawanakunanon,
Nathan Schneider, Sebastian Schuster, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibus-
sirri, Dmitry Sichinava, Aline Silveira, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simko,
Maria Simkov4, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella,
Milan Straka, Jana Strnadova, Alane Suhr, Umut
Sulubacak, Shingo Suzuki, Zsolt Szinté, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki
Tanaka, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zderika
UreSova, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la
Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wréblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdenék Zabokrtsk}’/, Amir
Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal Dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

jiant: A Software Toolkit for Research
on General-Purpose Text Understanding Models

Yada Pruksachatkun,!* Phil Yeres,'* Haokun Liu,! Jason Phang,’
Phu Mon Htut,! Alex Wang,! Ian Tenney?, Samuel R. Bowman'
'New York University, 2Google Research
{yp913, bowman}@nyu.edu

Abstract

We introduce jiant, an open source toolkit
for conducting multitask and transfer learning
experiments on English NLU tasks. jiant
enables modular and configuration-driven ex-
perimentation with state-of-the-art models and
implements a broad set of tasks for probing,
transfer learning, and multitask training ex-
periments. jiant implements over 50 NLU
tasks, including all GLUE and SuperGLUE
benchmark tasks. We demonstrate that jiant
reproduces published performance on a vari-
ety of tasks and models, including BERT and
RoBERTa. jiant is available at https://
jiant.info.

1 Introduction

This paper introduces jiant,' an open source
toolkit that allows researchers to quickly exper-
iment on a wide array of NLU tasks, using
state-of-the-art NLP models, and conduct exper-
iments on probing, transfer learning, and multitask
training. jiant supports many state-of-the-art
Transformer-based models implemented by Hug-
gingface’s Transformers package, as well as non-
Transformer models such as BiLSTM:s.

Packages and libraries like HuggingFace’s Trans-
formers (Wolf et al., 2019) and AllenNLP (Gardner
et al., 2017) have accelerated the process of ex-
perimenting and iterating on NLP models by both
abstracting out implementation details, and sim-
plifying the model training pipeline. jiant ex-
tends the capabilities of both toolkits by presenting
a wrapper that implements a variety of complex
experimental pipelines in a scalable and easily con-
trollable setting. jiant contains a task bank of
over 50 tasks, including all the tasks presented in
GLUE (Wang et al., 2018), SuperGLUE (Wang

*Equal contribution.
'The name jiant stands for “jiant is an NLP toolkit”.

109

et al., 2019b), the edge-probing suite (Tenney et al.,
2019b), and the SentEval probing suite (Conneau
and Kiela, 2018), as well as other individual tasks
including CCG supertagging (Hockenmaier and
Steedman, 2007), SociallQA (Sap et al., 2019), and
CommonsenseQA (Talmor et al., 2019). jiant
is also the official baseline codebase for the Super-
GLUE benchmark.
jiant’s core design principles are:

e Ease of use: jiant should allow users to run
a variety of experiments using state-of-the-art
models via an easy to use configuration-driven
interface.

e Reproducibility: jiant should provide fea-
tures that support correct and reproducible ex-
periments, including logging and saving and
restoring model state.

e Availability of NLU tasks: jiant should
maintain and continue to grow a collection
of tasks useful for NLU research, especially
popular evaluation tasks and tasks commonly
used in pretraining and transfer learning.

e Availability of cutting-edge models: jiant
should make implementations of state-of-the-
art models available for experimentation.

e Open source: jiant should be free to use,
and easy to contribute to.

Early versions of jiant have already been used
in multiple works, including probing analyses (Ten-
ney et al., 2019b,a; Warstadt et al., 2019; Lin et al.,
2019; Hewitt and Manning, 2019; Jawahar et al.,
2019), transfer learning experiments (Wang et al.,
2019a; Phang et al., 2018), and dataset and bench-
mark construction (Wang et al., 2019b, 2018; Kim
etal., 2019).

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 109-117
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

1. Intermediate
Training Phase

e

2. Target Training Phase

J

Intermediate
Task Model

Target Task
Model 1

Target Task
Model N

| |

Intermediate Intermediate

Sentence

Task Trained Task Trained
(eEncg(éT::T) Sentence Sentence
9 Encoder Encoder

Figure 1: Multi-phase jiant experiment configura-
tion used by Wang et al. (2019a): a BERT sentence en-
coder is trained with an intermediate task model during
jiant’s intermediate training phase, and fine-tuned
with various target task models in jiant’s target train-
ing phase.

2 Background

Transfer learning is an area of research that uses
knowledge from pretrained models to transfer to
new tasks. In recent years, Transformer-based mod-
els like BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2019) have yielded state-of-the-art results on
the lion’s share of benchmark tasks for language un-
derstanding through pretraining and transfer, often
paired with some form of multitask learning.

jiant enables a variety of complex training
pipelines through simple configuration changes, in-
cluding multi-task training (Caruana, 1993; Liu
et al., 2019a) and pretraining, as well as the se-
quential fine-tuning approach from STILTs (Phang
etal., 2018). In STILTs, intermediate task training
takes a pretrained model like ELMo or BERT, and
applies supplementary training on a set of interme-
diate tasks, before finally performing single-task
training on additional downstream tasks.

3 jiant System Overview

3.1 Requirements and Deployment

jiant can be cloned and installed from GitHub:
https://github.com/nyu-mll/jiant. Jjiant
v1.3.0 requires Python 3.5 or later, and jiant’s
core dependencies are PyTorch (Paszke et al.,
2019), AllenNLP (Gardner et al., 2017), and
HuggingFace’s Transformers (Wolf et al., 2019).
jiant is released under the MIT License (Open
Source Initiative, 2020). jiant runs on consumer-
grade hardware or in cluster environments with
or without CUDA GPUs. The jiant repository
also contains documentation and configuration files
demonstrating how to deploy jiant in Kuber-
netes clusters on Google Kubernetes Engine.

110

3.2 jiant Components

o Tasks: Tasks have references to task data,
methods for processing data, references to
classifier heads, and methods for calculating
performance metrics, and making predictions.

Sentence Encoder: Sentence encoders map
from the indexed examples to a sentence-level
representation. Sentence encoders can include
an input module (e.g., Transformer models,
ELMo, or word embeddings), followed by an
optional second layer of encoding (usually
a BiLSTM). Examples of possible sentence
encoder configurations include BERT, ELMo
followed by a BiLSTM, BERT with a variety
of pooling and aggregation methods, or a bag
of words model.

Task-Specific Output Heads: Task-specific
output modules map representations from sen-
tence encoders to outputs specific to a task, e.g.
entailment/neutral/contradiction for NLI tasks,
or tags for part-of-speech tagging. They also
include logic for computing the corresponding
loss for training (e.g. cross-entropy).

Trainer: Trainers manage the control flow for
the training and validation loop for experi-
ments. They sample batches from one or more
tasks, perform forward and backward passes,
calculate training metrics, evaluate on a val-
idation set, and save checkpoints. Users can
specify experiment-specific parameters such
as learning rate, batch size, and more.

Config: Config files or flags are defined in
HOCON? format. Configs specify parameters
for jiant experiments including choices of
tasks, sentence encoder, and training routine.’

Configs are jiant’s primary user interface.
Tasks and modeling components are designed to be
modular, while jiant’s pipeline is a monolithic,
configuration-driven design intended to facilitate a
number of common workflows outlined in 3.3.

3.3 jiant Pipeline Overview

jiant’s core pipeline consists of the five stages
described below and illustrated in Figure 2:

*Human-Optimized Config Object Notation (lightbend,
2011). jiant uses HOCON’s logic to consolidate multiple
config files and command-line overrides into a single run
config.

*jiant configs support multi-phase training routines as
described in section 3.3 and illustrated in Figure 2.

1. Process Config

2b. Load Sentence

2a. Prepare Tasks Encoder

config

{

pretrain tasks = "record,mnli",
target tasks "boolg,mnli",

input module = "roberta-large-cased",

ReCoRD

MNLI K

RoBERTa

BoolQ

\ 4
3. Intermediate Training Phase

4. Target Training Phase

5. Evaluation Phase

ReCoRD

Y

RoBERTa

RoBERTa
BoolQ
(copy A)
RoBERTa
(copy B) MNLI

RoBERTa

BoolQ
(copy A) -
RoBERTa
(copy B) MNLI

Y

Figure 2: jiant pipeline stages using ROBERTa as the sentence encoder, ReCoRD and MNLI tasks as intermedi-
ate tasks, and MNLI and BoolQ as tasks for target training and evaluation. The diagram highlights that during target
training and evaluation phases, copies are made of the sentence encoder model, and fine tuning and evaluation for

each task are conducted on separate copies.

1. A config or multiple configs defining an exper-
iment are interpreted. Users can choose and
configure models, tasks, and stages of training
and evaluation.

2. The tasks and sentence encoder are prepared:

(a) The task data is loaded, tokenized, and
indexed, and the preprocessed task ob-
jects are serialized and cached. In this
process, AllenNLP is used to create the
vocabulary and index the tokenized data.

The sentence encoder is constructed
and (optionally) pretrained weights are
loaded.*

The task-specific output heads are cre-
ated for each task, and task heads are at-
tached to a common sentence encoder.
Optionally, different tasks can share
the same output head, as in Liu et al.
(2019a).

(b)

(©)

3. Optionally, in the intermediate phase the
trainer samples batches randomly from one
or more tasks,” and trains the shared model.

* The sentence encoder’s weights can optionally be left
frozen, or be included in the training procedure.

3 Tasks can be sampled using a variety of sample weighting
methods, e.g., uniform or proportional to the tasks’ number of
training batches or examples.

111

4. Optionally, in the target training phase, a copy
of the model is configured and trained or fine-
tuned for each target task separately.

5. Optionally, the model is evaluated on the vali-
dation and/or test sets of the target tasks.

3.4 Task and Model resources in jiant

jiant supports over 50 tasks. Task types include
classification, regression, sequence generation, tag-
ging, masked language modeling, and span predic-
tion. jiant focuses on NLU tasks like MNLI
(Williams et al., 2018), CommonsenseQA (Tal-
mor et al., 2019), the Winograd Schema Challenge
(Levesque et al., 2012), and SQuAD (Rajpurkar
etal., 2016). A full inventory of tasks and task vari-
ants is available in the jiant /tasks module.
jiant provides support for cutting-edge sen-
tence encoder models, including support for Hug-
gingface’s Transformers. Supported models in-
clude: ELMo (Peters et al., 2018), GPT (Radford,
2018), BERT (Devlin et al., 2019), XLLM (Con-
neau and Lample, 2019), GPT-2 (Radford et al.,
2019), XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2019b), and ALBERT (Lan et al., 2019).
jiant also supports the from-scratch training of
(bidirectional) LSTMs (Hochreiter and Schmidhu-
ber, 1997) and deep bag of words models (Iyyer
et al., 2015), as well as syntax-aware models such

// Config for BERT experiments.

// Get default configs from a file:
include "defaults.conf"
exp_name = "bert-large-cased"

// Data and preprocessing settings
max_sedq_len = 256

// Model settings
input_module = "bert-large-cased"
transformers_output_mode = "top"
s2s = {

attention = none
}
sent_enc = "none"
sep_embs_for_skip = 1
classifier = log_reg
// fine—-tune entire BERT model
transfer_paradigm = finetune

// Training settings
dropout = 0.1
optimizer = bert_adam
batch_size = 4
max_epochs = 10

lr = .00001

min_lr = .0000001
lr_patience = 4
patience = 20
max_vals = 10000

// Phase configuration
do_pretrain = 1
do_target_task_training =1
do_full_eval =1

write_preds = "val,test"
write_strict_glue_format = 1

// Task specific configuration
commitbank = {
val_interval = 60
max_epochs = 40

Figure 3: Example jiant experiment config file.

as PRPN (Shen et al., 2018) and ON-LSTM (Shen
et al., 2019). jiant also supports word embed-
dings such as GloVe (Pennington et al., 2014).

3.5 User Interface

jiant experiments can be run with a simple CLI:

python -m jiant \
—-—config_file roberta_with_mnli.conf \
-—-overrides "target_tasks = swag, \
run_name = swag_01"

jiant provides default config files that al-
low running many experiments without modifying
source code.

jiant also provides baseline config files that
can serve as a starting point for model development

and evaluation against GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019b) benchmarks.

More advanced configurations can be developed
by composing multiple configurations files and
overrides. Figure 3 shows a config file that over-
rides a default config, defining an experiment that
uses BERT as the sentence encoder. This config in-
cludes an example of a task-specific configuration,
which can be overridden in another config file or
via a command line override.

Because jiant implements the option to pro-
vide command line overrides with a flag, it is easy
to write scripts that launch jiant experiments
over a range of parameters, for example while
performing grid search across hyperparameters.
jiant users have successfully run large-scale ex-
periments launching hundreds of runs on both Ku-
bernetes and Slurm.

3.6 Example jiant Use Cases and Options

Here we highlight some example use cases and key
corresponding jiant config options required in
these experiments:

e Fine-tune BERT on SWAG (Zellers et al.,
2018) and SQUAD (Rajpurkar et al., 2016),
then fine-tune on HellaSwag (Zellers et al.,
2019):

input_module = bert-base-cased
pretrain_tasks = "swag, squad"
target_tasks = hellaswag

e Train a probing classifier over a frozen BERT
model, as in Tenney et al. (2019a):

input_module = bert-base-cased
target_tasks = edges-dpr
transfer_paradigm = frozen

o Compare performance of GloVe (Pennington
et al., 2014) embeddings using a BiLSTM:

input_module = glove
sent_enc = rnn

e Evaluate ALBERT (Lan et al., 2019) on the
MNLI (Williams et al., 2018) task:

input_module = albert-large-v2
target_task = mnli

3.7 Optimizations and Other Features

jiant implements features that improve run sta-
bility and efficiency:

e jiant implements checkpointing options de-
signed to offer efficient early stopping and to
show consistent behavior when restarting after
an interruption.

112

e jiant caches preprocessed task data to
speed up reuse across experiments which
share common data resources and artifacts.

jiant implements gradient accumulation
and multi-GPU, which enables training on
larger batches than can fit in memory for a
single GPU.

jiant supports outputting predictions in
a format ready for GLUE and SuperGLUE
benchmark submission.

jiant generates custom log files that cap-
ture experimental configurations, training and
evaluation metrics, and relevant run-time in-
formation.

jiant generates TensorBoard event files
(Abadi et al., 2015) for training and evaluation
metric tracking. TensorBoard event files can
be visualized using the TensorBoard Scalars
Dashboard.

3.8 Extensibility

jiant’s design offers conveniences that reduce
the need to modify code when making changes:

e jiant’s task registry makes it easy to define
a new version of an existing task using differ-
ent data. Once the new task is defined in the
task registry, the task is available as an option
in jiant’s config.

e jiant’s sentence encoder and task output
head abstractions allow for easy support of
new sentence encoders.

In use cases requiring the introduction of a new
task, users can use class inheritance to build on
a number of available parent task types including
classification, tagging, span prediction, span classi-
fication, sequence generation, regression, ranking,
and multiple choice task classes. For these task
types, corresponding task-specific output heads are
already implemented.

More than 30 researchers and developers from
more than 5 institutions have contributed code to
the jiant project.® jiant’s maintainers wel-
come pull requests that introduce new tasks or sen-
tence encoder components, and pull request are

*https://github.com/nyu-mll/jiant/
graphs/contributors

113

actively reviewed. The jiant repository’s con-
tinuous integration system requires that all pull
requests pass unit and integration tests and meet
Black’ code formatting requirements.

3.9 Limitations and Development Roadmap

While jiant is quite flexible in the pipelines that
can be specified through configs, and some com-
ponents are highly modular (e.g., tasks, sentence
encoders, and output heads), modification of the
pipeline code can be difficult. For example, train-
ing in more than two phases would require modify-
ing the trainer code.® Making multi-stage training
configurations more flexible is on jiant’s devel-
opment roadmap.

jiant’s development roadmap prioritizes
adding support for new Transformer models, and
adding tasks that are commonly used for pretrain-
ing and evaluation in NLU. Additionally, there are
plans to make jiant’s training phase configu-
ration options more flexible to allow training in
more than two phases, and to continue to refac-
tor jiant’s code to keep jiant flexible to track
developments in NLU research.

4 Benchmark Experiments

To benchmark jiant, we perform a set of ex-
periments that reproduce external results for sin-
gle fine-tuning and transfer learning experiments.
jiant has been benchmarked extensively in both
published and ongoing work on a majority of the
implemented tasks.

We benchmark single-task fine-tuning configura-
tions using CommonsenseQA (Talmor et al., 2019)
and SociallQA (Sap et al., 2019). On Common-
senseQA with RoBERTar arar, jiant achieves
an accuracy of 72.2, comparable to 72.1 reported
by Liu et al. (2019b). On SociallQA with BERT-
large, jiant achieves a dev set accuracy of 65.8,
comparable to 66.0 reported in Sap et al. (2019).

Next, we benchmark jiant’s transfer learning
regime. We perform transfer experiments from
MNLI to BoolQ with BERT-large. In this configu-
ration Clark et al. (2019) demonstrated an accuracy
improvement of 78.1 to 82.2 on the dev set, and
jiant achieves an improvement of 78.1 to 80.3.

"https://github.com/psf/black

8While not supported by config options, training in more
than two phases is possible by using jiant’s checkpointing
features to reload models for additional rounds of training.

5 Conclusion

jiant provides a configuration-driven interface
for defining transfer learning and representation
learning experiments using a bank of over 50 NLU
tasks, cutting-edge sentence encoder models, and
multi-task and multi-stage training procedures. Fur-
ther, jiant is shown to be able to replicate pub-
lished performance on various NLU tasks.

jiant’s modular design of task and sentence
encoder components make it possible for users to
quickly and easily experiment with a large num-
ber of tasks, models, and parameter configurations,
without editing source code. jiant’s design also
makes it easy to add new tasks, and jiant’s ar-
chitecture makes it convenient to extend jiant to
support new sentence encoders.

jiant code is open source, and jiant invites
contributors to open issues or submit pull request to

the jiant project repository: https://github.

com/nyu-mll/Jjiant.

Acknowledgments

Katherin Yu, Jan Hula, Patrick Xia, Raghu Pap-
pagari, Shuning Jin, R. Thomas McCoy, Roma
Patel, Yinghui Huang, Edouard Grave, Najoung
Kim, Thibault Févry, Berlin Chen, Nikita Nangia,
Anhad Mohananey, Katharina Kann, Shikha Bor-
dia, Nicolas Patry, David Benton, and Ellie Pavlick
have contributed substantial engineering assistance
to the project.

The early development of jiant took at the
2018 Frederick Jelinek Memorial Summer Work-
shop on Speech and Language Technologies, and
was supported by Johns Hopkins University with
unrestricted gifts from Amazon, Facebook, Google,
Microsoft and Mitsubishi Electric Research Labo-
ratories.

Subsequent development was possible in part by
a donation to NYU from Eric and Wendy Schmidt
made by recommendation of the Schmidt Futures
program, by support from Intuit Inc., and by sup-
port from Samsung Research under the project Im-
proving Deep Learning using Latent Structure. We
gratefully acknowledge the support of NVIDIA
Corporation with the donation of a Titan V GPU
used at NYU in this work. Alex Wang’s work
on the project is supported by the National Sci-
ence Foundation Graduate Research Fellowship
Program under Grant No. DGE 1342536. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the

114

author(s) and do not necessarily reflect the views
of the National Science Foundation. Yada Pruk-
sachatkun’s work on the project is supported in
part by the Moore-Sloan Data Science Environ-
ment as part of the NYU Data Science Services
initiative. Sam Bowman’s work on jiant dur-
ing Summer 2019 took place in his capacity as a
visiting researcher at Google.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In /ICML.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2924-2936, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Alexis Conneau and Douwe Kiela. 2018. SentEval:
An evaluation toolkit for universal sentence repre-
sentations. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2018), Miyazaki, Japan. European
Languages Resources Association (ELRA).

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32, pages
7057-7067.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A deep semantic natural language
processing platform. Unpublished manuscript avail-
able on arXiv.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 41294138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

1997.
Neural computation,

Sepp Hochreiter and Jirgen Schmidhuber.
Long short-term memory.
9(8):1735-1780.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn treebank. Com-
putational Linguistics, 33(3):355-396.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1681-1691, Beijing, China. Association for Compu-
tational Linguistics.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651-3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what dif-
ferent NLP tasks teach machines about function
word comprehension. In Proceedings of the Eighth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019), pages 235-249, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised
learning of language representations.

Hector J. Levesque, Ernest Davis, and Leora Mor-
genstern. 2012. The Winograd schema challenge.
In Proceedings of the Thirteenth International Con-
ference on Principles of Knowledge Representa-
tion and Reasoning, KR’12, pages 552-561. AAAI
Press.

115

lightbend. 2011. HOCON (human-optimized con-
fig object notation). https://github.com/
lightbend/config/blob/master/HOCON.md.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic
knowledge. In Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 241-253, Florence,
Italy. Association for Computational Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487-4496, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A robustly optimized BERT pretraining
approach.

Open Source Initiative. 2020. The MIT License.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
Torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024—-8035. Curran Asso-
ciates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532—1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence Encoders on STILTs: Supplemen-
tary Training on Intermediate Labeled-data Tasks.
Unpublished manuscript available on arXiv.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Unpublished manuscript available on arXiv.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4463—
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron C. Courville. 2018. Neural language model-
ing by jointly learning syntax and lexicon. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron C. Courville. 2019. Ordered neurons: Inte-
grating tree structures into recurrent neural networks.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149-4158, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019b. What do you
learn from context? probing for sentence structure
in contextualized word representations. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

116

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pap-
pagari, R. Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu,
Shuning Jin, Berlin Chen, Benjamin Van Durme,
Edouard Grave, Ellie Pavlick, and Samuel R. Bow-
man. 2019a. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language
modeling. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4465-4476, Florence, Italy. Association for
Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019b. SuperGLUE:
A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Infor-
mation Processing Systems 32, pages 3261-3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason
Phang, Anhad Mohananey, Phu Mon Htut, Paloma
Jeretic, and Samuel R. Bowman. 2019. Investi-
gating BERT’s knowledge of language: Five anal-
ysis methods with NPIs. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2870-2880, Hong Kong,
China. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
I (Long Papers), pages 1112—1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. Unpublished manuscript available on arXiv.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32, pages 5754-5764.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In

Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 93—
104, Brussels, Belgium. Association for Computa-
tional Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4791—
4800, Florence, Italy. Association for Computational
Linguistics.

117

The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural
Language Understanding

Xiaodong Liu*, Yu Wang*, Jianshu Ji, Hao Cheng, Xueyun Zhu, Emmanuel Awa,
Pengcheng He, Weizhu Chen, Hoifung Poon, Guihong Cao and Jianfeng Gao
Microsoft Corporation
{xiaodl, yuwan, jianshuj, chehao, xuzhu}@microsoft.com

Abstract

We present MT-DNN!, an open-source nat-
ural language understanding (NLU) toolkit
that makes it easy for researchers and de-
velopers to train customized deep learning
models. Built upon PyTorch and Transform-
ers, MT-DNN is designed to facilitate rapid
customization for a broad spectrum of NLU
tasks, using a variety of objectives (classifi-
cation, regression, structured prediction) and
text encoders (e.g., RNNs, BERT, RoBERTa,
UniLM). A unique feature of MT-DNN is
its built-in support for robust and transfer-
able learning using the adversarial multi-task
learning paradigm. To enable efficient pro-
duction deployment, MT-DNN supports multi-
task knowledge distillation, which can sub-
stantially compress a deep neural model with-
out significant performance drop. We demon-
strate the effectiveness of MT-DNN on a wide
range of NLU applications across general and
biomedical domains. The software and pre-
trained models will be publicly available at
https://github.com/namisan/mt-dnn.

1 Introduction

NLP model development has observed a paradigm
shift in recent years, due to the success in using pre-
trained language models to improve a wide range
of NLP tasks (Peters et al., 2018; Devlin et al.,
2019). Unlike the traditional pipeline approach
that conducts annotation in stages using primarily
supervised learning, the new paradigm features a
universal pretraining stage that trains a large neu-
ral language model via self-supervision on a large
unlabeled text corpus, followed by a fine-tuning
step that starts from the pretrained contextual rep-
resentations and conducts supervised learning for

*Equal Contribution.

!The complete name of our toolkit is MT?-DNN (The
Microsoft Toolkit of Multi-Task Deep Neural Networks for

Natural Language Understanding), but we use MT-DNN for
sake of simplicity.

118

individual tasks. The pretrained language models
can effectively model textual variations and dis-
tributional similarity. Therefore, they can make
subsequent task-specific training more sample ef-
ficient and often significantly boost performance
in downstream tasks. However, these models are
quite large and pose significant challenges to pro-
duction deployment that has stringent memory or
speed requirements. As a result, knowledge distil-
lation has become another key feature in this new
learning paradigm. An effective distillation step
can often substantially compress a large model for
efficient deployment (Clark et al., 2019; Tang et al.,
2019; Liu et al., 2019a).

In the NLP community, there are several well
designed frameworks for research and commer-
cial purposes, including toolkits for providing con-
ventional layered linguistic annotations (Manning
et al., 2014), platforms for developing novel neural
models (Gardner et al., 2018) and systems for neu-
ral machine translation (Ott et al., 2019). However,
it is hard to find an existing tool that supports all
features in the new paradigm and can be easily cus-
tomized for new tasks. For example, (Wolf et al.,
2019) provides a number of popular Transformer-
based (Vaswani et al., 2017) text encoders in a
nice unified interface, but does not offer multi-
task learning or adversarial training, state-of-the-art
techniques that have been shown to significantly
improve performance. Additionally, most public
frameworks do not offer knowledge distillation.
A notable exception is DistillBERT (Sanh et al.,
2019), but it provides a standalone compressed
model and does not support task-specific model
compression that can further improve performance.

We introduce MT-DNN, a comprehensive and
easily-configurable open-source toolkit for build-
ing robust and transferable natural language under-
standing models. MT-DNN is built upon PyTorch
(Paszke et al., 2019) and the popular Transformer-

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 118-126
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

based text-encoder interface (Wolf et al., 2019). It
supports a large inventory of pretrained models,
neural architectures, and NLU tasks, and can be
easily customized for new tasks.

A key distinct feature for MT-DNN is that it
provides out-of-box adversarial training, multi-task
learning, and knowledge distillation. Users can
train a set of related tasks jointly to amplify each
other. They can also invoke adversarial training
(Miyato et al., 2018; Jiang et al., 2019; Liu et al.,
2020), which helps improve model robustness and
generalizability. For production deployment where
large model size becomes a practical obstacle, users
can use MT-DNN to compress the original mod-
els into substantially smaller ones, even using a
completely different architecture (e.g., compressed
BERT or other Transformer-based text encoders
into LSTMs (Hochreiter and Schmidhuber, 1997)).
The distillation step can similarly leverage multi-
task learning and adversarial training. Users can
also conduct pretraining from scratch using the
masked language model objective in MT-DNN.
Moreover, in the fine-tuning step, users can incor-
porate this as an auxiliary task on the training text,
which has been shown to improve performance.
MT-DNN provides a comprehensive list of state-
of-the-art pre-trained NLU models, together with
step-by-step tutorials for using such models in gen-
eral and biomedical applications.

2 Design

MT-DNN is designed for modularity, flexibility,
and ease of use. These modules are built upon Py-
Torch (Paszke et al., 2019) and Transformers (Wolf
et al., 2019), allowing the use of the SOTA pre-
trained models, e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019¢) and UniLM (Dong
et al., 2019). The unique attribute of this pack-
age is a flexible interface for adversarial multi-task
fine-tuning and knowledge distillation, so that re-
searchers and developers can build large SOTA
NLU models and then compress them to small ones
for online deployment.The overall workflow and
system architecture are shown in Figure 1 and Fig-
ure 3 respectively.

2.1 Workflow
As shown in Figure 1, starting from the neural lan-

guage model pre-training, there are three different
training configurations by following the directed
arrows:

e Single-task configuration: single-task fine-

119

Natural Language Model
Pre-training

Single-task Multi-task

Fine-tuning |l Fine-tuning
- Adversarial
Training

Single-task

Knowledge
Distillation

Multi-task
Knowledge
Distillation

o T o — —
N o e o o e e o o o e e

Figure 1: The workflow of MT-DNN: train a neural lan-
guage model on a large amount of unlabeled raw text
to obtain general contextual representations; then fine-
tune the learned contextual representation on down-
stream tasks, e.g. GLUE (Wang et al., 2018); lastly,
distill this large model to a lighter one for online de-
ployment. In the later two phrases, we can leverage
powerful multi-task learning and adversarial training to
further improve performance.

tuning and single-task knowledge distillation;

e Multi-task configuration: multi-task fine-
tuning and multi-task knowledge distillation;

e Multi-stage configuration: multi-task fine-
tuning, single-task fine tuning and single-task
knowledge distillation.

Moreover, all configurations can be additionally
equipped with the adversarial training. Each stage
of the workflow is described in details as follows.

Neural Language Model Pre-Training Due to
the great success of deep contextual representa-
tions, such as ELMo (Peters et al., 2018), GPT
(Radford et al., 2018) and BERT (Devlin et al.,
2019), it is common practice of developing NLU
models by first pre-training the underlying neural
text representations (text encoders) through mas-
sive language modeling which results in superior
text representations transferable across multiple
NLP tasks. Because of this, there has been an in-
creasing effort to develop better pre-trained text
encoders by multiplying either the scale of data
(Liu et al., 2019¢) or the size of model (Raffel
et al., 2019). Similar to existing codebases (De-
vlin et al., 2019), MT-DNN supports the LM pre-
training from scratch with multiple types of objec-
tives, such as masked LM (Devlin et al., 2019) and

Multi-Task

Teacher Teacher
task 1 task T
Q1 (¥|X, 81) Qr(¥|X. 6r)

T

| |
Data of Task 1

Dy Dr

Dataof Task T

Loss Function

L(8IX,6;, ...67)
Back .
Propagation Multi-Task

Student
P.(v|x, @),
t=1..T

Figure 2: Process of knowledge distillation for MTL. A set of tasks where there is task-specific labeled training
data are picked. Then, for each task, an ensemble of different neural nets (teacher) is trained. The teacher is used
to generate for each task-specific training sample a set of soft targets. Given the soft targets of the training datasets
across multiple tasks, a single MT-DNN (student) shown in Figure 3 is trained using multi-task learning and back
propagation, except that if task ¢ has a teacher, the task-specific loss is the average of two objective functions, one
for the correct targets and the other for the soft targets assigned by the teacher.

next sentence prediction (Devlin et al., 2019).

Moreover, users can leverage the LM pre-
training, such as masked LM used by BERT, as
an auxiliary task for fine-tuning under the multi-
task learning (MTL) framework (Sun et al., 2019;
Liu et al., 2019b).

Fine-tuning Once the text encoder is trained in the
pre-training stage, an additional task-specific layer
is usually added for fine-tuning based on the down-
stream task. Besides the existing typical single-task
fine-tuning, MT-DNN facilitates a joint fine-tuning
with a configurable list of related tasks in a MTL
fashion. By encoding task-relatedness and sharing
underlying text representations, MTL is a powerful
training paradigm that promotes the model general-
ization ability and results in improved performance
(Caruana, 1997; Liu et al., 2019b; Luong et al.,
2015; Liu et al., 2015; Ruder, 2017; Collobert et al.,
2011). Additionally, a two-step fine-tuning stage
is also supported to utilize datasets from related
tasks, i.e. a single-task fine-tuning following a
multi-task fine-tuning. It also supports two popular
sampling strategies in MTL training: 1) sampling
tasks uniformly (Caruana, 1997; Liu et al., 2015);
2) sampling tasks based on the size of the dataset
(Liu et al., 2019b). This makes it easy to explore
various ways to feed training data to MTL training.
Finally, to further improve the model robustness,
MT-DNN also offers a recipe to apply adversarial
training (Madry et al., 2017; Zhu et al., 2019; Jiang

120

et al., 2019) in the fine-tuning stage.

Knowledge Distillation Although contextual text
representation models pre-trained with massive
text data have led to remarkable progress in NLP,
it is computationally prohibitive and inefficient
to deploy such models with millions of parame-
ters for real-world applications (e.g. BERT large
model has 344 million parameters). Therefore, in
order to expedite the NLU model learned in ei-
ther a single-task or multi-task fashion for deploy-
ment, MT-DNN additionally supports the multi-
task knowledge distillation (Clark et al., 2019; Liu
et al., 2019a; Tang et al., 2019; Balan et al., 2015;
Ba and Caruana, 2014), an extension of (Hinton
et al., 2015), to compress cumbersome models into
lighter ones. The multi-task knowledge distillation
process is illustrated in Figure 2. Similar to the
fine-tuning stage, adversarial training is available
in the knowledge distillation stage.

2.2 Architecture

Lexicon Encoder (I/;): The input X
{1, ...,z } is a sequence of tokens of length m.
The first token x; is always a specific token, e.g.
[CLS] for BERT Devlin et al. (2019) while <s>
for RoBERTa Liu et al. (2019¢). If X is a pair of
sentences (X1, X3), we separate these sentences
with special tokens, e.g. [SEP] for BERT and
[</s>] for ROBERTa. The lexicon encoder maps
X into a sequence of input embedding vectors,

Be(cl%) Sim (X,,X7) R(RIP, H) Rel(Q, 4) R.(41D, Q) P.(m|D)
(e.g., probability of (e.g., semantic (e.g., probability of (e.g., relevance score (e.g., probability answer (e.g., probability
labeling text X by c) similarity between X, logic relationship R of candidate answer 4 A given document D and masked tokens given
and X,) between P and H) given query @) query Q) document D)
Task specific T T T T T T
Qutput layers
Single-Sentence Pairwise Text Pairwise Text Pairwise Machine Reading
Do L . I K i Masked Language
Classification Similarity Classification Ranking Comprehension Model
(e.g., CoLA, S5T-2) (e.g., STS-B) (e.g., RTE, MNLI, ({e.g., QNLI) (e.g., SQUAD)
WNLI, QQP, MRPC}
15: context embedding vectors, one for each token.
Encoder, e.g., Transformer, LSTM, (contextual embedding layers)
Shared T
layers |

1,: input embedding vectors, one each token.

[

Lexicon Encoder (word, position and segment)

i

X: a sentence or a pair of sentences

Figure 3: Overall System Architecture: The lower layers are shared across all tasks while the top layers are task-
specific. The input X (either a sentence or a set of sentences) is first represented as a sequence of embedding
vectors, one for each word, in /1. Then the encoder, e.g a Transformer or recurrent neural network (LSTM) model,
captures the contextual information for each word and generates the shared contextual embedding vectors in 5.
Finally, for each task, additional task-specific layers generate task-specific representations, followed by operations
necessary for classification, similarity scoring, or relevance ranking. In case of adversarial training, we perturb
embeddings from the lexicon encoder and then add an extra loss term during the training. Note that for the

inference phrase, it does not require perturbations.

one for each token, constructed by summing the
corresponding word with positional, and optional
segment embeddings.

Encoder (/3): We support a multi-layer bidirec-
tional Transformer (Vaswani et al., 2017) or a
LSTM (Hochreiter and Schmidhuber, 1997) en-
coder to map the input representation vectors (1)
into a sequence of contextual embedding vectors
C € R¥™™. This is the shared representation
across different tasks. Note that MT-DNN also
allows developers to customize their own encoders.
For example, one can design an encoder with few
Transformer layers (e.g. 3 layers) to distill knowl-
edge from the BERT large model (24 layers), so
that they can deploy this small mode online to meet
the latency restriction as shown in Figure 2.

Task-Specific Output Layers: We can incorpo-
rate arbitrary natural language tasks, each with its
task-specific output layer. For example, we imple-
ment the output layers as a neural decoder for a
neural ranker for relevance ranking, a logistic re-
gression for text classification, and so on. A multi-
step reasoning decoder, SAN (Liu et al., 2018a,b)
is also provided. Customers can choose from ex-
isting task-specific output layer or implement new

121

one by themselves.

3 Application

In this section, we present a comprehensive set
of examples to illustrate how to customize MT-
DNN for new tasks. We use popular benchmarks
from general and biomedical domains, including
GLUE (Wang et al., 2018), SNLI (Bowman et al.,
2015), SciTail (Khot et al., 2018), SQuAD (Ra-
jpurkar et al., 2016), ANLI (Nie et al., 2019), and
biomedical named entity recognition (NER), rela-
tion extraction (RE) and question answering (QA)
(Lee et al., 2019). To make the experiments repro-
ducible, we make all the configuration files publicly
available. We also provide a quick guide for cus-
tomizing a new task in Jupyter notebooks.

3.1 General Domain Natural Language
Understanding Benchmarks

e GLUE. The General Language Understanding
Evaluation (GLUE) benchmark is a collection of
nine natural language understanding (NLU) tasks.
As shown in Table 1, it includes question an-
swering (Rajpurkar et al., 2016), linguistic accept-
ability (Warstadt et al., 2018), sentiment analy-

Corpus Task Formulation
GLUE
CoLA Acceptability Classification
SST Sentiment Classification
MNLI NLI Classification
RTE NLI Classification
WNLI NLI Classification
QQP Paraphrase Classification
MRPC Paraphrase Classification
QNLI QA/NLI Classification
QNLI v1.0 | QA/NLI Pairwise Ranking
STS-B Similarity Regression
Others
SNLI NLI Classification
SciTail NLI Classification
ANLI NLI Classification
SQuAD MRC Span Classification

Table 1: Summary of the four benchmarks: GLUE,
SNLI, SciTail and ANLI.

Model MNLIRTE|QNLI|SSTMRPC
Acc |Acc| Acc |Acc| F1
BERT 84.5 [63.5| 91.1 192.9| 89.0
BERT + MTL 85.3 179.1| 91.5 193.6| 89.2
BERT + AdvTrain| 85.6 |71.2] 91.6 {93.0{ 91.3

Table 2: Comparison among single task, multi-Task
and adversarial training on MNLI, RTE, QNLI, SST
and MPRC in GLUE.

Model Dev | Test
BERT] arge (Nie et al., 2019) 49.3 | 44.2
RoBERTa; arge (Nie et al., 2019) | 53.7 | 49.7
RoBERTa-LARGE + AdvTrain 57.1 | 57.1

Table 3: Results in terms of accuracy on the ANLI.

sis (Socher et al., 2013), text similarity (Cer et al.,
2017), paraphrase detection (Dolan and Brockett,
2005), and natural language inference (NLI) (Da-
gan et al., 2006; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009; Levesque
et al., 2012; Williams et al., 2018). The diversity of
the tasks makes GLUE very suitable for evaluating
the generalization and robustness of NLU models.
e SNLI. The Stanford Natural Language Inference
(SNLI) dataset contains 570k human annotated sen-
tence pairs, in which the premises are drawn from
the captions of the Flickr30 corpus and hypothe-

ses are manually annotated (Bowman et al., 2015).
This is the most widely used entailment dataset for
NLI.

e SciTail This is a textual entailment dataset de-
rived from a science question answering (SciQ)
dataset (Khot et al., 2018). In contrast to other
entailment datasets mentioned previously, the hy-
potheses in SciTail are created from science ques-
tions while the corresponding answer candidates
and premises come from relevant web sentences
retrieved from a large corpus.

e ANLI. The Adversarial Natural Language Infer-
ence (ANLI, Nie et al. (2019)) is a new large-scale
NLI benchmark dataset, collected via an iterative,
adversarial human-and-model-in-the-loop proce-
dure. Particular, the data is selected to be difficult
to the state-of-the-art models, including BERT and
RoBERTa.

e SQuAD. The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) contains
about 23K passages and 100K questions. The pas-
sages come from approximately 500 Wikipedia
articles and the questions and answers are obtained
by crowdsourcing.

Following (Devlin et al., 2019), table 2 compares
different training algorithm: 1) BERT denotes a sin-
gle task fine-tuning; 2) BERT + MTL indicates that
it is trained jointly via MTL; at last 3), BERT + Ad-
vTrain represents that a single task fine-tuning with
adversarial training. It is obvious that the both MLT
and adversarial training helps to obtain a better re-
sult. We further test our model on an adversarial
natural language inference (ANLI) dataset (Nie
et al., 2019). Table 3 summarizes the results on
ANLI. As Nie et al. (2019), all the dataset of ANLI
(Nie et al., 2019), MNLI (Williams et al., 2018),
SNLI (Bowman et al., 2015) and FEVER (Thorne
et al., 2018) are combined as training. ROBERTa-
LARGE+AdvTrain obtains the best performance
compared with all the strong baselines, demonstrat-
ing the advantage of adversarial training.

3.2 Biomedical Natural Language
Understating Benchmarks

There has been rising interest in exploring natu-
ral language understanding tasks in high-value do-
mains other than newswire and the Web. In our
release, we provide MT-DNN customization for
three representative biomedical natural language
understanding tasks:

e Named entity recognition (NER): In biomedical
natural language understanding, NER has received

122

greater attention than other tasks and datasets are
available for recognizing various biomedical enti-
ties such as disease, gene, drug (chemical).

e Relation extraction (RE): Relation extraction is
more closely related to end applications, but an-
notation effort is significantly higher compared to
NER. Most existing RE tasks focus on binary re-
lations within a short text span such as a sentence
of an abstract. Examples include gene-disease or
protein-chemical relations.

e Question answering (QA): Inspired by interest
in QA for the general domain, there has been
some effort to create question-answering datasets
in biomedicine. Annotation requires domain ex-
pertise, so it is significantly harder than in general
domain, where it is to produce large-scale datasets
by crowdsourcing.

The MT-DNN customization can work with stan-
dard or biomedicine-specific pretraining models
such as BioBERT, and can be directly applied to
biomedical benchmarks (Lee et al., 2019).

3.3 Extension

1B snli

2 «+data_format::PremiseAndOneHypothesis
3 ++task layer type::LinearlLayer
40 - -labels

5 -contradiction

6 ‘neutral

7 -entailment

8 - -metric_meta

9 *ACC
10 --loss: -CeCriterion
11 --kd loss:-MseCriterion
12 --adv_loss:-KlCriterion
13 *-n_class:-3
14 --task type:-Classificatiomn

Figure 4: The configuration of SNLI

We will go though a typical Natural Language
Inference task, e.g. SNLI, which is one of the
most popular benchmark, showing how to apply
our toolkit to a new task. MT-DNN is driven by
configuration and command line arguments. Firstly,
the SNLI configuration is shown in Figure 4. The
configuration defines tasks, model architecture as
well as loss functions. We briefly introduce these
attributes as follows:

1. data_format is a required attribute and it de-
notes that each sample includes two sentences
(premise and hypothesis). Please refer the
tutorial and API for supported formats.

123

. task_layer_type specifies architecture of the
task specific layer. The default is a “linear
layer”.

. labels Users can list unique values of labels.
The configuration helps to convert back and
forth between text labels and numbers during
training and evaluation. Without it, MT-DNN
assumes the label of prediction are numbers.

. metric_meta is the evaluation metric used for
validation.

. loss is the loss function for SNLI. It also sup-
ports other functions, e.g. MSE for regression.

. kd_loss is the loss function in the knowledge
distillation setting.

. adv_loss is the loss function in the adversarial
setting.

. n_class denotes the number of categories for

SNLI.

task_type specifies whether it is a classification

task or a regression task.
Once the configuration is provided, one can train

the customized model for the task, using any sup-
ported pre-trained models as starting point.

MT-DNN is also highly extensible, as shown in
Figure 4, loss and task_layer_type point to existing
classes in code. Users can write customized classes
and plug into MT-DNN. The customized classes
could then be used via configuration.

0.

4 Conclusion

Microsoft MT-DNN is an open-source natural lan-
guage understanding toolkit which facilitates re-
searchers and developers to build customized deep
learning models. Its key features are: 1) support for
robust and transferable learning using adversarial
multi-task learning paradigm; 2) enable knowledge
distillation under the multi-task learning setting
which can be leveraged to derive lighter models
for efficient online deployment. We will extend
MT-DNN to support Natural Language Generation
tasks, e.g. Question Generation, and incorporate
more pre-trained encoders, e.g. T5 (Raffel et al.,
2019) in future.

Acknowledgments

We thank Liyuan Liu, Sha Li, Mehrad Morad-
shahi and other contributors to the package, and
the anonymous reviewers for valuable discussions
and comments.

References

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in neural information
processing systems, pages 2654-2662.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Mur-
phy, and Max Welling. 2015. Bayesian dark knowl-
edge. In Advances in Neural Information Process-
ing Systems, pages 3438-3446.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and
Danilo Giampiccolo. 2006. The second PASCAL
recognising textual entailment challenge. In Pro-
ceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In In Proc Text Analysis Conference (TAC’09.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41-75.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D Manning, and Quoc V Le.
2019. Bam! born-again multi-task networks for
natural language understanding. arXiv preprint
arXiv:1907.04829.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,

12(Aug):2493-2537.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual
Object Classification, and Recognizing Textual En-
tailment, MLCW’05, pages 177-190, Berlin, Hei-
delberg. Springer-Verlag.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

124

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Informa-
tion Processing Systems, pages 13042—-13054.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint arXiv:1803.07640.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 1-9, Prague. Association
for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through princi-
pled regularized optimization. arXiv preprint
arXiv:1911.03437.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
SciTail: A textual entailment dataset from science
question answering. In AAAL

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2019. Biobert: pre-trained biomed-
ical language representation model for biomedical
text mining. arXiv preprint arXiv:1901.08746.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
2020. Adversarial training for large neural language
models. arXiv preprint arXiv:2004.08994.

Xiaodong Liu, Kevin Duh, and Jianfeng Gao. 2018a.
Stochastic answer networks for natural language in-
ference. arXiv preprint arXiv:1804.07888.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 912-921.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019a. Improving multi-task deep
neural networks via knowledge distillation for
natural language understanding. arXiv preprint
arXiv:1904.09482.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019b. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487-4496, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xiaodong Liu, Yelong Shen, Kevin Duh, and Jianfeng
Gao. 2018b. Stochastic answer networks for ma-
chine reading comprehension. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019c.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversar-
ial attacks. arXiv preprint arXiv:1706.06083.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55-60.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pat-
tern analysis and machine intelligence, 41(8):1979—
1993.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2019. Ad-
versarial nli: A new benchmark for natural language
understanding. arXiv preprint arXiv:1910.14599.

125

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024-8035.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631-1642.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2019. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. arXiv preprint arXiv:1907.12412.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—-6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Chen Zhu, Yu Cheng, Zhe Gan, Sigi Sun, Thomas
Goldstein, and Jingjing Liu. 2019. Freelb: En-
hanced adversarial training for language understand-
ing. arXiv preprint arXiv:1909.11764.

126

LinggleWrite: a Coaching System for Essay Writing

Chung-Ting Tsai', Jhih-Jie Chen?, Ching-Yu Yang?, Jason S. Chang?
nstitute of Information Systems and Applications
?Department of Computer Science
National Tsing Hua University
{jjc, jason}@nlplab.cc

Abstract

This paper presents LinggleWrite, a writing
coach that provides writing suggestions, as-
sesses writing proficiency levels, detects gram-
matical errors, and offers corrective feedback
in response to user’s essay. The method in-
volves extracting grammar patterns, training
models for automated essay scoring (AES) and
grammatical error detection (GED), and finally
retrieving plausible corrections from a n-gram
search engine. Experiments on public test
sets indicate that both AES and GED models
achieve state-of-the-art performance. These re-
sults show that LinggleWrite is potentially use-
ful in helping learners improve their writing
skills.

1 Introduction

Essay writing has been an essential part of language
assessments (e.g., TOEFL, IELTS) but a challeng-
ing task for most students. To write a good essay
not only requires sustained practice, but also de-
mands instructional feedback from teachers. How-
ever, pressed with teaching load, teachers can only
provide limited corrective feedback on students’
essays. This has encouraged the development of
computer-assisted writing systems to meet grow-
ing needs of automated feedback as a means of
writing coaching. Computer Assisted Language
Learning (CALL) has been an active field of com-
putational linguistics and pedagogy. Some exist-
ing computer aided writing systems detect and cor-
rect grammatical errors, and give an overall score
(e.g., Grammarly (www .grammarly. com) and Pigai
(www.pigai.org)).

Instead of directly correcting users’
says, Write&lmprove (writeandimprove.com)
only marks highly-likely incorrect words on the
grounds that automated grammatical error correc-
tion is still very imprecise. Recently, researchers
have begun to apply neural network models to both

€S-

127

automated essay scoring (AES) and grammatical
error detection (GED), gaining significant improve-
ment (e.g., Dong et al. (2017); Rei and Sggaard
(2018)). However, these Web services fall short of
providing sufficient “coaching” information (e.g.,
grammar patterns, collocations, examples) to learn-
ers to improve their writing skills.

Provide writing suggestions as a user types away
or during editing is another emerging approach
to coaching the learner. For example, WriteA-
head (writeahead.nlpweb.org) provides context-
sensitive suggestions, right in the process of writ-
ing or self-editing. Google recently released Smart
Compose that offers users word or phrase comple-
tion suggestions while writing an email (Chen et al.,
2019).

In line with these systems, we also suggest that
feedback on learners’ writings could be more effec-
tive if a system not only acts as an editor provid-
ing direct corrections, but also a coach performing
grammatical error detection and offering interactive
suggestions (Hearst, 2015). Moreover, illustrating
word usage with bilingual examples can better help
non-native English learners. This would enhance
learners’ skills of self-editing and pave the way to
lifelong language learning.

With that in mind, we developed a web-based
system LinggleWrite (£.1inggle.com) with many
assistive writing functions. With LinggleWrite
users can write or paste their essays and get in-
formative feedback including just-in-time writing
suggestions, essay scoring, error detection, and
related word usage information retrieved from
Linggle(linggle . com).

2 The LinggleWrite System

The system consists of 4 components: (1) Inter-
active Writing Suggestion, (2) Essay Scoring, (3)
Grammatical Error Detection, and (4) Corrective

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 127-133
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

| received your letter, so | am writing to you to
give you some informations about me.

I would like to travel on July because | finish s
chool on June and | go to the Great Britain Au
gust for one month.

Sentence-level feedback

This seems to be a good sentence.
This sentence could maybe be improved.
There are some problems in this sentence.

Writing Suggestion

A

FINISH

[Vvn]l32 Vschool, V job, V sentence
She finished (the concert) with a song from her first album.
WIAE CE—RBEPH—EHIER (BEREH) B -
[vadv]15 V third, V first, V fourth
She finished second (= in second place) in the finals.
WEREFEGTE_S °
[V -ing]l 8 Vreading, V eating, V talking
Have you finished reading that magazine?
1RESTAPE RS T 05 7
[Vwithn] 7 V with point, V with yard, V with record
The play finishes with a wedding.
ISHIEG L — B 1E4E T o

[Check again

Keep writing

Writing Proficiency
B

CEFR Level A2

e

Select a sentence to detect grammatical errors

| received your letter, so | am writing to you to give you some informations about me. |
would like to travel on July because | finish school on June and | go to the Great Britain
August for one month.

Click an error marked with [Insert to receive
suggestions

1 would like to travel £f) July because | finish school £ June and | go to (I Great
Britain [INSERT August for one month.

Example

e 2

* From the date upon which | am writing until the close of school in June the
work will consist of longer runs as the speed of the students can safely be
increased .

* Ina major speech at the Central Party School in June last year , Hu exhorted

school _ June

N-gram Percent Count

school in June 62.1%

Figure 1: The screenshot of the system LinggleWrite

Feedback. The first component, Writing sugges-
tion, will help users with word usage information
while writing. The other three components are
aimed at providing evaluation and constructive
feedback after a user finishes writing. The sys-
tem is available at £.1inggle.com. We’ll describe
each component as follows.

2.1 Interactive Writing Suggestion

When a user begins to write an essay, the system
responds with prompts of related grammar patterns,
collocations, and bilingual examples. These contin-
uous writing suggestions are based on the last word
or phrase the user has entered. Additionally, the
user can get information of a certain word by mous-
ing over it. For example, suggestions for “finish”
are shown in Section A of Figure 1 (bottom left).
Once finishing the writings, the user can click the
Check button triggering the following components.

2.2 Essay Scoring

After accepting an essay longer than 30 words,
LinggleWrite assesses user’s writing proficiency.
The assessment is provided in the form of CEFR
Levels' (A1-C2) as shown in Section B of Figure 1
(top right).

"https://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions

2.3 Grammatical Error Detection

LinggleWrite tries to detect potential grammatical
errors in each sentence. Sentences with potential
errors are marked with yellow (1 possible error)
or orange (2 or more possible errors) background,
as shown in Section C of Figure 1 (center right).
The user can click on an erroneous sentence to de-
mand GED results. LinggleWrite marks suspicious
words with orange, red or green, suggesting to in-
sert a word, delete the word, or replace the word
respectively, as shown in Section C of Figure 1
(center right). Subsequently, the user can click on
an error to display plausible corrective suggestions
returned by a n-gram search engine.

2.4 Corrective Feedback

We present corrective suggestions according to the
context and the edit type (i.e., insertion, deletion,
replacement), using an existing linguistic search
engine, Linggle (Boisson et al., 2013). An exam-
ple of corrective suggestions for the sentence “/
finished school on June” is shown in Section E in
Figure 1 (bottom right). Linggle Write detects “on’
probably requiring a replacement edit. We convert
the detected error into a Linggle query to search
for more appropriate expressions, and provide the
user with the search result “school in June’ for

bl

128

considerations.

3 Method

To develop LinggleWrite, we extract the most com-
mon grammar patterns from a corpus in order to
provide writing suggestions. Additionally, we de-
velop models for AES and GED based on annotated
learner corpora. We retrieve corrective feedback
by querying a linguistic search engine according to
the predicted edit type of an error. We describe the
process in detail in the following subsections.

3.1 Extracting Grammar Patterns

We extract grammatical patterns, collocations and
bilingual examples for keywords from a given cor-
pus to provide writing suggestions in the interactive
writing session. Our extraction process includes
four steps.

In Step (1), we build a dictionary of grammar
patterns of verbs, nouns and adjectives based on
Francis et al. (1996). For example, the grammar
patterns of the word play are V n, V n in n, etc.

In Step (2), we parse sentences from Corpus
of Contemporary American English (COCA) and
Cambridge online dictionary (CAM) using a de-
pendency parser to extract grammar patterns and
collocations based on the templates in Step (1). For
example, the extracted grammar pattern and collo-
cation from the sentence “Schools play an impor-
tant role in society” are “V n in n” and “society”.

In Step (3), for each keyword, we count and
filter out patterns and collocations based on mean
and standard deviation. Finally, we use GDEX
method (Kilgarriff et al., 2008) to select the best
monolingual and bilingual examples from COCA
and CAM for each pattern.

3.2 Scoring an Essay

We formulate AES as a regression problem and
train a neural model for this task. We investigate
two neural network architectures with different
input formats: word-based models and sentence-
based models, which learn essay representation
based on word sequences and sentence sequences
respectively. We build our word-based models
upon CNN, LSTM and Bi-LSTM (Taghipour and
Ng, 2016), while sentence-level models upon the
LSTM-LSTM and LSTM-CNN framework (Dong
et al., 2017). Moreover, we further extend both
sentence-based models and word-based models by
adding the attention mechanism after the neural

layer, attempting to select the sentences or words
to focus on for effective scoring. Our models are
similar to other sentence-based and word-based
neural AES model (e.g., Taghipour and Ng (2016);
Dong et al. (2017)), but we use a different training
set, EFCAMDAT (Geertzen et al., 2013) and output
format, CEFR levels, to train our model.

3.3 Detecting Grammatical Errors

We formulate GED as a sequence labeling problem
and develop a neural sequence labeling model to
deal with the problem.

An existing GED method proposed by Rei and
Yannakoudakis (2016) takes tokens as input and
predicts whether each token is correct in the sen-
tence as output. We extend their model by changing
the binary error tag schema (Incorrect and Correct)
into a more informative DIRC tag schema (Delete,
Insert, Replace, and Correct), with the goal of pro-
viding learners more specific suggestions (i.e., the
edit type of an error) to revise their essay. We train
a GED model based on Bi-LSTM with a Condi-
tional Random Field layer (CRF). To improve the
GED model, we add Bidirectional Encoder Repre-
sentations from Transformers (BERT), which sig-
nificantly outperforms other embedding schemes
in many tasks (Devlin et al., 2018). In addition, we
also add a character-based word embedding, Flair,
which captures more contextual information (Ak-
bik et al., 2018). Our training process is divided
into two steps.

In Step (1), we convert sentences with error anno-
tations into unedited sentences and DIRC tags (i.e.,
<[-,-]> for Delete, tokens preceded by <{+,+}>
for Insert, <[-,-]{+,+}> for Replace and tokens
with no edit tag for Correct). For example, the
sentence “I believe there are {+a+} lot of [-why-
]{+ways+} enjoy [-the-] shopping.” is converted to
“I believe there are lot of why enjoy the shopping
2 and “<CCCCICRCDCC>". These two
sequences are treated as the input and output of
a neural GED model respectively. Note that the
token to be inserted ({+a+}) is not in the unedited
sentence, and the right token /ot is labeled I instead.

In Step (2), we train a neural GED model for a
grammatical error detector using a BILSTM-CRF
architecture. We first combine BERT embeddings
(Devlin et al., 2018) with Flair embeddings (Akbik
et al., 2018) to form word embeddings and then
encode each token in a given sentence into a fixed-
length vector. Finally, these embeddings are fed

129

Operators Corresponding edit types Description Example

* Insertion Edit match zero or any words good * this

_ Replacement Edit match one word not _me to

? Deletion Edit search for TERM optionally discuss 7about this issue

Table 1: Query operator instruction

into BiLSTM-CRF network to compute and output
a DIRC label sequence.

3.4 Retrieving Suggestions for Detected
Errors

To retrieve writing suggestions for detected errors,
we design queries for each edit type to search for
more plausible corrections using Linggle, a linguis-
tic search engine on a web-based dataset of one
trillion words (Boisson et al., 2013).

Linggle has different query functions and oper-
ators to search word usage in context as shown in
Figure 1. These query functions enable the sys-
tem to query zero, one or multiple words. For
example, “play * role” is intended to search for a
maximum span of three intervening words. We use
three operators (“?”, “*”, “_”) to retrieve corrective
suggestions for the three edit types, as described
below.

Deletion edit: We use the “?” operator before a
word tagged with “D” to search for n-grams with
or without the word in question. For example, re-
ceiving the sentence “We discuss about this issue.”
as input, our GED model outputs the sequence “C
CD C C C”. Then, we generate the query “discuss
?about this issue” to search Linggle for corrective
suggestions.

Insertion edit: We use the “*” operator before
a word tagged with “I”” to search for ngrams with
additional words around this word. For example, an
insertion edit on “this” is detected in the sentence
“I am good this sport.” (the GED model output “C
C CIC”), and thus a Linggle query are formulated
as “good * this”.

Replacement edit: A word tagged with “R” in-
dicates replacement required. We first check if the
word is misspelled using enchant* library. If mis-
spelled, we replace the word with candidates by
enchant (e.g., ‘moey’ — ‘money/mopey/mosey’).
If not, we use the “_” operator to search for alterna-
tive n-grams. For example, the GED output of the
sentence “The driver did not accept me to get on

*https://github.com/AbiWord/enchant

the bus.” wouldbe “CCCCRCCCCCCCC.
Thus, we use the query “not _ me to” to search for
replacement.

4 Experiments

4.1 Datasets

We used the EF-Cambridge Open Language
Database (EFCAMDAT) (Geertzen et al., 2013)
to train our AES model. This dataset contains
about 1.2 million essays with over 83 million words
written by approximately 174,000 learners with a
wide range of CEFR levels (A1-C2) (language pro-
ficiency level). We used the student essays as input
and the CEFR level assigned by a grader as output
to train the AES model. Due to the imbalanced
distribution of levels as shown in Table 2, we ran-
domly selected 1,903 essays from each level and
then used 5-fold cross validation for training and
evaluation.

CEFR Level #Essays #Training
Al 460,614 1,903
A2 300,188 1,903
B1 166,453 1,903
B2 60,844 1,903
Cl 14,551 1,903
C2 1,903 1,903

Table 2: Description of the EFCAMDAT dataset

To train the GED model, we use the First Certifi-
cate in English dataset (FCE). This dataset contains
1,224 essays written by English learners who took
the First Certificate in English (FCE) exam. These
essays have been manually tagged based on 77 er-
ror types (Yannakoudakis et al., 2011). We used
30,953 sentences from FCE for training, 2,720 for
testing, and 2,222 for development. We followed
the approach of Rei and Yannakoudakis (2016)
in our experiment, but converted the dataset into
DIRC format as described in Section 3.3.

130

Binary Task DIRC Task

Model Incorrect tag Insertion tag Replacement tag Deletion tag

Prec. Rec. Fyps | Prec. Rec. Fjys | Prec. Rec. Fps | Prec. Rec. Fys
Rei and Sggaard (2018) 655 286 52
BiLSTM-CRF + word2vec 89 138 426 572 121 329 | 829 224 539 67.6 3.1 132
BiLSTM-CRF + Flair 689 246 50.7| 53.8 202 404 | 72.8 283 554|596 10.1 30.17
BiLSTM-CRF + BERT 71.1 357 594 | 532 238 427 | 73.1 36.1 60.7| 539 241 432
BILSTM-CRF + BERT +Flair | 72.3 36.7 60.6 | 546 253 443 | 735 406 633 | 59 249 46.3

Table 3: Evaluation on FCE-public test set in DIRC task and binary task

4.2 Hyperparameters

For the AES model, we optimized the trained
model using RMSProp (Dauphin et al., 2015) opti-
mizer with learning rate 0.001 and the maximum
gradient norm was set to 0.9. We used pre-trained
100-dimensional GloVe vectors (Pennington et al.,
2014) as input. The hidden layer size of LSTM
and Bi-LSTM was set to 100. For CNN models,
we used a window size of 5 and hidden layer size
of 100. We applied dropout on the neural network
layer to avoid overfitting, with dropout probabil-
ities set to 0.2. The batch size was 32 and each
model was trained for 50 epochs.

For the GED model, we set parameters differ-
ent from previous work (Rei and Yannakoudakis,
2016). We use the publicly available pre-
trained word embeddings GoogleNews word vec-
tors (word2vec) (Mikolov et al., 2013), Flair (Ak-
bik et al., 2018), and BERT® (Devlin et al., 2018)
to represent words. Flair embeddings were trained
on the 1-billion word corpus used in Chelba et al.
(2013) and the embedding size (both forward and
backward) was 2048. As for BERT, we utilized
bert-base-uncased model which is trained on the
English Wikipedia (2.5G words) and BooksCor-
pus (0.8G words). We employed 2-layer Bi-LSTM
with CRF to develop for GED model and set the
hidden layer size of Bi-LSTM to 256. We used
SGD optimizer with learning rate 0.01, with maxi-
mum gradient norm set to 1. We applied dropout on
both embedding and Bi-LSTM layers with dropout
probabilities 0.5. We trained the network for 150
epochs and selected the best model with the highest
F1 score on the development set.

5 Evaluation

For the AES task, we adopted quadratic weighted
Kappa (QWK) as our evaluation metric, which

3https://github.com/google-research/bert#pre-trained-
models

131

was used in Automated Student Assessment Prize
(ASAP) competition and several AES researches
(Taghipour and Ng, 2016; Vaswani et al., 2017;
Dong et al., 2017). For the GED task, we follow
the previous research by Rei and Yannakoudakis
(2016) and use precision, recall and Fy 5 to evaluate
our GED model.

Table 3 presents the results of different GED
models on the FCE testset with binary and DIRC
format to compare our results with the state-of-the-
art method proposed by Rei and Sggaard (2018)
using the binary schema. Table 3 shows that
BiLSTM-CRF+BERT+Flair performs substan-
tially better than the other GED models and achieve
state-of-the-art performance on the FCE test set. In-
terestingly, we note that the model with word2vec
pre-trained word embeddings achieves the highest
precision but the lowest recall. As for the DIRC
schema, BiLSTM-CRF+BERT+Flair performs
the best among all models. Importantly, the DIRC
model performs comparably to the binary model
while providing more informative feedback (i.e.,
the edit type) for learners to self-edit their essays.
It is also worth noting that for GED and GEC tasks
multiple answers are acceptable and there is low
inter-annotator agreement (Rozovskaya and Roth,
2010). Bryant and Ng (2015) pointed out even hu-
man annotators can only achieve 72.8 Fj 5 score
at the best against the gold standard annotations of
multiple annotators in GEC tasks. Thus, it is fair to
say that the performance of our model against one
gold standard annotation are underestimated and
not far from human annotators, thus acceptable for
an application.

Table 4 shows results of different network archi-
tectures on the AES task. As we can see in Ta-
ble 4, LSTN-LSTM-ATT achieves the best perfor-
mance among all models. In addition, we find that
sentence-level models perform better than word-
level ones in general. Furthermore, we also ob-
serve that the model with attention mechanism per-

Model Model Type Avg. QWK score
CNN Word-level 0.902
LSTM Word-level 0.927
Bi-LSTM Word-level 0.921
LSTM + attention Word-level 0.931
CNN-CNN Sentence-level 0.934
LSTM-LSTM Sentence-level 0.937
CNN-LSTM-ATT Sentence-level 0.952
LSTM-LSTM-ATT Sentence-level 0.957

Table 4: Average QWK scores on EFCAMDAT

forms slightly better than the other without atten-
tion mechanism. Besides, the result (i.e., QWK
score 0.957) shows our neural models are effi-
cient to predict scores in EFCAMDAT, compar-
ing with other datasets as Automated Student As-
sessment Prize* (ASAP). Trained on ASAP, the
character-based model with CNN-LSTM proposed
by Taghipour and Ng (2016) scores QWK 0.761,
and the sentence-based model with LSTM-CNN-
att proposed by Taghipour and Ng (2016) achieves
QWK score 0.764.

6 Conclusion and Future Work

In summary, we have presented an writing environ-
ment that supports interactive writing suggestions,
scoring, error detection and corrective feedback.
For the interactive writing task, we provide gram-
matical suggestions, collocations, and bilingual ex-
amples, to guide the user towards writing fluently.
For the GED task, we proposed a new label schema,
DIRC. Experiments show that the proposed label
schema achieves comparable performance (on bi-
nary task) while providing more informative feed-
back. In addition, we leverage an existing linguistic
search engine to provide corrective suggestions for
each error type.

Many avenues exist for future research and im-
provement of our system. For example, the method
for introducing additional training data or generat-
ing artificial training data could be implemented
to improve the performance. An interesting direc-
tion to explore is re-ranking corrective suggestions,
so that the suggestion more relevant to the origi-
nal sentence goes to the top. Yet another direction
of research would be to detect fine-grained error
types. Finally, our system currently providing ad-
ditional Chinese translations for English examples.
Obviously we could easily provide languages trans-

*https://www.kaggle.com/c/asap-aes

132

lations by changing a bilingual dictionary.
Acknowledgment

This work is supported by Ministry of Science
and Technology, Taiwan under Grant No. 109-
2639-M-007-001-, No. 109-2634-F-001-010-, and
National Tsing Hua University under Grant No.
109Q2729E1.

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638—-1649. Association for Computational Linguis-
tics.

Joanne Boisson, Ting-Hui Kao, Jian-Cheng Wu, Tzu-
Hsi Yen, and Jason S Chang. 2013. Linggle: a web-
scale linguistic search engine for words in context.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 139—144.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammati-
cal error correction? In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), volume 1, pages 697-707.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail smart compose: Real-time assisted writing.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data

Mining, pages 2287-2295.

Yann N. Dauphin, Harm de Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. In Proceedings of the 28th In-
ternational Conference on Neural Information Pro-
cessing Systems - Volume I, NIPS’15, pages 1504—
1512, Cambridge, MA, USA. MIT Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based recurrent convolutional neural network for au-
tomatic essay scoring. In Proceedings of the 21st

Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153-162. Associa-
tion for Computational Linguistics.

Gill Francis, Susan Hunston, and Elizabeth Manning.
1996. Grammar patterns 1: verbs. NY: Harper-
Collins Publication.

Jeroen Geertzen, Theodora Alexopoulou, and Anna Ko-
rhonen. 2013. Automatic linguistic annotation of
large scale 12 databases: The ef-cambridge open lan-
guage database. In Proceedings of SLRF 2012.

Marti A Hearst. 2015. Can natural language processing
become natural language coaching? In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 1245—
1252.

Adam Kilgarriff, Milos Husdk, Katy McAdam,
Michael Rundell, and Pavel Rychly. 2008. Gdex:
Automatically finding good dictionary examples in
a corpus. In Proc. Euralex.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’ 13, pages 3111-3119, USA. Curran
Associates Inc.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In In EMNLP.

Marek Rei and Anders Sggaard. 2018.
learning to label sentences and tokens.
abs/1811.05949.

Jointly
CoRR,

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1181—
1191. Association for Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2010. Annotating
esl errors: Challenges and rewards. In Proceedings
of the NAACL HLT 2010 fifth workshop on innova-
tive use of NLP for building educational applica-
tions, pages 28-36. Association for Computational
Linguistics.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1882—1891.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—-6008.

133

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 180-189. Association for Computational
Linguistics.

CLIReval: Evaluating Machine Translation as a
Cross-Lingual Information Retrieval Task

Shuo Sun
Johns Hopkins University
ssun32@jhu.edu

Abstract

We present CLIReval, an easy-to-use toolkit
for evaluating machine translation (MT) with
the proxy task of cross-lingual information re-
trieval (CLIR). Contrary to what the project
name might suggest, CLIReval does not actu-
ally require any annotated CLIR dataset. In-
stead, it automatically transforms translations
and references used in MT evaluations into
a synthetic CLIR dataset; it then sets up
a standard search engine (Elasticsearch) and
computes various information retrieval met-
rics (e.g., mean average precision) by treat-
ing the translations as documents to be re-
trieved. The idea is to gauge the quality of
MT by its impact on the document transla-
tion approach to CLIR. As a case study, we
run CLIReval on the “metrics shared task” of
WMT2019; while this extrinsic metric is not
intended to replace popular intrinsic metrics
such as BLEU, results suggest CLIReval is
competitive in many language pairs in terms
of correlation to human judgments of qual-
ity. CLIReval is publicly available at https:
//github.com/ssun32/CLIReval.

1 Introduction

Machine translation (MT) is the task of automati-
cally translating sentences from a source language
to a target language. A natural question that arises
is how do we determine whether an MT system is
translating sentences well? One answer is that we
can engage human translators to evaluate the trans-
lated sentences manually. Unfortunately, evaluat-
ing translations can be relatively time-consuming
and worse, the fact that the quality of translation is
inherently subjective can lead to variations among
different human translators. The desire for fast and
consistent evaluation has led to the emergence of
a plethora of automatic evaluation metrics such as
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006), METOR (Banerjee and Lavie, 2005) and

Suzanna Sia
Johns Hopkins University
ssial@jhu.edu

Kevin Duh
Johns Hopkins University
kevinduh@cs. jhu.edu

BEER (Stanojevi¢ and Sima’an, 2014). Out of the
aforementioned metrics, BLEU has become the de
facto evaluation metric for machine translation. It
calculates the weighted average of n-gram preci-
sion between a translated sentence and a reference
sentence. Nevertheless, BLEU, too, has its prob-
lems. For example, Callison-Burch et al. (2006)
showed that an improved BLEU score does not rep-
resent an actual improvement in translation quality.

There are also some proposals to evaluate the
quality of translations with the help of extrinsic
proxy tasks. Berka et al. (2011) collected short
English documents from various domains and cre-
ated yes and no questions in Czech. They then
translated the English documents into Czech and
evaluated the quality of the MT systems based on
human performances on the documents and ques-
tions in Czech. Scarton and Specia (2016) trans-
lated a dataset of German reading comprehension
tests into English with various MT systems such as
Google Translate and Bing Translate and judged
the quality of translations based on human perfor-
mances on the translated reading comprehension
datasets. Unfortunately, these external tasks suffer
from the same scalability and consistency issues as
manual evaluation.

One downstream task that relies heavily on MT
but has not been used as a method to evaluate MT
systems is the task of Cross-Lingual Information
Retrieval (CLIR). CLIR is a task in which search
queries are issued in one language, and the re-
trieved relevant documents are written in a different
language. Two commonly used methods in CLIR
are query translation, where queries are translated
into the same language as the documents and doc-
ument translation where documents are translated
into the same language as the queries (Zhou et al.,
2012; Oard, 1998; McCarley, 1999). A monolin-
gual IR system is then used to obtain search results.

CLIR is an active field of research, and previ-

134

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 134-141
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

ous works suggest that the performance of CLIR
correlates highly with the quality of the MT (Zhu
and Wang, 2006; Nie, 2010; Yarmohammadi et al.,
2019). Therefore, we expect IR metrics to be good
indicators of the quality of translations. Unfortu-
nately, there is currently no publicly available tool
to facilitate research in this area, and this motivates
us to design and implement CLIReval.

CLIReval is a lightweight python-based MT eval-
uation toolkit that consumes the same inputs as
other automatic MT evaluation tools such as multi-
bleu.perl and SacreBLEU (Post, 2018) and does
not require any additional annotated CLIR data.
Instead, it automatically transforms inputs into a
synthetic CLIR dataset on the fly with the help
of an Information Retrieval (IR) system. It imple-
ments the document translation approach to CLIR,
where MT translations are viewed as documents
and indexed using a commonly-used search engine
(Elasticsearch).

As a case study, we test CLIReval on the met-
rics shared task of WMT2019 (Ma et al., 2019),
which measures the Pearson correlations (r) be-
tween automatically generated MT metrics and
human judgments. Results show that CLIReval
consistently performs at the level of » > 0.9 and is
on par or even outperforms popular metrics such
as BLEU on multiple language directions. Fur-
ther, this is achieved without using external data
or doing domain-based parameter tuning. These
promising results highlight the potential of CLIR
as a proxy task for MT evaluation, and we hope
CLIReval can facilitate future research in this area.

Our key contributions in this work can be sum-
marized as follows:

1. We release CLIReval,'! an open-source
toolkit that evaluates the quality of MT out-
puts in the context of a CLIR system, without
the need for any actual CLIR dataset. The
only inputs required to the tool are the trans-
lations and the references. It is easy to use in
that with a single script, the tool will create
a synthetic CLIR dataset, index the transla-
tions as documents, and report metrics such
as mean average precision.

2. We demonstrate that CLIReval can perform as
well as popular intrinsic MT metrics on recent
WMT metrics shared task, without supervi-
sion from external datasets and domain-based

"https://github.com/ssun32/CLIReval

135

Query
Generator

|EAgu|13

trec_eval

IR Metrics

Figure 1: The system architecture of CLIReval. Docu-
ments from input files are separately indexed into two
instances of IR systems. Generated search queries are
used to query both IR instances. Search scores from
REF-IR are converted to discrete relevance judgment
labels as required by trec_eval. Finally, CLIReval uses
trec_eval to calculate IR metrics.

parameter tuning. Results suggest that CLIR
is a feasible proxy task for MT evaluation and
is worth further exploration in future research.

2 Approach

Given a set of source documents .S, an MT system
¢ converts S into a set of translated documents,
T = ¢(S) . Intrinsic MT metrics directly calculate
an aggregated score between the sentences in 7'
and sentences in 2, where R is a set of reference
documents.?

We propose an alternative way to evaluate ¢ by
first converting it into a proxy CLIR task and then
evaluate the MT system with extrinsic IR metrics.
First, CLIReval extracts a set of synthetic search
queries Q from R. Second, given a monolingual
information retrieval (IR) engine p, we can run
these queries () over the document collection R to
obtain a set of “relevant” documents for (). We use
the notation p(@, R) to refer to this set of desired
returned search results.

Now, our goal is to evaluate the quality of the
translation 7" = ¢(S) under the same IR engine
p. We index the documents 7" into the IR engine
and submit the same queries to obtain the search

When document boundaries are not defined, CLIReval
automatically creates artificial document boundaries. The
default option is to treat each sentence as a document for
retrieval purposes.

results p(Q, T'). Finally, we can measure the perfor-
mance of the CLIR system by comparing p(Q,T)
to p(@, R), and calculating IR metrics such as
mean average precision.

This approach makes several assumptions. First,
CLIReval implements the document translation ap-
proach to CLIR and evaluates MT quality in that
context; additionally, we assume that p is a ro-
bust and reasonable IR engine that can be used
across a wide range of situations. Second, we
assume R contains the “correct” translations of
S, and that p(Q, R) is a good approximation of
the optimal search results. Third, we assume that
automatically-generated () can mimic that actual
information needs of manually-crafted queries. If
these caveats are acknowledged, then CLIReval is
a reasonable tool for MT evaluation.

3 Design and Implementation Details

Figure 1 presents the system architecture of
CLIReval. The only necessary inputs are 1) a sys-
tem output translation (MT) file and 2) a reference
(REF) file. CLIReval executes the following steps:

1. Separately index documents in MT and REF
files into two instances of the Information Re-
trieval (IR) system, we refer to them as MT-IR

and REF-IR.

. Convert text in the REF file into search queries
with the Query Generator module.

. Query both instances of IR system with the
same set of generated search queries.

. Convert search scores from REF-IR to dis-
crete relevance labels with the Relevance La-
bel Converter.

. Finally, CLIReval evaluates the search results
from MT-IR and relevance judgment labels
from REF-IR with trec_eval,? a standard eval-
uation toolkit used by the information retrieval
community.

We emphasize that the above steps are achieved
with a single easy-to-use script: CLIReval is as
simple as executing the following command:

python evaluate.py [ref file] [mt

file]
where the inputs are standard text files that

*https://github.com/usnistgov/trec_
eval

136

one might pass to multi-bleu.perl, or
standard SGML files that one might pass to
mteval-vl3a.pl, both of which are common
BLEU scripts for MT.*

3.1 Input files

CLIReval ingests a system output translation (MT)
file which contains documents translated by an MT
system and a reference (REF) file, which contains
reference translations of the same source docu-
ments. Our system supports two input file formats:

1. The SGML format commonly used by the
news translation shared task from the annual
conference on machine translation (Barrault
etal., 2019). This is also the input format re-
quired by the NIST BLEU scoring tool.> In
a SGML file, every translated sentence seg-
ment is placed in a <seg> tag, and sentence
segments belonging to the same document are
placed in the same <doc> tag. Every <doc>
tag must also contain a unique document id
attribute used to identify the document.

. A text file where each line contains a sentence.
A user can supply an optional mapping file
that maps a line number to a (document id
and, segment id) tuple. If a mapping file is not
specified, CLIReval will create an artificial
document boundary every N sentences.®

For either format, the number of documents in the
MT file must be equivalent to the number of docu-
ments in the REF file. Further, the number of sen-
tence segments in a machine translated document
must also match the number of sentence segments
in the corresponding reference document.

3.2 Query Generator

The query generator module ingests data in the REF
file and automatically generates search queries.
CLIReval has two modes for query generation,
which can be specified with the query_mode ar-
gument:

1. In sentences mode, the query generator ex-
tracts all reference sentences from the input

“https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/

Sftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl

N can be specified with the doc_length argument. The
default value is 1, which means every sentence is treated as a
document.

T R
S,;abc S;-ac
Dilsiab [1:Pi]s)cbt
S,;ad S, af
D, S, def §§D2 S,,daf

Figure 2: R is a set of sample reference documents and
each document contains two sentences, while T is a set
of sample translated documents.

R—Q
sentences unique_term
4 [ac]) % [a
;qz beg qz[IJ
G(af]) %[c]
§q4 daf | §q4

Figure 3: Sample outputs from the query generator. In
sentences mode, all sentences from R (Figure 2) are
used as search queries while in the unique_terms mode,
the unique terms in R are the search queries.

REF file and treats every sentence as a search
query string. This is inspired by Sasaki et al.
(2018), who use the first sentences of docu-
ments as queries.

In unique_terms mode, the query generator
treats all unique terms as queries. For Elastic-
search, these terms can be obtained from the
term vectors of all indexed documents.

We recognize that using sentences or unique
terms as queries might be less ideal than using
real search queries, but getting relevant human-
generated queries can be time-consuming and ex-
pensive. Our query generation methods are cheap
and fast, which enables quick experimentation. Ex-
amples of R and T are shown in Figure 2, and the
resulting queries generated from R are shown in
Figure 3. In the example, we have two documents
D and D5 each with two sentences S7 and S5. In
the sentence mode for query generation, each of
the four sentences in R are used as queries; in the
unique_terms mode, the 6 vocabulary words are
extracted as query.

137

3.3 Information Retrieval (IR) System

To ensure consistent and reproducible results, we
choose Elasticsearch’ as the default backend IR
system for CLIReval and adopt well-tested search
configurations.® Elasticsearch is an open-source,
lightweight, and fast search engine written in Java.
We pick Elasticsearch for three reasons:

First, Elasticsearch has built-in analyzers for a
wide variety of languages, which allows CLIReval
to support many translation tasks beyond English
as the target language. Analyzers are Elasticsearch
modules that preprocess and tokenize queries and
documents according to language-specific rules. It
also implements stopwords removal and stemming.
These are important operations that affect the qual-
ity of search results.

Second, Elasticsearch implements many compet-
itive retrieval models used by IR researchers and
practitioners. By default, CLIReval uses the Okapi
BM25 (Robertson et al., 2009) score to measure the
degree of similarity of documents to a given search
query. Note that BM25 shows strong performances
on many datasets (Chapelle and Chang, 2011; Mc-
Donald et al., 2018) and frequently outperforms
newer “state of the art” methods (Guo et al., 2016).
It is also fast to compute, allowing CLIReval to run
in a highly efficient manner.

Third, Elasticsearch is a widely used search en-
gine solution that is supported on various platforms.
This increases the ease of installation for users of
CLIReval.

CLIReval separately indexes the documents
from MT and REF files into two instances of
Elasticsearch. It then queries the Elasticsearch in-
stances with the generated query strings. For every
query, Elasticsearch returns the top 100 documents
ranked by BM25 scores. Since trec_eval only ac-
cepts discrete relevance judgment labels, the rel-
evance label converter module is used to convert
search scores from REF-IR into discrete labels.

3.4 Relevance Label Converter

We implement three ways of converting raw BM25
scores of REF-IR into discrete relevance judgment
labels:

The query_in_document method (Schamoni
et al., 2014; Sasaki et al., 2018) assigns 1 to a
document if and only if the given search query

"https://www.elastic.co/
8CLIReval is flexible and users can easily replace Elastic-
search with their own IR system.

9,

9

15|67

9

2.5

!

[Relevance Label Converter]

I

sentence percentile
_in_document

2.5

9,

q, q, q,

9, 9, 9,

9, 95)

q, q, q,

Figure 4: Given queries from the query generator and
documents from R, we can obtain relevance scores
from an IR system. The relevance label converter then
converts those relevance scores into discrete relevance
labels via different conversion modes.

is extracted from that document. Consequently,
there will only be one relevant document per search
query.

The percentile method assigns 1 to documents
with BM25 scores in the top 25 percentile of all
document scores returned by the IR system and
0 otherwise. The cutoff percentile value can be
adjusted with the n_percentile argument.

Th Jenks methods uses Jenks natural breaks op-
timization’ to automatically break a list of BM25
scores into different classes. This is achieved by
minimizing the variance of BM25 scores within a
class and at the same time maximize the variance
of average BM?25 scores between classes (McMas-
ter and McMaster, 2002). Following the conven-
tions of publicly available IR datasets (Chapelle
and Chang, 2011; Qin and Liu, 2013), we break
the BM25 scores into 5 relevance judgment classes,
where 4 indicates that a document is highly rele-
vant to a given query and O indicates that a doc-
ument is not relevant to a given query. For each
query, CLIReval normalizes the BM25 scores of

‘https://en.wikipedia.org/wiki/Jenks_
natural_breaks_optimization

138

retrieved documents to the range [0, 1] and use
Jenks natural breaks optimization to convert the
BM2S5 scores into discrete relevance judgment la-
bels. Users can specify the number of classes with
the jenks_nb_class argument.

Figure 4 illustrates an example of how relevance
labels are generated for each query-document pair
using the generated query Q (see Section 3.2 and
the reference documents R provided by the user.
First, raw BM25 scores are obtained by indexing R
in an IR system and searching with Q. These scores
are then converted to discrete labels in one of three
ways.

3.5 IR Metrics

To summarize: after the queries and relevance la-
bels are prepared (as in Section 3.2 and 3.4), the
MT output T (e.g. Figure 2, left) is indexed into
another IR system. Finally, we run the queries
Q through this MT-IR system to obtain document
scores p(@,T) (e.g. Figure 1, left branch), which
can be evaluated with respect to the relevance la-
bels. We do this final evaluation with the standard
trec_eval toolkit.

The trec_eval toolkit returns a large number of
IR metrics but CLIReval is configured to return
only two of the most popular IR metrics by default:

e Mean average precision (MAP) is the mean
of the average precision scores for each query
(Buckley and Voorhees, 2005).

e Normalized discounted cumulative gain
(NDCG) is a metric that measures the use-
fulness of documents based on their ranks in
the search results (Jarvelin and Kekildinen,
2002) and is normalized to [0, 1].

We choose MAP because it is a widely under-
stood metric, and NDCG because it allows for mul-
tiple levels of relevance labels. We follow standard
practice in IR benchmark datasets such as Chapelle
and Chang (2011) and calculate both metrics at the
cutoff threshold of 10 documents. We name these
metrics as MAP@10 and NDCG@10.

3.6 Installation

CLIReval is written in Python 3 and works on
Python 3.5 and later. Elasticsearch requires at least
Java 8. We provide a shell script that automatically
downloads and installs Elasticsearch 6.5.3 and the
latest version of trec_eval. It also installs additional

Elasticsearch plugins that support additional lan-
guages. In total, CLIReval has built-in support
for 36 languages and for unsupported languages,
it will fall back to the default standard analyzer,
which is based on the Unicode text segmentation
algorithm.'® We tested CLIReval extensively in
the Unix/Linux environment, but it should work in
other environments with minimal modification.

4 Case Study

4.1 WMT metrics shared task

To demonstrate the utility of CLIReval, we test it
on the metrics shared task of WMT2019.!! The
metrics task (Ma et al., 2019) is designed to evalu-
ate outputs from automatic MT metrics against ac-
tual human ratings on machine translation systems.
The goal is to find evaluation methods that have
high Pearson correlations with human judgments.
For every system in every language direction, we
compute multiple system-level scores (different IR
metrics) with CLIReval.

In total, there are 18 language directions, and
for every language direction, a reference file and
11 to 22 system generated translation files are pro-
vided. In every reference file, there are around 1000
to 2000 sentences in 70 to 140 documents. The
only exceptions are French-German and German-
French, where all sentences are placed in the same
document. Since document boundaries are not
clearly defined in these language directions, we
are excluding them from this case study.

4.2 Run Time

We used an Intel Xeon ES Linux server with 64GB
RAM. For every language direction, CLIReval runs
consistently at the rate of around 0.2 to 0.3 seconds
per document and it takes less than a minute to get
results.

4.3 Results

We use the official evaluation scripts'? to compute
linear correlations between IR metrics and human
judgments.

Table 1 presents the results for 16 language di-
rections and IR metrics perform well. On Jenks
mode, NDCG @10 outperforms BLEU and NIST
on 10 out of the 16 language directions. Further,

Yhttps://unicode.org/reports/tr29/

"http://www.statmt.org/wmt19/

Phttp://ufallab.ms.mff.cuni.cz/~bojar/
wnt1l8-metrics-task-package.tgz

139

the 4 IR metrics collectively hold the top scores for
6 language directions. BEER seems to be a little
bit better than the IR metrics, claiming the top spot
for 7 language directions. Note that the participat-
ing BEER system is trained on provided in-domain
data, while we are getting comparable results with-
out any tuning. It is also worth pointing out that the
intrinsic MT metrics work at sentence level while
in comparison, CLIReval works at the document-
level. Nonetheless, the results are encouraging and
show the potential of CLIR as a proxy task for MT
evaluation.

4.4 Analysis: BLEU vs. NDCG

R,

° L Y e *
n.“." i ! '...o. o.v.\- .
08 N ®, 0..!.“. .’:.. }.C: L) .S . . .
VYA s -
o % o .lo o ® "
05 * .o o . ..
.. . L] .
P

NDCG@10
.o

0z

e zh-en Baidu-system

e en-gu UEDIN
.0
08

0o == TYTY ses

06

00 10

BLEU

Figure 5: Scatterplot of sentence-level NDCG@10 vs
sentence-level BLEU on zh-en and en-gu. For better
visualization, only 300 random samples from each lan-
guage direction are shown.

To get a deeper comparison between CLIReval
and the most popular MT metric, BLEU, we ran-
domly select two systems (Baidu-system for zh-en
and UEDIN for en-gu) and calculate sentence-level
BLEU and sentence-level NDCG@10 scores'?
on both systems. As we can see in Figure 5,
there is no clear correlation between sentence-level
NDCG@10 and sentence-level BLEU scores. To
be more exact, the Pearson correlations between
the two metrics is almost non-existent, at -0.021
and -0.032 for zh-en and en-gu respectively. This
shows that the two metrics are qualitatively dif-
ferent and contribute different perspectives to MT
evaluation.

5 Conclusions

We present CLIReval, an open-source python-
based evaluation toolkit for machine translation.

Bcalculated with CLIReval using default arguments.

query_in_document

Jenks

LD BLEU NIST TER BEER | MAP@10 NDCG@10 | MAP@10 NDCG@10
de—cs 0941 0954 0.890 0.978 | 0.971 0968 | 0.965 0.991
de—en 0.849 0.813 0.874 0.906 | 0.865 0869 | 0.654 0.858
en—cs 0.897 0.896 0.980 0.990 | 0.882 0.889 | 0.909 0.983
en—de 0921 0321 0969 0983 | 0953 0953 | 0977 0.982
en—>fi 0969 0971 0981 0989 | 00915 0906 | 0927 0.944
en—sgu 0.737 0786 0.865 0.829 | 0.912 0909 | 0833 0.847
en—kk 0.852 0930 0940 0971 | 0.982 0982 | 0963 0.968
en—lt 0989 0993 0.994 0982 | 0.776 0791 | 0.903 0.916
en—sru 0986 0988 0.995 0977 | 0.865 0.862 | 0.980 0.953
en—zh 0901 0.884 0.856 0.803 | 0.928 0930 | 0772 0.902
fien 0982 0986 0984 0.993 | 0.956 0955 | 0.944 0.960
gu—en 0834 0930 0890 0.952 | 0814 0.809 | 0.782 0.824
kk—en 0946 0942 0.799 0.986 | 0.970 0.968 | 0.986 0.983
ltsen 0.961 0944 0960 0.947 | 0.636 0612 | 0929 0.865
ru—en 0.879 0925 0917 0915 | 0922 0920 | 0.866 0.961
zh—en 0.899 0921 0840 0942 | 0.930 0922 | 0.622 0.957

Table 1: Pearson correlations (r) of various metrics against human judgments. Best scores for every language
direction are highlighted in bold. Note that BEER is trained on in-domain resources from the WMT2019 metrics
task. We show MAP@ 10 and NDCG@ 10 scores for CLIReval with two relevance label conversion settings.

Rather than directly evaluating translated sentences
against reference sentences, CLIReval transforms
the inputs into the closely related task of CLIR,
without the need for annotated CLIR dataset.

The aim of this project is not to replace current
automatic evaluation metrics or fix the limitations
in those metrics, but to bridge the gap between
machine translation and cross-lingual information
retrieval and to show that CLIR is a feasible proxy
task for MT evaluation.

Our case study on the WMT2019 metrics shared
task further highlights the potential of CLIR as a
proxy task for MT evaluation, and we hope that
CLIReval can facilitate future research in this area.

Acknowledgement

‘We want to thank Sorami Hisamoto and Muham-
mad Mahbubur Rahman for their initial code and
guidance on best practices for Elasticsearch.

140

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65-72.

Loic Barrault, Ondiej Bojar, Marta R Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, et al. 2019. Findings of the 2019
conference on machine translation (wmtl9). In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1),
pages 1-61.

Jan Berka, Martin Cerny, and Ondfej Bojar. 2011.
Quiz-based evaluation of machine translation. The
Prague Bulletin of Mathematical Linguistics, 95:77—
86.

Chris Buckley and Ellen Voorhees. 2005. Retrieval sys-
tem evaluation. TREC: Experiment and Evaluation
in Information Retrieval, pages 53-75.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluation the role of bleu in ma-
chine translation research. In /1th Conference of the
European Chapter of the Association for Computa-
tional Linguistics.

Olivier Chapelle and Yi Chang. 2011. Yahoo! learning
to rank challenge overview. In Proceedings of the
Learning to Rank Challenge, pages 1-24.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model
for ad-hoc retrieval. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 55-64.

Kalervo Jarvelin and Jaana Kekildinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422-446.

Qingsong Ma, Johnny Wei, Ondfej Bojar, and Yvette
Graham. 2019. Results of the wmt19 metrics shared
task: Segment-level and strong mt systems pose big
challenges. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 62-90.

J Scott McCarley. 1999. Should we translate the doc-
uments or the queries in cross-language information
retrieval? In Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics
on Computational Linguistics, pages 208-214. Asso-
ciation for Computational Linguistics.

Ryan McDonald, George Brokos, and Ion Androut-
sopoulos. 2018. Deep relevance ranking using en-
hanced document-query interactions. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1849—-1860.

Robert McMaster and Susanna McMaster. 2002. A his-
tory of twentieth-century american academic cartog-
raphy. Cartography and Geographic Information
Science, 29(3):305-321.

Jian-Yun Nie. 2010. Cross-language information re-
trieval. Synthesis Lectures on Human Language
Technologies, 3(1):1-125.

Douglas W Oard. 1998. A comparative study of query
and document translation for cross-language infor-
mation retrieval. In Conference of the Association
for Machine Translation in the Americas, pages 472—
483. Springer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191.

141

Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR
4.0 datasets. CoRR, abs/1306.2597.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends®) in Information Re-
trieval, 3(4):333-389.

Shota Sasaki, Shuo Sun, Shigehiko Schamoni, Kevin
Duh, and Kentaro Inui. 2018. Cross-lingual
learning-to-rank with shared representations. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 458—463.

Carolina Scarton and Lucia Specia. 2016. A reading
comprehension corpus for machine translation eval-
uation. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3652-3658.

Shigehiko Schamoni, Felix Hieber, Artem Sokolov,
and Stefan Riezler. 2014. Learning translational and
knowledge-based similarities from relevance rank-
ings for cross-language retrieval. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 488—494.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.

Milos Stanojevi¢ and Khalil Sima’an. 2014. Beer: Bet-
ter evaluation as ranking. In Proceedings of the

Ninth Workshop on Statistical Machine Translation,
pages 414-419.

Mahsa Yarmohammadi, Xutai Ma, Sorami Hisamoto,
Muhammad Rahman, Yiming Wang, Hainan Xu,
Daniel Povey, Philipp Koehn, and Kevin Duh. 2019.
Robust document representations for cross-lingual
information retrieval in low-resource settings. In
Proceedings of Machine Translation Summit XVII
Volume 1: Research Track, pages 12-20, Dublin,
Ireland. European Association for Machine Transla-
tion.

Dong Zhou, Mark Truran, Tim Brailsford, Vincent
Wade, and Helen Ashman. 2012. Translation
techniques in cross-language information retrieval.
ACM Computing Surveys (CSUR), 45(1):1-44.

Jiang Zhu and Haifeng Wang. 2006. The effect of trans-
lation quality in mt-based cross-language informa-
tion retrieval. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
the 44th annual meeting of the Association for Com-
putational Linguistics, pages 593—600. Association
for Computational Linguistics.

ConvLab-2: An Open-Source Toolkit for
Building, Evaluating, and Diagnosing Dialogue Systems

Qi Zhu'
Jinchao Lif

Zheng Zhang'
Baolin Peng?

Yan Fang'
Jianfeng Gao'

Xiang Li'
Xiaoyan Zhu'

Ryuichi Takanobu'
Minlie Huang'*

"Dept. of Computer Science and Technology, Institute for Artificial Intelligence,
TState Key Lab of Intelligent Technology and Systems,
"Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing, China
IMicrosoft Research, Redmond, USA
f{zhu-q18, z-zhang15, fangyl7, gxlyl9}@mails.tsinghua.edu.cn

i{jincli, bapeng, jfgao}@microsoft.co
Abstract

We present ConvLab-2, an open-source toolkit
that enables researchers to build task-oriented
dialogue systems with state-of-the-art models,
perform an end-to-end evaluation, and diag-
nose the weakness of systems. As the succes-
sor of ConvLab (Lee et al., 2019b), ConvLab-
2 inherits ConvLab’s framework but integrates
more powerful dialogue models and supports
more datasets. Besides, we have developed an
analysis tool and an interactive tool to assist re-
searchers in diagnosing dialogue systems. The
analysis tool presents rich statistics and sum-
marizes common mistakes from simulated di-
alogues, which facilitates error analysis and
system improvement. The interactive tool pro-
vides a user interface that allows developers to
diagnose an assembled dialogue system by in-
teracting with the system and modifying the
output of each system component.

1 Introduction

Task-oriented dialogue systems are gaining increas-
ing attention in recent years, resulting in a number
of datasets (Henderson et al., 2014; Wen et al.,
2017; Budzianowski et al., 2018b; Rastogi et al.,
2019) and a wide variety of models (Wen et al.,
2015; Peng et al., 2017; Lei et al., 2018; Wu et al.,
2019; Gao et al., 2019). However, very few open-
source toolkits provide full support to assembling
an end-to-end dialogue system with state-of-the-art
models, evaluating the performance in an end-to-
end fashion, and analyzing the bottleneck both qual-
itatively and quantitatively. To fill the gap, we have
developed ConvLab-2 based on our previous dia-
logue system platform ConvLab (Lee et al., 2019b).
ConvLab-2 inherits its predecessor’s framework
and extend it by integrating many recently pro-
posed state-of-the-art dialogue models. In addition,

*Corresponding author.

m

142

T{zxyfdcs, aihuang}@tsinghua.edu.cn

Different configurations

'/ NLU | DST | POL | NLG
System Agent !
‘ WordDST | POL | NLG '
£ | |
|
Build Q{} NLU = DST Word-POL
‘
i
} Word-DST Word-POL
| End-to-end

|

(W 2 User Agent
(AM\T) (((Q Human

Evaluate

A“a\ys'\STOO\ lll .)

User dialogue acts
e
%

Figure 1: Framework of ConvLab-2. The top block
shows different approaches to build a dialogue system.

-}
|
—

Belief state

Sys dialogue acts

two powerful tools, namely the analysis tool and
the interactive tool, are provided for in-depth er-
ror analysis. ConvLab-2 will be the development
platform for Multi-domain Task-oriented Dialog
Challenge II track in the 9th Dialog System Tech-
nology Challenge (DSTC9)'.

As shown in Figure 1, there are many approaches
to building a task-oriented dialogue system, rang-
ing from pipeline methods with multiple compo-
nents to fully end-to-end models. Previous toolkits
focus on either end-to-end models (Miller et al.,
2017) or one specific component such as dialogue
policy (POL) (Ultes et al., 2017), while the others
toolkits that are designed for developers (Bock-
lisch et al., 2017; Papangelis et al., 2020) do not

'nttps://sites.google.com/dstc.
community/dstc9/home

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 142—149
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

have state-of-the-art models integrated. ConvLab
(Lee et al., 2019b) is the first toolkit that provides
various powerful models for all dialogue compo-
nents and allows researchers to quickly assemble a
complete dialogue system (using a set of recipes).
ConvLab-2 inherits the flexible framework of Con-
vLab and imports recently proposed models that
achieve state-of-the-art performance. In addition,
ConvLab-2 supports several large-scale dialogue
datasets including CamRest676 (Wen et al., 2017),
MultiWOZ (Budzianowski et al., 2018b), Deal OrN-
oDeal (Lewis et al., 2017), and CrossWOZ (Zhu
et al., 2020).

To support end-to-end evaluation, ConvLab-2
provides user simulators for automatic evaluation
and integrates Amazon Mechanical Turk for hu-
man evaluation, similar to ConvLab. Moreover,
it provides an analysis tool and a human-machine
interactive tool for diagnosing a dialogue system.
Researchers can perform quantitative analysis us-
ing the analysis tool. It presents useful statistics
extracted from the conversations between the user
simulator and the dialogue system. This infor-
mation helps reveal the weakness of the system
and signifies the direction for further improvement.
With the interactive tool, researchers can perform
qualitative analysis by deploying their dialogue
systems and conversing with the systems via the
webpage. During the conversation, the interme-
diate output of each component in a pipeline sys-
tem, such as the user dialogue acts and belief state,
are presented on the webpage. In this way, the
performance of the system can be examined, and
the prediction errors of those components can be
corrected manually, which helps the developers
identify the bottleneck component. The interactive
tool can also be used to collect real-time human-
machine dialogues and user feedback for further
system improvement.

2 ConvLab-2
2.1 Dialogue Agent

Each speaker in a conversation is regarded as an
agent. ConvLab-2 inherits and simplifies Con-
vLab’s framework to accommodate more compli-
cated dialogue agents (e.g., using multiple models
for one component) and more general scenarios
(e.g., multi-party conversations). Thanks to the
flexibility of the agent definition, researchers can
build an agent with different types of configura-
tions, such as a traditional pipeline method (as

143

shown in the first layer of the top block in Fig-
ure 1), a fully end-to-end method (the last layer),
and between (other layers) once instantiating cor-
responding models. Researchers can also freely
customize an agent, such as incorporating two di-
alogue systems into one agent to cope with mul-
tiple tasks. Based on the unified agent definition
that both dialogue systems and user simulators are
treated as agents, ConvLab-2 supports conversation
between two agents and can be extended to more
general scenarios involving three or more parties.

2.2 Models

ConvLab-2 provides the following models for every
possible component in a dialogue agent. Note that
compared to ConvLab, newly integrated models
in ConvLab-2 are marked in bold. Researchers
can easily add their models by implementing the
interface of the corresponding component. We will
keep adding state-of-the-art models to reflect the
latest progress in task-oriented dialogue.

2.2.1 Natural Language Understanding

The natural language understanding (NLU) com-
ponent, which is used to parse the other agent’s
intent, takes an utterance as input and outputs
the corresponding dialogue acts. ConvLab-2 pro-
vides three models: Semantic Tuple Classifier
(STC) (Mairesse et al., 2009), MILU (Lee et al.,
2019b), and BERTNLU. BERT (Devlin et al.,
2019) has shown strong performance in many
NLP tasks. Thus, ConvLab-2 proposes a new
BERTNLU model. BERTNLU adds two MLPs
on top of BERT for intent classification and slot
tagging, respectively, and fine-tunes all parame-
ters on the specified tasks. BERTNLU achieves
the best performance on MultiWOZ in comparison
with other models.

2.2.2 Dialogue State Tracking

The dialogue state tracking (DST) component up-
dates the belief state, which contains the constraints
and requirements of the other agent (such as a user).
ConvLab-2 provides a rule-based tracker that takes
dialogue acts parsed by the NLU as input.

2.2.3 Word-level Dialogue State Tracking

Word-level DST obtains the belief state directly
from the dialogue history. ConvLab-2 integrates
four models: MDBT (Ramadan et al., 2018),
SUMBT (Lee et al., 2019a), and TRADE (Wu
et al., 2019). TRADE generates the belief state

from utterances using a copy mechanism and
achieves state-of-the-art performance on Multi-
WOZ.

2.2.4 Dialogue Policy

Dialogue policy receives the belief state and out-
puts system dialogue acts. ConvLab-2 provides a
rule-based policy, a simple neural policy that learns
directly from the corpus using imitation learning,
and reinforcement learning policies including RE-
INFORCE (Williams, 1992), PPO (Schulman et al.,
2017), and GDPL (Takanobu et al., 2019). GDPL
achieves state-of-the-art performance on Multi-
WOZ.

2.2.5 Natural Language Generation

The natural language generation (NLG) component
transforms dialogue acts into a natural language
sentence. ConvLab-2 provides a template-based
method and SC-LSTM (Wen et al., 2015).

2.2.6 Word-level Policy

Word-level policy directly generates a natural lan-
guage response (rather than dialogue acts) ac-
cording to the dialogue history and the belief
state. ConvLab-2 integrates three models: MDRG
(Budzianowski et al., 2018a), HDSA (Chen et al.,
2019), and LaRL (Zhao et al., 2019). MDRG is
the baseline model proposed by Budzianowski et al.
(2018b) on MultiwOZ, while HDSA and LaRL
achieve much stronger performance on this dataset.

2.2.7 User Policy

User policy is the core of a user simulator. It takes a
pre-set user goal and system dialogue acts as input
and outputs user dialogue acts. ConvLab-2 pro-
vides an agenda-based (Schatzmann et al., 2007)
model and neural network-based models including
HUS and its variational variants (Giir et al., 2018).
To perform end-to-end simulation, researchers can
equip the user policy with NLU and NLG compo-
nents to assemble a complete user simulator.

2.2.8 End-to-end Model

A fully end-to-end dialogue model receives the
dialogue history and generates a response in natu-
ral language directly. ConvLab-2 extends Sequic-
ity (Lei et al., 2018) to multi-domain scenarios:
when the model senses that the current domain has
switched, it resets the belief span, which records
information of the current domain. ConvLab-2 also
integrates DAMD (Zhang et al., 2019) which ob-
tains state-of-the-art results on MultiwOZ. As for

144

the DealOrNoDeal dataset, we provide the ROLL-
OUTS RL policy proposed by Lewis et al. (2017).

2.3 Datasets

Compared with ConvLab, ConvLab-2 can inte-
grate a new dataset more conveniently. For each
dataset, ConvLab-2 provides a unified data loader
that can be used by all the models, thus separating
data processing from the model definition. Cur-
rently, ConvLab-2 supports four task-oriented dia-
logue datasets, including CamRest676 (Wen et al.,
2017), MultiWOZ (Eric et al., 2019), DealOrN-
oDeal (Lewis et al., 2017), and CrossWOZ (Zhu
et al., 2020).

2.3.1 CamRest676

CamRest676 (Wen et al., 2017) is a Wizard-of-Oz
dataset, consisting of 676 dialogues in a restaurant
domain. ConvLab-2 offers an agenda-based user
simulator and a complete set of models for build-
ing a traditional pipeline dialogue system on the
CamRest676 dataset.

2.3.2 MultiwOZ

MultiWOZ (Budzianowski et al., 2018b) is a large-
scale multi-domain Wizard-of-Oz dataset. It con-
sists of 10,438 dialogues with system dialogue acts
and belief states. However, user dialogue acts are
missing, and belief state annotations and dialogue
utterances are noisy. To address these issues, Con-
vlab (Lee et al., 2019b) annotated user dialogue acts
automatically using heuristics. Eric et al. (2019)
further re-annotated the belief states and utterances,
resulting in the MultiWwOZ 2.1 dataset.

2.3.3 DealOrNoDeal

DealOrNoDeal (Lewis et al., 2017) is a dataset of
human-human negotiations on a multi-issue bar-
gaining task. It contains 5,805 dialogues based on
2,236 unique scenarios. On this dataset, ConvLab-
2 implements ROLLOUTS RL (Lewis et al., 2017)
and LaRL (Zhao et al., 2019) models.

2.3.4 CrossWOZ

CrossWOZ (Zhu et al., 2020) is the first large-scale
Chinese multi-domain Wizard-of-Oz dataset pro-
posed recently. It contains 6,012 dialogues span-
ning over five domains. Besides dialogue acts and
belief states, the annotations of user states, which
indicate the completion of a user goal, are also
provided. ConvLab-2 offers a rule-based user sim-
ulator and a complete set of models for building a
pipeline system on the CrossWOZ dataset.

Performance for each domain
1.0

Bm Success rate

s Inform F1
0.8

0.6

Score

0.4

0.2

O'OAttraction Taxi Restaurant Train Police
Domain

Hotel Hospital

Proportions of the dialogue loop in each domain
Hospital

Attraction Hotel

Taxi Police

Train

Restaurant

Figure 2: Performance of the demo system in Section 3. Left: Success rate and inform F1 for each domain. Right:

Proportions of the dialogue loop in each domain.

Overall results:
Success Rate: 60.8%; inform F1: 44.5%

Most confusing user dialogue acts:
Request-Hotel-Post-?

- 34%: Request-Hospital-Post-?

- 32%: Request-Attraction-Post-?
Request-Hotel-Addr-?

- 29%: Request-Attraction-Addr-?

- 28%: Request-Restaurant-Addr-?
Request-Hotel-Phone-?

- 26%: Request-Restaurant-Phone-?

- 26%: Request-Attraction-Phone-?

Invalid system dialogue acts:

- 31%: Inform-Hotel-Parking

- 28%: Inform-Hotel-Internet
Redundant system dialogue acts:

- 34%: Inform-Hotel-Stars
Missing system dialogue acts:

- 25%: Inform-Hotel-Phone

Most confusing system dialogue acts:
Recommend-Hotel-Parking-yes

- 21%: Recommend-Hotel-Parking-none

- 18%: Inform-Hotel-Parking-none
Inform-Hotel-Parking-yes

- 17%: Inform-Hotel-Parking-none
Inform-Hotel-Stars-4

- 16%: Inform-Hotel-Internet-none

User dialogue acts that cause loop:
- 53% Request-Hotel-Phone-?
- 21% Request-Hotel-Post-?
- 14% Request-Hotel-Addr-?

Table 1: Comprehensive results (partial) of the demo
system in Section 3 for the Hotel domain. To save
space, only the most frequent errors are presented.

2.4 Analysis Tool

To evaluate a dialogue system quantitatively,
ConvLab-2 offers an analysis tool to perform an
end-to-end evaluation with a specified user simula-
tor and generate an HTML report which contains
rich statistics of simulated dialogues. Charts and
tables are used in the test report for better demon-
stration. Partial results of a demo system in Section
3 are shown in Figure 2 and Table 1. Currently, the
report contains the following pieces of information
for each task domain:

e Metrics for overall performance such as suc-
cess rate, inform F1, average turn number, etc.

e Common errors of the NLU component, such
as the confusion matrix of user dialogue acts.
For the example in Table 1, 34% of the re-
quests for the Postcode in the Hotel domain
are misinterpreted as the requests in the Hos-
pital domain.

e Frequent invalid, redundant, and missing sys-
tem dialogue acts predicted by the dialogue
policy.

e The system dialogue acts from which the NLG
component generates responses that confuse
the user simulator. For the example in Table
1, it is hard to inform the user that the hotel
has free parking.

e The causes of dialogue loops. Dialogue loop
is the situation that the user keeps repeating
the same request until the max turn number is
reached. This result shows the requests that
are hard for the system to handle.

| want to book a table for 6 at 18:45 on thursday

Oh that definitely worked . | have booked you in and your
reference number is 00000000 .

| also want to find a moderate hotel

| have 18 different types of places to stay in that area . Do you
have any preferences ? How about kirkwood house ?

It should be in the east

| found 3 hotels do you have any other things you need the
hotel to have ? Personally , | hear good things about carolina

what type hotel is it ?

The Worth House is a guesthouse .

| want to stay for 1 night

Booking was successful . Your reference number is 00000000

Dataset | MultiwOZ s
NLU Model | BERTNLU s
[
[
"Inform",
"Hotel",
“Stay",
DST Model | RuleDST s
{
"user_action": [
“Inform", bed and breakfast .
"Hotel",
Policy Model | RulePolicy %
[
[
“Book",
"Booking",
"Ref",
NLG Model | TemplateNLG &

Booking was successful . Your reference number i

Figure 3: The interface of the Interactive Tool.

The analysis tool also supports the comparison
between different dialogue systems that interact
with the same user simulator. The above statistics
and comparison results can significantly facilitate
error analysis and system improvement.

2.5 Interactive Tool

ConvLab-2 provides an interactive tool that enables
researchers to converse with a dialogue system
through a graphical user interface and modify in-
termediate results to correct system errors.

As shown in Figure 3, researchers can customize
their dialogue system by selecting the dataset and
the model of each component. Then, they can inter-
act with the system via the user interface. During a
conversation, the output of each component is dis-
played on the left side as a JSON formatted string,
including the user dialogue acts parsed by the NLU,
the belief state tracked by the DST, the system dia-
logue acts selected by the policy and the final sys-
tem response generated by the NLG. By showing
both the dialogue history and the component out-
puts, the researchers can get a good understanding
of how their system works.

In addition to the fine-grained system output, the
interactive tool also supports intermediate output
modification. When a component makes a mistake
and the dialogue fails to continue, the researchers
can correct the JSON output of that component to
redirect the conversation by replacing the original

146

output with the correct one. This function is help-
ful when the researchers are debugging a specific
component.

In consideration of the compatibility across plat-
forms, the interactive tool is deployed as a web
service that can be accessed via a web browser. To
use self-defined models, the researchers have to
edit a configuration file, which defines all available
models for each component. The researchers can
also add their own models into the configuration
file easily.

3 Demo

This section demonstrates how to use ConvLab-
2 to build, evaluate, and diagnose a traditional
pipeline dialogue system developed on the Mul-
tiWOZ dataset.

import ... # import necessary modules
Create models for each component

L
Parameters are omitted for simplicity

kid

sys_nlu = BERTINLU(...)
sys_dst = RuleDST(...)
sys_policy = RulePolicy(...)
sys_nlg = TemplateNLG(...)

Assemble a pipeline system named "sys"

sys_agent = PipelineAgent (sys_nlu, sys_dst,
sys_policy, sys_nlg, name="sys")
Build a user simulator similarly but without DST

user_nlu = BERTNLU(...)
user_policy = RulePolicy(...)
user_nlg = TemplateNLG(...)

user_agent PipelineAgent (user_nlu, None,
user_policy, user_nlg, name="user")

Create an evaluator and a conversation environment

evaluator MultiWozEvaluator ()

sess BiSession(sys_agent, user_agent, evaluator)

Start simulation

sess.init_session ()

sys_utt = "

while True:
sys_utt, user_utt,
next_turn(sys_utt)
if sess_over:

break

print (sess.evaluator.task_success())

print (sess.evaluator.inform F1())

Use the analysis tool to generate a test report

analyzer = Analyzer (user_agent, dataset="MultiWOz")

analyzer.comprehensive_analyze (sys_agent,
total_dialog=1000)

Compare multiple systems

sys_agent2 = PipelineAgent (MILU(...),
sys_policy, sys_nlg, name="sys")

analyzer.compare_models (agent_list=[sys_agent,
sys_agent2], model_name=["bertnlu", "milu"]
total_dialog=1000)

sess_over, reward = sess.

sys_dst,

Listing 1: Example code for the demo.

To build such a dialogue system, we need to
instantiate a model for each component and assem-
ble them into a complete agent. As shown in the
above code, the system consists of a BERTNLU,
a rule-based DST, a rule-based system policy, and
a template-based NLG. Likewise, we can build a
user simulator that consists of a BERTNLU, an
agenda-based user policy, and a template-based
NLG. Thanks to the flexibility of the framework,
the DST of the simulator can be None, which
means passing the parsed dialogue acts directly
to the policy without the belief state.

For end-to-end evaluation, ConvLab-2 provides
aBiSession class, which takes a system, a sim-
ulator, and an evaluator as inputs. Then this class
can be used to simulate dialogues and calculate
end-to-end evaluation metrics. For example, the
task success rate of the system is 64.2%, and the
inform F1 is 67.0% for 1000 simulated dialogues.
In addition to automatic evaluation, ConvLab-2 can
perform human evaluation via Amazon Mechanical
Turk using the same system agent.

Then the analysis tool can be used to perform a
comprehensive evaluation. Equipped with a user
simulator, the tool can analyze and compare mul-
tiple systems. Some results are shown in Figure
2 and Table 1. We collected statistics from 1000
simulated dialogues and found that

e The demo system performs the poorest in the
Hotel domain but always completes the goal
in the Hospital domain.

e The sub-task in the Hotel domain is more
likely to cause dialogue loops than in other
domains. More than half of the loops in the
Hotel domain are caused by the user request
for the phone number.

e One of the most common errors of the NLU

147

component is misinterpreting the domain of
user dialogue acts. For example, the user re-
quest for the Postcode, address, and phone
number in the Hotel domain is often parsed as
in other domains.

In the Hotel domain, the dialogue acts whose
slots are Parking are much harder to be per-
ceived than other dialogue acts.

The researchers can further diagnose their sys-
tem by observing fine-grained output and rescuing
a failed dialogue using our provided interactive
tool. An example is shown in Figure 3, in which at
first the BERTNLU falsely identified the domain
as Restaurant. After correcting the domain to Ho-
tel manually, a Recall NLU button appears. By
clicking the button, the dialogue system reruns this
turn by skipping the NLU module and directly use
the corrected NLU output. Combined with the ob-
servations from the analysis tool, alleviating the
domain confusion problem of the NLU component
may significantly improve system performance.

4 Code and Resources

ConvLab-2 is publicly available on https://
github.com/thu-coai/ConvLab-2. Resources
such as datasets, trained models, tutorials, and
demo video are also released. We will keep track
of new datasets and state-of-the-art models. Contri-
butions from the community are always welcome.

5 Conclusion

We present ConvLab-2, an open-source toolkit
for building, evaluating, and diagnosing a task-
oriented dialogue system. Based on ConvLab (Lee
etal., 2019b), ConvLab-2 integrates more powerful
models, supports more datasets, and develops an
analysis tool and an interactive tool for compre-
hensive end-to-end evaluation. For demonstration,
we give an example of using ConvLab-2 to build,
evaluate, and diagnose a system on the MultiwOZ
dataset. We hope that ConvLab-2 is instrumental in
promoting the research on task-oriented dialogue.

Acknowledgments

This work was jointly supported by the NSFC
projects (Key project with No. 61936010 and
regular project with No. 61876096), and the Na-
tional Key R&D Program of China (Grant No.
2018YFC0830200). We thank THUNUS NEXT
Joint-Lab for the support.

References

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language un-
derstanding and dialogue management.

Pawel Budzianowski, Ifiigo Casanueva, Bo-Hsiang
Tseng, and Milica Gasic. 2018a. Towards end-to-
end multi-domain dialogue modelling.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018b. MultiWOZ - a
large-scale multi-domain wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016-5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan,
and William Yang Wang. 2019. Semantically con-
ditioned dialog response generation via hierarchical
disentangled self-attention. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3696-3709, Florence,
Italy. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-
Tur. 2019. Multiwoz 2.1: Multi-domain dialogue
state corrections and state tracking baselines. arXiv
preprint arXiv:1907.01669.

Jianfeng Gao, Michel Galley, and Lihong Li. 2019.
Neural approaches to conversational ai. Founda-
tions and Trends®) in Information Retrieval, 13(2-
3):127-298.

Izzeddin Giir, Dilek Hakkani-Tiir, Gokhan Tiir, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. In 2018 IEEE Spoken Language Technol-
ogy Workshop (SLT), pages 900-906. IEEE.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263-272, Philadelphia,
PA, U.S.A. Association for Computational Linguis-
tics.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019a.
SUMBT: Slot-utterance matching for universal and
scalable belief tracking. In Proceedings of the 57th

148

Annual Meeting of the Association for Computa-
tional Linguistics, pages 5478-5483, Florence, Italy.
Association for Computational Linguistics.

Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang,
Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng,
Xiujun Li, Minlie Huang, and Jianfeng Gao. 2019b.
ConvLab: Multi-domain end-to-end dialog system
platform. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 64-69, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Wengiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1437-1447, Melbourne, Australia. As-
sociation for Computational Linguistics.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh,
and Dhruv Batra. 2017. Deal or no deal? end-to-
end learning of negotiation dialogues. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 24432453,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

F. Mairesse, M. Gasic, F. Jurcicek, S. Keizer, B. Thom-
son, K. Yu, and S. Young. 2009. Spoken language
understanding from unaligned data using discrimi-
native classification models. In 2009 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, pages 4749-4752.

Alexander Miller, Will Feng, Dhruv Batra, Antoine
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and
Jason Weston. 2017. ParlAl: A dialog research soft-
ware platform. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 79-84,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Alexandros Papangelis, Mahdi Namazifar, Chandra
Khatri, Yi-Chia Wang, Piero Molino, and Gokhan
Tur. 2020. Plato dialogue system: A flexible conver-
sational ai research platform.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao,
Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong.
2017. Composite task-completion dialogue policy
learning via hierarchical deep reinforcement learn-
ing. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2231-2240, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Osman Ramadan, Pawel Budzianowski, and Milica
Gasic. 2018. Large-scale multi-domain belief track-
ing with knowledge sharing. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),

pages 432-437, Melbourne, Australia. Association
for Computational Linguistics.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. arXiv preprint
arXiv:1909.05855.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,

Hui Ye, and Steve Young. 2007. Agenda-based
user simulation for bootstrapping a POMDP dia-
logue system. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics; Companion Volume, Short Papers, pages 149—
152, Rochester, New York. Association for Compu-
tational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, and Oleg Klimov. 2017.
policy optimization algorithms.
arXiv:1707.06347.

Proximal
arXiv preprint

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang.
2019. Guided dialog policy learning: Reward es-
timation for multi-domain task-oriented dialog. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 100—
110, Hong Kong, China. Association for Computa-
tional Linguistics.

Stefan Ultes, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Iiigo Casanueva,
Pawel Budzianowski, Nikola Mrksi¢, Tsung-Hsien
Wen, Milica Gasi¢, and Steve Young. 2017. PyDial:
A multi-domain statistical dialogue system toolkit.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 73—78, Vancouver, Canada. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gasi¢, Nikola Mrksi¢, Pei-

Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711-1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,

Milica Gasié, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
438-449, Valencia, Spain. Association for Computa-
tional Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-

following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229-256.

149

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-

Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 808-819, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2019. Task-

Oriented Dialog Systems that Consider Multiple Ap-
propriate Responses under the Same Context. In
Proceedings of the AAAI Conference on Artificial In-
telligence.

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.

2019. Rethinking action spaces for reinforcement
learning in end-to-end dialog agents with latent vari-
able models. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1208—1218, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and

Minlie Huang. 2020. CrossWOZ: A large-scale
chinese cross-domain task-oriented dialogue dataset.
Transactions of the Association for Computational
Linguistics.

OpusFilter: A Configurable Parallel Corpus Filtering Toolbox

Mikko Aulamo and Sami Virpioja and Jorg Tiedemann
Department of Digital Humanities
University of Helsinki, Helsinki/ Finland
{mikko.aulamo, sami.virpioja, jorg.tiedemann}@helsinki.fi

Abstract

This paper introduces OpusFilter, a flexible
and modular toolbox for filtering parallel cor-
pora. It implements a number of components
based on heuristic filters, language identifica-
tion libraries, character-based language mod-
els, and word alignment tools, and it can eas-
ily be extended with custom filters. Bitext seg-
ments can be ranked according to their qual-
ity or domain match using single features or a
logistic regression model that can be trained
without manually labeled training data. We
demonstrate the effectiveness of OpusFilter on
the example of a Finnish-English news trans-
lation task based on noisy web-crawled train-
ing data. Applying our tool leads to improved
translation quality while significantly reducing
the size of the training data, also clearly out-
performing an alternative ranking given in the
crawled data set. Furthermore, we show the
ability of OpusFilter to perform data selection
for domain adaptation.

1 Introduction

Data filtering tools are important to reduce the
noise fed into machine learning algorithms such as
the ones used in neural machine translation. This is
especially true for data sets with suspicious sources
like unrestricted web crawls or data sets that are
automatically extracted from complex data formats
such as PDF or HTML with all their different fla-
vors and implementations. Cleaning parallel cor-
pora is a special case in which not only the raw data
but also the quality of alignment between source
and target language needs to checked. The aligned
translations drive the mapping from input to the
output language as a strong supervision during the
training steps, and the amount of noise will have a
decisive impact on the adequacy of the translations.
The effect is especially severe for low resource set-
tings, in which little data is available, and each
mistake might directly influence the end result.

150

The interest in automatic bitext (i.e. bilingual
parallel corpora) filtering is constantly growing
pushed by the advances in neural machine trans-
lation. Khayrallah and Koehn (2018) show that
noisy training data is often more harmful for neural
translation models than statistical translation mod-
els. As a consequence, international evaluation
campaigns like the ones organised by WMT now
feature shared tasks on data cleaning and ranking
(Koehn et al., 2018, 2019). Various approaches
have been proposed based on such challenges and
directly benefit the development of MT engines in
low-resource settings.

This paper presents a framework for bitext clean-
ing, OpusFilter, focusing on processing data col-
lected in OPUS (Tiedemann, 2012), the world’s
largest resource of openly available parallel cor-
pora. In contrast to tools such as bicleaner
(Sénchez-Cartagena et al., 2018) and Zipporah (Xu
and Koehn, 2017), that implement a single method
for parallel corpus filtering, OpusFilter is designed
as a toolbox that is useful for testing and using
many different approaches. Below we describe the
design of OpusFilter and present its application in
the test case of filtering Finnish-English parallel
data included in ParaCrawl.

2 OpusFilter Toolbox

The OpusFilter toolbox is implemented in Python
3 and is available at https://github.com/
Helsinki-NLP/OpusFilter under the permissive
MIT open-source license. The main script provided
by the package is opusfilter, which takes a
configuration file as an input. The configuration
files are written in YAML syntax.! A configura-
tion contains common global options (currently
only the output directory) and a list of steps that
are run one by one. There are different step types

'See https://yaml.org/

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 150-156
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

(functions) for downloading parallel corpora from
the OPUS database, combining and taking subsets
of the corpora, filtering and scoring segment pairs
with a combination of different filters, and training
and using a classifier based on the scores. The con-
figuration files for all our experiments are included
in the GitHub repository.

The input and output files for the functions are
defined in the configuration, and it is simple to
also use external data files. In contrast to common
text file processing tools, the OpusFilter functions
support the processing of parallel files that have
corresponding data on the same lines. Special at-
tention has been paid to make the processing of
large files memory-efficient: Full corpora are never
loaded into memory, but the segment pairs and
scores are processed one at a time if possible, and
in fixed-size chunks otherwise.

In this section, we describe the current func-
tionality of the OpusFilter toolbox. In the future,
we plan to include more functions for common
monolingual and parallel data processing opera-
tions. The ultimate goal is that all pre-processing
steps could be defined in a single configuration file
making it easy to share them for reproducing MT
experiments.

2.1 Downloading and selecting data

The first steps typically refer to data selection and
their preparation. Relevant data sets can be down-
loaded, concatenated, and divided into subsets.

opus_read uses the OpusTools? library to down-
load a specified parallel corpus from the OPUS cor-
pus collection, and stores it into two files (source
and target segments, one segment per line). There
are options for selecting a specified version of the
corpus and whether to download pre-tokenized or
untokenized segments.

Multiple files can be concatenated by the con-
catenate function. The head, tail, and slice func-
tions can be used to the lines from the top, bottom
or middle of the parallel input files. Furthermore,
subset takes a random subset of the selected size
from a corpus. It has an option to shuffle the target
language segments to produce examples of poor
translation pairs that can be used as negative exam-
ples in training a segment pair classifier. Finally,
split divides parallel files into two parts when given
the approximate proportions as fractions. The split
is based on a hash function, making it deterministic

*https://github.com/Helsinki-NLP/OpusTools

151

on the content of the input lines.

2.2 Filtering and Scoring

All filter classes implemented in OpusFilter are
applicable both for direct filtering of the data and
for producing a quality score for each segment pair.
If a filtering method does not produce any sensible
score, it should output 1 for acceptable pairs and 0
for unacceptable pairs. Any method that produces
one or more scores provides options for selecting
filtering thresholds for the scores.

The current filters implemented in OpusFilter
include (a) simple length-based filters (maximum
and minimum length and segment length ratio in
words or characters), (b) script and language identi-
fication filters, (c) filters that consider special char-
acters such as numbers and punctuation marks, (d)
filters that use probabilities from n-gram language
models, and (e) filters that use word alignment prob-
abilities. For a complete list, see the documentation
of the software.

The filters can be used by two functions:

filter applies a specified list of filters to a parallel
corpus and outputs those segments that pass all the
filters (or optionally those that do not).

score produces scores for the segment pairs in a
parallel corpus from the specified list of filters. The
scores are written in JSON Lines format, which is
easy to process, and for example simple to load as
a pandas® DataFrame object.

There are also methods for using and processing
the score files: join is a function to combine sep-
arate score files to a single file, and sort sorts the
given input files based on the scores. Reordering
the data makes it convenient to remove noisy pairs
from the end of the sentence files.

In addition, OpusFilter implements re-
move_duplicates for filtering out duplicate lines
from parallel corpora. The matching can be based
on any combination of the lines in the input files,
so that it is possible, for example, to make sure that
each target sentence occurs only once in a bitext.

2.3 Classification

The scores calculated by different filters can be
used as features for a classifier that predicts
whether a given segment pair is clean enough to be
used, for example, for training machine translation
models. Moreover, the classification probability

*https://pandas.pydata.org/

can be applied for sorting the data according to
their expected cleanliness.

The classification approach currently supported
by OpusFilter is inspired by Vazquez et al. (2019).
First, we take a set of sentence pairs and score them
using features produced by filters. This set is then
split into clean and noisy examples in order to be
used as the training data for a logistic regression
classifier. To choose the positive and negative ex-
ample pairs, we set a percentage threshold value for
all filter scores. Each sentence pair has to obtain
scores that are above the threshold percentile for
all filters in order to be considered clean; otherwise,
they are labeled noisy.

Unlike Vazquez et al. (2019), who manually
placed the threshold between the two peaks of a
score distribution in cases where the distribution is
bimodal, we implemented an automatic selection of
the optimal threshold to ensure a more convenient
usage of the OpusFilter toolbox. Multiple models
with different training data splits using different
thresholds can be trained in order to find the best
performing model. The minimum, maximum, and
initial percentage thresholds can be specified for
each score in the configuration file, and optimized
with a search algorithm. The optimization criterion
can be cross-entropy of the classifier* or the area
under the receiver operating characteristics curve
(ROC AUC) based on a development set of scores
labeled as noisy or clean by the user.

Finally, once the logistic regression model is
trained and selected, it can be applied to each seg-
ment pair in a larger set of data to produce a single
cleanness score, which is the probability prediction
from the model. For classification, the following
functions have been implemented:

train_classifier optimizes a classifier to predict
the cleanliness of the segment pairs using the pro-
cedure described above. The inputs are training
scores, the criterion to be used in the model op-
timization, search algorithm details for the opti-
mization, and a development set if the ROC AUC
criterion is used. The optimized classifier is written
to the specified output file.

classify assigns either a cleanness score or label
to each sentence in a data set. The inputs are the

4 Also, Akaike Information Criterion (AIC) or Bayes In-
formation Criterion (BIC) can be applied, similarly to how
Vazquez et al. (2019) operate in cases where the score distri-
bution is not bimodal. However, they differ from the cross-
entropy only in the case that a feature can be completely
removed.

152

classifier file and the sentence pairs to be classified,
and the resulting scores or labels are written line
by line into a specified output file.

2.4 Custom Filters

The toolbox is extendable with custom filter classes
defined in Python. The filter classes should be
based on the abstract base class Fi1lterABC and
implement two methods: score and accept.
The score method takes an iterator over segment
pairs, and yields a score object for each pair. The
score may either be a single number, or if multiple
score values need to be yielded, a dictionary that
has the numbers as values. The accept method
takes a single output yielded by the score method,
and returns whether the segment pair should be ac-
cepted based on the score.

2.5 Studying Filter Scores

In addition to the main opusfilter script, there
is a separate tool opusfilter-scores for cal-
culating and plotting statistics from scored seg-
ment pairs. The commands include describe
for printing the basic statistics of the scores, hist
for plotting score histograms (see the example in
Figure 1a), corr for plotting a correlation matrix
of the scores (Figure 1b), and scatter-matrix
for drawing a matrix of scatter plots between the
values of different scores.

3 Experiments

To demonstrate the usefulness of the OpusFilter
toolbox, we show results from two main experi-
ments on the Finnish-English news translation task
(in both directions): (i) Filtering noisy data, and (ii)
applying domain adaptation.

For training, we use data from version 4 of the
ParaCrawl corpus (Espla-Gomis et al., 2019). The
data is taken from a general internet crawl and con-
tains segments that are noisy and potentially harm-
ful for machine translation models. We use the
subset of the corpus that is already filtered by the
bicleaner tool’ (Sénchez-Cartagena et al., 2018).
This data set contains 2,156,069 segment pairs and
is ordered by the score from bicleaner, which en-
ables us to directly compare it to our tool. We cre-
ate five versions of the training data by removing
10%, 20%, 30%, 40% and 50% of the pairs from
the noisy end of the collection and train translation
models with the full data and with the five reduced

Shttps://github.com/bitextor/bicleaner

CrossEntropyFilter.src CrossEntropyFilter tgt LanguagelDFilter.cld2 src

LanguagelDFilter.cld2 tgt

Score correlations

20000 <

80000

80000 4 i
12500 4 k i | | CharacterScoreFilter src Lo
10000 4 15000 4 60000 60000 CharacterScoreFilter.tgt 0.8
- ._ | CrossEntropyFilter src
l 10000 4 40000 40000 CrossEntropyFilter. tgt 0.6
5000 4 . I | | LanguagelDFilter cld2 src
00 4 5000 4 20000 4 20000 LanguagelDFilter cid2 tgt 0.4
-h NonZeroNumeralsFilter
0 0 u T T 0 T T T T 0 T T T T 0.2
0 2 20 60 0 0 40 60 000 025 050 075 100 000 025 050 075 100 TerminalPunctuationFilter
MonZeroNumeralsFilter TerminalPunctuationFilter WordAlignFilter src WordAlignFilter tgt WordAlignFitter src 0.0
WordAlignFilter tgt
| I 5000 | L 6000 L
80000 4 50000 ll 5000 ©
| - b
| MR ™
| 40000 3000 -._ -l] [
3000 5 E
o | | =] W
F i
20000 + | | | 1000 4 1000 4 -‘ [o E
H 5 £
ol o | | € 2
-2 -1

T T T T T
000 025 050 075 100 -4 -3

B
L
s
B
]

(a) Histograms of the scores.

(b) Correlations between the scores.

Figure 1: Histograms and correlations of the score values used for training classifiers in the Finnish-English noise
filtering. CharacterScoreFilters have been excluded from histograms as their values are almost always one.

training sets. Next, we reorder the data with our
toolkit and again create new data sets by removing
data with the same proportions as previously.

We then apply data provided for the WMT news
translation task® for validation and testing. In par-
ticular, we use newstest2018 as the development set
and newstest2019 as our test set for both language
directions. The translation models are trained with
the OpenNMT toolkit (Klein et al., 2017) using
RNN encoders and decoders with LSTM gates. All
training sets are tokenized with the tokenizer from
the mosesdecoder toolkit (Koehn et al., 2007) and
segmented with BPE (Sennrich et al., 2016) using
subword-nmt’ before feeding them to OpenNMT.

3.1 Ranking

Following Vazquez et al. (2019), we first produce
an initial filtering of the ParaCrawl corpus. For
this, we use the following heuristic filters from the
OpusFilter toolbox:

* LengthFilter: The length of the segments have
to be between 1 and 100 words.

* LengthRatioFilter: The maximum ratio be-
tween the source and target segments has to
be below 3.

* LongWordFilter: Exclude segment pair if any
word is longer than 40 characters.

» HtmlTagFilter: Exclude segment pairs with
any HTML tags.

* CharacterScoreFilter: All alphabetic charac-
ters have to be in Latin script.

The initial filtering removed only 8,055 (0.4%)
of the Finnish to English segment pairs, proba-

Shttp://www.statmt.org/wmt 19/translation-task.html
"https://github.com/rsennrich/subword-nmt

bly because similar filters are already applied in
bicleaner when preparing the original data set. Nev-
ertheless, these steps are useful for creating data
to train models used in the later filtering meth-
ods. First, we train word alignment priors for the
model 3 of the eflomal tool® (Ostling and Tiede-
mann, 2016) and variable-length character n-gram
models for the source and target languages using
the VariKN toolkit” (Siivola et al., 2007). In addi-
tion, we train a background language model that
combines the source and target languages of the un-
filtered corpus. We interpolate it with the language-
specific models with coefficient 0.01 to ensure that
we cover all characters that appear in the data.

Next, we take a random subset of 100,000 seg-
ment pairs from the corpus for training a logistic
regression classifier. To extract features for the lo-
gistic regression to be trained on, we use another
set of filters from the OpusFilter toolbox:

* CharacterScoreFilter: The proportion of Latin
characters among all alphabetic characters

» LanguagelDFilter: Confidence score from the
CLD2 language identification library'? if the
correct language is identified, or O otherwise

» TerminalPunctuationFilter: The “term-punct”
score from Vazquez et al. (2019)

* NonZeroNumeralsFilter: The
score from Vazquez et al. (2019)

* CrossEntropyFilter: Word-based cross-
entropies of the source and target sentences
from the respective character n-gram models

“non-zero”

* WordAlignFilter: Unnormalized source-to-

8https://github.com/robertostling/eflomal
*https://github.com/vsiivola/variKN
https://github.com/CLD20wners/cld2

153

target and target-to-source alignment proba-
bilities obtained by eflomal

Figure 1a shows histograms of the scores over
the 100,000 training segments pairs in the data, pro-
duced by the opusfilter-scores tool. The
distribution of the cross-entropy values is quite
unimodal, indicating that such a score alone does
not make a clear division of the segment pairs as
clean or noisy. Language identification scores are
mostly close to one, but zero for a small fraction of
the segments, indicating that they contain incorrect
languages. Also, non-zero numerals and terminal
punctuation scores show that a small number of
samples look problematic. Word alignment scores
have an interesting close-to-bimodal distribution.
Smaller values indicate better alignment, so the
lower peak is for more problematic segment pairs.

The correlations of the scores over the training
data are illustrated in Figure 1b. As excepted, the
same scores for source and target segments cor-
relate slightly for all scores and highly for the
cross-entropy and alignment scores. Also, non-
zero numerals and terminal punctuation filters cor-
relate slightly, indicating segment pairs that have
both different punctuation marks and numbers, thus
likely to be poor translations. Finally, cross-entropy
scores for the source language (Finnish) have a
moderate correlation with the alignment scores. As
it is likely that the English side has mostly been the
original text, problems in the fluency of the transla-
tion seem to also indicate issues in its adequacy.

3.2 Results

In this section, we compare the results of models
trained with data in the original (bicleaner) order
and in the order of our classifier using the differ-
ent data splits described above. We also test the
ROC AUC model for which we created a small
development set of 200 randomly selected segment
pairs that have manually been annotated as noisy
or clean (100 examples each). A pair was anno-
tated noisy only in the case of serious problems;
sentences with single translation errors or relatively
poor fluency were still considered clean.

Figure 2 provides an overview of the results for
Finnish to English. We can see that our filtering
method is very effective. Removing noisy data
according to the ranking produced by our tool im-
proves the BLEU score compared to the model that
applies the whole ParaCrawl data. In contrast, re-
moving data based on the original ParaCrawl order

154

EmE Domain

B CE

s ROC_AUC
B Original order
Al data

17.0

50

70 80
Percentage of data used

100

Figure 2: BLEU scores for Finnish-English translation
models trained with data that is pruned based on differ-
ent ranking orders. The reported BLEU values show
the mean of six translation models. The 100-mark bar
shows the score when using the whole ParaCrawl cor-
pus for training.

degrades the BLEU score at all cutoff points. When
using cross-entropy based sorting of the data, cut-
ting off 40% of the lowest scoring training pairs
increased BLEU by 0.67 points when compared to
using the full training set. If more than 40% of the
data is removed, the BLEU score starts to decrease.
Surprisingly, ROC AUC based sorting, which re-
quires a manually annotated development set, pro-
duces worse results than cross-entropy. ROC AUC
reaches a maximum gain of 0.26 BLEU points over
using the whole data set when 20% of the data is
truncated from the noisy end.

en-fi

== Domain
= CE
s ROC_AUC
mmm Original order
Al data

BLEU

50

60 70 80

Percentage of data used

100

Figure 3: BLEU scores for English-Finnish translation
models.

English to Finnish translations show similar re-
sults, as illustrated in figure 3, although the BLEU
scores are overall lower as it is common in systems
translating into morphologically rich languages.
Again, cross-entropy based models perform better
than ROC AUC based ones: at 80% cutoff cross-

entropy model has 0.18 point and ROC AUC model
has 0.12 point improvement over using the whole
data. The increases in scores are more modest in
English to Finnish translations than in Finnish to
English translations.

As seen in Table 1, the cross-entropy based lo-
gistic regression model sets the weights of the
cross-entropy language model filters and the word
alignment filters very close to zero, while setting
stronger weights for all other filters compared to
the ROC AUC model. Detecting the correct lan-
guage and having similar numerals in both sides of
the sentence pairs seem to be the most important
factors for the cleaning task, as their corresponding
filters have by far the highest weights.

CE ROC AUC
Intercept -4.63 -4.73
CharacterScoreFilter.src 1.75 0.77
CharacterScoreFilter.tgt 1.22 0.65
CrossEntropyFilter.src -0.12 0.40
CrossEntropyFilter.tgt -0.01 0.83
LanguagelDFilter.cld2.src | 31.33 11.30
LanguagelIDFilter.cld2.tgt | 8.39 6.57
NonZeroNumeralsFilter 14.36 13.03
TerminalPunctuationFilter | 2.57 0.82
WordAlignFilter.src -0.15 0.53
WordAlignFilter.tgt -0.04 0.87

Table 1: Logistic regression weights for models chosen
with cross-entropy and ROC AUC for each filter score
in the Finnish-English experiment. Positive weight is
for the pairs that are predicted as clean.

3.3 OpusFilter for Domain Adaptation

Besides of generally cleaning noisy training data,
OpusFilter can also be used to select training data
that is similar and appropriate for translation tasks
in specific domains. To demonstrate this, we con-
duct the following domain adaptation experiment.

We use, again, newstest2019 for testing and new-
stest2018 as development data. To adapt to the
news domain, we now take in-domain data from
previous years of the news translation task concate-
nating test sets from 2015, 2016 and 2017 for both
Finnish and English. In total, this gives us 7372 sen-
tence pairs that we apply to train n-gram language
models for the news domain for both languages
using the OpusFilter’s train_ngram feature.

In Finnish to English translations, the best BLEU
score is achieved using 60% of the full training
data. To see whether we can reach a higher score
by removing training examples that do not fit the
news domain, we first select 70% of the cleanest

155

ParaCrawl data based on the order from our cross-
entropy optimized classifier. Next, we use our pre-
viously trained news domain language models to as-
sign a new score with CrossEntropyFilters for each
sentence in both languages in our 70% data. We
sort the data based on the language model scores
and remove data from the noisy end to create 60%
and 50% data sets that reflect the additional domain
adaptation. Note that these percentage cutoff points
refer to proportions from the full ParaCrawl data
set, so the absolute number of sentence pairs is the
same as in the other data sets used in the previous
experiments. Finally, we apply those news-domain-
adapted data sets to train translation models in the
same way as before.!!

The results are included in Figures 2 and 3. In
all cases, the domain filtering leads to an improve-
ment compared to the corresponding noise-filtered
model. At the 70% mark, the results are very simi-
lar as the training sets are essentially the same. The
Finnish to English model improves the score by
0.23 BLEU points over the noise-filtered model at
the 60% mark. The English to Finnish model pro-
duces similar results but with lower scores. Those
results demonstrate the effectiveness of OpusFilter
to also perform data selection for domain adap-
tation without further annotation and additional
components.

4 Conclusions and Future Work

This paper introduces OpusFilter, a modular tool
for parallel data selection and ranking. OpusFilter
can easily be configured to work with OPUS data
and various filters to train effective classifiers in
order to rank bitext segments. We demonstrate its
use in a Finnish-English translation task based on
the noisy ParaCrawl data used for training. The
classifiers can be trained without human annota-
tion, and the automatic model selection methods
implemented in the toolbox lead to a similar per-
formance compared to classifiers based on small
manually labeled validation data. OpusFilter is
open source and distributed with a permissive li-
cense to make it widely applicable. In future work,
we would like to extend the toolbox with additional
filters and classification options. One option could
be the inclusion of sentence embedding based filter-
ing (Guo et al., 2018). Additionally, we would like
to explore OpusFilter’s use in different scenarios
and for other language pairs. Especially interesting

"The WMT testsets are not included in training the models.

would be the application in low-resource settings
and various levels of noise in the original data. Fur-
thermore, the use for domain adaptation and data
selection should be further explored.

Acknowledgments

This work is part of the FoTran project,
funded by the FEuropean Research
Council (ERC) under the European
Union’s Horizon 2020 research and
innovation programme (grant agree-
ment Ne 771113), as well as the MeMAD project,
funded by the European Union’s Horizon 2020
Research and Innovation Programme (grant agree-
ment Ne 780069).

rc

References
Miquel Espla-Gomis, Mikel L Forcada, Gema
Ramirez-Sdnchez, and Hieu Hoang. 2019.

Paracrawl: ~Web-scale parallel corpora for the
languages of the eu. In Proceedings of Machine
Translation Summit XVII Volume 2: Translator,
Project and User Tracks, pages 118—119.

Mandy Guo, Qinlan Shen, Yinfei Yang, Heming
Ge, Daniel Cer, Gustavo Hernandez Abrego, Keith
Stevens, Noah Constant, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. Effective parallel
corpus mining using bilingual sentence embeddings.
CoRR, abs/1807.11906.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74-83, Melbourne, Australia. Association for Com-
putational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Philipp Koehn, Francisco Guzman, Vishrav Chaud-
hary, and Juan Pino. 2019. Findings of the wmt
2019 shared task on parallel corpus filtering for
low-resource conditions. In Proceedings of the
Fourth Conference on Machine Translation (Volume
3: Shared Task Papers, Day 2), pages 5674, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In

156

Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177-180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Philipp Koehn, Huda Khayrallah, Kenneth Heafield,
and Mikel L. Forcada. 2018. Findings of the wmt
2018 shared task on parallel corpus filtering. In Pro-
ceedings of the Third Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 739—
752, Belgium, Brussels. Association for Computa-
tional Linguistics.

Robert Ostling and Jérg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125-146.

Victor M. Séanchez-Cartagena, Marta Bafién, Sergio
Ortiz-Rojas, and Gema Ramirez-Sanchez. 2018.
Prompsit’s submission to wmt 2018 parallel cor-
pus filtering shared task. In Proceedings of the
Third Conference on Machine Translation, Volume
2: Shared Task Papers, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Vesa Siivola, Teemu Hirsiméki, and Sami Virpi-
oja. 2007. On growing and pruning Kneser-Ney
smoothed n-gram models. IEEE Transactions on Au-
dio, Speech and Language Processing, 15(5):1617—
1624,

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Sth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Raul Vazquez, Umut Sulubacak, and Jorg Tiedemann.
2019. The university of Helsinki submission to the
WMT19 parallel corpus filtering task. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 3: Shared Task Papers, Day 2), pages
294-300, Florence, Italy. Association for Computa-
tional Linguistics.

Hainan Xu and Philipp Koehn. 2017. Zipporah: a
fast and scalable data cleaning system for noisy web-
crawled parallel corpora. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2945-2950, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Label Noise in Context

Michael Desmond*
mdesmond@us.ibm.com

Jeff Boston
daddyb@us.ibm.com

Catherine Finegan-Dollak*
cfd@ibm.com

Matthew Arnold
marnold@us.ibm.com

IBM Research Al
1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA

Abstract

Label noise—incorrectly or ambiguously la-
beled training examples—can negatively im-
pact model performance. Although noise
detection techniques have been around for
decades, practitioners rarely apply them, as
manual noise remediation is a tedious process.
Examples incorrectly flagged as noise waste
reviewers’ time, and correcting label noise
without guidance can be difficult.

We propose LNIC, a noise-detection method
that uses an example’s neighborhood within
the training set to (a) reduce false positives and
(b) provide an explanation as to why the ex-
ample was flagged as noise. We demonstrate
on several short-text classification datasets that
LNIC outperforms the state of the art on mea-
sures of precision and Fj 5-score. We also
show how LNIC’s training set context helps a
reviewer to understand and correct label noise
in a dataset. The LNIC tool lowers the barriers
to label noise remediation, increasing its utility
for NLP practitioners.

1 Introduction

Label noise—examples with incorrect or ambigu-
ous labels in a training set—degrades the perfor-
mance of the learned model, resulting in inac-
curate predictions (Frénay and Verleysen, 2014).
Automated data collection risks generating noisy
datasets, and human annotators may introduce
noise through a lack of attention or expertise.

Automatic noise-detection algorithms analyze a
training set and flag “suspicious” examples that are
likely mislabeled (Brodley and Friedl, 1999; Frénay
and Verleysen, 2014). Suspicious examples can be
deleted, automatically corrected by an algorithm,
or reviewed by a human. Human review is the
most effective of these mitigation options but is
comparatively expensive.

*The first two authors contributed equally.

= Unexpected increase in

sports fitness

e Why doesn’t my stamina
running ability seem to improve?

e Is it possible for the libero | @ Is there a rule of thumb for
to score points in setting running goals?
volleyball?

e How counter-productive
would having two coaches
be?

Table 1: Training set context can help an annotator de-
cide if the highlighted suspicious training example is
correctly labeled sports or should be labeled fitness.

Two problems contribute to making human re-
view time consuming: false positives and a lack
of explanation. False positives are examples that
are incorrectly flagged as noise; reviewing such
examples wastes the annotator’s time. Showing
a reviewer a suspicious example without an ex-
planation is effective in the simplest cases, but is
likely to cause difficulty and frustration in the more
common case of non-obvious noise that requires a
deeper comprehension of the data.

To date, few noise-detection algorithms have
been designed with human review in mind. Sluban
et al. (2010) is the only work we are aware of that
recognized that a noise-detection algorithm for use
in a human review process should emphasize preci-
sion (i.e., reduce the proportion of false positives).
However, we are unaware of any existing work that
addresses the explainability of detected label noise.

We propose the Label Noise in Context system,
or LNIC, which uses the neighborhood surround-
ing a suspicious example in the training set to im-
prove both precision and explainability. By calcu-
lating a similarity matrix for the dataset, we are able
to identify a suspicious example’s neighborhood
and use a method similar to a nearest-neighbors
classifier to filter out false positives. Applying a set
of simple heuristics to the same similarity matrix
allows us to construct a training set context, like
that in Table 1. Seen in isolation, an example about

157

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 157-186
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

running ability labeled as belonging to the sports
class is not obviously wrong; however, once the
annotator understands that she is seeing it because
there are more similar examples in the fitness class,
it becomes apparent that there is a better label.
The main contributions of this work are

We describe LNIC’s nearest-neighbors-based al-
gorithm to improve precision and explainability
of automatically detected label noise (Sec. 3).
We show that neighborhood-based filtering after
noise-detection improves precision and Fj 5 over
the state of the art for five short-text classification
datasets (Sec. 4 and 5).

We present the LNIC tool for reviewing noise in
context, demonstrating the value of explanations
for understanding and fixing label noise (Sec. 6).
A demo video is available at https://www.
youtube.com/watch?v=20cigQaCc_k, and a live
web demo is at http://lnic.mybluemix.net/

2 Related Work

Noise Detection. Frénay and Verleysen (2014)
conducted a comprehensive survey of the vari-
ous approaches to detecting and remediating label
noise. Many works advocate removing label noise
to improve model performance (Brodley and Fried],
1999; Sanchez et al., 2003; Smith and Martinez,
2011). Teng (2000) advocates automatic relabel-
ing, while others present the case for human-in-
the-loop (Ekambaram et al., 2016; Fefilatyev et al.,
2012; Matic et al., 1992; Sluban et al., 2010) and
hybrid techniques (Miranda et al., 2009). In work
contemporaneous with ours, Northcutt et al. (2019)
remove examples where a classifier’s confidence is
low.

The most directly related work is Brodley and
Friedl (1999), describing a noise detection method
using predictions from an ensemble of classifiers,
and Sluban et al. (2010), proposing the High Agree-
ment Random Forest (HARF) system; both systems
are described in detail in Section 3.1.

Brodley and Friedl (1999) dropped suspicious
examples but propose correction instead as future
work. Sluban et al. (2010) note that precision of
noise-detection is important when a human will re-
view all suspicious examples. Garcia et al. (2016)’s
experiments show that HARF also achieved state-
of-the-art F} scores on a variety of datasets.

Active Learning Similar to label noise remedia-
tion, active learning (Settles, 2014) seeks to mini-
mize the effort a human needs to expend on data

158

labeling activities in order to improve model per-
formance. However, active learning aims to se-
lect the most informative unlabeled data to label
next, while label noise detection identifies already-
labeled data that may require additional labeling ef-
fort. We consider active learning and label noise de-
tection as complimentary technologies, that might
be woven together within a robust model improve-
ment flow.

At a technical level, some active learning and la-
bel noise detection techniques are based on similar
foundations. Query By Committee (QBC) (Seung
et al., 1992) active learning uses an ensemble of
classifiers, selecting examples on which the en-
semble disagrees for labeling. Similarly ensemble-
based noise detection algorithms select examples
where the ensemble agrees (but disagrees with the
given label). Model uncertainty, which underpins
many effective active learning strategies such as
least confident, margin, and entropy, is also the ba-
sis of label noise detection methods such as clean-
lab (Northcutt et al., 2019).

Explainability. With the rise of increasingly
complex classification models, explaining classi-
fier predictions has received a great deal of atten-
tion. Perhaps the most well-known system is LIME
(Ribeiro et al., 2016). The LIME authors noted
that explaining classifier predictions increases hu-
man trust and provides insights that can be used
to improve the model. To explain a classifier’s
prediction on a particular example, the algorithm
collects nearby examples and the model’s predic-
tions for them. It trains a linear model on a simpler
representation of this data, allowing it to indicate
which words or super-pixels are important in the
classifier’s decision.

Numerous recent works in NLP and machine
learning emphasize explainability. Dhurandhar
et al. (2018) explained classifier predictions with
positive features that push an example towards its
assigned class and negative features whose absence
prevent an example from being placed in a differ-
ent class. Lei et al. (2016) jointly trained a genera-
tor and an encoder in order to generate rationales
for sentiment prediction and a similar-question-
retrieval task. Mullenbach et al. (2018) used a con-
volutional neural network to predict codes describ-
ing the diagnosis and treatment of patients given
the clinical notes on the patent encounter. Their at-
tention mechanism not only improved the system’s
precision and F1, but also highlighted the text that

was most relevant to each code. Chiyah Garcia
et al. (2018)’s system used an expert-generated de-
cision tree and a set of templates to generate natural
language explanations of what an autonomous un-
derwater vehicle was doing and why.

Despite the interest in explainable models, no
work that we are aware of has attempted to make
detected label noise explainable.

3 Algorithms

LNIC uses a three-step process. First, a noise-
detection algorithm flags suspicious examples. Sec-
ond, a neighborhood-based filter decides which of
these examples to ignore and which to flag for hu-
man review. Finally, we generate a context, using
rules to select neighbors to present to the user.

3.1 Noise-Detection Algorithms

LNIC’s noise-detection phase can use any noise-
detection algorithm. Here, we report on three en-
semble algorithms derived from the literature: con-
sensus (Brodley and Friedl, 1999), agreed correc-
tion, and HARF (Sluban et al., 2010).!

Ensemble noise detection algorithms train sev-
eral classifiers on cross-validation splits of the train
set. Each classifier predicts labels for the left-out
examples. The predicted label is the classifier’s
“vote” for that example. If it matches the current la-
bel, the classifier voted that the example is not sus-
picious; otherwise, the classifier voted that it is. In
Brodley and Friedl (1999)’s consensus algorithm,
if all votes agree that an example is suspicious, the
algorithm flags that example as suspicious. Our
agreed correction variant requires all votes from
the ensemble to agree not only that an example
is mislabeled, but also on what the correct label
would be. HARF (Sluban et al., 2010) relies on
the fact that a random forest is an ensemble of de-
cision trees; it flags an example as suspicious if a
super-majority of trees vote that it is.

3.2 Neighborhood Filtering

Neighborhood filtering reduces the number of ex-
amples that are incorrectly flagged as noise. If a
majority of neighbors of an example have the same
label as that example, it suggests that the example
is correctly labeled, so LNIC filters it out of the list
of suspicious examples.

The neighborhood filter calculates the pairwise
cosine similarity of all examples in the training

"Models and hyperparameters are listed in Appendix A

data, then finds the k£ neighbors closest to each
suspicious example s, where k is a tunable hyper-
parameter. If s’s current label g, is also the most
common among those neighbors, s is filtered from
the pool of suspicious examples as a false positive,
otherwise s is flagged for human review.

LNIC supports filtering on the feature neighbor-
hood or the activation neighborhood. The feature
neighborhood represents each example using its
original feature vector (here, USE embeddings (Cer
et al., 2018)). The activation neighborhood repre-
sents each example in the training set using final
layer activations from a neural classifier trained on
the entire data set, the idea being to project training
examples into a classification space.

3.3 Context Generation

The final step of the LNIC algorithm is to apply
heuristics to the neighborhood to generate a train-
ing set context. This context acts as an explanation,
showing (a) which classes the noise-detection en-
semble proposed as a better label for the suspicious
example, and (b) the most similar examples from
the current class and those proposed classes.

The ensembles in the noise-detection algorithms
generate a list of predicted labels for each suspi-
cious example. These labels plus the example’s
current label comprise the permitted labels for that
example. The heuristic selects the example from
each permitted label that is closest to the suspicious
example. If there are fewer than k permitted labels
(where £k is the desired context size), the balance of
the context is filled out by selecting the remaining
k — n nearest neighbors from the permitted labels.

We build the explanation based on both the acti-
vation neighborhood and the feature neighborhood;
an example that already appears in the activation
context is omitted from the feature context and re-
placed by the next-nearest neighbor. Figures 4 and
5 show a examples of this contextual explanation.

4 [Experiments

We hypothesize that adding a neighborhood-based
filter after noise detection reduces the rates of false
positives while retaining true noisy examples. We
test this by injecting noise into datasets, running
algorithms over them, and measuring the correctly
and incorrectly flagged suspicious examples.

2When using raw features, this filter acts like a k-nearest
neighbors classifier with veto power over the ensemble. Ex-
periments with a vote by weighted cosine similarity correlated
closely with this simpler technique, and we did not pursue it.

159

4.1 Datasets

We evaluate on the short-text classification datasets
listed in Table 2.3 Phase one of the evaluation in-
troduces label noise—effectively “corrupting” the
datasets. The amount of introduced label noise was
controlled by an error-rate parameter, interpreted
as the fraction of the training set to mislabel.

We used two strategies to introduce label noise:
random and next-best. Both selected a random sam-
ple of the training data to mislabel. The random
strategy assigned a random incorrect label to each
selected example. The next-best strategy assigned
the “next-best” incorrect label, as predicted by a
classifier trained on the entire train set; this simu-
lates a best effort but incorrect labeling, as might
be performed by a confused human labeler.

4.2 Metrics

Because the goal of the algorithm is to avoid wast-
ing human time, our evaluation should heavily pun-
ish false positives. We therefore measure the preci-
sion of each algorithm. We also follow Sluban et al.
(2010) in reporting Fy 5, an F'-score that values
precision twice as much as recall.

precision - recall

Fys = (14 0.5
0.5 = (1+)(0.52-precision)—|—7‘€call

ey

Not every situation calls for precision to be val-

ued twice as much as recall. Therefore, we also re-

port Fg (Rijsbergen, 1979) for 5 € {1.0,0.2,0.1}

to reflect the preferences of users who value preci-

sion and recall equally, precision five times more
than recall, and precision ten times more.

5 Results

Figure 1 shows average precision and Fj 5 scores
across the five datasets, and Table 3 further summa-
rizes by averaging across error rates. Appendix B
shows results split by dataset and error rate.

Table 3 shows that, averaged across datasets and
error rates, adding neighborhood filtering of any
kind improves precision of all of the underlying
algorithms. For randomly generated noise, this is
true for Fy 5 as well. Figure 1a also shows that the
neighborhood activation filter gives a large boost to
precision over all three noise-detection algorithms,
and the feature neighborhood filter gives a smaller

3All data is publicly available. Lists of the exact sub-
sets we used for Stack Exchange, Stack Overflow, and Jeop-
ardy are available at https://github.com/cfd-01/
LNiC_data.

160

but still observable benefit. For next-best noise,
adding the feature neighborhood filtering improves
Fp 5, but activation neighborhood filtering slightly
worsens Fj 5. From the graph in Figure 1d, it is
apparent that activation neighborhood filtering has
a benefit to F{y 5 at low error rates but declines rela-
tive to the other systems as the error rate increases,
crossing at error rates near 15%. Addition of too
much next-best noise negatively impacts the neural
network trained on the uncorrected data, distorting
the activation space. While this distortion does not
harm precision, it is detrimental to recall.

For both random and next-best noise, agreed
correction with activation neighborhood filtering
achieves the best average precision. For random
noise, HARF with activation-neighborhood filter-
ing gives the best Fp 5 across noise rates. However,
for next-best noise, HARF suffered a dramatic loss
in recall when error rates exceeded about 12% (Fig-
ure 1d), leading it to have low overall Fj 5. This
may be due to the random forest’s use of bagging:
if a subset of trees trains on samples with a great
deal of non-random noise, those trees could learn
to misclassify systematically. Agreed correction
with feature neighborhood filtering gave the highest
average Fj 5 for next-best noise.

The upward trend in precision as error rates in-
crease suggests that the same core of false positives
are consistently detected. As the number of true
positives increases with higher error rates, the core
of false positives makes up a smaller fraction of the
total number of examples flagged as suspicious.

Table 4 lists Fg scores. As expected, using a
neighborhood filter, which reduces the number of
suspicious examples shown to a user, is particularly
advantageous when precision is valued more than
recall (Fp.o and F{ 1), but often extracts a cost when
recall and precision are equally important (£).
Thus, agreed correction with no neighborhood fil-
ter is the best system to optimize F g when using
next-best noise. Nevertheless, the strongest system
for F} o on random noise is still HARF with acti-
vation neighborhood filtering, followed closely by
consensus with activation neighborhood filtering.

6 The LNIC Tool

The LNIC tool implements the algorithms de-
scribed above and provides a web interface to re-
view label noise in context. The interface visually
summarizes the overall label noise within a dataset
and links to groups of suspicious examples in con-

Source Description Train Classes
Stack Exchange Collected by the authors from Question titles from general-interest fo- 5000 15
https://archive.org/details/ rums classified by topic
stackexchange
Stack Overflow Subset of (Xu et al., 2015) Question titles from programming forum 10000 20
classified by topic
Jeopardy Subset of www . j—archive.com Gameshow question-answer pairs classi- 5080 21
fied by category
ATIS (Price, 1990; Hakkani-Tur et al., 2016) Questions from air travel domain classi- 4952 17
fied by intent
Snips-2017 https://github.com/snipsco/ Requests to a digital assistant classified 13784 7
nlu-benchmark/ by intent

Table 2: Dataset details.

Random Noise

precision

0.2

Next-Best Noise

0.9

0.8

0.7

0.9

0.8

0.7

0.6

5 o6
@
o
Vo5
[=%
0.4
0.3
0.2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Error Rate Error Rate
(a) Precision of noise detection for randomly generated noise (b) Precision of noise detection for next-best noise.
Random Noise Next-Best Noise
0.8
0.7
0.6
pk 0.5
g

f0.5

0.5

0.4

0.3

0.2

0.4

0.3

0.2

0.00 0.05 0.10 0.15 0.20 0.25

Error Rate

0.30 0.35 0.40

(c) Fou.5 of noise detection for randomly generated noise

- Agreed correction
Agreed correction + activations
- = Agreed correction + features

o

—t+— Consensus
—= Consensus + activations
Consensus + features

020 025
Error Rate

0.00 0.05 0.10 0.15 0.30 0.35 0.40

(d) Fpy.5 of noise detection for next-best noise.

— HARF
—-= HARF + activations
—== HARF + features

Figure 1: Precision and Fj 5 at various noise levels, averaged across the five datasets.

text. LNIC’s representation of the noise summary
(Figure 2) is similar to a confusion matrix. In the
label noise matrix each cell indicates the number
of noisy examples discovered where the context
includes the classes specified by the row and the

column.* Clicking on a cell brings the user to a
list of examples flagged as noise. Each of these
examples can be expanded to show the context, as

“The agreed-correction algorithm guarantees that each con-
text contains exactly two classes. When using larger contexts,
the summary can be a list of class tuples.

161

£ 2

= 2 « c - >

S 2 4 g = S

E 8 > £ s 3 @

el s} kel = o c c
buddhism 2 2 4 10
cooking 7 2 5 10 1
diy 7 1 10 3 1

fitness 2 2 1 -

gardening 2 5 10 3
health 4 10 3

w
N

history 10 1 1 2
interpersonal 6 1 1 2
mythology 10 1 25

outdoors 4 12 M 17 14 12 1
parenting 5 4 4 4 7 2

pets 4 2 1 2 7
productivity 12 1 15 1 20 1
sports 4 2 1 29 1 7 4
travel 1 4 1 1 5

@©
é 8 ¢ 2 g
£ 2 § § , 3 ¢ =
£E € 3 & 8 & g§ B
6 10 4 5 a4 12 4 1
1 12 4 2 1 2 4
1 4 1 1 1
17 4 {5 29
1 1 14 2 1 1
2 12 7 7 20 7 1
25 1 2 1 4 5
1 14 4 20 5 1
1 1
1 2 10 3 18 18
14 2 a4 13 1 3
4 10 4 1
20 3 13 1
5 1 18 1 1

1 1 18 3 1 1 1

Figure 2: The label noise matrix summarizing noise discovered in approximately 30k examples from the Stack

Exchange dataset.

Random Noise Next-Best Noise

P F0A5 P FOAE)
Agreed correction 0.732 0.713 0.717 0.691
+ Neighborhood filtering using
feature 0.753 0.729 0.738 0.698
activation 0.819 0.773 0.779 0.681
Consensus 0.672 0.702 0.647 0.645
+ Neighborhood filtering using
feature 0.698 0.725 0.668 0.654
activation 0.774 0.781 0.713 0.646
HARF 0.734 0.751 0.667 0.559
+ Neighborhood filtering using
feature 0.746 0.761 0.677 0.563
activation 0.801 0.798 0.718 0.549

Table 3: Mean precision and Fj 5 for the five datasets,
averaged across all error rates. The top row in each
section is a baseline system with no filtering.

illustrated in Figures 3 and 4.

Data from Stack Exchange illustrates how con-
text helps a reviewer understand problems in a
dataset. Sometimes, context shows that an example
is mislabeled. Without context, it is easy for an an-
notator to be uncertain of whether a question about
the existence of a myth belongs in the history class;
it is a question about a historical civilization, after
all. However, from the context in Figure 4, it is
clear that even questions about the history of myths
are categorized as mythology, and so the example’s
label should be changed to maintain consistency.

162

Random Noise Next-Best Noise

Fio Fo2 Fo1 Fio Foo Foa
Agreed correction 0.695 0.728 0.731 0.666 0.712 0.716
+ Neighborhood filtering using
feature 0.706 0.748 0.752 0.658 0.729 0.736
activation 0.721 0.809 0.817 0.585 0.757 0.773
Consensus 0.760 0.678 0.674 0.652 0.646 0.647
+ Neighborhood filtering using
feature 0.776 0.703 0.699 0.647 0.665 0.667
activation 0.800 0.775 0.774 0.581 0.698 0.709
HARF 0.787 0.737 0.734 0477 0.639 0.659
+ Neighborhood filtering using
feature 0.794 0.748 0.746 0477 0.647 0.669
activation 0.803 0.800 0.800 0.430 0.672 0.705

Table 4: Average F-scores across the datasets valuing
precision to different degrees.

Other times, context can reveal more complex
issues with the class structure of the data. Figure 5
shows a suspicious example from the health class
that the noise detection algorithm suggests may
belong in the fitness class. The context shows that
in fact, both classes include questions about the
timing of meals with regard to exercise. A human
reviewer should make a decision about where the
boundary between these two classes should lie and
assign these utterances consistently to one class.

7 Conclusion

Although NLP practitioners know that label noise
harms performance, and noise detection algorithms
have long been available, this technology is not

history / mythology

Suspicious examples between history and mythology.

Mayan calendar coinciding with winter solstice

The concept that scripture is made to adapt to changes of society, technology, and language
What gift did Saladin send to Richard when he was ill?

Are there any texts/translations of the 4 main Egyptian creation myths?

How were the Welsh Triads used by the Welsh?

Is there a Greek myth of Poseidon "dating" his daughter in the form of a dolphin?

What is this symbol in red box?

What is known about the Antiu?

Is Krampus real?

Figure 3: Suspicious examples at the intersection of

history and mythology classes without context.
history mythology

» Who is the oldest being in Greek mythology?
(0.956)

» Is there a Greek myth of Poseidon "dating" his
daughter in the form of a dolphin? (1.000)

« Are there any female heroines in Shinto
mythology? (0.953)

* Who worshipped the Titans? (0.953)

« Are there any saints or heroes in mythology
who ally with death? (0.953)

+ Did any ancient cultures or scholars recognize
the Hero's Journey monomyth? (0.951)

« How did Greeks make greek fire? (0.463) + Does Poseidon rule over all the sea gods?

(0.602)

« Is Greek mythology derivative of/influence by
Ugartic/Canaanite mythology? (0.591)

* Where does Poseidon get called the God of
Kin? (0.570)

= Why is Roman Mythology so similar to Greek
Mythology or vice versa? (0.565)

 Is there a world tree in Greek mythology?
(0.563)

Figure 4: An example from Figure 3, with context. In
red is the suspicious example. Examples in the white
box are its context from activation space, and those in

the blue box are context from raw embedding space.

Numbers in parentheses indicate cosine similarity.

being applied in practice, perhaps because human
How long should one wait to eat after exercise

fitness health

« Should | eat before or after my exercise?
(0.969)

+ How long should one wait to eat after exercise
(1.000)

+ How long should | wait to exercise after eating?
(0.955)

+ What are the health benefits of consuming
smaller meals more often throughout the day?

+ What are the benefits to eating immediately (0.957)
after exercising? (0.954) + What happens when you eat carbs everyday?

(0.955)

+ How long should | wait after dinner before |
start exercising? (0.833)

+ Why am | advised not to eat immediately before
exercise? (0.626)

« Is it okay to eat after exercising? (0.768)
+ How long do | wait after a failed lift? (0.646)

+ How early should | eat before Hockey training
(0.629)

+ What is the best thing to eat before a long bike
ride? (0.617)

Figure 5: Context shows overlapping class definitions.

163

review of detected errors is difficult and time con-
suming. LNIC makes human review of possible
label noise easier and more efficient. It reduces the
number of false positive examples that the reviewer
must look at, providing state-of-the-art precision
and Fp 5 across several short text datasets. And by
providing an explanation of why the model flagged
an example as suspicious, it makes the output of la-
bel noise detectors understandable and actionable.

Acknowledgments

We thank Evelyn Duesterwald as well as the anony-
mous reviewers for helpful feedback.

References

Carla E. Brodley and Mark A. Friedl. 1999. Identify-
ing mislabeled training data. Journal of Artificial
Intelligence Research, 11:131-167.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder. arXiv preprint,
abs/1803.11175.

Francisco Javier Chiyah Garcia, David A. Robb,
Xingkun Liu, Atanas Laskov, Pedro Patron, and He-
len Hastie. 2018. Explainable Autonomy: A Study
of Explanation Styles for Building Clear Mental
Models. In Proceedings of the 11th International
Conference on Natural Language Generation, pages
99-108, Tilburg University, The Netherlands. Asso-
ciation for Computational Linguistics.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-
Chen Tu, Paishun Ting, Karthikeyan Shanmugam,
and Payel Das. 2018. Explanations based on the
missing: Towards contrastive explanations with per-
tinent negatives. In Advances in Neural Information
Processing Systems 31, pages 592—603. Curran As-
sociates, Inc.

Rajmadhan Ekambaram, Sergiy Fefilatyev, Matthew
Shreve, Kurt Kramer, Lawrence O. Hall, Dmitry B.
Goldgof, and Rangachar Kasturi. 2016. Active
cleaning of label noise. Pattern Recognition,
51:463-480.

Sergiy Fefilatyev, Matthew Shreve, Kurt Kramer,
Lawrence Hall, Dmitry Goldgof, Rangachar Kasturi,
Kendra Daly, Andrew Remsen, and Horst Bunke.
2012. Label-noise reduction with support vector
machines. In Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012),
pages 3504-3508. IEEE.

Benoit Frénay and Michel Verleysen. 2014. Classifica-
tion in the presence of label noise: A survey. IEEE

transactions on neural networks and learning sys-
tems, 25(5):845-869.

Luis PF. Garcia, André C.PL.F. de Carvalho, and
Ana C. Lorena. 2016. Noise detection in the meta-
learning level. Neurocomputing, 176:14-25.

Dilek Hakkani-Tur, Gokhan Tur, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, and Ye-Yi Wang.
2016. Multi-domain joint semantic frame parsing
using bi-directional RNN-LSTM. In Proceedings of
Interspeech.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing Neural Predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107-117, Austin,
Texas. Association for Computational Linguistics.

N. Matic, I. Guyon, L. Bottou, J. Denker, and V. Vapnik.
1992. Computer aided cleaning of large databases
for character recognition. In Proceedings., 11th
IAPR International Conference on Pattern Recog-
nition. Vol. II. Conference B: Pattern Recognition
Methodology and Systems, pages 330-333. IEEE.

André L.B. Miranda, Luis
André C.PL.F. Carvalho, and Ana C. Lorena.
2009. Use of classification algorithms in noise
detection and elimination. In International Con-
ference on Hybrid Artificial Intelligence Systems,
pages 417—-424. Springer.

Paulo F. Garcia,

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable Pre-
diction of Medical Codes from Clinical Text. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1101-1111, New
Orleans, Louisiana. Association for Computational
Linguistics.

Curtis G Northcutt, Lu Jiang, and Isaac L Chuang.
2019. Confident learning: Estimating uncertainty in
dataset labels. arXiv preprint arXiv:1911.00068.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Proceedings of the
Workshop on Speech and Natural Language, HLT
’90, pages 91-95, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “Why Should I Trust You?” Ex-
plaining the Predictions of Any Classifier Marco.
In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pages 1135—1144, San Francisco, Cal-
ifornia, USA. ACM.

164

C. J. Van Rijsbergen. 1979. Information Retrieval,
2nd edition. Butterworth-Heinemann, Newton, MA,
USA.

José Salvador Sanchez, Ricardo Barandela, Ana I.
Marqués, Roberto Alejo, and Jorge Badenas. 2003.
Analysis of new techniques to obtain quality training
sets. Pattern Recognition Letters, 24(7):1015-1022.

Burr Settles. 2014. Active learning literature survey.
2010. Computer Sciences Technical Report, 1648.

H Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. In Proceed-
ings of the fifth annual workshop on Computational
learning theory, pages 287-294.

Borut Sluban, Dragan Gamberger, and Nada Lavra.
2010. Advances in class noise detection. In Pro-
ceedings of the 19th European Conference on Artifi-
cial Intelligence, pages 1105-1106. IOS Press.

Michael R. Smith and Tony Martinez. 2011. Improving
classification accuracy by identifying and removing
instances that should be misclassified. In The 2011
International Joint Conference on Neural Networks,
pages 2690-2697. IEEE.

Choh Man Teng. 2000. Evaluating noise correction.
In Pacific Rim International Conference on Artificial
Intelligence, pages 188—198. Springer.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. In Proceedings of the 1st Workshop on Vec-
tor Space Modeling for Natural Language Process-
ing, pages 62—69, Denver, Colorado. Association for
Computational Linguistics.

A Appendix: Model Details

For ease of replication, this appendix specifies the
details of the models used in our experiments.

For consensus and agreed-only noise detection,
our ensemble consisted of three classifiers from
Scikit Learn (Pedregosa et al., 2011): LogisticRe-
gression, RandomForestClassifier, and MLPClas-
sifier. We used default parameters, except that we
set MLPClassifier’s max_iter parameter to 1000
to speed up experiments.

For HARF, we used a RandomForestClassifier
model with 500 trees and required 90% agreement.
Sluban et al. (2010) reported on models requiring
lower levels of agreement, but preliminary testing
demonstrated that 90% improved results on our
datasets.

For the neighborhood filter, we set k = 5.

Our raw vector representation of all utterances
was USE (Cer et al., 2018). The activations
for activation-based filtering and context genera-
tion were generated using an MLPClassifier with
hidden_layer_sizes = [100, 512].

165

B Appendix: Detailed Results

Results were summarized in the body of the paper for conciseness. In this appendix, we present precision
and F{ 5 for each of the five datasets and for each of the error rates.

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.0T 0379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.0T 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0.925177 0.816177

0.0T 0.219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0.922156 0.814744

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.01 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.01 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.0T 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

166

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARF390 0.01 0.256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 5: ATIS, Next-Best Noise

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0922156 0.814744

167

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.01 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.01 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.01 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARFS90 0.01 0256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0.263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 6: ATIS, Random Noise

168

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0.925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0.922156 0.814744

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.0T 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.0T 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.0T 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

169

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARF590 0.01 0.256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0.263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 7: Jeopardy, Next-Best Noise

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0925177 0.816177

0.01 0.219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0922156 0.814744

170

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.01 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.01 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.01 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARFS90 0.01 0256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0.263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 8: Jeopardy, Random Noise

171

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0.925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0.922156 0.814744

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.0T 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.0T 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.0T 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

172

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARF390 0.01 0.256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 9: SNIPS, Next-Best Noise

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0922156 0.814744

173

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.01 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.01 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.01 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARFS90 0.01 0256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0.263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 10: SNIPS, Random Noise

174

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0.925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0.922156 0.814744

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.0T 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.0T 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.0T 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

175

HARF590

0.01 0.250247 0.272751
0.05 0.527276 0.544201
0.10 0.662522 0.659799
0.15 0.732189 0.709038
(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331
0.30 0.830042 0.745807
0.35 0.846649 0.742334
0.40 0.867032 0.742929
0.01 0.360629 0.352368
0.05 0.631307 0.613590
0.10 0.733487 0.692197
0.15 0.792436 0.730627
activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366
0.30 0.865749 0.736683
0.35 0.879965 0.729277
0.40 0.893418 0.720200
0.01 0.256974 0.279874
0.05 0.542058 0.557569
0.10 0.676098 0.671038
0.15 0.744827 0.718450
feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494
0.30 0.839792 0.750249
0.35 0.857306 0.745631
0.40 0.876019 0.744641
0.01 0263552 0.286632
0.05 0.542341 0.557493
0.10 0.676441 0.670760
0.15 0.744850 0.717847
nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751
0.30 0.839663 0.749268
0.35 0.856773 0.743603
0.40 0.875930 0.743391

Table 11: Stack Exchange, Next-Best Noise

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0922156 0.814744

176

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.01 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.01 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.01 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARFS90 0.01 0256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0.263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 12: Stack Exchange, Random Noise

177

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0.925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0.922156 0.814744

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.0T 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.0T 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.0T 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

178

HARF590

0.01 0.250247 0.272751
0.05 0.527276 0.544201
0.10 0.662522 0.659799
0.15 0.732189 0.709038
(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331
0.30 0.830042 0.745807
0.35 0.846649 0.742334
0.40 0.867032 0.742929
0.01 0.360629 0.352368
0.05 0.631307 0.613590
0.10 0.733487 0.692197
0.15 0.792436 0.730627
activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366
0.30 0.865749 0.736683
0.35 0.879965 0.729277
0.40 0.893418 0.720200
0.01 0.256974 0.279874
0.05 0.542058 0.557569
0.10 0.676098 0.671038
0.15 0.744827 0.718450
feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494
0.30 0.839792 0.750249
0.35 0.857306 0.745631
0.40 0.876019 0.744641
0.01 0263552 0.286632
0.05 0.542341 0.557493
0.10 0.676441 0.670760
0.15 0.744850 0.717847
nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751
0.30 0.839663 0.749268
0.35 0.856773 0.743603
0.40 0.875930 0.743391

Table 13: Stack Overflow, Next-Best Noise

Underlying Algorithm Context Filter error rate precision Fo.5
0.01 0.203559 0.235175

0.05 0.516995 0.551899

0.10 0.678281 0.692148

0.15 0.758825 0.754214

(baseline) 0.20 0.815761 0.792989
0.25 0.855683 0.815505

0.30 0.874819 0.821995

0.35 0.902361 0.829439

0.40 0.914755 0.823054

0.01 0.379626 0.374314

0.05 0.653646 0.647463

0.10 0.777705 0.745331

0.15 0.831916 0.782190

activation 0.20 0.873480 0.801011
0.25 0.899718 0.810401

0.30 0.910957 0.806536

0.35 0.925808 0.796353

Agreed correction 0.40 0.936250 0.779562
0.01 0.228381 0.261363

0.05 0.551033 0.582140

0.10 0.709730 0.716853

0.15 0.785696 0.772165

feature 0.20 0.836971 0.804862
0.25 0.871780 0.821373

0.30 0.887976 0.823381

0.35 0912542 0.825164

0.40 0925177 0.816177

0.01 0219619 0.252413

0.05 0.541191 0.573870

0.10 0.700703 0.710048

0.15 0.777494 0.767097

nonsuspicious 0.20 0.832716 0.802072
0.25 0.870279 0.820193

0.30 0.885262 0.822268

0.35 0.909316 0.823756

0.40 0922156 0.814744

179

0.01 0.169058 0.197610

0.05 0.438177 0.479689

0.10 0.591796 0.626953

0.15 0.678183 0.704604

(baseline) 0.20 0.741275 0.758822
0.25 0.787061 0.794762

0.30 0.818512 0.818545

0.35 0.847556 0.837087

0.40 0.865010 0.843633

0.01 0.340710 0.337163

0.05 0.581698 0.591143

0.10 0.702483 0.699962

0.15 0.765191 0.752932

activation 0.20 0.811529 0.785388
0.25 0.843820 0.806149

0.30 0.864403 0.817224

0.35 0.882211 0.818990

Consensus 0.40 0.895110 0.814209
0.01 0.191324 0.221609

0.05 0.472302 0.511817

0.10 0.624910 0.655624

0.15 0.707260 0.727099

feature 0.20 0.766436 0.776426
0.25 0.806752 0.805997

0.30 0.834342 0.824318

0.35 0.862185 0.838768

0.40 0.879229 0.843028

0.01 0.185901 0.215997

0.05 0.463941 0.504450

0.10 0.614485 0.646574

0.15 0.701349 0.722953

nonsuspicious 0.20 0.762975 0.773727
0.25 0.804869 0.804780

0.30 0.833155 0.824230

0.35 0.859147 0.835885

0.40 0.875436 0.839302

0.01 0.250247 0.272751

0.05 0.527276 0.544201

0.10 0.662522 0.659799

0.15 0.732189 0.709038

(baseline) 0.20 0.777402 0.732818
0.25 0.808914 0.744331

0.30 0.830042 0.745807

0.35 0.846649 0.742334

0.40 0.867032 0.742929

0.01 0.360629 0.352368

0.05 0.631307 0.613590

0.10 0.733487 0.692197

0.15 0.792436 0.730627

activation 0.20 0.825070 0.739711
0.25 0.851299 0.745366

0.30 0.865749 0.736683

0.35 0.879965 0.729277

0.40 0.893418 0.720200

HARFS90 0.01 0256974 0.279874
0.05 0.542058 0.557569

0.10 0.676098 0.671038

0.15 0.744827 0.718450

feature 0.20 0.788157 0.739972
0.25 0.819442 0.750494

0.30 0.839792 0.750249

0.35 0.857306 0.745631

0.40 0.876019 0.744641

0.01 0.263552 0.286632

0.05 0.542341 0.557493

0.10 0.676441 0.670760

0.15 0.744850 0.717847

nonsuspicious 0.20 0.788948 0.739795
0.25 0.818234 0.748751

0.30 0.839663 0.749268

0.35 0.856773 0.743603

0.40 0.875930 0.743391

Table 14: Stack Overflow, Random Noise

C Appendix: Enlarged Figures

This appendix contains the same images as the body of the paper, enlarged to improve accessibility.

180

precision

precision

Random Noise

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Error Rate
(a) Precision of noise detection for randomly generated noise
Next-Best Noise
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Error Rate
(b) Precision of noise detection for next-best noise.

- Agreed correction —t— Consensus —— HARF

-+ Agreed correction + activations —|-= Consensus + activations —-+= HARF + activations

— = Agreed correction + features -+- Consensus + features --- HARF + features

Figure 6: Precision at various noise levels, averaged across the five datasets.

181

Random Noise

0.9

0.8

0.7

0.6

f0.5

0.5

0.4

0.3

0.2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Error Rate

(c) Fo.5 of noise detection for randomly generated noise

Next-Best Noise

0.8

0.7

0.6

0.5

f0.5

0.4

0.3

0.2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Error Rate

(d) Fpy.5 of noise detection for next-best noise.

- Agreed correction —— Consensus —— HARF
-+ Agreed correction + activations —|-= Consensus + activations —-+= HARF + activations
— = Agreed correction + features —-+= Consensus + features === HARF + features

Figure 6: Fj 5 at various noise levels, averaged across the five datasets.

182

buddhism
cooking
diy
fitness
gardening
health
history
interpersonal
mythology
outdoors
parenting
pets
productivity
sports

travel

Figure 7: A summary of noise discovered in approximately 30k examples from Stack Exchange.

buddhism

10

10

cooking

diy

"

N ro fitness

-

17

15
29

o~ gardening

—_
o

» health

history

=

0

-

25

183

interpersonal

- O

14

20

mythology

=
o

25

» outdoors

B ™ Y
= 2N AN 2N

2
10
3
18
18

N~ B~ b~ o1 parenting

NN

|A
[~

N A pets

-

10

productivity

- R

15

20

20

o A Sports

- B -

o N

travel

Y

history / mythology

Suspicious examples between history and mythology.

Mayan calendar coinciding with winter solstice

The concept that scripture is made to adapt to changes of society, technology, and language
What gift did Saladin send to Richard when he was ill?

Are there any texts/translations of the 4 main Egyptian creation myths?

How were the Welsh Triads used by the Welsh?

Is there a Greek myth of Poseidon "dating" his daughter in the form of a dolphin?

What is this symbol in red box?

What is known about the Antiu?

Is Krampus real?

Figure 8: Suspicious examples at the intersection of history and mythology classes without context.

184

history mythology

 |s there a Greek myth of Poseidon "dating" his = Who is the oldest being in Greek mythology?
daughter in the form of a dolphin? (1.000) (0.956)

= Are there any female heroines in Shinto
mythology? (0.953)

+ Who worshipped the Titans? (0.953)

» Are there any saints or heroes in mythology
who ally with death? (0.953)

» Did any ancient cultures or scholars recognize
the Hero's Journey monomyth? (0.951)

» How did Greeks make greek fire? (0.463) = Does Poseidon rule over all the sea gods?
(0.602)

= |s Greek mythology derivative of/influence by
Ugartic/Canaanite mythology? (0.591)

= Where does Poseidon get called the God of
Kin? (0.570)

= Why is Roman Mythology so similar to Greek
Mythology or vice versa? (0.565)

» |s there a world tree in Greek mythology?
(0.563)

Figure 9: An example from Figure 3, with context. In red is the suspicious example. Examples in the white box
are its context from activation space, and those in the blue box are context from raw embedding space. Numbers
in parentheses indicate cosine similarity.

185

How long should one wait to eat after exercise

fitness

Should | eat before or after my exercise? .
(0.969)

How long should | wait to exercise after eating? e
(0.955)

What are the benefits to eating immediately
after exercising? (0.954) .

How long should | wait after dinner before | .
start exercising? (0.833)

» Is it okay to eat after exercising? (0.768)
» How long do | wait after a failed lift? (0.646)

» How early should | eat before Hockey training
(0.629)

» What is the best thing to eat before a long bike
ride? (0.617)

health

How long should one wait to eat after exercise
(1.000)

What are the health benefits of consuming
smaller meals more often throughout the day?
(0.957)

What happens when you eat carbs everyday?
(0.955)

Why am | advised not to eat immediately before
exercise? (0.626)

Figure 10: Context shows overlapping class definitions.

186

EXBERT: A Visual Analysis Tool to Explore
Learned Representations in Transformer Models

Ben Hoover Hendrik Strobelt Sebastian Gehrmann
IBM Research IBM Research Harvard SEAS
MIT-IBM Watson Al Lab MIT-IBM Watson Al Lab

{benjamin.hoover, hendrik.strobelt}@ibm.com
gehrmann@seas.harvard.edu

Abstract

Large Transformer-based language models
can route and reshape complex information via
their multi-headed attention mechanism. Al-
though the attention never receives explicit su-
pervision, it can exhibit recognizable patterns
following linguistic or positional information.
Analyzing the learned representations and at-
tentions is paramount to furthering our under-
standing of the inner workings of these models.
However, analyses have to catch up with the
rapid release of new models and the growing
diversity of investigation techniques. To sup-
port analysis for a wide variety of models, we
introduce EXBERT, a tool to help humans con-
duct flexible, interactive investigations and for-
mulate hypotheses for the model-internal rea-
soning process. EXBERT provides insights
into the meaning of the contextual represen-
tations and attention by matching a human-
specified input to similar contexts in large an-
notated datasets. By aggregating the annota-
tions of the matched contexts, EXBERT can
quickly replicate findings from literature and
extend them to previously not analyzed mod-
els.

1 Introduction

Learned contextualized representations of a neu-
ral network can contain meaningful information.
Uncovering this information plays a vital role in
understanding and interpreting the learned struc-
ture of neural networks (Belinkov and Glass, 2019).
One way to identify information is to probe the
representations by using them as features in classi-
fiers for linguistic tasks, or by identifying contexts
that lead to similar patterns (Tenney et al., 2019b;
Conneau et al., 2018; Strobelt et al., 2017).

With Transformers (Vaswani et al., 2017) over-
taking recurrent models as the primary architec-
tures for many NLP tasks, analyzing attention has
become another common strategy for interpretabil-

187

ity (Raganato and Tiedemann, 2018a; Clark et al.,
2019). These efforts focus on selecting a model,
such as BERT (Devlin et al., 2019), and exploring
the Transformer’s contextual embeddings and atten-
tions across layers to determine whether and where
it learns to represent linguistic features. Previous
studies have uncovered specific attention heads that
learn particular dependencies (Vig and Belinkov,
2019; Clark et al., 2019).

However, once the standard linguistic probing
tasks are exhausted, it is challenging to develop
new hypotheses to test. Toward that end, interac-
tive visualizations provide a successful strategy to
develop new insights and strategies. Visualization
tools can offer concise summaries of useful infor-
mation and allow interaction with large models.
Attention visualizations have thus taken significant
steps toward these goals of making explorations
fast and interactive for the user (Vig, 2019). How-
ever, interpreting attention patterns without under-
standing the attended-to embeddings, or relying on
attention alone as a faithful explanation, can lead
to faulty interpretations (Brunner et al., 2019; Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019; Li
etal., 2019).

To address this challenge, we developed
EXBERT, a tool that combines the advantages of
static analyses with a dynamic and intuitive view
into both the attentions and internal representations
of the underlying model. EXBERT provides these
insights for any user-specified model and corpus by
probing whether the representations capture mean-
ingful information. We demonstrate that EXBERT
can replicate insights from the analysis by Clark
et al. (2019) and easily extend it to other mod-
els. It is open-source, extensible, and compati-
ble with many current Transformer architectures,
both autoregressive and masked language models.
EXBERT is available at exbert .net.

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 187-196
July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics

Selected heads:
1,2,3,4,5,6,7,8,9,10,11,12

The girl ran to a local pub to escape the din of her city.

T Select model: bert-base-cased

Display top 45% of attention
L]

Layer: Select all heads Unselect all heads

b u2345673‘3101112

Hide Special Tokens

You focus on one token by click
You can mask any token by double click

You can select and de-select a head by a click on the
heatmap columns

Would predict here.... the.
escape: 0.75 i,
join:0.03 .

city.
break: 0.01

[SEP)

d

ICLs] " Iwill go look after the stock {§ [SEP]

[CLS] " Youare nothing but a big coward | | ISEP]

[CLS] Quick \" c[_ec_l r_ha_-__SE #i#are ##crow § [SEF]

| EEE

[CLSI Y

POS: verb

#are ##crow stopped [§| [SEP]
DEP: relel A sl Lt

Attention:
0.07109

ICLS) S All you need g confidence [JOIY fou et

d 1o me §ISEP]

[CLS] " Oh, yes, " replied Dorothy & [SEF

I ICLS] But Dorothy they did not harmata

—
sonpadtpiia

ICLS] Everyone seemed happy and contt

ICLS] Allof them had green glasses inth mae

[CLS] * They seem so helpless and f # 1

[CLS] as socn as they looked over lhe__.vg_g

[cLs]7[ihis [strangs | | SRS SO

[CLS] Certainly , " answered the Sc ##ar

[CLS]"Gh, very! " answered Oz | [SEP]

Attention View

Corpus View

Figure 1: An overview of the different components of the tool. Users can enter a sentence in (a) and modify the
attention view through selections in (b). Self attention is displayed in (c), with attentions directed as coming from
the left column and pointing fo the right. The blue matrix on the left shows a head’s attention (column) out of a
token (row), whereas the right-hand matrix shows attention into each token by each head. The top-k predictions
for each token are shown on hover in the gray box. The most similar tokens to the MASKed “escape” token in (c)
are shown and summarized in (d-g), taken from an annotated corpus (shown: Wizard of Oz). Every token in (d)
displays its linguistic metadata on hover. The metadata of the results in (d) are summarized in the histograms (f)
and (g) for the matched token (green highlight) and the token of max attention. The colored bars on the histogram
correspond to colors in the columns of (e), where the center column summarizes the metadata of the matched token,
and the adjacent columns represent the metadata of the words to the left and right of the matched token.

2 Background
2.1 Transformer Models

The Transformer architecture, as defined by
Vaswani et al. (2017), relies on multiple sequential
applications of self attention layers. Self-attention
is the process by which each token within an in-
put sequence Y of length N computes attention
weights over all tokens in the input. As part of this
process, the inputs are projected into a key, query,
and value representation with W, W, and W,,.
The Transformer applies I of these attention heads
in parallel, using separate weights. We denote each
head with the superscript ().

A = softmax((YWq(i))(YWki))T>'

This computation yields a matrix in RN *Y where

the entry A;; represents the attention out of token

188

y; into token yj.l The representation for each at-
tention head h(9) is then multiplied by the value,

R = A (yw),

The representations R ..., hY) are concatenated
and followed by a linear projection layer. The out-
put of this projection we call the token embedding
EW®, which is used as input to layer | + 1.

2.2 Transformer Analysis

The analysis of learned contextual representation
in neural networks has been a widely investigated
topic in NLP (Belinkov and Glass, 2019). Be-
fore the advent of large pretrained models, anal-
yses focused on models trained for specific tasks
like machine translation. Some showed that Trans-
former models, similar to recurrent models, can

'For autoregressive models like GPT-2 (Radford et al.,

2019), this matrix is triangular since attention cannot point
toward unseen tokens.

effectively encode syntactic properties in their rep-
resentations (Raganato and Tiedemann, 2018b;
Marecek and Rosa, 2018). Researchers have devel-
oped suites of probing techniques, agnostic to the
underlying model, that can capture these proper-
ties across many different linguistic tasks (Tenney
et al., 2019b; Conneau et al., 2018). Over the past
year, similar tests have primarily been applied to
BERT (Devlin et al., 2019) and its derivatives (e.g.,
Sanh et al., 2019; Liu et al., 2019). Similar to task-
specific models, Goldberg (2019) found that BERT
clearly encodes syntax within some of its attentions.
Moreover, Tenney et al. (2019a) demonstrated that
linguistic information is very localized within the
representations in different layers.

In parallel, individual attention heads of Trans-
former models have also received much focus.
Clark et al. (2019) showed that individual heads
recognize standard Part of Speech (POS) and De-
pendency (DEP) relationships (e.g., Objects of the
Preposition (POBJ) and Determinants (DET)) with
high fidelity. Vig and Belinkov (2019) also ex-
plored the dependency relations across heads and
discovered that initial layers typically encode posi-
tional relations, middle layers capture the most de-
pendency relations, and later layers look for unique
patterns and structures. These insights are exposed
interactively through EXBERT.

3 Overview

EXBERT focuses on displaying a succinct view of
both the attention and the internal representations
of each token. Figure 1 shows an overview of the
tool’s two main components. The Attention View
provides an interactive view of the self-attention of
the model, where users can change layers, select
heads, and view the aggregated attention. The Cor-
pus View presents a user with aggregate statistics
that aim to describe and summarize the hidden rep-
resentations of a currently selected token or set of
attention heads. For simplicity, the tool defaults to
focus on single-sentence examples.

3.1 Attention View

The attention A can be understood as an adjacency
matrix, which is conducive to a representation of
curves pointing from each token to every other
token. However, since A is not symmetric, a visu-
alization has to separate the outgoing and incoming
attention of a token. We achieve this by duplicat-
ing the tokens of input Y and presenting it in two

vertical sections, connected through the attention.

Hovering over a token will reduce the displayed
attention graph to the incoming/outgoing attention
of that token. We display the top predictions of the
model at that position. Clicking on a token freezes
the filtered attention view.

Many models introduce special tokens (e.g.,
“[CLS]”, “<lendoftextl>") for downstream classi-
fication or generation tasks. These tokens often
receive very high attention and act as a null oper-
ation (Clark et al., 2019). We provide a switch to
hide the special tokens of the model and renormal-
ize based on the other attentions to provide easier
visualization of subtle attention patterns.

3.2 Corpus View

Representations, on the other hand, cannot be eas-
ily visualized footnoteSee Strobelt et al. (2017) for
a discussion why heat-maps are not an appropriate
visualization of hidden states. but they can be un-
derstood by searching for similar representations
in an annotated corpus. The results of this search
are presented in the Corpus View with the highest-
similarity matches shown first. The histograms
display the accumulated features of the matched
representations and the token that receives the most
attention.

Searching Inspired by Strobelt et al. (2017,
2018), EXBERT performs a nearest neighbor
search of embeddings on a reference corpus as
follows. A corpus is first split by sentence and
its tokens labeled for desired metadata (e.g., POS,
DEP, NER). The model then processes this corpus,
and its embeddings E() are stored at every layer
! and indexed for a Cosine Similarity (CS) search
using faiss (Johnson et al., 2019). The top 50 most
similar tokens matching a query embedding are dis-
played and summarized for the user in the context
of their use in the annotated corpus.

To supplement the layer embeddings E® and
enable exploration of the attention heads, we derive
a Context Embedding C) which we define as the
concatenation of heads before the linear projection
at the layer’s output. Formally, this is defined as:

cl = Concat(ﬁ(l’l), ... ,E(l’n)

)
~(1,0) . .
where h(? is defined as the L2 normalized rep-
resentation of head 7 at layer [to enable CS search-
ing by head. To search the corpus for any subset of

189

heads Hs; C {1,...,n}, we set all values of pd
to 0in C', where i ¢ H,.

Bidirectional vs. Autoregressive Behavior
EXBERT is flexible to accommodate both bidi-
rectional and autoregressive Transformer architec-
tures, but the tool behaves slightly differently for
each. Bidirectional models have histogram sum-
maries for the nearest neighbor matches across the
corpus and allow interactive MASKing of tokens.
When hovering over any token, the interface will
show what the language model would predict at
that token.

Autoregressive models will also search for the
nearest neighbors to a selected token’s embedding,
but the interface will instead summarize the meta-
data of the following token (indicated in red font).
Hovering over any token in the Attention View
will display what the model would predict next.

3.3 Extending EXBERT

EXBERT runs Huggingface’s unified API for
Transformer models (Wolf et al., 2019) which al-
lows any Transformer model from that API to take
full advantage of the Attention View.

Similarity searching requires the user to first an-
notate a corpus with the desired model. Scripts to
aid annotation of a corpus from a custom model is
provided in the code repository.”

To display metadata from a corpus in a cus-
tom domain, users will need to align the trans-
former model’s tokenization scheme to extracted
metadata (e.g., DNA Sequences and their proper-
ties). EXBERT accomplishes this by first tokeniz-
ing, normalizing, and labeling the sentence with
spaCy (Honnibal and Montani, 2017). If these
tokens are split further by the Transformer’s to-
kenization scheme, each word-piece receives the
metadata of its parent token. Note that special
tokens like “[CLS]” and “<lendoftext|>" have no
linguistic features assigned to them.

4 Case Study: BERT

Clark et al. (2019) performed an extensive analysis
to determine which heads in a base sized BERT
Transformer model learned which dependencies.
We show here how some of their insights are eas-
ily accessible through the EXBERT interface (De-
vlin et al., 2019) for the case-sensitive BERT-base
model, which has 12 layers and 12 heads per layer.

https://github.com/bhoov/exbert.

CS] Head 5-3 cLs) Search by context (Wizard of 0z)
The The
girl girl
| ran ran
| to to Matched Token (POS)
a a
local local
pub pub
T 0 50 S
a II o | oo o,
Would predict here...c. the [| gg,
escape: 075, din 2
IS of 259 Max Attention Token (DEP)
enjoy: 0.02, 201
. her 154
avoid: 0.02
Y city 104
break: 0.01 5
L | N 0
o
[SEP] [SEP] 0o,
cLs Head 7-5 cLs) Search by context (Wikipedia)
Price Price 2
##s ##ts %g
18
of of i Matched Token (DEP)
Treasuw\heasury i
bonds bonds g I
2 -
b tumbled tumbled ol g og;%c%:%%%‘
ink in 702 %0

moderate—_

moderate
to 2
active e Max Attention Token (DEP)
trading trading I 1
0

crcs
Isep] Isep] R

[cLs] Head 5-5 [cLs

Search by context
| (Wikipedia)

%, %y
(22N

Max Attention Token (ENT)

Figure 2: Exploration of different attention heads for
pretrained model BERT},,s. and different corpora. (a)
shows head 5-3 expecting looks at the presents of an
auxiliary verb (AUX) to predict that the MASK should
be a verb. Head 7-5 in (b) shows a head that has learned
to attend to Objects of the Preposition (POBJ). Finally,
(c) shows Head 5-5 learning correct co-reference.

We use the notation <layer>-<head> to refer to a
single head at a single layer, and <layer>-[<heads>]
to describe the cumulative attention of heads at a
layer (e.g., 4-[1,3,9] to describe the aggregated at-
tention of heads 1, 3, and 9 at layer 4).

4.1 Behind the Heads

Figure 2 shows examples where distinct heads learn
evident linguistic features. Figure 2a shows that
the MASKed verb “escape” points to the auxiliary
verb (AUX) “to”. If we search over the annotated
Wizard of Oz?, we see that the tokens matching
the MASK’s most similar contexts at Head 5-3 are
verbs and that the attention out of these matched
words goes primarily to an AUX dependency.
Figure 2b shows that Head 7-5 finds relation-
ships between prepositions (PREP) and their ob-
jects (POBJ) in the input sentence. By searching
for the token “in” across a subset of the “Wikipedia”
corpus (Merity et al., 2016), we confirm that many

Shttp://www.gutenberqg.org/ebooks/55

190

Search by Embedding

Search by Context

30 Layer 6 %g Layer 7 20 Layer 8 40 Layer 9 Layer 2
16 35 Heads [all]
25 14 25 30
20 15 20 25
15 8 15 20
10 6 15
10
5 g 5 10
Ooov?c'o 00'000‘0‘9°7°0 0 g
e %y, & e % % Y, P P
y g %% e, %% %% %% %.

Figure 3: A progression of the information encoded by a nearest neighbor embedding (left) and context (right)
searches for the MASKed token “escape” in Figure 2a and the sentence, “The girl ran to a local pub to escape the
din of her city.” Note that heads encode verb information (dark green) significantly earlier than the embeddings.

other annotated sentences exhibit this pattern.

Figure 2c seemingly finds a head that determines
co-reference to entity relationships, as both “she”
and “her” are pointing strongly at “Kim” and little
to everything else. Because the parse tree is absent
in the annotated corpus, we are unable to search for
co-reference patterns. However, the corpus search
does reveal that this head learns to match pronouns
to Entities rather than common gendered words
such as “woman” or “mother”.

4.2 Behind the Mask

Earlier layers of a BERT model can capture partic-
ular linguistic information (Clark et al., 2019; Vig
and Belinkov, 2019). We now explore this behavior
for a MASKed token across layers. We look at the
following sentence, also shown in Figure 2a:

The girl ran to a local pub to escape the din of
her city.

We begin by masking the “escape” token in the
example sentence at layer 1 and search what infor-
mation is behind the “[MASK]” token’s embedding
(Figure 1). Note that at this early layer, there is
no meaningful linguistic information encoded in a
MASK token’s embedding, and the matching em-
beddings are most similar to punctuation (PUNCT)
and determinants (DET), which are the most com-
mon tokens in English (Figure 1f). Additionally,
the maximum attention out of the MASKed token
points to itself (Figure 1c).

As layers progress, more VERB information is
encoded in the token’s embedding, as shown in
Figure 3. At layer 6, the model does not relate the
MASKed word to verbs, but by layer 9 it is con-
vinced that the MASK should be a verb. Note that
accumulated head information confidently captured
a “verb” pattern in a significantly earlier layer.

191

5 Case Study: GPT-2

5.1 Gender Bias

We now use EXBERT to explore the problem
of gender bias and co-reference in autoregressive
Transformers (Zhao et al., 2018), a problem in-
herent in the training data that infects the model’s
understanding of language (Font and Costa-jussa,
2019). Take the following sentence:

The man visited the nurse and told him to attend
to his p