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Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 58th Annual Meeting of the Association for Computational
Linguistics on July 5th - July 10th, 2020. This year the ACL 2020 will be an online conference.

The ACL 2020 demonstrations track invites submissions ranging from early research prototypes to
mature production-ready systems. We received 122 submissions this year, of which 43 were selected
for inclusion in the program (acceptance rate of 35%) after reviewed by three members of the program
committee. We would like to thank the members of the program committee for their timely help in
reviewing the submissions.

Lastly, we thank the many authors that submitted their work to the demonstrations track. This year, the
ACL conference is completely virtual. The demonstrations paper talks are pre-recorded (12 minutes) and
will be presented during the two live Q&A video sessions at different times, and a linked RocketChat
channel. Each day we will have 2 demonstration track Q&A sessions in different time zones across the
world.

Best,
Asli Celikyilmaz and Tsung-Hsien Wen
ACL 2020 Demonstration Track Chairs
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Abstract

This paper proposes the building of Xiaom-
ingbot, an intelligent, multilingual and multi-
modal software robot equipped with four inte-
gral capabilities: news generation, news trans-
lation, news reading and avatar animation. Its
system summarizes Chinese news that it au-
tomatically generates from data tables. Next,
it translates the summary or the full article
into multiple languages, and reads the multi-
lingual rendition through synthesized speech.
Notably, Xiaomingbot utilizes a voice cloning
technology to synthesize the speech trained
from a real person’s voice data in one input
language. The proposed system enjoys several
merits: it has an animated avatar, and is able to
generate and read multilingual news. Since it
was put into practice, Xiaomingbot has written
over 600,000 articles, and gained over 150,000
followers on social media platforms.

1 Introduction

The wake of automated news reporting as an emerg-
ing research topic has witnessed the development
and deployment of several robot news reporters
with various capabilities. Technological improve-
ments in modern natural language generation have
further enabled automatic news writing in certain
areas. For example, GPT-2 is able to create fairly
plausible stories (Radford et al., 2019). Bayesian
generative methods have been able to create de-
scriptions or advertisement slogans from structured
data (Miao et al., 2019; Ye et al., 2020). Summa-
rization technology has been exploited to produce
reports on sports news from human commentary
text (Zhang et al., 2016).

While very promising, most previous robot re-
porters and machine writing systems have limited

∗The work was done while the author was an intern at
ByteDance AI Lab.

†Corresponding author.
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Figure 1: Xiaomingbot System Architecture

capabilities reports on sports news that only focus
on text generation. We argue in this paper that an in-
telligent robot reporter should acquire the following
capabilities to be truly user friendly: a) it should
be able to create news articles from input data;
b) it should be able to read the articles with lifelike
character animation like in TV broadcasting; and
c) it should be multi-lingual to serve global users.
None of the existing robot reporters are able dis-
play performance on these tasks that matches that
of a human reporter. In this paper, we present Xi-
aomingbot, a robot news reporter capable of news
writing, summarization, translation, reading, and
visual character animation. In our knowledge, it
is the first multilingual and multimodal AI news
agent. Hence, the system shows great potential for
large scale industrial applications.

Figure 1 shows the capabilities and components
of the proposed Xiaomingbot system. It includes
four components: a) a news generator, b) a news
translator, c) a cross-lingual news reader, and d) an
animated avatar. The text generator takes input in-
formation from data tables and produces articles in
natural languages. Our system is targeted for news
area with available structure data, such as sports
games and financial events. The fully automated
news generation function is able to write and pub-
lish a story within mere seconds after the event
took place, and is therefore much faster compared
with manual writing. Within a few seconds after
the events, it can accomplish the writing and pub-
lishing of a story. The system also uses a pretrained

1



Generated News

Summary

Text
Summarization

Machine
Translation

Text-To-Speech Avatar 
Animation

Translation, Speech, Animation
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ble2Text model. On the top is the text summarization result. On the bottom right corner, Xiaomingbot produces
the corresponding speech and visual effects.

text summarization technique to create summaries
for users to skim through. Xiaomingbot can also
translate news so that people from different coun-
tries can promptly understand the general meaning
of an article. Xiaomingbot is equipped with a cross
lingual voice reader that can read the report in dif-
ferent languages in the same voice. It is worth men-
tioning that Xiaomingbot excels at voice cloning. It
is able to learn a person’s voice from audio samples
that are as short as only two hours, and maintain
precise consistency in using that voice even when
reading in different languages. In this work, we
recorded 2 hours of Chinese voice data from a fe-
male speaker, and Xiaomingbot learnt to speak in
English and Japanese with the same voice. Finally,
the animation module produces an animated car-
toon avatar with lip and facial expression synchro-
nized to the text and voice. It also generates the
full body with animated cloth texture. The demo
video is available at https://www.youtube.com/
watch?v=zNfaj_DV6-E. The home page is avail-
able at https://xiaomingbot.github.io.

The system has the following advantages: a) It
produces timely news reports for certain areas and
is multilingual. b) By employing a voice cloning
model to Xiaomingbot’s neural cross lingual voice

reader, we’ve allowed it to learn a voice in different
languages with only a few examples c) For better
user experience, we also applied cross lingual vi-
sual rendering model, which generates synthesis
lip syncing in consistent with the generated voice.
d) Xiaomingbot has been put into practice and pro-
duced over 600, 000 articles, and gained over 150k
followers in social media platforms.

2 System Architecture

The Xiaomingbot system includes four components
working together in an pipeline, as shown in Fig-
ure 1. The system receives input from data table
containing event records, which, depending on the
domain, can be either a sports game with time-line
information, or a financial piece such as tracking
stock market. The final output is an animated avatar
reading the news article with a synthesized voice.
Figure 2 illustrates an example of our Xiaomingbot
system. First, the text generation model generates
a piece of sports news. Then, as is shown on the
top of the figure, the text summarization module
trims the produced news into a summary, which
can be read by users who prefer a condensed ab-
stract instead of the whole news. Next, the machine
translation module will translate the summary into
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the language that the user specifies, as illustrated
on the bottom right of the figure. Relying on the
text to speech (TTS) module, Xiaomingbot can
read both the summary and its translation in differ-
ent languages using the same voice. Finally, the
system can visualize an animated character with
synchronized lip motion and facial expression, as
well as lifelike body and clothing.

3 News Generation

In this section, we will first describe the automated
news generation module, followed by the news
summarization component.

3.1 Data-To-Text Generation
Our proposed Xiaomingbot is targeted for writing
news for domains with structured input data, such
as sports and finance. To generate reasonable text,
several methods have been proposed(Miao et al.,
2019; Sun et al., 2019; Ye et al., 2020). However,
since it is difficult to generate correct and reliable
content through most of these methods, we employ
a template based on table2text technology to write
the articles.

Table 1 illustrates one example of soccer game
data and its generated sentences. In the example,
Xiaomingbot retrieved the tabled data of a single
sports game with time-lines and events, as well
as statistics for each player’s performance. The
data table contains time, event type (scoring, foul,
etc.), player, team name, and possible additional at-
tributes. Using these tabulated data, we integrated
and normalized the key-value pair from the table.
We can also obtain processed key-value pairs such
as “Winning team”, “Lost team”, “Winning Score”
, and use template-based method to generate news
from the tabulated result. Those templates are writ-
ten in a custom-designed java-script dialect. For
each type of the event, we manually constructed
multiple templates and the system will randomly
pick one during generation. We also created com-
plex templates with conditional clauses to generate
certain sentences based on the game conditions.
For example, if the scores of the two teams differ
too much, it may generate “Team A overwhelms
Team B.” Sentence generation strategy are classi-
fied into the following categories:

• Pre-match Analysis. It mainly includes the
historical records of each team.

• In-match Description. It describes most im-
portant events in the game such as “some-

one score a goal”, “someone received yellow
card”.

• Post-match Summary. It’s a brief summary
of this game , while also including predictions
of the progress of the subsequent matches.

3.2 Text Summarization
For users who prefer a condensed summary of the
report, Xiaomingbot can provide a short gist ver-
sion using a pre-trained text summarization model.
We choose to use the said model instead of gen-
erating the summary directly from the table data
because the former can create more general content,
and can be employed to process manually written
reports as well. There are two approaches to sum-
marize a text: extractive and abstractive summariza-
tion. Extractive summarization trains a sentence se-
lection model to pick the important sentences from
an input article, while an abstractive summarization
will further rephrase the sentences and explore the
potential for combining multiple sentences into a
simplified one.

We trained two summarization models. One is
a general text summarization using a BERT-based
sequence labelling network. We use the TTNews
dataset, a Chinese single document summarization
dataset for training from NLPCC 2017 and 2018
shared tasks (Hua et al., 2017; Li and Wan, 2018).
It includes 50,000 Chinese documents with human
written summaries. The article is separated into a
sequence of sentences. The BERT-based summa-
rization model output 0-1 labels for all sentences.

In addition, for soccer news, we trained a special
summarization model based on the commentary-
to-summary technique (Zhang et al., 2016). It con-
siders the game structure of soccer and handles
important events such as goal kicking and fouls
differently. Therefore it is able to better summarize
the soccer game reports.

4 News Translation

In order to provide multilingual news to users, we
propose using a machine translation system to trans-
late news articles. In our system, we pre-trained
several neural machine translation models, and em-
ploy state of the art Transformer Big Model as
our NMT component. The parameters are exactly
the same with (Vaswani et al., 2017). In order
to further improve the system and speed up the
inference, we implemented a CUDA based NMT
system, which is 10x faster than the Tensorflow
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Table 1: Examples of Sports News Generation

Time Category Player Team Generated Text Translated Text
23’ Score Didac Espanyol 第23分钟，西班牙人

迪达克打入一球。
In the 23rd minute, Es-
panyol Didac scored a
goal.

35’ Yellow Card Mubarak Alavés 第35分钟，阿拉维斯
穆巴拉克吃到一张黄
牌。

In the 35th minute,
Alavés Mubarak re-
ceived a yellow card.

approach 1. Furthermore, our machine translation
system leverages named-entity (NE) replacement
for glossaries including team name, player name
and so on to improve the translation accuracy. It
can be further improved by recent machine trans-
lation techniques (Yang et al., 2020; Zheng et al.,
2020).

⻄班⽛⼈阿拉维斯

Transformer Encoder

Transformer Decoder

The game between Alaves and the  Espanyol

与 的 ⽐赛 打 成 了 平⼿

was tied

Named Entity
Replacement

⻄班⽛⼈

Espanyol

Figure 3: Neural Machine Translation Model.

We use the in-house data to train our machine
translation system. For Chinese-to-English, the
dataset contains more than 100 million parallel sen-
tence pairs. For Chinese-to-Japanese, the dataset
contains more than 60 million parallel sentence
pairs.

5 Multilingual News Reading

In order to read the text of the generated and/or
translated news article, we developed a text to
speech synthesis model with multilingual capabil-
ity, which only requires a small amount of recorded
voice of a speaker in one language. We devel-
oped an additional cross-lingual voice cloning tech-
nique to clone the pronunciation and intonation.
Our cross-lingual voice cloning model is based on
Tacotron 2 (J. Shen, 2018), which uses an attention-
based sequence-to-sequence model to generate a
sequence of log-mel spectrogram frames from an

1https://github.com/bytedance/byseqlib

input text sequence (Wang et al., 2017). The ar-
chitecture is illustrated in Figure 4, we made the
following augmentations on the base Tacotron 2
model:

• We applied an additional speaker as well as
language embedding to support multi-speaker
and multilingual input.

• We introduced a variational autoencoder-style
residual encoder to encode the variational
length mel into a fix length latent representa-
tion, and then conditioned the representation
to the decoder.

• We used Gaussian-mixture-model (GMM) at-
tention rather than location-sensitive attention.

• We used wavenet neural vocoder (Oord et al.,
2016).

For Chinese TTS, we used hundreds of speak-
ers from internal automatic audio text processing
toolkit, for English, we used libritts dataset (Zen
et al., 2019), and for Japanese we used JVS corpus
which includes 100 Japanese speakers. As for in-
put representations, we used phoneme with tone
for Chinese, phoneme with stress for English, and
phoneme with mora accent for Japanese. In our
experiment, we recorded 2 hours of Chinese voice
data from an internal female speaker who speaks
only Chinese for this demo.

6 Synchronized Avatar Animation
Synthesis

We believe that lifelike animated avatar will make
the news broadcasting more viewer friendly. In this
section, we will describe the techniques to render
the animated avatar and to synchronize the lip and
facial motions.
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Figure 4: Voice Cloning for Cross-lingual Text-to-
Speech Synthesis.

6.1 Lip Syncing
The avatar animation module produces a set of lip
motion animation parameters for each video frame,
which is synced with the audio synthesized by the
TTS module and used to drive the character.

Since the module should be speaker agnostic
and TTS-model-independent, no audio signal is re-
quired as input. Instead, a sequence of phonemes
and their duration is drawn from the TTS mod-
ule and fed into the lip motion synthesis module.
This step can be regarded as tackling a sequence
to sequence learning problem. The generated lip
motion animation parameters should be able to
be re-targeted to any avatar and easy to visual-
ize by animators. To meet this requirement, the
lip motion animation parameters are represented
as blend weights of facial expression blendshapes.
The blendshapes for the rendered character are de-
signed by an animator according to the semantic
of the blendshapes. In each rendered frame, the
blendshapes are linear blended with the weights
predicted by the module to form the final 3D mesh
with correct mouth shape for rendering.

Since the module should produce high fidelity

animations and run in real-time, a neural network
model that has learned from real-world data is in-
troduced to transform the phoneme and duration
sequence to the sequence of blendshape weights.
A sliding window neural network similar to Taylor
et al. (2017), which is used to capture the local
phonetic context and produce smooth animations.
The phoneme and duration sequence is converted
to fixed length sequence of phoneme frame accord-
ing to the desired video frame rate before being
further converted to one-hot encoding sequence
which is taken as input to the neural network in a
sliding widow the length of which is 11. Three are
32 mouth related blendshape weights predicted for
each frame in a sliding window with length of 5.
Following Taylor et al. (2017), the final blendshape
weights for each frame is generated by blending ev-
ery predictions in the overlapping sliding windows
using the frame-wise mean.

The model we used is a fully connected feed for-
ward neural network with three hidden layers and
2048 units per hidden layer. The hyperbolic tan-
gent function is used as activation function. Batch
normalization is used after each hidden layer (Ioffe
and Szegedy, 2015). Dropout with probability of
0.5 is placed between output layer and last hidden
layer to prevent over-fitting (Wager et al., 2013).
The network is trained with standard mini-batch
stochastic gradient descent with mini-batch size of
128 and learning rate of 1e-3 for 8000 steps.

The training data is build from 3 hours of video
and audio of a female speaker. Different from Tay-
lor et al. (2017), instead of using AAM to parame-
terize the face, the faces in the video frames are pa-
rameterized by fitting a blinear 3D face morphable
model inspired by Cao et al. (2013) built from
our private 3D capture data. The poses of the 3D
faces, the identity parameters and the weights of
the individual-specific blendshapes of each frame
and each view angle are joint solved with a cost
function built from reconstruction error of the fa-
cial landmarks. The identity parameters are shared
within all frames and the weights of the blend-
shapes are shared through view angles which have
the same timestamp. The phoneme-duration se-
quence and the blendshape weights sequence are
used to train the sliding window neural network.

6.2 Character Rendering

Unity, the real time 3D rendering engine is used to
render the avatar for Xiaomingbot.
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Figure 5: Avatar animation synthesis: a) multi-lingual voices are cloned. b) A sequence of phonemes and their
duration is drawn from the voices. c) A sequence of blendshape weights is transformed by a neural network model.
d) Lip-motion is synthesized and re-targeted synchronously to avatar animation.

For eye rendering, we used Normal Mapping to
simulate the the iris, and Parallax Mapping to sim-
ulate the effect of refraction. As for the highlights
of the eyes, we used the GGX term in PBR for
approximation. In terms of hair rendering, we used
the kajiya-kay shading model to simulate the dou-
ble highlights of the hair (Kajiya and Kay, 1989),
and solved the problem of translucency using a
mesh-level triangle sorting algorithm. For skin
rendering, we used the Separable Subsurface Scat-
tering algorithm to approximate the translucency
of the skin (Jimenez et al., 2015). For simple cloth-
ing materials, we used the PBR algorithm directly.
For fabric and silk, we used Disney’s anisotropic
BRDF (Burley and Studios, 2012).

Since physical-based cloth simulation algorithm
is more expensive for mobile, we used the Spring-
Mass System(SMS) for cloth simulation. The spe-
cific method is to generate a skeletal system and
use SMS to drive the movement of bones (Liu et al.,
2013). However, the above approach may cause the
clothing to overlap the body. To address this prob-
lem, we deployed some new virtual bone points
to the skeletal system, and reduced the overlay us-
ing the CCD IK method (Wang and Chen, 1991),
which displayed great performance in most cases.

7 Conclusion

In this paper, we present Xiaomingbot, a multilin-
gual and multi-modal system for news reporting.
The entire process of Xiaomingbot’s news report-
ing can be condensed as follows. First, it learns
how to write news articles based on a template

based table2text technology, and summarize the
news through an extraction based method. Next, its
system translates the summarization into multiple
languages. Finally, the system produces the video
of an animated avatar reading the news with synthe-
sized voice. Owing to the voice cloning model that
can learn from a few Chinese audio samples, Xi-
aomingbot can maintain consistency in intonation
and voice projection across different languages. So
far, Xiaomingbot has been deployed online and is
serving users.

The system is but a first attempt to build a fully
functional robot reporter capable of writing, speak-
ing, and expressing with motion. Xiaomingbot is
not yet perfect, and has limitations and room for im-
provement. One such important direction for future
improvement is the expansion of areas that it can
work in, which can be achieved through a promis-
ing approach of adopting model based technologies
together with rule/template based ones. Another
direction for improvement is to further enhance
the ability to interact with users via a conversation
interface.
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Abstract

In this paper, we introduce TextBrewer, an
open-source knowledge distillation toolkit de-
signed for natural language processing. It
works with different neural network mod-
els and supports various kinds of super-
vised learning tasks, such as text classifica-
tion, reading comprehension, sequence label-
ing. TextBrewer provides a simple and uni-
form workflow that enables quick setting up
of distillation experiments with highly flexible
configurations. It offers a set of predefined dis-
tillation methods and can be extended with cus-
tom code. As a case study, we use TextBrewer
to distill BERT on several typical NLP tasks.
With simple configurations, we achieve results
that are comparable with or even higher than
the public distilled BERT models with similar
numbers of parameters. 1

1 Introduction

Large pre-trained language models, such as GPT
(Radford, 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b) and XLNet (Yang
et al., 2019) have achieved great success in many
NLP tasks and greatly contributed to the progress
of NLP research. However, one big issue of these
models is the high demand for computing resources
— they usually have hundreds of millions of param-
eters, and take several gigabytes of memory to train
and inference — which makes it impractical to de-
ploy them on mobile devices or online systems.
From a research point of view, we are tempted
to ask: is it necessary to have such a big model
that contains hundreds of millions of parameters
to achieve a high performance? Motivated by the
above considerations, recently, some researchers
in the NLP community have tried to design lite
models (Lan et al., 2019), or resort to knowledge

1TextBrewer: http://textbrewer.hfl-rc.com

distillation (KD) technique to compress large pre-
trained models to small models.

KD is a technique of transferring knowledge
from a teacher model to a student model, which is
usually smaller than the teacher. The student model
is trained to mimic the outputs of the teacher model.
Before the birth of BERT, KD had been applied to
several specific tasks like machine translation (Kim
and Rush, 2016; Tan et al., 2019) in NLP. While the
recent studies of distilling large pre-trained mod-
els focus on finding general distillation methods
that work on various tasks and are receiving more
and more attention (Sanh et al., 2019; Jiao et al.,
2019; Sun et al., 2019a; Tang et al., 2019; Liu et al.,
2019a; Clark et al., 2019; Zhao et al., 2019).

Though various distillation methods have been
proposed, they usually share a common workflow:
firstly, train a teacher model, then optimize the stu-
dent model by minimizing some losses that are
calculated between the outputs of the teacher and
the student. Therefore it is desirable to have a
reusable distillation workflow framework and treat
different distillation strategies and tricks as plu-
gins so that they could be easily and arbitrarily
added to the framework. In this way, we could
also achieve great flexibility in experimenting with
different combinations of distillation strategies and
comparing their effects.

In this paper, we introduce TextBrewer, a
PyTorch-based distillation toolkit for NLP that
aims to provide a unified distillation workflow, save
the effort of setting up experiments and help users
to distill more effective models. TextBrewer pro-
vides simple-to-use APIs, a collection of distilla-
tion methods, and highly customizable configura-
tions. It has also been proved able to distill BERT
models efficiently and reproduce the state-of-the-
art results on typical NLP tasks. The main features
of TextBrewer are:
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• Versatility in tasks and models. It works
with a wide range of models, from the RNN-
based model to the transformer-based model, and
works on typical natural language understanding
tasks. Its usability in tasks like text classification,
reading comprehension, and sequence labeling
has been fully tested.

• Flexibility in configurations. The distillation
process is configured by configuration objects,
which can be initialized from JSON files and
contain many tunable hyperparameters. Users
can extend the configurations with new custom
losses, schedulers, etc., if the presets do not meet
their requirements.

• Including various distillation methods and
strategies. KD has been studied extensively in
computer vision (CV) and has achieved great
success. It would be worthwhile to introduce
these studies to the NLP community as some
of the methods in these studies could also be
applied to texts. TextBrewer includes a set of
methods from both CV and NLP, such as flow of
solution procedure (FSP) matrix loss (Yim et al.,
2017), neuron selectivity transfer (NST) (Huang
and Wang, 2017), probability shift and dynamic
temperature (Wen et al., 2019), attention matrix
loss, multi-task distillation (Liu et al., 2019a). In
our experiments, we will show the effectiveness
of applying methods from CV on NLP tasks.

• Being non-intrusive and simple to use. Non-
intrusive means there is no need to modify the
existing code that defines the models. Users
can re-use the most parts of their existing train-
ing scripts, such as model definition and initial-
ization, data preprocessing and task evaluation.
Only some preparatory work (see Section 3.3)
are additionally required to use TextBrewer to
perform the distillation.

TextBrewer also provides some useful utilities
such as model size analysis and data augmentation
to help model design and distillation.

2 Related Work

Recently some distilled BERT models have been
released, such as DistilBERT (Sanh et al., 2019),
TinyBERT (Jiao et al., 2019), and ERNIE Slim2.
DistilBERT performs distillation on the pre-
training task, i.e., masked language modeling.

2https://github.com/PaddlePaddle/ERNIE

TinyBERT performs transformer distillation at both
the pre-training and task-specific learning stages.
ERNIE Slim distills ERNIE (Sun et al., 2019b,c)on
a sentiment classification task. Their distillation
code is publicly available, and users can replicate
their experiments easily. However, it is laborious
and error-prone to change the distillation method
or adapt the distillation code for some other models
and tasks, since the code is not written for general
distillation purposes.

There also exist some libraries for general model
compression. Distiller (Zmora et al., 2018) and
PaddleSlim3 are two versatile libraries supporting
pruning, quantization and knowledge distillation.
They focus on models and tasks in computer vision.
In comparison, TextBrewer is more focused on
knowledge distillation on NLP tasks, more flexible,
and offers more functionalities. Based on PyTorch,
It provides simple APIs and rich customization for
fast and clean implementations of experiments.

3 Architecture and Design

Figure 1 shows an overview of the main function-
alities and architecture of TextBrewer. To support
different models and different tasks and meanwhile
stay flexible and extensible, TextBrewer provides
distillers to conduct the actual experiments and con-
figuration classes to configure the behaviors of the
distillers.

3.1 Distillers

Distillers are the cores of TextBrewer. They
automatically train and save models and sup-
port custom evaluation functions. Five distillers
have been implemented: BasicDistiller
is used for single-task single-teacher distilla-
tion; GeneralDistiller in addition sup-
ports more advanced intermediate loss functions;
MultiTeacherDistiller distills an ensem-
ble of teacher models into a single student
model; MultiTaskDistiller distills multi-
ple teacher models of different tasks into a sin-
gle multi-task student model (Clark et al., 2019;
Liu et al., 2019a). We also have implemented
BasicTrainer for training teachers on labeled
data to unify the workflows of supervised learning
and distillation. All the distillers share the same
interface and usage. They can be replaced by each
other easily.

3https://github.com/PaddlePaddle/PaddleSlim
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Figure 1: (a) An overview of the main functionalities of TextBrewer. (b) A sketch that shows the function of
adaptors inside a distiller.

3.2 Configurations and Presets

The general training settings and the distilla-
tion method settings of a distiller are specified
by two configurations: TrainingConfig and
DistillationConfig.

TrainingConfig defines the settings that are
general to deep learning experiments, including
the directory where logs and student model are
stored (log dir, output dir), the device to
use (device), the frequency of storing and evalu-
ating student model (ckpt frequencey), etc.

DistillationConfig defines the settings that
are pertinent to distillation, where various
distillation methods could be configured
or enabled. It includes the type of KD
loss (kd loss type), the temperature and
weight of KD loss (temperature and
kd loss weight), the weight of hard-label
loss (hard label weight), probability shift
switch, schedulers and intermediate losses, etc.
Intermediate losses are used for computing the
losses between the intermediate states of teacher
and student, and they could be freely combined
and added to the distillers. Schedulers are used to
adjust loss weight or temperature dynamically.

The available values of configuration options
such as loss functions and schedulers are defined as
dictionaries in presets. For example, the loss func-
tion dictionary includes hidden state loss, cosine
similarity loss, FSP loss, NST loss, etc.

All the configurations can be initialized from
JSON files. In Figure 3 we show an exam-
ple of DistillationConfig for distilling
BERTBASE, to a 4-layer transformers. See Section
4 for more details.

Figure 2: A code snippet that demonstrates the mini-
mal TextBrewer workflow.

3.3 Workflow
Before distilling a teacher model using TextBrewer,
some preparatory works have to be done:

1. Train a teacher model on a labeled dataset.
Users usually train the teacher model with
their own training scripts. TextBrewer also
provides BasicTrainer for supervised
training on a labeled dataset.

2. Define and initialize the student model.

3. Build a dataloader of the dataset for distilla-
tion and initialize the optimizer and learning
rate scheduler.

The above steps are usually common to all deep
learning experiments. To perform distillation, take
the following additional steps:

1. Initialize training and distillation configura-
tions, and construct a distiller.
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2. Define adaptors and a callback function.

3. Call the train method of the distiller.

A code snippet that shows the minimal workflow
is presented in Figure 2. The concepts of callback
and adaptor will be explained below.

Figure 3: An example of distillation configura-
tion. This configuration is used to distill a 12-layer
BERTBASE to a 4-layer T4-tiny.

3.3.1 Callback Function
To monitor the performance of the student model
during training, people usually evaluate the stu-
dent model on a development set at some check-
points besides logging the loss curve. For exam-
ple, in the early stopping strategy, users choose
the best model weights checkpoint based on the
performance of the student model on the develop-
ment set at the end of each epoch. TextBrewer
supports such functionality by providing the call-
back function argument in the train method,
as shown in line 24 of Figure 2. The callback
function takes two arguments: the student model
and the current training step. At each checkpoint
step (determined by num train epochs and
ckpt frequencey), the distiller saves the stu-
dent model and then calls the callback function.

Since it is impractical to implement evaluation
metrics and evaluation procedures for all NLP
tasks, we encourage users to implement their own
evaluation functions as the callbacks for the best
practice.

3.3.2 Adaptor
The distiller is model-agnostic. It needs a translator
to translate the model outputs into meaningful data.
Adaptor plays the role of translator. An Adaptor
is an interface and responsible for explaining the
inputs and outputs of the teacher and student for
the distiller.

Adaptor takes two arguments: the model inputs
and the model outputs. It is expected to return a
dictionary with some specific keys. Each key ex-
plains the meaning of the corresponding value, as
shown in Figure 1 (b). For example, logits is the
logits of final outputs, hidden is intermediate hid-
den states, attention is the attention matrices,
inputs mask is used to mask padding positions.
The distiller only takes necessary elements from
the outputs of adaptors according to its distillation
configurations. A minimal adaptor only needs to
explain logits, as shown in lines 11–14 of Figure 2.

3.4 Extensibility

TextBrewer also works with users’ custom modules.
New loss functions and schedulers can be easily
added to the toolkit. For example, to use a custom
loss function, one first implements the loss function
with a compatible interface, then adds it to the loss
function dictionary in the presets with a custom
name, so that the new loss function becomes avail-
able as a new option value of the configuration and
can be recognized by distillers.

4 Experiments

In this section, we conduct several experiments
to show TextBrewer’s ability to distill large pre-
trained models on different NLP tasks and achieve
results are comparable with or even higher than the
public distilled BERT models with similar numbers
of parameters. 4

4.1 Settings

Datasets and tasks. We conduct experiments
on both English and Chinese datasets. For En-
glish datasets, We use MNLI (Wang et al., 2019)
for text classification task, SQuAD1.1 (Rajpurkar
et al., 2016) for span-extraction machine read-
ing comprehension (MRC) task and CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003) for
named entity recognition (NER) task. For Chi-
nese datasets, we use the Chinese part of XNLI

4 More results are presented in the online documentation:
https://textbrewer.readthedocs.io
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Dataset Task Metrics #Train #Dev

MNLI Classification Acc 393K 20K
SQuAD MRC EM/F1 88K 11K
CoNLL-2003 NER F1 23K 6K

XNLI Classification Acc 393K 2.5K
LCQMC Classification Acc 293K 8.8K
CMRC 2018 MRC EM/F1 10K 3.4K
DRCD MRC EM/F1 27K 3.5K

Table 1: A summary of the datasets used in experi-
ments. The size of CoNLL-2003 is measured in num-
ber of entities.

(Conneau et al., 2018), LCQMC (Liu et al., 2018),
CMRC 2018 (Cui et al., 2019b) and DRCD (Shao
et al., 2018). XNLI is the multilingual version of
MNLI. LCQMC is a large-scale Chinese question
matching corpus. CMRC 2018 and DRCD are two
span-extraction machine reading comprehension
datasets similar to SQuAD. The statistics of the
datasets are listed in Table 1.

Models. All the teachers are BERTBASE-based
models. For English tasks, teachers are initialized
with the weights released by Google5 and converted
into PyTorch format via Transformers6. For Chi-
nese tasks, teacher is initialized with the pre-trained
RoBERTa-wwm-ext 7 (Cui et al., 2019a). We test
the performance of the following student models:

• T6 and T3 are BERTBASE with fewer layers of
transformers. Especially, T6 has the same struc-
ture as DistilBERT (Sanh et al., 2019).

• T3-small is a 3-layer BERT with half BERT-
base’s hidden size and feed-forward size.

• T4-tiny is the same as TinyBERT, a 4-layer
model with an even smaller hidden size and feed-
forward size.

• BiGRU is a single-layer bidirectional GRU. Its
word embeddings are taken from BERTBASE.

T3-small and T4-tiny are initialized randomly. The
model structures of the teacher and students are
summarized in Table 3.

Training settings. To keep experiments sim-
ple, we directly distill the teacher model that has
been trained on the task, while we do not perform
task-irrelevant language modeling distillation in ad-
vance. The number of epochs ranges from 30 to
60, and the learning rate of students is 1e-4 for all
distillation experiments.

5https://github.com/google-research/bert
6https://github.com/huggingface/transformers
7https://github.com/ymcui/Chinese-BERT-wwm

Model MNLI SQuAD CoNLL-2003
m mm EM F1 F1

BERTBASE 83.7 84.0 81.5 88.6 91.1

Public
DistilBERT 81.6 81.1 79.1 86.9 -
TinyBERT 80.5 81.0 - - -
+DA 82.8 82.9 72.7 82.1 -

TextBrewer
BiGRU - - - - 85.3
T6 83.6 84.0 80.8 88.1 90.7
T3 81.6 82.5 76.3 84.8 87.5
T3-small 81.3 81.7 72.3 81.4 78.6
T4-tiny 82.0 82.6 73.7 82.5 77.5
+DA - - 75.2 84.0 89.1

Table 2: Performance of BERTBASE (teacher) and var-
ious students on the development sets of MNLI and
SQuAD, and the test set of CoNLL-2003. m and mm
under MNLI denote the accuracies on matched and mis-
matched sections respectively.

Distillation settings. Temperature is set to 8 for
all experiments. We add intermediate losses uni-
formly distributed among all the layers between
teacher and student (except BiGRU). The loss func-
tions we choose are hidden mse loss which com-
putes the mean square loss between two hidden
states, and NST loss which is an effective method in
CV. In Figure 3 we show an example of distillation
configuration for distilling BERTBASE to a T4-tiny.
Since their hidden sizes are different, we use proj
option to add linear layers to match the dimensions.
The linear layers will be trained together with the
student automatically. We experiment with two
kinds of distillers: GeneralDistiller and
MultiTeacherDistiller .

4.2 Results on English Datasets

We list the public results (DistilBERT and Tiny-
BERT) and our distillation results obtained by
GeneralDistiller in Table 2. We have the
following observations.

First, teachers can be distilled to T6 models with
minor losses in performance. All the T6 models
achieve 99% performance of the teachers, higher
than the DistilBERT.

Second, T4-tiny outperforms TinyBERT though
they share the same structure. This is attributed
to the NST losses in the distillation configuration.
This result proves the effectiveness of applying KD
method developed in CV on NLP tasks.

Third, although T4-tiny has less parameters than
T3-small, T4-tiny outperforms T3-small in most
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Model # Layers Hidden size Feed-forward size # Parameters Relative size

BERTBASE (teacher) 12 768 3072 108M 100%

T6 6 768 3072 65M 60%
T3 3 768 3072 44M 41%
T3-small 3 384 1536 17M 16%
T4-tiny 4 312 1200 14M 13%
BiGRU 1 768 - 31M 29%

Table 3: Model sizes of teacher and students. The number of parameters includes embeddings but does not include
output layers.

Model MNLI SQuAD CoNLL-2003
m mm EM F1 F1

Teacher 1 83.6 84.0 81.1 88.6 91.2
Teacher 2 83.6 84.2 81.2 88.5 90.8
Teacher 3 83.7 83.8 81.2 88.7 91.3

Ensemble 84.3 84.7 82.3 89.4 91.5

Student 84.8 85.3 83.5 90.0 91.6

Table 4: Results of multi-teacher distillation. All the
models are BERTBASE. Different teachers are trained
with different random seeds. For each task, the ensem-
ble is the average of three teachers’ results.

cases. It may be a hint that narrow-and-deep mod-
els are better than wide-and-shallow models.

Finally, data augmentation (DA) is critical. For
the experiments in the last line in Table 2, we use
additional datasets during distillation: a subset of
NewsQA (Trischler et al., 2017) training set is used
in SQuAD; passages from the HotpotQA (Yang
et al., 2018) training set is used in CoNLL-2003.
The augmentation datasets significantly improve
the performance, especially when the size of the
training set is small, like CoNLL-2003.

We next show the effectiveness of
MultiTeacherDistiller, which dis-
tills an ensemble of teachers to a single student
model. For each task, we train three BERTBASE

teacher models with different seeds. The student is
also a BERTBASE model. The temperature is set to
8, and intermediate losses are not used. As Table 4
shows, for each task, the student achieves the best
performance, even higher than the ensemble result.

5 Results on Chinese Datasets

The results on Chinese datasets are presented in
Table 5. We notice that T4-tiny still outperforms
T3-small on all tasks, which is consistent with their
performance on English tasks. In the experiments
with DA, CMRC 2018 and DRCD take each other’s
dataset as data augmentation. We observe that since

Model XNLI LCQMC CMRC 2018 DRCD
Acc Acc EM F1 EM F1

RoBERTa-wwm 79.9 89.4 68.8 86.4 86.5 92.5

T3 78.4 89.0 63.4 82.4 76.7 85.2
+DA - - 66.4 84.2 78.2 86.4

T3-small 76.0 88.1 46.1 71.0 71.4 82.2
+DA - - 58.0 79.3 75.8 84.8

T4-tiny 76.2 88.4 54.3 76.8 75.5 84.9
+DA - - 61.8 81.8 77.3 86.1

Table 5: Development set results for the teacher and
various students on Chinese tasks.

CMRC 2018 has a relatively small training set, DA
has a much more significant effect.

6 Conclusion and Future Work

In this paper, we present TextBrewer, a flexible
PyTorch-based distillation toolkit for NLP research
and applications. TextBrewer provides rich cus-
tomization options for users to compare different
distillation methods and build their strategies. We
have conducted a series of experiments. The re-
sults show that the distilled models can achieve
state-of-the-art results with simple settings.

TextBrewer also has its limitations. For exam-
ple, its usability in generation tasks such as ma-
chine translation has not been tested. We will
keep adding more examples and tests to expand
TextBrewer’s scope of application.

Apart from the distillation strategies, the model
structure also affects the performance. In the future,
we aim to integrate neural architecture search into
the toolkit to automate the searching for model
structures.
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Abstract
We present a system that allows a user to
search a large linguistically annotated cor-
pus using syntactic patterns over dependency
graphs. In contrast to previous attempts to this
effect, we introduce a light-weight query lan-
guage that does not require the user to know
the details of the underlying syntactic represen-
tations, and instead to query the corpus by pro-
viding an example sentence coupled with sim-
ple markup. Search is performed at an interac-
tive speed due to an efficient linguistic graph-
indexing and retrieval engine. This allows
for rapid exploration, development and refine-
ment of syntax-based queries. We demon-
strate the system using queries over two cor-
pora: the English wikipedia, and a collec-
tion of English pubmed abstracts. A demo of
the wikipedia system is avilable at: https:

//allenai.github.io/spike/ .

1 Introduction

The introduction of neural-network based models
into NLP brought with it a substantial increase in
syntactic parsing accuracy. We can now produce
accurate syntactically annotated corpora at scale.
However, the produced representations themselves
remain opaque to most users, and require substan-
tial linguistic expertise to use. Patterns over syn-
tactic dependency graphs1 can be very effective
for interacting with linguistically-annotated cor-
pora, either for linguistic retrieval or for informa-
tion and relation extraction (Fader et al., 2011; Ak-
bik et al., 2014; Valenzuela-Escárcega et al., 2015,

1In this paper, we very loosely use the term “syntactic”
to refer to a linguistically motivated graph-based annotation
over a piece of text, where the graph is directed and there is
a path between any two nodes. While this usually implies
syntactic dependency trees or graphs (and indeed, our system
currently indexes Enhanced English Universal Dependency
graphs (Nivre et al., 2016; Schuster and Manning, 2016)) the
system can work also with more semantic annotation schemes
e.g, (Oepen et al., 2015), given the availability of an accurate
enough parser for them.

2018). However, their use in mainstream NLP as
represented in ACL and affiliated venues remain
limited. We argue that this is due to the high barrier
of entry associated with the application of such pat-
terns. Our aim is to lower this barrier and allow also
linguistically-naı̈ve users to effectively experiment
with and develop syntactic patterns. Our proposal
rests on two components:
(1) A light-weight query language that does not
require in-depth familiarity with the underlying
syntactic representation scheme, and instead lets
the user specify their intent via a natural language
example and lightweight markup.
(2) A fast, near-real-time response time due to effi-
cient indexing, allowing for rapid experimentation.

Figure 1 (next page) shows the interface of our
web-based system. The user issued the query:

〈〉founder:[e]Paul was a t:[w]founder of
〈〉entity:[e]Microsoft.

The query specifies a sentence (Paul was a
founder of Microsoft) and three named captures:
founder, t and entity. The founder and entity
captures should have the same entity-type as the
corresponding sentence words (PERSON for Paul
and ORGANIZATION for Microsoft, indicated
by [e]), and the t capture should have the same
word form as the one in the sentence (founder)
(indicated by [w]). The syntactic relation between
the captures should be the same as the one in
the sentence, and the founder and entity captures
should be expanded (indicated by 〈〉).

The query is translated into a graph-based query,
which is shown below the query, each graph-node
associated with the query word that triggered it.
The system also returned a list of matched sen-
tences. The matched tokens for each capture group
(founder, t and entity) are highlighted. The user
can then issue another query, browse the results, or
download all the results as a tab-separated file.
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Figure 1: Syntactic Search System

2 Existing syntactic-query languages

While several rich query languages over linguis-
tic tree and graph structure exist, they require a
substantial amount of expertise to use.2 The user
needs to be familiar not only with the syntax of
the query language itself, but to also be intimately
familiar with the specific syntactic scheme used in
the underlying linguistic annotations. For exam-
ple, in Odin (Valenzuela-Escárcega et al., 2015), a
dedicated language for pattern-based information
extraction, the same rule as above is expressed as:

- label: Person
type: token
pattern: |
[entity="PERSON"]+

- label: Organization
type: token
pattern: |
[entity="ORGANIZATION"]+

- label: founded
type: dependency
pattern: |

trigger = [word=founded]
founder:Person = >nsubj
entity:Organization = >nmod

The Spacy NLP toolkit3 also includes pattern
matcher over dependency trees,using JSON based
syntax:
[{"PATTERN": {"ORTH": "founder"},
"SPEC": {"NODE_NAME": "t"}},

{"PATTERN": {"ENT_TYPE": "PERSON"}},
"SPEC": {"NODE_NAME": "founder",

"NBOR_RELOP": ">nsubj",

2We focus here on systems that are based on dependency
syntax, but note that many systems and query languages
exist also for constituency-trees, e.g., TGREP/TGREP2,
TigerSearch (Lezius et al., 2002), the linguists search engine
(Resnik and Elkiss, 2005), Fangorn (Ghodke and Bird, 2012).

3https://spacy.io/

"NBOR_NAME": "t"}},
{"PATTERN": {"ENT_TYPE": "ORGANIZATION"},
"SPEC": {"NODE_NAME": "entity",

"NBOR_RELOP": ">nmod",
"NBOR_NAME": "t"}}]

Stanford’s Core-NLP package (Manning et al.,
2014) includes a dependency matcher called SEM-
GREX,4 which uses a more concise syntax:

{ner:PERSON}=founder
<nsubj ({word:founder}=t

>nmod {ner:ORG}=entity)

The dep search system5 from Turku university
(Luotolahti et al., 2017) is designed to provide
a rich and expressive syntactic search over large
parsebanks. They use a lightweight syntax and sup-
port working against pre-indexed data, though they
do not support named captures of specific nodes.

PERSON <nsubj founder >nmod ORG

While the different systems vary in the verbose-
ness and complexity of their own syntax (indeed,
the Turku system’s syntax is rather minimal), they
all require the user to explicitly specify the de-
pendency relations between the tokens, making it
challenging and error-prone to write, read or edit.
The challenge grows substantially as the complex-
ity of the pattern increases beyond the very simple
example we show here.

Closest in spirit to our proposal, the PROP-
MINER system of Akbik et al. (2013) which lets the
user enter a natural language sentence, mark spans
as subject, predicate and object, and have a rule be

4https://nlp.stanford.edu/software/
tregex.shtml

5http://bionlp-www.utu.fi/dep_search/
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generated automatically. However, the system is re-
stricted to ternary subject-predicate-object patterns.
Furthermore, the generated pattern is written in a
path-expression SQL variant (SerQL, (Broekstra
and Kampman, 2003)), which the user then needs
to manually edit. For example, our query above
will be translated to:

SELECT subject, predicate, object
FROM predicate.3 nsubj subject,

predicate.3 nmod object,
WHERE subject POS NNP
AND predicate.3 POS NN
AND object POS NNP
AND subject TEXT PAUL
AND predicate.3 TEXT founder
AND object TEXT Microsoft
AND subject FULL_ENTITY
AND object FULL_ENTITY

All these systems require the user to closely in-
teract with linguistic concepts and explicitly spec-
ify graph-structures, posing a high barrier of entry
for non-expert users. They also slow down expert
users: formulating a complex query may require
a few minutes. Furthermore, many of these query
languages are designed to match against a provided
sentence, and are not indexable. This requires it-
erating over all sentences in the corpus attempting
to match each one, requiring substantial time to
obtain matches from large corpora.

Augustinus et al. (2012) describe a system for
syntactic search by example, which retrieves tree
fragments and which is completely UI based. Our
system takes a similar approach, but replaces the
UI-only interface with an expressive textual query
language, allowing for richer queries. We also
return node matches rather than tree fragments.

3 Syntactic Search by Example

We propose a substantially simplified language,
that has the minimal syntax and that does not re-
quire the user to know the underlying syntactic
schema upfront (though it does not completely hide
it from the user, allowing for exposure over time,
and allowing control for expert users who under-
stand the underlying syntactic annotation scheme).

The query language is designed to be linguis-
tically expressive, simple to use and amenable to
efficient indexing and query. The simplicity and in-
dexing requirements do come at a cost, though: we
purposefully do not support some of the features
available in existing languages. We expect these
features to correlate with expertise.6 At the same

6Example of a query feature we do not support is quantifi-

time, we also seamlessly support expressing arbi-
trary sub-graphs, a task which is either challenging
or impossible with many of the other systems.
The language is based on the following principles:
(1) The core of the query is a natural language
sentence.
(2) A user can specify the tokens of interest and
constraints on them via lightweight markup.
(3) While expert users can specify complex token
constraints, effective constraints can be specified
by pulling values from the query words.

The required syntactic knowledge from the user,
both in terms of the syntax of the query language
itself and in terms of the underlying linguistic for-
malism, remains minimal.

4 Graph Query Formalism
The language is structured around between-token
relations and within-token constraints, where to-
kens can be captured.

Formally, our query G = (V,E) is a labeled di-
rected graph, where each node vi ∈ V corresponds
to a token, and a labeled edge e = (vi, vj , `) ∈ E
between the nodes corresponds to a between-token
syntactic constraint. This query graph is then
matched against parsed target sentences, looking
for a correspondence between query nodes and
target-sentence nodes that adhere to the token and
edge constraints.

For example, the following graph specifies three
tokens, where the first and second are connected via
an ‘xcomp’ relation, and the second and third via
a ‘dobj’ relation. The first token is unconstrained,
while the second token must have the POS-tag of
VB, and the third token must be the word home.

Sentences whose syntactic graph has a subgraph
that aligns to the query graph and adheres to the
constraints will be considered as matches. Example
of such matching sentences are:

- John wantedw to gov homeh after lunch.
- It was a place she decidedw to callv her homeh.

The <w>, <v> and <h> marks on the nodes denote
named captures. When matching a sentence, the
sentence tokens corresponding to the graph-nodes
will be bound to variables named ‘w’, ‘v’ and ‘h’,
in our case {w=wanted, v=go, h=home} for
the first sentence and {w=decided, v=call,
h=home} for the second. Graph nodes can also be

cation, i.e., “nodes a and b should be connected via a path that
includes one or more ‘conj’ edges”.
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unnamed, in which case they must match sentence
tokens but will not bind to any variable. The graph
structure is not meant to be specified by hand,7 but
rather to be inferred from the example based query
language described in the next section (an example
query resulting in this graph is “They w:wanted to
v:[tag]go h:[word]home”).

Between-token constraints correspond to labeled
directed edges in the sentence’s syntactic graph.

Within-token constraints correspond to proper-
ties of individual sentence tokens.8 For each prop-
erty we specify a list of possible values (a disjunc-
tion) and if lists for several properties are provided,
we require all of them to hold (a conjunction). For
example, in the constraint tag=VBD|VBZ&lemma=buy
we look for tokens with POS-tag of either VBD or
VBZ, and the lemma buy. The list of possible values
for a property can be specified as a pipe-separated
list (tag=VBD|VBZ|VBN) or as a regular expression
(tag=/VB[DZN]/).

5 Example-based User-friendly Query
Language

The graph language described above is expressive
enough to support many interesting queries, but it
is also very tedious to specify query graphs G, es-
pecially for non-expert users. We propose a simple
syntax that allows to easily specify a graph query
G (constrained nodes connected by labeled edges)
using a textual query q that takes the form of an
example sentence and lightweight markup.

Let s = w1, ..., wn be a proper English sentence.
Let D be its dependency graph, with nodes wi and
labeled edges (wi, wj , `). A corresponding textual
query q takes the form q = q1, ..., qn, where each
qi is either a word qi = wi, or a marked word
qi = m(wi). A marking of a word takes the form:
:word (unnamed capture) name:word (named cap-
ture) or name:[constraints]word , :[constraints]word .
Consider the query:

John w:wanted to v:[tag=VB] go h:[word=home] home

corresponding to the above graph query. The
marked words are:

q2 =w:wanted (unconstrained, name:w)
q4 =v:[tag=VB]go (cnstr:tag=VB, name:v)
q5 =h:[word=home]home (cnstr:word=home, name:h)

7Indeed, we currently do not even expose a textual repre-
sentation of the graph.

8Currently supported properties are word-form (word),
lemma (lemma), pos-tag (tag) or entity type (entity). Ad-
ditional types can be easily added, provided that we have
suitable linguistic annotators for them.

Each of these corresponds to a node vqi in the query
graph above.

Let m be the set of marked query words, and
m+ be a minimal connected subgraph of D that
includes all the words in m. When translating q
to G, each marked word wi ∈ m is translated to a
named query graph node vqi with the appropriate
restriction. The additional words wj ∈ m+ \m are
translated to unrestricted, unnamed nodes vqj . We
add a query graph edge (vqi , vqj , `) for each pair in
V for which (wi, wj , `) ∈ D.

Further query simplifications. Consider the
marked word h:[word=home] home. The constraint
is redundant with the word. In such cases we allow
the user to drop the value, which is then taken from
the corresponding property of the query word. This
allows us to replace the query:

John w:wanted to v:[tag=VB]go h:[word=home]home

with:

John w:wanted to v:[tag]go h:[word]home

This further drives the “by example” agenda, as
the user does not need to know what the lemma,
entity-type or POS-tag of a word are in order to
specify them as a constraint. Full property names
can be replaced with their shorthands w,l,t,e:

John w:wanted to v:[t]go h:[w]home

Finally, capture names can be omitted, in which
case an automatic name is generated based on the
corresponding word:

John :wanted to :[t]go :[w]home

Anchors. In some cases we want to add a node
to the graph, without an explicit capture. In such
cases we can use the anchor $ ($John). These are
interpreted as having a default constraint of [w],
which can be overriden by providing an alternative
constraint ($[e]John), or an empty one ($[]John).

Expansions When matching a query against a
sentence the graph nodes bind to sentence words.
Sometimes, we may want the match to be expanded
to a larger span of the sentence. For example, when
matching a word which is part of a entity, we of-
ten wish to capture the entire entity rather than the
word. This is achieved by prefixing the term with
the “expansion diamond” 〈〉. The default behavior
is to expand the match from the current word to the
named entity boundary or NP-chunk that surrounds
it, if it exists. We are currently investigating the
option of providing additional expansion strategies.
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Summary To summarize the query language
from the point of view of the user: the user starts
with a sentence w1, ..., wn, and marks some of the
words for inclusion in the query graph. For each
marked word, the user may specify a name, and op-
tional constraints. The user query is then translated
to a graph query as described above. The results list
highlights the words corresponding to the marked
query words. The user can choose for the results to
highlight entire entities rather than single words.

6 Interactive Pattern Authoring
An important aspect of the system is its interactiv-
ity. Users enter queries by writing a sentence and
adding markup on some words, and can then refine
them following feedback from the environment, as
we demonstrate with a walk-through example.

A user interested in people who obtained degrees
from higher education institutions may issue the
following query:

subj:John obtained his d:[w]degree from inst:Harvard

Here, the person in the “subj” capture and the
institution in the “inst” capture are placehold-
ers for items to be captured, so the user uses
generic names and leaves them unconstrained.
The “degree” (“d”) capture should match exactly,
as the user specified the “w” constraint (exact
word match). When pressing Enter, the user
is then shown the resulting query-graph and a re-
sult list. The user can then refine their queries
based on either the query graph, the result list,
or both. For the above query, the graph is:

Note that the query graph associates each graph
node with the query word that triggered it. The
word “obtained” resulted in a graph node even
though it was not marked by the user as a cap-
ture. The user makes note to themselves to go back
to this word later. The user also notices that the
word “from” is not part of the query.

Looking at the result list, things look weird:

Maybe this is because the word from is not in the
graph? Indeed, adding a non-capturing exact-word
anchor on “from” solves this issue:

subj:John obtained his d:[w]degree $from inst:Harvard

However, the resulting list contains many non-
names in the subj capture. Trying to resolve this,
the user adds an ”entity-type” constraint to the subj
capture:

subj:[e]John obtained his d:[w]degree $from
inst:Harvard

Note that the user didn’t specify an exact type, yet
the query graph correctly resolved PERSON.
The user is interested in the full name of the person
and organization, so they change from single-word
capture to expanded capture, with the default
expansion level (using the diamond prefix 〈〉):

〈〉subj:[e]John obtained his d:[w]degree $from
〈〉inst:Harvard

These are the kind of results the user expected, but
now they are curious about degrees obtained by
females, and their representation in the Wikipedia
corpus. Adding the pronoun to the query, the user
then issues the following two queries, saving the
result-sets from each one as a CSV for further
comparative analysis.

〈〉subj:[e]John obtained $his d:[w]degree $from
〈〉inst:Harvard

〈〉subj:[e]John obtained $her d:[w]degree $from
〈〉inst:Harvard

Our user now worries that they may be missing
some results by focusing on the word degree.
Maybe other things can be obtained from a univer-
sity? The user then sets an exact-word constraint
on “Harvard”, adds a lemma constraint to “obtain”
and clears the constraint from “degree”:

〈〉subj:[e]John :[l]obtained his d:degree $from
〈〉inst:[w]Harvard

Browsing the results, the d capture includes words
such as “BA, PhD, MBA, certificate”. But the
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result list is rather short, suggesting that either
Harvard or obtain are too restrictive. The user
seeks to expand the “obtain” node’s vocabulary,
adding back the exact word constraint on “degree”
while removing the one from “obtain”:

〈〉subj:[e]John :[]obtained his d:[w]degree $from
〈〉inst:[w]Harvard

Looking at the result list in the o capture, the
user chooses the lemmas “receive, complete, earn,
obtain, get”, adds them to the o constraint, and
removes the degree constraint.

〈〉subj:[e]John
o:[l=receive|complete|earn|obtain|get]obtained
his d:degree $from 〈〉inst:[w]Harvard

The returned result-set is now much longer, and
we select additional terms for the degree slot and
remove the institution word constraint, resulting in
the final query:

〈〉subj:[e]John
o:[l=receive|complete|earn|obtain|get]obtained his d:
[w=degree|MA|BA|MBA|doctorate|masters|PhD]degree
$from 〈〉inst:Harvard

The result is a list of person names earning
degrees from institution, and the entire list can be
downloaded as a tab-separated file which includes
the named captures as well as the source sentences
(over Wikipedia, this list has 6197 rows).9

The query can also be further refined to capture
which degree was obtained, e.g.:

〈〉subj:[e]John o:[l=...]obtained] his kind:law
d:[w=...]degree $from 〈〉inst:Harvard

capturing under kind words like law, chemistry,
engineering and DLitt but also bachelors, masters
and graduate.

This concludes our walk-through.

7 Additional Query Examples
To whet the reader’s appetite, here are a sample
of additional queries, showing different potential

9The list can be even more comprehensive had we selected
additional degree words and obtain words, and considered
also additional re-phrasings.

use-cases. Over wikipedia:
- p:[e]Sam $[l=win|receive]won an $Oscar.
- 〈〉p:[e]Sam $[l=win|receive]won an $Oscar $for

〈〉thing:something
- $fish $such $as 〈〉fish:salmon
- 〈〉hero:[t]Spiderman $is a $superhero
- I like kind:coconut $oil
- kind:coconut $oil is $used for purpose:eating

Over a pubmed corpus, annotated with the SciS-
pacy (Neumann et al., 2019) pipeline:

- 〈〉x:[e]aspirin $inhibits 〈〉y:thing
- a $combination of 〈〉d1:[e]aspirin and

〈〉d2:[e]alcohol $:[l]causes 〈〉t:thing
- 〈〉patients:[t]rats were $injected $with 〈〉what:drugs

8 Implementation Details

The indexing is handled by Lucene.10 We currently
use Odinson (Valenzuela-Escárcega et al., 2020),11

an open-source Lucene-based query engine devel-
oped at Lum.ai, as a successor of Odin (Valenzuela-
Escárcega et al., 2015), that allows to index syn-
tactic graphs and issue efficient path queries on
them. We translate our queries into an Odinson
path query that corresponds to a longest path in
our query graph. We then iterate over the returned
Odinson matches and verify the constraints that
were not on the path. Conceptually, the Odinson
system works by first using Lucene’s reverse-index
for retrieving sentences for which there is a token
matching each of the specified token-constraints,
and then verifying the syntactic between-token con-
straints. To improve the Lucene-query selectivity,
tokens are indexed with incoming and outgoing
syntactic edge label information, which is incorpo-
rated as additional token-constraints to the Lucene
engine. The system easily supports millions of
sentences, returning results at interactive speeds.

9 Conclusions

We introduce a simple query language that allows
to pose complex syntax-based queries, and obtain
results in an interactive speed.

A search interface over Wikipedia sentences
is available at https://allenai.github.io/

spike/. We intend to release the code as open
source, as well as providing hosted open access to
a PubMed-based corpus.

10https://lucene.apache.org
11https://github.com/lum-ai/odinson/
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Abstract

We present Tabouid, a word-guessing game
automatically generated from Wikipedia.
Tabouid contains 10,000 (virtual) cards in
English, and as many in French, covering
not only words and linguistic expressions
but also a variety of topics including artists,
historical events or scientific concepts. Each
card corresponds to a Wikipedia article, and
conversely, any article could be turned into a
card. A range of relatively simple NLP and
machine-learning techniques are effectively
integrated into a two-stage process. First, a
large subset of Wikipedia articles are scored
— this score estimates the difficulty, or alter-
natively, the playability of the page. Then, the
best articles are turned into cards by selecting,
for each of them, a list of banned words based
on its content. We believe that the game we
present is more than mere entertainment and
that, furthermore, this paper has pedagogical
potential.1

1 Introduction

Thanks to its considerable size — a total of more
than 50 million articles in 300 different languages
today — and its availability online, Wikipedia has
found many uses other than those of the traditional
encyclopaedia. It is indeed frequently used for
research in AI and natural language processing
(NLP). For example, various large-scale machine-
readable knowledge bases have been generated
from the online encyclopedia, including YAGO
(Suchanek et al., 2007), YAGO2 (Hoffart et al.,
2013) or DBpedia (Bizer et al., 2009), in addition
to reading comprehension datasets such as SQuAD
(Rajpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017). The plain text from Wikipedia articles has
also been used directly as the only source of knowl-

1The work presented in this paper is a personal project and
is not directly related to my research at AIST.

edge for Question-Answering systems such as the
one developed by Chen et al. (2017).

This article presents a system which uses
Wikipedia to generate the content of an applica-
tion that is inspired by Taboo, a word-guessing
board game originally published by Parker Broth-
ers in 1989. To play our version of the game, called
“Tabouid”, all the group (of at least two) players
require is a single electronic device (typically a
smartphone). The game is divided in turns. Dur-
ing her turn (the length of which is defined by a
countdown), the player looks at the card displayed
on the screen. A card is composed of a title and
a list of additional banned words (the words in-
cluded in the title are considered banned words).
See Figures 1 and 2 for two screenshots of the ap-
plication (the circle around the title of the card acts
as a countdown). The player sets out to make the
other players guess the title on the card (in its exact
wording). To do so, she has to describe the concept
to the other players but without using any of the
banned words, nor any words constructed with the
same stems (translations of the words into other
languages are not allowed either). Once a title has
been guessed, the player continues on to the next
card. The player has to skip the current card as
soon as she mentions a banned word.

The originality of Tabouid lies in the fact that
its content has been automatically generated from
Wikipedia using a range of NLP and machine learn-
ing techniques. This automated process means that
Tabouid can benefit from a wealth of 10,000 cards
in English, and as many in French, covering not
only words and linguistic expressions but also a va-
riety of topics including artists, historical events or
scientific concepts. In addition, all cards in Tabouid
are associated with a difficulty score. This allows
the difficulty level of the game to be set in a straight-
forward way. With such an adaptable difficulty, the
game can accommodate various groups of players,
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Figure 1: Screenshot of the application with the card
Movie Star.

which could include individuals such as children
or foreigners, whose level of proficiency or knowl-
edge of the culture associated with the target lan-
guage may vary. In addition, we believe that the
work presented here can have some pedagogical
value by defining an implementation project for stu-
dents enrolled in NLP or computational linguistic
programs.

In this article, we describe how the cards were
generated. Each card corresponds to a Wikipedia
page. The title of the card is the title of the page,
and the additional banned words (or expressions)
are extracted from the text (and links) of the page.
The automatic process is divided into two parts.
First, we compute a difficulty score for each page
of (a large subset of) Wikipedia as described in
Section 2. Then, for the best pages (i.e., the easiest
ones), we select a list of banned words as described
in Section 3.

You can currently play Tabouid in English and
French. The game is available as an Android2 and
iOS3 application that is entirely free and does not

2https://play.google.com/store/apps/
details?id=com.tot.tabouid

3https://apps.apple.com/us/app/

Figure 2: Screenshot of the application with the card
George R. R. Martin.

contain any advertisement. The cards have been
pre-generated and packaged with the application;
an internet connection is not required during the
game.

2 Page scoring

The computation of difficulty scores is the most
complex, and probably also the most crucial,
part of the process. Indeed, almost all of the
pages in Wikipedia would make for very poor
cards, and so represent little to no interest to
the game. They broadly fall into two categories.
The first category is that of pages referring to
entities lying very far from what we can con-
sider common knowledge. For example (taken
randomly from Wikipedia), Smrekovec Lodge,
described as “a mountain hostel on the southern
slope of the Smrekovec Mountains” (in Slove-
nia). The other category comprises pages that
do refer to relatively familiar concepts, but that
are way too specific and technical to be actu-
ally guessed in the context of the game. For ex-
ample, Taekwondo at the 2016 Summer
Olympics - Men’s +80 kg. Wikipedia

tabouid/id1477994156
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contains a very large number of pages for sport
events of all kinds and in many variations — while
some hardcore sport fans might actually enjoy play-
ing such cards, we will assume than most players
would quickly get bored after having a good laugh
(at best).

By contrast, here are several examples of
pages that will make for good cards: Saturday,
Feminism, Christopher Columbus and
Bangladesh. In the middle, pages such as
List of scientists who disagree
with the scientific consensus
on global warming and History of
mathematical notation can be found,
which are definitely challenging but still playable
and fun for individuals used to the game. We
therefore want to compute difficulty scores that
reflect this natural gradient.

To do so, we use a neural network that takes as
input a vector representation of a page and com-
putes a real-valued score between 0 and 1. The
lower the score, the more difficult the page.4 We
first start by describing how the vector representa-
tion of each page is computed before turning to the
neural network itself before describing the annota-
tion collection.

2.1 Page representation

Each page vector can be divided in two subvectors:
a vector of categories and title features, contain-
ing information about both the categories the page
belong to and its title5, and a vector of various
features.

There are 10 various features: (1) the number of
visits to the page between January 1st 2015 and De-
cember 31th 2018, (2) the variance of the monthly
distribution of the number of visits between these
two dates divided by its squared mean (this is a
measure of dispersion of the distribution), (3) the
size of the page, (4) the date of creation of the page,
(5) the date of last modification of the page, (6)
the number of modifications of the page since its

4Alternatively, the score can be interpreted as a playability
score: the higher the score, the higher the playability of the
page.

5In Wikipedia, each page belong to zero, one or more cat-
egories such as 20th-century women scientists,
Naturalized citizens of France or People
from Warsaw, to name a few of the 58 categories the
Marie Curie page belongs to. These categories define
a hierarchy that is at the heart of knowledge-bases such as
(Suchanek et al., 2007) and YAGO2 (Hoffart et al., 2013), in
addition to taxonomies, such as WikiTaxonomy (Ponzetto and
Strube, 2011) and WikiNet (Nastase et al., 2010).

creation, (7) the number of translations of the page
in other versions of Wikipedia, (8) whether the title
contains the name of a month, (9) whether the title
is a date (matching some regular expression), and
(10) whether the title contains foreign characters.
Except for the three last of these, which are binary,
each feature is formatted as a real value which is
then linearly transformed so that the corresponding
distribution over all pages has mean 0 and standard
deviation 1.

The categories and title vectors are computed as
follows. We first build the title word assignment
matrix W containing one line for each page and
where rows represent words, such that Wi,j = 1 if
the title of page i contains word j and 0 otherwise.6

We also build the category assignment matrix C in
a similar way, such that Ci,j = 1 if page i belongs
to a category containing word j, and 0 otherwise.
Then, we concatenate these two matrices and apply
a dimensionality reduction algorithm. More specif-
ically, we use the TruncatedSVD algorithm im-
plemented in the Scikit-learn library (Pedregosa
et al., 2011) to produce a vector of size 50 for each
page.7

2.2 Neural network

We use a very simple architecture for the neural
network. The reason is that, as explained below,
we have very little annotated data to train the sys-
tem on. Therefore, to prevent overfitting, we define
a model with a small number of parameters and
such that some of these parameters are (to a certain
extent) interpretable. One of the advantages of in-
terpretable parameters is that we can manually set
them to sensible values at the beginning of the train-
ing process. By doing so, we want to encourage
the network to leverage actual correlations of the
underlying distribution rather than mere artefacts
of the training set.

Let u be a page vector (of dimension 60). It
is first sent through a square affine layer, u′ =
A·u+B, the result of which is then used to perform
an element-wise multiplication, v = u∗u′. Finally,
this vector is sent through a sigmoid layer of height
1 to produce the difficulty score, s = σ(a · v + b).

This model contains only 3,844 parameters and

6We ignore stop words and words appearing in less than
0.1% of the page titles. We use a set of one million randomly
selected pages.

7This algorithm is based on singular value decomposition
(SVD; Halko et al., 2011), which is also at the heart of latent
semantic analysis (LSA; Dumais et al., 1988).
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allows direct multiplicative interaction between
each pair of coefficients of the input vector. In
addition, if we expand the score as

s = σ(
∑

i

(aiuiBi + aiui
∑

j

Ai,juj) + b) (1)

we can notice the linear aiuiBi terms. We recall
that, for 0 ≤ i ≤ 9, we know exactly what ui
means.8 For all of them, we can intuitively guess
whether they have a positive or negative impact on
the difficulty or playability of the corresponding
card, which allows us to initialise the product aiBi

in a sensible way. For example, we assume that, all
other things being equal, the higher the popularity
of the page, the lower the difficulty of the card.
Similarly, a high dispersion in the visitor distribu-
tion might indicate a temporary fame of the page,
which would have possibly made an interesting
card for a short period after the peak of the distri-
bution, but likely to become obsolete after that. So,
we initialise a0B0 with a positive value and a1B1

with a negative one. More precisely, we initialise
ai = 1 for all i and then set b0 = 1, b1 = −0.5,
b2 = 1, b3 = −1, b4 = 0.5, b5 = 0.5, b6 = 1,
b7 = −0.5, b8 = −0.5, b9 = −1. Note that these
weights will be trained with all other parameters,
potentially (in)validating our intuitions.

Given a training set D = (xi, yi)i where xi is a
Wikipedia article and yi is its annotated score, we
train the model to minimise the cross-entropy over
D, L = −∑

i s(xi) log(yi) + (1− s(xi)) log(1−
s(xi)). The training is done by stochastic gradient
descent with momentum, using L2 regularisation.

2.3 Annotation and results

To train the model described above, we collect
annotations for a very small subset of Wikipedia.
Pages are annotated with a real-valued score be-
tween 0 (hard/unplayable) and 1 (easy). Because,
as explained above, Wikipedia is strongly imbal-
anced towards unplayable pages, manually anno-
tating random pages chosen from a uniform distri-
bution would be a very inefficient process. Instead,
we implement an active learning process.

In short, we start by scoring the 100 most visited
pages, as they contain a high proportion of easy
pages. This forms our initial dataset. We train
the model on this dataset and use it to score some

8The interpretability of the other coefficients is dependent
on the result of the dimensionality reduction, which we will
not discuss here.

unlabelled pages among which we select some in-
stances to be scored by a human annotator. We add
these 10 instances to the dataset and reiterate.

The query strategy that we adopt is the follow-
ing: if the average score in the dataset is below 0.5,
we select the 10 pages with the highest predicted
score, otherwise we select the 10 lowest ones. The
rational of this choice was to keep the dataset bal-
anced. In retrospect, more principled techniques
such as expected model change or uncertainty sam-
pling (Settles, 2009; Fu et al., 2013) might have
been tried, but this basic strategy yielded satisfying
results, so we stuck to it.

After having annotated around 2300 instances
in this way, the 500 pages with highest predicted
scores were sent to human annotators. Once this
process was completed, we trained the model on
70% of the scored pages, dividing the remaining
30% for early stopping and evaluation. One possi-
ble way to quantify the performance of this model
is to discretise the score space ([0, 1]) into two cat-
egories (s ≤ 0.5 and s > 0.5) and to compute
the accuracy as in a binary classification task. On
10 trained models with the interpretable weights
initialised as explained above, the best accuracy is
85.0%, the mean accuracy is 83.5% and the stan-
dard deviation is 1.1%. On 10 trained models with-
out the initialisation procedure, the best accuracy
is 84.4%, the mean accuracy is 82.9% and the stan-
dard deviation is 1.3%. This tends to show that our
initialisation procedure is justified and makes the
training more effective and reliable.

By manually inspecting the weights of a ran-
domly chosen trained network, we can compute
the aiBi products for the 10 various features. We
will not comment on most values, which are un-
surprising but only mention that contrary to our
expectations, the product for the size feature is
very low (a2B2 = 0.03) and the one for the num-
ber of translations too (a6B6 = 0.02). This does
not mean, however, that these features do not have
a positive effect on the score of the page, as they
are also involved in the multiplicative terms (see
1).9

The 10,000 pages with the highest scores
(this includes pages annotated by humans) —
from Donald Trump (1.0) to Landscape
painting (0.59) — have been included as cards
in the game. The selection of the banned words for

9See for instance the work of Lipton (2018) about the
difficulty of interpreting even simple models.
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each page is the subject of the next section. The
players can set a difficulty setting that determines
which cards are shown during the game: if the
difficulty is set as d ∈ [1, 10000], only the d easi-
est cards are used (in random order). This setting,
however, has no effect on each card’s list of banned
words.

3 Banned words selection

A simplified version of our banned words selec-
tion algorithm is as follows. For a given Wikipedia
article, its text is first tokenised. Tokens are then
stemmed and all stop words are removed. Finally,
we select the 10 most frequent stems in the page
and use their most frequent tokens (one for each) as
banned words. Tokenisation and stemming are per-
formed with the NLTK library (Bird et al., 2009).

There are two main differences between this sim-
plification and the actual algorithm we use. The
first is that we add rules to NTLK’s stemmer in or-
der to map strongly related words that are stemmed
differently to the same class. For example, we send
words stemmed as lawyer to the law class. We
send the words stemmed as pole or poland (but
starting with a capital letter) to the polish class. For
all stems ending in pean, we remove the final ean
(e.g., European is sent to europ). Around 25 rules
have been manually defined during the develop-
ment of the English version of the game.

Second, we do not ban only single words, but
also longer expressions. We detect links pointing
to other Wikipedia articles and consider their titles
as potential banned expressions. Also, because it
appears that entities having a Wikipedia page of
their own are usually very informative even when
they have comparatively few mentions in the text,
we count them with a factor 1.5. Given the name of
a Wikipedia article linked in the current page, each
of its occurrences counts not only as 1 occurrence
for each of the tokens it is composed of but also
as 1.5 occurrences of the full name. For example,
each occurrence of Serge Gainsbourg will count
as 1 occurrence of Serge, 1 occurrence of Gains-
bourg and 1.5 occurrences of Serge Gainsbourg.
An occurrence of a single word entity name, such
as Madonna, simply counts as 1.5 occurrences of
Madonna. During the final step of the algorithm,
when selecting the banned words or expressions,
were two words composing the name of an entity
to be selected, we only select this name instead.

This algorithm is not perfect; some important

words might be missed because of the way we
analyse the page or simply because they do not
even appear in the text. In addition, even with
our hand-crafted rules supplementing the stem-
ming algorithm, different forms of the same word
(or words that, although different, are so strongly
related that, according to the rules of the game,
banning one is equivalent to banning the other)
might be selected as distinct banned words. It is
to compensate for such limitations that we build
lists of 10 banned words or expressions. Such
a relatively high number tends to favour the in-
troduction of false positives, but these are not a
major problem. They are only an annoyance in
that they unnecessarily slow the player, who has
to read them. While we have not performed any
quantitative evaluation of this algorithm, it has
been, however, extensively tested during various
parties, family gatherings, commuting trips and
scientific conferences (among others). In addition
to the two cards shown in Figures 1 and 2, here
are a few other cards present in the game. World
War I (score 1) with banned words France, Rus-
sia, British Army, forces, Allied Powers, Battle,
Britain, Ottoman, Germany, and United States,
Rihanna (score 1) with banned words album,
music, released, single, Billboard, Girl, song,
record, Awards, and featured, and Artificial
intelligence (score 0.98) with banned words
AI, human, machine, research, learning, computer,
problems, systems, networks, and algorithms.

4 Conclusion

In this paper, we have shown how a range of rel-
atively simple NLP and machine-learning tech-
niques can be integrated effectively to automat-
ically generate the content of Tabouid, a word-
guessing game freely available on Android and
iOS devices. Although easy to understand and im-
plement, these techniques can be developed and
improved on in many ways. They also naturally
lead to a wide range of practical and theoretical
questions relevant to NLP (e.g., data collection
and annotation, and model interpretability). In this
respect, this work could inspire implementation
projects in NLP or computational linguistic pro-
grams. Concerning the game itself, we believe
that Tabouid is more than just a fun game and can
develop and help reinforce general knowledge for
players of all backgrounds. It also appears to be
an engaging way to practice speaking for language
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learners.
In addition to improving the banned words selec-

tion process, future work on Tabouid includes gen-
erating specific lists of cards based on school pro-
grams to use the game as an educational tool, using
the category system of Wikipedia to let users select
more or less specific categories to play with, and
adapting the algorithms to leverage the wide variety
of languages Wikipedia is available in beyond En-
glish and French. Currently, the content of Tabouid
aims to reflect the diversity of Wikipedia’s ency-
clopaedic knowledge.” As a consequence, some
cards include words related to topics that might be
deemed inappropriate for children. As suggested
by an anonymous reviewer, another possible addi-
tion to the game could then be to predict the age
appropriateness of a given topic, allowing for cards
to be filtered on the basis of an age setting.
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Abstract

We introduce Talk to Papers1, which exploits
the recent open-domain question answering
(QA) techniques to improve the current ex-
perience of academic search. It’s designed
to enable researchers to use natural language
queries to find precise answers and extract in-
sights from a massive amount of academic pa-
pers. We present a large improvement over
classic search engine baseline on several stan-
dard QA datasets, and provide the community
a collaborative data collection tool to curate
the first natural language processing research
QA dataset via a community effort.

1 Introduction

Natural language processing (NLP) is one of the
fastest growing field in computational linguistics
and artificial intelligence, e.g. ACL has experi-
enced a 140% growth from 2017 (1419 submis-
sions) to 2020 (3429 submissions). Plus, there are
more than 4000 pre-prints published at ArXiv in
2019. As a result, it has become increasingly stress-
ful for researchers to keep up with the evolution
of new methods. Today, the common way for re-
searchers to find relevant papers is via searching
keywords in Google Scholar2 or Semantic Scholar3.
Although these search engines are great at curat-
ing all the papers, they are limited in the following
ways: (1) they are based on classic information re-
trieval methods, and do not handle natural language
queries well, e.g. what effects can we get from
label smoothing? (2) they are designed to find rele-
vant documents (title and abstract) instead of direct
answers to users’ questions. Often researchers are
looking for answers on specific research questions,
e.g, how to prevent posterior collapse in VAE? or

∗Both authors contributed equally
1https://ask.soco.ai
2https://scholar.google.com/
3https://www.semanticscholar.org/

how much is it to label sentences via crowdsourc-
ing? With current search engine, it requires one to
read several papers to find these answer. Therefore,
it is necessary to create better tools for researchers
to find answers from the scientific publications in a
more efficient manner.

Meanwhile, machine reading comprehension
(MRC), aka question answering (QA) has advanced
significantly. Pretrained and then fine-tuned trans-
former models (Devlin et al., 2018) have surpassed
human performance on a number of datasets, e.g.
SQuAD (Rajpurkar et al., 2016). Further, Chen
et al. (2017) extended single document MRC to ma-
chine reading at scale (MRS), combining the chal-
lenges of document retrieval with reading compre-
hension. Their open-domain QA system is able to
find precise answers from millions of unstructured
documents using natural language queries and has
successfully been applied to the entire Wikipedia
which contains more than 5 million articles.

The goal of Talk to Papers is to create a new
way of finding answers from scientific publications
and advance QA research. Concretely, we first
adapted MRS techniques to create a conversational
search portal that enable users to ask natural lan-
guage questions to find precise answers and extract
insights from the last 3 year papers published in
top-tier NLP conferences, including ACL, NAACL,
EMNLP and etc. Second, an initial corpus on these
papers is collected and will be released as a pub-
licly available dataset for QA research. We also
developed a collaborative annotation toolkit that
enable any researcher to contribute to this dataset
so that more potential answers from these papers
can be annotated. The annotation results will be
fed back to the QA corpus after manual validation.
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Figure 1: Overall workflow of the proposed SOCO framework. The machine reading step in the dashed box is
optional.

2 Related Work

Developing question answering system with
text knowledge base has been studied for
decades (Voorhees and Tice, 1999). Many of the
classic system as well as recent MRC-based open-
domain QA systems have relied a pipeline ap-
proach (Ferrucci et al., 2010; Chen et al., 2017;
Lee et al., 2018; Yang et al., 2019): (1) a infor-
mation retrieval-based retriever module first finds
relevant passages from all the documents and then
(2) a reader component (computationally more ex-
pensive) extracts precise answer spans from the
retrieved passages. Yang et al. (2019) has shown
that using paragraphs as the unit of passage outper-
form sentences or documents. Lee et al. (2019a)
proposes a trainable first-stage retriever that im-
proves the recall performance.

Pipeline-based system often suffer from error
propagation (Zhao and Eskenazi, 2016). Thus an-
other line of research has been finding an end-to-
end approach that enable precise-answer extraction
from the entire dataset instead of only the output
from the first-stage retriever. Seo et al. (2019) in-
troduced the phrase level representation model that
index every potential answer span as vector repre-
sentation and exploited approximate nearest neigh-
bour (ANN) methods to retrieve the final answer
span directly from a large vector index (Slaney and
Casey, 2008). Ahmad et al. (2019) argued that
phrase-level answer may not always be required or
preferred. Instead they proposed to find the right
“sentence” as an answer from large body of text, and
used universal sentence encoder (Cer et al., 2018)
to retrieved the correct sentence given a question.

Our approach follows the sentence-level QA sys-
tem from (Ahmad et al., 2019) for two reasons: (1)
answers to many research questions cannot be cov-

ered in a short phrase-level span, and a sentence
answer can provide more context to deliver relevant
solutions. (2) our preliminary study found that it is
important to have a trainable retriever that goes be-
yond TF-IDF keyword matching to ensure enough
recall in the paper domain. Nonetheless, we keep a
machine reader as optional post-process to extract
phrase-level span from the sentences.

3 The Proposed QA Toolkits: SOCO

We first introduce SOCO (Search Oriented COnver-
sation), which we used to build our Talk to Paper.
SOCO 4 is an answer-engine platform that enables
developers to easily build universal question an-
swering systems with unstructured documents as
its knowledge base. Figure 1 shows the overall ar-
chitecture of SOCO engine. It’s designed to enable
users to use natural language queries to find precise
answers and extract insights from massive amount
of text data. The typical workflow is as following:

1. Split documents into sentences and convert
each sentence with its context into semantic
index (i.e. a collection of answer embedding,
sparse features and other semantic features).

2. Use natural language to query the index,
which first converts the query into semantic
embedding and then retrieves all the high prob-
able answers.

3. (Optional) Run machine reader to narrow
down to phrase-level answers.

3.1 SOCO-Question Answering
We define a frame to be the basic building block of
SOCO. Each frame contains fi = [ai, ci, Qi] i ∈

4https://docs.soco.ai/
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Figure 2: In-paper Search Page of Talk to Paper.

N , where N is the total number of frames, ai is
the potential answer sentence, ci is surrounding
context of ai, and Qi is a set of questions that are
manually/synthetically associated with the answer
ai. Note that Qi is optional and often only a small
set of frames are manually labelled.

There are two neural network models involve
in SOCO QA. The first model ha = Fa(a, c) is
an answer encoder that takes both the answer sen-
tence and its surround context to create a context-
sensitive answer embeddings ha. The second
model is a question encoder hq = Fq(q) that takes
a query as input and maps it to a question embed-
ding vector of the same size. Last, we define the
relevance between a query and an answer frame to
be s = cos(ha, hq).

3.1.1 Training
These two models are trained jointly via supervised
learning on existing QA dataset with cross entropy
loss, i.e.

L = −
∑

j∈Jpos

log(sj)−
∑

j∈Jneg

log(1− sj) (1)

where Jpos is the set of ground truth question-
answer pairs, and Jneg is the set of negative ex-
amples with randomly sampled noisy answers.

Given these two models and a set of frames,
SOCO creates an index by encoding both the an-
swers and annotated questions using Fa and Fq and
save the resulting vectors D for nearest neighbour
retrieval. Since Fq and Fa are trained to map the
input text into the same embedding space, question-
to-answer relevance and question-to-question rele-
vance can be computed and compared in the same
scale via cosine similarity.

3.1.2 Inference
At inference stage, SOCO first encodes the input
query q′ via hq′ = Fq(q

′). Then each answer in
the QA-index is scored by the cosine similarity
between the query embedding and each answer
embedding with a weighted auxiliary score from
classic BM25 score (Robertson et al., 2009).

yi = cos(hi, hq′) + αBM25(ai, q′) i ∈ |D|
(2)

Note that an answer may have more than one vec-
tors in the index because of the optional annotated
questionQ set in the frame, i.e. [ha, {hq}] q ∈ Q.
We merge the scores for the same answers via max
pooling. Eventually, SOCO outputs the top K an-
swers based on the final score.

3.2 SOCO-Question Generation
One common issue for new users to use question
answering system is that they may not know what
kind of questions they can ask. Question gener-
ation (Du et al., 2017) is one of the solutions to
this issue by suggesting users potential questions
they may enter. Concretely, we created a ques-
tion generator by fine-tuning a GPT-2 language
model (Radford et al., 2019). We train the model
by concatenating question answers pairs [a, q] from
QA corpus and fine tune a GPT-2 by maximizing
the conditional log likelihood logP (q|a). The re-
sults questions are added to theQ set of each frame
and is used to provide auto completion and FAQs
in the search interface.

3.3 Implementation Details
The SOCO python package (soco-core-python) is
publicly available and can be installed as a Python
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package by running pip3 install soco-core-python.
Internally, SOCO uses Elastic search (ES) (Gorm-
ley and Tong, 2015) as its index backbone. ES
has built-in support for vector search, BM25 as
well as context filtering. The answer and ques-
tion encoder are trained on publicly available QA
datasets, including SQuAD (Rajpurkar et al., 2016),
Natural Questions (Kwiatkowski et al., 2019) and
MSMARCO (Nguyen et al., 2016).

4 Talk to Paper

Now we are ready to describe the proposed Talk
to Paper application, powered by our SOCO QA
framework.

4.1 Data Source

Talk to Paper’s data source contains NLP papers
published last 3 years in ACL, NAACL, EMNLP
and SiGdial in ACL Anthology5, which attributes
to 3897 papers published in the proceedings of
these conferences (we will continuously expand
the database by adding more papers from previous
years as well as new published papers). We first
use SOCO’s document parser to extract text data
from the PDFs and converted them into the frame
format defined in the previous section. Then we
use soco-core-python to index the frames and query
for answers via its RESTful API endpoint. The
indexing process takes about 2 hours.

4.2 User Interfaces

Talk to Paper is an web app that can be used on any
modern browser. There are three major pages:

• Main search page

• In-paper search page

• Annotation page.

Main Search page: The main search page is
similar to the standard Google-like search interface
as shown in Figure 3, including input search box
and query auto completion (based on generated
questions from GPT-2).The responding answers
will be highlighted in each returned results.

In-paper Search Page: Previously, people
search information in the paper by clicking Con-
trol+F, which is a well-known shortcut key often
used to find text in the current page using the exact
character matching or regular expression. It is often

5https://www.aclweb.org/anthology/

Figure 3: Main search page of Talk to Paper.

used to input a keyword and highlight the matched
string and allow to navigate the next matching or
previous matching. We provide a similar interface
to find the answer inside a specific paper as shown
in Figure 2. Instead of searching information using
a keyword, the proposed method allow to find the
information using natural language queries. The
retrieved answers are highlighted and it is also al-
lowed to navigate next answer or previous answer.
It will be useful to find multiple answers in the
paper.

Annotation Page: We allow to annotate the
question and answer spans in the in-paper search
page as shown in Figure 4. All annotated data are
visible in the preview page. If a user wants to anno-
tate the data, the user can simply drag the text and
write a question. The data will be automatically
saved in the database. Unlike other open-domain
QA datasets, we cannot ask to crowd workers, stu-
dents, or part-time contractors to annotate on aca-
demic papers because it is hard to annotate without
the domain knowledge. Therefore, we will wel-
come contributions from the research community
to make useful resources together for the further
research.

Figure 4: Annotation page of Talk to Paper.

4.3 Use Cases
The typical use cases are as following:

1. A user asks a question or click one of FAQs
in the main search page. The N-best results
will be presented with the highlighted answer
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Examples Paragraphs
Q: what are pretraining objectives?
A: that pretraining will improve downstream
tasks with fine-tuning on the entire available data

Title: Pretraining Methods for Dialog Con-
text Representation Learning

... The pretraining objectives are assessed un-
der four different hypotheses: (1) that pretrain-
ing will improve downstream tasks with fine-
tuning on the entire available data, (2) that pre-
training will result in better convergence, ...

Q: what is LSTM?
A: Long Short-Term Memory Network

Title: Reasoning with Sarcasm by Reading
In-between

... The filter width is 3 and number of filters f
= 100. LSTM is a vanilla Long Short-Term
Memory Network. The size of the LSTM cell
is set to d = 100. ATT-LSTM (Attention-based
LSTM) is a LSTM model with a neural attention
mechanism applied to all the...

Q: What is the best system for NLI?
A: Currently, one of the best performing NLI
models (e.g., on the SNLI dataset) for three way
classification is (Liu et al., 2019).

Title: Identification of Tasks, Datasets,
Evaluation Metrics, and Numeric Scores for
Scientific Leaderboards Construction

... Our work differs in the information extracted
and consequently in what context and hypothe-
sis information we model. Currently, one of
the best performing NLI models (e.g., on the
SNLI dataset) for three way classification is
(Liu et al., 2019). The authors apply deep neural
networks and make use of BERT (Devlin et al.,
2019),...

Table 1: Example results from real user queries

with its previous and next context. The related
FAQs are also presented with the ”You may
also want to know” message. The user can
also uses filters to narrow down to the answer
in one or more specific paper.

2. the user clicks the ”view in document” to
check the answer with the original paper. The
in-paper search page will be shown. The user
can either read the paper or uses in-paper
search, e.g. what is the main contribution?
to let Talk to Paper auto scroll and highlight
relevant answer spans (Figure 2).

3. the user may think certain span in the paper
contains important information and uses the
annotation function to add related questions to
this span. This new annotations will be saved
in to databases and will be added to the public
dataset after manual inspection.

4. the user may uses the dataset as way to train
and test performance of a question answering
system. The Talk to Paper dataset is differ-
ent from existing corpus because it contains
highly technical text data that are substantially
different from Wikipedia, which is a major
source of most of the existing QA datasets.

5 Experiments and Results

In this section, we first present quantitative pre-
liminary evaluation results the effectiveness of the
proposed SOCO-QA framework on a number of
standard QA datasets. Then we show results on the
data collected from our initial user study.

5.1 Results for SOCO-QA performance

This preliminary studies focuses on comparison
between SOCO-QA against classic BM25 (Robert-
son et al., 2009). BM25-based methods remain
to be the mainstream methods for document re-
trieval in industry. Previous work in open do-
main question answering has shown that BM25
is a difficult baseline to surpass when questions
were written by workers who have prior knowl-
edge of the answer (Lee et al., 2019a). We will
leave more comprehensive comparisons against
other learning-based methods to future work, since
the main goal of this demo paper is to present the
system along with its dataset. We use the built-in
elastic search (Gormley and Tong, 2015) BM-25
implementation with standard English anazlyer.

Evaluation Methods: we compared perfor-
mance on four QA datasets, i.e. SQuAD (Ra-
jpurkar et al., 2016), Natural Questions
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Index Size Num of Queries
SQuAD 10,250 11,426
NQ 7,020 1,772
MARCO 52,933 13,557
Trivia 26,345 8,165

Table 2: Statistics on the evaluation datasets.

BM25 SOCO
MRR R@5 MRR R@5

SQuAD 58.0 69.0 60.9 73.2
Trivia 29.0 38.7 34.0 59.2
NQ 19.7 25.1 69.3 87.3
MARCO 20.7 27.0 73.2 92.8

Table 3: Main evaluation results.

(NQ) (Kwiatkowski et al., 2019), MS
MARCO (Nguyen et al., 2016) and Trivia
QA (Joshi et al., 2017). We break documents from
the development set into sentence-level answer
frames, and uses the queries in the development
set to compute Mean Reciprocal Rank (MRR) and
Recall at 5 (R@5) as the evaluation metrics. The
data statics are summarized in Table 2.

Quantitative Results: Table 3 shows the main
results. The proposed SOCO-QA model is able
to significantly outperform the baseline BM25 on
all datasets. The proposed method is particularly
powerful on real query data, e.g. NQ and MARCO
where the question writer does not the exact an-
swer they are looking for, so that there is often a
low word overlapping between the question and
the answer. Table 3 shows a striking 251% and
253.6% relative MRR improvement on the NQ and
MARCO dataset. On the other hand, SOCO is also
able to beat BM25 on SQuAD and Trivia dataset,
where there is significant more question-to-answer
word lapping.

Qualitative Results: to provide better un-
derstanding between BM25-based search versus
SOCO-QA, the following are some example side-
by-side comparisons:

• SOCO: We compare our baselines with a
fine-tuned BERT model (Devlin et al., 2018).
BERT is a pre-trained deep bidirectional
transformer model that can encode sen-
tences into dense vector representations. It
is trained on large un-annotated corpora such
as Wikipedia and the BooksCorpus (Zhu et
al., 2015).

• ES Default (BM25): for the claim pairs with
distance values 2 to 5 as shown in Table 3. We
find that BERT model is consistently the best
performing model for all distance pairs. As
we increase the distance, the models achieve
higher prediction performance.

The main observations is that BM25 falls short in
understanding the intent of the query. Although
it is also able to find sentences that are relevant
to the query terms, it does not rank sentences that
can “answer” the query higher. On the other hand,
SOCO-QA is able to recognize target answer a
query is looking for, e.g. a definition, and rank
sentences that can directly resolves the questions
higher.

5.2 Data Analysis
We asked NLP researchers via social network, e.g.
Twitter, to try out Talk to Paper and we are able
to collect 3137 queries in roughly two weeks. The
logged query data and its annotation will soon be
made publicly available). Table 1 shows example
queries where the system is able to find relevant
answers to real user queries. Analysis shows that
the most frequent query type were asking about the
objectives or the meaning of terms (e.g., what are
pretraining objectives, what is LSTM?). Another
popular question type is to ask about the state-of-
the-art method to solve a particular problem, e.g.
What is the best system for NLI?.

We also found that the generated questions that
are presented as auto-completion and FAQs are
particularly popular. About 51.7% of queries were
from the suggested questions. This results is inline
with research work in human-computer interaction
that utilizes machine intelligent systems to assist
human users to better discover knowledge (Lee
et al., 2019b).

6 Conclusion

We present Talk to Paper, a QA system for NLP
papers powered by SOCO-QA. Experiments con-
firm the effectiveness of our proposed approach
and show superior search experience compared to
traditional search engine. We welcome contribu-
tions from the research community to curate useful
resources together for the further research. Future
work include (1) expanding the database to more
papers (2) improving the QA model using the col-
lected data to better handle question answering in
the context of research domain.
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Abstract

Exploiting syntagmatic information is an
encouraging research focus to be pursued
in an effort to close the gap between
knowledge-based and supervised Word Sense
Disambiguation (WSD) performance. We
follow this direction in our next-generation
knowledge-based WSD system, SyntagRank,
which we make available via a Web in-
terface and a RESTful API. SyntagRank
leverages the disambiguated pairs of co-
occurring words included in SyntagNet, a
lexical-semantic combination resource, to
perform state-of-the-art knowledge-based
WSD in a multilingual setting. Our service
provides both a user-friendly interface,
available at http://syntagnet.org/,
and a RESTful endpoint to query the
system programmatically (accessible at
http://api.syntagnet.org/).

1 Introduction

In Natural Language Processing, Word Sense Dis-
ambiguation (WSD) is an open problem concern-
ing lexical ambiguity. It is aimed at determining
which sense – among a finite inventory of many – is
evoked by a given word in context (Navigli, 2009).

This challenge has been tackled by exploiting
huge amounts of hand-annotated data in a super-
vised fashion (Raganato et al., 2017b; Bevilacqua
and Navigli, 2019; Vial et al., 2019; Bevilacqua and
Navigli, 2020) or, alternatively, by harnessing struc-
tured information (Agirre et al., 2014; Moro et al.,
2014; Scarlini et al., 2020), such as that available
within existing lexical knowledge bases (LKBs)
like WordNet (Fellbaum, 1998). Despite achieving
better overall results, supervised systems require
tremendous efforts in order to produce data for
several languages (Navigli, 2018; Pasini, 2020),
whereas knowledge-based approaches can easily
be applied in multilingual environments due to the

wide array of languages covered by LKBs like Ba-
belNet1 (Navigli and Ponzetto, 2012), or the Open
Multilingual WordNet (Bond and Foster, 2013).
Moreover, it is widely acknowledged that the per-
formance of a knowledge-based WSD system is
strongly correlated with the structure of the LKB
employed (Boyd-Graber et al., 2006; Lemnitzer
et al., 2008; Navigli and Lapata, 2010; Ponzetto
and Navigli, 2010). In fact, the knowledge avail-
able within LKBs reflects the fact that words can be
linked via two types of semantic relations: paradig-
matic relations – i.e. the most frequently encoun-
tered relations in LKBs – concern the substitution
of lexical units, and determine to which level in
a hierarchy a language unit belongs by semantic
analogy with units similar to it; conversely, syn-
tagmatic relations concern the positioning of such
units, by linking elements belonging to the same
hierarchical level (e.g., words), which appear in
the same context (e.g., a sentence). As a case in
point, a paradigmatic relation exists, independently
of a given context, between the words farmn and
workplacen (where a farm is a type of workplace),
whereas a syntagmatic relation is entertained be-
tween the words workv and farmn, e.g., in the sen-
tence ‘her husband works in a farm as a labourer.’

In our most recent study (Maru et al., 2019, Syn-
tagNet), we provided further evidence that the na-
ture of LKBs impacts on system performance: the
injection of syntagmatic relations – in the form
of disambiguated pairs of co-occurring words –
into an existing LKB biased towards paradigmatic
knowledge enables knowledge-based systems to
rival their supervised counterparts.

To make the above results accessible to the re-
search community, in this paper we introduce a
Web interface and a RESTful API for SyntagRank,
our multilingual WSD system, which applies the

1https://babelnet.org/
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Personalized PageRank (PPR) algorithm (Haveli-
wala, 2002) to an LKB made up of WordNet, the
Princeton WordNet Gloss Corpus (PWNG) and the
lexical-semantic syntagmatic combinations avail-
able in the SyntagNet resource. SyntagRank is the
first system to perform multilingual WSD by lever-
aging an underlying LKB connecting a sizeable
amount of syntagmatically-related concepts.

2 Preliminaries

Our disambiguation algorithm relies on an LKB, i.e.
a graph in which each node represents a concept,
and each connection between nodes represents a
semantic relation. In this Section we describe the
LKBs whose resulting union we use as our refer-
ence graph, and then go on to provide details of the
PPR algorithm.

2.1 Lexical Knowledge Bases

WordNet (Fellbaum, 1998) is a lexical-semantic
database of English, in which concepts are ex-
pressed by means of sets of cognitive synonyms
(synsets) that are interlinked to form a semantic
network through relation edges.

Relations in WordNet are mainly of a hier-
archical, and thus paradigmatic nature, with
the most frequently encoded relation being the
super-subordinate relation (instantiated in terms
of hypernymy and hyponymy; see also Section
1). Other relations linking concepts in WordNet
include part-whole relations (meronymy, e.g.
between wheeln and carn), antonymy relations
and cross-part-of-speech relations holding among
semantically similar words sharing a stem with the
same meaning (e.g. between speedn and speedya).
As of today, WordNet is the most widely used and
de facto standard sense inventory for the WSD task
(Raganato et al., 2017a).

Princeton WordNet Gloss Corpus (PWNG) is
the semantically-annotated gloss corpus made
available by WordNet since its 3.0 release.2

Glosses are short definitions providing proper
meanings for synsets, and in PWNG they have
been tagged according to the senses in WordNet.
Following Agirre et al. (2014), we induce new
WordNet relations from PWNG by linking the
synset to which the gloss refers to each of the
synsets that have been tagged in the gloss itself.

2http://wordnetcode.princeton.edu/
glosstag.shtml

In this way, additional contextual relations are
provided, inadvertently covering syntagmatic
relations, too.

SyntagNet (Maru et al., 2019) is a database
containing almost 90,000 pairs of manually-
disambiguated lexical collocations and free word
associations. Pairs in SyntagNet link nouns to other
nouns or verbs tagged according to the WordNet
3.0 sense inventory and such pairs can therefore be
exploited as new relation paths connecting nodes
(synsets) in a WordNet-based semantic network.
For our purposes, we are especially interested in
the fact that SyntagNet is the only high-quality
resource to systematically provide syntagmatic in-
formation in the form of lexical-semantic combi-
nations. This kind of information becomes par-
ticularly valuable when used to enrich semantic
networks otherwise biased towards paradigmatic
knowledge, by creating direct routes between those
concepts whose lexicalizations tend to appear to-
gether in the same context more often than by mere
chance.

2.2 Personalized PageRank
The original PageRank (Brin and Page, 1998) is an
algorithm which uses the connectivity of a graph to
assess the probability that each of its nodes has to
be reached and visited starting from a random posi-
tion. As the probability mass (distribution) over the
graph nodes is uniform, then, iteratively, the num-
ber of ingoing and outgoing connections serves as
a means to increase or decrease the relative weight
of each node. In order to apply this approach to
WSD, following Agirre et al. (2014), SyntagRank
uses a variant of the PageRank algorithm, the Per-
sonalized PageRank (PPR), in which the initial
probability mass is distributed over a restricted set
of specific nodes (i.e. the nodes representing the
content words to be disambiguated in a given con-
text3). Hence, given an initial set of nodes, the
outcome of the PPR algorithm is a vector encod-
ing all the information concerning the probability
distributions of all the nodes in the graph.

3 Architecture of SyntagRank

SyntagRank is a knowledge-based disambiguation
system which uses the PPR algorithm to determine

3In SyntagRank, a context is equivalent to a single whole
sentence. Therefore, given an input paragraph made up of, say,
three sentences, the system will perform the disambiguation
task separately for each of these three sentences.
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the most appropriate sense of a given word in con-
text. This approach, already discussed by Agirre
and Soroa (2009), is here presented in an optimized,
rebuilt version, employing the LKBs described in
Section 2.1 to achieve state-of-the-art knowledge-
based performance across five languages: English,
German, French, Spanish, and Italian. Our archi-
tecture (Figure 1) is composed of three main mod-
ules: (i) multilingual NLP pipeline, (ii) candidate
retrieval, and (iii) disambiguator.

3.1 Multilingual NLP Pipeline

In order to allow the user to provide an unprocessed
text as input for SyntagRank to disambiguate, our
system employs a multilingual NLP pipeline which
preliminarily performs the functions of tokeniza-
tion, sentence splitting, lemmatization and Part of
Speech (PoS) tagging. Depending on the input
language, SyntagRank utilizes either the Stanford
CoreNLP suite4 (Manning et al., 2014), or the mod-
els provided by The Italian NLP Tool (Palmero
Aprosio and Moretti, 2016, TINT).

3.2 Candidate Retrieval

English Candidate Retrieval With each token
in the input text already pre-processed, and consid-
ering that each node in our graph corresponds to
a unique WordNet synset (see Section 2), in this
phase we can retrieve, for each content word (target
word) in a single sentence, all those candidate con-
cepts (synsets) for which a coincident lexicalization
exists. In doing so, in line with the word-to-word
heuristics described in (Agirre et al., 2014), we
exclude the target word when retrieving the candi-
date concepts so as to avoid the probability mass
being distributed across the most frequent sense
of the target word. The resulting set of collected
concepts C, which will now include all the pos-
sible senses for the non-target words in the input
sentence, thus establishes the starting nodes for the
PPR algorithm.

In view of the fact that, according to the Lin-
earity Theorem (Jeh and Widom, 2003), the PPR
vector computed starting from a set of nodes C
is equivalent to the weighted average of the PPR
vectors calculated using each of the nodes in C as
single starting points, all the PPR vectors in Synta-
gRank have been preliminarily determined for each

4Except for the English language, for which the Stanford
CoreNLP pipeline has full coverage, in order to perform the
lemmatization for German, French, and Spanish, we use in-
stead TreeTagger (Schmid, 1995).

Figure 1: Architecture diagram of SyntagRank.

node in the graph, with the purpose of minimizing
execution times5. Thus, the PPR vector for a pre-
cise context (i.e. an input sentence) is calculated
simply by determining the weighted average of the
pre-computed PPR vectors for each of its nodes6.
The weight factor p(w, s), for each candidate s as-
sociated with a content word w, is computed as
follows:

p(w, s) =
1

N ∗ |sensesw|
freqws (1)

where N is the number of content words in the
input sentence and sensesw is the set of sense can-
didates associated with w. Moreover, since the
graph connectivity gets denser around most fre-
quent senses (MFS) – according to their distribu-
tion in SemCor7 (Miller et al., 1993) –, and in view

5All the pre-computed PPR vectors are stored in binary
format, and are accessed via a memory-mapped file supported
by a Least Recently Used (LRU) cache.

6With regard to our PPR implementation details, we opted
for a damping factor of 0.85. In addition, the algorithm per-
forms a variable number of iterations (random walks) over
the graph until reaching convergence, i.e. when the difference
between the scores of any node computed at two successive
iterations falls below a threshold of 10−4.

7SemCor is the largest, manually sense-annotated corpus
of English, and is currently the de facto standard reference
dataset for several WSD applications.
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Figure 2: User interface of SyntagRank when the Italian language is selected and the sentence ‘Edison inventò
la lampadina’ (Edison invented the light bulb) is typed as input query. Disambiguation results are displayed in
extended view by default. Overlaying letters over the image are detailed in Section 4.

of the fact that unsupervised systems tend to have a
strong bias towards the MFS (Calvo and Gelbukh,
2015; Postma et al., 2016; Pasini et al., 2020), we
accounted for potential skew towards MFS by in-
cluding the parameter freqws, i.e. the normalized
value resulting from the number of occurrences for
a given word sense in SemCor, divided by the to-
tal number of occurrences for all the senses of the
same word.

Multilingual Candidate Retrieval Concepts
represented in a semantic network are language
independent by definition. Still, in order to retrieve
sense candidates for words in specific languages,
we need the nodes in the graph to be mapped with
lexicalizations in those languages. As mentioned in
Section 2.1, WordNet provides this information for
the English language only, therefore, in order to re-
trieve the lexicalizations in languages other than En-
glish we exploited the BabelNet semantic network,
which inherently aligns lexicalizations in 284 dis-
tinct languages to the original WordNet 3.0 synsets.
Nevertheless, two main flaws lie in this approach:
(i) the lexicalizations in BabelNet are induced from
automatically-linked resources, hence, their quality
might be sub-optimal, and (ii) no SemCor equiv-
alent exists for other languages, which means we
do not have any accessible MFS information to
exploit when computing the weighted average be-
tween vectors. In order to address both these flaws

concurrently, we devised a strategy to mimic the
MFS ranking function by associating a confidence
score with each of the lexical resources from which
BabelNet derives its lexicalizations (e.g. Wikidata,
OmegaWiki or Wikipedia, among others). To this
end, after conducting an empirical study to assess
the quality of random translation samples provided
by each individual resource mapped to BabelNet,
we assigned a normalized confidence score to them.
Consequently, for each unique lexicalization, we
have been able to compute its “MFS” score as the
average confidence among all the resources provid-
ing that lexicalization for a specific concept.

3.3 Disambiguator

After retrieving the PPR vectors for each candidate
sense and computing their weighted average (as
described in Section 3.2), the last module of Syn-
tagRank serves as a means to finally: (i) extract
the probability values for the senses of the target
word from the averaged PPR vector, and (ii) select
the sense with the highest probability value as the
result of the disambiguation for the target word.

4 Web Interface

Figure 2 shows the Web interface of SyntagRank.
Its components are explained below.
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Figure 3: User interface of the SyntagNet Explorer when the English word mouse is typed as input query.

A. Query The system takes as input the text to
be processed8. Users can enter either single words,
multiword expressions (MWEs), or full sentences
as input queries. In the event that the input text
is a sentence, this will be processed by the disam-
biguator and the system will return a disambiguated
sentence (see Paragraph C). Otherwise, if the query
matches an entry in the SyntagNet database, the
interface will switch to the SyntagNet Explorer
(see Section 4.1) to display all the lexical-semantic
combinations available for all the senses of the
word/MWE provided as input query.

B. Language Selection The drop down menu al-
lows the user to select the language in which the in-
put text is provided. Currently, SyntagRank offers
disambiguation in five different languages: English,
German, French, Spanish and Italian.

C. Disambiguated Sentence If an input text has
been provided, the interface will display the results
of the disambiguation here, with tokens highlighted
in different colors for Concepts (blue) and Named
Entities (orange).

D. Disambiguated Token Each disambiguated
token is accompanied by a tooltip which shows the
image, word sense and definition, as retrieved from
the corresponding entry in BabelNet 4.0.

8The Web interface only allows raw text as input.

E. View Selection The Web interface allows the
user to display the disambiguated sentence in ex-
tended or compact form. In the extended view, the
focus is placed on the tokens: the disambiguated
sentence is shown as a horizontal slider, naviga-
ble by means of arrows located on the left and
right ends of the container, and the user is thereby
given a means to quickly leaf through all the disam-
biguation results at the same time. Instead, when
selecting the compact view, the focus is shifted to
the sentence. In this mode, the information associ-
ated with the disambiguated tokens will be shown
only if the user hovers the mouse cursor over a
highlighted token.

4.1 SyntagNet Explorer

In addition to the SyntagRank disambiguation sys-
tem, our Web interface also provides users with full
access to the SyntagNet database. By typing into
the query bar a word or MWE which is present in
SyntagNet9 (an autocomplete function will provide
the user with search suggestions), the interface will
switch to the SyntagNet Explorer (Figure 3). The
SyntagNet Explorer displays a list of boxes, each
containing a sense of the input word/MWE. Senses
in the list are ordered according to (i) PoS tag and

9At the time of writing, the SyntagNet Explorer is available
for the English language only.
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English
Multilingual

SemEval-13 SemEval-15
System Sens2 Sens3 Sem07 Sem13 Sem15 All IT ES DE FR IT ES All
Babelfy 67.0 63.5 51.6 66.4 70.3 65.5 66.6 69.5 69.4 56.9 - - -
UKB 68.8 66.1 53.0 68.8 70.3 67.3 - - - - - - -
SyntagRank 71.6 72.0 59.3 72.2 75.8 71.7 72.1 74.1 76.4 70.3 69.0 63.4 71.2

Table 1: F1 scores (%) for English all-words fine-grained WSD (left) and for multilingual all-words fine-grained
WSD (right). Statistically-significant differences against our results are underlined according to a χ2 test, p < 0.01.
Results under “All” refer to the concatenation of the English (left) and multilingual (right) datasets.

(ii) sense frequency (in line with BabelNet 4.0).
On the left side (blue background), the boxes show
information for word senses, along with PoS tags,
sense definitions and illustrations. By clicking on
a sense name, the corresponding BabelNet entry
will open in a separate tab. On the right side (white
background), all the lexical-semantic items (collo-
cates) linked with the corresponding word senses
via SyntagNet are listed. Further information about
collocates is provided by hovering the mouse over
each item. Finally, clicking on a collocate will start
a new query with the selected word.

4.2 Usage of the RESTful API

The RESTful API we provide can be used effec-
tively to query the SyntagRank system program-
matically. Unlike the Web interface, our API allows
the user to input a pre-processed text in addition to
performing standard queries with raw text. For the
full documentation of the RESTful API, along with
the required parameters description, please refer to
Appendix A: API Documentation.

5 Evaluation

In order to assess its performance, we tested Syn-
tagRank on the five English all-words WSD evalu-
ation datasets standardized according to WordNet
3.0 in the framework of Raganato et al. (2017a),
namely: Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Snyder and Palmer, 2004), SemEval-
2007 (Pradhan et al., 2007), SemEval-2013 (Nav-
igli et al., 2013), and SemEval-2015 (Moro and
Navigli, 2015). As regards the appraisal of Synta-
gRank in a multilingual setting, we used the Ger-
man, Spanish, French and Italian annotations avail-
able in the amended version of the SemEval-2013
and SemEval-2015 evaluation datasets10, which is
accordant with the BabelNet API 4.0.1 graph and

10Made available at https://github.com/
SapienzaNLP/mwsd-datasets.

enables testing on a larger number of instances than
hitherto.

In Table 1, we report F1 scores for SyntagRank
in the English (left), and multilingual (right) set-
tings, along with comparisons to the best configu-
rations of two distinct graph-based disambiguation
systems: Babelfy (Moro et al., 2014) and UKB
(Agirre et al., 2014). As can be seen, SyntagRank
outperforms its direct competitors by a consider-
able margin11, on both the English and multilingual
settings. These results substantiate the idea that ap-
plying the PPR algorithm to a graph injected with
high-quality syntagmatic knowledge is crucial to
enhancing disambiguation performances.

6 Conclusion

In this paper we presented and described the
architecture of SyntagRank, our state-of-the-art
knowledge-based system for multilingual Word
Sense Disambiguation using syntagmatic informa-
tion. We also provided details concerning the
use of SyntagRank’s Web interface and RESTful
API, accessible at http://syntagnet.org/ and
http://api.syntagnet.org, respectively.
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A API Documentation

In what follows we describe the typical usage of
our RESTful API and its parameters. The Syn-
tagRank API allows the user to perform two dis-
tinct requests: (i) Disambiguate Text and (ii)
Disambiguate Tokens.

Disambiguate Text With Disambiguate
Text, SyntagRank will process a raw text
provided as input, given a target language among
the five currently supported: EN (English), DE
(German), FR (French), ES (Spanish), and IT
(Italian).
Method type, URL, parameters and response
description are specified in detail in Table 2. Figure
4 shows an example of a success response for the
Disambiguate Text query.

Figure 4: Example of a success response for
Disambiguate Text when the language chosen is
English and the input text is “this is a text”.

Disambiguate Tokens With Disambiguate
Tokens, SyntagRank will accept a pre-processed
text as input to be disambiguated.
As for Disambiguate Text, language specifi-
cation is required. Each token must show informa-
tion concerning index (id), word form (word),
lemma form (lemma), POS tag (pos), and a
boolean indicating whether the token is a content
word to be disambiguated (isTargetWord). In
Table 3, we provide exhaustive details concern-
ing method type, URL parameters, token parame-
ters and response description for Disambiguate
Tokens. Additionally, Figures 5 and 6 show, re-
spectively, an example of a typical request, and its
success response.

Figure 5: A request example in English for
Disambiguate Tokens.

Figure 6: Success response with Disambiguate
Tokens for the input shown in Figure 5.
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Disambiguate Text

Method GET/POST
URL http://api.syntagnet.org/disambiguate?lang=language&text=text

URL Parameters

text (String) The text to be disambiguated (max length: 1,500 characters). E.g.: text=this is a text.
lang (String) The language of the input text, among the currently supported: EN, DE, FR, ES and IT.

Response description

language The language of the disambiguated tokens.
tokens Contains a list of disambiguated tokens.
senseID Identifies the WordNet 3.0 offset for the concept assigned to the token.
position Contains information concerning the token positioning.
charOffsetBegin Highlights the position where a given term instance starts. Expressed as char offset.
charOffsetEnd Highlights the position where a given term instance ends. Expressed as char offset.

Table 2: Details for the Disambiguate Text request.

Disambiguate Tokens

Method POST
URL http://api.syntagnet.org/disambiguate_tokens

URL Parameters

lang (String) The language of the input text, among the currently supported: EN, DE, FR, ES and IT.
words (List<Token>) Contains a list of words, each representing a single token of the input text.

Token Parameters

id (String) Identifies the position of the token in the input text.
word (String) Identifies the token, as it appears in the input text.
lemma (String) The lemmatized form of the token.
pos (String) The Part of Speech (PoS) of the token.
isTargetWord (boolean) If true, identifies a token (for a content word) to be disambiguated.

Response description

result Contains a list of disambiguated tokens.
id Identifies the position of the disambiguated token according to the input text.
synset Identifies the WordNet 3.0 offset for the concept assigned to the token.

Table 3: Details for the Disambiguate Tokens request.
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Abstract

Syntactic dependencies can be predicted with
high accuracy, and are useful for both
machine-learned and pattern-based informa-
tion extraction tasks. However, their utility
can be improved. These syntactic dependen-
cies are designed to accurately reflect syntac-
tic relations, and they do not make semantic
relations explicit. Therefore, these representa-
tions lack many explicit connections between
content words, that would be useful for down-
stream applications. Proposals like English
Enhanced UD improve the situation by extend-
ing universal dependency trees with additional
explicit arcs. However, they are not available
to Python users, and are also limited in cov-
erage. We introduce a broad-coverage, data-
driven and linguistically sound set of transfor-
mations, that makes event-structure and many
lexical relations explicit. We present pyBART,
an easy-to-use open-source Python library for
converting English UD trees either to En-
hanced UD graphs or to our representation.
The library can work as a standalone package
or be integrated within a spaCy NLP pipeline.
When evaluated in a pattern-based relation ex-
traction scenario, our representation results in
higher extraction scores than Enhanced UD,
while requiring fewer patterns.

1 Introduction

Owing to neural-based advances in parsing tech-
nology, NLP researchers and practitioners can
now accurately produce syntactically-annotated
corpora at scale. However, the use and empirical
benefits of the dependency structures themselves
remain limited. Basic syntactic dependencies en-
code the functional connections between words
but lack many functional and semantic relations
that exist between the content words in the sen-
tence. Moreover, the use of strictly-syntactic re-
lations results in structural diversity, undermining
the efforts to effectively extract coherent semantic
information from the resulting structures.

Thus, human practitioners and applications that
“consume” these syntactic trees are required to
devote substantial efforts to processing the trees
in order to identify and extract the information
needed for downstream applications, such as in-
formation and relation extraction (IE). Meanwhile,
semantic representations (Banarescu et al., 2013;
Palmer et al., 2010; Abend and Rappoport, 2013;
Oepen et al., 2014) are harder to predict with suf-
ficient accuracy, calling for a middle ground.

Indeed, De Marneffe and Manning (2008) in-
troduced collapsed and propagated dependencies,
in an attempt to make some semantic-like relations
more apparent. The Universal Dependencies (UD)
project1 similarly embraces the concept of En-
hanced Dependencies (Nivre et al., 2018)), adding
explicit relations that are otherwise left implicit.
Schuster and Manning (2016) provide further en-
hancements targeted specifically at English (En-
hanced UD).2 Candito et al. (2017) suggest further
enhancements to address diathesis alternations.3

In this work we continue this line of thought,
and take it a step further. We present pyBART, an

1universaldepdenencies.org
2In this paper we do not distinguish between the Univer-

sal Enhanced UD and Schuster and Manning (2016)’s En-
hanced++ English UD. We refer to their union on English as
Enhanced UD.

3Efforts such as PropS (Stanovsky et al., 2016) and Pred-
Patt (White et al., 2016), share our motivation of extract-
ing predicate-argument structures from treebank-trainable
trees, though outside of the UD framework. Efforts such
as KNext (Durme and Schubert, 2008) automatically extract
logic-based forms by converting treebank-trainable trees, for
consumption by further processing. HLF (Rudinger and
Van Durme, 2014), DepLambda (Reddy et al., 2016) and
UDepLambda (Reddy et al., 2017) attempt to provide a for-
mal semantic representation by converting dependency struc-
tures to logical forms. While they share a high-level goal
with ours — exposing functional relations in a sentence in a
unified way — their end result, logical forms, is substantially
different from pyBART structures. While providing substan-
tial benefits for semantic parsing applications, logical forms
are less readable for non-experts than labeled relations be-
tween content words. As these efforts rely on dependency
trees as a backbone, they could potentially benefit from py-
BART’s focus on syntactic enhancements on top of (E)UD.
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Neo, the One, is STATE a hero, for chasing this army of Robots
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Figure 1: Representation of Neo, the One, is a hero, for chasing this army of Robots. The arcs above the sentence
are BART additions. The ones below are EUD. Red arcs are removed in BART while black are retained.

easy-to-use Python library which converts English
UD trees to a new representation that subsumes the
English Enhanced UD representation and substan-
tially extends it. We designed the representation
to be linguistically sound and automatically recov-
erable from the syntactic structure, while expos-
ing the kinds of relations required by IE applica-
tions. Some of these modifications are illustrated
in Figure 1.4 We aim to make event structure ex-
plicit, and cover as many linguistically plausible
phenomena as possible. We term our representa-
tion BART (The BIU-AI2 Representation Trans-
formation).

To assess the benefits of BART with respect to
UD and other enhancements, we compare them in
the context of a pattern-based relation extraction
task, and demonstrate that BART achieves higher
F1 scores while requiring fewer patterns.

The python conversion library, pyBART, inte-
grates with the spaCy5 library, and is available un-
der an open-source Apache license. A web-based
demo for experimenting with the converter is also
available. https://allenai.github.io/
pybart/.

2 The BART Representation

We aim to provide a representation that will be
useful for downstream NLP tasks, while retaining
the following key properties. The proposal has to
be (i) based on syntactic structure and (ii) use-
ful for information seeking applications. As a
consequence of (ii), we also want it to (iii) make
event structure explicit and (iv) allow favoring
recall over precision.

Being based on syntax as the backbone would
allow us to capitalize on independent advances in

4Some preserved UD relations are omitted for readability.
5https://spacy.io

syntactic parsing, and on its relative domain in-
dependence. We want our representation to be
not only accurate but also useful for information
seeking applications. This suggests a concrete
methodology (§2.1) and evaluation criteria (§5):
we choose which relations to focus on based on
concrete cases attested in relation extraction and
QA-corpora, and evaluate the proposal based on
the usefulness in a relation extraction task.

In general, information-seeking applications fa-
vor making events explicit. Current syntactic
representations prefer to assign syntactic heads as
root predicates, rather than actual eventive verb.
In contrast, we aim to center our representation
around the main event predicate in the sentence,
while indicating event properties such as aspectu-
ality (Sam started walking) or evidentiality (Sam
seems to like them) as modifiers of rather than
heads. To do this in a consistent manner, we in-
troduce a new node of type STATE for copular
sentences, making their event structure parallel to
those containing finite eventive verbs (§4.4)

Finally, downstream users may prefer to favor
recall over precision in some cases. To allow for
this, we depart from previous efforts that refrain
from providing any uncertain information. We
chose to explicitly expose some relations which
we believe to be useful but judge to be uncer-
tain, while clearly marking their uncertainty in
the output. This allows users to experiment with
the different cases and assess the reliability of
the specific constructions in their own application
domain. We introduce two uncertainty marking
mechanisms, discussed in §2.3.

2.1 Data-driven Methodology

Our departure point is the English EUD represen-
tation (Schuster and Manning, 2016) and related

2
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efforts discussed above, which we seek to extend
in a way which is useful to information seeking ap-
plications. To identify relevant constructions that
are not covered by current representations, we use
a data-driven process. We consider concrete re-
lations that are expressed in annotated task-based
corpora: a relation extraction dataset (ACE05,
(Walker et al., 2006)), which annotates relations
and events, and a QA-SRL dataset (He et al., 2015)
which connects predicates to sentence segments
that are perceived by people as their (possibly im-
plied) arguments. For each of these corpora, we
consider the dependency paths between the anno-
tated elements, looking for cases where a direct re-
lation in the corpus corresponds to an indirect de-
pendency path in the syntactic graph. We identify
recurring cases that we think can be shortened, and
which can be justified linguistically and empiri-
cally. We then come up with proposed enhance-
ments and modifications, and verify them empir-
ically against a larger corpus by extracting cases
that match the corresponding patterns and brows-
ing the results.

2.2 Formal Structure
As is common in dependency-based represen-
tations, BART structures are labeled, directed
multi-graphs whose nodes are the words of a sen-
tence, and the labeled edges indicate the relations
between them. Some constructions add additional
nodes, such as copy-nodes (Schuster and Man-
ning, 2016) and STATE nodes (§4.4).

An innovative aspect of our approach is that
each edge is associated with additional informa-
tion beyond its dependency label. This informa-
tion is structured as follows:
SRC: a field indicating the origin of this edge—
either “UD” for the original dependency edges,
or a pair indicating the type and sub-type of the
construction that resulted in the BART edge (e.g.,
{SRC=(conj,and)} or {SRC=(adv,while)}).
UNC, ALT: optional fields indicating uncertainty,
described below.

2.3 Embracing uncertainty
Some syntactic constructions are ambiguous with
respect to the ability to propagate information
through them. Rather than giving up on all am-
biguous constructions, we opted to generate the
edges and mark them with an UNC=TRUE flag,
deferring the decision regarding the validity of the
edge to the user:

1 # Load a UD-based english model
2 nlp = spacy.load("en_ud_model")
3

4 # Add BART converter to spaCy’s pipeline
5 from pybart.api import converter
6 converter = converter( ... )
7 nlp.add_pipe(converter, name="BART")
8

9 # Test the new converter component
10 doc = nlp("He saw me while driving")
11 me_token = doc[2]
12 for par_tok in me_token._.parent_list:
13 print(par_tok)
14

15 # Output:
16 {’head’: 2, ’rel’:’dobj’, ’src’:’UD’}
17 {’head’: 5, ’rel’: ’nsubj’,
18 ’src’:(’advcl’,’while’), ’alt’:’0’}

Figure 2: Usage example of pyBART’s spaCy-pipeline
component.

She acted, trusting her instincts

nsubj {UNC}

depnsubj

In some cases, we can identify that one of two
options is possible, but cannot determine which.
In these cases we report both edges, but mark them
explicitly as alternatives to each other. This is
achieved with an ALT=X field on both edges, with
X being a number indicating the pair.

You saw me while driving, Sue saw Sam after returning

nsubj{ALT=0}
nsubj{ALT=0}

nsubj{ALT=1}
nsubj{ALT=1}

3 Python code and Web-demo

The pyBART library provides a Python converter
from English UD trees to BART. pyBART sub-
sumes the enhancements of the EUD Java imple-
mentation provided in Stanford Core-NLP,6 and
extends them as described in §4. While py-
BART’s default performs all enhancements, it can
be configured to follow a more selective behav-
ior. pyBART has two modes: (1) a converter
from CoNLLU-formatted UD trees to CoNLLU-
formatted BART structures;7 and (2) a spaCy
(Honnibal and Montani, 2017) pipeline compo-
nent.8 After registering pyBART as a spaCy
pipeline, tokens on the analyzed document will
have a . .parent list field, containing the

6https://nlp.stanford.edu/software/
stanford-dependencies.html

7The extra edge information is linearized into the depen-
dency label after a ‘@‘ separator.

8This requires a spaCy model trained to produce UD trees,
which we provide.
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list of parents of the token in the BART structure.
Each item is a dictionary specifying—in addition
to the parent-token id and dependency label—also
the extra information described in §2.2. See Figure
2 for an illustration of the API.

A web-based demo that parses sentences into
both EUD and BART graphs, visualizes them, and
compares their outputs, is also provided.9

4 Coverage of Linguistic Phenomena

BART conversion consists of four conceptual
changes from basic UD. The first type prop-
agates shared arguments between predicates in
nested structures. The second type shares ar-
guments between parallel structures. The third
type attempts to unify syntactic alternations to
reduce diversity, making structures that carry sim-
ilar meaning also similar in structure. Finally, the
forth type is designed to make event structure ex-
plicit in the syntactic representation, allowing fi-
nite verbs that indicate event properties to act as
event modifiers rather than root predicates. In ac-
cordance with that, we further introduce a new
STATE node, that acts as the main predicate node
for stative (copular, verb-less) sentences.

4.1 Nested Structures
Our first type of conversions propagates an exter-
nal core argument to be explicitly linked as the
subject of a subordinate clause.
Complement control: The various EUD repre-
sentations explicitly indicate the external subjects
of xcomp clauses containing a to marker. We
embrace this choice and extend it to cover also
clauses without a to marker, including imperative
clauses and clauses with controlled gerunds.

(1) Let my people go!

nsubjdobj

xcomp

Noun-modifying clauses: Similarly, EUD links
the empty subject of a finite relative clause to
the corresponding argument of the external clause.
We extend this behavior to also cover reduced rel-
ative clauses (2a), and we follow Candito et al.
(2017) in also including other relative clauses such
as noun-modifying participles (2b).

(2) a. b.

The neon god they made A vision softly creeping

dobj nsubj

9The dependency graph visualization component uses the
TextAnnotationGraphs (TAG) library (Forbes et al., 2018).

Adverbial clauses and “dep”: Adverbial modi-
fier clauses that miss a subject, often modify the
subject of the main clause. We propagate the
external subject to be the subject of the internal
clause.10

(3) You shouldn’t text while driving

nsubj

We observe that many dep edges empirically
behave like adverbial clauses, and treat them sim-
ilarly. We mark these edges as “uncertain”.

4.2 Parallel structures

The second type of conversions identifies parallel
structures in which the latter instance is elliptical,
and share the missing core argument contributed
by the former instance.
Apposition: Similarly to the PropS proposal
(Stanovsky et al., 2016), we share relations across
apposition parts, making the two, currently hier-
archical, phrase, more duplicate-like.

(4) E.T., the Extraterrestrial, phones home

nsubj

nsubj

appos

Modifiers in conjunction: In modified coordi-
nated constructions, we share prepositional (5)
and possessive (6) modifiers between the coordi-
nated parts. Since dependency trees are inher-
ently ambiguous between conjoined modification
and single-conjunt modification, (e.g, compare (5)
to “Mogly was lost and raised by wolves”, or (6)
to “my Father and E.T.”), we mark both as UNC.

(5) I was taught and raised by wolves

nmod(UNC)

nmod

(6) My father and mother met here

nmod:poss(UNC)

nmod:poss

Elaboration/Specification Clauses: For noun
nominal modifiers that have the form of an elab-
oration or specification, we share the head of the
modified noun with its dependent modifier. That
is, if the modification is marked by like or such as
prepositions, we propagate the head noun to the
nominal dependent.

(7) I enjoy fruits such as apples

dobj

dobj

10In external clauses that include a subject and an object,
ambiguity may arise as to which is to be modified. We prop-
agate both and mark the edges as alternates (ALT, (§2.3)).
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Indexicals: the interpretation of locative and tem-
poral indexicals such as here, there and now de-
pends on the situation and the speaker, and often
modify not only the predicate but the entire situ-
ation. We therefore share the adverbial modifica-
tion from the noun to the main verb. Due to their
situation-specific nature, we mark these as UNC.

(8) He wonders in these woods here

advmod(UNC)

nmod advmod

Compounds: Shwartz and Waterson (2018) show
that in many cases, compounds can be seen as hav-
ing a multiple-head. Therefore, we share the exist-
ing relations across the compound parts.

(9) I used canola oil

dobj(UNC)

dobj

As many compounds do have a clear head (e.g. I
used baby oil, where baby is clearly not the head),
we mark these as uncertain.

4.3 Syntactic Alternations

This type of conversions aim to unify syntactic
variability. We identify structures that are syntacti-
cally different but share (some) semantic structure,
and add arcs or nodes to expose the similarity.
The Passivization Alternation: Following Can-
dito et al. (2017) we relate the passive alteration to
its active variant.

(10) The Sheriff was shot by Bob

nsubjdobj

nsubjpass nmod:by

Hyphen reconstruction: Noun-verb Hyphen
Constructions (HC) which are modifying a nom-
inal can be seen as conveying the same informa-
tion as a copular sentence wherein the noun is the
subject and the verb is the predicate. To explicitly
indicate this, we add to all modifying noun-verb
HCs a subject and a modifier relation originating
at the verb-part of the HC.

(11) A Miami - based company

nsubjnmod

amodcompound

Adjectival modifiers: Adjectival modification
can be viewed as capturing the same information
as a predicative copular sentence conveying the
same meaning (so, “a green apple” implies that
“an apple is green”). To explicitly capture this
productive implication, we add a subject relation
from each adjectival modifier to its corresponding
modified noun.

(12) I see dead people

nsubj

Genitive Constructions: Genitive cases can be
alternatively expressed as a compound. We add a
compound relation to unify the expression of gen-
itives across X of Y and compound structures.

(13) Army of zombies

compound

4.4 Event-Centered Representations
In many sentences, the finite root predicate does
not indicate the main event. Instead, a verb in
the subordinated clause expresses the event, and
the finite verb acts as its modifier. For exam-
ple, in sentences like “He started working”, “He
seems to work there”, the main event indicated
is “work”, while the root predicates (“started”,
“seemed”) modify this event. Here, we present a
chain of changes that puts emphasis on events by
delegating copular and tense auxiliaries (is, was),
evidentials (seem, say) and various aspectual verbs
(started, continued) to be clausal modifiers, rather
than heads of the sentence. This creates a further
challenge, since there is a prevalent discrepancy
between predicative sentences such as “He works”
and copular sentences as “He is smart”. The UD
structure for the latter lacks a node that clearly in-
dicates a stative event (in Vendler (1957)’s termi-
nology). We remedy this by adding a node to rep-
resent the STATE and have tense, aspect, modality
and evidentiality directly modifying it.11

Copular Sentences and Stative Predicates: We
added to all copula constructions new node named
STATE, which represents the stative event intro-
duced by the copular clause. This node becomes
the root, and we rewire the entire clause around
this STATE. By doing so we unify it with the struc-
tures of clauses with finite predicative. Once we
added the STATE node, we form a new relation,
termed ev, to mark event/state modifications. The
resulting structure is as follows:

(14) Tomorrow is STATE another day

nsubj
ev xcomp

nsubj
cop

Evidential reconstructions: We can now explic-
itly mark properties of events as dependents of the
verbal or stative root by means of the label ev. We
do so, using verbs’ white-lists, for verbs marking

11Pragmatically, some users prefer to not have non-word
nodes. pyBART supports this by providing a mode that treats
the copula as the head, retaining the other modifications.
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evidentiality (15) and for reported-speech (16).
(15)

Sam seems to like them. They seem STATE nice.

nsubj
ev

nsubj
ev xcomp

nsubj xcomp nsubj xcomp

(16) The Media reported that peace was achieved

ev

ccomp

Aspectual constructions: Finally, we can now
also mark aspectual verbs as modifying the com-
plement (matrix) verb denoting the main event.
The complement (matrix) verb becomes the root
of the dependency structure, and we add the new
ev relation to mark the aspectual modification of
the event.

(17) He started talking funny

nsubj
ev

nsubj xcomp

5 Evaluation

Our proposed representation attempts to target
information-seeking applications, but is it effec-
tive? We evaluate the resulting graph structures
against the UD and Enhanced UD representations,
in the context of a relation-extraction (RE) task.
Concretely, we evaluate the representations on
their ability to perform pattern-based RE on the
TACRED dataset (Zhang et al., 2017).

We use an automated and reproducible method-
ology: for each of the representations, we use the
RE train-set to acquire extraction patterns. We
then apply the patterns to the dev-set, compute
F1-scores, and, for each relation, filter the pat-
terns that hurt F1-score. We then apply the filtered
pattern-set to the test-set, and report F1 scores.

To acquire extraction patterns, we use the fol-
lowing procedure: given a labeled sentence con-
sisting of a relation name and the sentence indices
of the two entities participating in the relation, we
compute the shortest dependency path between the
entities, ignoring edge directions. We then form an
extraction pattern from the directed edges on this
path. We consult a list of trigger words (Yu et al.,
2015) collected for the different relations. If a trig-
ger word or its lemma is found on the path, we
form an unlexicalized path except for the trigger
word (i.e. E1 <nsubj “founded” >dobj >compound
E2). If no trigger-word is found, the path is lex-
icalized with the word’s lemmas (i.e. E1 <nsubj
“reduce” >dobj “activity” >compound E2).

Representation Precision Recall F1

UD 76.53 30.65 43.77
Enhanced UD 77.63 32.37 45.69
Ours(w/o-Enhanced) 73.96 33.48 46.09
Ours 74.62 36.65 49.15

Table 1: Effectiveness of the different representations
on the TACRED relation extraction task.

Figure 3: Economy comparison: Recall vs number of
patterns, for the different representations.

We use this procedure to compare UD, En-
hanced UD (EUD), BART without EUD enhance-
ments, and full BART, which is a superset of En-
hanced UD (Table 1). BART achieves a substan-
tially higher F1 score of 49.15%, an increase of
5.5 F1 points over UD, and 3.5 F1 points above
Enhanced UD. It does so by substantially improv-
ing recall while somewhat decreasing precision.

We also consider economy: the number of dif-
ferent patterns needed to achieve a given recall
level. Figure 3 plots the achieved recall against
the number of patterns. As the curves show, En-
hanced UD is more economic than UD, and our
representation is substantially more economic than
both. To achieve 30.7% recall (the maximal recall
of UD), UD requires 112 patterns, EUD requires
77 patterns, while BART needed only 52 patterns.

6 Conclusion

We propose a syntax-based representation that
aims to make the event structure and as many lex-
ical relations as possible explicit, for the benefit
of downstream information-seeking applications.
We provide a Python API that converts UD trees
to this representation, and demonstrate its empiri-
cal benefits on a relation extraction task.

6
52



Acknowledgements

This project has received funding from the Eu-
ropean Research Council (ERC) under the Euro-
pean Union’s Horizon2020 research and innova-
tion programme, grant agreement 802774 (iEX-
TRACT) and grant agreement 677352 (NLPRO).

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 178–186.

Marie Candito, Bruno Guillaume, Guy Perrier, and
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A Appendix

A.1 Additional examples of BART structures
The following are additional examples that we
could not fit into the space constraints of the pa-
per.

Complement control Example (1) shows an ex-
ample of linking the external subject to a con-
trolled finite verb. The following complementary
example shows linking the subject to a controlled
gerund:

(18) I decided going home
nsubj

xcompnsubj advmod

Elaboration/Specification Clauses Exam-
ple (7) shows a specification clause connected
as an object to the root. The following is
a complementary example of using the like
elaboration-preposition, in which the modifier
noun is a subject dependant of its head. The
modified noun inherits the subject relation from
its modifier head.

(19)
People like you should feel lucky

nsubj

xcomp

nsubj

case

nmod

aux

Adjectival modifier

(20) The smart one waited patently
nsubj

nsubj

det

amod advmod
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Copular Sentences and Stative Predicates We
show additional examples of these transforma-
tions, with explicit comparison to UD.

(21) UD : BART :

Sally is smart Sally is STATE smart

nsubj

cop xcompev

nsubj

amod

(22) UD : BART :

He is the man He is STATE the man

nsubj

cop

det det

xcomp

ev

nsubj

(23) UD : BART :

They are from Israel They are STATE from Israel

nsubj

cop

case case

nmod

ev

nsubj

(24) UD : BART :

Sam is to be a man Sam is to be STATE a man

nsubj

xcomp

mark

cop

det det

xcomp

evev

mark

nsubj

(25) UD : BART :

Sam sounds funny Sam sounds STATE funny

nsubj xcomp xcompev

nsubj

amod

(26) UD : BART :

Sam seems happy Sam seems STATE happy

nsubj xcomp xcompev

nsubj

amod

(27) UD : BART :

Sam seems to like them Sam seems to like them

nsubj xcomp dobj dobjev

nsubj

(28) UD : BART :

Sally began walking home Sally began walking home

nsubj xcomp advmod advmodev

nsubj
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Abstract

Traditional search engines for life sciences
(e.g., PubMed) are designed for document re-
trieval and do not allow direct retrieval of spe-
cific statements. Some of these statements
may serve as textual evidence that is key to
tasks such as hypothesis generation and new
finding validation. We present EVIDENCEM-
INER, a web-based system that lets users query
a natural language statement and automatically
retrieves textual evidence from a background
corpora for life sciences. EVIDENCEMINER
is constructed in a completely automated way
without any human effort for training data an-
notation. It is supported by novel data-driven
methods for distantly supervised named entity
recognition and open information extraction.
The entities and patterns are pre-computed
and indexed offline to support fast online
evidence retrieval. The annotation results
are also highlighted in the original document
for better visualization. EVIDENCEMINER
also includes analytic functionalities such as
the most frequent entity and relation summa-
rization. EVIDENCEMINER can help scien-
tists uncover essential research issues, lead-
ing to more effective research and more in-
depth quantitative analysis. The system of
EVIDENCEMINER is available at https://
evidenceminer.firebaseapp.com/1.

1 Introduction

Search engines on scientific literature have been
widely used by life scientists for discoveries based
on prior knowledge. Each day, millions of users
query PubMed2 and PubMed Central3 (PMC) for
their information needs in biomedicine (Allot et al.,
2019). However, traditional search engines for life
sciences (e.g., PubMed) are designed for document

1A brief demo of EVIDENCEMINER is available at
https://youtu.be/iYuQ6gsr--I.

2https://www.ncbi.nlm.nih.gov/pubmed/
3https://www.ncbi.nlm.nih.gov/pmc/

retrieval and do not allow direct retrieval of spe-
cific statements (Lu, 2011; Ren et al., 2017; Shen
et al., 2018). With the results from those search
engines, scientists still need to read a large number
of retrieved documents to find specific statements
as textual evidence to validate the input query. This
textual evidence is key to tasks such as develop-
ing new hypotheses, designing informative experi-
ments, or comparing and validating new findings
against previous knowledge.

While the last several years have witnessed sub-
stantial growth in interests and efforts in evidence
mining (Lippi and Torroni, 2016; Wachsmuth et al.,
2017; Stab et al., 2018; Chen et al., 2019; Majithia
et al., 2019; Chernodub et al., 2019; Allot et al.,
2019), little work has been done for evidence min-
ing system development in the scientific literature.
A significant difference between evidence in the
scientific literature and evidence in other corpora
(e.g., the online debate corpus) is that scientific
evidence usually does not have a strong sentiment
(i.e., positive, negative or neutral) in the opinion
it holds. Most scientific evidence sentences are
objective statements reflecting how strongly they
support a query statement. Therefore, if scien-
tists are interested in finding textual evidence for
“melanoma is treated with nivolumab”, they may
expect a ranked list of statements with the top ones
like “bicytopenia in primary lung melanoma treated
with nivolumab” as the textual evidence that sup-
ports the input query.

This paper presents EVIDENCEMINER, a web-
based system for textual evidence discovery for
life sciences (Figure 1). Given a query as a nat-
ural language statement, EVIDENCEMINER auto-
matically retrieves sentence-level textual evidence
from a background corpora of biomedical litera-
ture. EVIDENCEMINER is constructed in a com-
pletely automated way without any human effort
for training data annotation. It is supported by

56



novel data-driven methods for distantly supervised
named entity recognition and open information
extraction. EVIDENCEMINER relies on external
knowledge bases to provide distant supervision
for named entity recognition (NER) (Shang et al.,
2018b; Wang et al., 2018b, 2019). Based on the
entity annotation results, it automatically extracts
informative meta-patterns (textual patterns contain-
ing entity types, e.g., CHEMICAL inhibit DIS-
EASE) from sentences in the background corpora.
(Jiang et al., 2017; Wang et al., 2018a; Li et al.,
2018a,b). Sentences with meta-patterns that bet-
ter match the query statement is more likely to be
textual evidence. The entities and patterns are pre-
computed and indexed offline to support fast on-
line evidence retrieval. The annotation results are
also highlighted in the original document for bet-
ter visualization. EVIDENCEMINER also includes
analytic functionalities such as the most frequent
entity and relation summarization. The contribu-
tions and features of the EVIDENCEMINER system
are summarized as follows.

1. We build EVIDENCEMINER, a web-based sys-
tem for textual evidence discovery for life
sciences. EVIDENCEMINER is supported by
novel methods for distantly supervised named
entity recognition and pattern-based open in-
formation extraction.

2. The retrieved evidence sentences can be easily
located in the original text. The entity and rela-
tion annotation results are also highlighted in
the original document for better visualization.

3. Analytic functionalities are included such as
finding the most frequent entities/relations
for given entity/relation types and finding the
most frequent entities given a relation type
with another entity.

2 Related Work

Search engines performing sentence-level retrieval
have been developed in the biomedical domain.
For example, Textpresso (Müller et al., 2004) high-
lights the query-related sentences in the retrieved
documents. However, the sentence highlighting is
only based on query word matching, which does
not necessarily find sentences semantically related
to the input query. Another example is LitSense
(Allot et al., 2019), which retrieves semantically
similar sentences in biomedical literature given

User Query

User

Text Evidence Retrieval

Annotation Result Visualization

Entity/Relation Summarization

Corpora Knowledge Bases

Algorithm Pool

Meta-pattern Discovery: 
MetaPAD, TruePIE, CPIE, WWPIE

Storage
Metadata Pattern 

Index
Full-text

Index

Distantly-supervised NER: 
AutoNER, AutoBioNER, PeNNER

EvidenceMiner

Figure 1: System architecture of EVIDENCEMINER.

a query sentence. It returns best-matching sen-
tences using a combined approach of traditional
word matching and neural embedding. However,
their neural embeddings are noisy and thus nega-
tively impact the effectiveness in retrieving query-
specific evidence sentences. EVIDENCEMINER is
more effective compared with LitSense for textual
evidence retrieval in biomedical literature.

Similar tools are also developed for other do-
mains, such as claim mining and argument mining
tools on Twitter or news articles. PerspectroScope
(Chen et al., 2019) allows users to query a nat-
ural language claim and extract textual evidence
in support or against the claim. ClaimPortal (Ma-
jithia et al., 2019) is an integrated infrastructure for
searching and checking factual claims on Twitter.
TARGER (Chernodub et al., 2019) is an argument
mining framework for tagging arguments in the
free input text and keyword-based retrieval of argu-
ments from the argument-tagged corpus. Most of
these tools rely on fully supervised methods that re-
quire human-annotated training data. It is difficult
to directly apply these systems to other domains,
such as life sciences since it is non-trivial to re-
trieve the set of human-annotated articles and the
annotations are prone to errors (Levy et al., 2017).

3 System Description

EVIDENCEMINER consists of two major compo-
nents: an open information extraction pipeline and
a textual evidence retrieval and analysis pipeline.
The open information extraction pipeline includes
two functional modules: (1) distantly supervised
NER, and (2) meta-pattern-based open information
extraction; whereas the textual evidence retrieval
and analysis pipeline includes three functional mod-
ules: (1) textual evidence search, (2) annotation
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Background corpora Cancers Heart Diseases
#PubMed abstracts 48,201 11,766

#PMC full-text papers 7,130 1,151
#Sentences in total 1,466,091 246,106
#Entity instances 3,315,092 400,327

#Relation instances 29,160 9,576

Table 1: Basic statistics of background corpora. It in-
cludes PubMed abstracts and PMC full-text papers re-
lated to cancers and heart diseases published in 2019.

result visualization in the original document, and
(3) the most frequent entity and relation summa-
rization. Figure 1 shows the system architecture
of EVIDENCEMINER. The functional modules are
introduced in the following sections.

3.1 Open Information Extraction
The open information extraction pipeline extracts
entities with distant supervision from knowledge
bases and relations with automatic meta-pattern
discovery methods. In particular, to extract high-
quality entities and relations, we design noise-
robust neural models for distantly supervised
named entity recognition (Shang et al., 2018b;
Wang et al., 2019) and wide-window meta-pattern
discovery methods to deal with the long and com-
plex sentences in biomedical literature (Wang et al.,
2018a; Li et al., 2018b).
Data Collection. To obtain the background cor-
pora for EVIDENCEMINER, we collect the ti-
tles and abstracts of 26M papers from the entire
PubMed4 dump, and the full-text contents of 2.2M
papers from PubMed Central5 (PMC). For the
demonstration purpose, we select a subset of docu-
ments published in 2019 that are specifically related
to two important diseases (cancers and heart dis-
eases) to form the background corpora. The subset
of documents are selected by concept matching on
MeSH6, a biomedical concept ontology with the
concepts related to cancers (Neoplasms) and heart
diseases (Cardiovascular Diseases). Table 1 sum-
marizes the statistics of the background corpora.
Distantly Supervised Named Entity Recogni-
tion. EVIDENCEMINER relies on UMLS7, a com-
prehensive biomedical knowledge base to pro-
vide distant supervision for named entity recog-
nition. We select 5 major biomedical entity types
(Organism, Fully Formed Anatomical Structure,

4https://pubmed.gov/pubmed
5https://pubmed.gov/pmc
6https://www.nlm.nih.gov/mesh/
7https://www.nlm.nih.gov/research/

umls/index.html

Chemical, Physiologic Function, and Pathologic
Function) including 17 fine-grained entity types
(Archaeon, Bacterium, Eukaryote, Virus, Body
Part/Organ/Organ Component, Tissue, Cell, Cell
Component, Gene or Genome, Chemical, Organ-
ism Function, Organ or Tissue Function, Cell
Function, Molecular Function, Disease or Syn-
drome, Cell or Molecular Dysfunction, Experimen-
tal Model of Disease, and Pathological Function)
from UMLS as the entity types to be annotated. To
tackle the problem of limited coverage of the input
dictionary, we first apply a data-driven phrase min-
ing algorithm, AutoPhrase (Shang et al., 2018a),
to extract high-quality phrases as additional entity
candidates. Then we automatically expand the dic-
tionary with a novel dictionary expansion method
(Wang et al., 2019). The expanded dictionary is
used to label the input corpora with the 17 fine-
grained entity types to train a neural model. We
apply AutoNER (Shang et al., 2018b), a state-of-
the-art distantly supervised NER method that effec-
tively deals with noisy distant supervision. Com-
paring with PubTator (Wei et al., 2013), a state-
of-the-art BioNER system trained with extensive
human annotation on 5 biomedical entity types,
EVIDENCEMINER can automatically annotate 17
fine-grained entity types with high quality without
any human effort for training data annotation.

Meta-pattern Discovery. Based on the entity an-
notation results above, meta-patterns can be auto-
matically discovered from the corpora to support
textual evidence discovery. Meta-patterns are de-
fined as sub-sequences in an entity-type-replaced
corpus with at least one entity type token in it. For
example, “PPAR gamma agonist” and “caspase 1
agonist” are two word-sequences in the raw cor-
pus. If we replace all the entities (i.e., “PPAR
gamma” and “caspase 1”) with their correspond-
ing entity types (i.e., $GENE) in the raw corpus,
“PPAR gamma agonist” and “caspase 1 agonist”
are represented as one meta-pattern “$GENE ag-
onist” in the entity-type-replaced corpus. Meta-
patterns containing at least two entity types (e.g.,
“$CHEMICAL induce $DISEASE”) are relational
meta-patterns. Quality relational meta-patterns can
serve as informative textual patterns that guide tex-
tual evidence discovery. We apply two state-of-the-
art meta-pattern discovery methods, CPIE (Wang
et al., 2018a) and WW-PIE (Li et al., 2018b), to
extract high-quality meta-patterns from the NER-
tagged corpora. Both methods are specifically de-
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signed to better deal with the long and complex
sentence structures in the biomedical literature. In
EVIDENCEMINER, we combine the meta-pattern
extraction results from CPIE and WW-PIE as our
informative meta-patterns to guide textual evidence
retrieval. We use Elasticsearch8 to create the index
for each sentence for fast online retrieval. In addi-
tion to indexing the keywords, we index each sen-
tence with the meta-patterns it matches and the cor-
responding entities extracted by the meta-patterns
in the sentence.

3.2 Textual Evidence Retrieval and Analysis

The textual evidence retrieval and analysis pipeline
retrieves textual evidence given a user-input query
statement and the indexed corpora. The retrieved
evidence sentence can be easily located in the orig-
inal text. The entity and relation annotation results
are also highlighted in the text for better visual-
ization. EVIDENCEMINER also includes analytic
functionalities such as finding the most frequent
entities and relations as summarization.
Textual Evidence Search. Given a user-input
query statement and the indexed corpora, EVI-
DENCEMINER retrieves and ranks the candidate
sentences with a combined approach of keyword
weighting and meta-pattern weighting. Sentences
with meta-patterns that better match the query state-
ment are ranked higher as textual evidence. This
ranking mechanism is more effective compared
with existing methods (e.g., LitSense) for textual
evidence retrieval in biomedical literature (see Sec-
tion 4). We use Elasticsearch to support keyword
and meta-pattern search over the indexed corpora.

In Figure 2, we show an example of our search
interface. For example, if scientists are interested
in finding the textual evidence for “melanoma is
treated with nivolumab”, they can search it in EVI-
DENCEMINER and see the top results such as “bi-
cytopenia in primary lung melanoma treated with
nivolumab” (Figure 2a). If they click one of the
top results, the retrieved sentence is highlighted in
the original article (Figure 3) on the annotation in-
terface. Moreover, EVIDENCEMINER allows more
flexible queries, such as a mixture of keywords and
relational patterns. For example, if scientists are
interested in finding the diseases that can be treated
with the chemical “nivolumab”, but are not sure
which disease to search, they may input a query like
“nivolumab, DISEASEORSYNDROME treat with

8https://www.elastic.co/

CHEMICAL”. EVIDENCEMINER automatically
finds all the textual evidence indicating a “treat-
ment” relationship with the chemical “nivolumab”
(Figure 2b).

Annotation Result Visualization. The annotation
interface shows all the annotated entities and re-
lations for better visualization. For example, in
Figure 3, we color all the annotated entities with
different colors for different types. We use five
different colors for the five major biomedical entity
types and two additional colors for two specific fine-
grained types, “Gene or Genome” and “Disease or
Syndrome”, since those two are the most frequent
biomedical entity types. In Figure 3, we see that
the “melanoma” is colored as a “Disease or Syn-
drome” and “nivolumab” is colored as a “Chem-
ical”. We also list all the meta-pattern instances
and meta-patterns that match the sentences in the
article. If the user clicks the meta-pattern instances,
the corresponding sentences are also highlighted
in the article. In Figure 3, a meta-pattern “DIS-
EASEORSYNDROME patient treat with CHEM-
ICAL” captures the entity pair “melanoma” and
“nivolumab” in the article.

Entity and Relation Summarization. To make
our system more user-friendly and interesting, we
add analytic functionalities for the most frequent
entity and relation summarization. For example,
in Figure 4, if scientists are interested in finding
the most frequent diseases, they can search “en-
tity type = DISEASEORSYNDROME” in our an-
alytic interface and see the top entities such as
tumor and breast cancer. Similarly, if scientists are
interested in finding the most frequent chemical-
disease pairs with a treatment relation, they can
search “pattern = DISEASEORSYNDROME treat
with CHEMICAL” in our analytic interface and see
the top entity pairs such as HCC&sorafenib. More
interestingly, if researchers are interested in find-
ing the most frequent diseases that can be treated
by a specific chemical (e.g., nivolumab), they can
search “entity = nivolumab & pattern = DISEASE-
ORSYNDROME treat with CHEMICAL” in our
analytic interface and see the most frequent dis-
eases, such as melanoma and NSCLC, that can be
treated with nivolumab. With these analytic func-
tionalities, EVIDENCEMINER can help scientists
uncover important research issues, leading to more
effective research and more in-depth quantitative
analysis.
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(a) Query: melanoma is treated with nivolumab

(b) Query: (nivolumab, DISEASEORSYNDROME treat with CHEMICAL)

Figure 2: The search interface with the textual evidence retrieved. The evidence score indicates the confidence of
each retrieved sentence being a supporting evidence of the input query.

Figure 3: The annotation interface with all the entity and relation annotation results.
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(a) (b) (c)

Figure 4: The analytic interface with the entity and relation summarization results. The queries used are (a)
entity type=DISEASEORSYNDROME, (b) pattern=DISEASEORSYNDROME treat with CHEMICAL, and (c)
entity=nivolumab&pattern=DISEASEORSYNDROME treat with CHEMICAL.

Method / nDCG @1 @5 @10
BM25 0.714 0.720 0.746

LitSense 0.599 0.624 0.658
EVIDENCEMINER 0.855 0.861 0.889

Table 2: Performance comparison of the textual evi-
dence retrieval systems with nDCG@1,5,10.

4 Evaluation

To demonstrate the effectiveness of EVIDENCEM-
INER in textual evidence retrieval, we compare its
performance with the traditional BM25 (Robert-
son et al., 2009) and a recent sentence-level search
engine, LitSense (Allot et al., 2019). The back-
ground corpus is the same PubMed subset for all
the compared methods. We first ask domain ex-
perts to generate 50 query statements based on
the relationships between three biomedical entity
types (gene, chemical, and disease) in the Com-
parative Toxicogenomics Database9. Then we ask
domain experts to manually label the top-10 re-
trieved evidence sentences by each method with
three grades indicating the confidence of the evi-
dence. We use the average normalized Discounted
Cumulative Gain (nDCG) score to evaluate the tex-
tual evidence retrieval performance. In Table 2, we
observe that EVIDENCEMINER always achieves
the best performance compared with other meth-
ods. It demonstrates the effectiveness of using
meta-patterns to guide textual evidence discovery
in biomedical literature.

5 Further Development

In some cases, a strict query matching may not
find sufficiently high-quality answers due to the
stringent search requirements or limited available
entities that match the search queries. In this case, a

9http://ctdbase.org

smart query processor should automatically kick-in
to do an approximate match, such as a graph-based
approximate match or an embedding-based seman-
tic match. In other cases, a user may query a set
of entities (e.g., genes or diseases) or a timeline.
We need to conduct a summary of the major dif-
ferences among the set of entities or over time by
analyzing large text.

6 Conclusion

We build EVIDENCEMINER, a web-based system
for textual evidence discovery for life sciences. The
retrieved evidence sentences can be easily located
in the background corpora for better visualization.
EVIDENCEMINER also includes analytic function-
alities such as the most frequent entity and relation
summarization. We incorporated another corpus
on COVID-19 in EVIDENCEMINER to help boost
the scientific discoveries (Wang et al., 2020b,a).
We are further developing EVIDENCEMINER to be
a more intelligent system that can assist in more
efficient and in-depth scientific discoveries.
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Abstract

We introduce Trialstreamer, a living database
of clinical trial reports. Here we mainly de-
scribe the evidence extraction component; this
extracts from biomedical abstracts key pieces
of information that clinicians need when ap-
praising the literature, and also the relations
between these. Specifically, the system ex-
tracts descriptions of trial participants, the
treatments compared in each arm (the inter-
ventions), and which outcomes were mea-
sured. The system then attempts to infer which
interventions were reported to work best by
determining their relationship with identified
trial outcome measures. In addition to sum-
marizing individual trials, these extracted data
elements allow automatic synthesis of results
across many trials on the same topic. We apply
the system at scale to all reports of randomized
controlled trials indexed in MEDLINE, power-
ing the automatic generation of evidence maps,
which provide a global view of the efficacy of
different interventions combining data from all
relevant clinical trials on a topic. We make all
code and models freely available1 alongside a
demonstration of the web interface.2

1 Introduction and Motivation

The highest-quality evidence to inform healthcare
practice comes from randomized controlled trials
(RCTs). The results of the vast majority of these
trials are communicated in the form of unstruc-
tured text in journal articles. Such results accu-
mulate quickly, with over 100 articles describing
RCTs published daily, on average. It is difficult for
healthcare providers and patients to make sense of
and keep up with this torrent of unstructured liter-
ature.

Consider a patient who has been newly diag-
nosed with diabetes. She would like to con-

1https://github.com/bepnye/evidence extraction/
2http://bit.ly/trialstreamer

Figure 1: A portion of an example evidence mapping
Interventions and their inferred efficacy for Outcomes,
given the condition (or Population) of Type II Diabetes.
These maps are generated automatically using the NLP
system we describe in this work.

sult (in collaboration with her healthcare provider)
the available evidence regarding her treatment op-
tions. But she may not even be aware of what her
treatment options are. Further, she may only care
about particular outcomes (for instance, managing
her blood pressure). Currently, it is not straight-
forward to retrieve and browse the evidence per-
taining to a given condition, and in particular to
ascertain which treatments are best supported for
a specific outcome of interest.

Trialstreamer is a first attempt to solve this
problem, making evidence more browseable via
NLP technologies. Figure 1 shows one of the key
features of the system: an automatically gener-
ated evidence map that displays treatments (verti-
cal axis) and outcomes (horizontal) identified for a
condition specified by the user (here, migraines).
We elaborate on this particular example to illus-
trate the use of the system in Section 3.

Trialstreamer aims to facilitate efficient evi-
dence mapping with a user friendly method of pre-
senting a search across a broad field (here, being
a clinical condition) (Miake-Lye et al., 2016). We
use NLP technologies to provide browseable, in-
teractive overviews of large volumes of literature,
on-demand. These may then inform subsequent,
formal syntheses, or they may simply guide ex-
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ploration of the primary literature. In this work
we describe an open-source prototype that enables
evidence mapping, using NLP to generate interac-
tive overviews and visualizations of all RCT re-
ports indexed by MEDLINE (and accessible via
PubMed).

When mapping the evidence one is generally in-
terested in the following basic questions:

• What interventions and outcomes have been
studied for a given condition (population)?

• How much evidence exists, both in terms of the
number of trials and the number of participants
within these?

• Does the evidence seem to support use of a par-
ticular intervention for a given condition?

In the remainder of this paper we describe a
prototype system that facilitates interactive explo-
ration and mapping of the evidence base, with
an emphasis on answering the above questions.
The Trialstreamer mapping interface allows struc-
tured search over study populations, interven-
tions/comparators, and outcomes — collectively
referred to as PICO elements (Huang et al., 2006).
It then displays key clinical attributes automati-
cally extracted from the set of retrieved trials. This
is made possible via NLP modules trained on re-
cently released corpora (Nye et al., 2018; Lehman
et al., 2019), described below.

2 System Overview

The evidence extraction pipeline is composed of
four primary phases. First, text snippets that con-
vey information about the trial’s treatments (or in-
terventions), outcome measures, and results are
extracted from abstracts. Relations between these
snippets are then inferred to identify which treat-
ments were compared against each other, and
which outcomes were measured for these compar-
isons. The extracted relations and evidence state-
ments are then used to infer an overall conclusion
about the comparative efficacy of the trial’s inter-
ventions. Finally, the clinical concepts expressed
in the extracted spans are normalized to a struc-
tured vocabulary in order to ground them in an ex-
isting knowledge base and allow for aggregations
across trials.

A typical RCT report would pertain to a single
clinical condition (the population), but might re-
port multiple numerical results, each concerning a

particular intervention, comparator, and outcome
measure (which we describe as an ICO triplet).

Because the end-to-end task combines NLP
subtasks that are supported by different datasets,
we collected new development and test sets — 160
abstracts in all, exhaustively annotated — in order
to evaluate the overall performance of our system.
Two medical doctors3 annotated these documents
with the all of the expressed entities, their men-
tions in the text, the relations between them, the
conclusions reported for each ICO triplet and the
sentence that contains the supporting evidence for
this (Lehman et al., 2019).

We were unable to obtain normalized concept
labels for the ICO triplets due to the excessive dif-
ficulty of the task for the annotators.

Modeling decisions were informed by the 60
document development set, and we present evalu-
ations of the first four information extraction mod-
ules with regard to the 100 documents in the un-
seen test set.

2.1 Preprocessing

Enabling search over RCT reports requires first
compiling and indexing all such studies. This is,
perhaps surprisingly, non-trivial. One may rely on
“Publication Type” (PT) tags that codify study de-
signs of articles, but these are manually applied by
staff at the National Library of Medicine. Conse-
quently, there is a lag between when a new study
is published and when a PT tag is applied. Re-
lying on these tags may thus hinder access to the
most up-to-date evidence available. Therefore, we
instead use an automated tagging system that uses
machine learning to classify articles as RCT re-
ports (or not). This model has been validated ex-
tensively in prior work (Marshall et al., 2018), and
we do not describe it further here.

Next, we replace all abbreviations with their
long forms using the Ab3P algorithm (Sohn et al.,
2008). Using long forms has the complementary
advantages of improving PICO labeling accuracy
while also reducing the amount of context needed
for prediction by downstream model components.

2.2 Study Descriptor Recognition

PICO Elements
In order to identify the spans of text corresponding
to the PICO elements of the trial, we use the EBM-
NLP corpus (Nye et al., 2018). This is a dataset

3Hired via Upwork (http://www.upwork.com).
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                 Label Spans                                         Extract ICO Relations                                     Infer Conclusions
   Outcomes
   Interventions/Comparators
   Evidence Statements

Abstract
Background
    Lorem ipsum dolor sit amet, consectetur adipiscing 
elit, sed do eiusmod tempor incididunt ut labore et 
dolore magna aliqua. Ut enim ad minim veniam.
    Duis aute irure dolor in reprehenderit in voluptate velit 
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint 
occaecat cupidatat non proident

Results
    Lorem ipsum dolor sit amet, consectetur adipiscing 
elit, sed do eiusmod tempor incididunt ut labore et 
dolore magna aliqua.
    Ut enim ad minim veniam, quis nostrud exercitation 
ullamco laboris nisi ut aliquip ex ea commodo 
consequat. Duis aute irure dolor in reprehenderit in 
voluptate velit esse cillum dolore eu fugiat nulla pariatur. 
Excepteur sint occaecat cupidatat non proident, sunt in 
culpa qui officia deserunt mollit anim id est laborum.

I:
C:
O:

Ev:

I:
C:
O:

Ev:

I:
C:
O:

Ev:

argmax          increased        with respect to            .
 Support:

Infer

       decreased           with respect to       .
 Support:

       didn’t affect         with respect to       .
 Support:

Rank I+C

Figure 2: Overview of the evidence extraction pipeline, applied to all RCT article abstracts automatically identified.
Text spans are first extracted from these abstracts, then assembled into relations that reflect the structure of the trials,
and finally used to infer the effect interventions were reported to have on measured outcomes, as compared to the
control treatment.

F1 Precision Recall
Tokens 0.63 0.56 0.72
Clinical Entities 0.67 0.55 0.87

Table 1: Macro-averaged scores for ICO span predic-
tion at both the token and clinical entity level.

comprising ∼5,000 abstracts of RCT reports that
have been annotated to demarcate textual spans
that describe the respective PICO elements. In ad-
dition to these spans, it contains more granular an-
notations on information within spans (e.g., spe-
cific Population attributes like age and sex).

We follow our prior work (Nye et al., 2018)
in training a BiLSTM-CRF model that learns to
jointly predict each PICO element using EBM-
NLP. Recent work has shown the efficacy of
BERT (Devlin et al., 2018) representations in this
space, e.g., Beltagy et al. achieved state-of-
the-art performance on EBM-NLP using this ap-
proach (2019). Therefore, for all text encoding we
use BioBERT (Lee et al., 2019), which was pre-
trained on PubMed documents.4

Results for Interventions/Comparators and Out-
comes on our test set are reported in Table 1. Since
these spans will serve as inputs to downstream
models in the pipeline, high recall at the expense
of precision is preferable; we will allow subse-
quent classifiers to discard spurious spans. We
achieve 0.87 recall at the clinical concept level.

4For PICO tagging on EBM-NLP we found that BioBERT
performed comparably to SciBERT (Beltagy et al., 2019).

F1 Precision Recall
Evidence 0.69 0.53 0.97

Table 2: Performance for identifying evidence-bearing
sentences.

Evidence Statements

In addition to PICO elements, we extract all sen-
tences in the abstract that are predicted to con-
tain evidence concerning the relative efficacy of
an Intervention. Our training data for this model
is sourced from the Evidence-Inference corpus
(Lehman et al., 2019), which comprises ∼10,000
annotated ‘prompts’ across ∼2,400 unique full-
text articles. Each prompt specifies an Interven-
tion, a Comparator, and an Outcome. Doctors
have annotated the prompts for each article, sup-
plying an extracted snippet that presents the con-
clusion for these ICO elements, as well as an infer-
ence concerning whether the Outcome increased,
decreased, or remained the same in the interven-
tion group (as compared to the comparator group).

We frame evidence identification as a sentence
classication task, and train a linear classification
layer on top of BioBERT outputs. Our posi-
tive training examples are the sentences contain-
ing evidence snippets in Evidence-Inference, and
we draw an equal number of length-matched neg-
atives randomly from the rest of the document. As
shown in Table 2, we achieve extremely high re-
call on the test set, but only middling precision.
On inspection, many of these false positives are
sentences from the conclusion that provide a high-
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level summary of the evidence, but aren’t the best
evidence statement — as provided by the annota-
tor — for any given ICO prompt.

2.3 Relation Extraction

To transform the extracted spans into a semantic
representation of the trial that can be used to con-
struct an evidence map, we must identify all in-
stances of an outcome being reported, and infer
which two treatments were being directly com-
pared as the intervention and comparator with re-
spect to said outcome. Finally, given each assem-
bled ICO prompt, we can then predict the trial’s
findings regarding whether the outcome increased,
decreased, or was not statistically different un-
der the intervention versus the comparator. In ef-
fect, we are aiming to jointly extract ICO prompts
and infer the directionality of the results reported
concerning these, whereas prior work (Nye et al.,
2018; Lehman et al., 2019) has considered these
problems only in isolation.

Our strategy for assembling ICO prompts is in-
formed by the style in which results are commonly
described in abstracts.When results are described
in an article the outcome is typically referenced
explicitly, while the intervention and especially
the comparator are often referenced either indi-
rectly (“Mean headache duration was similar be-
tween groups”), or not at all (“No significant dif-
ference was observed for recovery time”). In the
fully annotated dev set collected for this work,
87% of outcomes were described explicitly in an
evidence span, while only 28% of treatments were
explicit.

Motivated by this observation, we use the (ex-
plicit) outcomes extracted from an evidence snip-
pet as a starting point; for each of these out-
comes, the associated intervention and compara-
tor are then inferred. This has the significant ad-
vantage of explicitly linking each outcome to the
evidence that will be used to infer the direction-
ality of the reported finding. This also provides
the end-user with an interpretable rationale for the
inference concerning treatment efficacy.

To link candidate extracted treatments to spe-
cific outcome mentions, we train a model that
takes in a candidate treatment, an evidence state-
ment containing the outcome, and the surround-
ing context from the document, and predicts if the
treatment is the participating intervention, the par-
ticipating comparator, or if it is not involved in

F1 Precision Recall
No Difference 0.91 0.94 0.89
Increased 0.73 0.69 0.77
Decreased 0.76 0.75 0.78

Table 3: Per-class prediction scores for each outcome
in the test set.

this particular evaluation. We use the evidence-
inference corpus to provide training examples for
the first two classes, and manually generate neg-
ative samples for the final class. The negatives
are constructed to mimic common errors that the
treatment extraction module made on the dev set,
including: mislabeling an outcome as a treatment;
extracting compound phrases containing multiple
individual treatments; and, finally, extracting spu-
rious spans that don’t represent a study descriptor.

The model is a linear classifier on top of
BioBERT. Inputs are constructed as: [CLS]
TREATMENT [SEP] EVIDENCE. CONTEXT. [SEP].
We experimented with different slices of the doc-
ument as the context, and achieved the highest dev
performance using the first four sentences of the
article. The class probabilities from this model are
used to rank the possible interventions and com-
parators for each outcome, and when sufficiently
probable candidates are identified we generate a
complete ICO prompt.

After assembling all ICO prompts in a docu-
ment, we feed them to a final classifier to predict
the directionality of findings for each outcome,
with respect to the given intervention and com-
parator. This model is trained over the evidence-
inference corpus using the provided I, C, and O
spans coupled with the sentences that contain the
corresponding evidence statement. Empirically,
we found that signal for the classifier is domi-
nated by the outcome text and evidence span, with
almost no contribution from the intervention and
comparator. This is unsurprising given the regular-
ity of the language used to describe conclusions.
The reported directionality of the result is almost
exclusively framed with respect to the interven-
tion, and only 4.0% of all outcomes ever have dif-
ferent results for another I+C linking within the
same document. The best performing model input
was simply [CLS] OUTCOME [SEP] EVIDENCE

[SEP], and the results on the test set are reported
in Table 3.
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Strict Precision Recall
Extracted spans 0.26 0.24
Expert spans 0.23 0.26
Relaxed Precision Recall
Extracted spans 0.32 0.34
Expert spans 0.31 0.34

Table 4: Performance for predicting an article’s ex-
act MeSH terms using the rule-base system, run on
both the automatically extracted spans and the expert-
provided test spans.

2.4 Normalizing PICO Terms

In order to standardize the language used to cat-
egorize the articles with respect to their PICO el-
ements, we turn to the structured vocabulary pro-
vided by the National Libaray of Medicine (NLM)
in the form of Medical Subject Heading (MeSH)
terms. This resource codifies a comprehensive set
of medical concepts into an ontology that includes
their descriptions, properties, and the structured
relationships between them. Each article in the
MEDLINE database maintained by the NLM is
annotated with the relevant MeSH terms by expert
library scientists (subject to the same lag that ne-
cessitates an RCT classifier instead of relying on
annotated Publication Types).

To induce relevant MeSH terms for an extracted
text span, we reproduced the method described in
the Metamap Lite paper (Demner-Fushman et al.,
2017) to extract MeSH terms describing the PICO
elements. In short, we generated a large dictio-
nary of synonyms for medical terms algorithmi-
cally using data from the UMLS Metathesaurus,
with synonyms being matched to unique identi-
fiers pertaining to concepts in the MeSH vocab-
ulary. We used this dictionary to map matching
strings in our extracted PICO text to MeSH terms,
yielding a set of normalized concepts describing
each of the population, intervention, and outcome
spans in the documents.

To evaluate the accuracy of this approach, we
compare the differences between the MeSH terms
produced by our system against those provided by
the NLM for the 191 articles that comprise the test
set for EBM-NLP.

The test articles are provided with an average
of 14.8 MeSH terms per article, while our system
induces 14.0 terms on average. The strictest eval-
uation for this module is to require exact matches
between the predicted MeSH terms and the offi-
cial MEDLINE terms – a daunting task given the
30, 000 possible labels we have to chose from.

False Neg False Pos
Name / Count Name / Count

Humans 185 Patients 115
Middle Aged 93 Aging 42
Adult 84 Therapeutics 42
Aged 62 Weights/Measures 33
Double-Blind
Method

50 Placebos 33

Treatment Outcome 42 Time 21
Adolescent 39 Serum 17
Prospective Studies 27 Safety 17
Time Factors 20 Pain 16
Child, Preschool 20 Women 14

Table 5: Ten most common over- and under-predicted
MeSH terms for the test set of 191 articles.

However, because the concepts in the ontology ex-
ist in varying levels of specificity (for example Mi-
graine with Aura is a subset of Migraine Disor-
ders), it is often the case that the predicted MeSH
term is sufficiently close to the provided MeSH
term for practical purposes, but differs in the level
of specificity.

To better characterize the performance of our
approach, we therefore also consider relaxing the
equivalence criteria to include matching immedi-
ate parents or children in the MeSH hierarchy.
This modification results in a 42% relative in-
crease in recall and a 23% increase in precision,
as shown in Table 4.

We observe that while the absolute accuracy is
not high, this technique generally captures the key
terms for the PICO elements. The most common
mistakes, shown in Table 5, mostly involve miss-
ing age or publication type terms, and systematic
differences between the general MeSH terms com-
monly applied to articles (for example, we might
apply Patients rather than Humans).

A more sophisticated aligment between the way
MeSH terms are applied by experts and the terms
produced by our system has the potential to im-
prove the overall effectiveness of the tool; we in-
tend to pursue this in future work.

3 Illustrative Example

To illustrate the envisioned use of our automatic
mapping system, we return to the example we
began with at the outset of this paper: seeking
evidence concerning treatment of Type II Dia-
betes. To begin, the user specifies a condition
(Population) of interest. We rely on Medical
Subject Headings (MeSH) terms,5 which as dis-

5https://www.ncbi.nlm.nih.gov/mesh
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Figure 3: View of a collected set of concepts used to
specify trials of interest. The search interface allows
concepts to be combined using and/or operators.

Figure 4: Detailed view of selected abstracts that con-
tribute to the evidence map. These are automatically
annotated with all extracted information.

cussed above is a structured vocabularly main-
tained by the NLM. We allow users to enter a
search string and provide auto-complete options
from the MeSH vocabulary. Users can addition-
ally provide interventions or outcomes of interest
to further narrow the search. We show an example
of a constructed set of filters in Figure 3.

Once a set of search terms is specified, relevant
RCTs are retrieved from the comprehensive and
up-to-date database.6 The interface then displays
counts of unique interventions and outcomes cov-
ered by the retrieved trials. Each bar in these plots
can be clicked to explicitly include that concept
in the search terms, allowing for a data-driven ap-
proach to building up the search parameters via it-
erative refinement.

At this point, the evidence map shown in Fig-
ure 1 is also displayed, providing a summary of
the evidence available for the effectiveness of the
selected interventions with respect to their co-
occurring outcomes. The user can mouse-over
plot elements to view tooltips that include snip-
pets of contributing evidence from the underlying
abstracts, or click through to browse these texts
annotated with all of the extracted information, as
shown in Figure 4.

6We update this database nightly by scanning MEDLINE
for new RCT reports using our RCT classifier (Marshall et al.,
2018).

4 User Study

To evaluate the system’s utility for a real-world
task, we provided the tool to a team of researchers
at Cures Within Reach for Cancer (CWR4C).7

Domain experts reviewed the extracted ICO con-
clusions and automatically generated plots for a
randomly selected subset of documents pertain-
ing to cancer trials, a domain that is particularly
challenging given the prevalence of complex com-
pound interventions that often share individual
components between trial arms.

The reviewers were asked to evaluate the types
of mistakes made by the system as well as the
overall precision and recall of the extracted con-
clusions for each document. Across 21 documents
average precision was 54% and average recall was
75%, and the team expressed excitement about the
efficacy of the system for their purposes. CWR4C
has continued to work with this tool as a source of
information about cancer-related clinical trials.

5 Conclusions

We have presented the evidence extraction com-
ponent of Trialstreamer, an open-source prototype
that performs end-to-end identification of pub-
lished RCT reports, extracts key elements from
the texts (intervention and outcomes descriptions),
and performs relation extraction between these,
i.e., attempts to determine which intervention was
reported to work for which outcomes.

We use this pipeline to provide fast, on-demand
overviews of all published evidence pertaining to
a condition of interest. Moving forward, we hope
to refine the linking of extracted snippets to struc-
tured vocabularies to run a more comprehensive
user-study to evaluate the use of the system in
practice by different types of users. We also hope
to develop a joint extraction and inference model,
rather than relying on the current pipelined ap-
proach.
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Abstract

Targeted syntactic evaluations have yielded in-
sights into the generalizations learned by neu-
ral network language models. However, this
line of research requires an uncommon con-
fluence of skills: both the theoretical knowl-
edge needed to design controlled psycholin-
guistic experiments, and the technical profi-
ciency needed to train and deploy large-scale
language models. We present SyntaxGym,
an online platform designed to make targeted
evaluations accessible to both experts in NLP
and linguistics, reproducible across comput-
ing environments, and standardized follow-
ing the norms of psycholinguistic experimen-
tal design. This paper releases two tools of in-
dependent value for the computational linguis-
tics community:

1. A website, syntaxgym.org, which
centralizes the process of targeted syntac-
tic evaluation and provides easy tools for
analysis and visualization;

2. Two command-line tools, syntaxgym
and lm-zoo, which allow any user to
reproduce targeted syntactic evaluations
and general language model inference on
their own machine.

1 Introduction

Recent work in evaluating neural network lan-
guage models focuses on investigating models’
fine-grained prediction behavior on carefully de-
signed examples. Unlike broad-coverage language
modeling metrics such as perplexity, these evalu-
ations are targeted to reveal whether models have
learned specific knowledge about the syntactic
structure of language (see e.g. Warstadt et al., 2020;
Futrell et al., 2019; Marvin and Linzen, 2018).

Research in this line of work requires an un-
common intersection of skills: a) the engineering
strength of NLP researchers necessary to train and

Experiments

Models

Linguists

NLP/ML
researchers

Automatic
evaluation

SyntaxGym

Open results

Visualization
+Analysis

Figure 1: SyntaxGym allows linguists to easily design
and run controlled experiments on the syntactic knowl-
edge of language models, and allows NLP experts to
test their own models against these standards. Users
submit targeted syntactic evaluation experiments to the
site, and they are automatically evaluated on language
models available in the Gym. SyntaxGym analyzes and
visualizes these evaluation results.

deploy large-scale neural network language models,
and b) the linguistic knowledge of language scien-
tists necessary to design controlled, theoretically
interesting psycholinguistic experiments.

In this paper, we introduce SyntaxGym: an
online platform and open-source framework that
makes targeted syntactic evaluations more ac-
cessible to experts in NLP and linguistics (Fig-
ure 1). The core of SyntaxGym is a website,
syntaxgym.org, that automates the entire eval-
uation pipeline: collecting tests and models, run-
ning evaluations, and displaying results through
interactive visualizations. Language scientists can
use the site to design and submit targeted syntactic
evaluations, testing whether language models have
derived human-like syntactic knowledge. Indepen-
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dently, NLP experts can submit their own language
models for evaluation on these assays. By separat-
ing the tasks performed by these two user groups,
the SyntaxGym site lowers the barrier to entry for
the broader community of language researchers.

While SyntaxGym will serve as a centralized
repository of syntactic evaluations and language
models, we also release a set of command-line
tools that allow users to reproduce the site’s eval-
uations offline. The computation underlying the
SyntaxGym site is structured around a command-
line tool syntaxgym, which allows any user to
run targeted syntactic evaluations on their own com-
puter. We accomplish this by developing a new
standard API for interacting with state-of-the-art
neural network language models, operationalized
in a second tool lm-zoo.

Taken together, these tools create a platform that
makes the process of targeted syntactic evaluation
more standardized, reproducible, and accessible
to the broader communities of NLP experts and
language scientists. Our goal is for SyntaxGym
to facilitate the advancement of language model
evaluation, leading to the development of models
with more human-like linguistic knowledge.

2 Background

Before presenting the SyntaxGym framework, we
briefly introduce the targeted syntactic evaluation
paradigm as a way to assess the quality of neural
language models.

2.1 Perplexity

Standard left-to-right language models are trained
to predict the next token given a context of previous
tokens. Language models are typically assessed by
their perplexity, the inverse geometric mean of the
joint probability of words w1, . . . , wN in a held-out
test corpus:

PPL(C) = p(w1, w2, . . . wN )−
1
N (1)

However, a broad-coverage metric such as per-
plexity may not be ideal for assessing whether a
language model has human-like syntactic knowl-
edge. Recent empirical results suggest that models
with similar perplexity measures can still exhibit
substantial variance in syntactic knowledge (Hu
et al., 2020; van Schijndel et al., 2019), accord-
ing to evaluation paradigms described in the next
section.

2.2 Targeted tests for syntactic generalization

Alternatively, a language model can be evaluated
on its ability to make human-like generalizations
for specific syntactic phenomena. The targeted
syntactic evaluation paradigm (Linzen et al., 2016;
Lau et al., 2017; Gulordava et al., 2018; Marvin and
Linzen, 2018; Futrell et al., 2019; Warstadt et al.,
2020) incorporates methods from psycholinguistic
experiments, designing sentences which hold most
lexical and syntactic features of each sentence con-
stant while minimally varying features that deter-
mine grammaticality or surprise characteristics of
the sentence. For example, the following minimal-
pair sentences differ in subject–verb agreement:

(1) The farmer near the clerks knows many people.

(2) *The farmer near the clerks know many people.

A model that has learned the proper subject–verb
number agreement rules for English should assign
a higher probability to the grammatical plural verb
in the first sentence than to the ungrammatical sin-
gular verb in the second (Linzen et al., 2016).

3 SyntaxGym

The targeted syntactic evaluation paradigm allows
us to focus on highly specific measures of language
modeling performance, which more directly distin-
guish models with human-like representations of
syntactic structure. SyntaxGym was designed to
serve as a central repository for these evaluations,
and to make the evaluations reproducible and ac-
cessible for users without the necessary technical
skills or computational resources.

Section 3.1 first describes the standards we de-
signed for specifying and executing these targeted
syntactic evaluations. Section 3.2 then offers a tour
of the SyntaxGym site, which is built around these
standards.

3.1 Standardizing targeted syntactic
evaluation

We represent targeted syntactic evaluations as test
suites, visualized in Figure 2. These test suites are
the core component of psycholinguistic assessment,
and should be familiar to those experienced in psy-
cholinguistic experimental design. We will present
the structure of a test suite using the running exam-
ple of subject–verb agreement, introduced in the
previous section. We describe the components of a
test suite from bottom-up:

71



Condition
Regions

intro np subj prep the prep np matrix verb continuation

The farmer near the clerks knows many people

The farmer near the clerks know many people

The farmers near the clerk knows many people

The farmers near the clerk know many people

The manager to the side of the architects likes to gamble

The manager to the side of the architects like to gamble

The managers to the side of the architect likes to gamble

The managers to the side of the architect like to gamble

· · ·

Item 1

Item 2

match sing

mismatch sing

mismatch plural

match plural

match sing

mismatch sing

mismatch plural

match plural

Prediction:

⇣
match sing .matrix verb < mismatch sing .matrix verb

⌘

⇣
match plural .matrix verb < mismatch plural .matrix verb

⌘
&

Figure 2: SyntaxGym test suites evaluate predictions about language models’ surprisal values (negative log-
probabilities) within regions (columns above) across experimental conditions (leftmost column). A prediction
can assert the conjunction of multiple inequalities across conditions. Prediction results are aggregated across items
(vertical blocks above) to yield overall accuracy estimates.

Regions The atomic unit of a test suite is a
region: a (possibly empty) string, such as the
matrix verb region in Figure 2. Regions can
be concatenated to form full sentences.

Conditions Regions vary systematically across
experimental conditions, shown as colored pill
shapes in Figure 2. Here the matrix verb and
np subj regions vary between their respective
singular and plural forms, as described by the con-
dition.

Items Items are groups of related sentences
which vary across experimental conditions. An
item is characterized by its lexical content and
takes different forms across conditions. For ex-
ample, The farmer near the clerk knows and *The
farmer near the clerk know are different sentences
under two conditions of the same item.

Predictions Test suites are designed with a hy-
pothesis in mind: if a model has correctly learned
some relevant syntactic generalization, then it
should assign higher probability to grammatical
continuations of sentences. Test suite predic-
tions operationalize these hypotheses as expected
inequalities between total model surprisal val-
ues in different experimental conditions (i.e., be-
tween rows within item blocks in Figure 2). The
SyntaxGym standard allows for arbitrarily complex
disjunctions and conjunctions of such inequalities.
Figure 2 shows a prediction with two inequalities
between model surprisals at matrix verb across

two pairs of conditions.

We designed a standard JSON schema for de-
scribing the structure and content of test suites
using the above concepts. Interested readers can
find the full schema and documentation on the
SyntaxGym site.1

3.1.1 A standard API for language models
Reproducing research results with modern neural
network architectures can be notoriously difficult,
due to variance in computing environments and due
to each individual project’s tangled web of pack-
age dependencies. In addition, inconsistencies in
data preprocessing — for example, in tokenization
practices and the management of out-of-vocabulary
items — often make it difficult to evaluate even the
same model on different datasets. In order to ad-
dress these difficulties, we designed a standardized
API for interacting with trained language models,
built to solve these reproducibility issues and allow
for highly portable computing with state-of-the-art
language models. Users can easily connect with
this API through the lm-zoo command-line tool,
described later in Section 4.

The standard is built around the Docker con-
tainerization system. We expect each language
model to be wrapped in a Docker image, includ-
ing a thin API exposing a set of standardized bi-
nary commands: tokenize, which preprocesses
natural-language sentences exactly as a language

1http://docs.syntaxgym.org

72



model expects; get-surprisals, which com-
putes per-token language model surprisals on natu-
ral language input; and unkify, which indicates
exactly which tokens in an input text file are in-
vocabulary for the language model.

Language model creators or third-party main-
tainers can produce such Docker images wrapping
language model code. At present, this API is de-
signed to mainly serve the needs of the SyntaxGym
evaluation process. In the future, however, we plan
to extend the API for other common uses of lan-
guage models: for example, to extract the next-
word predictive distributions from the model, and
to extract the model’s internal word and sentence
representations. This standard is documented in
full at cpllab.github.io/lm-zoo.

3.2 The SyntaxGym website

The SyntaxGym website provides a centralized do-
main for collecting targeted syntactic evaluations
and evaluating them on state-of-the-art language
models. It provides intuitive, user-friendly tools
for visualizing the behavior of any language model
on any syntactic test suite, and also exposes all of
the resulting raw data to interested advanced users.
This section presents a brief tour through the major
features of the SyntaxGym site.

Create test suites Non-technical users can use
SyntaxGym’s browser-based interface to design
and submit their own psycholinguistic test suites
(Figure 3). Separately, the site supports uploading
pre-made test suites as a JSON-formatted file. This
functionality may be useful for advanced users who
prefer to automatically generate test suites.2

Figure 3: Non-technical users can design their own test
suites with a browser-based form.

Submit language models Users interested in
evaluating their own language models first cre-
ate a public Docker image conforming to the

2In a future release, we will also allow users to import test
suites from spreadsheets as CSV-formatted files.

API specified by the SyntaxGym standard (Sec-
tion 3.1.1). After users submit these language mod-
els on the SyntaxGym site, the models are automat-
ically validated for conformity to the API by the
SyntaxGym backend. Valid models are added to
the SyntaxGym collection, and will be evaluated
on all past and future available test suites in the
Gym.

Automatic evaluation Whenever novel test
suites or language models are submitted,
SyntaxGym automatically evaluates the relevant
suites and models in the cloud. For each test
suite and model, the evaluation yields a prediction
accuracy — the number of items for which the
prediction holds. These prediction accuracies,
along with the raw surprisal data, are stored in
the SyntaxGym database and made available in
visualizations such as Figure 4b.

Visualization and data analysis The site pro-
vides a variety of interactive charts that allow users
to visualize results at different levels of granularity.
On the coarsest level, users can compare aggregate
performance across language models and groups
of theoretically related test suites called tags (see
Figure 1). Users can also compare accuracy across
models on a single test suite (Figure 4a), across tags
for a single model, and across test suites within
a single tag. On the finest level, users can view
raw region-by-region surprisal values to analyze in-
depth performance of a particular language model
on a particular test suite (Figure 4b).

3.3 Seed data and results
We have seeded the SyntaxGym website with a
collection of test suites and language models by
aggregating prior research. These materials and
relevant evaluation results are separately presented
in Hu et al. (2020). Here we provide only a brief
summary in order to illustrate the features of the
SyntaxGym website.

1. We wrapped 8 modern neural network lan-
guage models (summarized in Table 1) to be
compatible with the lm-zoo standard, using
open-source research code or standard Python
frameworks such as Hugging Face Transform-
ers (Wolf et al., 2019).

2. We aggregated past research on targeted syn-
tactic evaluation into 33 test suites, each prob-
ing language models’ performance on distinct
grammatical phenomena.
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(a) The site automatically evaluates language
models on test suites and visualizes summary
results (here, for a subject–verb number agree-
ment test). (click to see page)

(b) Users can also view all of the raw language model data behind these
analyses (here, average per-region surprisal values of GPT-2 for a subject–
verb number agreement test) and download the raw data for further analysis.
(click to see page)

Figure 4: Screenshots of example visualizations from the SyntaxGym website.

Model Reference Training data (# tokens)

GPT-2 Radford et al. (2019) WebText (∼8B)
GPT-2 XL Radford et al. (2019) WebText (∼8B)
Transformer XL Dai et al. (2019) WikiText-103 (103M)
JRNN Jozefowicz et al. (2016) 1B Benchmark (1.04B)
GRNN Gulordava et al. (2018) Wikipedia (90M)

Ordered Neurons Shen et al. (2019) BLLIP (42M)
LSTM Hochreiter and Schmid-

huber (1997)
BLLIP (42M)

RNNG Dyer et al. (2016) BLLIP (42M)

Table 1: Language models currently supported in the
SyntaxGym framework.

Interested readers can find more details on
these test suites and language models, along with
the evaluation results and visualizations, on the
SyntaxGym site.

4 Command-line tools

While the SyntaxGym website allows for easy cen-
tralization of test suites and public access to results,
all of its underlying infrastructure is also available
independently for researchers to use. We release
two command-line tools, available to any user with
Python and Docker installed.

4.1 lm-zoo: black-box access to SOTA
language models

We first designed a general command-line tool for
interacting with state-of-the-art neural language
models, called lm-zoo. Figure 5b demonstrates
how this tool can be used to easily extract pre-
diction data from an arbitrary language model.
Full documentation and installation instructions are
available at cpllab.github.io/lm-zoo.

4.2 syntaxgym: targeted syntactic
evaluation

Users can completely reproduce the targeted syn-
tactic evaluation paradigm of SyntaxGym outside
of the website using a second command-line tool,
syntaxgym, shown in Figure 5a. This tool
does the work of converting test suites into ac-
tual natural-language sentences appropriately for-
matted for a particular language model, execut-
ing the model, and mapping the results back to a
SyntaxGym-friendly format ready for analysis. It
deals with the wide variation in tokenization and
out-of-vocabulary token handling across models.
Full documentation and installation instructions are
available at syntaxgym.org/cli.

5 Related work

Marvin and Linzen (2018) release a dataset of
minimal-pair sentences designed to test language
models’ syntactic generalization capabilities. How-
ever, the syntactic coverage of the dataset is limited
to a small set of phenomena: subject-verb agree-
ment, reflexive anaphor licensing, and negative po-
larity items.

Warstadt et al. (2020) release a large dataset ag-
gregating a broad collection of targeted syntactic
evaluations from prior research, known as BLiMP.
Like the Marvin and Linzen dataset, BLiMP con-
sists of a collection of minimal-pair sentences
which contrast in grammaticality, following the
standard shown in Examples (1) and (2). The
BLiMP evaluation requires that language models
assign a higher total probability to the grammatical
(1) than the ungrammatical (2). The authors de-
sign abstract templates which specify grammatical–
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$ syntaxgym list models
gpt-2, gpt-2-xl, transformer-xl, ...

$ syntaxgym list suites
number-orc, number-src, mvrr, ...

# Evaluate model "gpt-2" on suite "mvrr"
$ syntaxgym evaluate gpt-2 mvrr
Accuracy: 0.7857 (22/28 correct)

# Evaluate arbitrary model on custom suite
$ syntaxgym evaluate \
> docker://me/my-model my-suite.json
Accuracy: 0.575 (23/40 correct)

(a) The syntaxgym tool allows users to evaluate language
models on test suites — both models and suites hosted by
SyntaxGym, and models and suites created by the user.

$ echo "This is a sentence." > foo.txt

$ lm-zoo list models
gpt-2, gpt-2-xl, transformer-xl, ...

$ lm-zoo tokenize transformer-xl foo.txt
This is a sentence .

$ lm-zoo get-surprisals transformer-xl foo.txt
sentence_id token_id token surprisal
1 1 This 0.0000
1 1 is 4.1239
1 1 a 1.0126
...

(b) The lm-zoo tool provides lower-level access to
SyntaxGym-hosted language models, allowing users to retrieve
models’ predictions, tokenization choices, and more.

Figure 5: We built SyntaxGym around command-line tools for probing and evaluating neural network language
models, which can be used independently of the SyntaxGym site.

ungrammatical pairs for many linguistic phenom-
ena, and then generate example sentences based on
these templates.

While BLiMP and SyntaxGym are similarly mo-
tivated, they differ slightly in methodology. First,
BLiMP requires models to satisfy only a single in-
equality between sentence probabilities. While the
SyntaxGym system can support such predictions,
it is designed to support much stricter tests of lan-
guage models, such as the conjunction of inequali-
ties across multiple conditions (see Figure 2). Sec-
ond, BLiMP compares model judgments about to-
tal sentence probabilities. In contrast, SyntaxGym
is designed to compare model judgments only in
critical test regions, which allows us to more fairly
evaluate language model predictions only in pre-
specified spans of interest. Finally, the BLiMP sen-
tences are automatically generated from abstract
grammars exemplifying syntactic phenomena of in-
terest. Since automatic methods can easily yield a
large number of sentences, they can help us control
for other possible sources of noise in test materials.
However, many grammatical phenomena of interest
are fiendishly difficult to capture in abstract gram-
mars, and require careful design by native speak-
ers.3 This BLiMP data is thus complementary to
the hand-designed test suites currently presented
on the SyntaxGym site. We plan to adapt such
large-scale test suites on SyntaxGym in the future.

3For example, one such phenomenon is the garden-path
disambiguation effect (Futrell et al., 2019), which is highly
sensitive to nuanced lexical and world-knowledge features of
sentences.

6 Conclusion

This paper presented SyntaxGym, an online plat-
form and open-source framework for targeted syn-
tactic evaluation of neural network language mod-
els. SyntaxGym promises to advance the progress
of language model evaluation by uniting the theo-
retical expertise of linguists with the technical skills
of NLP researchers. The site is fully functional at
syntaxgym.org, and the entire framework is
available as open-source code.

SyntaxGym is continually evolving: we plan to
add new features to the site, and to develop further
in response to user feedback. In particular, we plan
to incorporate human performance as a reference
metric, integrating psycholinguistic experimental
results and supporting easy experimental design
starting from the test suite format.

We also plan to further incorporate language
models into the lm-zoo tool, allowing broader ac-
cess to state-of-the-art language models in general.
We welcome open-source contributions to the web-
site and to the general framework, and especially
encourage the NLP community to contribute their
models to the lm-zoo repository.
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Abstract

We present the first comprehensive, open
source multimedia knowledge extraction sys-
tem that takes a massive stream of unstruc-
tured, heterogeneous multimedia data from
various sources and languages as input, and
creates a coherent, structured knowledge base,
indexing entities, relations, and events, follow-
ing a rich, fine-grained ontology. Our sys-
tem, GAIA 1, enables seamless search of com-
plex graph queries, and retrieves multimedia
evidence including text, images and videos.
GAIA achieves top performance at the recent
NIST TAC SM-KBP2019 evaluation2. The
system is publicly available at GitHub3 and
DockerHub4, with complete documentation5.

1 Introduction

Knowledge Extraction (KE) aims to find entities,
relations and events involving those entities from
unstructured data, and link them to existing knowl-
edge bases. Open source KE tools are useful for
many real-world applications including disaster
monitoring (Zhang et al., 2018a), intelligence anal-
ysis (Li et al., 2019a) and scientific knowledge
mining (Luan et al., 2017; Wang et al., 2019). Re-
cent years have witnessed the great success and
wide usage of open source Natural Language Pro-
cessing tools (Manning et al., 2014; Fader et al.,
2011; Gardner et al., 2018; Daniel Khashabi, 2018;
Honnibal and Montani, 2017), but there is no com-
prehensive open source system for KE. We release

∗These authors contributed equally to this work.
1System page: http://blender.cs.illinois.edu/

software/gaia-ie
2http://tac.nist.gov/2019/SM-KBP/index.html
3GitHub: https://github.com/GAIA-AIDA
4DockerHub: text knoweldge extraction components

are in https://hub.docker.com/orgs/blendernlp/
repositories, visual knowledge extraction components are
in https://hub.docker.com/u/dannapierskitoptal

5Video: http://blender.cs.illinois.edu/aida/
gaia.mp4

Figure 1: An example of cross-media knowledge fu-
sion and a look inside the visual knowledge extraction.

a new comprehensive KE system, GAIA, that ad-
vances the state of the art in two aspects: (1) it ex-
tracts and integrates knowledge across multiple lan-
guages and modalities, and (2) it classifies knowl-
edge elements into fine-grained types, as shown in
Table 1. We also release the pretrained models6

and provide a script to retrain it for any ontology.
GAIA has been inherently designed for multi-

media, which is rapidly replacing text-only data in
many domains. We extract complementary knowl-
edge from text as well as related images or video
frames, and integrate the knowledge across modal-
ities. Taking Figure 1 as an example, the text en-
tity extraction system extracts the nominal mention
troops, but is unable to link or relate that due to
a vague textual context. From the image, the en-
tity linking system recognizes the flag as Ukrainian
and represents it as a NationalityCitizen relation in
the knowledge base. It can be deduced, although
not for sure, that the detected people are Ukrainian.
Meanwhile, our cross-media fusion system grounds
the troops to the people detected in the image. This
establishes a connection between the knowledge

6Pretrained models: http://blender.cs.illinois.
edu/resources/gaia.html
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Figure 2: User-facing views of knowledge networks constructed with events automatically extracted from multi-
media multilingual news reports. We display the event arguments, type, summary, similar events, as well as visual
knowledge extracted from the corresponding image and video.

extracted from the two modalities, allowing to infer
that the troops are Ukrainian, and They refers to the
Ukrainian government.

Compared to coarse-grained event types of
previous work (Li et al., 2019a), we follow
a richer ontology to extract fine-grained types,
which are crucial to scenario understanding and
event prediction. For example, an event of
type Movement.TransportPerson involving an en-
tity of type PER.Politician.HeadOfGovernment
differs in implications from the same event
type involving a PER.Combatant.Sniper entity
(i.e., a political trip versus a military deploy-
ment). Similarly, it is far more likely that
an event of type Conflict.Attack.Invade will
lead to a Contact.Negotiate.Meet event, while
a Conflict.Attack.Hanging event is more likely
to be followed by an event of type Con-
tact.FuneralVigil.Meet.

Coarse-grained Types Fine-grained Types

Entity 7 187
Relation 23 61

Event 47 144

Table 1: Compared to the coarse-grained knowledge
extraction of previous work, GAIA can support fine-
grained entity, relation, and event extraction with types
that are a superset of the previous coarse-grained types.

The knowledge base extracted by GAIA can
support various applications, such as multimedia
news event understanding and recommendation.
We use Russia-Ukraine conflicts of 2014-2015 as a
case study, and develop a knowledge exploration
interface that recommends events related to the
user’s ongoing search based on previously-selected
attribute values and dimensions of events being
viewed7, as shown in Figure 2. Thus, this sys-
tem automatically provides the user with a more
comprehensive exposure to collected events, their
importance, and their interconnections. Extensions
of this system to real-time applications would be
particularly useful for tracking current events, pro-
viding alerts, and predicting possible changes, as
well as topics related to ongoing incidents.

2 Overview

The architecture of our multimedia knowledge ex-
traction system is illustrated in Figure 3. The sys-
tem pipeline consists of a Text Knowledge Extrac-
tion (TKE) branch and a Visual Knowledge Extrac-
tion (VKE) branch (Sections 3 and 4 respectively).
Each branch takes the same set of documents as in-
put, and initially creates a separate knowledge base
(KB) that encodes the information from its respec-

7Event recommendation demo: http://blender.cs.
illinois.edu/demo/video_recommendation/index_
attack_dark.html
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Figure 3: The architecture of GAIA multimedia knowledge extraction.

tive modality. Both output knowledge bases make
use of the same types from the DARPA AIDA on-
tology8, as referred to in Table 1. Therefore, while
the branches both encode their modality-specific
extractions into their KBs, they do so with types
defined in the same semantic space. This shared
space allows us to fuse the two KBs into a single,
coherent multimedia KB through the Cross-Media
Knowledge Fusion module (Section 5). Our user-
facing system demo accesses one such resulting
KB, where attack events have been extracted from
multi-media documents related to the 2014-2015
Russia-Ukraine conflict scenario. In response to
user queries, the system recommends information
around a primary event and its connected events
from the knowledge graph (screenshot in Figure 2).

3 Text Knowledge Extraction

As shown in Figure 3, the Text Knowledge Ex-
traction (TKE) system extracts entities, relations,
and events from input documents. Then it clusters
identical entities through entity linking and coref-
erence, and clusters identical events using event
coreference.

8https://tac.nist.gov/tracks/SM-KBP/2019/
ontologies/LDCOntology

3.1 Text Entity Extraction and Coreference

Coarse-grained Mention Extraction We extract
coarse-grained named and nominal entity mentions
using a LSTM-CRF (Lin et al., 2019) model. We
use pretrained ELMo (Peters et al., 2018) word
embeddings as input features for English, and pre-
train Word2Vec (Le and Mikolov, 2014) models on
Wikipedia data to generate Russian and Ukrainian
word embeddings.
Entity Linking and Coreference We seek to
link the entity mentions to pre-existing entities
in the background KBs (Pan et al., 2015), in-
cluding Freebase (LDC2015E42) and GeoNames
(LDC2019E43). For mentions that are linkable to
the same Freebase entity, coreference information
is added. For name mentions that cannot be linked
to the KB, we apply heuristic rules (Li et al., 2019b)
to same-named mentions within each document to
form NIL clusters. A NIL cluster is a cluster of
entity mentions referring to the same entity but do
not have corresponding KB entries (Ji et al., 2014).
Fine-grained Entity Typing We develop an atten-
tive fine-grained type classification model with la-
tent type representation (Lin and Ji, 2019). It takes
as input a mention with its context sentence and
predicts the most likely fine-grained type. We ob-
tain the YAGO (Suchanek et al., 2008) fine-grained
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types from the results of Freebase entity linking,
and map these types to the DARPA AIDA ontol-
ogy. For mentions with identified, coarse-grained
GPE and LOC types, we further determine their
fine-grained types using GeoNames attributes fea-
ture class and feature code from the GeoNames
entity linking result. Given that most nominal men-
tions are descriptions and thus do not link to entries
in Freebase or GeoNames, we develop a nominal
keyword list (Li et al., 2019b) for each type to in-
corporate these mentions into the entity analyses.
Entity Salience Ranking To better distill the in-
formation, we assign each entity a salience score
in each document. We rank the entities in terms
of the weighted sum of all mentions, with higher
weights for name mentions. If one entity appears
only in nominal and pronoun mentions, we reduce
its salience score so that it is ranked below other
entities with name mentions. The salience score is
normalized over all entities in each document.

3.2 Text Relation Extraction
For fine-grained relation extraction, we first apply a
language-independent CNN based model (Shi et al.,
2018) to extract coarse-grained relations from En-
glish, Russian and Ukrainian documents. Then we
apply entity type constraints and dependency pat-
terns to these detected relations and re-categorize
them into fine-grained types (Li et al., 2019b). To
extract dependency paths for these relations in the
three languages, we run the corresponding lan-
guage’s Universal Dependency parser (Nivre et al.,
2016). For types without coarse-grained type train-
ing data in ACE/ERE, we design dependency path-
based patterns instead and implement a rule-based
system to detect their fine-grained relations directly
from the text (Li et al., 2019b).

3.3 Text Event Extraction and Coreference
We start by extracting coarse-grained events and ar-
guments using a Bi-LSTM CRF model and a CNN-
based model (Zhang et al., 2018b) for three lan-
guages, and then detect the fine-grained event types
by applying verb-based rules, context-based rules,
and argument-based rules (Li et al., 2019b). We
also extract FrameNet frames (Chen et al., 2010) in
English corpora to enrich the fine-grained events.

We apply a graph-based algorithm (Al-
Badrashiny et al., 2017) for our language-
independent event coreference resolution. For each
event type, we cast the event mentions as nodes in
a graph, so that the undirected, weighted edges be-

tween these nodes represent coreference confidence
scores between their corresponding events. We
then apply hierarchical clustering to obtain event
clusters and train a Maximum Entropy binary clas-
sifier on the cluster features (Li et al., 2019b).

4 Visual Knowledge Extraction

The Visual Knowledge Extraction (VKE) branch of
GAIA takes images and video key frames as input
and creates a single, coherent (visual) knowledge
base, relying on the same ontology as GAIA’s Text
Knowledge Extraction (TKE) branch. Similar to
TKE, the VKE consists of entity extraction, linking,
and coreference modules. Our VKE system also
extracts some events and relations.

4.1 Visual Entity Extraction

We use an ensemble of visual object detection and
concept localization models to extract entities and
some events from a given image. To detect generic
objects such as person and vehicle, we employ
two off-the-shelf Faster R-CNN models (Ren et al.,
2015) trained on the Microsoft Common Objects
in COntext (MS COCO) (Lin et al., 2014) and
Open Images (Kuznetsova et al., 2018) datasets.
To detect scenario-specific entities and events, we
train a Class Activation Map (CAM) model (Zhou
et al., 2016) in a weakly supervised manner using
a combination of Open Images with image-level
labels and Google image search.

Given an image, each R-CNN model produces a
set of labeled bounding boxes, and the CAM model
produces a set of labeled heat maps which are then
thresholded to produce bounding boxes. The union
of all bounding boxes is then post-processed by
a set of heuristic rules to remove duplicates and
ensure quality. We separately apply a face detector,
MTCNN (Zhang et al., 2016), and add the results
to the pool of detected objects as additional person
entities. Finally, we represent each detected bound-
ing box as an entity in the visual knowledge base.
Since the CAM model includes some event types,
we create event entries (instead of entity entries)
for bounding boxes classified as events.

4.2 Visual Entity Linking

Once entities are added into the (visual) knowledge
base, we try to link each entity to the real-world
entities from a curated background knowledge base.
Due to the complexity of this task, we develop
distinct models for each coarse-grained entity type.
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Face Recognition Landmark Recognition Flag Recognition
(b)(a) (c)

Figure 4: Examples of visual entity linking, based on
face recognition, landmark recognition and flag recog-
nition.

For the type person, we train a FaceNet model
(Schroff et al., 2015) that takes each cropped hu-
man face (detected by the MTCNN model as men-
tioned in Section 4.1) and classifies it in one or
none of the predetermined identities. We compile a
list of recognizable and scenario-relevant identities
by automatically searching for each person name
in the background KB via Google Image Search,
collecting top retrieved results that contain a face,
training a binary classifier on half of the results,
and evaluating on the other half. If the accuracy
is higher than a threshold, we include that person
name in our list of recognizable identities. For ex-
ample, the visual entity in Figure 4 (a) is linked to
the Wikipedia entry Rudy Giuliani 9.

To recognize location, facility, and organization
entities, we use a DELF model (Noh et al., 2017)
pre-trained on Google Landmarks, to match each
image with detected buildings against a predeter-
mined list. We use a similar approach as mentioned
above to create a list of recognizable, scenario-
relevant landmarks, such as buildings and other
types of structure that identify a specific location,
facility, or organization. For example, the visual
entity in Figure 4 (b) is linked to the Wikipedia
entry Maidan Square 10

Finally, to recognize geopolitical entities, we
train a CNN to classify flags into a predetermined
list of entities, such as all the nations in the world,
for detection in our system. Take Figure 4 (c) as an
example. The flags of Ukraine, US and Russia are
linked to the Wikipedia entries of corresponding
countries. Once a flag in an image is recognized,
we apply a set of heuristic rules to create a nation-
ality affiliation relationship in the knowledge base
between some entities in the scene and the detected
country. For instance, a person who is holding a
Ukrainian flag would be affiliated with the country

9https://en.wikipedia.org/wiki/Rudy_
Giuliani

10https://en.wikipedia.org/wiki/Maidan_
Nezalezhnosti

Ukraine.

4.3 Visual Entity Coreference

While we cast each detected bounding box as an
entity node in the output knowledge base, we re-
solve potential coreferential links between them,
since one unique real-world entity can be detected
multiple times. Cross-image coreference resolution
aims to identify the same entity appearing in multi-
ple images, where the entities are in different poses
from different angles. Take Figure 5 as an example.
The red bounding boxes in these two images refer
to the same person, so they are coreferential and
are put into the same NIL cluster. Within-image
coreference resolution requires the detection of du-
plicates, such as the duplicates in an collage image.
To resolve entity coreference, we train an instance-
matching CNN on the Youtube-BB dataset (Real
et al., 2017), where we ask the model to match an
object bounding box to the same object in a differ-
ent video frame, rather than to a different object.
We use this model to extract features for each de-
tected bounding box and run the DBSCAN (Ester
et al., 1996) clustering algorithm on the box fea-
tures across all images. The entities in the same
cluster are coreferential, and are represented using
a NIL cluster in the output (visual) KB. Similarly,
we use a pretrained FaceNet (Schroff et al., 2015)
model followed by DBSCAN to cluster face fea-
tures.

Figure 5: The two green bounding boxes are coreferen-
tial since they are both linked to “Kirstjen Nielsen”, and
two red bounding boxes are coreferential based on face
features. The yellow bounding boxes are unlinkable
and also not coreferential to other bounding boxes.

We also define heuristic rules to complement the
aforementioned procedure in special cases. For
example, if in the entity linking process (Section
4.2), some entities are linked to the same real-world
entity based on entity linking result, we consider
them coreferential. Besides, since we have both
face detection and person detection which result in
two entities for each person instance, we use their
bounding box intersection to merge them into the
same entity.
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5 Cross-Media Knowledge Fusion

Given a set of multimedia documents which con-
sist of textual data, such as written articles and
transcribed speech, as well as visual data, such as
images and video key frames, the TKE and VKE
branches of the system take their respective modal-
ity data as input, extract knowledge elements, and
create separate knowledge bases. These textual and
visual knowledge bases rely on the same ontology,
but contain complementary information. Some
knowledge elements in a document may not be
explicitly mentioned in the text, but will appear
visually, such as the Ukrainian flag in Figure 1.
Even coreferential knowledge elements that exist
in both knowledge bases are not completely re-
dundant, since each modality has its own unique
granularity. For example, the word troops in text
could be considered coreferential to the individuals
with military uniform detected in the image, but the
uniforms being worn may provide additional visual
features useful in identifying the military ranks,
organizations and nationalities of the individuals.

To exploit the complementary nature of the two
modalities, we combine the two modality-specific
knowledge bases into a single, coherent, multime-
dia knowledge base, where each knowledge ele-
ment could be grounded in either or both modalities.
To fuse the two bases, we develop a state-of-the-art
visual grounding system (Akbari et al., 2019) to
resolve entity coreference across modalities. More
specifically, for each entity mention extracted from
text, we feed its text along with the whole sen-
tence into an ELMo model (Peters et al., 2018) that
extracts contextualized features for the entity men-
tion, and then we compare that with CNN feature
maps of surrounding images. This leads to a rele-
vance score for each image, as well as a granular
relevance map (heatmap) within each image. For
images that are relevant enough, we threshold the
heatmap to obtain a bounding box, compare that
box content with known visual entities, and assign
it to the entity with the most overlapping match.
If no overlapping entity is found, we create a new
visual entity with the heatmap bounding box. Then
we link the matching textual and visual entities
using a NIL cluster. Additionally, with visual link-
ing (Section 4.2), we corefer cross-modal entities
that are linked to the same background KB node.

Component Benchmark Metric Score

Mention Extraction CoNLL-2003 F1 91.8%

Relation
Extraction

English ACE&ERE F1 65.6%
Russian AIDA F1 72.4%

Ukrainian AIDA F1 68.2%

Event
Extraction

En Trigger ERE F1 65.4%
Argument ERE F1 85.0%

Ru Trigger AIDA F1 56.2%
Argument AIDA F1 58.2%

Uk Trigger AIDA F1 59.0%
Argument AIDA F1 61.1%

Visual Entity
Extraction

Objects MSCOCO mAP 43.0%
Faces FDDB Acc 95.4%

Visual Entity
Linking

Faces LFW Acc 99.6%
Landmarks Oxf105k mAP 88.5%

Flags AIDA F1 72.0%

Visual Entity Coreference YoutubeBB Acc 84.9%

Crossmedia Coreference Flickr30k Acc 69.2%

Table 2: Performance of each component. The
benchmarks references are: CoNLL-2003 (Sang and
De Meulder, 2003), ACE (Walker et al., 2006),
ERE (Song et al., 2015), AIDA (LDC2018E01:AIDA
Seedling Corpus V2.0), MSCOCO (Lin et al., 2014),
FDDB (Jain and Learned-Miller, 2010), LFW (Huang
et al., 2008), Oxf105k (Philbin et al., 2007),
YoutubeBB (Real et al., 2017), and Flickr30k (Plum-
mer et al., 2015).

6 Evaluation

6.1 Quantitative Performance

The performance of each component is shown in
Table 2. To evaluate the end-to-end performance,
we participated with our system in the TAC SM-
KBP 2019 evaluation11. The input corpus con-
tains 1999 documents (756 English, 537 Russian,
703 Ukrainian), 6194 images, and 322 videos. We
populated a multimedia, multilingual knowledge
base with 457,348 entities, 67,577 relations, 38,517
events. The system performance was evaluated
based on its responses to class queries and graph
queries12, and GAIA was awarded first place.

Class queries evaluated cross-lingual, cross-
modal, fine-grained entity extraction and corefer-
ence, where the query is an entity type, such as
FAC.Building.GovernmentBuilding, and the result
is a ranked list of entities of the given type. Our
entity ranking is generated by the entity salience
score in Section 3.1. The evaluation metric was

11http://tac.nist.gov/2019/SM-KBP/index.html
12http://tac.nist.gov/2019/SM-KBP/guidelines.

html
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Average Precision (AP), where AP-B was the AP
score where ties are broken by ranking all Right
responses above all Wrong responses, AP-W was
the AP score where ties are broken by ranking all
Wrong responses above all Right responses, and
AP-T was the AP score where ties are broken as in
TREC Eval13.

Class Queries Graph Queries
AP-B AP-W AP-T Precision Recall F1

48.4% 47.4% 47.7% 47.2% 21.6% 29.7%

Table 3: GAIA achieves top performance on Task 1 at
the recent NIST TAC SM-KBP2019 evaluation.

Graph queries evaluated cross-lingual, cross-
modal, fine-grained relation extraction, event ex-
traction and coreference, where the query is
an argument role type of event (e.g., Victim of
Life.Die.DeathCausedByViolentEvents) or relation
(e.g., Parent of PartWhole.Subsidiary) and the re-
sult is a list of entities with that role. The evaluation
metrics were Precision, Recall and F1.

6.2 Qualitative Analysis

To demonstrate the system, we have selected
Ukraine-Russia Relations in 2014-2015 for a case
study to visualize attack events, as extracted from
the topic-related corpus released by LDC14. The
system displays recommended events related to the
user’s ongoing search based on their previously-
selected attribute values and dimensions of events
being viewed, such as the fine-grained type, place,
time, attacker, target, and instrument. The demo
is publicly available15 with a user interface as
shown in Figure 2, displaying extracted text en-
tities and events across languages, visual entities,
visual entity linking and coreference results from
face, landmark and flag recognition, and the results
of grounding text entities to visual entities.

7 Related Work

Existing knowledge extraction systems mainly fo-
cus on text (Manning et al., 2014; Fader et al., 2011;
Gardner et al., 2018; Daniel Khashabi, 2018; Hon-
nibal and Montani, 2017; Pan et al., 2017; Li et al.,
2019a), and do not readily support fine-grained

13https://trec.nist.gov/trec_eval/
14LDC2018E01, LDC2018E52, LDC2018E63,

LDC2018E76, LDC2019E77
15http://blender.cs.illinois.edu/demo/video_

recommendation/index_attack_dark.html

knowledge extraction. Visual knowledge extrac-
tion is typically limited to atomic concepts that
have distinctive visual features of daily life (Ren
et al., 2015; Schroff et al., 2015; Fernández et al.,
2017; Gu et al., 2018; Lin et al., 2014), and so
lacks more complex concepts, making extracted
elements challenging to integrate with text. Exist-
ing multimedia systems overlook the connections
and distinctions between modalities (Yazici et al.,
2018). Our system makes use of a multi-modal on-
tology with concepts from real-world, newsworthy
topics, resulting in a rich cross-modal, as well as
intra-modal connectivity.

8 Conclusion

We demonstrate a state-of-the-art multimedia mul-
tilingual knowledge extraction and event recom-
mendation system. This system enables the user to
readily search a knowledge network of extracted,
linked, and summarized complex events from mul-
timedia, multilingual sources (e.g., text, images,
videos, speech and OCR).
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Abstract
We present easy-to-use retrieval focused mul-
tilingual sentence embedding models, made
available on TensorFlow Hub. The models em-
bed text from 16 languages into a shared se-
mantic space using a multi-task trained dual-
encoder that learns tied cross-lingual repre-
sentations via translation bridge tasks (Chi-
dambaram et al., 2018). The models achieve
a new state-of-the-art in performance on
monolingual and cross-lingual semantic re-
trieval (SR). Competitive performance is ob-
tained on the related tasks of translation pair
bitext retrieval (BR) and retrieval question an-
swering (ReQA). On transfer learning tasks,
our multilingual embeddings approach, and in
some cases exceed, the performance of En-
glish only sentence embeddings.

1 Introduction

We introduce three new multilingual members in
the universal sentence encoder (USE) (Cer et al.,
2018) family of sentence embedding models. The
models target performance on tasks that involve
multilingual semantic similarity and achieve a new
state-of-the-art in performance on monolingual and
cross-lingual semantic retrieval (SR). One model
targets efficient resource usage with a CNN model
architecture (Kim, 2014). Another targets accuracy
using the Transformer architecture (Vaswani et al.,
2017). The third model provides an alternative
interface to our multilingual Transformer model
for use in retrieval question answering (ReQA).
The 16 languages supported by our multilingual
models are given in Table 1.1

† Corresponding authors:
{yinfeiy, cer}@google.com

1Language coverage was selected based, in part, on the
ease of obtaining data for the tasks used to train our models.
Due to character set differences, we treat Simplified Chinese,
zh, and Traditional Chinese, zh-tw, prominently used in Tai-
wan, as two languages within our model.

Languages Family
Arabic (ar) Semitic
Chinese (PRC) (zh) Sino-Tibetan
Chinese (Taiwan) (zh-tw)
Dutch(nl) English(en) Germanic
German (de)
French (fr) Italian (it) Latin
Portuguese (pt) Spanish (es)
Japanese (ja) Japonic
Korean (ko) Koreanic
Russian (ru) Polish (pl) Slavic
Thai (th) Kra–Dai
Turkish (tr) Turkic

Table 1: Multilingual universal sentence encoder’s
supported languages (ISO 639-1). Multilingual
sentences are mapped to a shared semantic space.

2 Model Toolkit

Our multilingual models are implemented in Ten-
sorFlow (Abadi et al., 2016) and made publicly
available on TensorFlow Hub.2 Listing 1 illustrates
the easy-to-use generation of multilingual sentence
embeddings. The models conveniently only rely on
TensorFlow without requiring additional libraries
or packages. Listing 2 demonstrates using the ques-
tion answering interface. Responses are encoded
with additional context information such that the
resulting context aware embeddings have a high
dot product similarity score with the questions they
answer. This allows for retrieval of indexed candi-
dates using efficient nearest neighbor search.3

3 Encoder Architecture

3.1 Multi-task Dual Encoder Training
Similar to Cer et al. (2018) and Chidambaram
et al. (2018), we target broad coverage using a

2https://www.tensorflow.org/hub/, Apache
2.0 license, with models available as saved TF graphs.

3Popular efficient search tools include FAISS https:
//github.com/facebookresearch/faiss, Annoy
https://github.com/spotify/annoy, or FLANN
https://www.cs.ubc.ca/research/flann.
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Figure 1: Multilingual universal sentence encoder model training architecture using multi-task training
over: (i) retrieval question-answering (ReQA), natural language inference (NLI) and translation ranking.
Transformer or CNN based sentence embedding models provide a shared encoder across all tasks.

import tensorflow_hub as hub

module = hub.Module("https://tfhub.dev/google/"
"universal-sentence-encoder-multilingual/1")

multilingual_embeddings = module([
"Hola Mundo!", "Bonjour le monde!", "Ciao mondo!"
"Hello World!", "Hallo Welt!", "Hallo Wereld!",
"你好世界!", "Привет, мир!", "!��A`�A� Ab�r�"])

Listing 1: Python code mapping multilingual
sentences into a shared semantic embedding space.

module = hub.Module("https://tfhub.dev/google/"
"universal-sentence-encoder-multilingual-qa/1")

query_embeddings = module(
dict(text=["What is your age?"]),
signature="question_encoder", as_dict=True)

candidate_embeddings = module(
dict(text=["I am 20 years old."],

context=["I will be 21 next year."]),
signature="response_encoder", as_dict=True)

Listing 2: Python code embedding a question and
answer for retrieval Question-Answering (ReQA).

multi-task dual-encoder training framework, with
a single shared encoder supporting multiple down-
stream tasks. The training tasks include: a multi-
feature question-answer prediction task,4 a transla-
tion ranking task, and a natural language inference
(NLI) task. Additional task specific hidden layers
for the question-answering and NLI tasks are added
after the shared encoder to provide representational
specialization for each type of task. The model
training architecture is illustrated at figure 1.

4Question-answer prediction is similar to conversational-
response prediction (Yang et al., 2018). We treat the question
as the conversational input and the answer as the response. For
improved answer selection, we provide a bag-of-words (BoW)
context feature as an additional input to the answer encoder.
For our models, we use the entire paragraph containing the
answer as context. The context feature is encoded using a
separate DAN encoder.

3.2 SentencePiece
SentencePiece tokenization (Kudo and Richardson,
2018) is used for all of the 16 languages supported
by our models.5 A single 128k SentencePiece vo-
cabulary is trained from 8 million sentences sam-
pled from our training corpus and balanced across
the 16 languages. For validation, the vocab is used
to process a development set, separately sampled
from the sentence encoding model training corpus.
We find the development set character coverage is
higher than 99% for all languages, with less than
1% out-of-vocabulary tokens. Each token in the vo-
cab is mapped to a fixed length embedding vector.6

3.3 Shared Encoder
Two distinct architectures for the sentence encod-
ing models are provided: (i) transformer (Vaswani
et al., 2017), targeted at higher accuracy at the cost
of resource consumption; (ii) convolutional neural
network (CNN) (Kim, 2014), designed for efficient
inference but obtaining reduced accuracy.

Transformer The transformer encoding model
embeds sentences using the encoder component of
the transformer architecture (Vaswani et al., 2017).
Bi-directional self-attention is used to compute
context-aware representations of tokens in a sen-
tence, taking into account both the ordering and
the identity of the tokens. The context-aware token
representations are then averaged together to obtain
a sentence-level embedding.

CNN The CNN sentence encoding model feeds
the input token sequence embeddings into a con-

5https://github.com/google/
sentencepiece

6Out-of-vocabulary characters map to an <UNK> token.
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Task Name Task Type Data Source Native or Not
Retrieval Question-Answering (ReQA) Ranking Web Crawled Native + MT
Translation Ranking Ranking Web Crawled Native
Natural Language Inference (NLI) 3 way classification Human Written Native (en) + MT

Table 2: Training tasks for the multilingual sentence encoder. For better coverage across languages, we
combine native text with machine translated (MT) data. For NLI, native data is only used for English (en).

Lang
QA Translation NLI

Native +
Translated Native Translated

ar 60M 158M 570K
de 75M 517M 570K
en 2.7B – 570K
es 340M 416M 570K
fr 92M 586M 570K
it 103M 261M 570K
ja 384M 69M 570K
ko 60M 57M 570K
nl 60M 574M 570K
pt 180M 536M 570K
pl 60M 292M 570K
ru 112M 148M 570K
th 60M 70M 570K
tr 69M 415M 570K
zh 1B 112M 570K
zh-t 147M 112M 570K

Table 3: Training examples by task for each of the
16 languages understood by our models.

volutional neural network (Kim, 2014). Similar to
the transformer encoder, average pooling is used
to turn the token-level embeddings into a fixed-
length representation. Sentence embeddings are
then obtained by passing the averaged representa-
tion through additional feedforward layers.

4 Training and Configuration

4.1 Training Corpus

Training data consists of mined question-answer
pairs,7 mined translation pairs,8 and the Stanford
Natural Language Inference (SNLI) corpus (Bow-
man et al., 2015).9 SNLI only contains English
data. The number of mined questions-answer pairs
also varies across languages with a bias toward a
handful of top tier languages. To balance train-
ing across languages, we use Google’s translation
system to translate SNLI to the other 15 languages.

7QA pairs are mined from online forums and QA websites,
including Reddit, StackOverflow, and YahooAnswers.

8The translation pairs are mined using a system similar to
the approach described in Uszkoreit et al. (2010).

9MultiNLI (Williams et al., 2018), a more extensive corpus,
contains examples from multiple sources but with different
licences. Employing SNLI avoids navigating the licensing
complexity of using MultiNLI to training public models.

Model Quora AskUbuntu Average
USETrans 89.1 42.3 65.7
USECNN 89.2 39.9 64.6
Gillick et al. (2018) 87.5 37.3 62.4

Table 4: MAP@100 on SR (English). Models are
compared with the best models from Gillick et al.
(2018) that exclude in-domain training data.

We also translate a portion of question-answer pairs
to ensure each language has a minimum of 60M
training pairs. For each of our datasets, we use 90%
of the data for training, and the remaining 10% for
development/validation. Table 2 and 3 lists the
details of data used for each task / langauge.

4.2 Model Configuration

Input sentences are truncated to 256 tokens for
the CNN model and 100 tokens for transformer.
The CNN encoder uses 2 CNN layers with filter
width of [1, 2, 3, 5] and 256 filters per width. The
Transformer encoder employs 6 transformer lay-
ers, with 8 attentions heads, hidden size 512, and
filter size 2048. Similar to our prior work (Cer
et al., 2018), we configure our models with the
intention of making them small and fast enough
to be used directly within many downstream ap-
plications without the need for model distillation.
Model hyperparameters are tuned on development
data sampled from the same sources as the training
data. We export sentence encoding modules for our
two encoder architectures: USETrans and USECNN.
We also export a larger graph for QA tasks from our
Transformer based model that includes QA specific
layers and support providing context information
from the larger document as USEQA Trans+Cxt.10

5 Experiments on Retrieval Tasks

In this section we evaluate our multilingual en-
coding models on semantic retrieval, bitext and

10While USEQA Trans+Cxt uses the same underlying shared
encoder as USETrans but with additional task specific layers,
we anticipate that the models could diverge in the future.
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Model en-es en-fr en-ru en-zh
USETrans 86.1 83.3 88.9 78.8
USECNN 85.8 82.7 87.4 79.5
Yang et al. (2019) 89.0 86.1 89.2 87.9

Table 5: P@1 on UN translation pair bitext retrieval
(BR). Yang et al. (2019) is a specialized translation
retrieval model and the current state-of-the-art.

retrieval question answer tasks.

5.1 Semantic Retrieval (SR)

Following Gillick et al. (2018), we construct seman-
tic retrieval (SR) tasks from the Quora question-
pairs (Hoogeveen et al., 2015) and AskUbuntu (Lei
et al., 2016) datasets. The SR task is to identify all
sentences in the retrieval corpus that are semanti-
cally similar to a query sentence.11

For each dataset, we first build a graph connect-
ing each of the positive pairs, and then compute
its transitive closure. Each sentence then serves
as a test query that should retrieve all of the other
sentences it is connected to within the transitive
closure. Mean average precision (MAP) is em-
ployed to evaluate the models. More details on the
constructed datasets can be found in Gillick et al.
(2018). Both datasets are English only.

Table 4 shows the MAP@100 on the Quora and
AskUbuntu retrieval tasks. We use Gillick et al.
(2018) as the baseline model, which is trained
using a similar dual encoder architecture. The
numbers provided here are for models without fo-
cused in-domain training data. 12 Both USECNN
and USETrans outperform the prior state-of-the-
art. USETrans and USECNN perform comparably
on Quora. However, USETrans performs notably
better than USECNN on AskUbuntu, suggesting the
AskUbuntu data could be more challenging.

5.2 Bitext Retrieval (BR)

Bitext retrieval performance is evaluated on the
United Nation (UN) Parallel Corpus (Ziemski et al.,
2016), containing 86,000 bilingual document pairs
matching English (en) documents with with their
translations in five other languages: French (fr),

11The task is related to paraphrase identification (Dolan
et al., 2004) and Semantic Textual Similarity (STS) (Cer et al.,
2017), but with the identification of meaning similarity being
assessed in the context of a retrieval task.

12The model for Quora is trained on Paralex (http:
//knowitall.cs.washington.edu/paralex) and
AskUbuntu data. The model for AskUbuntu is trained on
Paralex and Quora.

Spanish (es), Russian (ru), Arabic (ar) and Chinese
(zh). Document pairs are aligned at the sentence-
level, which results in 11.3 million aligned sentence
pairs for each language pair.

Table 5 shows sentence-level retrieval preci-
sion@1 (P@1) for the proposed models as well
as the current state-of-the-art results from Yang
et al. (2019), which uses a specialized translation
pair retrieval model. USETrans is generally better
than USECNN, performing lower than the SOTA
but not by too much with the exception of en-zh.13

Model SQuAD Dev SQuAD Train
Paragraph Retrieval

USEQA Trans+Cxt 63.5 53.3
BM25 (baseline) 61.6 52.4

Sentence Retrieval

USEQA Trans+Cxt 53.2 43.3
USETrans 47.1 37.2

Table 6: P@1 for SQuAD ReQA. Models are not
trained on SQuAD. Dev and Train only refer to the
respective sections of the SQuAD dataset.

5.3 Retrieval Question Answering (ReQA)
Similar to the data set construction used for the SR
tasks, the SQuAD v1.0 dataset (Rajpurkar et al.,
2016) is transformed into a retrieval question an-
swering (ReQA) task.14 We first break all docu-
ments in the dataset into sentences using the sen-
tence splitter distributed with the ReQA evaluation
suite.15 Each question of the (question, answer
spans) tuples in the dataset is treated as a query.
The task is to retrieve the sentence designated
by the tuple answer span. Search is performed
on a retrieval corpus consisting of all of the sen-
tences within the corpus. We contrast sentence and
paragraph-level retrieval using our models, with
the later allowing for comparison against a BM25
baseline (Jones et al., 2000).16

13Performance is degraded from Yang et al. (2019) due to
using a single sentencepiece vocabulary to cover 16 languages.
Languages like Chinese, Korean, Japanese have much more
characters. To ensure the vocab coverage, sentencepiece tends
to split the text of these languages into single characters, which
increases the difficulty of the task.

14The retrieval question answering task was suggested by
Chen et al. (2017) and then recently explored further by
Cakaloglu et al. (2018). However, Cakaloglu et al. (2018)’s
use of sampling makes it difficult to directly compare with
their results and we provide our own baseline based on BM25.

15https://github.com/google/
retrieval-qa-eval

16BM25 is a strong baseline for text retrieval tasks.
Paragraph-level experiments use the BM25 implementa-
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Model en ar de es fr it ja ko nl pt pl ru th tr zh / zh-t
Cross-lingual Semantic Retrieval (cl-SR)

Quora
USETrans 89.1 83.1 85.5 86.3 86.7 86.8 85.1 82.5 83.8 86.5 82.1 85.7 85.8 82.5 84.8
USECNN 89.2 79.9 83.7 85.0 85.0 85.5 82.4 77.6 81.3 85.2 78.3 83.8 83.5 79.9 81.9
LASER 79.7 82.2 83.5 83.1 83.7 - 73.4 82.8 83.6 82.3 82.6 78.6 79.9 -

AskUbuntu
USETrans 42.3 38.2 40.0 39.9 39.3 40.2 40.6 40.3 39.5 39.8 38.4 39.6 40.3 37.7 40.1
USECNN 39.9 33.0 35.0 35.6 35.2 36.1 35.5 35.1 34.5 35.6 32.9 35.2 35.2 32.8 34.6
LASER 24.5 26.1 26.4 26.5 27.0 - 22.0 26.2 26.2 25.7 25.6 23.8 25.0 -

Average
USETrans 65.7 60.7 62.8 63.1 63.0 63.5 63.8 62.4 61.7 63.2 60.7 62.7 63.1 60.1 62.5
USECNN 64.6 56.5 59.4 60.3 60.1 60.8 59.0 56.4 57.9 60.4 55.6 59.5 59.4 56.4 58.3
LASER 52.1 54.2 55.0 54.8 55.4 - 47.7 54.5 54.9 54.0 54.6 51.2 52.5 -

Cross-lingual Retrieval Question Answering (cl-ReQA)

SQuAD train
USEQA Trans+Cxt 43.3 33.2 35.2 37.2 37.0 37.0 32.9 31.1 36.6 37.7 34.5 33.2 36.9 32.3 32.7

Table 7: Cross-lingual performance on Quora/AskUbuntu cl-SR (MAP) and SQuAD cl-ReQA (P@1).
Queries/questions are machine translated, while retrieval candidates remain in English.

We evaluated ReQA using the SQuAD dev and
train sets and without training on the SQuAD
data.17 The sentence and paragraph retrieval P@1
are shown in table 6. For sentence retrieval,
we compare encodings produced using context
from the text surrounding the retrieval candidate,
USEQA Trans+Cxt, to sentence encodings produced
without contextual cues, USETrans. Paragraph re-
trieval contrasts USEQA Trans+Cxt with BM25.

5.4 Cross-lingual Retrieval

Our English retrieval experiments are extended
to explore cross-lingual semantic retrieval (cl-SR)
and cross-lingual retrieval question answering (cl-
ReQA). SR queries and ReQA questions are ma-
chine translated into other languages, while keep-
ing the retrieval candidates in English.18 Table
7 provides our cross-lingual retrieval results for
our transformer and CNN multilingual sentence
encoding models. We compare against the state-of-
the-art LASER multilingual sentence embedding

tion: https://github.com/nhirakawa/BM25, with
default parameters. We exclude sentence-level BM25, as
BM25 generally performs poorly at this granularity.

17For sentences, the resulting retrieval task for development
set consists of 11,425 questions and 10,248 candidates, and
the retrieval task for train set is consists of 87,599 questions
and 91,703 candidates. For paragraph retrieval, there are 2,067
retrieval candidates in the development set and 18,896 in the
training set. To retrieve paragraphs with our model, we first
run sentence retrieval and use the retrieved nearest sentence to
select the enclosing paragraph.

18Poor translations are detected and rejected when the orig-
inal English text and English back translation have a cosine
similarity < 0.5 according our previously released English
USETrans model (Cer et al., 2018).

library (Artetxe and Schwenk, 2019).19

On both the Quora and AskUbuntu cl-SR tasks,
USETrans outperforms USECNN and LASER on all
datasets, except the Polish (pl) Quora data where
LASER achieves slightly better performance.20

USECNN tends to outperform LASER on Quora
and always outperforms LASER by a sizable mar-
gin on AskUbuntu. We note that our CNN based
model not only outperforms LASER, but also re-
lies on simpler model architecture than LASER’s
LSTM based archtitecture. Given the similar level
of performance on Quora between USECNN and
LASER, we suspect the notably better performance
on AskUbuntu over LASER is due to differences
in the training data provided to encoding models.

6 Experiments on Transfer Tasks

For comparison with prior USE models, English
task transfer performance is evaluated on SentE-
val (Conneau and Kiela, 2018). For sentence clas-
sification transfer tasks, the output of the sentence
encoders are provided to a task specific DNN. For
the pairwise semantic similarity task, the similarity
of sentence embeddings 𝑢 and 𝑣 is assessed using
− arccos

(︁
𝑢𝑣

||𝑢|| ||𝑣||
)︁

, following Yang et al. (2018).
In table 8, our multilingual models show competi-
tive transfer performance when compared to state-
of-the-art sentence embedding models. USETrans
performs better than USECNN on all tasks. Our new

19https://github.com/facebookresearch/
LASER

20Results are not presented for LASER on ja and zh due
unicode errors.

91



Model MR CR SUBJ MPQA TREC SST STS Bench
(dev / test)

USE mutlilingual models
USECNN 73.8 83.2 90.1 87.7 96.4 78.1 0.829 / 0.809
USETransformer 78.1 87.0 92.1 89.9 96.6 80.9 0.837 / 0.825

The state-of-the-art English embedding models
InferSent (Conneau et al., 2017) 81.1 86.3 92.4 90.2 88.2 84.6 0.801 / 0.758
Skip-Thought LN (Ba et al., 2016) 79.4 83.1 93.7 89.3 – – –
Quick-Thought (Logeswaran and Lee, 2018) 82.4 86.0 94.8 90.2 92.4 87.6 –
USEDAN for English (Cer et al., 2018) 72.2 78.5 92.1 86.9 88.1 77.5 0.760 / 0.717
USETransformer for English (Cer et al., 2018) 82.2 84.2 95.5 88.1 93.2 83.7 0.802 / 0.766

Table 8: Performance on English transfer tasks from SentEval (Conneau and Kiela, 2018).

(a) CPU Inference Time (b) GPU Inference Time (c) Memory Footprint

Figure 2: Resource usage for the multilingual Transformer and CNN encoding models.

multilingual USETrans model outperforms our best
previously released English only model, USETrans
for English (Cer et al., 2018), on some tasks.

7 Resource Usage

Figure 2 provides compute and memory usage
benchmarks for our models.21 Inference times on
GPU are 2 to 3 times faster than CPU. Our CNN
models have the smallest memory footprint and are
the fastest on both CPU and GPU. The memory
requirements increase with sentence length, with
the Transformer model increasing more than twice
as fast as the CNN model.22 While this makes
CNNs an attractive choice for efficiently encoding
longer texts, this comes with a corresponding drop
in accuracy on many retrieval and transfer tasks.

8 Conclusion

Easy-to-use retrieval focused multilingual models
for embedding sentence-length text are made avail-

21CPU benchmarks are run on Intel(R) Xeon(R) Platinum
8173M CPU @ 2.00GHz. GPU benchmarks were run on an
NVidia v100. Memory footprint was measured on CPU.

22Transformer models are ultimately governed by a time
and space complexity of 𝑂(𝑛2). The benchmarks show for
shorter sequence lengths the time and space requirements are
dominated by computations that scale linearly with length and
have a larger constant factor than the quadratic terms.

able on TensorFlow Hub. Our models embed text
from 16 languages into a shared semantic embed-
ding space and achieve a new state-of-the-art in
performance on monolingual and cross-lingual se-
mantic retrieval (SR). The models achieve good per-
formance on the related tasks of translation pair bi-
text retrieval (BR) and retrieval question answering
(ReQA). Monolingual transfer task performance
approaches, and in some cases exceeds, English
only sentence embedding models. Our models are
freely available under an Apache license with ad-
ditional documentation and tutorial colaboratory
notebooks at:

https://tfhub.dev/s?q=universal-
sentence-encoder-multilingual
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Abstract

CodaLab1 is an open-source web-based plat-
form for collaborative computational research.
Although CodaLab has gained popularity in
the research community, its interface has lim-
ited support for creating reusable tools that
can be easily applied to new datasets and
composed into pipelines. In clinical domain,
natural language processing (NLP) on med-
ical notes generally involves multiple steps,
like tokenization, named entity recognition,
etc. Since these steps require different tools
which are usually scattered in different publi-
cations, it is not easy for researchers to use
them to process their own datasets. In this pa-
per, we present BENTO, a workflow manage-
ment platform with a graphic user interface
(GUI) that is built on top of CodaLab, to fa-
cilitate the process of building clinical NLP
pipelines. BENTO comes with a number of
clinical NLP tools that have been pre-trained
using medical notes and expert annotations
and can be readily used for various clinical
NLP tasks. It also allows researchers and de-
velopers to create their custom tools (e.g., pre-
trained NLP models) and use them in a con-
trolled and reproducible way. In addition, the
GUI interface enables researchers with limited
computer background to compose tools into
NLP pipelines and then apply the pipelines
on their own datasets in a “what you see is
what you get” (WYSIWYG) way. Although
BENTO is designed for clinical NLP applica-
tions, the underlying architecture is flexible to
be tailored to any other domains.

1 Introduction

With the machine learning research going deep,
computational models are becoming increasingly
large with intensive hyper-parameters tuning, mak-
ing the research difficult to reproduce. To tackle

1codalab.org

Figure 1: The architecture of BENTO. The BENTO
back end stores the description files of various tools
(e.g., pre-trained NLP models), processes static con-
tents of the application and handles compilation of the
user-defined pipelines. The CodaLab back end stores
the datasets (bundles) and executes computational jobs.
The two back end servers are brought behind a single
domain name using a reverse proxy server.

this problem, researchers have developed CodaLab
as an open-source platform for researchers and soft-
ware developers. However, CodaLab has limited
support for reusable tools that can be easily ap-
plied to different datasets and be composed into
computational pipelines.

Building pipelines is essential for the research
of certain domains. Take the medical informatics
research as an example, a complete NLP analysis
on medical notes often involves multiple steps like
tokenization, de-identification (Dernoncourt et al.,
2017; Liu et al., 2017), entity recognition (Li et al.,
2018; Xu et al., 2017; Jagannatha and Yu, 2016)
and normalization (Li et al., 2019, 2017; Cho et al.,
2017), relation extraction (Li et al., 2018; He et al.,
2019), etc. Since these steps require different tools
and these tools are usually scattered in different
publications, it is far from trivial to leverage these
tools on new datasets even though the authors have
released the source code. Therefore, we developed
a user-friendly workflow management platform,
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BiomEdical Nlp TOolkits (BENTO), to facilitate
the process of building and applying of clinical
NLP pipelines.

The architecture of BENTO is illustrated in
Figure 1. BENTO has three main components.
The web interface is supported by two back ends
brought together by a reverse-proxy server. The
CodaLab back end stores the datasets and exe-
cutes computational jobs. The BENTO back end
serves tool information and transforms user-defined
pipelines to CodaLab commands.

The advantages of such architecture are two-fold.
First, it is flexible to use CodaLab as the back end
for adding custom tools (e.g., pre-trained NLP mod-
els) and processing data in a controlled and repro-
ducible way. All the tools are containerized with
Docker2, which makes the platform to keep a uni-
fied interface to manage the models and not need
to maintain different operating environment for dif-
ferent models. Second, the web interface makes it
easier for users to construct NLP pipelines through
editing flowcharts and then apply the pipelines to
their data. The web-based architecture also makes
the platform widely accessible without complex
installation and configuration.

In this paper, we also show the examples of
using BENTO to integrate several clinical NLP
applications such as hypoglycemia detection (Jin
et al., 2019) and adverse drug event extraction (Li
et al., 2018), and build pipelines based on these
tools. BENTO helps build NLP pipelines, which
is a promising system to accelerate the medical
informatics research.

2 Related Work

Galaxy (Afgan et al., 2018) is a similar computa-
tional platform that is focused in bioinformatics and
computational biology, whose interface inspires the
design of ours. The main restriction of the Galaxy
platform is that users can only access the tools man-
aged by administrators and cannot define their own
tools. In linguistic research community, other re-
lated platforms include lingvis.io (El-Assady et al.,
2019), which is focused on integrating NLP oper-
ations with visualizations , and Argo (Rak et al.,
2012), a web-based text mining workbench based
on the UIMA framework. Stanford CoreNLP (Man-
ning et al., 2014) provides a commonly used NLP
tool set. On the library level, NLTK (Hardeniya
et al., 2016) is a popular Python library that inte-

2docker.com

grates multiple widely used NLP tools. OpenNLP
(Morton et al., 2005) is a Java library that provides
machine learning based toolkits for NLP tasks. Fu-
danNLP (Qiu et al., 2013) is a Java based library
which integrates the machine learning models and
datasets for Chinese NLP.

In the medical domain, NILE (Yu and Cai, 2013)
is a Java package which includes rule based NLP
methods for information extraction from medical
notes. Apache cTAKES (Apache cTAKES, 2018)
and CLAMP (Soysal et al., 2018) are two clinical
NLP systems with pipeline-based architecture in
the UIMA framework. Both systems have a graphi-
cal user interface, allowing users to build pipelines
from build-in UIMA components. However, the
UIMA framework has a steep learning curve. It is
also not widely used in the machine-learning-based
NLP research. Furthermore, most NLP applica-
tions are often released as command line programs.
Therefore, it is hard to extend applications that use
the UIMA framework with new models. In con-
trast, tools on our BENTO platform are based on
command line programs and users can easily define
their own tools with little restriction.

3 System Description

BENTO mainly comprises three parts: a front-end
web application, a BENTO back end server and a
CodaLab back end. As shown in Figure 1, BENTO
has a web-based user interface, from which users
can upload data, edit tools, submit jobs and perform
various other operations. The BENTO back end is a
web server that is mainly used for storing the tools,
including the user-defined ones, so they can be
accessed in different sessions. The CodaLab back
end is used for execution of each computational
job. When a tool is being executed, BENTO will
generate a series of CodaLab commands based on
the tool information and the input bundles. The
outputs of the tool are the run bundles generated
from those commands which can be passed on to
the down-stream tools and inspected by the users
on the CodaLab interface.

3.1 Web Interface

As shown in Figure 2, the user interface of our
platform is a web application that can be roughly
divided into three panels from left to right: tool
panel, canvas panel and worksheet panel. The tool
panel lists the current available tools on the plat-
form organized in a hierarchical file system struc-
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Figure 2: BENTO Web Interface. The interface can be roughly divided into three parts from left to right: tool
panel, canvas panel and worksheet panel. The tool panel lists the current available tools organized in a tree view.
The canvas panel contains the flowchart of the current pipeline. Every node represents a tool or dataset and each
connection indicates the data flow in the pipeline.3 This figure shows an example of the pipeline for entity and
relation extraction. The worksheet panel displays the content of the CodaLab worksheet such as bundles and their
UUIDs.

ture along with the meta information. Users can
edit the User Tools folder using the buttons listed
on the top menu bar. To run a tool, users can simply
drag it to the canvas panel to the right and a tool
node will appear on the canvas. A node, shown
in the workflow Figure 2, contains several input
and output ports, corresponding to the inputs and
outputs of the tool.

Tool nodes can be linked together to form a
pipeline and the connections represent the data flow
during execution (Figure 2). A connection starts
from an output port and ends in an input port. An
input port accepts only a single connection while an
output port can initiate one or multiple connections.
Users can edit the tool by clicking the Editor but-
ton ( ) on the top right corner and the node will be
toggled to an editor interface (Figure 3). The editor
contains the expression of the tool (Section 3.3),
which can be modified by the users. The rightmost
part is the worksheet panel that displays the content
of the current selected worksheet. Worksheets are
editable markup documents provided by CodaLab.
Dragging a bundle entry from the worksheet panel
to the canvas will create a data node. A data node
is similar to the tool node except that it does not
have any input port which naturally represents a
data entity in a computational pipeline.

3For simplicity, pre-processing steps like tokenization is
built-in in each tool.

3.2 CodaLab Back End

An important design goal of BENTO is flexibil-
ity. Users should be able to easily define their own
tools on the BENTO platform and customize exist-
ing tools at the command line level. For this reason,
we use CodaLab as the back end for tool execution
on the BENTO platform. CodaLab is a cloud-based
platform designed for running computational ex-
periments in data-oriented research. In CodaLab,
researchers can easily set up a reproducible environ-
ment and run arbitrary command line by specifying
a docker image and bundle dependencies. In Co-
daLab, bundles are immutable objects that hold the
content of datasets. The output files produced by
that command will be saved into a new bundle and
can be further passed to down-stream experiments.

All datasets in BENTO are stored as CodaLab
bundles. The tools and pipelines will be compiled
into CodaLab commands. Users could submit com-
mands to the CodaLab back end via the web inter-
face. Such design makes the computational results
of the BENTO platform reproducible through Co-
daLab. Since CodaLab will record dependency
information in run bundles, it is also easy to recre-
ate the pipeline on our platform from existing re-
sult bundles. Using CodaLab as the back end also
mitigates the engineering challenges such as job
scheduling and data management.
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Figure 3: The CodaLang expression for the tool NER in
Figure 2. The expression can be roughly split into three
sections indicated by the dashed squares. The first sec-
tion declares the arguments of this tool. As seen, the
tool takes three bundles as inputs: config, input and
pretrained model. The second section declares a con-
stant code which is initialized with an existing bundle.
The third section is a string template for generating the
CodaLab command.

3.3 BENTO Back End

The BENTO back end is for storing tools and
generating CodaLab commands from the pipeline
graphs.

3.3.1 CodaLang: A Tool Configuration
Language

The tools in BENTO are described via our custom
language called CodaLang4 It acts as an intermedi-
ate layer between the web interface and CodaLab.
It has a succinct syntax for specifying the inter-
faces of a tool, i.e. the inputs and outputs. It also
provides a string template mechanism for creating
CodaLab commands from input arguments. For
example, the CodaLang expression for the node
NER in Figure 2 is shown in Figure 3.

The configuration is composed of three sections
which are highlighted with dotted squares. The
first section declares the arguments of the tool, cor-
responding to the three input ports of the node.
The second section creates a constant variable code
which is assigned an existing bundle. The third
section is a string template for generating the Co-

4A thorough introduction can be found at
https://github.com/jyh1/codalang .

Figure 4: The CodaLab commands generated from the
pipeline in Figure 2. Two CodaLab commands are gen-
erated based on two steps in the pipeline, namely NER
and relation extraction. The bundle dependency infor-
mation is highlighted in orange and the shell commands
are colorized in red. The results in the first step are
saved in the variable bundle 0 (circled in blue squares),
which is used as a bundle dependency in the command
of the second step.

daLab command. It includes execution options
(e.g., request-docker-image) and tool bash com-
mands. The template variables are circled by the
squares in the same color with their declarations.
Once the values of the tool arguments are deter-
mined, a CodaLab command can be easily gen-
erated based on the command template. The run
bundle created by the command will be used as
results and can be passed on to down-stream tools
in the pipeline. Through CodaLang, users can eas-
ily modify existing tools or create their own tools.
The tool configuration can also be automatically
generated from the dependency information of a
bundle.

3.3.2 Pipeline Execution
We have described how BENTO transforms a sin-
gle tool to a CodaLab command. In this section,
we will describe how BENTO transforms a tool
pipeline into multiple CodaLab commands. In a
tool pipeline, tools are connected together to form
a directed acyclic graph. During execution, tools
are transformed to CodaLab commands according
to their topological order in the graph. Take the
pipeline in Figure 2 as an example, its correspond-
ing CodaLab commands shown in Figure 4.

As shown in Figure 4, the bundle dependency
information is highlighted in orange and the shell
commands are colorized in red. The two CodaLab
commands correspond to the two tool nodes in the
pipeline of Figure 2. The first command is gener-
ated from the tool NER based on its tool configura-
tion in Figure 3. The results of this command are
saved in the variable bundle 0, which will be em-
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ployed as a bundle dependency in the command of
the tool for relation extraction. The web interface
takes the responsibility of submitting the gener-
ated commands to CodaLab. When the pipeline
begins to run, the worksheet panel will display the
information of the newly created run bundles.

4 Tools Integrated in BENTO

In this section, we list the tools that have already
been integrated to our platform, including:

• Hypoglycemic Event Detection (Jin et al.,
2019): Hypoglycemic events are common and
potentially dangerous conditions among pa-
tients being treated for diabetes. This tool can
be used to automatically detect hypoglycemic
events from EHR notes.

• Clinical Entity Recognition (Li et al., 2018):
This tool has been built to recognize 9 types
of clinical entities such as medications, indi-
cations and adverse drug events (ADEs).

• Clinical Relation Extraction (Li et al., 2018):
This tool is able to extract 7 types of relations
between clinical entities such as medications
and their durations, dosages and frequencies.

• Disease Name Normalization (Li et al., 2019):
This tool can be used to normalize disease
names to some controlled vocabularies such
SNOMED5 and MEDIC (Davis et al., 2012).

• De-identification: This tool is able to recog-
nize 18 types of protected health information
that needs to be removed to de-identify pa-
tient notes. We employed BERT (Devlin et al.,
2019) to build a de-identification model whose
performance is comparable with the state-of-
the-art system (Dernoncourt et al., 2017).

We provide examples and instructions to use
these tools on the demo page of our platform. For
convenience, these tools all take plain text files as
inputs and have the pre-processing and tokeniza-
tion components built-in. In the future, we will
integrate stand-alone components dedicated for pre-
processing and tokenization to BENTO which can
be shared by different application tools. We also
plan to incorporate more NLP tools developed by
our group(Rumeng et al., 2017; Rawat et al., 2019;
Lalor et al., 2019; Zheng and Yu, 2018).

5https://www.snomed.org

5 Conclusion

In this paper, we have described the design of
the workflow management platform BENTO. To
the best of our knowledge, BENTO represents the
first web-based workflow management platform
for NLP research. Using BENTO, researchers can
make use of existing tools or define their own tools.
Computational pipelines can be configured through
a web-based user-interface and then automatically
executed on CodaLab. BENTO includes a number
of clinical NLP tools to facilitate the process of
EHR notes. A demo of our platform is available at
bio-nlp.org/bentodemo/.
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Grüning, et al. 2018. The galaxy platform for ac-
cessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic acids research,
46(W1):W537–W544.

TM Apache cTAKES. 2018. clinical text analysis
knowledge extraction system.

Hyejin Cho, Wonjun Choi, and Hyunju Lee. 2017. A
method for named entity normalization in biomedi-
cal articles: application to diseases and plants. BMC
bioinformatics, 18(1):451.

Allan Peter Davis, Thomas C Wiegers, Michael C
Rosenstein, and Carolyn J Mattingly. 2012. Medic:
a practical disease vocabulary used at the compara-
tive toxicogenomics database. Database, 2012.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner,
and Peter Szolovits. 2017. De-identification of pa-
tient notes with recurrent neural networks. Journal
of the American Medical Informatics Association,
24(3):596–606.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mennatallah El-Assady, Wolfgang Jentner, Fabian
Sperrle, Rita Sevastjanova, Annette Hautli, Miriam
Butt, and Daniel Keim. 2019. lingvis. io-a linguistic
visual analytics framework. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
13–18.

99



Nitin Hardeniya, Jacob Perkins, Deepti Chopra,
Nisheeth Joshi, and Iti Mathur. 2016. Natural Lan-
guage Processing: Python and NLTK. Packt Pub-
lishing Ltd.

Bin He, Yi Guan, and Rui Dai. 2019. Classifying med-
ical relations in clinical text via convolutional neural
networks. Artificial intelligence in medicine, 93:43–
49.

Abhyuday N Jagannatha and Hong Yu. 2016. Struc-
tured prediction models for rnn based sequence la-
beling in clinical text. In Proceedings of the confer-
ence on empirical methods in natural language pro-
cessing. conference on empirical methods in natural
language processing, volume 2016, page 856. NIH
Public Access.

Yonghao Jin, Fei Li, Varsha G Vimalananda, and Hong
Yu. 2019. Automatic Detection of Hypoglycemic
Events From the Electronic Health Record Notes of
Diabetes Patients: Empirical Study. JMIR medical
informatics, 7(4):e14340.

John P Lalor, Beverly Woolf, and Hong Yu. 2019. Im-
proving electronic health record note comprehen-
sion with noteaid: Randomized trial of electronic
health record note comprehension interventions with
crowdsourced workers. Journal of medical Internet
research, 21(1):e10793.

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, and Hong Yu. 2019. Fine-
Tuning Bidirectional Encoder Representations From
Transformers (BERT)-Based Models on Large-
Scale Electronic Health Record Notes: An Empiri-
cal Study. JMIR medical informatics.

Fei Li, Weisong Liu, and Hong Yu. 2018. Extraction of
Information Related to Adverse Drug Events from
Electronic Health Record Notes: Design of an End-
to-End Model Based on Deep Learning. JMIR med-
ical informatics.

Haodi Li, Qingcai Chen, Buzhou Tang, Xiaolong
Wang, Hua Xu, Baohua Wang, and Dong Huang.
2017. Cnn-based ranking for biomedical entity nor-
malization. BMC bioinformatics, 18(11):79–86.

Zengjian Liu, Buzhou Tang, Xiaolong Wang, and Qing-
cai Chen. 2017. De-identification of clinical notes
via recurrent neural network and conditional random
field. Journal of biomedical informatics, 75:S34–
S42.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual meet-
ing of the association for computational linguistics:
system demonstrations, pages 55–60.

Thomas Morton, Joern Kottmann, Jason Baldridge, and
Gann Bierner. 2005. Opennlp: A java-based nlp
toolkit. In Proc. EACL.

Xipeng Qiu, Qi Zhang, and Xuan-Jing Huang. 2013.
Fudannlp: A toolkit for chinese natural language
processing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 49–54.

Rafal Rak, Andrew Rowley, William Black, and Sophia
Ananiadou. 2012. Argo: an integrative, interactive,
text mining-based workbench supporting curation.
Database, 2012.

Bhanu Pratap Singh Rawat, Fei Li, and Hong Yu. 2019.
Naranjo question answering using end-to-end multi-
task learning model. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2547–2555.

Li Rumeng, N Jagannatha Abhyuday, and Yu Hong.
2017. A hybrid neural network model for joint pre-
diction of presence and period assertions of medi-
cal events in clinical notes. In AMIA Annual Sympo-
sium Proceedings, volume 2017, page 1149. Ameri-
can Medical Informatics Association.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui
Wu, Serguei Pakhomov, Hongfang Liu, and Hua
Xu. 2018. Clamp–a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association, 25(3):331–336.

Kai Xu, Zhanfan Zhou, Tianyong Hao, and Wenyin Liu.
2017. A bidirectional lstm and conditional random
fields approach to medical named entity recognition.
In International Conference on Advanced Intelligent
Systems and Informatics, pages 355–365. Springer.

S Yu and T Cai. 2013. Nile: fast natural language
processing for electronic health records. Preprint at
https://arxiv. org/abs/1311.6063.

Jiaping Zheng and Hong Yu. 2018. Assessing the read-
ability of medical documents: a ranking approach.
JMIR medical informatics, 6(1):e17.

100



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 101–108
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

Sta n z a : A Python Natural Language Processing Toolkit
for Many Human Languages

Peng Qi* Yuhao Zhang* Yuhui Zhang
Jason Bolton Christopher D. Manning

Stanford University
Stanford, CA 94305

{pengqi, yuhaozhang, yuhuiz}@stanford.edu
{jebolton, manning}@stanford.edu

Abstract

We introduce Sta n z a , an open-source Python
natural language processing toolkit support-
ing 66 human languages. Compared to ex-
isting widely used toolkits, Sta n z a features
a language-agnostic fully neural pipeline for
text analysis, including tokenization, multi-
word token expansion, lemmatization, part-of-
speech and morphological feature tagging, de-
pendency parsing, and named entity recogni-
tion. We have trained Sta n z a on a total of
112 datasets, including the Universal Depen-
dencies treebanks and other multilingual cor-
pora, and show that the same neural architec-
ture generalizes well and achieves competitive
performance on all languages tested. Addition-
ally, Sta n z a includes a native Python interface
to the widely used Java Stanford CoreNLP
software, which further extends its function-
ality to cover other tasks such as coreference
resolution and relation extraction. Source
code, documentation, and pretrained models
for 66 languages are available at https://
stanfordnlp.github.io/stanza/.

1 Introduction

The growing availability of open-source natural lan-
guage processing (NLP) toolkits has made it easier
for users to build tools with sophisticated linguistic
processing. While existing NLP toolkits such as
CoreNLP (Manning et al., 2014), FLAIR (Akbik
et al., 2019), spaCy1, and UDPipe (Straka, 2018)
have had wide usage, they also suffer from several
limitations. First, existing toolkits often support
only a few major languages. This has significantly
limited the community’s ability to process multilin-
gual text. Second, widely used tools are sometimes
under-optimized for accuracy either due to a focus
on efficiency (e.g., spaCy) or use of less power-
ful models (e.g., CoreNLP), potentially mislead-

∗Equal contribution. Order decided by a tossed coin.
1https://spacy.io/
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Figure 1: Overview of Sta n z a ’s neural NLP pipeline.
Sta n z a takes multilingual text as input, and produces
annotations accessible as native Python objects. Be-
sides this neural pipeline, Sta n z a also features a
Python client interface to the Java CoreNLP software.

ing downstream applications and insights obtained
from them. Third, some tools assume input text has
been tokenized or annotated with other tools, lack-
ing the ability to process raw text within a unified
framework. This has limited their wide applicabil-
ity to text from diverse sources.

We introduce Sta n z a 2, a Python natural language
processing toolkit supporting many human lan-
guages. As shown in Table 1, compared to existing
widely-used NLP toolkits, Sta n z a has the following
advantages:

• From raw text to annotations. Sta n z a fea-
tures a fully neural pipeline which takes raw
text as input, and produces annotations includ-
ing tokenization, multi-word token expansion,
lemmatization, part-of-speech and morpholog-
ical feature tagging, dependency parsing, and
named entity recognition.

• Multilinguality. Sta n z a ’s architectural de-
sign is language-agnostic and data-driven,
which allows us to release models support-

2The toolkit was called StanfordNLP prior to v1.0.0.
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System # Human
Languages

Programming
Language

Raw Text
Processing

Fully
Neural

Pretrained
Models

State-of-the-art
Performance

CoreNLP 6 Java ! !

FLAIR 12 Python ! ! !

spaCy 10 Python ! !

UDPipe 61 C++ ! ! !

Sta n z a 66 Python ! ! ! !

Table 1: Feature comparisons of Sta n z a against other popular natural language processing toolkits.

ing 66 languages, by training the pipeline on
the Universal Dependencies (UD) treebanks
and other multilingual corpora.

• State-of-the-art performance. We evaluate
Sta n z a on a total of 112 datasets, and find its
neural pipeline adapts well to text of different
genres, achieving state-of-the-art or competi-
tive performance at each step of the pipeline.

Additionally, Sta n z a features a Python interface
to the widely used Java CoreNLP package, allow-
ing access to additional tools such as coreference
resolution and relation extraction.

Sta n z a is fully open source and we make pre-
trained models for all supported languages and
datasets available for public download. We hope Sta
n z a can facilitate multilingual NLP research and ap-
plications, and drive future research that produces
insights from human languages.

2 System Design and Architecture

At the top level, Sta n z a consists of two individual
components: (1) a fully neural multilingual NLP
pipeline; (2) a Python client interface to the Java
Stanford CoreNLP software. In this section we
introduce their designs.

2.1 Neural Multilingual NLP Pipeline

Sta n z a ’s neural pipeline consists of models that
range from tokenizing raw text to performing syn-
tactic analysis on entire sentences (see Figure 1).
All components are designed with processing many
human languages in mind, with high-level design
choices capturing common phenomena in many
languages and data-driven models that learn the dif-
ference between these languages from data. More-
over, the implementation of Sta n z a components is
highly modular, and reuses basic model architec-
tures when possible for compactness. We highlight
the important design choices here, and refer the
reader to Qi et al. (2018) for modeling details.

(fr) L’Association des Hôtels
(en) The Association of Hotels
(fr) Il y a des hôtels en bas de la rue
(en) There are hotels down the street

Figure 2: An example of multi-word tokens in French.
The des in the first sentence corresponds to two syntac-
tic words, de and les; the second des is a single word.

Tokenization and Sentence Splitting. When
presented raw text, Sta n z a tokenizes it and groups
tokens into sentences as the first step of processing.
Unlike most existing toolkits, Sta n z a combines tok-
enization and sentence segmentation from raw text
into a single module. This is modeled as a tagging
problem over character sequences, where the model
predicts whether a given character is the end of a
token, end of a sentence, or end of a multi-word
token (MWT, see Figure 2).3 We choose to predict
MWTs jointly with tokenization because this task
is context-sensitive in some languages.

Multi-word Token Expansion. Once MWTs
are identified by the tokenizer, they are expanded
into the underlying syntactic words as the basis
of downstream processing. This is achieved with
an ensemble of a frequency lexicon and a neural
sequence-to-sequence (seq2seq) model, to ensure
that frequently observed expansions in the training
set are always robustly expanded while maintaining
flexibility to model unseen words statistically.

POS and Morphological Feature Tagging. For
each word in a sentence, Sta n z a assigns it a part-
of-speech (POS), and analyzes its universal mor-
phological features (UFeats, e.g., singular/plural,
1st/2nd/3rd person, etc.). To predict POS and UFeats,
we adopt a bidirectional long short-term mem-
ory network (Bi-LSTM) as the basic architecture.
For consistency among universal POS (UPOS),

3Following Universal Dependencies (Nivre et al., 2020),
we make a distinction between tokens (contiguous spans of
characters in the input text) and syntactic words. These are
interchangeable aside from the cases of MWTs, where one
token can correspond to multiple words.
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treebank-specific POS (XPOS), and UFeats, we
adopt the biaffine scoring mechanism from Dozat
and Manning (2017) to condition XPOS and
UFeats prediction on that of UPOS.

Lemmatization. Sta n z a also lemmatizes each
word in a sentence to recover its canonical form
(e.g., did→do). Similar to the multi-word token ex-
pander, Sta n z a ’s lemmatizer is implemented as an
ensemble of a dictionary-based lemmatizer and a
neural seq2seq lemmatizer. An additional classifier
is built on the encoder output of the seq2seq model,
to predict shortcuts such as lowercasing and iden-
tity copy for robustness on long input sequences
such as URLs.

Dependency Parsing. Sta n z a parses each sen-
tence for its syntactic structure, where each word
in the sentence is assigned a syntactic head that
is either another word in the sentence, or in the
case of the root word, an artificial root symbol. We
implement a Bi-LSTM-based deep biaffine neural
dependency parser (Dozat and Manning, 2017). We
further augment this model with two linguistically
motivated features: one that predicts the lineariza-
tion order of two words in a given language, and
the other that predicts the typical distance in linear
order between them. We have previously shown
that these features significantly improve parsing
accuracy (Qi et al., 2018).

Named Entity Recognition. For each input sen-
tence, Sta n z a also recognizes named entities in it
(e.g., person names, organizations, etc.). For NER
we adopt the contextualized string representation-
based sequence tagger from Akbik et al. (2018).
We first train a forward and a backward character-
level LSTM language model, and at tagging time
we concatenate the representations at the end of
each word position from both language models
with word embeddings, and feed the result into a
standard one-layer Bi-LSTM sequence tagger with
a conditional random field (CRF)-based decoder.

2.2 CoreNLP Client

Stanford’s Java CoreNLP software provides a com-
prehensive set of NLP tools especially for the En-
glish language. However, these tools are not easily
accessible with Python, the programming language
of choice for many NLP practitioners, due to the
lack of official support. To facilitate the use of
CoreNLP from Python, we take advantage of the

existing server interface in CoreNLP, and imple-
ment a robust client as its Python interface.

When the CoreNLP client is instantiated, Sta n z
a will automatically start the CoreNLP server as a
local process. The client then communicates with
the server through its RESTful APIs, after which
annotations are transmitted in Protocol Buffers, and
converted back to native Python objects. Users can
also specify JSON or XML as annotation format.
To ensure robustness, while the client is being used,
Sta n z a periodically checks the health of the server,
and restarts it if necessary.

3 System Usage

Sta n z a ’s user interface is designed to allow quick
out-of-the-box processing of multilingual text. To
achieve this, Sta n z a supports automated model
download via Python code and pipeline customiza-
tion with processors of choice. Annotation results
can be accessed as native Python objects to allow
for flexible post-processing.

3.1 Neural Pipeline Interface

Sta n z a ’s neural NLP pipeline can be initialized
with the Pipeline class, taking language name
as an argument. By default, all processors will be
loaded and run over the input text; however, users
can also specify the processors to load and run with
a list of processor names as an argument. Users
can additionally specify other processor-level prop-
erties, such as batch sizes used by processors, at
initialization time.

The following code snippet shows a minimal us-
age of Sta n z a for downloading the Chinese model,
annotating a sentence with customized processors,
and printing out all annotations:

import stanza
# download Chinese model
stanza.download(’zh’)
# initialize Chinese neural pipeline
nlp = stanza.Pipeline(’zh’, processors=’tokenize,

pos,ner’)
# run annotation over a sentence
doc = nlp(’斯坦福是一所私立研究型大学。’)
print(doc)

After all processors are run, a Document in-
stance will be returned, which stores all annotation
results. Within a Document, annotations are fur-
ther stored in Sentences, Tokens and Words
in a top-down fashion (Figure 1). The following
code snippet demonstrates how to access the text
and POS tag of each word in a document and all
named entities in the document:

103



# print the text and POS of all words
for sentence in doc.sentences:

for word in sentence.words:
print(word.text, word.pos)

# print all entities in the document
print(doc.entities)

Sta n z a is designed to be run on different hard-
ware devices. By default, CUDA devices will be
used whenever they are visible by the pipeline, or
otherwise CPUs will be used. However, users can
force all computation to be run on CPUs by setting
use_gpu=False at initialization time.

3.2 CoreNLP Client Interface

The CoreNLP client interface is designed in a way
that the actual communication with the backend
CoreNLP server is transparent to the user. To an-
notate an input text with the CoreNLP client, a
CoreNLPClient instance needs to be initialized,
with an optional list of CoreNLP annotators. After
the annotation is complete, results will be accessi-
ble as native Python objects.

This code snippet shows how to establish a
CoreNLP client and obtain the NER and corefer-
ence annotations of an English sentence:

from stanza.server import CoreNLPClient

# start a CoreNLP client
with CoreNLPClient(annotators=[’tokenize’,’ssplit

’,’pos’,’lemma’,’ner’,’parse’,’coref’]) as
client:
# run annotation over input
ann = client.annotate(’Emily said that she
liked the movie.’)
# access all entities
for sent in ann.sentence:

print(sent.mentions)
# access coreference annotations
print(ann.corefChain)

With the client interface, users can annotate text
in 6 languages as supported by CoreNLP.

3.3 Interactive Web-based Demo

To help visualize documents and their annotations
generated by Sta n z a , we build an interactive web
demo that runs the pipeline interactively. For all
languages and all annotations Sta n z a provides in
those languages, we generate predictions from the
models trained on the largest treebank/NER dataset,
and visualize the result with the Brat rapid annota-
tion tool.4 This demo runs in a client/server archi-
tecture, and annotation is performed on the server
side. We make one instance of this demo publicly
available at http://stanza.run/. It can also be
run locally with proper Python libraries installed.

4https://brat.nlplab.org/

Figure 3: Sta n z a annotates a German sentence, as vi-
sualized by our interactive demo. Note am is expanded
into syntactic words an and dem before downstream
analyses are performed.

An example of running Sta n z a on a German sen-
tence can be found in Figure 3.

3.4 Training Pipeline Models

For all neural processors, Sta n z a provides
command-line interfaces for users to train their
own customized models. To do this, users need
to prepare the training and development data in
compatible formats (i.e., CoNLL-U format for the
Universal Dependencies pipeline and BIO format
column files for the NER model). The following
command trains a neural dependency parser with
user-specified training and development data:

$ python -m stanza.models.parser \
--train_file train.conllu \
--eval_file dev.conllu \
--gold_file dev.conllu \
--output_file output.conllu

4 Performance Evaluation

To establish benchmark results and compare with
other popular toolkits, we trained and evaluated
Sta n z a on a total of 112 datasets. All pretrained
models are publicly downloadable.

Datasets. We train and evaluate Sta n z a ’s tokeniz-
er/sentence splitter, MWT expander, POS/UFeats
tagger, lemmatizer, and dependency parser with
the Universal Dependencies v2.5 treebanks (Ze-
man et al., 2019). For training we use 100 tree-
banks from this release that have non-copyrighted
training data, and for treebanks that do not include
development data, we randomly split out 20% of
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Treebank System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS

Overall (100 treebanks) Sta n z a 99.09 86.05 98.63 92.49 91.80 89.93 92.78 80.45 75.68

Arabic-PADT
Sta n z a 99.98 80.43 97.88 94.89 91.75 91.86 93.27 83.27 79.33
UDPipe 99.98 82.09 94.58 90.36 84.00 84.16 88.46 72.67 68.14

Chinese-GSD
Sta n z a 92.83 98.80 92.83 89.12 88.93 92.11 92.83 72.88 69.82
UDPipe 90.27 99.10 90.27 84.13 84.04 89.05 90.26 61.60 57.81

English-EWT
Sta n z a 99.01 81.13 99.01 95.40 95.12 96.11 97.21 86.22 83.59
UDPipe 98.90 77.40 98.90 93.26 92.75 94.23 95.45 80.22 77.03
spaCy 97.30 61.19 97.30 86.72 90.83 – 87.05 – –

French-GSD
Sta n z a 99.68 94.92 99.48 97.30 – 96.72 97.64 91.38 89.05
UDPipe 99.68 93.59 98.81 95.85 – 95.55 96.61 87.14 84.26
spaCy 98.34 77.30 94.15 86.82 – – 87.29 67.46 60.60

Spanish-AnCora
Sta n z a 99.98 99.07 99.98 98.78 98.67 98.59 99.19 92.21 90.01
UDPipe 99.97 98.32 99.95 98.32 98.13 98.13 98.48 88.22 85.10
spaCy 99.47 97.59 98.95 94.04 – – 79.63 86.63 84.13

Table 2: Neural pipeline performance comparisons on the Universal Dependencies (v2.5) test treebanks. For our
system we show macro-averaged results over all 100 treebanks. We also compare our system against UDPipe and
spaCy on treebanks of five major languages where the corresponding pretrained models are publicly available. All
results are F1 scores produced by the 2018 UD Shared Task official evaluation script.

the training data as development data. These tree-
banks represent 66 languages, mostly European
languages, but spanning a diversity of language
families, including Indo-European, Afro-Asiatic,
Uralic, Turkic, Sino-Tibetan, etc. For NER, we
train and evaluate Sta n z a with 12 publicly avail-
able datasets covering 8 major languages as shown
in Table 3 (Nothman et al., 2013; Tjong Kim Sang
and De Meulder, 2003; Tjong Kim Sang, 2002;
Benikova et al., 2014; Mohit et al., 2012; Taulé
et al., 2008; Weischedel et al., 2013). For the
WikiNER corpora, as canonical splits are not avail-
able, we randomly split them into 70% training,
15% dev and 15% test splits. For all other corpora
we used their canonical splits.

Training. On the Universal Dependencies tree-
banks, we tuned all hyper-parameters on several
large treebanks and applied them to all other tree-
banks. We used the word2vec embeddings released
as part of the 2018 UD Shared Task (Zeman et al.,
2018), or the fastText embeddings (Bojanowski
et al., 2017) whenever word2vec is not available.
For the character-level language models in the NER
component, we pretrained them on a mix of the
Common Crawl and Wikipedia dumps, and the
news corpora released by the WMT19 Shared Task
(Barrault et al., 2019), except for English and Chi-
nese, for which we pretrained on the Google One
Billion Word (Chelba et al., 2013) and the Chi-

nese Gigaword corpora5, respectively. We again
applied the same hyper-parameters to models for
all languages.

Universal Dependencies Results. For perfor-
mance on UD treebanks, we compared Sta n z a
(v1.0) against UDPipe (v1.2) and spaCy (v2.2) on
treebanks of 5 major languages whenever a pre-
trained model is available. As shown in Table 2, St
a n z a achieved the best performance on most scores
reported. Notably, we find that Sta n z a ’s language-
agnostic architecture is able to adapt to datasets of
different languages and genres. This is also shown
by Sta n z a ’s high macro-averaged scores over 100
treebanks covering 66 languages.

NER Results. For performance of the NER com-
ponent, we compared Sta n z a (v1.0) against FLAIR

(v0.4.5) and spaCy (v2.2). For spaCy we reported
results from its publicly available pretrained model
whenever one trained on the same dataset can be
found, otherwise we retrained its model on our
datasets with default hyper-parameters, follow-
ing the publicly available tutorial.6 For FLAIR,
since their downloadable models were pretrained

5https://catalog.ldc.upenn.edu/
LDC2011T13

6https://spacy.io/usage/training#ner
Note that, following this public tutorial, we did not use
pretrained word embeddings when training spaCy NER
models, although using pretrained word embeddings may
potentially improve the NER results.
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Language Corpus # Types Sta n z a FLAIR spaCy

Arabic AQMAR 4 74.3 74.0 –

Chinese OntoNotes 18 79.2 – –

Dutch CoNLL02 4 89.2 90.3 73.8
WikiNER 4 94.8 94.8 90.9

English CoNLL03 4 92.1 92.7 81.0
OntoNotes 18 88.8 89.0 85.4∗

French WikiNER 4 92.9 92.5 88.8∗

German CoNLL03 4 81.9 82.5 63.9
GermEval14 4 85.2 85.4 68.4

Russian WikiNER 4 92.9 – –

Spanish CoNLL02 4 88.1 87.3 77.5
AnCora 4 88.6 88.4 76.1

Table 3: NER performance across different languages
and corpora. All scores reported are entity micro-
averaged test F1. For each corpus we also list the num-
ber of entity types. ∗ marks results from publicly avail-
able pretrained models on the same dataset, while oth-
ers are from models retrained on our datasets.

on dataset versions different from canonical ones,
we retrained all models on our own dataset splits
with their best reported hyper-parameters. All test
results are shown in Table 3. We find that on all
datasets Sta n z a achieved either higher or close F1

scores when compared against FLAIR. When com-
pared to spaCy, Sta n z a ’s NER performance is much
better. It is worth noting that Sta n z a ’s high per-
formance is achieved with much smaller models
compared with FLAIR (up to 75% smaller), as we
intentionally compressed the models for memory
efficiency and ease of distribution.

Speed comparison. We compare Sta n z a against
existing toolkits to evaluate the time it takes to an-
notate text (see Table 4). For GPU tests we use a
single NVIDIA Titan RTX card. Unsurprisingly,
Sta n z a ’s extensive use of accurate neural models
makes it take significantly longer than spaCy to
annotate text, but it is still competitive when com-
pared against toolkits of similar accuracy, espe-
cially with the help of GPU acceleration.

5 Conclusion and Future Work

We introduced Sta n z a , a Python natural language
processing toolkit supporting many human lan-
guages. We have showed that Sta n z a ’s neural
pipeline not only has wide coverage of human lan-
guages, but also is accurate on all tasks, thanks
to its language-agnostic, fully neural architectural
design. Simultaneously, Sta n z a ’s CoreNLP client
extends its functionality with additional NLP tools.

Task Sta n z a UDPipe FLAIR
CPU GPU CPU CPU GPU

UD 10.3× 3.22× 4.30× – –
NER 17.7× 1.08× – 51.8× 1.17×

Table 4: Annotation runtime of various toolkits rela-
tive to spaCy (CPU) on the English EWT treebank and
OntoNotes NER test sets. For reference, on the com-
pared UD and NER tasks, spaCy is able to process 8140
and 5912 tokens per second, respectively.

For future work, we consider the following areas
of improvement in the near term:

• Models downloadable in Sta n z a are largely
trained on a single dataset. To make mod-
els robust to many different genres of text,
we would like to investigate the possibility of
pooling various sources of compatible data to
train “default” models for each language;

• The amount of computation and resources
available to us is limited. We would there-
fore like to build an open “model zoo” for
Sta n z a , so that researchers from outside our
group can also contribute their models and
benefit from models released by others;

• Sta n z a was designed to optimize for accuracy
of its predictions, but this sometimes comes at
the cost of computational efficiency and lim-
its the toolkit’s use. We would like to further
investigate reducing model sizes and speed-
ing up computation in the toolkit, while still
maintaining the same level of accuracy.

• We would also like to expand Sta n z a ’s func-
tionality by adding other processors such as
neural coreference resolution or relation ex-
traction for richer text analytics.
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Abstract

We introduce jiant, an open source toolkit
for conducting multitask and transfer learning
experiments on English NLU tasks. jiant
enables modular and configuration-driven ex-
perimentation with state-of-the-art models and
implements a broad set of tasks for probing,
transfer learning, and multitask training ex-
periments. jiant implements over 50 NLU
tasks, including all GLUE and SuperGLUE
benchmark tasks. We demonstrate that jiant
reproduces published performance on a vari-
ety of tasks and models, including BERT and
RoBERTa. jiant is available at https://
jiant.info.

1 Introduction

This paper introduces jiant,1 an open source
toolkit that allows researchers to quickly exper-
iment on a wide array of NLU tasks, using
state-of-the-art NLP models, and conduct exper-
iments on probing, transfer learning, and multitask
training. jiant supports many state-of-the-art
Transformer-based models implemented by Hug-
gingface’s Transformers package, as well as non-
Transformer models such as BiLSTMs.

Packages and libraries like HuggingFace’s Trans-
formers (Wolf et al., 2019) and AllenNLP (Gardner
et al., 2017) have accelerated the process of ex-
perimenting and iterating on NLP models by both
abstracting out implementation details, and sim-
plifying the model training pipeline. jiant ex-
tends the capabilities of both toolkits by presenting
a wrapper that implements a variety of complex
experimental pipelines in a scalable and easily con-
trollable setting. jiant contains a task bank of
over 50 tasks, including all the tasks presented in
GLUE (Wang et al., 2018), SuperGLUE (Wang

∗Equal contribution.
1The name jiant stands for “jiant is an NLP toolkit”.

et al., 2019b), the edge-probing suite (Tenney et al.,
2019b), and the SentEval probing suite (Conneau
and Kiela, 2018), as well as other individual tasks
including CCG supertagging (Hockenmaier and
Steedman, 2007), SocialIQA (Sap et al., 2019), and
CommonsenseQA (Talmor et al., 2019). jiant
is also the official baseline codebase for the Super-
GLUE benchmark.
jiant’s core design principles are:

• Ease of use: jiant should allow users to run
a variety of experiments using state-of-the-art
models via an easy to use configuration-driven
interface.

• Reproducibility: jiant should provide fea-
tures that support correct and reproducible ex-
periments, including logging and saving and
restoring model state.

• Availability of NLU tasks: jiant should
maintain and continue to grow a collection
of tasks useful for NLU research, especially
popular evaluation tasks and tasks commonly
used in pretraining and transfer learning.

• Availability of cutting-edge models: jiant
should make implementations of state-of-the-
art models available for experimentation.

• Open source: jiant should be free to use,
and easy to contribute to.

Early versions of jiant have already been used
in multiple works, including probing analyses (Ten-
ney et al., 2019b,a; Warstadt et al., 2019; Lin et al.,
2019; Hewitt and Manning, 2019; Jawahar et al.,
2019), transfer learning experiments (Wang et al.,
2019a; Phang et al., 2018), and dataset and bench-
mark construction (Wang et al., 2019b, 2018; Kim
et al., 2019).
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Figure 1: Multi-phase jiant experiment configura-
tion used by Wang et al. (2019a): a BERT sentence en-
coder is trained with an intermediate task model during
jiant’s intermediate training phase, and fine-tuned
with various target task models in jiant’s target train-
ing phase.

2 Background

Transfer learning is an area of research that uses
knowledge from pretrained models to transfer to
new tasks. In recent years, Transformer-based mod-
els like BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2019) have yielded state-of-the-art results on
the lion’s share of benchmark tasks for language un-
derstanding through pretraining and transfer, often
paired with some form of multitask learning.
jiant enables a variety of complex training

pipelines through simple configuration changes, in-
cluding multi-task training (Caruana, 1993; Liu
et al., 2019a) and pretraining, as well as the se-
quential fine-tuning approach from STILTs (Phang
et al., 2018). In STILTs, intermediate task training
takes a pretrained model like ELMo or BERT, and
applies supplementary training on a set of interme-
diate tasks, before finally performing single-task
training on additional downstream tasks.

3 jiant System Overview

3.1 Requirements and Deployment

jiant can be cloned and installed from GitHub:
https://github.com/nyu-mll/jiant. jiant
v1.3.0 requires Python 3.5 or later, and jiant’s
core dependencies are PyTorch (Paszke et al.,
2019), AllenNLP (Gardner et al., 2017), and
HuggingFace’s Transformers (Wolf et al., 2019).
jiant is released under the MIT License (Open
Source Initiative, 2020). jiant runs on consumer-
grade hardware or in cluster environments with
or without CUDA GPUs. The jiant repository
also contains documentation and configuration files
demonstrating how to deploy jiant in Kuber-
netes clusters on Google Kubernetes Engine.

3.2 jiant Components
• Tasks: Tasks have references to task data,

methods for processing data, references to
classifier heads, and methods for calculating
performance metrics, and making predictions.

• Sentence Encoder: Sentence encoders map
from the indexed examples to a sentence-level
representation. Sentence encoders can include
an input module (e.g., Transformer models,
ELMo, or word embeddings), followed by an
optional second layer of encoding (usually
a BiLSTM). Examples of possible sentence
encoder configurations include BERT, ELMo
followed by a BiLSTM, BERT with a variety
of pooling and aggregation methods, or a bag
of words model.

• Task-Specific Output Heads: Task-specific
output modules map representations from sen-
tence encoders to outputs specific to a task, e.g.
entailment/neutral/contradiction for NLI tasks,
or tags for part-of-speech tagging. They also
include logic for computing the corresponding
loss for training (e.g. cross-entropy).

• Trainer: Trainers manage the control flow for
the training and validation loop for experi-
ments. They sample batches from one or more
tasks, perform forward and backward passes,
calculate training metrics, evaluate on a val-
idation set, and save checkpoints. Users can
specify experiment-specific parameters such
as learning rate, batch size, and more.

• Config: Config files or flags are defined in
HOCON2 format. Configs specify parameters
for jiant experiments including choices of
tasks, sentence encoder, and training routine.3

Configs are jiant’s primary user interface.
Tasks and modeling components are designed to be
modular, while jiant’s pipeline is a monolithic,
configuration-driven design intended to facilitate a
number of common workflows outlined in 3.3.

3.3 jiant Pipeline Overview
jiant’s core pipeline consists of the five stages
described below and illustrated in Figure 2:

2Human-Optimized Config Object Notation (lightbend,
2011). jiant uses HOCON’s logic to consolidate multiple
config files and command-line overrides into a single run
config.

3jiant configs support multi-phase training routines as
described in section 3.3 and illustrated in Figure 2.
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Figure 2: jiant pipeline stages using RoBERTa as the sentence encoder, ReCoRD and MNLI tasks as intermedi-
ate tasks, and MNLI and BoolQ as tasks for target training and evaluation. The diagram highlights that during target
training and evaluation phases, copies are made of the sentence encoder model, and fine tuning and evaluation for
each task are conducted on separate copies.

1. A config or multiple configs defining an exper-
iment are interpreted. Users can choose and
configure models, tasks, and stages of training
and evaluation.

2. The tasks and sentence encoder are prepared:

(a) The task data is loaded, tokenized, and
indexed, and the preprocessed task ob-
jects are serialized and cached. In this
process, AllenNLP is used to create the
vocabulary and index the tokenized data.

(b) The sentence encoder is constructed
and (optionally) pretrained weights are
loaded.4

(c) The task-specific output heads are cre-
ated for each task, and task heads are at-
tached to a common sentence encoder.
Optionally, different tasks can share
the same output head, as in Liu et al.
(2019a).

3. Optionally, in the intermediate phase the
trainer samples batches randomly from one
or more tasks,5 and trains the shared model.

4 The sentence encoder’s weights can optionally be left
frozen, or be included in the training procedure.

5 Tasks can be sampled using a variety of sample weighting
methods, e.g., uniform or proportional to the tasks’ number of
training batches or examples.

4. Optionally, in the target training phase, a copy
of the model is configured and trained or fine-
tuned for each target task separately.

5. Optionally, the model is evaluated on the vali-
dation and/or test sets of the target tasks.

3.4 Task and Model resources in jiant
jiant supports over 50 tasks. Task types include
classification, regression, sequence generation, tag-
ging, masked language modeling, and span predic-
tion. jiant focuses on NLU tasks like MNLI
(Williams et al., 2018), CommonsenseQA (Tal-
mor et al., 2019), the Winograd Schema Challenge
(Levesque et al., 2012), and SQuAD (Rajpurkar
et al., 2016). A full inventory of tasks and task vari-
ants is available in the jiant/tasks module.
jiant provides support for cutting-edge sen-

tence encoder models, including support for Hug-
gingface’s Transformers. Supported models in-
clude: ELMo (Peters et al., 2018), GPT (Radford,
2018), BERT (Devlin et al., 2019), XLM (Con-
neau and Lample, 2019), GPT-2 (Radford et al.,
2019), XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2019b), and ALBERT (Lan et al., 2019).
jiant also supports the from-scratch training of
(bidirectional) LSTMs (Hochreiter and Schmidhu-
ber, 1997) and deep bag of words models (Iyyer
et al., 2015), as well as syntax-aware models such
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// Config for BERT experiments.

// Get default configs from a file:
include "defaults.conf"
exp_name = "bert-large-cased"

// Data and preprocessing settings
max_seq_len = 256

// Model settings
input_module = "bert-large-cased"
transformers_output_mode = "top"
s2s = {

attention = none
}
sent_enc = "none"
sep_embs_for_skip = 1
classifier = log_reg
// fine-tune entire BERT model
transfer_paradigm = finetune

// Training settings
dropout = 0.1
optimizer = bert_adam
batch_size = 4
max_epochs = 10
lr = .00001
min_lr = .0000001
lr_patience = 4
patience = 20
max_vals = 10000

// Phase configuration
do_pretrain = 1
do_target_task_training = 1
do_full_eval = 1
write_preds = "val,test"
write_strict_glue_format = 1

// Task specific configuration
commitbank = {

val_interval = 60
max_epochs = 40

}

Figure 3: Example jiant experiment config file.

as PRPN (Shen et al., 2018) and ON-LSTM (Shen
et al., 2019). jiant also supports word embed-
dings such as GloVe (Pennington et al., 2014).

3.5 User Interface

jiant experiments can be run with a simple CLI:

python -m jiant \
--config_file roberta_with_mnli.conf \
--overrides "target_tasks = swag, \

run_name = swag_01"

jiant provides default config files that al-
low running many experiments without modifying
source code.
jiant also provides baseline config files that

can serve as a starting point for model development

and evaluation against GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019b) benchmarks.

More advanced configurations can be developed
by composing multiple configurations files and
overrides. Figure 3 shows a config file that over-
rides a default config, defining an experiment that
uses BERT as the sentence encoder. This config in-
cludes an example of a task-specific configuration,
which can be overridden in another config file or
via a command line override.

Because jiant implements the option to pro-
vide command line overrides with a flag, it is easy
to write scripts that launch jiant experiments
over a range of parameters, for example while
performing grid search across hyperparameters.
jiant users have successfully run large-scale ex-
periments launching hundreds of runs on both Ku-
bernetes and Slurm.

3.6 Example jiant Use Cases and Options
Here we highlight some example use cases and key
corresponding jiant config options required in
these experiments:

• Fine-tune BERT on SWAG (Zellers et al.,
2018) and SQUAD (Rajpurkar et al., 2016),
then fine-tune on HellaSwag (Zellers et al.,
2019):
input_module = bert-base-cased
pretrain_tasks = "swag,squad"
target_tasks = hellaswag

• Train a probing classifier over a frozen BERT
model, as in Tenney et al. (2019a):
input_module = bert-base-cased
target_tasks = edges-dpr
transfer_paradigm = frozen

• Compare performance of GloVe (Pennington
et al., 2014) embeddings using a BiLSTM:
input_module = glove
sent_enc = rnn

• Evaluate ALBERT (Lan et al., 2019) on the
MNLI (Williams et al., 2018) task:
input_module = albert-large-v2
target_task = mnli

3.7 Optimizations and Other Features
jiant implements features that improve run sta-
bility and efficiency:

• jiant implements checkpointing options de-
signed to offer efficient early stopping and to
show consistent behavior when restarting after
an interruption.
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• jiant caches preprocessed task data to
speed up reuse across experiments which
share common data resources and artifacts.

• jiant implements gradient accumulation
and multi-GPU, which enables training on
larger batches than can fit in memory for a
single GPU.

• jiant supports outputting predictions in
a format ready for GLUE and SuperGLUE
benchmark submission.

• jiant generates custom log files that cap-
ture experimental configurations, training and
evaluation metrics, and relevant run-time in-
formation.

• jiant generates TensorBoard event files
(Abadi et al., 2015) for training and evaluation
metric tracking. TensorBoard event files can
be visualized using the TensorBoard Scalars
Dashboard.

3.8 Extensibility

jiant’s design offers conveniences that reduce
the need to modify code when making changes:

• jiant’s task registry makes it easy to define
a new version of an existing task using differ-
ent data. Once the new task is defined in the
task registry, the task is available as an option
in jiant’s config.

• jiant’s sentence encoder and task output
head abstractions allow for easy support of
new sentence encoders.

In use cases requiring the introduction of a new
task, users can use class inheritance to build on
a number of available parent task types including
classification, tagging, span prediction, span classi-
fication, sequence generation, regression, ranking,
and multiple choice task classes. For these task
types, corresponding task-specific output heads are
already implemented.

More than 30 researchers and developers from
more than 5 institutions have contributed code to
the jiant project.6 jiant’s maintainers wel-
come pull requests that introduce new tasks or sen-
tence encoder components, and pull request are

6https://github.com/nyu-mll/jiant/
graphs/contributors

actively reviewed. The jiant repository’s con-
tinuous integration system requires that all pull
requests pass unit and integration tests and meet
Black7 code formatting requirements.

3.9 Limitations and Development Roadmap

While jiant is quite flexible in the pipelines that
can be specified through configs, and some com-
ponents are highly modular (e.g., tasks, sentence
encoders, and output heads), modification of the
pipeline code can be difficult. For example, train-
ing in more than two phases would require modify-
ing the trainer code.8 Making multi-stage training
configurations more flexible is on jiant’s devel-
opment roadmap.
jiant’s development roadmap prioritizes

adding support for new Transformer models, and
adding tasks that are commonly used for pretrain-
ing and evaluation in NLU. Additionally, there are
plans to make jiant’s training phase configu-
ration options more flexible to allow training in
more than two phases, and to continue to refac-
tor jiant’s code to keep jiant flexible to track
developments in NLU research.

4 Benchmark Experiments

To benchmark jiant, we perform a set of ex-
periments that reproduce external results for sin-
gle fine-tuning and transfer learning experiments.
jiant has been benchmarked extensively in both
published and ongoing work on a majority of the
implemented tasks.

We benchmark single-task fine-tuning configura-
tions using CommonsenseQA (Talmor et al., 2019)
and SocialIQA (Sap et al., 2019). On Common-
senseQA with RoBERTaLARGE, jiant achieves
an accuracy of 72.2, comparable to 72.1 reported
by Liu et al. (2019b). On SocialIQA with BERT-
large, jiant achieves a dev set accuracy of 65.8,
comparable to 66.0 reported in Sap et al. (2019).

Next, we benchmark jiant’s transfer learning
regime. We perform transfer experiments from
MNLI to BoolQ with BERT-large. In this configu-
ration Clark et al. (2019) demonstrated an accuracy
improvement of 78.1 to 82.2 on the dev set, and
jiant achieves an improvement of 78.1 to 80.3.

7https://github.com/psf/black
8While not supported by config options, training in more

than two phases is possible by using jiant’s checkpointing
features to reload models for additional rounds of training.
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5 Conclusion

jiant provides a configuration-driven interface
for defining transfer learning and representation
learning experiments using a bank of over 50 NLU
tasks, cutting-edge sentence encoder models, and
multi-task and multi-stage training procedures. Fur-
ther, jiant is shown to be able to replicate pub-
lished performance on various NLU tasks.
jiant’s modular design of task and sentence

encoder components make it possible for users to
quickly and easily experiment with a large num-
ber of tasks, models, and parameter configurations,
without editing source code. jiant’s design also
makes it easy to add new tasks, and jiant’s ar-
chitecture makes it convenient to extend jiant to
support new sentence encoders.
jiant code is open source, and jiant invites

contributors to open issues or submit pull request to
the jiant project repository: https://github.

com/nyu-mll/jiant.
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Abstract
We present MT-DNN1, an open-source nat-
ural language understanding (NLU) toolkit
that makes it easy for researchers and de-
velopers to train customized deep learning
models. Built upon PyTorch and Transform-
ers, MT-DNN is designed to facilitate rapid
customization for a broad spectrum of NLU
tasks, using a variety of objectives (classifi-
cation, regression, structured prediction) and
text encoders (e.g., RNNs, BERT, RoBERTa,
UniLM). A unique feature of MT-DNN is
its built-in support for robust and transfer-
able learning using the adversarial multi-task
learning paradigm. To enable efficient pro-
duction deployment, MT-DNN supports multi-
task knowledge distillation, which can sub-
stantially compress a deep neural model with-
out significant performance drop. We demon-
strate the effectiveness of MT-DNN on a wide
range of NLU applications across general and
biomedical domains. The software and pre-
trained models will be publicly available at
https://github.com/namisan/mt-dnn.

1 Introduction

NLP model development has observed a paradigm
shift in recent years, due to the success in using pre-
trained language models to improve a wide range
of NLP tasks (Peters et al., 2018; Devlin et al.,
2019). Unlike the traditional pipeline approach
that conducts annotation in stages using primarily
supervised learning, the new paradigm features a
universal pretraining stage that trains a large neu-
ral language model via self-supervision on a large
unlabeled text corpus, followed by a fine-tuning
step that starts from the pretrained contextual rep-
resentations and conducts supervised learning for

∗Equal Contribution.
1The complete name of our toolkit is MT 2-DNN (The

Microsoft Toolkit of Multi-Task Deep Neural Networks for
Natural Language Understanding), but we use MT-DNN for
sake of simplicity.

individual tasks. The pretrained language models
can effectively model textual variations and dis-
tributional similarity. Therefore, they can make
subsequent task-specific training more sample ef-
ficient and often significantly boost performance
in downstream tasks. However, these models are
quite large and pose significant challenges to pro-
duction deployment that has stringent memory or
speed requirements. As a result, knowledge distil-
lation has become another key feature in this new
learning paradigm. An effective distillation step
can often substantially compress a large model for
efficient deployment (Clark et al., 2019; Tang et al.,
2019; Liu et al., 2019a).

In the NLP community, there are several well
designed frameworks for research and commer-
cial purposes, including toolkits for providing con-
ventional layered linguistic annotations (Manning
et al., 2014), platforms for developing novel neural
models (Gardner et al., 2018) and systems for neu-
ral machine translation (Ott et al., 2019). However,
it is hard to find an existing tool that supports all
features in the new paradigm and can be easily cus-
tomized for new tasks. For example, (Wolf et al.,
2019) provides a number of popular Transformer-
based (Vaswani et al., 2017) text encoders in a
nice unified interface, but does not offer multi-
task learning or adversarial training, state-of-the-art
techniques that have been shown to significantly
improve performance. Additionally, most public
frameworks do not offer knowledge distillation.
A notable exception is DistillBERT (Sanh et al.,
2019), but it provides a standalone compressed
model and does not support task-specific model
compression that can further improve performance.

We introduce MT-DNN, a comprehensive and
easily-configurable open-source toolkit for build-
ing robust and transferable natural language under-
standing models. MT-DNN is built upon PyTorch
(Paszke et al., 2019) and the popular Transformer-
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based text-encoder interface (Wolf et al., 2019). It
supports a large inventory of pretrained models,
neural architectures, and NLU tasks, and can be
easily customized for new tasks.

A key distinct feature for MT-DNN is that it
provides out-of-box adversarial training, multi-task
learning, and knowledge distillation. Users can
train a set of related tasks jointly to amplify each
other. They can also invoke adversarial training
(Miyato et al., 2018; Jiang et al., 2019; Liu et al.,
2020), which helps improve model robustness and
generalizability. For production deployment where
large model size becomes a practical obstacle, users
can use MT-DNN to compress the original mod-
els into substantially smaller ones, even using a
completely different architecture (e.g., compressed
BERT or other Transformer-based text encoders
into LSTMs (Hochreiter and Schmidhuber, 1997)).
The distillation step can similarly leverage multi-
task learning and adversarial training. Users can
also conduct pretraining from scratch using the
masked language model objective in MT-DNN.
Moreover, in the fine-tuning step, users can incor-
porate this as an auxiliary task on the training text,
which has been shown to improve performance.
MT-DNN provides a comprehensive list of state-
of-the-art pre-trained NLU models, together with
step-by-step tutorials for using such models in gen-
eral and biomedical applications.

2 Design

MT-DNN is designed for modularity, flexibility,
and ease of use. These modules are built upon Py-
Torch (Paszke et al., 2019) and Transformers (Wolf
et al., 2019), allowing the use of the SOTA pre-
trained models, e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019c) and UniLM (Dong
et al., 2019). The unique attribute of this pack-
age is a flexible interface for adversarial multi-task
fine-tuning and knowledge distillation, so that re-
searchers and developers can build large SOTA
NLU models and then compress them to small ones
for online deployment.The overall workflow and
system architecture are shown in Figure 1 and Fig-
ure 3 respectively.

2.1 Workflow
As shown in Figure 1, starting from the neural lan-
guage model pre-training, there are three different
training configurations by following the directed
arrows:

• Single-task configuration: single-task fine-

Multi-task
Knowledge 
Distillation

Multi-task
Fine-tuning

Natural Language Model 
Pre-training

Single-task
Fine-tuning

Single-task
Knowledge 
Distillation

Adversarial 
Training

Figure 1: The workflow of MT-DNN: train a neural lan-
guage model on a large amount of unlabeled raw text
to obtain general contextual representations; then fine-
tune the learned contextual representation on down-
stream tasks, e.g. GLUE (Wang et al., 2018); lastly,
distill this large model to a lighter one for online de-
ployment. In the later two phrases, we can leverage
powerful multi-task learning and adversarial training to
further improve performance.

tuning and single-task knowledge distillation;

• Multi-task configuration: multi-task fine-
tuning and multi-task knowledge distillation;

• Multi-stage configuration: multi-task fine-
tuning, single-task fine tuning and single-task
knowledge distillation.

Moreover, all configurations can be additionally
equipped with the adversarial training. Each stage
of the workflow is described in details as follows.
Neural Language Model Pre-Training Due to
the great success of deep contextual representa-
tions, such as ELMo (Peters et al., 2018), GPT
(Radford et al., 2018) and BERT (Devlin et al.,
2019), it is common practice of developing NLU
models by first pre-training the underlying neural
text representations (text encoders) through mas-
sive language modeling which results in superior
text representations transferable across multiple
NLP tasks. Because of this, there has been an in-
creasing effort to develop better pre-trained text
encoders by multiplying either the scale of data
(Liu et al., 2019c) or the size of model (Raffel
et al., 2019). Similar to existing codebases (De-
vlin et al., 2019), MT-DNN supports the LM pre-
training from scratch with multiple types of objec-
tives, such as masked LM (Devlin et al., 2019) and
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Figure 2: Process of knowledge distillation for MTL. A set of tasks where there is task-specific labeled training
data are picked. Then, for each task, an ensemble of different neural nets (teacher) is trained. The teacher is used
to generate for each task-specific training sample a set of soft targets. Given the soft targets of the training datasets
across multiple tasks, a single MT-DNN (student) shown in Figure 3 is trained using multi-task learning and back
propagation, except that if task t has a teacher, the task-specific loss is the average of two objective functions, one
for the correct targets and the other for the soft targets assigned by the teacher.

next sentence prediction (Devlin et al., 2019).
Moreover, users can leverage the LM pre-

training, such as masked LM used by BERT, as
an auxiliary task for fine-tuning under the multi-
task learning (MTL) framework (Sun et al., 2019;
Liu et al., 2019b).
Fine-tuning Once the text encoder is trained in the
pre-training stage, an additional task-specific layer
is usually added for fine-tuning based on the down-
stream task. Besides the existing typical single-task
fine-tuning, MT-DNN facilitates a joint fine-tuning
with a configurable list of related tasks in a MTL
fashion. By encoding task-relatedness and sharing
underlying text representations, MTL is a powerful
training paradigm that promotes the model general-
ization ability and results in improved performance
(Caruana, 1997; Liu et al., 2019b; Luong et al.,
2015; Liu et al., 2015; Ruder, 2017; Collobert et al.,
2011). Additionally, a two-step fine-tuning stage
is also supported to utilize datasets from related
tasks, i.e. a single-task fine-tuning following a
multi-task fine-tuning. It also supports two popular
sampling strategies in MTL training: 1) sampling
tasks uniformly (Caruana, 1997; Liu et al., 2015);
2) sampling tasks based on the size of the dataset
(Liu et al., 2019b). This makes it easy to explore
various ways to feed training data to MTL training.
Finally, to further improve the model robustness,
MT-DNN also offers a recipe to apply adversarial
training (Madry et al., 2017; Zhu et al., 2019; Jiang

et al., 2019) in the fine-tuning stage.
Knowledge Distillation Although contextual text
representation models pre-trained with massive
text data have led to remarkable progress in NLP,
it is computationally prohibitive and inefficient
to deploy such models with millions of parame-
ters for real-world applications (e.g. BERT large
model has 344 million parameters). Therefore, in
order to expedite the NLU model learned in ei-
ther a single-task or multi-task fashion for deploy-
ment, MT-DNN additionally supports the multi-
task knowledge distillation (Clark et al., 2019; Liu
et al., 2019a; Tang et al., 2019; Balan et al., 2015;
Ba and Caruana, 2014), an extension of (Hinton
et al., 2015), to compress cumbersome models into
lighter ones. The multi-task knowledge distillation
process is illustrated in Figure 2. Similar to the
fine-tuning stage, adversarial training is available
in the knowledge distillation stage.

2.2 Architecture
Lexicon Encoder (l1): The input X =
{x1, ..., xm} is a sequence of tokens of length m.
The first token x1 is always a specific token, e.g.
[CLS] for BERT Devlin et al. (2019) while <s>
for RoBERTa Liu et al. (2019c). If X is a pair of
sentences (X1, X2), we separate these sentences
with special tokens, e.g. [SEP] for BERT and
[</s>] for RoBERTa. The lexicon encoder maps
X into a sequence of input embedding vectors,
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Figure 3: Overall System Architecture: The lower layers are shared across all tasks while the top layers are task-
specific. The input X (either a sentence or a set of sentences) is first represented as a sequence of embedding
vectors, one for each word, in l1. Then the encoder, e.g a Transformer or recurrent neural network (LSTM) model,
captures the contextual information for each word and generates the shared contextual embedding vectors in l2.
Finally, for each task, additional task-specific layers generate task-specific representations, followed by operations
necessary for classification, similarity scoring, or relevance ranking. In case of adversarial training, we perturb
embeddings from the lexicon encoder and then add an extra loss term during the training. Note that for the
inference phrase, it does not require perturbations.

one for each token, constructed by summing the
corresponding word with positional, and optional
segment embeddings.
Encoder (l2): We support a multi-layer bidirec-
tional Transformer (Vaswani et al., 2017) or a
LSTM (Hochreiter and Schmidhuber, 1997) en-
coder to map the input representation vectors (l1)
into a sequence of contextual embedding vectors
C ∈ Rd×m. This is the shared representation
across different tasks. Note that MT-DNN also
allows developers to customize their own encoders.
For example, one can design an encoder with few
Transformer layers (e.g. 3 layers) to distill knowl-
edge from the BERT large model (24 layers), so
that they can deploy this small mode online to meet
the latency restriction as shown in Figure 2.

Task-Specific Output Layers: We can incorpo-
rate arbitrary natural language tasks, each with its
task-specific output layer. For example, we imple-
ment the output layers as a neural decoder for a
neural ranker for relevance ranking, a logistic re-
gression for text classification, and so on. A multi-
step reasoning decoder, SAN (Liu et al., 2018a,b)
is also provided. Customers can choose from ex-
isting task-specific output layer or implement new

one by themselves.

3 Application

In this section, we present a comprehensive set
of examples to illustrate how to customize MT-
DNN for new tasks. We use popular benchmarks
from general and biomedical domains, including
GLUE (Wang et al., 2018), SNLI (Bowman et al.,
2015), SciTail (Khot et al., 2018), SQuAD (Ra-
jpurkar et al., 2016), ANLI (Nie et al., 2019), and
biomedical named entity recognition (NER), rela-
tion extraction (RE) and question answering (QA)
(Lee et al., 2019). To make the experiments repro-
ducible, we make all the configuration files publicly
available. We also provide a quick guide for cus-
tomizing a new task in Jupyter notebooks.

3.1 General Domain Natural Language
Understanding Benchmarks

• GLUE. The General Language Understanding
Evaluation (GLUE) benchmark is a collection of
nine natural language understanding (NLU) tasks.
As shown in Table 1, it includes question an-
swering (Rajpurkar et al., 2016), linguistic accept-
ability (Warstadt et al., 2018), sentiment analy-
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Corpus Task Formulation
GLUE

CoLA Acceptability Classification
SST Sentiment Classification
MNLI NLI Classification
RTE NLI Classification
WNLI NLI Classification
QQP Paraphrase Classification
MRPC Paraphrase Classification
QNLI QA/NLI Classification
QNLI v1.0 QA/NLI Pairwise Ranking
STS-B Similarity Regression

Others
SNLI NLI Classification
SciTail NLI Classification
ANLI NLI Classification
SQuAD MRC Span Classification

Table 1: Summary of the four benchmarks: GLUE,
SNLI, SciTail and ANLI.

Model MNLI RTE QNLI SST MRPC
Acc Acc Acc Acc F1

BERT 84.5 63.5 91.1 92.9 89.0
BERT + MTL 85.3 79.1 91.5 93.6 89.2
BERT + AdvTrain 85.6 71.2 91.6 93.0 91.3

Table 2: Comparison among single task, multi-Task
and adversarial training on MNLI, RTE, QNLI, SST
and MPRC in GLUE.

Model Dev Test
BERTLARGE (Nie et al., 2019) 49.3 44.2
RoBERTaLARGE (Nie et al., 2019) 53.7 49.7
RoBERTa-LARGE + AdvTrain 57.1 57.1

Table 3: Results in terms of accuracy on the ANLI.

sis (Socher et al., 2013), text similarity (Cer et al.,
2017), paraphrase detection (Dolan and Brockett,
2005), and natural language inference (NLI) (Da-
gan et al., 2006; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009; Levesque
et al., 2012; Williams et al., 2018). The diversity of
the tasks makes GLUE very suitable for evaluating
the generalization and robustness of NLU models.
• SNLI. The Stanford Natural Language Inference
(SNLI) dataset contains 570k human annotated sen-
tence pairs, in which the premises are drawn from
the captions of the Flickr30 corpus and hypothe-

ses are manually annotated (Bowman et al., 2015).
This is the most widely used entailment dataset for
NLI.
• SciTail This is a textual entailment dataset de-
rived from a science question answering (SciQ)
dataset (Khot et al., 2018). In contrast to other
entailment datasets mentioned previously, the hy-
potheses in SciTail are created from science ques-
tions while the corresponding answer candidates
and premises come from relevant web sentences
retrieved from a large corpus.
• ANLI. The Adversarial Natural Language Infer-
ence (ANLI, Nie et al. (2019)) is a new large-scale
NLI benchmark dataset, collected via an iterative,
adversarial human-and-model-in-the-loop proce-
dure. Particular, the data is selected to be difficult
to the state-of-the-art models, including BERT and
RoBERTa.
• SQuAD. The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) contains
about 23K passages and 100K questions. The pas-
sages come from approximately 500 Wikipedia
articles and the questions and answers are obtained
by crowdsourcing.

Following (Devlin et al., 2019), table 2 compares
different training algorithm: 1) BERT denotes a sin-
gle task fine-tuning; 2) BERT + MTL indicates that
it is trained jointly via MTL; at last 3), BERT + Ad-
vTrain represents that a single task fine-tuning with
adversarial training. It is obvious that the both MLT
and adversarial training helps to obtain a better re-
sult. We further test our model on an adversarial
natural language inference (ANLI) dataset (Nie
et al., 2019). Table 3 summarizes the results on
ANLI. As Nie et al. (2019), all the dataset of ANLI
(Nie et al., 2019), MNLI (Williams et al., 2018),
SNLI (Bowman et al., 2015) and FEVER (Thorne
et al., 2018) are combined as training. RoBERTa-
LARGE+AdvTrain obtains the best performance
compared with all the strong baselines, demonstrat-
ing the advantage of adversarial training.

3.2 Biomedical Natural Language
Understating Benchmarks

There has been rising interest in exploring natu-
ral language understanding tasks in high-value do-
mains other than newswire and the Web. In our
release, we provide MT-DNN customization for
three representative biomedical natural language
understanding tasks:
• Named entity recognition (NER): In biomedical
natural language understanding, NER has received
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greater attention than other tasks and datasets are
available for recognizing various biomedical enti-
ties such as disease, gene, drug (chemical).
• Relation extraction (RE): Relation extraction is
more closely related to end applications, but an-
notation effort is significantly higher compared to
NER. Most existing RE tasks focus on binary re-
lations within a short text span such as a sentence
of an abstract. Examples include gene-disease or
protein-chemical relations.
• Question answering (QA): Inspired by interest
in QA for the general domain, there has been
some effort to create question-answering datasets
in biomedicine. Annotation requires domain ex-
pertise, so it is significantly harder than in general
domain, where it is to produce large-scale datasets
by crowdsourcing.

The MT-DNN customization can work with stan-
dard or biomedicine-specific pretraining models
such as BioBERT, and can be directly applied to
biomedical benchmarks (Lee et al., 2019).

3.3 Extension

Figure 4: The configuration of SNLI.

We will go though a typical Natural Language
Inference task, e.g. SNLI, which is one of the
most popular benchmark, showing how to apply
our toolkit to a new task. MT-DNN is driven by
configuration and command line arguments. Firstly,
the SNLI configuration is shown in Figure 4. The
configuration defines tasks, model architecture as
well as loss functions. We briefly introduce these
attributes as follows:

1. data format is a required attribute and it de-
notes that each sample includes two sentences
(premise and hypothesis). Please refer the
tutorial and API for supported formats.

2. task layer type specifies architecture of the
task specific layer. The default is a ”linear
layer”.

3. labels Users can list unique values of labels.
The configuration helps to convert back and
forth between text labels and numbers during
training and evaluation. Without it, MT-DNN
assumes the label of prediction are numbers.

4. metric meta is the evaluation metric used for
validation.

5. loss is the loss function for SNLI. It also sup-
ports other functions, e.g. MSE for regression.

6. kd loss is the loss function in the knowledge
distillation setting.

7. adv loss is the loss function in the adversarial
setting.

8. n class denotes the number of categories for
SNLI.

9. task type specifies whether it is a classification
task or a regression task.

Once the configuration is provided, one can train
the customized model for the task, using any sup-
ported pre-trained models as starting point.

MT-DNN is also highly extensible, as shown in
Figure 4, loss and task layer type point to existing
classes in code. Users can write customized classes
and plug into MT-DNN. The customized classes
could then be used via configuration.

4 Conclusion

Microsoft MT-DNN is an open-source natural lan-
guage understanding toolkit which facilitates re-
searchers and developers to build customized deep
learning models. Its key features are: 1) support for
robust and transferable learning using adversarial
multi-task learning paradigm; 2) enable knowledge
distillation under the multi-task learning setting
which can be leveraged to derive lighter models
for efficient online deployment. We will extend
MT-DNN to support Natural Language Generation
tasks, e.g. Question Generation, and incorporate
more pre-trained encoders, e.g. T5 (Raffel et al.,
2019) in future.

Acknowledgments
We thank Liyuan Liu, Sha Li, Mehrad Morad-
shahi and other contributors to the package, and
the anonymous reviewers for valuable discussions
and comments.

123



References
Jimmy Ba and Rich Caruana. 2014. Do deep nets really

need to be deep? In Advances in neural information
processing systems, pages 2654–2662.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Mur-
phy, and Max Welling. 2015. Bayesian dark knowl-
edge. In Advances in Neural Information Process-
ing Systems, pages 3438–3446.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and
Danilo Giampiccolo. 2006. The second PASCAL
recognising textual entailment challenge. In Pro-
ceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In In Proc Text Analysis Conference (TAC’09.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D Manning, and Quoc V Le.
2019. Bam! born-again multi-task networks for
natural language understanding. arXiv preprint
arXiv:1907.04829.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

This paper presents LinggleWrite, a writing
coach that provides writing suggestions, as-
sesses writing proficiency levels, detects gram-
matical errors, and offers corrective feedback
in response to user’s essay. The method in-
volves extracting grammar patterns, training
models for automated essay scoring (AES) and
grammatical error detection (GED), and finally
retrieving plausible corrections from a n-gram
search engine. Experiments on public test
sets indicate that both AES and GED models
achieve state-of-the-art performance. These re-
sults show that LinggleWrite is potentially use-
ful in helping learners improve their writing
skills.

1 Introduction

Essay writing has been an essential part of language
assessments (e.g., TOEFL, IELTS) but a challeng-
ing task for most students. To write a good essay
not only requires sustained practice, but also de-
mands instructional feedback from teachers. How-
ever, pressed with teaching load, teachers can only
provide limited corrective feedback on students’
essays. This has encouraged the development of
computer-assisted writing systems to meet grow-
ing needs of automated feedback as a means of
writing coaching. Computer Assisted Language
Learning (CALL) has been an active field of com-
putational linguistics and pedagogy. Some exist-
ing computer aided writing systems detect and cor-
rect grammatical errors, and give an overall score
(e.g., Grammarly (www.grammarly.com) and Pigai
(www.pigai.org)).

Instead of directly correcting users’ es-
says, Write&Improve (writeandimprove.com)
only marks highly-likely incorrect words on the
grounds that automated grammatical error correc-
tion is still very imprecise. Recently, researchers
have begun to apply neural network models to both

automated essay scoring (AES) and grammatical
error detection (GED), gaining significant improve-
ment (e.g., Dong et al. (2017); Rei and Søgaard
(2018)). However, these Web services fall short of
providing sufficient “coaching” information (e.g.,
grammar patterns, collocations, examples) to learn-
ers to improve their writing skills.

Provide writing suggestions as a user types away
or during editing is another emerging approach
to coaching the learner. For example, WriteA-
head (writeahead.nlpweb.org) provides context-
sensitive suggestions, right in the process of writ-
ing or self-editing. Google recently released Smart
Compose that offers users word or phrase comple-
tion suggestions while writing an email (Chen et al.,
2019).

In line with these systems, we also suggest that
feedback on learners’ writings could be more effec-
tive if a system not only acts as an editor provid-
ing direct corrections, but also a coach performing
grammatical error detection and offering interactive
suggestions (Hearst, 2015). Moreover, illustrating
word usage with bilingual examples can better help
non-native English learners. This would enhance
learners’ skills of self-editing and pave the way to
lifelong language learning.

With that in mind, we developed a web-based
system LinggleWrite (f.linggle.com) with many
assistive writing functions. With LinggleWrite
users can write or paste their essays and get in-
formative feedback including just-in-time writing
suggestions, essay scoring, error detection, and
related word usage information retrieved from
Linggle(linggle.com).

2 The LinggleWrite System

The system consists of 4 components: (1) Inter-
active Writing Suggestion, (2) Essay Scoring, (3)
Grammatical Error Detection, and (4) Corrective
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Figure 1: The screenshot of the system LinggleWrite

Feedback. The first component, Writing sugges-
tion, will help users with word usage information
while writing. The other three components are
aimed at providing evaluation and constructive
feedback after a user finishes writing. The sys-
tem is available at f.linggle.com. We’ll describe
each component as follows.

2.1 Interactive Writing Suggestion
When a user begins to write an essay, the system
responds with prompts of related grammar patterns,
collocations, and bilingual examples. These contin-
uous writing suggestions are based on the last word
or phrase the user has entered. Additionally, the
user can get information of a certain word by mous-
ing over it. For example, suggestions for “finish”
are shown in Section A of Figure 1 (bottom left).
Once finishing the writings, the user can click the
Check button triggering the following components.

2.2 Essay Scoring
After accepting an essay longer than 30 words,
LinggleWrite assesses user’s writing proficiency.
The assessment is provided in the form of CEFR
Levels1 (A1-C2) as shown in Section B of Figure 1
(top right).

1https://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions

2.3 Grammatical Error Detection

LinggleWrite tries to detect potential grammatical
errors in each sentence. Sentences with potential
errors are marked with yellow (1 possible error)
or orange (2 or more possible errors) background,
as shown in Section C of Figure 1 (center right).
The user can click on an erroneous sentence to de-
mand GED results. LinggleWrite marks suspicious
words with orange, red or green, suggesting to in-
sert a word, delete the word, or replace the word
respectively, as shown in Section C of Figure 1
(center right). Subsequently, the user can click on
an error to display plausible corrective suggestions
returned by a n-gram search engine.

2.4 Corrective Feedback

We present corrective suggestions according to the
context and the edit type (i.e., insertion, deletion,
replacement), using an existing linguistic search
engine, Linggle (Boisson et al., 2013). An exam-
ple of corrective suggestions for the sentence “I
finished school on June” is shown in Section E in
Figure 1 (bottom right). LinggleWrite detects “on”
probably requiring a replacement edit. We convert
the detected error into a Linggle query to search
for more appropriate expressions, and provide the
user with the search result “school in June’ for
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considerations.

3 Method

To develop LinggleWrite, we extract the most com-
mon grammar patterns from a corpus in order to
provide writing suggestions. Additionally, we de-
velop models for AES and GED based on annotated
learner corpora. We retrieve corrective feedback
by querying a linguistic search engine according to
the predicted edit type of an error. We describe the
process in detail in the following subsections.

3.1 Extracting Grammar Patterns

We extract grammatical patterns, collocations and
bilingual examples for keywords from a given cor-
pus to provide writing suggestions in the interactive
writing session. Our extraction process includes
four steps.

In Step (1), we build a dictionary of grammar
patterns of verbs, nouns and adjectives based on
Francis et al. (1996). For example, the grammar
patterns of the word play are V n, V n in n, etc.

In Step (2), we parse sentences from Corpus
of Contemporary American English (COCA) and
Cambridge online dictionary (CAM) using a de-
pendency parser to extract grammar patterns and
collocations based on the templates in Step (1). For
example, the extracted grammar pattern and collo-
cation from the sentence “Schools play an impor-
tant role in society” are “V n in n” and “society”.

In Step (3), for each keyword, we count and
filter out patterns and collocations based on mean
and standard deviation. Finally, we use GDEX
method (Kilgarriff et al., 2008) to select the best
monolingual and bilingual examples from COCA
and CAM for each pattern.

3.2 Scoring an Essay

We formulate AES as a regression problem and
train a neural model for this task. We investigate
two neural network architectures with different
input formats: word-based models and sentence-
based models, which learn essay representation
based on word sequences and sentence sequences
respectively. We build our word-based models
upon CNN, LSTM and Bi-LSTM (Taghipour and
Ng, 2016), while sentence-level models upon the
LSTM-LSTM and LSTM-CNN framework (Dong
et al., 2017). Moreover, we further extend both
sentence-based models and word-based models by
adding the attention mechanism after the neural

layer, attempting to select the sentences or words
to focus on for effective scoring. Our models are
similar to other sentence-based and word-based
neural AES model (e.g., Taghipour and Ng (2016);
Dong et al. (2017)), but we use a different training
set, EFCAMDAT (Geertzen et al., 2013) and output
format, CEFR levels, to train our model.

3.3 Detecting Grammatical Errors

We formulate GED as a sequence labeling problem
and develop a neural sequence labeling model to
deal with the problem.

An existing GED method proposed by Rei and
Yannakoudakis (2016) takes tokens as input and
predicts whether each token is correct in the sen-
tence as output. We extend their model by changing
the binary error tag schema (Incorrect and Correct)
into a more informative DIRC tag schema (Delete,
Insert, Replace, and Correct), with the goal of pro-
viding learners more specific suggestions (i.e., the
edit type of an error) to revise their essay. We train
a GED model based on Bi-LSTM with a Condi-
tional Random Field layer (CRF). To improve the
GED model, we add Bidirectional Encoder Repre-
sentations from Transformers (BERT), which sig-
nificantly outperforms other embedding schemes
in many tasks (Devlin et al., 2018). In addition, we
also add a character-based word embedding, Flair,
which captures more contextual information (Ak-
bik et al., 2018). Our training process is divided
into two steps.

In Step (1), we convert sentences with error anno-
tations into unedited sentences and DIRC tags (i.e.,
<[-,-]> for Delete, tokens preceded by <{+,+}>
for Insert, <[-,-]{+,+}> for Replace and tokens
with no edit tag for Correct). For example, the
sentence “I believe there are {+a+} lot of [-why-
]{+ways+} enjoy [-the-] shopping.” is converted to
“I believe there are lot of why enjoy the shopping
.” and “<C C C C I C R C D C C>”. These two
sequences are treated as the input and output of
a neural GED model respectively. Note that the
token to be inserted ({+a+}) is not in the unedited
sentence, and the right token lot is labeled I instead.

In Step (2), we train a neural GED model for a
grammatical error detector using a BiLSTM-CRF
architecture. We first combine BERT embeddings
(Devlin et al., 2018) with Flair embeddings (Akbik
et al., 2018) to form word embeddings and then
encode each token in a given sentence into a fixed-
length vector. Finally, these embeddings are fed
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Operators Corresponding edit types Description Example

* Insertion Edit match zero or any words good * this
Replacement Edit match one word not me to

? Deletion Edit search for TERM optionally discuss ?about this issue

Table 1: Query operator instruction

into BiLSTM-CRF network to compute and output
a DIRC label sequence.

3.4 Retrieving Suggestions for Detected
Errors

To retrieve writing suggestions for detected errors,
we design queries for each edit type to search for
more plausible corrections using Linggle, a linguis-
tic search engine on a web-based dataset of one
trillion words (Boisson et al., 2013).

Linggle has different query functions and oper-
ators to search word usage in context as shown in
Figure 1. These query functions enable the sys-
tem to query zero, one or multiple words. For
example, “play * role” is intended to search for a
maximum span of three intervening words. We use
three operators (“?”, “*”, “ ”) to retrieve corrective
suggestions for the three edit types, as described
below.

Deletion edit: We use the “?” operator before a
word tagged with “D” to search for n-grams with
or without the word in question. For example, re-
ceiving the sentence “We discuss about this issue.”
as input, our GED model outputs the sequence “C
C D C C C”. Then, we generate the query “discuss
?about this issue” to search Linggle for corrective
suggestions.

Insertion edit: We use the “*” operator before
a word tagged with “I” to search for ngrams with
additional words around this word. For example, an
insertion edit on “this” is detected in the sentence

“I am good this sport.” (the GED model output “C
C C I C”), and thus a Linggle query are formulated
as “good * this”.

Replacement edit: A word tagged with “R” in-
dicates replacement required. We first check if the
word is misspelled using enchant2 library. If mis-
spelled, we replace the word with candidates by
enchant (e.g., ‘moey’→ ‘money/mopey/mosey’).
If not, we use the “ ” operator to search for alterna-
tive n-grams. For example, the GED output of the
sentence “The driver did not accept me to get on

2https://github.com/AbiWord/enchant

the bus.” would be “C C C C R C C C C C C C C”.
Thus, we use the query “not me to” to search for
replacement.

4 Experiments

4.1 Datasets

We used the EF-Cambridge Open Language
Database (EFCAMDAT) (Geertzen et al., 2013)
to train our AES model. This dataset contains
about 1.2 million essays with over 83 million words
written by approximately 174,000 learners with a
wide range of CEFR levels (A1-C2) (language pro-
ficiency level). We used the student essays as input
and the CEFR level assigned by a grader as output
to train the AES model. Due to the imbalanced
distribution of levels as shown in Table 2, we ran-
domly selected 1,903 essays from each level and
then used 5-fold cross validation for training and
evaluation.

CEFR Level #Essays #Training
A1 460,614 1,903
A2 300,188 1,903
B1 166,453 1,903
B2 60,844 1,903
C1 14,551 1,903
C2 1,903 1,903

Table 2: Description of the EFCAMDAT dataset

To train the GED model, we use the First Certifi-
cate in English dataset (FCE). This dataset contains
1,224 essays written by English learners who took
the First Certificate in English (FCE) exam. These
essays have been manually tagged based on 77 er-
ror types (Yannakoudakis et al., 2011). We used
30,953 sentences from FCE for training, 2,720 for
testing, and 2,222 for development. We followed
the approach of Rei and Yannakoudakis (2016)
in our experiment, but converted the dataset into
DIRC format as described in Section 3.3.
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Model
Binary Task DIRC Task
Incorrect tag Insertion tag Replacement tag Deletion tag

Prec. Rec. F0.5 Prec. Rec. F0.5 Prec. Rec. F0.5 Prec. Rec. F0.5

Rei and Søgaard (2018) 65.5 28.6 52
BiLSTM-CRF + word2vec 89 13.8 42.6 57.2 12.1 32.9 82.9 22.4 53.9 67.6 3.1 13.2
BiLSTM-CRF + Flair 68.9 24.6 50.7 53.8 20.2 40.4 72.8 28.3 55.4 59.6 10.1 30.17
BiLSTM-CRF + BERT 71.1 35.7 59.4 53.2 23.8 42.7 73.1 36.1 60.7 53.9 24.1 43.2
BiLSTM-CRF + BERT +Flair 72.3 36.7 60.6 54.6 25.3 44.3 73.5 40.6 63.3 59 24.9 46.3

Table 3: Evaluation on FCE-public test set in DIRC task and binary task

4.2 Hyperparameters

For the AES model, we optimized the trained
model using RMSProp (Dauphin et al., 2015) opti-
mizer with learning rate 0.001 and the maximum
gradient norm was set to 0.9. We used pre-trained
100-dimensional GloVe vectors (Pennington et al.,
2014) as input. The hidden layer size of LSTM
and Bi-LSTM was set to 100. For CNN models,
we used a window size of 5 and hidden layer size
of 100. We applied dropout on the neural network
layer to avoid overfitting, with dropout probabil-
ities set to 0.2. The batch size was 32 and each
model was trained for 50 epochs.

For the GED model, we set parameters differ-
ent from previous work (Rei and Yannakoudakis,
2016). We use the publicly available pre-
trained word embeddings GoogleNews word vec-
tors (word2vec) (Mikolov et al., 2013), Flair (Ak-
bik et al., 2018), and BERT3 (Devlin et al., 2018)
to represent words. Flair embeddings were trained
on the 1-billion word corpus used in Chelba et al.
(2013) and the embedding size (both forward and
backward) was 2048. As for BERT, we utilized
bert-base-uncased model which is trained on the
English Wikipedia (2.5G words) and BooksCor-
pus (0.8G words). We employed 2-layer Bi-LSTM
with CRF to develop for GED model and set the
hidden layer size of Bi-LSTM to 256. We used
SGD optimizer with learning rate 0.01, with maxi-
mum gradient norm set to 1. We applied dropout on
both embedding and Bi-LSTM layers with dropout
probabilities 0.5. We trained the network for 150
epochs and selected the best model with the highest
F1 score on the development set.

5 Evaluation

For the AES task, we adopted quadratic weighted
Kappa (QWK) as our evaluation metric, which

3https://github.com/google-research/bert#pre-trained-
models

was used in Automated Student Assessment Prize
(ASAP) competition and several AES researches
(Taghipour and Ng, 2016; Vaswani et al., 2017;
Dong et al., 2017). For the GED task, we follow
the previous research by Rei and Yannakoudakis
(2016) and use precision, recall and F0.5 to evaluate
our GED model.

Table 3 presents the results of different GED
models on the FCE testset with binary and DIRC
format to compare our results with the state-of-the-
art method proposed by Rei and Søgaard (2018)
using the binary schema. Table 3 shows that
BiLSTM-CRF+BERT+Flair performs substan-
tially better than the other GED models and achieve
state-of-the-art performance on the FCE test set. In-
terestingly, we note that the model with word2vec
pre-trained word embeddings achieves the highest
precision but the lowest recall. As for the DIRC
schema, BiLSTM-CRF+BERT+Flair performs
the best among all models. Importantly, the DIRC
model performs comparably to the binary model
while providing more informative feedback (i.e.,
the edit type) for learners to self-edit their essays.
It is also worth noting that for GED and GEC tasks
multiple answers are acceptable and there is low
inter-annotator agreement (Rozovskaya and Roth,
2010). Bryant and Ng (2015) pointed out even hu-
man annotators can only achieve 72.8 F0.5 score
at the best against the gold standard annotations of
multiple annotators in GEC tasks. Thus, it is fair to
say that the performance of our model against one
gold standard annotation are underestimated and
not far from human annotators, thus acceptable for
an application.

Table 4 shows results of different network archi-
tectures on the AES task. As we can see in Ta-
ble 4, LSTN-LSTM-ATT achieves the best perfor-
mance among all models. In addition, we find that
sentence-level models perform better than word-
level ones in general. Furthermore, we also ob-
serve that the model with attention mechanism per-
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Model Model Type Avg. QWK score
CNN Word-level 0.902
LSTM Word-level 0.927
Bi-LSTM Word-level 0.921
LSTM + attention Word-level 0.931
CNN-CNN Sentence-level 0.934
LSTM-LSTM Sentence-level 0.937
CNN-LSTM-ATT Sentence-level 0.952
LSTM-LSTM-ATT Sentence-level 0.957

Table 4: Average QWK scores on EFCAMDAT

forms slightly better than the other without atten-
tion mechanism. Besides, the result (i.e., QWK
score 0.957) shows our neural models are effi-
cient to predict scores in EFCAMDAT, compar-
ing with other datasets as Automated Student As-
sessment Prize4 (ASAP). Trained on ASAP, the
character-based model with CNN-LSTM proposed
by Taghipour and Ng (2016) scores QWK 0.761,
and the sentence-based model with LSTM-CNN-
att proposed by Taghipour and Ng (2016) achieves
QWK score 0.764.

6 Conclusion and Future Work

In summary, we have presented an writing environ-
ment that supports interactive writing suggestions,
scoring, error detection and corrective feedback.
For the interactive writing task, we provide gram-
matical suggestions, collocations, and bilingual ex-
amples, to guide the user towards writing fluently.
For the GED task, we proposed a new label schema,
DIRC. Experiments show that the proposed label
schema achieves comparable performance (on bi-
nary task) while providing more informative feed-
back. In addition, we leverage an existing linguistic
search engine to provide corrective suggestions for
each error type.

Many avenues exist for future research and im-
provement of our system. For example, the method
for introducing additional training data or generat-
ing artificial training data could be implemented
to improve the performance. An interesting direc-
tion to explore is re-ranking corrective suggestions,
so that the suggestion more relevant to the origi-
nal sentence goes to the top. Yet another direction
of research would be to detect fine-grained error
types. Finally, our system currently providing ad-
ditional Chinese translations for English examples.
Obviously we could easily provide languages trans-

4https://www.kaggle.com/c/asap-aes

lations by changing a bilingual dictionary.
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Abstract

We present CLIReval, an easy-to-use toolkit
for evaluating machine translation (MT) with
the proxy task of cross-lingual information re-
trieval (CLIR). Contrary to what the project
name might suggest, CLIReval does not actu-
ally require any annotated CLIR dataset. In-
stead, it automatically transforms translations
and references used in MT evaluations into
a synthetic CLIR dataset; it then sets up
a standard search engine (Elasticsearch) and
computes various information retrieval met-
rics (e.g., mean average precision) by treat-
ing the translations as documents to be re-
trieved. The idea is to gauge the quality of
MT by its impact on the document transla-
tion approach to CLIR. As a case study, we
run CLIReval on the ”metrics shared task” of
WMT2019; while this extrinsic metric is not
intended to replace popular intrinsic metrics
such as BLEU, results suggest CLIReval is
competitive in many language pairs in terms
of correlation to human judgments of qual-
ity. CLIReval is publicly available at https:
//github.com/ssun32/CLIReval.

1 Introduction

Machine translation (MT) is the task of automati-
cally translating sentences from a source language
to a target language. A natural question that arises
is how do we determine whether an MT system is
translating sentences well? One answer is that we
can engage human translators to evaluate the trans-
lated sentences manually. Unfortunately, evaluat-
ing translations can be relatively time-consuming
and worse, the fact that the quality of translation is
inherently subjective can lead to variations among
different human translators. The desire for fast and
consistent evaluation has led to the emergence of
a plethora of automatic evaluation metrics such as
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006), METOR (Banerjee and Lavie, 2005) and

BEER (Stanojević and Sima’an, 2014). Out of the
aforementioned metrics, BLEU has become the de
facto evaluation metric for machine translation. It
calculates the weighted average of n-gram preci-
sion between a translated sentence and a reference
sentence. Nevertheless, BLEU, too, has its prob-
lems. For example, Callison-Burch et al. (2006)
showed that an improved BLEU score does not rep-
resent an actual improvement in translation quality.

There are also some proposals to evaluate the
quality of translations with the help of extrinsic
proxy tasks. Berka et al. (2011) collected short
English documents from various domains and cre-
ated yes and no questions in Czech. They then
translated the English documents into Czech and
evaluated the quality of the MT systems based on
human performances on the documents and ques-
tions in Czech. Scarton and Specia (2016) trans-
lated a dataset of German reading comprehension
tests into English with various MT systems such as
Google Translate and Bing Translate and judged
the quality of translations based on human perfor-
mances on the translated reading comprehension
datasets. Unfortunately, these external tasks suffer
from the same scalability and consistency issues as
manual evaluation.

One downstream task that relies heavily on MT
but has not been used as a method to evaluate MT
systems is the task of Cross-Lingual Information
Retrieval (CLIR). CLIR is a task in which search
queries are issued in one language, and the re-
trieved relevant documents are written in a different
language. Two commonly used methods in CLIR
are query translation, where queries are translated
into the same language as the documents and doc-
ument translation where documents are translated
into the same language as the queries (Zhou et al.,
2012; Oard, 1998; McCarley, 1999). A monolin-
gual IR system is then used to obtain search results.

CLIR is an active field of research, and previ-
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ous works suggest that the performance of CLIR
correlates highly with the quality of the MT (Zhu
and Wang, 2006; Nie, 2010; Yarmohammadi et al.,
2019). Therefore, we expect IR metrics to be good
indicators of the quality of translations. Unfortu-
nately, there is currently no publicly available tool
to facilitate research in this area, and this motivates
us to design and implement CLIReval.

CLIReval is a lightweight python-based MT eval-
uation toolkit that consumes the same inputs as
other automatic MT evaluation tools such as multi-
bleu.perl and SacreBLEU (Post, 2018) and does
not require any additional annotated CLIR data.
Instead, it automatically transforms inputs into a
synthetic CLIR dataset on the fly with the help
of an Information Retrieval (IR) system. It imple-
ments the document translation approach to CLIR,
where MT translations are viewed as documents
and indexed using a commonly-used search engine
(Elasticsearch).

As a case study, we test CLIReval on the met-
rics shared task of WMT2019 (Ma et al., 2019),
which measures the Pearson correlations (r) be-
tween automatically generated MT metrics and
human judgments. Results show that CLIReval
consistently performs at the level of r ≥ 0.9 and is
on par or even outperforms popular metrics such
as BLEU on multiple language directions. Fur-
ther, this is achieved without using external data
or doing domain-based parameter tuning. These
promising results highlight the potential of CLIR
as a proxy task for MT evaluation, and we hope
CLIReval can facilitate future research in this area.

Our key contributions in this work can be sum-
marized as follows:

1. We release CLIReval,1 an open-source
toolkit that evaluates the quality of MT out-
puts in the context of a CLIR system, without
the need for any actual CLIR dataset. The
only inputs required to the tool are the trans-
lations and the references. It is easy to use in
that with a single script, the tool will create
a synthetic CLIR dataset, index the transla-
tions as documents, and report metrics such
as mean average precision.

2. We demonstrate that CLIReval can perform as
well as popular intrinsic MT metrics on recent
WMT metrics shared task, without supervi-
sion from external datasets and domain-based

1https://github.com/ssun32/CLIReval

Figure 1: The system architecture of CLIReval. Docu-
ments from input files are separately indexed into two
instances of IR systems. Generated search queries are
used to query both IR instances. Search scores from
REF-IR are converted to discrete relevance judgment
labels as required by trec eval. Finally, CLIReval uses
trec eval to calculate IR metrics.

parameter tuning. Results suggest that CLIR
is a feasible proxy task for MT evaluation and
is worth further exploration in future research.

2 Approach

Given a set of source documents S, an MT system
φ converts S into a set of translated documents,
T = φ(S) . Intrinsic MT metrics directly calculate
an aggregated score between the sentences in T
and sentences in R, where R is a set of reference
documents.2

We propose an alternative way to evaluate φ by
first converting it into a proxy CLIR task and then
evaluate the MT system with extrinsic IR metrics.
First, CLIReval extracts a set of synthetic search
queries Q from R. Second, given a monolingual
information retrieval (IR) engine ρ, we can run
these queries Q over the document collection R to
obtain a set of “relevant” documents for Q. We use
the notation ρ(Q,R) to refer to this set of desired
returned search results.

Now, our goal is to evaluate the quality of the
translation T = φ(S) under the same IR engine
ρ. We index the documents T into the IR engine
and submit the same queries to obtain the search

2When document boundaries are not defined, CLIReval
automatically creates artificial document boundaries. The
default option is to treat each sentence as a document for
retrieval purposes.
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results ρ(Q,T ). Finally, we can measure the perfor-
mance of the CLIR system by comparing ρ(Q,T )
to ρ(Q,R), and calculating IR metrics such as
mean average precision.

This approach makes several assumptions. First,
CLIReval implements the document translation ap-
proach to CLIR and evaluates MT quality in that
context; additionally, we assume that ρ is a ro-
bust and reasonable IR engine that can be used
across a wide range of situations. Second, we
assume R contains the “correct” translations of
S, and that ρ(Q,R) is a good approximation of
the optimal search results. Third, we assume that
automatically-generated Q can mimic that actual
information needs of manually-crafted queries. If
these caveats are acknowledged, then CLIReval is
a reasonable tool for MT evaluation.

3 Design and Implementation Details

Figure 1 presents the system architecture of
CLIReval. The only necessary inputs are 1) a sys-
tem output translation (MT) file and 2) a reference
(REF) file. CLIReval executes the following steps:

1. Separately index documents in MT and REF
files into two instances of the Information Re-
trieval (IR) system, we refer to them as MT-IR
and REF-IR.

2. Convert text in the REF file into search queries
with the Query Generator module.

3. Query both instances of IR system with the
same set of generated search queries.

4. Convert search scores from REF-IR to dis-
crete relevance labels with the Relevance La-
bel Converter.

5. Finally, CLIReval evaluates the search results
from MT-IR and relevance judgment labels
from REF-IR with trec eval,3 a standard eval-
uation toolkit used by the information retrieval
community.

We emphasize that the above steps are achieved
with a single easy-to-use script: CLIReval is as
simple as executing the following command:

python evaluate.py [ref file] [mt
file]

where the inputs are standard text files that
3https://github.com/usnistgov/trec_

eval

one might pass to multi-bleu.perl, or
standard SGML files that one might pass to
mteval-v13a.pl, both of which are common
BLEU scripts for MT.4

3.1 Input files

CLIReval ingests a system output translation (MT)
file which contains documents translated by an MT
system and a reference (REF) file, which contains
reference translations of the same source docu-
ments. Our system supports two input file formats:

1. The SGML format commonly used by the
news translation shared task from the annual
conference on machine translation (Barrault
et al., 2019). This is also the input format re-
quired by the NIST BLEU scoring tool.5 In
a SGML file, every translated sentence seg-
ment is placed in a <seg> tag, and sentence
segments belonging to the same document are
placed in the same <doc> tag. Every <doc>
tag must also contain a unique document id
attribute used to identify the document.

2. A text file where each line contains a sentence.
A user can supply an optional mapping file
that maps a line number to a (document id
and, segment id) tuple. If a mapping file is not
specified, CLIReval will create an artificial
document boundary every N sentences.6

For either format, the number of documents in the
MT file must be equivalent to the number of docu-
ments in the REF file. Further, the number of sen-
tence segments in a machine translated document
must also match the number of sentence segments
in the corresponding reference document.

3.2 Query Generator

The query generator module ingests data in the REF
file and automatically generates search queries.
CLIReval has two modes for query generation,
which can be specified with the query mode ar-
gument:

1. In sentences mode, the query generator ex-
tracts all reference sentences from the input

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/

5ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl
6N can be specified with the doc length argument. The

default value is 1, which means every sentence is treated as a
document.
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Figure 2: R is a set of sample reference documents and
each document contains two sentences, while T is a set
of sample translated documents.

Figure 3: Sample outputs from the query generator. In
sentences mode, all sentences from R (Figure 2) are
used as search queries while in the unique terms mode,
the unique terms in R are the search queries.

REF file and treats every sentence as a search
query string. This is inspired by Sasaki et al.
(2018), who use the first sentences of docu-
ments as queries.

2. In unique terms mode, the query generator
treats all unique terms as queries. For Elastic-
search, these terms can be obtained from the
term vectors of all indexed documents.

We recognize that using sentences or unique
terms as queries might be less ideal than using
real search queries, but getting relevant human-
generated queries can be time-consuming and ex-
pensive. Our query generation methods are cheap
and fast, which enables quick experimentation. Ex-
amples of R and T are shown in Figure 2, and the
resulting queries generated from R are shown in
Figure 3. In the example, we have two documents
D1 and D2 each with two sentences S1 and S2. In
the sentence mode for query generation, each of
the four sentences in R are used as queries; in the
unique terms mode, the 6 vocabulary words are
extracted as query.

3.3 Information Retrieval (IR) System

To ensure consistent and reproducible results, we
choose Elasticsearch7 as the default backend IR
system for CLIReval and adopt well-tested search
configurations.8 Elasticsearch is an open-source,
lightweight, and fast search engine written in Java.
We pick Elasticsearch for three reasons:

First, Elasticsearch has built-in analyzers for a
wide variety of languages, which allows CLIReval
to support many translation tasks beyond English
as the target language. Analyzers are Elasticsearch
modules that preprocess and tokenize queries and
documents according to language-specific rules. It
also implements stopwords removal and stemming.
These are important operations that affect the qual-
ity of search results.

Second, Elasticsearch implements many compet-
itive retrieval models used by IR researchers and
practitioners. By default, CLIReval uses the Okapi
BM25 (Robertson et al., 2009) score to measure the
degree of similarity of documents to a given search
query. Note that BM25 shows strong performances
on many datasets (Chapelle and Chang, 2011; Mc-
Donald et al., 2018) and frequently outperforms
newer “state of the art” methods (Guo et al., 2016).
It is also fast to compute, allowing CLIReval to run
in a highly efficient manner.

Third, Elasticsearch is a widely used search en-
gine solution that is supported on various platforms.
This increases the ease of installation for users of
CLIReval.

CLIReval separately indexes the documents
from MT and REF files into two instances of
Elasticsearch. It then queries the Elasticsearch in-
stances with the generated query strings. For every
query, Elasticsearch returns the top 100 documents
ranked by BM25 scores. Since trec eval only ac-
cepts discrete relevance judgment labels, the rel-
evance label converter module is used to convert
search scores from REF-IR into discrete labels.

3.4 Relevance Label Converter

We implement three ways of converting raw BM25
scores of REF-IR into discrete relevance judgment
labels:

The query in document method (Schamoni
et al., 2014; Sasaki et al., 2018) assigns 1 to a
document if and only if the given search query

7https://www.elastic.co/
8CLIReval is flexible and users can easily replace Elastic-

search with their own IR system.
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Figure 4: Given queries from the query generator and
documents from R, we can obtain relevance scores
from an IR system. The relevance label converter then
converts those relevance scores into discrete relevance
labels via different conversion modes.

is extracted from that document. Consequently,
there will only be one relevant document per search
query.

The percentile method assigns 1 to documents
with BM25 scores in the top 25 percentile of all
document scores returned by the IR system and
0 otherwise. The cutoff percentile value can be
adjusted with the n percentile argument.

Th Jenks methods uses Jenks natural breaks op-
timization9 to automatically break a list of BM25
scores into different classes. This is achieved by
minimizing the variance of BM25 scores within a
class and at the same time maximize the variance
of average BM25 scores between classes (McMas-
ter and McMaster, 2002). Following the conven-
tions of publicly available IR datasets (Chapelle
and Chang, 2011; Qin and Liu, 2013), we break
the BM25 scores into 5 relevance judgment classes,
where 4 indicates that a document is highly rele-
vant to a given query and 0 indicates that a doc-
ument is not relevant to a given query. For each
query, CLIReval normalizes the BM25 scores of

9https://en.wikipedia.org/wiki/Jenks_
natural_breaks_optimization

retrieved documents to the range [0, 1] and use
Jenks natural breaks optimization to convert the
BM25 scores into discrete relevance judgment la-
bels. Users can specify the number of classes with
the jenks nb class argument.

Figure 4 illustrates an example of how relevance
labels are generated for each query-document pair
using the generated query Q (see Section 3.2 and
the reference documents R provided by the user.
First, raw BM25 scores are obtained by indexing R
in an IR system and searching with Q. These scores
are then converted to discrete labels in one of three
ways.

3.5 IR Metrics

To summarize: after the queries and relevance la-
bels are prepared (as in Section 3.2 and 3.4), the
MT output T (e.g. Figure 2, left) is indexed into
another IR system. Finally, we run the queries
Q through this MT-IR system to obtain document
scores ρ(Q,T ) (e.g. Figure 1, left branch), which
can be evaluated with respect to the relevance la-
bels. We do this final evaluation with the standard
trec eval toolkit.

The trec eval toolkit returns a large number of
IR metrics but CLIReval is configured to return
only two of the most popular IR metrics by default:

• Mean average precision (MAP) is the mean
of the average precision scores for each query
(Buckley and Voorhees, 2005).

• Normalized discounted cumulative gain
(NDCG) is a metric that measures the use-
fulness of documents based on their ranks in
the search results (Järvelin and Kekäläinen,
2002) and is normalized to [0, 1].

We choose MAP because it is a widely under-
stood metric, and NDCG because it allows for mul-
tiple levels of relevance labels. We follow standard
practice in IR benchmark datasets such as Chapelle
and Chang (2011) and calculate both metrics at the
cutoff threshold of 10 documents. We name these
metrics as MAP@10 and NDCG@10.

3.6 Installation

CLIReval is written in Python 3 and works on
Python 3.5 and later. Elasticsearch requires at least
Java 8. We provide a shell script that automatically
downloads and installs Elasticsearch 6.5.3 and the
latest version of trec eval. It also installs additional
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Elasticsearch plugins that support additional lan-
guages. In total, CLIReval has built-in support
for 36 languages and for unsupported languages,
it will fall back to the default standard analyzer,
which is based on the Unicode text segmentation
algorithm.10 We tested CLIReval extensively in
the Unix/Linux environment, but it should work in
other environments with minimal modification.

4 Case Study

4.1 WMT metrics shared task

To demonstrate the utility of CLIReval, we test it
on the metrics shared task of WMT2019.11 The
metrics task (Ma et al., 2019) is designed to evalu-
ate outputs from automatic MT metrics against ac-
tual human ratings on machine translation systems.
The goal is to find evaluation methods that have
high Pearson correlations with human judgments.
For every system in every language direction, we
compute multiple system-level scores (different IR
metrics) with CLIReval.

In total, there are 18 language directions, and
for every language direction, a reference file and
11 to 22 system generated translation files are pro-
vided. In every reference file, there are around 1000
to 2000 sentences in 70 to 140 documents. The
only exceptions are French-German and German-
French, where all sentences are placed in the same
document. Since document boundaries are not
clearly defined in these language directions, we
are excluding them from this case study.

4.2 Run Time

We used an Intel Xeon E5 Linux server with 64GB
RAM. For every language direction, CLIReval runs
consistently at the rate of around 0.2 to 0.3 seconds
per document and it takes less than a minute to get
results.

4.3 Results

We use the official evaluation scripts12 to compute
linear correlations between IR metrics and human
judgments.

Table 1 presents the results for 16 language di-
rections and IR metrics perform well. On Jenks
mode, NDCG@10 outperforms BLEU and NIST
on 10 out of the 16 language directions. Further,

10https://unicode.org/reports/tr29/
11http://www.statmt.org/wmt19/
12http://ufallab.ms.mff.cuni.cz/˜bojar/

wmt18-metrics-task-package.tgz

the 4 IR metrics collectively hold the top scores for
6 language directions. BEER seems to be a little
bit better than the IR metrics, claiming the top spot
for 7 language directions. Note that the participat-
ing BEER system is trained on provided in-domain
data, while we are getting comparable results with-
out any tuning. It is also worth pointing out that the
intrinsic MT metrics work at sentence level while
in comparison, CLIReval works at the document-
level. Nonetheless, the results are encouraging and
show the potential of CLIR as a proxy task for MT
evaluation.

4.4 Analysis: BLEU vs. NDCG

Figure 5: Scatterplot of sentence-level NDCG@10 vs
sentence-level BLEU on zh-en and en-gu. For better
visualization, only 300 random samples from each lan-
guage direction are shown.

To get a deeper comparison between CLIReval
and the most popular MT metric, BLEU, we ran-
domly select two systems (Baidu-system for zh-en
and UEDIN for en-gu) and calculate sentence-level
BLEU and sentence-level NDCG@10 scores13

on both systems. As we can see in Figure 5,
there is no clear correlation between sentence-level
NDCG@10 and sentence-level BLEU scores. To
be more exact, the Pearson correlations between
the two metrics is almost non-existent, at -0.021
and -0.032 for zh-en and en-gu respectively. This
shows that the two metrics are qualitatively dif-
ferent and contribute different perspectives to MT
evaluation.

5 Conclusions

We present CLIReval, an open-source python-
based evaluation toolkit for machine translation.

13calculated with CLIReval using default arguments.
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query in document Jenks

LD BLEU NIST TER BEER MAP@10 NDCG@10 MAP@10 NDCG@10

de→cs 0.941 0.954 0.890 0.978 0.971 0.968 0.965 0.991

de→en 0.849 0.813 0.874 0.906 0.865 0.869 0.654 0.858

en→cs 0.897 0.896 0.980 0.990 0.882 0.889 0.909 0.983

en→de 0.921 0.321 0.969 0.983 0.953 0.953 0.977 0.982

en→fi 0.969 0.971 0.981 0.989 0.915 0.906 0.927 0.944

en→gu 0.737 0.786 0.865 0.829 0.912 0.909 0.833 0.847

en→kk 0.852 0.930 0.940 0.971 0.982 0.982 0.963 0.968

en→lt 0.989 0.993 0.994 0.982 0.776 0.791 0.903 0.916

en→ru 0.986 0.988 0.995 0.977 0.865 0.862 0.980 0.953

en→zh 0.901 0.884 0.856 0.803 0.928 0.930 0.772 0.902

fi→en 0.982 0.986 0.984 0.993 0.956 0.955 0.944 0.960

gu→en 0.834 0.930 0.890 0.952 0.814 0.809 0.782 0.824

kk→en 0.946 0.942 0.799 0.986 0.970 0.968 0.986 0.983

lt→en 0.961 0.944 0.960 0.947 0.636 0.612 0.929 0.865

ru→en 0.879 0.925 0.917 0.915 0.922 0.920 0.866 0.961

zh→en 0.899 0.921 0.840 0.942 0.930 0.922 0.622 0.957

Table 1: Pearson correlations (r) of various metrics against human judgments. Best scores for every language
direction are highlighted in bold. Note that BEER is trained on in-domain resources from the WMT2019 metrics
task. We show MAP@10 and NDCG@10 scores for CLIReval with two relevance label conversion settings.

Rather than directly evaluating translated sentences
against reference sentences, CLIReval transforms
the inputs into the closely related task of CLIR,
without the need for annotated CLIR dataset.

The aim of this project is not to replace current
automatic evaluation metrics or fix the limitations
in those metrics, but to bridge the gap between
machine translation and cross-lingual information
retrieval and to show that CLIR is a feasible proxy
task for MT evaluation.

Our case study on the WMT2019 metrics shared
task further highlights the potential of CLIR as a
proxy task for MT evaluation, and we hope that
CLIReval can facilitate future research in this area.
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Abstract

We present ConvLab-2, an open-source toolkit
that enables researchers to build task-oriented
dialogue systems with state-of-the-art models,
perform an end-to-end evaluation, and diag-
nose the weakness of systems. As the succes-
sor of ConvLab (Lee et al., 2019b), ConvLab-
2 inherits ConvLab’s framework but integrates
more powerful dialogue models and supports
more datasets. Besides, we have developed an
analysis tool and an interactive tool to assist re-
searchers in diagnosing dialogue systems. The
analysis tool presents rich statistics and sum-
marizes common mistakes from simulated di-
alogues, which facilitates error analysis and
system improvement. The interactive tool pro-
vides a user interface that allows developers to
diagnose an assembled dialogue system by in-
teracting with the system and modifying the
output of each system component.

1 Introduction

Task-oriented dialogue systems are gaining increas-
ing attention in recent years, resulting in a number
of datasets (Henderson et al., 2014; Wen et al.,
2017; Budzianowski et al., 2018b; Rastogi et al.,
2019) and a wide variety of models (Wen et al.,
2015; Peng et al., 2017; Lei et al., 2018; Wu et al.,
2019; Gao et al., 2019). However, very few open-
source toolkits provide full support to assembling
an end-to-end dialogue system with state-of-the-art
models, evaluating the performance in an end-to-
end fashion, and analyzing the bottleneck both qual-
itatively and quantitatively. To fill the gap, we have
developed ConvLab-2 based on our previous dia-
logue system platform ConvLab (Lee et al., 2019b).
ConvLab-2 inherits its predecessor’s framework
and extend it by integrating many recently pro-
posed state-of-the-art dialogue models. In addition,

∗Corresponding author.

Figure 1: Framework of ConvLab-2. The top block
shows different approaches to build a dialogue system.

two powerful tools, namely the analysis tool and
the interactive tool, are provided for in-depth er-
ror analysis. ConvLab-2 will be the development
platform for Multi-domain Task-oriented Dialog
Challenge II track in the 9th Dialog System Tech-
nology Challenge (DSTC9)1.

As shown in Figure 1, there are many approaches
to building a task-oriented dialogue system, rang-
ing from pipeline methods with multiple compo-
nents to fully end-to-end models. Previous toolkits
focus on either end-to-end models (Miller et al.,
2017) or one specific component such as dialogue
policy (POL) (Ultes et al., 2017), while the others
toolkits that are designed for developers (Bock-
lisch et al., 2017; Papangelis et al., 2020) do not

1https://sites.google.com/dstc.
community/dstc9/home
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have state-of-the-art models integrated. ConvLab
(Lee et al., 2019b) is the first toolkit that provides
various powerful models for all dialogue compo-
nents and allows researchers to quickly assemble a
complete dialogue system (using a set of recipes).
ConvLab-2 inherits the flexible framework of Con-
vLab and imports recently proposed models that
achieve state-of-the-art performance. In addition,
ConvLab-2 supports several large-scale dialogue
datasets including CamRest676 (Wen et al., 2017),
MultiWOZ (Budzianowski et al., 2018b), DealOrN-
oDeal (Lewis et al., 2017), and CrossWOZ (Zhu
et al., 2020).

To support end-to-end evaluation, ConvLab-2
provides user simulators for automatic evaluation
and integrates Amazon Mechanical Turk for hu-
man evaluation, similar to ConvLab. Moreover,
it provides an analysis tool and a human-machine
interactive tool for diagnosing a dialogue system.
Researchers can perform quantitative analysis us-
ing the analysis tool. It presents useful statistics
extracted from the conversations between the user
simulator and the dialogue system. This infor-
mation helps reveal the weakness of the system
and signifies the direction for further improvement.
With the interactive tool, researchers can perform
qualitative analysis by deploying their dialogue
systems and conversing with the systems via the
webpage. During the conversation, the interme-
diate output of each component in a pipeline sys-
tem, such as the user dialogue acts and belief state,
are presented on the webpage. In this way, the
performance of the system can be examined, and
the prediction errors of those components can be
corrected manually, which helps the developers
identify the bottleneck component. The interactive
tool can also be used to collect real-time human-
machine dialogues and user feedback for further
system improvement.

2 ConvLab-2

2.1 Dialogue Agent

Each speaker in a conversation is regarded as an
agent. ConvLab-2 inherits and simplifies Con-
vLab’s framework to accommodate more compli-
cated dialogue agents (e.g., using multiple models
for one component) and more general scenarios
(e.g., multi-party conversations). Thanks to the
flexibility of the agent definition, researchers can
build an agent with different types of configura-
tions, such as a traditional pipeline method (as

shown in the first layer of the top block in Fig-
ure 1), a fully end-to-end method (the last layer),
and between (other layers) once instantiating cor-
responding models. Researchers can also freely
customize an agent, such as incorporating two di-
alogue systems into one agent to cope with mul-
tiple tasks. Based on the unified agent definition
that both dialogue systems and user simulators are
treated as agents, ConvLab-2 supports conversation
between two agents and can be extended to more
general scenarios involving three or more parties.

2.2 Models

ConvLab-2 provides the following models for every
possible component in a dialogue agent. Note that
compared to ConvLab, newly integrated models
in ConvLab-2 are marked in bold. Researchers
can easily add their models by implementing the
interface of the corresponding component. We will
keep adding state-of-the-art models to reflect the
latest progress in task-oriented dialogue.

2.2.1 Natural Language Understanding
The natural language understanding (NLU) com-
ponent, which is used to parse the other agent’s
intent, takes an utterance as input and outputs
the corresponding dialogue acts. ConvLab-2 pro-
vides three models: Semantic Tuple Classifier
(STC) (Mairesse et al., 2009), MILU (Lee et al.,
2019b), and BERTNLU. BERT (Devlin et al.,
2019) has shown strong performance in many
NLP tasks. Thus, ConvLab-2 proposes a new
BERTNLU model. BERTNLU adds two MLPs
on top of BERT for intent classification and slot
tagging, respectively, and fine-tunes all parame-
ters on the specified tasks. BERTNLU achieves
the best performance on MultiWOZ in comparison
with other models.

2.2.2 Dialogue State Tracking
The dialogue state tracking (DST) component up-
dates the belief state, which contains the constraints
and requirements of the other agent (such as a user).
ConvLab-2 provides a rule-based tracker that takes
dialogue acts parsed by the NLU as input.

2.2.3 Word-level Dialogue State Tracking
Word-level DST obtains the belief state directly
from the dialogue history. ConvLab-2 integrates
four models: MDBT (Ramadan et al., 2018),
SUMBT (Lee et al., 2019a), and TRADE (Wu
et al., 2019). TRADE generates the belief state
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from utterances using a copy mechanism and
achieves state-of-the-art performance on Multi-
WOZ.

2.2.4 Dialogue Policy
Dialogue policy receives the belief state and out-
puts system dialogue acts. ConvLab-2 provides a
rule-based policy, a simple neural policy that learns
directly from the corpus using imitation learning,
and reinforcement learning policies including RE-
INFORCE (Williams, 1992), PPO (Schulman et al.,
2017), and GDPL (Takanobu et al., 2019). GDPL
achieves state-of-the-art performance on Multi-
WOZ.

2.2.5 Natural Language Generation
The natural language generation (NLG) component
transforms dialogue acts into a natural language
sentence. ConvLab-2 provides a template-based
method and SC-LSTM (Wen et al., 2015).

2.2.6 Word-level Policy
Word-level policy directly generates a natural lan-
guage response (rather than dialogue acts) ac-
cording to the dialogue history and the belief
state. ConvLab-2 integrates three models: MDRG
(Budzianowski et al., 2018a), HDSA (Chen et al.,
2019), and LaRL (Zhao et al., 2019). MDRG is
the baseline model proposed by Budzianowski et al.
(2018b) on MultiWOZ, while HDSA and LaRL
achieve much stronger performance on this dataset.

2.2.7 User Policy
User policy is the core of a user simulator. It takes a
pre-set user goal and system dialogue acts as input
and outputs user dialogue acts. ConvLab-2 pro-
vides an agenda-based (Schatzmann et al., 2007)
model and neural network-based models including
HUS and its variational variants (Gür et al., 2018).
To perform end-to-end simulation, researchers can
equip the user policy with NLU and NLG compo-
nents to assemble a complete user simulator.

2.2.8 End-to-end Model
A fully end-to-end dialogue model receives the
dialogue history and generates a response in natu-
ral language directly. ConvLab-2 extends Sequic-
ity (Lei et al., 2018) to multi-domain scenarios:
when the model senses that the current domain has
switched, it resets the belief span, which records
information of the current domain. ConvLab-2 also
integrates DAMD (Zhang et al., 2019) which ob-
tains state-of-the-art results on MultiWOZ. As for

the DealOrNoDeal dataset, we provide the ROLL-
OUTS RL policy proposed by Lewis et al. (2017).

2.3 Datasets
Compared with ConvLab, ConvLab-2 can inte-
grate a new dataset more conveniently. For each
dataset, ConvLab-2 provides a unified data loader
that can be used by all the models, thus separating
data processing from the model definition. Cur-
rently, ConvLab-2 supports four task-oriented dia-
logue datasets, including CamRest676 (Wen et al.,
2017), MultiWOZ (Eric et al., 2019), DealOrN-
oDeal (Lewis et al., 2017), and CrossWOZ (Zhu
et al., 2020).

2.3.1 CamRest676
CamRest676 (Wen et al., 2017) is a Wizard-of-Oz
dataset, consisting of 676 dialogues in a restaurant
domain. ConvLab-2 offers an agenda-based user
simulator and a complete set of models for build-
ing a traditional pipeline dialogue system on the
CamRest676 dataset.

2.3.2 MultiWOZ
MultiWOZ (Budzianowski et al., 2018b) is a large-
scale multi-domain Wizard-of-Oz dataset. It con-
sists of 10,438 dialogues with system dialogue acts
and belief states. However, user dialogue acts are
missing, and belief state annotations and dialogue
utterances are noisy. To address these issues, Con-
vlab (Lee et al., 2019b) annotated user dialogue acts
automatically using heuristics. Eric et al. (2019)
further re-annotated the belief states and utterances,
resulting in the MultiWOZ 2.1 dataset.

2.3.3 DealOrNoDeal
DealOrNoDeal (Lewis et al., 2017) is a dataset of
human-human negotiations on a multi-issue bar-
gaining task. It contains 5,805 dialogues based on
2,236 unique scenarios. On this dataset, ConvLab-
2 implements ROLLOUTS RL (Lewis et al., 2017)
and LaRL (Zhao et al., 2019) models.

2.3.4 CrossWOZ
CrossWOZ (Zhu et al., 2020) is the first large-scale
Chinese multi-domain Wizard-of-Oz dataset pro-
posed recently. It contains 6,012 dialogues span-
ning over five domains. Besides dialogue acts and
belief states, the annotations of user states, which
indicate the completion of a user goal, are also
provided. ConvLab-2 offers a rule-based user sim-
ulator and a complete set of models for building a
pipeline system on the CrossWOZ dataset.
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Figure 2: Performance of the demo system in Section 3. Left: Success rate and inform F1 for each domain. Right:
Proportions of the dialogue loop in each domain.

Overall results:
Success Rate: 60.8%; inform F1: 44.5%

Most confusing user dialogue acts:
Request-Hotel-Post-?

- 34%: Request-Hospital-Post-?
- 32%: Request-Attraction-Post-?

Request-Hotel-Addr-?
- 29%: Request-Attraction-Addr-?
- 28%: Request-Restaurant-Addr-?

Request-Hotel-Phone-?
- 26%: Request-Restaurant-Phone-?
- 26%: Request-Attraction-Phone-?

Invalid system dialogue acts:
- 31%: Inform-Hotel-Parking
- 28%: Inform-Hotel-Internet

Redundant system dialogue acts:
- 34%: Inform-Hotel-Stars

Missing system dialogue acts:
- 25%: Inform-Hotel-Phone

Most confusing system dialogue acts:
Recommend-Hotel-Parking-yes

- 21%: Recommend-Hotel-Parking-none
- 18%: Inform-Hotel-Parking-none

Inform-Hotel-Parking-yes
- 17%: Inform-Hotel-Parking-none

Inform-Hotel-Stars-4
- 16%: Inform-Hotel-Internet-none

User dialogue acts that cause loop:
- 53% Request-Hotel-Phone-?
- 21% Request-Hotel-Post-?
- 14% Request-Hotel-Addr-?

Table 1: Comprehensive results (partial) of the demo
system in Section 3 for the Hotel domain. To save
space, only the most frequent errors are presented.

2.4 Analysis Tool

To evaluate a dialogue system quantitatively,
ConvLab-2 offers an analysis tool to perform an
end-to-end evaluation with a specified user simula-
tor and generate an HTML report which contains
rich statistics of simulated dialogues. Charts and
tables are used in the test report for better demon-
stration. Partial results of a demo system in Section
3 are shown in Figure 2 and Table 1. Currently, the
report contains the following pieces of information
for each task domain:

• Metrics for overall performance such as suc-
cess rate, inform F1, average turn number, etc.

• Common errors of the NLU component, such
as the confusion matrix of user dialogue acts.
For the example in Table 1, 34% of the re-
quests for the Postcode in the Hotel domain
are misinterpreted as the requests in the Hos-
pital domain.

• Frequent invalid, redundant, and missing sys-
tem dialogue acts predicted by the dialogue
policy.

• The system dialogue acts from which the NLG
component generates responses that confuse
the user simulator. For the example in Table
1, it is hard to inform the user that the hotel
has free parking.

• The causes of dialogue loops. Dialogue loop
is the situation that the user keeps repeating
the same request until the max turn number is
reached. This result shows the requests that
are hard for the system to handle.
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Figure 3: The interface of the Interactive Tool.

The analysis tool also supports the comparison
between different dialogue systems that interact
with the same user simulator. The above statistics
and comparison results can significantly facilitate
error analysis and system improvement.

2.5 Interactive Tool

ConvLab-2 provides an interactive tool that enables
researchers to converse with a dialogue system
through a graphical user interface and modify in-
termediate results to correct system errors.

As shown in Figure 3, researchers can customize
their dialogue system by selecting the dataset and
the model of each component. Then, they can inter-
act with the system via the user interface. During a
conversation, the output of each component is dis-
played on the left side as a JSON formatted string,
including the user dialogue acts parsed by the NLU,
the belief state tracked by the DST, the system dia-
logue acts selected by the policy and the final sys-
tem response generated by the NLG. By showing
both the dialogue history and the component out-
puts, the researchers can get a good understanding
of how their system works.

In addition to the fine-grained system output, the
interactive tool also supports intermediate output
modification. When a component makes a mistake
and the dialogue fails to continue, the researchers
can correct the JSON output of that component to
redirect the conversation by replacing the original

output with the correct one. This function is help-
ful when the researchers are debugging a specific
component.

In consideration of the compatibility across plat-
forms, the interactive tool is deployed as a web
service that can be accessed via a web browser. To
use self-defined models, the researchers have to
edit a configuration file, which defines all available
models for each component. The researchers can
also add their own models into the configuration
file easily.

3 Demo

This section demonstrates how to use ConvLab-
2 to build, evaluate, and diagnose a traditional
pipeline dialogue system developed on the Mul-
tiWOZ dataset.
import ... # import necessary modules
# Create models for each component
# Parameters are omitted for simplicity
sys_nlu = BERTNLU(...)
sys_dst = RuleDST(...)
sys_policy = RulePolicy(...)
sys_nlg = TemplateNLG(...)
# Assemble a pipeline system named "sys"
sys_agent = PipelineAgent(sys_nlu, sys_dst,

sys_policy, sys_nlg, name="sys")
# Build a user simulator similarly but without DST
user_nlu = BERTNLU(...)
user_policy = RulePolicy(...)
user_nlg = TemplateNLG(...)
user_agent = PipelineAgent(user_nlu, None,

user_policy, user_nlg, name="user")
# Create an evaluator and a conversation environment
evaluator = MultiWozEvaluator()
sess = BiSession(sys_agent, user_agent, evaluator)
# Start simulation
sess.init_session()
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sys_utt = ""
while True:

sys_utt, user_utt, sess_over, reward = sess.
next_turn(sys_utt)
if sess_over:

break
print(sess.evaluator.task_success())
print(sess.evaluator.inform_F1())
# Use the analysis tool to generate a test report
analyzer = Analyzer(user_agent, dataset="MultiWOZ")
analyzer.comprehensive_analyze(sys_agent,

total_dialog=1000)
# Compare multiple systems
sys_agent2 = PipelineAgent(MILU(...), sys_dst,

sys_policy, sys_nlg, name="sys")
analyzer.compare_models(agent_list=[sys_agent,

sys_agent2], model_name=["bertnlu", "milu"],
total_dialog=1000)

Listing 1: Example code for the demo.

To build such a dialogue system, we need to
instantiate a model for each component and assem-
ble them into a complete agent. As shown in the
above code, the system consists of a BERTNLU,
a rule-based DST, a rule-based system policy, and
a template-based NLG. Likewise, we can build a
user simulator that consists of a BERTNLU, an
agenda-based user policy, and a template-based
NLG. Thanks to the flexibility of the framework,
the DST of the simulator can be None, which
means passing the parsed dialogue acts directly
to the policy without the belief state.

For end-to-end evaluation, ConvLab-2 provides
a BiSession class, which takes a system, a sim-
ulator, and an evaluator as inputs. Then this class
can be used to simulate dialogues and calculate
end-to-end evaluation metrics. For example, the
task success rate of the system is 64.2%, and the
inform F1 is 67.0% for 1000 simulated dialogues.
In addition to automatic evaluation, ConvLab-2 can
perform human evaluation via Amazon Mechanical
Turk using the same system agent.

Then the analysis tool can be used to perform a
comprehensive evaluation. Equipped with a user
simulator, the tool can analyze and compare mul-
tiple systems. Some results are shown in Figure
2 and Table 1. We collected statistics from 1000
simulated dialogues and found that

• The demo system performs the poorest in the
Hotel domain but always completes the goal
in the Hospital domain.

• The sub-task in the Hotel domain is more
likely to cause dialogue loops than in other
domains. More than half of the loops in the
Hotel domain are caused by the user request
for the phone number.

• One of the most common errors of the NLU

component is misinterpreting the domain of
user dialogue acts. For example, the user re-
quest for the Postcode, address, and phone
number in the Hotel domain is often parsed as
in other domains.

• In the Hotel domain, the dialogue acts whose
slots are Parking are much harder to be per-
ceived than other dialogue acts.

The researchers can further diagnose their sys-
tem by observing fine-grained output and rescuing
a failed dialogue using our provided interactive
tool. An example is shown in Figure 3, in which at
first the BERTNLU falsely identified the domain
as Restaurant. After correcting the domain to Ho-
tel manually, a Recall NLU button appears. By
clicking the button, the dialogue system reruns this
turn by skipping the NLU module and directly use
the corrected NLU output. Combined with the ob-
servations from the analysis tool, alleviating the
domain confusion problem of the NLU component
may significantly improve system performance.

4 Code and Resources

ConvLab-2 is publicly available on https://

github.com/thu-coai/ConvLab-2. Resources
such as datasets, trained models, tutorials, and
demo video are also released. We will keep track
of new datasets and state-of-the-art models. Contri-
butions from the community are always welcome.

5 Conclusion

We present ConvLab-2, an open-source toolkit
for building, evaluating, and diagnosing a task-
oriented dialogue system. Based on ConvLab (Lee
et al., 2019b), ConvLab-2 integrates more powerful
models, supports more datasets, and develops an
analysis tool and an interactive tool for compre-
hensive end-to-end evaluation. For demonstration,
we give an example of using ConvLab-2 to build,
evaluate, and diagnose a system on the MultiWOZ
dataset. We hope that ConvLab-2 is instrumental in
promoting the research on task-oriented dialogue.
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Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
438–449, Valencia, Spain. Association for Computa-
tional Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 808–819, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2019. Task-
Oriented Dialog Systems that Consider Multiple Ap-
propriate Responses under the Same Context. In
Proceedings of the AAAI Conference on Artificial In-
telligence.

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.
2019. Rethinking action spaces for reinforcement
learning in end-to-end dialog agents with latent vari-
able models. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1208–1218, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and
Minlie Huang. 2020. CrossWOZ: A large-scale
chinese cross-domain task-oriented dialogue dataset.
Transactions of the Association for Computational
Linguistics.

149



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 150–156
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

OpusFilter: A Configurable Parallel Corpus Filtering Toolbox

Mikko Aulamo and Sami Virpioja and Jörg Tiedemann
Department of Digital Humanities

University of Helsinki, Helsinki / Finland
{mikko.aulamo, sami.virpioja, jorg.tiedemann}@helsinki.fi

Abstract
This paper introduces OpusFilter, a flexible
and modular toolbox for filtering parallel cor-
pora. It implements a number of components
based on heuristic filters, language identifica-
tion libraries, character-based language mod-
els, and word alignment tools, and it can eas-
ily be extended with custom filters. Bitext seg-
ments can be ranked according to their qual-
ity or domain match using single features or a
logistic regression model that can be trained
without manually labeled training data. We
demonstrate the effectiveness of OpusFilter on
the example of a Finnish-English news trans-
lation task based on noisy web-crawled train-
ing data. Applying our tool leads to improved
translation quality while significantly reducing
the size of the training data, also clearly out-
performing an alternative ranking given in the
crawled data set. Furthermore, we show the
ability of OpusFilter to perform data selection
for domain adaptation.

1 Introduction

Data filtering tools are important to reduce the
noise fed into machine learning algorithms such as
the ones used in neural machine translation. This is
especially true for data sets with suspicious sources
like unrestricted web crawls or data sets that are
automatically extracted from complex data formats
such as PDF or HTML with all their different fla-
vors and implementations. Cleaning parallel cor-
pora is a special case in which not only the raw data
but also the quality of alignment between source
and target language needs to checked. The aligned
translations drive the mapping from input to the
output language as a strong supervision during the
training steps, and the amount of noise will have a
decisive impact on the adequacy of the translations.
The effect is especially severe for low resource set-
tings, in which little data is available, and each
mistake might directly influence the end result.

The interest in automatic bitext (i.e. bilingual
parallel corpora) filtering is constantly growing
pushed by the advances in neural machine trans-
lation. Khayrallah and Koehn (2018) show that
noisy training data is often more harmful for neural
translation models than statistical translation mod-
els. As a consequence, international evaluation
campaigns like the ones organised by WMT now
feature shared tasks on data cleaning and ranking
(Koehn et al., 2018, 2019). Various approaches
have been proposed based on such challenges and
directly benefit the development of MT engines in
low-resource settings.

This paper presents a framework for bitext clean-
ing, OpusFilter, focusing on processing data col-
lected in OPUS (Tiedemann, 2012), the world’s
largest resource of openly available parallel cor-
pora. In contrast to tools such as bicleaner
(Sánchez-Cartagena et al., 2018) and Zipporah (Xu
and Koehn, 2017), that implement a single method
for parallel corpus filtering, OpusFilter is designed
as a toolbox that is useful for testing and using
many different approaches. Below we describe the
design of OpusFilter and present its application in
the test case of filtering Finnish-English parallel
data included in ParaCrawl.

2 OpusFilter Toolbox

The OpusFilter toolbox is implemented in Python
3 and is available at https://github.com/

Helsinki-NLP/OpusFilter under the permissive
MIT open-source license. The main script provided
by the package is opusfilter, which takes a
configuration file as an input. The configuration
files are written in YAML syntax.1 A configura-
tion contains common global options (currently
only the output directory) and a list of steps that
are run one by one. There are different step types

1See https://yaml.org/
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(functions) for downloading parallel corpora from
the OPUS database, combining and taking subsets
of the corpora, filtering and scoring segment pairs
with a combination of different filters, and training
and using a classifier based on the scores. The con-
figuration files for all our experiments are included
in the GitHub repository.

The input and output files for the functions are
defined in the configuration, and it is simple to
also use external data files. In contrast to common
text file processing tools, the OpusFilter functions
support the processing of parallel files that have
corresponding data on the same lines. Special at-
tention has been paid to make the processing of
large files memory-efficient: Full corpora are never
loaded into memory, but the segment pairs and
scores are processed one at a time if possible, and
in fixed-size chunks otherwise.

In this section, we describe the current func-
tionality of the OpusFilter toolbox. In the future,
we plan to include more functions for common
monolingual and parallel data processing opera-
tions. The ultimate goal is that all pre-processing
steps could be defined in a single configuration file
making it easy to share them for reproducing MT
experiments.

2.1 Downloading and selecting data

The first steps typically refer to data selection and
their preparation. Relevant data sets can be down-
loaded, concatenated, and divided into subsets.

opus read uses the OpusTools2 library to down-
load a specified parallel corpus from the OPUS cor-
pus collection, and stores it into two files (source
and target segments, one segment per line). There
are options for selecting a specified version of the
corpus and whether to download pre-tokenized or
untokenized segments.

Multiple files can be concatenated by the con-
catenate function. The head, tail, and slice func-
tions can be used to the lines from the top, bottom
or middle of the parallel input files. Furthermore,
subset takes a random subset of the selected size
from a corpus. It has an option to shuffle the target
language segments to produce examples of poor
translation pairs that can be used as negative exam-
ples in training a segment pair classifier. Finally,
split divides parallel files into two parts when given
the approximate proportions as fractions. The split
is based on a hash function, making it deterministic

2https://github.com/Helsinki-NLP/OpusTools

on the content of the input lines.

2.2 Filtering and Scoring

All filter classes implemented in OpusFilter are
applicable both for direct filtering of the data and
for producing a quality score for each segment pair.
If a filtering method does not produce any sensible
score, it should output 1 for acceptable pairs and 0
for unacceptable pairs. Any method that produces
one or more scores provides options for selecting
filtering thresholds for the scores.

The current filters implemented in OpusFilter
include (a) simple length-based filters (maximum
and minimum length and segment length ratio in
words or characters), (b) script and language identi-
fication filters, (c) filters that consider special char-
acters such as numbers and punctuation marks, (d)
filters that use probabilities from n-gram language
models, and (e) filters that use word alignment prob-
abilities. For a complete list, see the documentation
of the software.

The filters can be used by two functions:
filter applies a specified list of filters to a parallel

corpus and outputs those segments that pass all the
filters (or optionally those that do not).

score produces scores for the segment pairs in a
parallel corpus from the specified list of filters. The
scores are written in JSON Lines format, which is
easy to process, and for example simple to load as
a pandas3 DataFrame object.

There are also methods for using and processing
the score files: join is a function to combine sep-
arate score files to a single file, and sort sorts the
given input files based on the scores. Reordering
the data makes it convenient to remove noisy pairs
from the end of the sentence files.

In addition, OpusFilter implements re-
move duplicates for filtering out duplicate lines
from parallel corpora. The matching can be based
on any combination of the lines in the input files,
so that it is possible, for example, to make sure that
each target sentence occurs only once in a bitext.

2.3 Classification

The scores calculated by different filters can be
used as features for a classifier that predicts
whether a given segment pair is clean enough to be
used, for example, for training machine translation
models. Moreover, the classification probability

3https://pandas.pydata.org/

151



can be applied for sorting the data according to
their expected cleanliness.

The classification approach currently supported
by OpusFilter is inspired by Vázquez et al. (2019).
First, we take a set of sentence pairs and score them
using features produced by filters. This set is then
split into clean and noisy examples in order to be
used as the training data for a logistic regression
classifier. To choose the positive and negative ex-
ample pairs, we set a percentage threshold value for
all filter scores. Each sentence pair has to obtain
scores that are above the threshold percentile for
all filters in order to be considered clean; otherwise,
they are labeled noisy.

Unlike Vázquez et al. (2019), who manually
placed the threshold between the two peaks of a
score distribution in cases where the distribution is
bimodal, we implemented an automatic selection of
the optimal threshold to ensure a more convenient
usage of the OpusFilter toolbox. Multiple models
with different training data splits using different
thresholds can be trained in order to find the best
performing model. The minimum, maximum, and
initial percentage thresholds can be specified for
each score in the configuration file, and optimized
with a search algorithm. The optimization criterion
can be cross-entropy of the classifier4 or the area
under the receiver operating characteristics curve
(ROC AUC) based on a development set of scores
labeled as noisy or clean by the user.

Finally, once the logistic regression model is
trained and selected, it can be applied to each seg-
ment pair in a larger set of data to produce a single
cleanness score, which is the probability prediction
from the model. For classification, the following
functions have been implemented:

train classifier optimizes a classifier to predict
the cleanliness of the segment pairs using the pro-
cedure described above. The inputs are training
scores, the criterion to be used in the model op-
timization, search algorithm details for the opti-
mization, and a development set if the ROC AUC
criterion is used. The optimized classifier is written
to the specified output file.

classify assigns either a cleanness score or label
to each sentence in a data set. The inputs are the

4Also, Akaike Information Criterion (AIC) or Bayes In-
formation Criterion (BIC) can be applied, similarly to how
Vázquez et al. (2019) operate in cases where the score distri-
bution is not bimodal. However, they differ from the cross-
entropy only in the case that a feature can be completely
removed.

classifier file and the sentence pairs to be classified,
and the resulting scores or labels are written line
by line into a specified output file.

2.4 Custom Filters

The toolbox is extendable with custom filter classes
defined in Python. The filter classes should be
based on the abstract base class FilterABC and
implement two methods: score and accept.
The score method takes an iterator over segment
pairs, and yields a score object for each pair. The
score may either be a single number, or if multiple
score values need to be yielded, a dictionary that
has the numbers as values. The accept method
takes a single output yielded by the scoremethod,
and returns whether the segment pair should be ac-
cepted based on the score.

2.5 Studying Filter Scores

In addition to the main opusfilter script, there
is a separate tool opusfilter-scores for cal-
culating and plotting statistics from scored seg-
ment pairs. The commands include describe
for printing the basic statistics of the scores, hist
for plotting score histograms (see the example in
Figure 1a), corr for plotting a correlation matrix
of the scores (Figure 1b), and scatter-matrix
for drawing a matrix of scatter plots between the
values of different scores.

3 Experiments

To demonstrate the usefulness of the OpusFilter
toolbox, we show results from two main experi-
ments on the Finnish-English news translation task
(in both directions): (i) Filtering noisy data, and (ii)
applying domain adaptation.

For training, we use data from version 4 of the
ParaCrawl corpus (Esplà-Gomis et al., 2019). The
data is taken from a general internet crawl and con-
tains segments that are noisy and potentially harm-
ful for machine translation models. We use the
subset of the corpus that is already filtered by the
bicleaner tool5 (Sánchez-Cartagena et al., 2018).
This data set contains 2,156,069 segment pairs and
is ordered by the score from bicleaner, which en-
ables us to directly compare it to our tool. We cre-
ate five versions of the training data by removing
10%, 20%, 30%, 40% and 50% of the pairs from
the noisy end of the collection and train translation
models with the full data and with the five reduced

5https://github.com/bitextor/bicleaner
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(a) Histograms of the scores. (b) Correlations between the scores.

Figure 1: Histograms and correlations of the score values used for training classifiers in the Finnish-English noise
filtering. CharacterScoreFilters have been excluded from histograms as their values are almost always one.

training sets. Next, we reorder the data with our
toolkit and again create new data sets by removing
data with the same proportions as previously.

We then apply data provided for the WMT news
translation task6 for validation and testing. In par-
ticular, we use newstest2018 as the development set
and newstest2019 as our test set for both language
directions. The translation models are trained with
the OpenNMT toolkit (Klein et al., 2017) using
RNN encoders and decoders with LSTM gates. All
training sets are tokenized with the tokenizer from
the mosesdecoder toolkit (Koehn et al., 2007) and
segmented with BPE (Sennrich et al., 2016) using
subword-nmt7 before feeding them to OpenNMT.

3.1 Ranking
Following Vázquez et al. (2019), we first produce
an initial filtering of the ParaCrawl corpus. For
this, we use the following heuristic filters from the
OpusFilter toolbox:

• LengthFilter: The length of the segments have
to be between 1 and 100 words.

• LengthRatioFilter: The maximum ratio be-
tween the source and target segments has to
be below 3.

• LongWordFilter: Exclude segment pair if any
word is longer than 40 characters.

• HtmlTagFilter: Exclude segment pairs with
any HTML tags.

• CharacterScoreFilter: All alphabetic charac-
ters have to be in Latin script.

The initial filtering removed only 8,055 (0.4%)
of the Finnish to English segment pairs, proba-

6http://www.statmt.org/wmt19/translation-task.html
7https://github.com/rsennrich/subword-nmt

bly because similar filters are already applied in
bicleaner when preparing the original data set. Nev-
ertheless, these steps are useful for creating data
to train models used in the later filtering meth-
ods. First, we train word alignment priors for the
model 3 of the eflomal tool8 (Östling and Tiede-
mann, 2016) and variable-length character n-gram
models for the source and target languages using
the VariKN toolkit9 (Siivola et al., 2007). In addi-
tion, we train a background language model that
combines the source and target languages of the un-
filtered corpus. We interpolate it with the language-
specific models with coefficient 0.01 to ensure that
we cover all characters that appear in the data.

Next, we take a random subset of 100,000 seg-
ment pairs from the corpus for training a logistic
regression classifier. To extract features for the lo-
gistic regression to be trained on, we use another
set of filters from the OpusFilter toolbox:

• CharacterScoreFilter: The proportion of Latin
characters among all alphabetic characters

• LanguageIDFilter: Confidence score from the
CLD2 language identification library10 if the
correct language is identified, or 0 otherwise

• TerminalPunctuationFilter: The ”term-punct”
score from Vázquez et al. (2019)

• NonZeroNumeralsFilter: The ”non-zero”
score from Vázquez et al. (2019)

• CrossEntropyFilter: Word-based cross-
entropies of the source and target sentences
from the respective character n-gram models

• WordAlignFilter: Unnormalized source-to-
8https://github.com/robertostling/eflomal
9https://github.com/vsiivola/variKN

10https://github.com/CLD2Owners/cld2
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target and target-to-source alignment proba-
bilities obtained by eflomal

Figure 1a shows histograms of the scores over
the 100,000 training segments pairs in the data, pro-
duced by the opusfilter-scores tool. The
distribution of the cross-entropy values is quite
unimodal, indicating that such a score alone does
not make a clear division of the segment pairs as
clean or noisy. Language identification scores are
mostly close to one, but zero for a small fraction of
the segments, indicating that they contain incorrect
languages. Also, non-zero numerals and terminal
punctuation scores show that a small number of
samples look problematic. Word alignment scores
have an interesting close-to-bimodal distribution.
Smaller values indicate better alignment, so the
lower peak is for more problematic segment pairs.

The correlations of the scores over the training
data are illustrated in Figure 1b. As excepted, the
same scores for source and target segments cor-
relate slightly for all scores and highly for the
cross-entropy and alignment scores. Also, non-
zero numerals and terminal punctuation filters cor-
relate slightly, indicating segment pairs that have
both different punctuation marks and numbers, thus
likely to be poor translations. Finally, cross-entropy
scores for the source language (Finnish) have a
moderate correlation with the alignment scores. As
it is likely that the English side has mostly been the
original text, problems in the fluency of the transla-
tion seem to also indicate issues in its adequacy.

3.2 Results

In this section, we compare the results of models
trained with data in the original (bicleaner) order
and in the order of our classifier using the differ-
ent data splits described above. We also test the
ROC AUC model for which we created a small
development set of 200 randomly selected segment
pairs that have manually been annotated as noisy
or clean (100 examples each). A pair was anno-
tated noisy only in the case of serious problems;
sentences with single translation errors or relatively
poor fluency were still considered clean.

Figure 2 provides an overview of the results for
Finnish to English. We can see that our filtering
method is very effective. Removing noisy data
according to the ranking produced by our tool im-
proves the BLEU score compared to the model that
applies the whole ParaCrawl data. In contrast, re-
moving data based on the original ParaCrawl order

Figure 2: BLEU scores for Finnish-English translation
models trained with data that is pruned based on differ-
ent ranking orders. The reported BLEU values show
the mean of six translation models. The 100-mark bar
shows the score when using the whole ParaCrawl cor-
pus for training.

degrades the BLEU score at all cutoff points. When
using cross-entropy based sorting of the data, cut-
ting off 40% of the lowest scoring training pairs
increased BLEU by 0.67 points when compared to
using the full training set. If more than 40% of the
data is removed, the BLEU score starts to decrease.
Surprisingly, ROC AUC based sorting, which re-
quires a manually annotated development set, pro-
duces worse results than cross-entropy. ROC AUC
reaches a maximum gain of 0.26 BLEU points over
using the whole data set when 20% of the data is
truncated from the noisy end.

Figure 3: BLEU scores for English-Finnish translation
models.

English to Finnish translations show similar re-
sults, as illustrated in figure 3, although the BLEU
scores are overall lower as it is common in systems
translating into morphologically rich languages.
Again, cross-entropy based models perform better
than ROC AUC based ones: at 80% cutoff cross-
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entropy model has 0.18 point and ROC AUC model
has 0.12 point improvement over using the whole
data. The increases in scores are more modest in
English to Finnish translations than in Finnish to
English translations.

As seen in Table 1, the cross-entropy based lo-
gistic regression model sets the weights of the
cross-entropy language model filters and the word
alignment filters very close to zero, while setting
stronger weights for all other filters compared to
the ROC AUC model. Detecting the correct lan-
guage and having similar numerals in both sides of
the sentence pairs seem to be the most important
factors for the cleaning task, as their corresponding
filters have by far the highest weights.

CE ROC AUC
Intercept -4.63 -4.73
CharacterScoreFilter.src 1.75 0.77
CharacterScoreFilter.tgt 1.22 0.65
CrossEntropyFilter.src -0.12 0.40
CrossEntropyFilter.tgt -0.01 0.83
LanguageIDFilter.cld2.src 31.33 11.30
LanguageIDFilter.cld2.tgt 8.39 6.57
NonZeroNumeralsFilter 14.36 13.03
TerminalPunctuationFilter 2.57 0.82
WordAlignFilter.src -0.15 0.53
WordAlignFilter.tgt -0.04 0.87

Table 1: Logistic regression weights for models chosen
with cross-entropy and ROC AUC for each filter score
in the Finnish-English experiment. Positive weight is
for the pairs that are predicted as clean.

3.3 OpusFilter for Domain Adaptation

Besides of generally cleaning noisy training data,
OpusFilter can also be used to select training data
that is similar and appropriate for translation tasks
in specific domains. To demonstrate this, we con-
duct the following domain adaptation experiment.

We use, again, newstest2019 for testing and new-
stest2018 as development data. To adapt to the
news domain, we now take in-domain data from
previous years of the news translation task concate-
nating test sets from 2015, 2016 and 2017 for both
Finnish and English. In total, this gives us 7372 sen-
tence pairs that we apply to train n-gram language
models for the news domain for both languages
using the OpusFilter’s train ngram feature.

In Finnish to English translations, the best BLEU
score is achieved using 60% of the full training
data. To see whether we can reach a higher score
by removing training examples that do not fit the
news domain, we first select 70% of the cleanest

ParaCrawl data based on the order from our cross-
entropy optimized classifier. Next, we use our pre-
viously trained news domain language models to as-
sign a new score with CrossEntropyFilters for each
sentence in both languages in our 70% data. We
sort the data based on the language model scores
and remove data from the noisy end to create 60%
and 50% data sets that reflect the additional domain
adaptation. Note that these percentage cutoff points
refer to proportions from the full ParaCrawl data
set, so the absolute number of sentence pairs is the
same as in the other data sets used in the previous
experiments. Finally, we apply those news-domain-
adapted data sets to train translation models in the
same way as before.11

The results are included in Figures 2 and 3. In
all cases, the domain filtering leads to an improve-
ment compared to the corresponding noise-filtered
model. At the 70% mark, the results are very simi-
lar as the training sets are essentially the same. The
Finnish to English model improves the score by
0.23 BLEU points over the noise-filtered model at
the 60% mark. The English to Finnish model pro-
duces similar results but with lower scores. Those
results demonstrate the effectiveness of OpusFilter
to also perform data selection for domain adap-
tation without further annotation and additional
components.

4 Conclusions and Future Work

This paper introduces OpusFilter, a modular tool
for parallel data selection and ranking. OpusFilter
can easily be configured to work with OPUS data
and various filters to train effective classifiers in
order to rank bitext segments. We demonstrate its
use in a Finnish-English translation task based on
the noisy ParaCrawl data used for training. The
classifiers can be trained without human annota-
tion, and the automatic model selection methods
implemented in the toolbox lead to a similar per-
formance compared to classifiers based on small
manually labeled validation data. OpusFilter is
open source and distributed with a permissive li-
cense to make it widely applicable. In future work,
we would like to extend the toolbox with additional
filters and classification options. One option could
be the inclusion of sentence embedding based filter-
ing (Guo et al., 2018). Additionally, we would like
to explore OpusFilter’s use in different scenarios
and for other language pairs. Especially interesting

11The WMT testsets are not included in training the models.
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would be the application in low-resource settings
and various levels of noise in the original data. Fur-
thermore, the use for domain adaptation and data
selection should be further explored.

Acknowledgments

This work is part of the FoTran project,
funded by the European Research
Council (ERC) under the European
Union’s Horizon 2020 research and
innovation programme (grant agree-

ment № 771113), as well as the MeMAD project,
funded by the European Union’s Horizon 2020
Research and Innovation Programme (grant agree-
ment № 780069).

References
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Abstract 

Label noise—incorrectly or ambiguously la-
beled training examples—can negatively im-
pact model performance. Although noise 
detection techniques have been around for 
decades, practitioners rarely apply them, as 
manual noise remediation is a tedious process. 
Examples incorrectly flagged as noise waste 
reviewers’ time, and correcting label noise 
without guidance can be difficult. 

We propose LNIC, a noise-detection method 
that uses an example’s neighborhood within 
the training set to (a) reduce false positives and 
(b) provide an explanation as to why the ex-
ample was flagged as noise. We demonstrate 
on several short-text classification datasets that 
LNIC outperforms the state of the art on mea-
sures of precision and F0.5-score. We also 
show how LNIC’s training set context helps a 
reviewer to understand and correct label noise 
in a dataset. The LNIC tool lowers the barriers 
to label noise remediation, increasing its utility 
for NLP practitioners. 

1 Introduction 

Label noise—examples with incorrect or ambigu-
ous labels in a training set—degrades the perfor-
mance of the learned model, resulting in inac-
curate predictions (Frénay and Verleysen, 2014). 
Automated data collection risks generating noisy 
datasets, and human annotators may introduce 
noise through a lack of attention or expertise. 

Automatic noise-detection algorithms analyze a 
training set and flag “suspicious” examples that are 
likely mislabeled (Brodley and Friedl, 1999; Frénay 
and Verleysen, 2014). Suspicious examples can be 
deleted, automatically corrected by an algorithm, 
or reviewed by a human. Human review is the 
most effective of these mitigation options but is 
comparatively expensive. 

∗ The first two authors contributed equally. 

sports fitness 

⇒ Unexpected increase in • Why doesn’t my stamina 
running ability seem to improve? 

• Is it possible for the libero • Is there a rule of thumb for 
to score points in setting running goals? 
volleyball? 

• How counter-productive 
would having two coaches 
be? 

Table 1: Training set context can help an annotator de-
cide if the highlighted suspicious training example is 
correctly labeled sports or should be labeled fitness. 

Two problems contribute to making human re-
view time consuming: false positives and a lack 
of explanation. False positives are examples that 
are incorrectly flagged as noise; reviewing such 
examples wastes the annotator’s time. Showing 
a reviewer a suspicious example without an ex-
planation is effective in the simplest cases, but is 
likely to cause difficulty and frustration in the more 
common case of non-obvious noise that requires a 
deeper comprehension of the data. 

To date, few noise-detection algorithms have 
been designed with human review in mind. Sluban 
et al. (2010) is the only work we are aware of that 
recognized that a noise-detection algorithm for use 
in a human review process should emphasize preci-
sion (i.e., reduce the proportion of false positives). 
However, we are unaware of any existing work that 
addresses the explainability of detected label noise. 

We propose the Label Noise in Context system, 
or LNIC, which uses the neighborhood surround-
ing a suspicious example in the training set to im-
prove both precision and explainability. By calcu-
lating a similarity matrix for the dataset, we are able 
to identify a suspicious example’s neighborhood 
and use a method similar to a nearest-neighbors 
classifier to filter out false positives. Applying a set 
of simple heuristics to the same similarity matrix 
allows us to construct a training set context, like 
that in Table 1. Seen in isolation, an example about 
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running ability labeled as belonging to the sports 
class is not obviously wrong; however, once the 
annotator understands that she is seeing it because 
there are more similar examples in the fitness class, 
it becomes apparent that there is a better label. 

The main contributions of this work are 
• We describe LNIC’s nearest-neighbors-based al-

gorithm to improve precision and explainability 
of automatically detected label noise (Sec. 3). 

• We show that neighborhood-based filtering after 
noise-detection improves precision and F0.5 over 
the state of the art for five short-text classification 
datasets (Sec. 4 and 5). 

• We present the LNIC tool for reviewing noise in 
context, demonstrating the value of explanations 
for understanding and fixing label noise (Sec. 6). 
A demo video is available at https://www. 

youtube.com/watch?v=20cigQaCc_k, and a live 
web demo is at http://lnic.mybluemix.net/ 

2 Related Work 

Noise Detection. Frénay and Verleysen (2014) 
conducted a comprehensive survey of the vari-
ous approaches to detecting and remediating label 
noise. Many works advocate removing label noise 
to improve model performance (Brodley and Friedl, 
1999; Sánchez et al., 2003; Smith and Martinez, 
2011). Teng (2000) advocates automatic relabel-
ing, while others present the case for human-in-
the-loop (Ekambaram et al., 2016; Fefilatyev et al., 
2012; Matic et al., 1992; Sluban et al., 2010) and 
hybrid techniques (Miranda et al., 2009). In work 
contemporaneous with ours, Northcutt et al. (2019) 
remove examples where a classifier’s confidence is 
low. 

The most directly related work is Brodley and 
Friedl (1999), describing a noise detection method 
using predictions from an ensemble of classifiers, 
and Sluban et al. (2010), proposing the High Agree-
ment Random Forest (HARF) system; both systems 
are described in detail in Section 3.1. 

Brodley and Friedl (1999) dropped suspicious 
examples but propose correction instead as future 
work. Sluban et al. (2010) note that precision of 
noise-detection is important when a human will re-
view all suspicious examples. Garcia et al. (2016)’s 
experiments show that HARF also achieved state-
of-the-art F1 scores on a variety of datasets. 

Active Learning Similar to label noise remedia-
tion, active learning (Settles, 2014) seeks to mini-
mize the effort a human needs to expend on data 

labeling activities in order to improve model per-
formance. However, active learning aims to se-
lect the most informative unlabeled data to label 
next, while label noise detection identifies already-
labeled data that may require additional labeling ef-
fort. We consider active learning and label noise de-
tection as complimentary technologies, that might 
be woven together within a robust model improve-
ment flow. 

At a technical level, some active learning and la-
bel noise detection techniques are based on similar 
foundations. Query By Committee (QBC) (Seung 
et al., 1992) active learning uses an ensemble of 
classifiers, selecting examples on which the en-
semble disagrees for labeling. Similarly ensemble-
based noise detection algorithms select examples 
where the ensemble agrees (but disagrees with the 
given label). Model uncertainty, which underpins 
many effective active learning strategies such as 
least confident, margin, and entropy, is also the ba-
sis of label noise detection methods such as clean-
lab (Northcutt et al., 2019). 

Explainability. With the rise of increasingly 
complex classification models, explaining classi-
fier predictions has received a great deal of atten-
tion. Perhaps the most well-known system is LIME 
(Ribeiro et al., 2016). The LIME authors noted 
that explaining classifier predictions increases hu-
man trust and provides insights that can be used 
to improve the model. To explain a classifier’s 
prediction on a particular example, the algorithm 
collects nearby examples and the model’s predic-
tions for them. It trains a linear model on a simpler 
representation of this data, allowing it to indicate 
which words or super-pixels are important in the 
classifier’s decision. 

Numerous recent works in NLP and machine 
learning emphasize explainability. Dhurandhar 
et al. (2018) explained classifier predictions with 
positive features that push an example towards its 
assigned class and negative features whose absence 
prevent an example from being placed in a differ-
ent class. Lei et al. (2016) jointly trained a genera-
tor and an encoder in order to generate rationales 
for sentiment prediction and a similar-question-
retrieval task. Mullenbach et al. (2018) used a con-
volutional neural network to predict codes describ-
ing the diagnosis and treatment of patients given 
the clinical notes on the patent encounter. Their at-
tention mechanism not only improved the system’s 
precision and F1, but also highlighted the text that 
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was most relevant to each code. Chiyah Garcia 
et al. (2018)’s system used an expert-generated de-
cision tree and a set of templates to generate natural 
language explanations of what an autonomous un-
derwater vehicle was doing and why. 

Despite the interest in explainable models, no 
work that we are aware of has attempted to make 
detected label noise explainable. 

3 Algorithms 

LNIC uses a three-step process. First, a noise-
detection algorithm flags suspicious examples. Sec-
ond, a neighborhood-based filter decides which of 
these examples to ignore and which to flag for hu-
man review. Finally, we generate a context, using 
rules to select neighbors to present to the user. 

3.1 Noise-Detection Algorithms 

LNIC’s noise-detection phase can use any noise-
detection algorithm. Here, we report on three en-
semble algorithms derived from the literature: con-
sensus (Brodley and Friedl, 1999), agreed correc-
tion, and HARF (Sluban et al., 2010).1 

Ensemble noise detection algorithms train sev-
eral classifiers on cross-validation splits of the train 
set. Each classifier predicts labels for the left-out 
examples. The predicted label is the classifier’s 
“vote” for that example. If it matches the current la-
bel, the classifier voted that the example is not sus-
picious; otherwise, the classifier voted that it is. In 
Brodley and Friedl (1999)’s consensus algorithm, 
if all votes agree that an example is suspicious, the 
algorithm flags that example as suspicious. Our 
agreed correction variant requires all votes from 
the ensemble to agree not only that an example 
is mislabeled, but also on what the correct label 
would be. HARF (Sluban et al., 2010) relies on 
the fact that a random forest is an ensemble of de-
cision trees; it flags an example as suspicious if a 
super-majority of trees vote that it is. 

3.2 Neighborhood Filtering 

Neighborhood filtering reduces the number of ex-
amples that are incorrectly flagged as noise. If a 
majority of neighbors of an example have the same 
label as that example, it suggests that the example 
is correctly labeled, so LNIC filters it out of the list 
of suspicious examples. 

The neighborhood filter calculates the pairwise 
cosine similarity of all examples in the training 

1Models and hyperparameters are listed in Appendix A 

data, then finds the k neighbors closest to each 
suspicious example s, where k is a tunable hyper-
parameter. If s’s current label yc is also the most 
common among those neighbors, s is filtered from 
the pool of suspicious examples as a false positive, 
otherwise s is flagged for human review.2 

LNIC supports filtering on the feature neighbor-
hood or the activation neighborhood. The feature 
neighborhood represents each example using its 
original feature vector (here, USE embeddings (Cer 
et al., 2018)). The activation neighborhood repre-
sents each example in the training set using final 
layer activations from a neural classifier trained on 
the entire data set, the idea being to project training 
examples into a classification space. 

3.3 Context Generation 
The final step of the LNIC algorithm is to apply 
heuristics to the neighborhood to generate a train-
ing set context. This context acts as an explanation, 
showing (a) which classes the noise-detection en-
semble proposed as a better label for the suspicious 
example, and (b) the most similar examples from 
the current class and those proposed classes. 

The ensembles in the noise-detection algorithms 
generate a list of predicted labels for each suspi-
cious example. These labels plus the example’s 
current label comprise the permitted labels for that 
example. The heuristic selects the example from 
each permitted label that is closest to the suspicious 
example. If there are fewer than k permitted labels 
(where k is the desired context size), the balance of 
the context is filled out by selecting the remaining 
k − n nearest neighbors from the permitted labels. 

We build the explanation based on both the acti-
vation neighborhood and the feature neighborhood; 
an example that already appears in the activation 
context is omitted from the feature context and re-
placed by the next-nearest neighbor. Figures 4 and 
5 show a examples of this contextual explanation. 

4 Experiments 

We hypothesize that adding a neighborhood-based 
filter after noise detection reduces the rates of false 
positives while retaining true noisy examples. We 
test this by injecting noise into datasets, running 
algorithms over them, and measuring the correctly 
and incorrectly flagged suspicious examples. 

2When using raw features, this filter acts like a k-nearest 
neighbors classifier with veto power over the ensemble. Ex-
periments with a vote by weighted cosine similarity correlated 
closely with this simpler technique, and we did not pursue it. 
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4.1 Datasets 
We evaluate on the short-text classification datasets 
listed in Table 2.3 Phase one of the evaluation in-
troduces label noise—effectively “corrupting” the 
datasets. The amount of introduced label noise was 
controlled by an error-rate parameter, interpreted 
as the fraction of the training set to mislabel. 

We used two strategies to introduce label noise: 
random and next-best. Both selected a random sam-
ple of the training data to mislabel. The random 
strategy assigned a random incorrect label to each 
selected example. The next-best strategy assigned 
the “next-best” incorrect label, as predicted by a 
classifier trained on the entire train set; this simu-
lates a best effort but incorrect labeling, as might 
be performed by a confused human labeler. 

4.2 Metrics 
Because the goal of the algorithm is to avoid wast-
ing human time, our evaluation should heavily pun-
ish false positives. We therefore measure the preci-
sion of each algorithm. We also follow Sluban et al. 
(2010) in reporting F0.5, an F -score that values 
precision twice as much as recall. 

precision · recall 
F0.5 = (1 + 0.52)

(0.52 · precision) + recall 
(1) 

Not every situation calls for precision to be val-
ued twice as much as recall. Therefore, we also re-
port Fβ (Rijsbergen, 1979) for β ∈ {1.0, 0.2, 0.1}
to reflect the preferences of users who value preci-
sion and recall equally, precision five times more 
than recall, and precision ten times more. 

5 Results 

Figure 1 shows average precision and F0.5 scores 
across the five datasets, and Table 3 further summa-
rizes by averaging across error rates. Appendix B 
shows results split by dataset and error rate. 

Table 3 shows that, averaged across datasets and 
error rates, adding neighborhood filtering of any 
kind improves precision of all of the underlying 
algorithms. For randomly generated noise, this is 
true for F0.5 as well. Figure 1a also shows that the 
neighborhood activation filter gives a large boost to 
precision over all three noise-detection algorithms, 
and the feature neighborhood filter gives a smaller 

3All data is publicly available. Lists of the exact sub-
sets we used for Stack Exchange, Stack Overflow, and Jeop-
ardy are available at https://github.com/cfd-01/ 
LNiC_data. 

but still observable benefit. For next-best noise, 
adding the feature neighborhood filtering improves 
F0.5, but activation neighborhood filtering slightly 
worsens F0.5. From the graph in Figure 1d, it is 
apparent that activation neighborhood filtering has 
a benefit to F0.5 at low error rates but declines rela-
tive to the other systems as the error rate increases, 
crossing at error rates near 15%. Addition of too 
much next-best noise negatively impacts the neural 
network trained on the uncorrected data, distorting 
the activation space. While this distortion does not 
harm precision, it is detrimental to recall. 

For both random and next-best noise, agreed 
correction with activation neighborhood filtering 
achieves the best average precision. For random 
noise, HARF with activation-neighborhood filter-
ing gives the best F0.5 across noise rates. However, 
for next-best noise, HARF suffered a dramatic loss 
in recall when error rates exceeded about 12% (Fig-
ure 1d), leading it to have low overall F0.5. This 
may be due to the random forest’s use of bagging: 
if a subset of trees trains on samples with a great 
deal of non-random noise, those trees could learn 
to misclassify systematically. Agreed correction 
with feature neighborhood filtering gave the highest 
average F0.5 for next-best noise. 

The upward trend in precision as error rates in-
crease suggests that the same core of false positives 
are consistently detected. As the number of true 
positives increases with higher error rates, the core 
of false positives makes up a smaller fraction of the 
total number of examples flagged as suspicious. 

Table 4 lists Fβ scores. As expected, using a 
neighborhood filter, which reduces the number of 
suspicious examples shown to a user, is particularly 
advantageous when precision is valued more than 
recall (F0.2 and F0.1), but often extracts a cost when 
recall and precision are equally important (F1.0). 
Thus, agreed correction with no neighborhood fil-
ter is the best system to optimize F1.0 when using 
next-best noise. Nevertheless, the strongest system 
for F1.0 on random noise is still HARF with acti-
vation neighborhood filtering, followed closely by 
consensus with activation neighborhood filtering. 

6 The LNIC Tool 

The LNIC tool implements the algorithms de-
scribed above and provides a web interface to re-
view label noise in context. The interface visually 
summarizes the overall label noise within a dataset 
and links to groups of suspicious examples in con-
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Source Description Train Classes 

Stack Exchange Collected by the authors from 
https://archive.org/details/ 

Question titles from general-interest fo-
rums classified by topic 

5000 15 

stackexchange 
Stack Overflow 

Jeopardy 

ATIS 

Snips-2017 

Subset of (Xu et al., 2015) 

Subset of www.j-archive.com 

(Price, 1990; Hakkani-Tur et al., 2016) 

https://github.com/snipsco/ 
nlu-benchmark/ 

Question titles from programming forum 
classified by topic 
Gameshow question-answer pairs classi-
fied by category 
Questions from air travel domain classi-
fied by intent 
Requests to a digital assistant classified 
by intent 

10000 

5080 

4952 

13784 

20 

21 

17 

7 

Table 2: Dataset details. 

(a) Precision of noise detection for randomly generated noise (b) Precision of noise detection for next-best noise. 

(c) F0.5 of noise detection for randomly generated noise (d) F0.5 of noise detection for next-best noise. 

Figure 1: Precision and F0.5 at various noise levels, averaged across the five datasets. 

text. LNIC’s representation of the noise summary column.4 Clicking on a cell brings the user to a 
(Figure 2) is similar to a confusion matrix. In the list of examples flagged as noise. Each of these 
label noise matrix each cell indicates the number examples can be expanded to show the context, as 
of noisy examples discovered where the context 
includes the classes specified by the row and the 4The agreed-correction algorithm guarantees that each con-

text contains exactly two classes. When using larger contexts, 
the summary can be a list of class tuples. 
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Figure 2: The label noise matrix summarizing noise discovered in approximately 30k examples from the Stack 
Exchange dataset. 

Random Noise Next-Best Noise 
P F0.5 P F0.5 

Agreed correction 0.732 0.713 0.717 0.691 
+ Neighborhood filtering using 

feature 0.753 0.729 0.738 0.698 
activation 0.819 0.773 0.779 0.681 

Consensus 0.672 0.702 0.647 0.645 
+ Neighborhood filtering using 

feature 0.698 0.725 0.668 0.654 
activation 0.774 0.781 0.713 0.646 

HARF 0.734 0.751 0.667 0.559 
+ Neighborhood filtering using 

feature 0.746 0.761 0.677 0.563 
activation 0.801 0.798 0.718 0.549 

Table 3: Mean precision and F0.5 for the five datasets, 
averaged across all error rates. The top row in each 
section is a baseline system with no filtering. 

illustrated in Figures 3 and 4. 

Data from Stack Exchange illustrates how con-
text helps a reviewer understand problems in a 
dataset. Sometimes, context shows that an example 
is mislabeled. Without context, it is easy for an an-
notator to be uncertain of whether a question about 
the existence of a myth belongs in the history class; 
it is a question about a historical civilization, after 
all. However, from the context in Figure 4, it is 
clear that even questions about the history of myths 
are categorized as mythology, and so the example’s 
label should be changed to maintain consistency. 

Random Noise Next-Best Noise 
F1.0 F0.2 F0.1 F1.0 F0.2 F0.1 

Agreed correction 0.695 0.728 
+ Neighborhood filtering using 

feature 0.706 0.748 
activation 0.721 0.809 

0.731 

0.752 
0.817 

0.666 

0.658 
0.585 

0.712 

0.729 
0.757 

0.716 

0.736 
0.773 

Consensus 0.760 0.678 
+ Neighborhood filtering using 

feature 0.776 0.703 
activation 0.800 0.775 

0.674 

0.699 
0.774 

0.652 

0.647 
0.581 

0.646 

0.665 
0.698 

0.647 

0.667 
0.709 

HARF 0.787 0.737 
+ Neighborhood filtering using 

feature 0.794 0.748 
activation 0.803 0.800 

0.734 

0.746 
0.800 

0.477 

0.477 
0.430 

0.639 

0.647 
0.672 

0.659 

0.669 
0.705 

Table 4: Average F-scores across the datasets valuing 
precision to different degrees. 

Other times, context can reveal more complex 
issues with the class structure of the data. Figure 5 
shows a suspicious example from the health class 
that the noise detection algorithm suggests may 
belong in the fitness class. The context shows that 
in fact, both classes include questions about the 
timing of meals with regard to exercise. A human 
reviewer should make a decision about where the 
boundary between these two classes should lie and 
assign these utterances consistently to one class. 

7 Conclusion 

Although NLP practitioners know that label noise 
harms performance, and noise detection algorithms 
have long been available, this technology is not 

162



  

Figure 3: Suspicious examples at the intersection of 
history and mythology classes without context. 

Figure 4: An example from Figure 3, with context. In 
red is the suspicious example. Examples in the white 
box are its context from activation space, and those in 
the blue box are context from raw embedding space. 
Numbers in parentheses indicate cosine similarity. 

being applied in practice, perhaps because human 

Figure 5: Context shows overlapping class definitions. 

review of detected errors is difficult and time con-
suming. LNIC makes human review of possible 
label noise easier and more efficient. It reduces the 
number of false positive examples that the reviewer 
must look at, providing state-of-the-art precision 
and F0.5 across several short text datasets. And by 
providing an explanation of why the model flagged 
an example as suspicious, it makes the output of la-
bel noise detectors understandable and actionable. 
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A Appendix: Model Details 

For ease of replication, this appendix specifies the 
details of the models used in our experiments. 

For consensus and agreed-only noise detection, 
our ensemble consisted of three classifiers from 
Scikit Learn (Pedregosa et al., 2011): LogisticRe-
gression, RandomForestClassifier, and MLPClas-
sifier. We used default parameters, except that we 
set MLPClassifier’s max iter parameter to 1000 
to speed up experiments. 

For HARF, we used a RandomForestClassifier 
model with 500 trees and required 90% agreement. 
Sluban et al. (2010) reported on models requiring 
lower levels of agreement, but preliminary testing 
demonstrated that 90% improved results on our 
datasets. 

For the neighborhood filter, we set k = 5. 
Our raw vector representation of all utterances 

was USE (Cer et al., 2018). The activations 
for activation-based filtering and context genera-
tion were generated using an MLPClassifier with 
hidden layer sizes = [100, 512]. 
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B Appendix: Detailed Results 
Results were summarized in the body of the paper for conciseness. In this appendix, we present precision 
and F0.5 for each of the five datasets and for each of the error rates. 

Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 
0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 

activation 0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 

Agreed correction 0.40 
0.01 

0.936250 
0.228381 

0.779562 
0.261363 

0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 

feature 0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 
0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 

nonsuspicious 0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 
0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 

(baseline) 0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 
0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 

activation 0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 

Consensus 0.40 
0.01 

0.895110 
0.191324 

0.814209 
0.221609 

0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 

feature 0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 
0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 

nonsuspicious 0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 
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0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 

(baseline) 0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 
0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 

activation 0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 

HARF590 0.40 
0.01 

0.893418 
0.256974 

0.720200 
0.279874 

0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 

feature 0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 
0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 

nonsuspicious 0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 5: ATIS, Next-Best Noise 

Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 
0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 

activation 0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 

Agreed correction 0.40 
0.01 

0.936250 
0.228381 

0.779562 
0.261363 

0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 

feature 0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 
0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 

nonsuspicious 0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 
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(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 

(baseline) 

0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 
0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 

activation 

HARF590 

feature 

0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 
0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 
0.40 0.893418 0.720200 
0.01 0.256974 0.279874 
0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 
0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 

nonsuspicious 

0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 
0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 6: ATIS, Random Noise 
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  Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 

activation 

Agreed correction 

feature 

0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 
0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 
0.40 0.936250 0.779562 
0.01 0.228381 0.261363 
0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 
0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 

nonsuspicious 

0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 
0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 

(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 
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0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 

(baseline) 0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 
0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 

activation 0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 

HARF590 0.40 
0.01 

0.893418 
0.256974 

0.720200 
0.279874 

0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 

feature 0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 
0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 

nonsuspicious 0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 7: Jeopardy, Next-Best Noise 

Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 
0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 

activation 0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 

Agreed correction 0.40 
0.01 

0.936250 
0.228381 

0.779562 
0.261363 

0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 

feature 0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 
0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 

nonsuspicious 0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 
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(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 

(baseline) 

0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 
0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 

activation 

HARF590 

feature 

0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 
0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 
0.40 0.893418 0.720200 
0.01 0.256974 0.279874 
0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 
0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 

nonsuspicious 

0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 
0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 8: Jeopardy, Random Noise 
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  Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 

activation 

Agreed correction 

feature 

0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 
0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 
0.40 0.936250 0.779562 
0.01 0.228381 0.261363 
0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 
0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 

nonsuspicious 

0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 
0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 

(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 
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0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 

(baseline) 0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 
0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 

activation 0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 

HARF590 0.40 
0.01 

0.893418 
0.256974 

0.720200 
0.279874 

0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 

feature 0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 
0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 

nonsuspicious 0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 9: SNIPS, Next-Best Noise 

Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 
0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 

activation 0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 

Agreed correction 0.40 
0.01 

0.936250 
0.228381 

0.779562 
0.261363 

0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 

feature 0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 
0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 

nonsuspicious 0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 
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(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 

(baseline) 

0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 
0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 

activation 

HARF590 

feature 

0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 
0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 
0.40 0.893418 0.720200 
0.01 0.256974 0.279874 
0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 
0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 

nonsuspicious 

0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 
0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 10: SNIPS, Random Noise 
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  Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 

activation 

Agreed correction 

feature 

0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 
0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 
0.40 0.936250 0.779562 
0.01 0.228381 0.261363 
0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 
0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 

nonsuspicious 

0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 
0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 

(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 
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0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 

(baseline) 0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 
0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 

activation 0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 

HARF590 0.40 
0.01 

0.893418 
0.256974 

0.720200 
0.279874 

0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 

feature 0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 
0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 

nonsuspicious 0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 11: Stack Exchange, Next-Best Noise 

Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 
0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 

activation 0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 

Agreed correction 0.40 
0.01 

0.936250 
0.228381 

0.779562 
0.261363 

0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 

feature 0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 
0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 

nonsuspicious 0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 
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(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 

(baseline) 

0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 
0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 

activation 

HARF590 

feature 

0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 
0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 
0.40 0.893418 0.720200 
0.01 0.256974 0.279874 
0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 
0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 

nonsuspicious 

0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 
0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 12: Stack Exchange, Random Noise 
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  Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 

activation 

Agreed correction 

feature 

0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 
0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 
0.40 0.936250 0.779562 
0.01 0.228381 0.261363 
0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 
0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 

nonsuspicious 

0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 
0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 

(baseline) 

0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 
0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 

activation 

Consensus 

feature 

0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 
0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 
0.40 0.895110 0.814209 
0.01 0.191324 0.221609 
0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 
0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 

nonsuspicious 

0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 
0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 
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0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 

(baseline) 0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 
0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 

activation 0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 

HARF590 0.40 
0.01 

0.893418 
0.256974 

0.720200 
0.279874 

0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 

feature 0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 
0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 

nonsuspicious 0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 13: Stack Overflow, Next-Best Noise 

Underlying Algorithm Context Filter error rate precision F0.5 
0.01 0.203559 0.235175 
0.05 0.516995 0.551899 
0.10 0.678281 0.692148 
0.15 0.758825 0.754214 

(baseline) 0.20 0.815761 0.792989 
0.25 0.855683 0.815505 
0.30 0.874819 0.821995 
0.35 0.902361 0.829439 
0.40 0.914755 0.823054 
0.01 0.379626 0.374314 
0.05 0.653646 0.647463 
0.10 0.777705 0.745331 
0.15 0.831916 0.782190 

activation 0.20 0.873480 0.801011 
0.25 0.899718 0.810401 
0.30 0.910957 0.806536 
0.35 0.925808 0.796353 

Agreed correction 0.40 
0.01 

0.936250 
0.228381 

0.779562 
0.261363 

0.05 0.551033 0.582140 
0.10 0.709730 0.716853 
0.15 0.785696 0.772165 

feature 0.20 0.836971 0.804862 
0.25 0.871780 0.821373 
0.30 0.887976 0.823381 
0.35 0.912542 0.825164 
0.40 0.925177 0.816177 
0.01 0.219619 0.252413 
0.05 0.541191 0.573870 
0.10 0.700703 0.710048 
0.15 0.777494 0.767097 

nonsuspicious 0.20 0.832716 0.802072 
0.25 0.870279 0.820193 
0.30 0.885262 0.822268 
0.35 0.909316 0.823756 
0.40 0.922156 0.814744 
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0.01 0.169058 0.197610 
0.05 0.438177 0.479689 
0.10 0.591796 0.626953 
0.15 0.678183 0.704604 

(baseline) 0.20 0.741275 0.758822 
0.25 0.787061 0.794762 
0.30 0.818512 0.818545 
0.35 0.847556 0.837087 
0.40 0.865010 0.843633 
0.01 0.340710 0.337163 
0.05 0.581698 0.591143 
0.10 0.702483 0.699962 
0.15 0.765191 0.752932 

activation 0.20 0.811529 0.785388 
0.25 0.843820 0.806149 
0.30 0.864403 0.817224 
0.35 0.882211 0.818990 

Consensus 0.40 
0.01 

0.895110 
0.191324 

0.814209 
0.221609 

0.05 0.472302 0.511817 
0.10 0.624910 0.655624 
0.15 0.707260 0.727099 

feature 0.20 0.766436 0.776426 
0.25 0.806752 0.805997 
0.30 0.834342 0.824318 
0.35 0.862185 0.838768 
0.40 0.879229 0.843028 
0.01 0.185901 0.215997 
0.05 0.463941 0.504450 
0.10 0.614485 0.646574 
0.15 0.701349 0.722953 

nonsuspicious 0.20 0.762975 0.773727 
0.25 0.804869 0.804780 
0.30 0.833155 0.824230 
0.35 0.859147 0.835885 
0.40 0.875436 0.839302 
0.01 0.250247 0.272751 
0.05 0.527276 0.544201 
0.10 0.662522 0.659799 
0.15 0.732189 0.709038 

(baseline) 0.20 0.777402 0.732818 
0.25 0.808914 0.744331 
0.30 0.830042 0.745807 
0.35 0.846649 0.742334 
0.40 0.867032 0.742929 
0.01 0.360629 0.352368 
0.05 0.631307 0.613590 
0.10 0.733487 0.692197 
0.15 0.792436 0.730627 

activation 0.20 0.825070 0.739711 
0.25 0.851299 0.745366 
0.30 0.865749 0.736683 
0.35 0.879965 0.729277 

HARF590 0.40 
0.01 

0.893418 
0.256974 

0.720200 
0.279874 

0.05 0.542058 0.557569 
0.10 0.676098 0.671038 
0.15 0.744827 0.718450 

feature 0.20 0.788157 0.739972 
0.25 0.819442 0.750494 
0.30 0.839792 0.750249 
0.35 0.857306 0.745631 
0.40 0.876019 0.744641 
0.01 0.263552 0.286632 
0.05 0.542341 0.557493 
0.10 0.676441 0.670760 
0.15 0.744850 0.717847 

nonsuspicious 0.20 0.788948 0.739795 
0.25 0.818234 0.748751 
0.30 0.839663 0.749268 
0.35 0.856773 0.743603 
0.40 0.875930 0.743391 

Table 14: Stack Overflow, Random Noise 

C Appendix: Enlarged Figures 

This appendix contains the same images as the body of the paper, enlarged to improve accessibility. 
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(a) Precision of noise detection for randomly generated noise 

(b) Precision of noise detection for next-best noise. 

Figure 6: Precision at various noise levels, averaged across the five datasets. 
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(c) F0.5 of noise detection for randomly generated noise 

(d) F0.5 of noise detection for next-best noise. 

Figure 6: F0.5 at various noise levels, averaged across the five datasets. 
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Figure 7: A summary of noise discovered in approximately 30k examples from Stack Exchange. 
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Figure 8: Suspicious examples at the intersection of history and mythology classes without context. 
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Figure 9: An example from Figure 3, with context. In red is the suspicious example. Examples in the white box 
are its context from activation space, and those in the blue box are context from raw embedding space. Numbers 
in parentheses indicate cosine similarity. 
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Figure 10: Context shows overlapping class definitions. 
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Abstract

Large Transformer-based language models
can route and reshape complex information via
their multi-headed attention mechanism. Al-
though the attention never receives explicit su-
pervision, it can exhibit recognizable patterns
following linguistic or positional information.
Analyzing the learned representations and at-
tentions is paramount to furthering our under-
standing of the inner workings of these models.
However, analyses have to catch up with the
rapid release of new models and the growing
diversity of investigation techniques. To sup-
port analysis for a wide variety of models, we
introduce EXBERT, a tool to help humans con-
duct flexible, interactive investigations and for-
mulate hypotheses for the model-internal rea-
soning process. EXBERT provides insights
into the meaning of the contextual represen-
tations and attention by matching a human-
specified input to similar contexts in large an-
notated datasets. By aggregating the annota-
tions of the matched contexts, EXBERT can
quickly replicate findings from literature and
extend them to previously not analyzed mod-
els.

1 Introduction

Learned contextualized representations of a neu-
ral network can contain meaningful information.
Uncovering this information plays a vital role in
understanding and interpreting the learned struc-
ture of neural networks (Belinkov and Glass, 2019).
One way to identify information is to probe the
representations by using them as features in classi-
fiers for linguistic tasks, or by identifying contexts
that lead to similar patterns (Tenney et al., 2019b;
Conneau et al., 2018; Strobelt et al., 2017).

With Transformers (Vaswani et al., 2017) over-
taking recurrent models as the primary architec-
tures for many NLP tasks, analyzing attention has
become another common strategy for interpretabil-

ity (Raganato and Tiedemann, 2018a; Clark et al.,
2019). These efforts focus on selecting a model,
such as BERT (Devlin et al., 2019), and exploring
the Transformer’s contextual embeddings and atten-
tions across layers to determine whether and where
it learns to represent linguistic features. Previous
studies have uncovered specific attention heads that
learn particular dependencies (Vig and Belinkov,
2019; Clark et al., 2019).

However, once the standard linguistic probing
tasks are exhausted, it is challenging to develop
new hypotheses to test. Toward that end, interac-
tive visualizations provide a successful strategy to
develop new insights and strategies. Visualization
tools can offer concise summaries of useful infor-
mation and allow interaction with large models.
Attention visualizations have thus taken significant
steps toward these goals of making explorations
fast and interactive for the user (Vig, 2019). How-
ever, interpreting attention patterns without under-
standing the attended-to embeddings, or relying on
attention alone as a faithful explanation, can lead
to faulty interpretations (Brunner et al., 2019; Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019; Li
et al., 2019).

To address this challenge, we developed
EXBERT, a tool that combines the advantages of
static analyses with a dynamic and intuitive view
into both the attentions and internal representations
of the underlying model. EXBERT provides these
insights for any user-specified model and corpus by
probing whether the representations capture mean-
ingful information. We demonstrate that EXBERT
can replicate insights from the analysis by Clark
et al. (2019) and easily extend it to other mod-
els. It is open-source, extensible, and compati-
ble with many current Transformer architectures,
both autoregressive and masked language models.
EXBERT is available at exbert.net.
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Figure 1: An overview of the different components of the tool. Users can enter a sentence in (a) and modify the
attention view through selections in (b). Self attention is displayed in (c), with attentions directed as coming from
the left column and pointing to the right. The blue matrix on the left shows a head’s attention (column) out of a
token (row), whereas the right-hand matrix shows attention into each token by each head. The top-k predictions
for each token are shown on hover in the gray box. The most similar tokens to the MASKed “escape” token in (c)
are shown and summarized in (d-g), taken from an annotated corpus (shown: Wizard of Oz). Every token in (d)
displays its linguistic metadata on hover. The metadata of the results in (d) are summarized in the histograms (f)
and (g) for the matched token (green highlight) and the token of max attention. The colored bars on the histogram
correspond to colors in the columns of (e), where the center column summarizes the metadata of the matched token,
and the adjacent columns represent the metadata of the words to the left and right of the matched token.

2 Background

2.1 Transformer Models

The Transformer architecture, as defined by
Vaswani et al. (2017), relies on multiple sequential
applications of self attention layers. Self-attention
is the process by which each token within an in-
put sequence Y of length N computes attention
weights over all tokens in the input. As part of this
process, the inputs are projected into a key, query,
and value representation with Wk, Wq, and Wv.
The Transformer applies I of these attention heads
in parallel, using separate weights. We denote each
head with the superscript (i).

A(i) = softmax
(
(YW (i)

q )(YW
(i)
k )>

)
.

This computation yields a matrix in RN×N where
the entry Aij represents the attention out of token

yi into token yj .1 The representation for each at-
tention head h(i) is then multiplied by the value,

h(i) = A(i)(YW (i)
v ).

The representations h(1), . . . , h(I) are concatenated
and followed by a linear projection layer. The out-
put of this projection we call the token embedding
E(l), which is used as input to layer l + 1.

2.2 Transformer Analysis
The analysis of learned contextual representation
in neural networks has been a widely investigated
topic in NLP (Belinkov and Glass, 2019). Be-
fore the advent of large pretrained models, anal-
yses focused on models trained for specific tasks
like machine translation. Some showed that Trans-
former models, similar to recurrent models, can

1For autoregressive models like GPT-2 (Radford et al.,
2019), this matrix is triangular since attention cannot point
toward unseen tokens.
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effectively encode syntactic properties in their rep-
resentations (Raganato and Tiedemann, 2018b;
Mareček and Rosa, 2018). Researchers have devel-
oped suites of probing techniques, agnostic to the
underlying model, that can capture these proper-
ties across many different linguistic tasks (Tenney
et al., 2019b; Conneau et al., 2018). Over the past
year, similar tests have primarily been applied to
BERT (Devlin et al., 2019) and its derivatives (e.g.,
Sanh et al., 2019; Liu et al., 2019). Similar to task-
specific models, Goldberg (2019) found that BERT
clearly encodes syntax within some of its attentions.
Moreover, Tenney et al. (2019a) demonstrated that
linguistic information is very localized within the
representations in different layers.

In parallel, individual attention heads of Trans-
former models have also received much focus.
Clark et al. (2019) showed that individual heads
recognize standard Part of Speech (POS) and De-
pendency (DEP) relationships (e.g., Objects of the
Preposition (POBJ) and Determinants (DET)) with
high fidelity. Vig and Belinkov (2019) also ex-
plored the dependency relations across heads and
discovered that initial layers typically encode posi-
tional relations, middle layers capture the most de-
pendency relations, and later layers look for unique
patterns and structures. These insights are exposed
interactively through EXBERT.

3 Overview

EXBERT focuses on displaying a succinct view of
both the attention and the internal representations
of each token. Figure 1 shows an overview of the
tool’s two main components. The Attention View
provides an interactive view of the self-attention of
the model, where users can change layers, select
heads, and view the aggregated attention. The Cor-
pus View presents a user with aggregate statistics
that aim to describe and summarize the hidden rep-
resentations of a currently selected token or set of
attention heads. For simplicity, the tool defaults to
focus on single-sentence examples.

3.1 Attention View

The attention A can be understood as an adjacency
matrix, which is conducive to a representation of
curves pointing from each token to every other
token. However, since A is not symmetric, a visu-
alization has to separate the outgoing and incoming
attention of a token. We achieve this by duplicat-
ing the tokens of input Y and presenting it in two

vertical sections, connected through the attention.
Hovering over a token will reduce the displayed

attention graph to the incoming/outgoing attention
of that token. We display the top predictions of the
model at that position. Clicking on a token freezes
the filtered attention view.

Many models introduce special tokens (e.g.,
“[CLS]”, “<|endoftext|>”) for downstream classi-
fication or generation tasks. These tokens often
receive very high attention and act as a null oper-
ation (Clark et al., 2019). We provide a switch to
hide the special tokens of the model and renormal-
ize based on the other attentions to provide easier
visualization of subtle attention patterns.

3.2 Corpus View

Representations, on the other hand, cannot be eas-
ily visualized footnoteSee Strobelt et al. (2017) for
a discussion why heat-maps are not an appropriate
visualization of hidden states. but they can be un-
derstood by searching for similar representations
in an annotated corpus. The results of this search
are presented in the Corpus View with the highest-
similarity matches shown first. The histograms
display the accumulated features of the matched
representations and the token that receives the most
attention.

Searching Inspired by Strobelt et al. (2017,
2018), EXBERT performs a nearest neighbor
search of embeddings on a reference corpus as
follows. A corpus is first split by sentence and
its tokens labeled for desired metadata (e.g., POS,
DEP, NER). The model then processes this corpus,
and its embeddings E(l) are stored at every layer
l and indexed for a Cosine Similarity (CS) search
using faiss (Johnson et al., 2019). The top 50 most
similar tokens matching a query embedding are dis-
played and summarized for the user in the context
of their use in the annotated corpus.

To supplement the layer embeddings E(l) and
enable exploration of the attention heads, we derive
a Context Embedding C(l), which we define as the
concatenation of heads before the linear projection
at the layer’s output. Formally, this is defined as:

C(l) = Concat(h̃
(l,1)

, . . . , h̃
(l,n)

),

where h̃
(l,i)

is defined as the L2 normalized rep-
resentation of head i at layer l to enable CS search-
ing by head. To search the corpus for any subset of
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heads Hs ⊆ {1, . . . , n}, we set all values of h̃
(l,i)

to 0 in C l, where i /∈ Hs.

Bidirectional vs. Autoregressive Behavior
EXBERT is flexible to accommodate both bidi-
rectional and autoregressive Transformer architec-
tures, but the tool behaves slightly differently for
each. Bidirectional models have histogram sum-
maries for the nearest neighbor matches across the
corpus and allow interactive MASKing of tokens.
When hovering over any token, the interface will
show what the language model would predict at
that token.

Autoregressive models will also search for the
nearest neighbors to a selected token’s embedding,
but the interface will instead summarize the meta-
data of the following token (indicated in red font).
Hovering over any token in the Attention View
will display what the model would predict next.

3.3 Extending EXBERT

EXBERT runs Huggingface’s unified API for
Transformer models (Wolf et al., 2019) which al-
lows any Transformer model from that API to take
full advantage of the Attention View.

Similarity searching requires the user to first an-
notate a corpus with the desired model. Scripts to
aid annotation of a corpus from a custom model is
provided in the code repository.2

To display metadata from a corpus in a cus-
tom domain, users will need to align the trans-
former model’s tokenization scheme to extracted
metadata (e.g., DNA Sequences and their proper-
ties). EXBERT accomplishes this by first tokeniz-
ing, normalizing, and labeling the sentence with
spaCy (Honnibal and Montani, 2017). If these
tokens are split further by the Transformer’s to-
kenization scheme, each word-piece receives the
metadata of its parent token. Note that special
tokens like “[CLS]” and “<|endoftext|>” have no
linguistic features assigned to them.

4 Case Study: BERT

Clark et al. (2019) performed an extensive analysis
to determine which heads in a base sized BERT
Transformer model learned which dependencies.
We show here how some of their insights are eas-
ily accessible through the EXBERT interface (De-
vlin et al., 2019) for the case-sensitive BERT-base
model, which has 12 layers and 12 heads per layer.

2https://github.com/bhoov/exbert.

Figure 2: Exploration of different attention heads for
pretrained model BERTbase and different corpora. (a)
shows head 5-3 expecting looks at the presents of an
auxiliary verb (AUX) to predict that the MASK should
be a verb. Head 7-5 in (b) shows a head that has learned
to attend to Objects of the Preposition (POBJ). Finally,
(c) shows Head 5-5 learning correct co-reference.

We use the notation <layer>-<head> to refer to a
single head at a single layer, and <layer>-[<heads>]
to describe the cumulative attention of heads at a
layer (e.g., 4-[1,3,9] to describe the aggregated at-
tention of heads 1, 3, and 9 at layer 4).

4.1 Behind the Heads

Figure 2 shows examples where distinct heads learn
evident linguistic features. Figure 2a shows that
the MASKed verb “escape” points to the auxiliary
verb (AUX) “to”. If we search over the annotated
Wizard of Oz3, we see that the tokens matching
the MASK’s most similar contexts at Head 5-3 are
verbs and that the attention out of these matched
words goes primarily to an AUX dependency.

Figure 2b shows that Head 7-5 finds relation-
ships between prepositions (PREP) and their ob-
jects (POBJ) in the input sentence. By searching
for the token “in” across a subset of the “Wikipedia”
corpus (Merity et al., 2016), we confirm that many

3http://www.gutenberg.org/ebooks/55
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Figure 3: A progression of the information encoded by a nearest neighbor embedding (left) and context (right)
searches for the MASKed token “escape” in Figure 2a and the sentence, “The girl ran to a local pub to escape the
din of her city.” Note that heads encode verb information (dark green) significantly earlier than the embeddings.

other annotated sentences exhibit this pattern.
Figure 2c seemingly finds a head that determines

co-reference to entity relationships, as both “she”
and “her” are pointing strongly at “Kim” and little
to everything else. Because the parse tree is absent
in the annotated corpus, we are unable to search for
co-reference patterns. However, the corpus search
does reveal that this head learns to match pronouns
to Entities rather than common gendered words
such as “woman” or “mother”.

4.2 Behind the Mask

Earlier layers of a BERT model can capture partic-
ular linguistic information (Clark et al., 2019; Vig
and Belinkov, 2019). We now explore this behavior
for a MASKed token across layers. We look at the
following sentence, also shown in Figure 2a:

The girl ran to a local pub to escape the din of
her city.

We begin by masking the “escape” token in the
example sentence at layer 1 and search what infor-
mation is behind the “[MASK]” token’s embedding
(Figure 1). Note that at this early layer, there is
no meaningful linguistic information encoded in a
MASK token’s embedding, and the matching em-
beddings are most similar to punctuation (PUNCT)
and determinants (DET), which are the most com-
mon tokens in English (Figure 1f). Additionally,
the maximum attention out of the MASKed token
points to itself (Figure 1c).

As layers progress, more VERB information is
encoded in the token’s embedding, as shown in
Figure 3. At layer 6, the model does not relate the
MASKed word to verbs, but by layer 9 it is con-
vinced that the MASK should be a verb. Note that
accumulated head information confidently captured
a “verb” pattern in a significantly earlier layer.

5 Case Study: GPT-2

5.1 Gender Bias

We now use EXBERT to explore the problem
of gender bias and co-reference in autoregressive
Transformers (Zhao et al., 2018), a problem in-
herent in the training data that infects the model’s
understanding of language (Font and Costa-jussà,
2019). Take the following sentence:

The man visited the nurse and told him to attend
to his patients.

We aim to detect whether the model thinks
“nurse” is male or female before it sees the mascu-
line pronoun “him” referring to “nurse”. Because
GPT-2 is trained to predict the next word, we can
do this by selecting the token “told” and hovering
over it to see the prediction of that pronoun. These
results are shown in Figure 4a, and from the proba-
bilities, we can see that GPT-2 predicts “her” with
90% probability. The next closest token “him” is
only 6%. Figure 4b shows that replacing “nurse”
with “doctor” alters the prediction to be strongly in
favor of predicting “him” at 68% probability, while
“her” falls to 18%. The attention patterns in the
final three layers remain ostensibly the same for
both sentences.

5.2 Heads up

In contrast to BERT, GPT-2 is an autoregressive
language model. This makes it more difficult to
detect some dependencies by looking at attention
patterns (e.g., PREP looking for its POBJ in the fu-
ture). However, EXBERT can offer similar insights
as above using slightly altered methods. The fol-
lowing experiments use the smaller configuration
of GPT-2 with 12 layers and 12 heads (Radford
et al., 2019).

Exploring the heads in GPT-2 reveals that GPT-
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Figure 4: Highlights the bias of the GPT-2 model for generation. (a) “nurse” prompts the model to predict “her”.
(b) shows “doctor” causing the model to predict “him”

Figure 5: Discovering simple head patterns in GPT-
2 using the sentence. (a) shows strong detection of
the AUX dependency. (b) shows a head detecting the
DOBJ dependency

2’s heads also learn distinct syntactic structure. Fig-
ure 5a shows a few heads at different layers that
seemingly learn the AUX dependency. Heads at
earlier layers show an affinity for the AUX pat-
tern, but also confuse “to” with a preposition even
though a verb directly follows. This behavior hints
that these heads look primarily to match the word
“to” rather than its contextual meaning.

Similarly, Figure 5b shows a head that attends
predominantly to a preceding verb and matches
contexts in which the following word is a DOBJ. In-
terestingly, the more complex DOBJ dependency is
picked up by a head as early as layer 5-12, whereas
a simpler dependency like the AUX pattern is only
clearly detected later in Layer 8.

6 Discussion

In this paper, we introduced an interactive visualiza-
tion tool, EXBERT, that can reveal an intelligible
structure in the learned representations of Trans-
former models. We demonstrated, through an atten-
tion visualization and nearest neighbor searching
techniques, that EXBERT can replicate research
that explores what attentions and representations
learn and detect biases in text inputs.

We acknowledge that EXBERT is limited com-
pared to more global analyses since it only presents
statistics across a small number of neighbors for a
single token at a time. These neighbors do not nec-
essarily reveal a head’s or an embedding’s global
behavior. However, EXBERT can effectively nar-
row the scope and refine hypotheses through quick
testing iterations. These hypotheses about the
model behavior can, in a later step, be evaluated by
robust statistical tests on a global level.

To assist researchers with their model investi-
gations, we host a demo of the tool with multiple
models at exbert.net.
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A Recreating the experiments

We allow direct linking to an experimental setup in
the interface. A list of the links to reproduce our
results is given below (all links in the supplemen-
tary material are correct at the time of publishing,
but may be changed in the distant future):

• Overview (Figure 1):
https://bit.ly/2OfD6Vt

• Behind the Heads (Figure 2)

– (a): https://bit.ly/2GJUihs
– (b): https://bit.ly/38Ycss8
– (c): https://bit.ly/2S8qGzO

• Behind the Mask (Figure 3):
https://bit.ly/2RJ952n

• GPT-2 Bias (Figure 4):
https://bit.ly/36ELwMo

• Heads Up (Figure 5):

– (a): https://bit.ly/2vAcgRe
– (b): https://bit.ly/2S9qHDs

B Additional Material

In addition to the content presented in the main pa-
per, we have recorded a short video demo showing
how to use the tool to probe for particular patterns
at https://youtu.be/e31oyfo_thY.

A Lite version of the tool, without the corpus
searching, demoing many common Transformer
models is hosted by Huggingface at huggingface.
co/exbert.
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C Additional figures

Figure 6: The most similar embeddings, in context, to the MASKed token “escape” in the sentence: “The girl ran
to a local pub to escape the din of her city” at the output of layer 12 of BERTbase (shown in Figure 2a). Corpus
results are annotated excerpts from the Wizard of Oz. Notice how at the output layer all attentions are primarily
to the word itself or the final punctuation mark of the sentence, indicating that the most important information is
likely already encoded in the selected token’s embedding.
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Abstract

We present a system for automatic diacritiza-
tion of Hebrew text. The system combines
modern neural models with carefully curated
declarative linguistic knowledge and compre-
hensive manually constructed tables and dic-
tionaries. Besides providing state of the art
diacritization accuracy, the system also sup-
ports an interface for manual editing and cor-
rection of the automatic output, and has sev-
eral features which make it particularly use-
ful for preparation of scientific editions of He-
brew texts. The system supports Modern He-
brew, Rabbinic Hebrew and Poetic Hebrew.
The system is freely accessible for all use at
http://nakdanpro.dicta.org.il.

1 Introduction

We present a web-based system for diacritization
of Hebrew text, which caters to both casual and
expert users. The diacritization engine driving the
system combines manually curated linguistic re-
sources with modern machine learning models.

Diacritization In Hebrew writing, the letters are
almost entirely consonantal; the vowels are in-
dicated by diacritic marks, generally positioned
underneath the letters. However, in most cases,
printed Hebrew omits the diacritic marks and in-
cludes only the letters, resulting in a highly ambigu-
ous text, in which any given non-diacritized word
can represent a host of different Hebrew words,
each with a different meaning and pronunciation.
For example, the form בצל! can be diacritized as
בָּצָל! (noun, “onion”), בְּצֵל! (prefix+noun, “in a
shadow”), בַּצֵּל! (prefix+definitive+noun, “in the
shadow”) and others. The task of diacritization
is thus a task of disambiguation: choosing from
among the valid word possibilities for each non-
diacritized word, and then adding in the diacritic
marks accordingly. The multiple possibilities for

diacritizing any given word often represent differ-
ent morphological possibilities. Thus, to an extent,
choosing the correct diacritization entails morpho-
logical disambiguation; conversely, prior morpho-
logical disambiguation greatly reduces the total
possible diacritization possibilities.We provide fur-
ther details in §2.

Hybrid Neural and Rule-based Approach Our
approach, described in §3, uses several bi-LSTM-
based deep-learning modules for disambiguating
the correct diacritization in context. However, it
is also supplemented by comprehensive inflection
tables and lexicons, when appropriate.

Web Interface We provide a web interface for
the user to input a text for diacritization and refine
the resulting diacritized text (Figure 1). Our system
parses the text and automatically adds diacritics
throughout. Afterward, the user can proofread the
text in the interface. For each word, all alternate
diacritization possibilities are provided for immedi-
ate selection, ordered according to their predicted
probability. Keyboard shortcuts allow efficient nav-
igation of the text and fast selection of alternate
options. Users can choose to see morphological
analyses for each of the diacritization options, to
assist in distinguishing between options.

Diacritics in Scientific Editions We aim to pro-
vide a tool that is useful to casual users and lan-
guage enthusiasts, but also to experts and profes-
sionals who may use it to set scientific editions
of historical Hebrew texts. This latter requirement
poses several challenges: handling of editorial sigla
interspersed within the words; flexible handling of
matres lectionis (letters which function as semi-
vowels); and dealing with the orthography of me-
dieval Hebrew, which often diverges widely from
that of Modern Hebrew. Our tool meets scholarly
requirements on all these fronts, as detailed in §8.
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Figure 1: The main web interface of our diacritization tool, showing the automatic diacritized text (A) and allowing
the user to proofread and potentially correct the text. The user can navigate the words using the mouse or the
left/right keys, and can select an alternate diacritization option from the listbox on the left (B) using either the
mouse or the up/down keys. Changes for a given word can be marked for application over the entire text (C), and
are marked in color (not shown in this example). The user can also choose to see the morphological analysis of
each form (D). The resulting diacritized text can be exported to various formats (E).

2 The Hebrew Diacritics System

The diacritics system of modern Hebrew marks
vowels and gemination, and includes 12 primary
diacritic symbols:

Additionally, a dot in the middle of a letter indicates
gemination. For the case of the ’shin’ letter, an
upper dot distinguishes between pronunciation as
’s’ or as ’sh’. Diacritized Hebrew aims to position
a diacritic on every single letter of the word, with
the exception of final letters and matres lectionis.

Ambiguity In our tests, knowing the correct di-
acritics reduces the full-morphological-analysis
ambiguity from 9.1 to 2.4 average analyses per
word form, while knowing the full-morphological-
analysis reduces the diacritization ambiguity from
6.2 to 1.4 average options per word form. Note that
these numbers reflect fine-grained morphological
tagging. If we utilize coarse-grained tagging, suf-
ficing with the part of speech for each word, then
knowing the correct diacritization reduces the aver-
age morphological ambiguity from 3.2 options to
1.97, while knowing the correct POS tag reduces
the average diacritization ambiguity from 6.2 op-
tions to 2.75. Thus, the need for an automated
diacritization utility is particularly crucial in order
to properly disambiguate a Hebrew text.

3 Approach

Recent trends in NLP suggest moving towards
machine-learned models that automatically learn
to extract the regularities in the data. Such ap-
proaches have also been applied to diacritization of
Arabic (Belinkov and Glass, 2015; Rashwan et al.,
2015; Abandah et al., 2015; Mubarak et al., 2019).
However, while these generally provide very strong
results, they also often make mistakes that contra-
dict our prior knowledge of the linguistic system.
While the machine-learned models generalize very
well and can learn to perform tasks in which hu-
mans cannot articulate the underlying regularities,
there are also many cases that language-experts can
articulate precisely, and these tend to correlate with
the cases that the learned models fail on.

We therefore take a hybrid approach. Similar
to traditional diacritization systems (Choueka and
Neeman, 1995), we use our explicit knowledge
about the language and the diacritization system
whenever we can. However, we also supplement
our knowledge with learned model predictions for
the challenging cases for which we cannot artic-
ulate the rules and regularities: selecting the ap-
propriate diacritization in context, and providing
diacritization for out-of-vocabulary words. This
methodology departs from recent diacritization
works that rely on HMM and neural-network meth-
ods (Gal, 2002; Belinkov and Glass, 2015), while
ignoring forms of explicit linguistic knowledge.

We use such a combination of machine-learned
and human-specified knowledge in all the compo-
nents of the system, either by supplementing the
predictor with manually constructed options, or by
filtering its output space.
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Of course, a prerequisite for an effective
machine-learned system is high-quality training
data. Our system is trained on a collection of 1,5M
diacritized tokens which we annotated in-house.

4 High-quality Data Sources

We make use of the following language resources
and corpora, which we collected.

Language Resources Our main resource is a
high-coverage and accurate lexicon of Hebrew
word forms, their diacritization and their corre-
sponding morphological analyses. Employing a
staff of language experts, we began by assembling
a list of all nouns, adjectives and verbal roots in the
Hebrew language. This list includes 50K lexemes
altogether (10K roots, 30,5K nouns, and 9,5K ad-
jectives). We then built comprehensive inflection
tables to generate all possible inflected forms from
each of these lexemes, including all valid combi-
nations of possessive and accusative suffixes, with
full diacritization. Altogether, this process gener-
ated some 5,5 million inflected forms (3,8M verbal
forms; 1,3M nominal forms; and 460K adjectival
forms). We also added 1,7K adverbs, and another
4,5K function words (conjunctions, prepositions,
existentials, quantifiers, etc., including all possi-
ble suffix combinations). Finally, we collected a
set of 17,5K frequent proper nouns (countries and
major cities; heads of state and other notable peo-
ple; and frequently-mentioned companies and or-
ganizations), and our language experts diacritized
these as well. These tables suffice for modern He-
brew; however, in historical Hebrew texts, we often
find Aramaic terms interspersed within the Hebrew.
Therefore, we also built a similarly comprehen-
sive and diacritized wordlist for Babylonian Ara-
maic. Our Aramaic wordlist contains 750K verbal
inflected forms; 200K nominals; 1,5K adjectives;
and another 2K adverbs and function words. We
additionally assembled an exhaustive list of non-
diacritized Hebrew names of persons and locations
(including collections of both street names and city
names).

Annotated Corpora For morphological tagging,
we make use of a corpus of 200K tokens of mod-
ern Hebrew, composed of Hebrew fiction, news,
wikipedia, and blogs. These tokens were manu-
ally annotated with fine-grained morphological in-
formation according to the scheme of (Elhadad
et al., 2005). Additionally, as noted, we anno-

tated a 1,5M word diacritized modern Hebrew cor-
pus, consisting of Hebrew prose (both fiction and
non-fiction), newspapers (both news and op-ed),
wikipedia, blogs (including many female-dominant
blogs, to ensure coverage of feminine word forms),
law protocols, Parliament proceedings, TV tran-
scripts, academic texts, and biographical sketches.
We have similarly collected and annotated corpora
of historical Hebrew, consisting of Jewish legal
writings and commentaries from the 3rd-12th cen-
turies: 110K words with fine-grained morphologi-
cal tagging, and 2M words with diacritization. Fi-
nally, regarding poetic Hebrew, we collected and
annotated a corpus of 1,3M words, containing He-
brew poetry from both medieval and modern peri-
ods.

The undiacritized base texts were collected
largely through partnerships with cooperating orga-
nizations in Israel; the morphological tagging and
diacritization was done primarily in-house by our
Hebrew language experts.

5 System Architecture

On a high level, our system works in the following
stages, which we will elaborate on below. Each
stage combines engineered linguistic information
and a trained neural model.

1. POS-tagging and morphological disambigua-
tion.

2. Filtering the possible diacritization analyses
based on high coverage accurate tables and
the output of stage (1).

3. Ranking the possible diacritizations for each
word, in context.

Part-of-speech tagging and morphological dis-
ambiguation As diacritic marks closely interact
with the morphological analysis and part-of-speech
(POS) of the token, we first perform POS-tagging
and morphological disambiguation, using a two-
stage process. In the first stage, each word is as-
signed its core part-of-speech, and in the second
stage it is enriched with additional morphological
properties, where the set of considered morpholog-
ical properties is determined based on the coarse-
grained POS (e.g., nouns take gender, number and
definiteness, while verbs do not take definiteness
but do take tense and person).1

1We consider the following POS-tags: Adj, Adv, Conj,
At Prep, Neg, Noun, Num, Prep, Pron, ProperNoun, Verb,
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Training is performed on our annotated corpus of
200K tokens. The resulting tagger has an accuracy
of 92% for the coarse-grained part-of-speech, and
79% for full morphological disambiguation.2

Both taggers are 2-layer bi-LSTM transducers
(Goldberg, 2017), where the first stage coarse-
grained tagger maps each token wi to a coarse
POS-tag ti, while the second stage morphological
tagger adds additional morphological properties
m1

i , ...,m
k
i . Each bi-LSTM takes as inputs vectors

x1, ..., xn corresponding to tokens w1, ..., wn and
produces vectors h(x1), ..., h(xn). These vectors
are then fed into multi-layer perceptrons (MLP) for
predicting the POS-tags and morphological proper-
ties, where each property is predicted by a different
MLP:

ti = argmax
j

softmax(MLPpos(h(xi))[j]

mk
i = argmax

j
softmax(MLPmk

(h(xi))[j]

The set of MLPs mk
i for a word is determined

based on its predicted coarse-grained POS-tag.
In the coarse-grained tagger, each token wi is

mapped to an input vector xi which encodes char-
acter level information, distributional word-level
information, possible morphological analyses of
wi,3 and lexicon-based features of wi. Specifi-
cally, xi is a concatenation of: (a) for a word wi

made of characters cwi
1 , ..., cwi

m the sum of bi-LSTM
states

∑
j h(c

wi
j ) from a char-level bi-LSTM that

runs over the entire sentence; (b) bi-LSTM state
at wi, for a word-level bi-LSTM that runs on pre-
trained word2vec vectors for all of the words in
the sentence; (c) a vector representing the possible
fine-grained morphological analyses for the word,4

according to our wide-coverage lexicon; (d) bits

Interrogative, Interj, Quantifier, Existential, Modal, Prefix,
Participle, Copula, Titular, Shel Prep, and the following
morphological properties: Gender, Number, Person, Con-
struct/Absolute, Suffix (possessive / accusative / pronominal).

2While these numbers may seem low, we note that they
are (a) on-par with other Hebrew systems (Adler and Elhadad,
2006; More and Tsarfaty, 2016) and (b) are only intended to
support the diacritization process, where we find they do well.

3We find that providing the coarse-grained tagger with
information about possible fine-grained analyses of neighbour-
ing words helps to disambiguate cases where a given word
can be resolved as more than one POS. For instance, a given
word may be resolvable as a noun or adjective; however, if the
adjective possibility involves a feminine conjugation, and the
preceding noun is a masculine noun, then the probability of
the adjectival POS is severely reduced.

4We assign trainable embeddings of 3-5 dimensions to
each morphological category (gender, number, person, etc.),
and we concatenate these together to form the input vector.

indicating whether wi is in our comprehensive list
of proper-nouns (names of streets, cities and peo-
ple), and whether it is in our wide-coverage lexicon
at all (the latter is used to mark rare and unknown
words). In the fine-grained tagger, xi is a concate-
nation of vector (b) above and: for a word wi where
the predicted POS tag is ti, and the possible fine-
grained morphological analyses for wi limited by
ti is represented by mi, the bi-LSTM state for a
bi-LSTM that runs on the concatenation of (ti;mi).
Significantly, note that in the fine-grained tagger, xi
does not include the information of the word form
on the character-level. We find this to be more ac-
curate, because it removes bias in cases where a
specific character form happens to appear in the
training corpus in only one configuration. This is
particularly relevant regarding verbs which can be
resolved as either a masculine or a feminine verb,
each with a distinct diacritization. In many cases,
the training corpus contains the verb only in one
stereotypical gender configuration. By hiding the
character-level information, we force the system to
make a more logical morphological determination,
because it is not able to mechanically set the feature
equal to what was seen in the training corpus.

Constraints The tagger predictions are con-
strained by a wide-coverage lexicon that maps
word forms to their possible morphological analy-
ses. When a word is not in the lexicon, we allow all
POS-tags for the word. We also apply additional fil-
ters to rule out POS-tags for words that participate
in a hand-crafted list of about 10K word colloca-
tions, and in all of their possible inflected forms
(e.g., in the context of the tokens מרקחת!) (בית byt
mrkĥt, the word בית! byt should not be tagged as the
absolute form בַּי¢ת! bayit, but rather as the construct
form בֵּית! beyt. And thus too for the plural inflec-
tion of the same collocation - מרקחת! בתי bty mrkĥt,
the word בתי! bty should not be tagged as בִּתִּי! byty
(feminine noun with possessive suffix), but rather
as the plural-construct form בָּתֵּי! batey).

Filtering For each word wi in the text, we re-
trieve from our wordlists (see §4) a set of possi-
ble diacritizations Di = di1, ..., d

i
` and their corre-

sponding morphological analyses. This set is then
further refined by intersecting it with the predicted
morphological analysis for the word. Words that
are not in our list get an empty set, indicating that
their diacritization is not constrained. This stage
leaves us with an average of 1.2 diacritic sequences
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for each known word. If we were to perform ran-
dom selection from this list, we would achieve
87.1% exact-match word-level diacritization accu-
racy on our Modern Hebrew test corpus.

Diacritization Ranking Finally, we run an
LSTM-based diacritization module to rank the pos-
sible diacritization sequences from the previous
stage, and to assign diacritics to unknown words.

The LSTM-based module assigns a diacritic
mark for each character in the sequence.5 The
diacritics for each word wi are predicted separately,
using beam-search over the predictions of the dia-
critic for each letter with the word, to ensure word-
level consistency. For known words, the beam-
search is constrained to valid diacritic predictions
from the set Di, while for unknown words it is
unconstrained. Note that when predicting the dia-
critics for a letter cwi

j in token wi the model is aware
of the other diacritic assignments in that word, but
not of diacritic assignments for the other words of
the sentence. However, the model is context-aware,
as it considers the character-level and word-level
information from the entire sentence via a sentence-
level bi-LSTM layer.

To be more precise, each letter cwi
j is mapped

to a vector h′(cwi
j ) which is a concatenation of the

followings two items: (a) bi-LSTM state at cwi
j

for a char-level bi-LSTM that runs over the entire
sentence; (b) bi-LSTM state at wi for a word-level
bi-LSTM that runs on the pre-trained word2vec
vectors for all words in the sentence. Then, for a
given word wi we have a list of vectors represent-
ing each letter h′(cwi

1 )...h′(cwi
m ). We then predict

the diacritization sequence as follows. If this is
a known word, then we have a list of k possible
diacritization sequences, and we choose the one
with the highest score:

s = argmax
k

score(cwi
1:m, tk1:m)

where tk1:m is the kth diacritic sequence, and
score(cwi

1:m, tk1:m) is calculated as:

m∑

j=1

MLP (h′(cwi
j );LSTM(tk0:j−1))[tj ]

For unknown words, we run beam-search with
k = 8 to predict the k most likely diacritization
sequences, and we choose the top beam-ray.

5Combinations of gemination with an additional diacritic
mark are considered distinct diacritic symbols for prediction.
An independent MLP predicts the position of the upper dot
for the ’shin’ character.

Letter Accuracy Word Accuracy
Dicta 95.12% 88.23%

Morfix 90.32% 80.9%
Snopi 78.96% 66.41%

Table 1: Accuracy on Modern Hebrew Test Corpus

6 Evaluation

We evaluate the system quantitatively against two
commercial Hebrew diacritization systems, Mor-
fix6 and Snopi7, considered state-of-the-art.

We also provide qualitative evaluation, demon-
strating the ability to diacritize unknown words,
and to produce context-sensitive diacritization.

Quantitative Evaluation We use two quantita-
tive measures to evaluate our model. (1) Word-level
accuracy: for a given word8, we consider the pre-
diction correct if and only if all the diacritic marks
on the word are correct, including gemination and
the ’shin’ dot, with all matres lectionis removed. (2)
Character-level accuracy: For each Hebrew letter
in the input text we check if the model predicted the
correct set of diacritic marks for the letter (and, for
matres lectionis, we check that the model predicted
their removal).

We evaluated the system on a 6,000-word un-
seen gold-test corpus, manually diacritized by a
professional linguist (Table 1). The corpus consists
of a random selection of Hebrew wiki articles. We
have made the test corpus publicly available.9

Qualitative Evaluation For the qualitative eval-
uation, we demonstrate that the system knows how
to handle diacritization for unknown words, and
this, in a context-sensitive manner. For this exam-
ple we choose an invalid word which conforms to
Hebrew letter patterns but which does not actually
exist in modern Hebrew: .סרדינות! No such word ex-
ists in Hebrew dictionaries, nor in our wordlist. We
put the word into a sentence in two contexts - in the
first, it fills the role of an adverb, and in the second,
it fills the role of a noun. Hebrew diacritization
norms would dictate two different diacritizations
for these two usages: for the adverb, the final vowel
should be ’u’, while for the noun, it should be ’o’.
Our system handles both correctly (Figure 2).

6https://nakdan.morfix.co.il/
7http://www.nakdan.com/
8For this calculation, punctuation and non-Hebrew words

or symbols are ignored.
9The test corpus can be downloaded at this link: http:

//tiny.cc/hebrew-test-git
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Figure 2: Diacritization of the fictional word סרדינות! in
two different contexts, with two different prefixes; the
word is diacritized as expected in both contexts.

Letter Accuracy Word Accuracy
Dicta 94.94% 87.94%

Morfix 80.25% 68.1%
Snopi 72.53% 58.39%

Table 2: Accuracy on Rabbinic Hebrew Test Corpus

7 Additional Text Genres

In addition to modern Hebrew, we also support
Rabbinic Hebrew and poetic Hebrew. These genres
require specialized handling. Firstly, we cannot use
our modern Hebrew morphology model, because
the morphological and syntactic norms of these gen-
res differ from those of modern Hebrew. Secondly,
we cannot use our modern Hebrew wordlist filters.
There is no standardized orthography for Rabbinic
Hebrew, nor for medieval poetic Hebrew. Addition-
ally, poets often specifically choose less common
words in order to meet prosodic constraints; thus,
our rare-word filters are not relevant. Finally, many
words which would be considered invalid in mod-
ern Hebrew are found within these other genres.
Rabbinic Hebrew includes many Aramaic words,
as well as Hebrew words with Aramaic prefixes.
Poetic Hebrew includes oddities such as past-tense
verbs with temporal prefixes.

For Rabbinic Hebrew, we train a specialized mor-
phology model based on our tagged historical He-
brew corpus. For poetry, where morphological
sequences are less constrained and less predictable,
we skip the morphology layer and diacritize the
text directly based on the diacritization LSTM.

In order to test our performance, we created
test corpora for each of the genres. The poetry
test corpus includes a set of liturgical poems of
the ’yotzer’ genre, transcribed from Cairo Genizah
manuscripts.10 The Rabbinic Hebrew test corpus is
taken from the ’Bet Yosef’, a 16th century commen-
tary on Jewish law.11 In Tables 2 and 3 we display
our quantitative results on these two corpora.

10Full data on these texts is available here: http://
weekdayyotzrot.com

11Both test corpora are available for download here: http:
//tiny.cc/hebrew-test-git

Letter Accuracy Word Accuracy
Dicta 85.76% 70.23%

Morfix 80.9% 65.3%
Snopi 69.24% 52%

Table 3: Accuracy on Poetic Hebrew Test Corpus

8 Advanced Features

1. Scientific Editions: In scientific editions, ed-
itorial sigla are interspersed throughout the text.
For instance, letters which are rubbed out in the
textual witnesses will be supplied within brack-
ets ]ש!) .(מד![ר! Existing diacritization tools fail here
because they parse such sigla as word separators.
Secondly, normative Hebrew diacritization entails
the omission of matres lectionis, and indeed ex-
isting tools omit these letters when returning the
diacritized text. However, in scientific editions,
matres lectionis must be maintained in order to
represent the manuscript evidence. Finally, the or-
thography of medieval Hebrew manuscripts can
diverge wildly from modern norms; for example,
we often find a yod inserted after the initial letter of
a hitpael construction (e.g. ,(היתלבש! a phenomenon
which would never occur in a modern Hebrew text.
Our tool meets all of these needs, and allows the
user to either remove or maintain matres lectionis.
2. The web interface automatically highlights Bibli-
cal quotes within the Hebrew text. Biblical phrases
are often incorporated into Hebrew texts, whether
as explicit prooftexts or as rhetorical flourishes. We
automatically identify such quotes, diacritize them
according to the canonized diacritization of the
Hebrew Bible, and display them in the distinctive
Koren font (a font well-known for its use in modern
Hebrew Bibles). See figure 3 for an example.

Figure 3: Integrated Biblical quote marked with font.

9 Conclusion

We are pleased to release our Hebrew diacritization
system for free unrestricted use. It is powered by
a combination of advanced machine learning and
manually curated linguistic resources, and thus suc-
ceeds in setting a new state of the art for Hebrew
diacritization. We have released also our diacritized
test corpora for benchmarking.
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Abstract
Natural language interfaces to databases
(NLIDB) democratize end user access to re-
lational data. Due to fundamental differences
between natural language communication and
programming, it is common for end users to
issue questions that are ambiguous to the sys-
tem or fall outside the semantic scope of its
underlying query language. We present PHO-
TON, a robust, modular, cross-domain NLIDB
that can flag natural language input to which
a SQL mapping cannot be immediately deter-
mined. PHOTON consists of a strong neural
semantic parser (63.2% structure accuracy on
the Spider dev benchmark), a human-in-the-
loop question corrector, a SQL executor and a
response generator. The question corrector is
a discriminative neural sequence editor which
detects confusion span(s) in the input question
and suggests rephrasing until a translatable in-
put is given by the user or a maximum number
of iterations are conducted. Experiments on
simulated data show that the proposed method
effectively improves the robustness of text-to-
SQL system against untranslatable user input.
The live demo of our system is available at
http://www.naturalsql.com.

1 Introduction

Natural language interfaces to databases (Popescu
et al., 2003; Li and Jagadish, 2014) democratize
end user access to relational data and have attracted
significant research attention for decades (Hemphill
et al., 1990; Dahl et al., 1994; Zelle and Mooney,
1996; Popescu et al., 2003; Bertomeu et al., 2006;
Zhong et al., 2017; Yu et al., 2018, 2019a). Most
existing NLIDBs adopt a modular architecture con-
sisting of rule-based natural language parsing, am-
biguity detection and pragmatics modeling (Li and

∗ Equal contribution. Jichuan implemented the demo
interaction flow and the neural question corrector. Victoria
designed and implemented the neural semantic parser.

†Work done during internship at Salesforce Research.

Execution on DB

SELECT COUNT(*), 
Courses.course_name FROM 
Courses JOIN 
Student_Course_Registratio
ns WHERE 
Courses.course_name = 
"statistics"

Execute SQL

User InteractionConfusion Detection

Confusing Span
Detection

Schema Grounding

There are 4 students 
registered in statistics.

Response Generation

It is an invalid query, 
please check the tables 
and ask again.

I’m not sure about
candidates, do you 
mean students?

yes

It is a confusing question
for me. please check the 
tables and ask again.

How about show me
all the courses and
the teacher names?

correctable

uncorrectable

non-executable

executable

SQL: SELECT COUNT(*), 
Courses.course_name 
FROM Student_Course
_Registrations WHERE … 

Q: How many candidates
are registered in statistics? ≤ N

Text-to-SQL Model

Figure 1: PHOTON workflow. The question corrector
(upper block) detects the untranslatable questions from
user input, scans the confusion span(s) that need clarifi-
cation or correction. The accepted question is mapped
into a SQL query through a text-to-SQL model, and fi-
nally the SQL execution results are returned to the user.

Jagadish, 2014; Setlur et al., 2016, 2019). While
they have been shown effective in pilot study and
production, rule-based approaches are limited in
terms of coverage, scalability and naturalness –
they are not robust against the diversity of hu-
man language expressions and are difficult to scale
across domains.

Recent advances in neural natural language pro-
cessing (Sutskever et al., 2014; Dong and Lapata,
2016; See et al., 2017a; Liang et al., 2017; Lin
et al., 2019; Bogin et al., 2019a), pre-training (De-
vlin et al., 2019; Hwang et al., 2019), and the avail-
ability of large-scale supervised datasets (Zhong
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et al., 2017; Finegan-Dollak et al., 2018; Yu et al.,
2018, 2019b,a) enabled deep learning based ap-
proaches to significantly improve the state-of-the-
art in nearly all subtasks of building an NLIDB.
These include semantic parsing (Dong and Lapata,
2018; Zhang et al., 2019), ambiguity detection and
confidence estimation (Dong et al., 2018; Yao et al.,
2019), natural language response generation (Liu
et al., 2019) and so on. Moreover, by jointly mod-
eling the natural language question and database
schema in the neural space, latest text-to-SQL se-
mantic parsers can work cross domains (Yu et al.,
2018; Zhang et al., 2019).

In this work, we present PHOTON, a modular,
cross-domain NLIDB that adopts deep learning in
its core components. PHOTON consists of (1) a neu-
ral semantic parser, (2) a human-in-the-loop ques-
tion corrector, (3) a SQL query executor and (4) a
natural language response generator. The neural se-
mantic parser assumes limited DB content access
due to data privacy concerns (§ 3.1). It employs
a BERT-based (Devlin et al., 2019) DB schema-
aware question encoder and a pointer-generator
decoder (See et al., 2017a) with static SQL correct-
ness check. It achieves competitive performance on
the popular cross-domain text-to-SQL benchmark,
Spider (Yu et al., 2018) (63.2% structure accuracy
on the dev set based on the official evaluation).1

The question corrector is a neural sequence editor
which detects potential confusion span(s) in the in-
put question and suggests possible corrections for
the user to give feedback. When an input question
is successfully translated into an executable SQL
query, the response generator generates a natural
language response conditioned on the output of the
SQL query executor.

A pilot study with non-expert SQL users shows
that the system effectively increases the flexibility
of user’s natural language expression and is easy
to be adapted to unseen databases. Being able to
detect and correct untranslatable questions reduces
unexpected error cases during user interaction.

2 System Design

In this section, we will elaborate on the system
design of PHOTON.

1We are continuously improving the performance of the
neural semantic parser. Currently the semantic parser only
accepts standalone question as input. We plan to also model
the interaction context in future work.

2.1 Overview

Figure 1 shows the overall workflow of our sys-
tem. PHOTON is an end-to-end system that takes
a user question and database schema as input, and
output the query result after executing the gener-
ated SQL on the database. PHOTON is a modular
framework designed towards practical industrial
applications. The core modules in PHOTON are
the SQL parser and confusion detection mecha-
nism. The SQL parser parses the input question
and database schema, maps them into executable
SQL query via an encoder-decoder framework. The
confusion detection module identifies the untrans-
latable questions and captures the confusing span
of the untranslatable question. The confusing to-
kens together with the context are fed into the auto-
correction module to make a prediction of user
attempted question.

To make it more applicable and accessible for
user to query the database in a natural way, PHO-
TON also provides user interaction module enabling
user to refine their queries in the interaction with
the system. Response generation handles the out-
put of the system by transducing the database-style
query result into natural language or post warning
when the query is non-executable on the database,
making the system more user-friendly. Notice that
the response generation module in the current ver-
sion is implemented using a template-based ap-
proach and can be improved by using more ad-
vanced response generation models.

INIT

CONFIRM_SQL

CLARIFYTranslatable 
or not

Executable 
or not

CONFIRM_RESULT

Has span 
or not

NEED_REPHRASE

CONFIRM_CORRECTION

INVALID_QUERY

Yes

No

Yes

No

Yes

No

CONFIRM_RESULT “SQL: {PRED_SQL}. {NL_RESPONSE}”
CONFIRM_CORRECTION “Sorry, {CONF_TOKENS} is confusing in our scenario, do you

mean {CORR_TOKENS}?”
NEED_REPHRASE “Sorry, it is a confusing question for me, please rephrase your 

question and ask again.”
INVALID_QUERY “Sorry, it is an invalidate query, please check the table names and 

associated fields of interest.”

Response Template

Figure 2: State transition map of interaction in PHO-
TON. States with darker background are the end states
that can receive user reply, and switch to INIT state
automatically. The bottom part is the system response
templates in each end state.
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2.2 User Interaction

Figure 2 illustrates the interaction process,
which involves four types of response states:
CONFIRM RESULT, CONFIRM CORRECTION,
NEED REPHRASE, and INVALID QUERY. The
set of response templates can be found at the
bottom of Figure 2. When a user initiates the
conversation by entering one query, PHOTON

will first predict whether the query is translat-
able or not. If translatable, PHOTON generates
the corresponding SQL command and checks
the command’s executability; otherwise, PHO-
TON will provide a correction strategy (i.e.,
CONFIRM CORRECTION) based on the detected
confusing span or ask the users to further rephrase
the inquiry (i.e., NEED REPHRASE) if no span is
captured.

2.3 UI Design

Our system UI consists of three panels: chat win-
dow, schema viewer and results viewer.

• Chat window: This is a standard chat win-
dow that facilitates communication between
the user and PHOTON. The user types the nat-
ural language input and the natural language
responses of the system are displayed.

• Schema viewer: This view provides a graph
visualization of the underlying relational DB
schema. The panel is hideable and will not be
shown in case the DB schema is confidential.

• Result viewer: This view displays the returned
results of an executable SQL query mapped
from a confirmed input question. The SQL
query is formatted and displayed in the top
for user verification. Multi-record results are
presented as sub-tables. Result consists of a
single table cell is presented as a 1-cell sub-
table. If the result comes from an aggregation
operation such as a counting, the data records
supporting the calculation are also shown for
explanability. Confidential DB records are
hidden from the display and the user is in-
formed of the number of hidden records.

2.4 Cross Domain

A relational DB for user queries should be set
before usage. PHOTON consists of a collection
of default databases and allows users to upload
their own DBs for testing. Users can select which

database they want to query by clicking the “Se-
lected Database” drop down button.

3 Model

3.1 Neural Semantic Parser
The neural semantic parser is an end-to-end model
whose input consists of a user question and the
DB schema, and outputs a SQL query. Due to
data privacy concerns, we assume that the neural
semantic parser does not have full access to the
DB content. Instead, we assume for each DB field,
the parser have access to the set of possible val-
ues of the field, for example, “Country.Region”:
{“Carribean”, “Porto Rico”, ...}2. We call such
value sets “picklists” by industry convention.

3.1.1 Schema-Question Encoder
Following previous work (Hwang et al., 2019;
Zhang et al., 2019), we serialize the relational DB
schema and concatenate it to the user question. As
shown in Figure 3 , we represent each table with the
table name followed by a sequence of field names.
Each table name is preceded by the special token
[T] and each field name is preceded by the special
token [C]. The representations of multiple tables
are concatenated together to form the serialization
of the schema, which is surrounded by [SEP] to-
kens and concatenated to the question. Finally, the
question is preceded by the [CLS] token following
convention of BERT encoder (Devlin et al., 2019).

This sequence is fed into the pretrained BERT,
followed by a bi-directional LSTM to form a joint
encoding of the question and schema hinput. The
text portion of hinput is passed through another bi-
LSTM to obtain the question encoding hQ. We rep-
resent each schema component (tables and fields)
using the slices of hinput corresponding to the spe-
cial token [T] and [C].

Meta-data Features We further trained dense
look-up features to represent if a field is a primary
key (fpri), if a field appears in a foreign key pair
(ffor) and the data type of the field (ftype). These
meta-data features are fused with the representa-
tions in hinput via a projection layer g to obtain the
final representation of each schema component:

hCp = g([hm
input; f

i
pri; f

j
for; f

k
type]) (1)

= ReLU(Wg[h
m
input; f

i
pri; f

j
for; f

k
type] + bg)

hTq = g([hn
input;0;0;0]), (2)

2In practice, we can limit the access to only certain fields.
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ID NameInstructor Department_ID Salary …

Department ID Name Building Budget …

… …

Primary key

Primary key

Foreign key

Instructor Department …T C T C…CLS What is the average rating of physics instructors?

BERT

Bidirectional LSTM

Bidirectional LSTM Text Encoder

SEP

Connect to 
decoder LSTM

Data type

Primary key

Foreign key

Bi-LSTM 
output states

Table 
encoding 

Table 
encoding 

Field 
encoding 

Field 
encoding 

Figure 3: Joint schema-question encoder.

Text-to-SQL with Value List
Goal 

• Text2SQL given table schema and value set of each field 

CountryT C … C Region C … C Surface AreaCodeC

“Carribean”

“Porto Rico”

“US”

“ZH”

… …

How much surface area do the countries in the Caribbean cover together?

V Carribean

“6,256”

“13,000”

…

CLS Question

Figure 4: Joint schema-question encoder augmented with picklist values.

where m is the index of the special token corre-
sponding to the p-th column in the input and n
is the index of the special token corresponding to
the q-th table in the input. i, j and k are the fea-
ture indices indicating the corresponding properties
of Cp. [hm

input; f
i
pri; f

j
for; f

k
type] is the concatenation of

the four vectors. The meta-data features we include
are specific to fields and the table representations
are fused with zero place-holder vectors.

3.1.2 Decoder
We use an LSTM-based sequential pointer-
generator (See et al., 2017b) as the decoder. The
generation vocabulary of our decoder consists of
70 SQL keywords and reserved tokens, plus the
10 digits3. At each step, the decoder computes a
probability distribution over actions that consists
of generating a token from the reserved vocabulary,
copying a token from the input text or copying a
schema component.

3.1.3 Static SQL Correctness Check
The sequential pointer-generator we adopted does
not guarantee the output SQL is syntactically cor-
rect. In practice, we perform beam-search decoding
and run a static SQL correctness check4 to elimi-
nate erroneous predictions from the beam. Specifi-

3Such that the parser is able to generate numbers corre-
sponding to utterances such as “first”, “second” etc.

4Some prior work such as (Wang et al., 2018) performs a
similar check by executing the decoded SQL queries on the
target DB. We implement the static checking as it can reduce
the traffic between the interface and the DB.

cally, we employ a tool implemented on top of the
Mozilla SQL Parser5 to analyze the output SQL
queries and ensure they satisfy the following crite-
ria:

1. The SQL query is syntactically correct.
2. The SQL query satisfies schema consistency6.

We found this approach is very effective and
results in an absolute improvement of 4∼5% in the
evaluation score on Spider dev set (Yu et al., 2018).

3.1.4 Picklist Incorporation
We use picklists to inform the semantic parser re-
garding potential matches in the DB. For an in-
put question Q and a field Cp, we compute the
longest character sequence match between Q and
each value in the picklist of Cp. We select the value
with top-1 matching score above a certain threshold
θ as a match. For each field with a matched picklist
value, we append the surface form of the value to it
in the input sequence representation, separated by
the special token [V]. The augmented sequence is
used as the input to the schema-question encoder.
In practice, we found picklist augmentation results
in an absolute performance improvement of 1% on
the Spider dev set.

Figure 4 illustrates the input sequence with aug-

5https://github.com/mozilla/
moz-sql-parser

6The fields appeared in a SELECT SQL query must come
from the tables in the corresponding FROM clause. The fields
in a JOIN condition clause must come from tables mentioned
in front of them in the JOIN clause.
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mented picklist values. In this example, the match-
ing algorithm identifies “Carribean” associated
with the column “Country.Region” as a match.
Hence it inserts “Carribean” after [... [C], “Re-
gion”] with [V] as a separation token7. The rep-
resentations of fields with no picklist value match
are unchanged.

3.2 Confusion Detection: Handling
Untranslatable and Ambiguous Input

In order to handle ambiguous and untranslatable
input questions, PHOTON adopts a discriminatively
trained classifier to detect user input to which a
SQL mapping cannot be immediately determined.
This covers questions that are incomplete (e.g.
What is the total?), ambiguous or vague (e.g. Show
me homes with good schools), beyond the repre-
sentation scope of SQL (e.g. How many tourists
visited all of the 10 attractions?), or simply noisy
(e.g. Cyrus teaches physics in department).

3.2.1 Untranslatable Question Detection
Inspired by (Rajpurkar et al., 2018), we create a
synthetic dataset which consists of untranslatable
questions generated by applying rule-based trans-
formations and adversarial filtering (Zellers et al.,
2018) to examples in existing text-to-SQL datasets.
We then train a stagewise model that first classifies
if the input is translatable or not, and then predicts
confusing spans in an untranslatable input.

Dataset Construction. In order to construct the
untranslatable questions, we firstly exam the types
of untranslatable questions seen on the manually
constructed CoSQL (Yu et al., 2019a) and Multi-
WOZ (Budzianowski et al., 2018) datasets (Table 4
of A.1). We then design our modification strategies
to generate the untranslatable questions from the
original text-to-SQL dataset automatically. Specif-
ically, for a text-to-SQL example that contains a
natural language question, a DB schema and a SQL
query, we first identify all non-overlapping ques-
tion spans that possibly refer to a table field oc-
curred in the SELECT and WHERE clauses of the
SQL query using string-matching heuristics. Then
we apply Swap and Drop operations on the question
and DB schema respectively to generate different
types of untranslatable questions. The modification
tokens are marked as the confusion spans of the

7In practice, we found a question typically has 0 to 4
picklist value matches. As a result, the picklist augmented
schema-question representation still stays under the maximum
input length of BERT.

synthetic untranslatable questions, except for the
question Drop strategy.

Table 5 in A.1 provides a detailed summary of
all transformations applied8. For example, given
the original question “How many countries exist?”,
“countries” is detected to be referring to a table field.
We drop the token, and pass the modified question
“How many exist?” to back-translation for grammar
smoothing. After that, we obtain the untranslatable
question “How many are there?”. Once we have
the synthetic untranslatable questions, adversarial
filtering is employed to iteratively refine the set of
untranslatable examples to be more indiscernible
by trivial stylistic classifiers (Zellers et al., 2018).

Predicting Untranslatable Questions and Con-
fusing Spans. We utilize the BERT contextual-
ized representations of [CLS] token, followed by
a single-layer classifier to tell whether a given user
question and table schema can be translated into
SQL or not. To identify the questionable token
spans of untranslatable question, following Zhang
et al. (2019), we employ a hierarchical bi-LSTM
structure to encode each column header and use
the hidden states as the column header embedding.
We then use a bi-LSTM to encode the question’s
BERT embedding, and the hidden states are fed
into a dot-product co-attention (Luong et al., 2015)
layer over the column header embedding. The out-
put of co-attention augmented question embedding
is fed into a linear layer follow by softmax operator
to predict the start and end tokens indices of the
confusing spans in the question.

3.2.2 Database-aware Token Correction

Figure 5 illustrates the proposed tokens correction
module in PHOTON. We use the masked language
model (MLM) of BERT (Devlin et al., 2019) to
auto-correct the confusing tokens. Specifically, we
replace the confusing tokens with the [MASK] spe-
cial token. The output distribution of MLM head
on the mask token is employed to score the candi-
date spans. We construct the candidate span list by
extracting all the table names and columns names
from the database schema. After user confirmation,
the confusing tokens in the input are replaced by
the predicted tokens of MLM.

8To introduce semantic variation and ensure grammar
fluency, we apply back-translation on the generated ques-
tion using Google Cloud Translation API https://cloud.
google.com/translate/. We use Chinese as the inter-
mediate language.
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How many candidates are registered in statistics ?

How many [MASK] are registered in statistics ? [TABLE NAMES]

BERT MLM

Original input:

Processed input:

students

Examples:
What is the phone number of student named Shannon? -> assessment date
How many nurses are there in the classroom? -> middle name

students .289

teachers .017

courses .013

names .009

student details .008

System: candidates is 
confusing here, do you 
mean students?

Table&Column Names

…

Figure 5: Token Correction in PHOTON.

4 Evaluation

In this section, we empirically evaluate the robust-
ness and effectiveness of PHOTON.

In particular, we examine two key modules of
PHOTON: the confusion detection module and the
neural semantic parser. The former aims to detect
the untranslatable questions and predicts the con-
fusing spans; if the question is translatable, it then
applies the proposed neural semantic parser to per-
form the text-to-SQL parsing. Since PHOTON is
designed as a stagewise system, we can evaluate
the performance of each module separately.

4.1 Experimental Setup
Dataset. We conduct experiments on Spider (Yu
et al., 2018) and SpiderUTran dataset. Spider is a
large-scale, human annotated, cross-domain text-
to-SQL benchmark. SpiderUTran is our modified
dataset to evaluate robustness, created by inject-
ing the untranslatable questions into Spider. We
obtained 5,330 additional untranslatable questions
(4,733 for training and 597 for development) from
the original Spider dataset. To ensure the quality of
our synthetic dataset, we hired SQL experts from
Upwork9 to annotate the auto-generated untrans-
latable examples in the dev set. We conduct our
evaluation by following the database split setting,
as illustrated in Table 1. The split follows the origi-
nal dataset hence there is no test set of SpiderUTran
(the test set of Spider is not publicly accessible).

Training and Inference Details. Our neural se-
mantic parser is trained on Spider. We permute
table order (up to 16 different ones) during training.
We use the uncased BERT-base model from Hug-
gingface’s transformer library (Wolf et al., 2019).
We set all LSTMs to 1-layer and set the dimension
of hinput, fpri, ffor, ftype and the decoder to 512. We
employ Adam-SGD (Kingma and Ba, 2015) with a

9https://www.upwork.com/

Spider SpiderUTran
Train Dev Train Dev

# Q 8,659 1,034 13,392 1,631
# UTran Q 0 0 4,733 597
# Schema 146 20 918 112

Table 1: Data split of Spider and SpiderUTran. Q rep-
resents the all the questions, UTran Q represents the
untranslatable questions.

mini-batch size of 32 and default Adam parameters.
We train a maximum of 50,000 steps and set the
learning rate to 5e− 4 in the first 5,000 iterations
and linearly decays it to 0 afterwards. We fine-tune
BERT with a fine-tuning rate linearly increasing
from 3e− 5 to 8e− 5 in the first 5,000 iterations
and linearly decaying to 0 afterwards. We use a
beam size of 128 in the beam search decoding.

4.2 Experimental Results

Confusion Detection. We examine the robust-
ness of PHOTON by evaluating the performance of
the Confusion Detection module in handling am-
biguous and untranslatable input. In particular, we
aim to examine if PHOTON is effective in handling
untranslatable questions by measuring the translata-
bility detection accuracy and the confusing span
prediction accuracy & F1 score10. We compare
to a baseline that uses a single-layer attentive bi-
directional LSTM (“Att-biLSTM”). Table 2 shows
the evaluation results on the SpiderUTran dataseet.

Tran Acc Span Acc Span F1

Att-biLSTM 66.6 58.7 59.2
PHOTON 79.7 69.1 72.9

Table 2: Translatability prediction accuracy (“Tran
Acc”) and the confusing spans prediction accuracy and
F1 on our SpiderUTran dataset (%).

As observed from Table 2, PHOTON achieves
encouraging performance in determining the trans-
latability of a question and predicting the confusing
spans of untranslatable ones. In comparison to the
Att-biLSTM baseline, PHOTON obtains significant
improvements in both translatability accuracy and
the confusing spans prediction accuracy. These
improvements are partly attribute to the proposed
effective schema encoding strategy.

10We use the same way as SQuAD 2.0 (Rajpurkar et al.,
2018) to compute the span accuracy and F1.
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Neural Semantic Parser. We then evaluate the
performance of the proposed neural semantic
parser of PHOTON on the original Spider dataset.
In particular, we compare PHOTON and other ex-
isting text-to-SQL approaches by measuring the
exact set match (EM) accuracy (Yu et al., 2018).
We compare with several existing approaches, in-
cluding Global GNN (Bogin et al., 2019b), Edit-
SQL (Zhang et al., 2019), IRNet (Guo et al., 2019),
and RYANSQL (Choi et al., 2020). Table 3 shows
the evaluation results on Spider Dev set.

Model EM Acc.

GNN (Bogin et al., 2019a) 40.7
Global-GNN (Bogin et al., 2019b) 52.7
EditSQL + BERT (Zhang et al., 2019) 57.6
GNN+Bertrand-DR† (Kelkar et al., 2020) 57.9
EditSQL+Bertrand-DR† (Kelkar et al., 2020) 58.5
IRNet + BERT (Guo et al., 2019) 61.9
RYANSQL + BERT † (Choi et al., 2020) 66.6

PHOTON 63.2

† denotes unpublished work on arXiv.

Table 3: Experimental results on the Spider Dev set
(%). EM Acc. denotes the exact set match accuracy.

As observed from Table 3, PHOTON achieves a
very competitive text-to-SQL performance on the
Spider benchmark with 63.2% exact set match ac-
curacy on the Spider dev set, which validates the ef-
fectiveness of our neural semantic parser for trans-
lating an input question into a valid SQL query.

5 Related Work

Natural Language Interfaces to Databases.
NLIDBs has been studied extensively in the past
decades. Thanks to the availability of large-scale
datasets (Zhong et al., 2017; Finegan-Dollak et al.,
2018; Yu et al., 2018), data-driven approaches
have dominated the field, in which deep learning
based models achieve the best performance in both
strongly (Hwang et al., 2019; Zhang et al., 2019;
Guo et al., 2019) and weakly (Liang et al., 2017;
Min et al., 2019) supervised settings. However,
most of existing text-to-SQL datasets include only
questions that can be translated into a valid SQL
query. Spider (Finegan-Dollak et al., 2018) specif-
ically controlled question clarify during data col-
lection to exclude poorly phrased and ambiguous
questions. WikiSQL (Zhong et al., 2017) was con-
structed on top of manually written synchronous
grammars, and the mapping between its questions
and SQL queries can be effectively resolved via

lexical matching in vector space (Hwang et al.,
2019). CoSQL (Yu et al., 2019a) is by far the only
existing corpus to our knowledge which entables
data-driven modeling and evaluation of untrans-
latable question detection. Yet the dataset is of
context-dependent nature and contains untranslat-
able questions of limited variety. We fill in this
gap by proposing PHOTON to cover a diverse set of
untranslatable user input in text-to-SQL.

Noisy User Input in Semantic Parsing. Despite
being absent from most large-scale text-to-SQL
benchmarks, noisy user input has been frequently
encountered and battled with by the semantic pars-
ing community. Underspecification (Archangeli,
1988) and vagueness (Varzi, 2001) have solid lin-
guistic theory foundation. Lexicon-based semantic
parsers (Zettlemoyer and Collins, 2005; Roberts
and Patra, 2017) may reject the input if the lexi-
con match is unsuccessful. Other approaches for
handling untranslatable user input include infer-
ence and generating defaults (Setlur et al., 2019),
paraphrasing (Arthur et al., 2015, 2016), verifi-
cation (Arthur et al., 2015) and confidence esti-
mation (Dong et al., 2018). We adopt a data-
augmentation and discriminative learning based
approach, which has demonstrated superior perfor-
mance in related domains (Rajpurkar et al., 2018)

6 Conclusion and Future Work

We present PHOTON, a robust modular cross-
domain text-to-SQL system, consisting of semantic
parser, untranslatable question detector, human-in-
the-loop question corrector, and natural language
response generator. PHOTON has the potential to
scale up to hundreds of different domains. It is the
first cross-domain text-to-SQL system designed
towards industrial applications with rich features,
and bridges the demand of sophisticated database
analysis and people without any SQL background
knowledge.

The current PHOTON system is still a prototype,
with very limited user interactions and functions.
We will continue to add more features to PHOTON,
such as voice input, spelling checking, and visu-
alizing the output when appropriate to inspect the
translation process. We also plan to improve the
performance of core models in PHOTON, such as se-
mantic parsing (text-to-SQL), response generation
(table-to-text) and context-aware user interaction
(text-to-text). A comprehensive evaluation will also
be conducted among the users of our system.
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A Appendices

A.1 Construct Untranslatable Questions
Table 4 shows a summary of different types of untranslatable questions based on analysis of CoSQL (Yu
et al., 2019a) and Multi-WOZ (Budzianowski et al., 2018).

Table 5 shows examples of applying question-side and schema-side transformations to convert a
translatable question from existing text-to-SQL datasets to an untranslatable question.

Reason Description Example

Underspecification Input does not specify which data 
entries/attributes to query.

Q: What is the total?
Schema:||Course_ID||Staring_Data||Course||…

Overspecification Input asks for information that 
cannot be found in the DB.

Q: What is the name of the singer with the largest net worth?
Schema: ||Singer_ID||Name||Birth_Year||Citizenship||

Ambiguity & 
Vagueness

Input contains ambiguous or vague 
expressions.

Q: Show me homes with good schools
Schema: ||Address||Community||School Name||School Rating||

Beyond 
representation scope 
of SQL

Input asks for information that 
cannot be obtained by SQL logic.

Q: What is the trend of housing price this year?
Schema: ||House ID||Location||Price||Number of amenties||

Not a query
Input is not a linguistically valid 
question. Q: Cyrus teaches physics in department.

Others Other cases that the question cannot 
be translated.

Q: How many Russias have Summer's transfer window?
Schema: ||Name||Country||Type||Transfer Window||Transfer Fee||

Table 4: Types of untranslatable questions in text-to-SQL identified from manual analysis of CoSQL (Yu et al.,
2019a) and Multi-WOZ (Budzianowski et al., 2018). A question span that is problematic for the translation is
highlighted when applicable.

Original data Transformed data Confusing text span
Q1: How many conductors  are there? Q1: How many soloists are there ?

Q2: What are the maximum and minimum 
values of area codes ?

Q2: What are the maximum and minimum values 
of types?

Q1: How many countries  exist? Q1: How many are there?

Q2: What is the official language  spoken in the 
country whose head of state is Beatrix?

Q2: What are the people in the country where 
Beatrix is located?

Q1: How much surface area  do the countires in the Carribean cover together?
S1: || Name ||Continent || Region || SurfaceArea  || 
Population || LifeExpectancy ||

S1: || Name ||Continent || Region || Population || 
LifeExpectancy ||

Q2: Find the name and age  of the visitor who bought the most tickets at once.
S2: ||Customer_ID||Name||Level_of_membership|| 
Age || S2: ||Customer_ID||Name||Level_of_membership||

WHOLE SENTENCE
S2: || CountryCode || HeadOfState || Captital || Language || IsOfficial || Percentage ||

surface area

 Schema Drop

age

 Transformation

 Question

Swap

soloists
S1: || Conductor_ID || Name || Age || Nationlity|| Year_of_Work ||

types
S2: || Vote_ID || Phone_Number || Area_Code || State || Created ||

Drop

WHOLE SENTENCE
S1: || CoutryId || CountryName || Continent ||

Table 5: Examples of question-side and schema-side transformations for generating training data for untranslatable
question detection. Let Q denote the question and S denote the schema. For each transformation, we provide two
examples, i.e., (Q1, S1) and (Q2, S2). The italic and bold fonts highlight phrases before and after transformations.
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Abstract

We show SUGILITE, an intelligent task au-
tomation agent that can learn new tasks and
relevant associated concepts interactively from
the user’s natural language instructions and
demonstrations, using the graphical user inter-
faces (GUIs) of third-party mobile apps. This
system provides several interesting features:
(1) it allows users to teach new task proce-
dures and concepts through verbal instructions
together with demonstration of the steps of a
script using GUIs; (2) it supports users in clari-
fying their intents for demonstrated actions us-
ing GUI-grounded verbal instructions; (3) it in-
fers parameters of tasks and their possible val-
ues in utterances using the hierarchical struc-
tures of the underlying app GUIs; and (4) it
generalizes taught concepts to different con-
texts and task domains. We describe the archi-
tecture of the SUGILITE system, explain the
design and implementation of its key features,
and show a prototype in the form of a conver-
sational assistant on Android.

1 Introduction

Interactive task learning (ITL) is an emerging
research topic that focuses on enabling task
automation agents to learn new tasks and their
corresponding relevant concepts through natural
interaction with human users (Laird et al., 2017).
This topic is also known as end user development
(EUD) for task automation (Ko et al., 2011; Myers
et al., 2017). Work in this domain includes both
physical agents (e.g., robots) that learn tasks that
might involve sensing and manipulating objects
in the real world (Chai et al., 2018; Argall et al.,
2009), as well as software agents that learn how to
perform tasks through software interfaces (Azaria
et al., 2016; Allen et al., 2007; Labutov et al.,
2018; Leshed et al., 2008). This paper focuses on
the latter category.

A particularly useful application of ITL is for
conversational virtual assistants (e.g., Apple Siri,
Google Assistant, Amazon Alexa). These systems
have been widely adopted by end users to perform
tasks in a variety of domains through natural lan-
guage conversation. However, a key limitation
of these systems is that their task fulfillment and
language understanding capabilities are limited to
a small set of pre-programmed tasks (Li et al.,
2018b; Labutov et al., 2018). This limited support
is not adequate for the diverse “long-tail” of user
needs and preferences (Li et al., 2017a). Although
some software agents provide APIs to enable third-
party developers to develop new “skills” for them,
this requires significant programming expertise and
relevant APIs, and therefore is not usable by the
vast majority of end users.

Natural language instructions play a key role in
some ITL systems for virtual assistants, because
this modality represents an natural way for humans
to teach new tasks (often to other humans), and
has a low learning barrier compared to existing tex-
tual or visual programming languages for task au-
tomation. Some prior systems (Azaria et al., 2016;
Labutov et al., 2018; Le et al., 2013; Srivastava
et al., 2017, 2018) relied solely natural language
instruction, while others (Allen et al., 2007; Kirk
and Laird, 2019; Sereshkeh et al., 2020) also used
demonstrations of direct manipulations to supple-
ment the natural language instructions. We sur-
veyed the prior work, and identified the following
five key design challenges:

1. Usability: The system should be usable for
users without significant programming exper-
tise. It should be easy and intuitive to use with
a low learning barrier. This requires careful
design of the dialog flow to best match the
user’s natural model of task instruction.

2. Applicability: The system should handle a
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Figure 1: An example dialog structure while SUGILITE learns a new task that contains a conditional and new con-
cepts. The numbers indicate the sequence of the utterances. The screenshot on the right shows the conversational
interface during these steps.

wide range of common and long-tail tasks
across different domains. Many existing sys-
tems can only work with pre-specified task
domains (Labutov et al., 2018; Azaria et al.,
2016; Gulwani and Marron, 2014), or services
that provide open API access to their function-
alities (Campagna et al., 2017; Le et al., 2013).
This limits the applicability of those systems
to a smaller subset of tasks.

The same problem also applies to the language
understanding capability of the system. It
should be able to understand, ground, and act
upon instructions in different task domains
(e.g., different phone apps) without requiring
pre-built parsers for each domain.

3. Generalizability: The system should learn
generalized procedures and concepts to handle
new task contexts that go beyond the example
context used for instruction. This includes
inferring parameters of tasks, allowing the use
of different parameter values, and adapting
learned concepts to new task domains.

4. Flexibility: The system should be sufficiently
expressive to allow users to specify flexible
rules, conditions, and other control structures
that reflect their intentions.

5. Robustness: The system should be resilient
to minor changes in target applications, and
be able to recover from errors caused by pre-
viously unseen or unexpected situations, pos-
sibly with some help from the user.

To address these challenges, we present the
prototype of a new task automation agent named
SUGILITE12. This prototype integrates and im-
plements the results from several of our prior re-
search works (Li et al., 2017a, 2018a, 2017b; Li
and Riva, 2018; Li et al., 2019), and we are cur-
rent preparing for a field deployment study with
this prototype. The implementation of our system
is also open-sourced on GitHub3. The high-level
approach used in SUGILITE is to combine conver-
sational natural language instructions with demon-
strations on mobile app GUIs, and to use each of
the two modalities to disambiguate, ground, and
supplement the user’s inputs from the other modal-
ity through mixed-initiative interactions.

2 System Overview

This section explains how SUGILITE learns new
tasks and concepts from the multi-modal interactive
instructions from the users.

The user starts with speaking a command. The
command can describe either an action (e.g.,
“check the weather”) or an automation rule with
a condition (e.g., “If it is hot, order a cup of
Iced Cappuccino”). Suppose that the agent has
no prior knowledge in any of the involved task

1Sugilite is a gemstone, and here stands for Smartphone
Users Generating Intelligent Likeable Interfaces Through
Examples.

2A demo video is available at https://www.youtube.com/
watch?v=tdHEk-GeaqE

3https://github.com/tobyli/Sugilite development
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Figure 2: The screenshots of SUGILITE’s demonstration mechanism and its multi-modal mixed-initiative intent
clarification process for the demonstrated actions.

domains, then it will recursively resolve the un-
known concepts and procedures used in the com-
mand. Although it does not know these con-
cepts, it can recognize the structure of the com-
mand (e.g., conditional), and parse each part
of the command into the corresponding typed
resolve functions, as shown in Figure 1. SUG-
ILITE uses a grammar-based executable semantic
parsing architecture (Liang, 2016); therefore its
conversation flow operates on the recursive ex-
ecution of the resolve functions. Since the
resolve functions are typed, the agent can gen-
erate prompts based on their types (e.g., “How do I
tell whether. . . ” for resolveBool and “How do
I find out the value for. . . ” for resolveValue).

When the SUGILITE agent reaches the
resolve function for a value query or a proce-
dure, it asks the users if they can demonstrate
them. The users can then demonstrate how they
would normally look up the value, or perform the
procedure manually with existing mobile apps
on the phone by direct manipulation (Figure 2a).
For any ambiguous demonstrated action, the user
verbally explains the intent behind the action
through multi-turn conversations with the help
from an interaction proxy overlay that guides the
user to focus on providing more effective input (see
Figure 2bcde, more details in Section 3.2). When
the user demonstrates a value query (e.g., finding
out the value of the temperature), SUGILITE

highlights the GUI elements showing values with
the compatible types (see Figure 3) to assist the
user in finding the appropriate GUI element during

the demonstration.
All user-instructed value concepts, Boolean con-

cepts, and procedures automatically get generalized
by SUGILITE. The procedures are parameterized
so that they can be reused with different parameter
values in the future. For example, for Utterance
8 in Figure 1, the user does not need to demon-
strate again since the system can invoke the newly-
learned order Starbucks function with a dif-
ferent parameter value (details in Section 3.3). The
learned concepts and value queries are also gener-
alized so that the system recognizes the different
definitions of concepts like “hot” and value queries
like “temperature” in different contexts (details in
Section 3.4).

3 Key Features

3.1 Using Demonstrations in Natural
Language Instructions

SUGILITE allows users to use demonstrations to
teach the agent any unknown procedures and con-
cepts in their natural language instructions. As
discussed earlier, a major challenge in ITL is that
understanding natural language instructions and
carrying out the tasks accordingly require having
knowledge in the specific task domains. Our use
of programming by demonstration (PBD) is an ef-
fective way to address this “out-of-domain” prob-
lem in both the task-fulfillment and the natural lan-
guage understanding processes (Li et al., 2018b).
In SUGILITE, procedural actions are represented as
sequences of GUI operations, and declarative con-
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Figure 3: The user teaches the value concept “commute
time” by demonstrating querying the value in Google
Maps. SUGILITE highlights all the duration values on
the Google Maps GUI.

cepts can be represented as references to GUI con-
tents. This approach supports ITL for a wide range
of tasks – virtually anything that can be performed
with one or more existing third-party mobile apps.

Our prior study (Li et al., 2019) also found that
the availability of app GUI references can result in
end users providing clearer natural language com-
mands. In one study where we asked participants to
instruct an intelligent agent to complete everyday
computing tasks in natural language, the partici-
pants who saw screenshots of relevant apps used
fewer unclear, vague, or ambiguous concepts in
their verbal instructions than those who did not see
the screenshots. Details of the study design and the
results can be found in Li et al. (2019).

3.2 Spoken Intent Clarification for
Demonstrated Actions

A major limitation of demonstrations is that they
are too literal, and are therefore brittle to any
changes in the task context. They encapsulate what
the user did, but not why the user did it. When
the context changes, the agent often may not know
what to do, due to this lack of understanding of
the user intents behind their demonstrated actions.
This is known as the data description problem in
the PBD community, and it is regarded as a key
problem in PBD research (Cypher and Halbert,
1993; Lieberman, 2001). For example, just look-
ing at the action shown in Figure 2a, one cannot
tell if the user meant “the restaurant with the most

reviews”, “the promoted restaurant”, “the restau-
rant with 1,000 bonus points”, “the cheapest Steak-
house”, or any other criteria, so the system cannot
generate a description for this action that accurately
reflects the user’s intent. A prior approach is to ask
for multiple examples from the users (McDaniel
and Myers, 1999), but this is often not feasible due
to the user’s inability to come up with useful and
complete examples, and the amount of examples
required for complex tasks (Myers and McDaniel,
2001; Lee et al., 2017).

SUGILITE’s approach is to ask users to verbally
explain their intent for the demonstrated actions us-
ing speech. Our formative study (Li et al., 2018a)
found that end users were able to provide useful
and generalizable explanations for the intents of
their demonstrated actions. They also commonly
used in their utterances semantic references to GUI
contents (e.g., ”the close by restaurant” for an entry
showing the text “596 ft”) and implicit spatial refer-
ences (e.g., “the score for Lakers” for a text object
that contains a numeric value and is right-aligned
to another text object “Lakers”).

Based on these findings, we designed and im-
plemented a multi-modal mixed-initiative intent
clarification mechanism for demonstrated actions.
As shown in Figure 2, the user describes their in-
tention in natural language, and iteratively refines
the descriptions to remove ambiguity with the help
of an interactive overlay (Figure 2d). The over-
lay highlights the result from executing the current
data description query, and helps the user focus on
explaining the key differences between the target
object (highlighted in red) and the false positives
(highlighted in yellow) of the query.

To ground the user’s natural language explana-
tions about GUI elements, SUGILITE represents
each GUI screen as a UI snapshot graph. This
graph captures the GUI elements’ text labels, meta-
information (including screen position, type, and
package name), and the spatial (e.g., nextTo),
hierarchical (e.g., hasChild), and semantic rela-
tions (e.g., containsPrice) among them (Fig-
ure 4). A semantic parser translates the user’s expla-
nation into a graph query on the UI snapshot graph,
executes it on the graph, and verifies if the result
matches the correct entity that the user originally
demonstrated. The goal of this process is to gener-
ate a query that uniquely matches the target UI ele-
ment and also reflects the user’s underlying intent.

Our semantic parser uses a Floating Parser ar-
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Figure 4: SUGILITE’s instruction parsing and ground-
ing process for intent clarifications illustrated on an ex-
ample UI snapshot graph constructed from a simplified
GUI snippet.

chitecture (Pasupat and Liang, 2015) and is imple-
mented with the SEMPRE framework (Berant et al.,
2013). We represent UI snapshot graph queries in
a simple but flexible LISP-like query language (S-
expressions) that can represent joins, conjunctions,
superlatives and their compositions, constructed by
the following 7 grammar rules:

E → e;E → S;S → (join r E);S → (and S S)

T → (ARG MAX r S);T → (ARG MIN r S);Q → S | T

where Q is the root non-terminal of the query ex-
pression, e is a terminal that represents a UI object
entity, r is a terminal that represents a relation,
and the rest of the non-terminals are used for inter-
mediate derivations. SUGILITE’s language forms
a subset of a more general formalism known as
Lambda Dependency-based Compositional Seman-
tics (Liang et al., 2013), which is a notationally
simpler alternative to lambda calculus which is par-
ticularly well-suited for expressing queries over
knowledge graphs. More technical details and the
user evaluation are discussed in Li et al. (2018a).

3.3 Task Parameterization through GUI
Grounding

Another way SUGILITE leverages GUI groundings
in the natural language instructions is to infer task
parameters and their possible values. This allows
the agent to learn generalized procedures (e.g., to
order any kind of beverage from Starbucks) from

a demonstration of a specific instance of the task
(e.g., ordering an iced cappuccino).

SUGILITE achieves this by comparing the user
utterance (e.g., “order a cup of iced cappuccino”)
against the data descriptions of the target UI ele-
ments (e.g., click on the menu item that has the
text “Iced Cappuccino”) and the arguments (e.g.,
put “Iced Cappuccino” into a search box) of the
demonstrated actions for matches. This process
grounds different parts in the utterances to specific
actions in the demonstrated procedure. It then ana-
lyzes the hierarchical structure of GUI at the time
of demonstration, and looks for alternative GUI ele-
ments that are in parallel to the original target GUI
element structurally. In this way, it extracts the
other possible values for the identified parameter,
such as the names of all the other drinks displayed
in the same menu as “Iced Cappuccino”

The extracted sets of possible parameter values
are also used for disambiguating the procedures to
invoke, such as invoking the order Starbucks
procedure for the command “order a cup of latte”,
but invoking the order PapaJohns procedure
for the command “order a cheese pizza.”

3.4 Generalizing the Learned Concepts

In addition to the procedures, SUGILITE also auto-
matically generalizes the learned concepts in order
to reuse parts of existing concepts as much as pos-
sible to avoid requiring users to perform redundant
demonstrations (Li et al., 2019).

For Boolean concepts, SUGILITE assumes
that the Boolean operation and the types of the
arguments stay the same, but the arguments
themselves may differ. For example, the concept
“hot” used in Figure 1 can be generalize to “arg0
is greater than arg1” where arg0 and arg1
can be value queries or constant values of the
temperature type. This allows the various constant
thresholds of temperature, or dynamic queries
for temperatures depending on the specific task
context. This mechanism allows concepts to be
used across different contexts (e.g., determining
whether to order iced coffee vs. whether to open
the window) task domains (e.g., “the weather is
hot” vs. “the oven is hot”).

Similarly, named value queries (resolved from
resolveValue such as “temperature” in Fig-
ure 1) can be generalized to have different imple-
mentations depending on the task domain. In “the
temperature outside”, query Temperature()
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can invoke the weather app, whereas in “the temper-
ature of the oven” it can invoke the smart oven app
to look up the current temperature of the oven (Li
et al., 2017b).

4 Evaluation

We conducted several lab user studies to evaluate
the usability, efficiency and effectiveness of SUG-
ILITE. The results of these study showed that end
users without significant programming expertise
were able to successfully teach the agent the proce-
dures of performing common tasks (e.g., ordering
pizza, requesting Uber, checking sports score, or-
dering coffee) (Li et al., 2017a), conditional rules
for triggering the tasks (Li et al., 2019), and con-
cepts relevant to the tasks (e.g., the weather is hot,
the traffic is heavy) (Li et al., 2019) using SUG-
ILITE. The users were also able to clarify their
intents when ambiguities arise (Li et al., 2018a).
Most of our participants found SUGILITE easy and
natural to use (Li et al., 2017a, 2018a, 2019). Effi-
ciency wise, teaching a task usually took the user
3–6 times longer than how long it took to perform
the task manually in our studies (Li et al., 2017a),
which indicates that teaching a task using SUG-
ILITE can save time for many repetitive tasks.

5 Discussion and Future Work

5.1 Using GUIs for Language Grounding
SUGILITE illustrates the great promise of using
GUIs as a resource for grounding and understand-
ing natural language instructions in ITL. The GUIs
encapsulate rich knowledge about the flows of the
underlying tasks and the properties and relations of
relevant entities, so they can be used to bootstrap
the domain-specific knowledge needed by ITL
systems that rely on natural language instructions
for learning. Users are also familiar with GUIs,
which makes GUIs the ideal medium to which
users can refer during task instructions. A major
challenge in natural language instruction is that
the users do not know what concepts or knowledge
the agent already knows so that they can use it
in their instructions (Li et al., 2019). Therefore,
they often introduce additional unknown concepts
that are either unnecessary or entirely beyond
the capability of the agent (e.g., explaining “hot”
as “when I’m sweating” when teaching the agent
to “open the window when it is hot”). By using
the app GUIs as the medium, the system can
effectively constrain the users to refer to things

that can be found out from some app GUIs (e.g.,
“hot” can mean “the temperature is high”), which
mostly overlaps with the “capability ceiling” of
smartphone-based agents, and allows the users to
define new concepts for the agent by referring to
app GUIs (Li et al., 2017a, 2019).

5.2 More Robust Natural Language
Understanding

The current version of SUGILITE uses a grammar-
based executable semantic parser to understand the
users’ natural language explanations of their intents
for the demonstrated actions. While this approach
comes with many benefits, such as only requiring
a small amount of training data and not relying on
any domain knowledge, it has rigid patterns and
therefore sometimes encounters problems with the
flexible structures and varied expressions in the
user utterances.

We are looking at alternative approaches for pars-
ing natural language instructions into our domain-
specific language (DSL) for representing data de-
scription queries and task execution procedures.
A promising strategy is to take advantage of the
abstract syntax tree (AST) structure in our DSL
for constructing a neural parser (Xu et al., 2020;
Yin and Neubig, 2017), which reduces the amount
of training data needed and enforces the well-
formedness of the output code.

The current model also only uses the semantic
information from the local user instructions and
their corresponding app GUIs. Another promising
approach to enable more robust natural language
understanding is to leverage the pre-trained general-
purpose language models (e.g., BERT (Devlin et al.,
2018)) to encode the user instructions and the in-
formation extracted from app GUIs.

5.3 Extracting Task Semantics from GUIs
An interesting future direction is to better extract
semantics from app GUIs so that the user can focus
on high-level task specifications and personal pref-
erences without dealing with low-level mundane
details (e.g., “buy 2 burgers” means setting the
value of the textbox below the text “quantity” and
next to the text “Burger” to be “2”). Some works
have made early progress in this domain (Liu et al.,
2018b; Deka et al., 2016; Chen et al., 2020) thanks
to the availability of large datasets of GUIs like
RICO (Deka et al., 2017). Recent reinforcement
learning-based approaches and semantic parsing
techniques have also shown promising results in
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learning models for navigating through GUIs for
user-specified task objectives (Liu et al., 2018a;
Pasupat et al., 2018). For ITL, an interesting fu-
ture challenge is to combine these user-independent
domain-agnostic machine-learned models with the
user’s personalized instructions for a specific task.
This will likely require a new kind of mixed-
initiative instruction (Horvitz, 1999) where the
agent is more proactive in guiding the user and
takes more initiative in the dialog. This could be
supported by improved background knowledge and
task models, and more flexible dialog frameworks
that can handle the continuous refinement and un-
certainty inherent in natural language interaction,
and the variations in user goals. Collecting and
aggregating personal task instructions across many
users also introduce important concerns on user
privacy, as discussed in (Li et al., 2020).

5.4 Multi-Modal Interactions in
Conversational Learning

SUGILITE combines speech and direct manipu-
lation to enable a “speak and point” interaction
style, which has been studied since early inter-
active systems like Put-That-There (Bolt, 1980).
As described in Section 3.2, a key pattern used in
SUGILITE’s multi-modal interface is mutual dis-
ambiguation (Oviatt, 1999) where it utilizes inputs
in complementary modalities to infer robust and
generalizable scripts that can accurately represent
user intentions.

We are currently exploring other ways of using
multi-modal interactions to supplement natural lan-
guage instructions in ITL. A promising direction
is to use GUI references to help with repairing
conversational breakdowns (Beneteau et al., 2019;
Ashktorab et al., 2019; Myers et al., 2018) caused
by incorrect semantic parsing, intent classification,
or entity recognition. Since GUIs encapsulate rich
semantic information about the users’ intents, the
task flows, and the task constraints, we can poten-
tially ask the users to point to the relevant GUI
screens as a part of the error handling process, ex-
plaining the errors with references to the GUIs, and
helping the system recover from the breakdowns.

6 Conclusion

We described SUGILITE, a task automation agent
that can learn new tasks and relevant concepts in-
teractively from users through their GUI-grounded
natural language instructions and demonstrations.

This system provides capabilities such as intent
clarification, task parameterization, and concept
generalization. SUGILITE shows the promise of
using app GUIs for grounding natural language
instructions, and the effectiveness of resolving un-
known concepts, ambiguities, and vagueness in nat-
ural language instructions using a mixed-initiative
multi-modal approach.
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Abstract

We present MIXINGBOARD, a platform for
quickly building demos with a focus on knowl-
edge grounded stylized text generation. We
unify existing text generation algorithms in a
shared codebase and further adapt earlier al-
gorithms for constrained generation. To bor-
row advantages from different models, we im-
plement strategies for cross-model integration,
from the token probability level to the latent
space level. An interface to external knowl-
edge is provided via a module that retrieves on-
the-fly relevant knowledge from passages on
the web or any document collection. A user
interface for local development, remote web-
page access, and a RESTful API are provided
to make it simple for users to build their own
demos 1 .

1 Introduction

Neural text generation algorithms have seen great
improvements over the past several years (Radford
et al., 2019; Gao et al., 2019a). However each
algorithm and neural model usually focuses on a
specific task and may differ significantly from each
other in terms of architecture, implementation, in-
terface, and training domains. It is challenging to
unify these algorithms theoretically, but a frame-
work to organically integrate multiple algorithms
and components can benefit the community in sev-
eral ways, as it provides (1) a shared codebase to
reproduce and compare the state-of-the-art algo-
rithms from different groups without time consum-
ing trial and errors, (2) a platform to experiment the
cross-model integration of these algorithms, and
(3) a framework to build demo quickly upon these
components. This framework can be built upon
existing deep learning libraries (Paszke et al., 2019;

1Source code available at github.com/microsoft/
MixingBoard

Figure 1: MIXINGBOARD is designed as a platform
to organically and quickly integrate separate NLP algo-
rithms into compelling demos

Abadi et al., 2015) and neural NLP toolkits (Hug-
gingFace, 2019; Gardner et al., 2018; Hu et al.,
2018; Ott et al., 2019; Shiv et al., 2019; Miller
et al., 2017)2, as illustrated in Fig. 1.

There are several challenges to do such integra-
tion. Firstly, engineering efforts are needed to unify
the interface of different implementation. Secondly,
a top-level manager needs to be designed to utilize
different models together. Finally, different models
are trained using different data with different perfor-
mance. Cross-model integration, instead of calling
each isolated model individually, can potentially
improve the overall performance. In this work, we
unified the models of different implementation in a
single codebase, implemented demos as top-level
managers to access different models, and provide
strategies to allow more organic integration across
the models, including token probability interpola-
tion, cross-mode scoring, latent interpolation, and
unified hypothesis ranking.

This work is also aimed to promote the devel-
opment of grounded text generation. The exist-

2Although multiple libraries and toolkits are mentioned
in Fig. 1, the current implementation is primarily based on
PyTorch models
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ing works focusing on the knowledge grounded
text generation (Prabhumoye et al., 2019; Qin
et al., 2019; Galley et al., 2019) usually assume
the knowledge passage is given. However in prac-
tice this is not true. We provide the component to
retrieve knowledge passage on-the-fly from web
or customized document, to allow engineers or re-
searchers test existing or new generation models.
Keyphrase constrained generation (Hokamp and
Liu, 2017) is another type of grounded generation,
broadly speaking. Similarly the keyphrase needs
to be provided to apply such constraints. We pro-
vide tools to extract constraints from knowledge
passage or stylized corpus.

Finally, friendly user interface is a component
usually lacking in the implementation of neural
models but it is necessary for a demo-centric frame-
work. We provide scripts to build local terminal
demo, webpage demo, and RESTful API demo.

2 Design

Our goal is to build a framework that will allow
users to quickly build text generation demos using
existing modeling techniques. This design allows
the framework to be almost agnostic to the ongoing
development of text generation techniques (Gao
et al., 2019a). Instead, we focus on the organic
integration of models and the interfaces for the
final demo/app.

From a top-down view, our design are bounded
to two markets: text processing assistant, and con-
versational AI, as illustrated in Fig. 2. Two demos
are present as examples in these domains: docu-
ment auto-completion and Sherlock Holmes. We
further breakdown these demos into several tasks,
designed to be shared across different demos. We
also designed several strategies to integrate multi-
ple models to generate text. These strategies allow
each model to plug-in without heavy constraints
on the architecture of the models, as detailed in
Section 4.

As the goal is not another deep learning NLP
toolkit, we rely on existing ones (HuggingFace,
2019; Paszke et al., 2019; Gardner et al., 2018)
and online API services Bing Web Search provided
in Azure Cognitive Service3 and TagME.4 Simi-
larly, most tasks are using existing algorithms: lan-
guage modeling (Zhang et al., 2019; Radford et al.,

3https://azure.microsoft.com/en-us/
services/cognitive-services/

4https://tagme.d4science.org/tagme/

2019), knowledge grounded generation (Qin et al.,
2019; Prabhumoye et al., 2019) or span retrieval
(Seo et al., 2016; Devlin et al., 2018), style transfer
(Gao et al., 2019c,b) and constrained generation
(Hokamp and Liu, 2017).

3 Modules

3.1 Knowledge passage retrieval
We use the following free-text, unstructured text
sources to retrieve relevant knowledge passage.

• Search engine. Free-text form “knowledge”
is retrieved from the following sources 1)
text snippets from the (customized) webpage
search; 2) text snippets (customized) news
search; 3) user-provided documents.
• Specialized websites. For certain preferred

domains, e.g., wikipedia.org, we will further
download the whole webpage (rather than just
the text snippet returned from search engine)
to obtain more text snippets.
• Users can also provide their customized

knowledge base, like a README file, which
can be updated on-the-fly, to allow the agent
using latest knowledge.

User may select one or multiple sources listed
above to obtain knowledge passage candidates.
Then the text snippets are then ranked by relevancy
as well as diversity.

3.2 Stylized synonym
We provide a component to retrieve synonym of
given target style for a query word. This component
is useful for the style transfer module (Section 3.4)
as well as the constrained generation module (Sec-
tion 3.7).

The similarity based on word2vec, simword2vec,
is defined as the cosine similarity between the vec-
tors of two words. The similarity based on human-
edited dictionary, simdict, is defined as 1 if the can-
didate word in the synonym list of the query word,
otherwise 0. The final similarity between the two
words is defined as the weighted average of these
two similarities:

sim = (1− wdict) simword2vec + wdict simdict

We only choose the candidate word with a similar-
ity higher than certain threshold as the synonym
of the query word. Then we calculate the style
score of these synonym using a style classifier. We
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Figure 2: The architecture of MIXINGBOARD, consisting of layers from basic tools, algorithms, tasks to integrated
demos with market into consideration.

provided a logistic regression model taking 1gram
multi-hot vector as features, trained on non-stylized
corpus vs. stylized corpus.

3.3 Latent interpolation

For a given two latent vectors, za and zb, we expect
the decoded results from the interpolated vector
zi = uza + (1 − u)zb can retain the desired fea-
tures from both za and zb. However this requires
a interpolatable, smooth latent space. For this pur-
pose, we apply the SpaceFusion (Gao et al., 2019b)
and StyleFusion (Gao et al., 2019c) to learn such
latent space. The latent interpolation is then used
to transfer style, apply soft constraints, and interpo-
lating hypothesis obtained using different models.

3.4 Stylized generation

Gao et al. (2019c) proposed StyleFusion to gen-
erate stylized response for a given conversation
context by structuring a shared latent space for non-
stylized conversation data and stylized samples.
We extend it to a style transfer method, i.e., modify
the style of a input sentence while maintaining its
content, via latent interpolation (see Section 3.3).

• Soft-edit refers to a two-step algorithm, 1)
edit the input sentence by replace each word
by a synonym of the target style (e.g. “cookie”
replaced by “biscuit” if the target style is

British), if there exists any; 2) the edited sen-
tence from step 1 may not be fluent, so we
then apply latent interpolation between the
input sentence and edited sentence to seek a
sentence that is both stylized and fluent.
• Soft-retrieval refers to a similar two-step al-

gorithm, but step 1) is to retrieve a “similar”
sentence from a stylized corpus, and then ap-
ply step 2) to do the interpolation. One exam-
ple is given in Fig. 5. The hypothesis “he was
once a schoolmaster in the north of england”
is retrieved given the DialoGPT hypothesis
“he’s a professor at the university of london”.

3.5 Conditioned text generation
Generate a set of candidate responses conditioned
on the conversation history, or a follow-up sentence
conditioned on the existing text.

• GPT-2 (Radford et al., 2019) is a transformer
(Vaswani et al., 2017) based text generation
model.
• DialoGPT (Zhang et al., 2019) is a large-scale

pre-trained conversation model obtained by
training GPT-2 (Radford et al., 2019) on Red-
dit comments data.
• SpaceFusion (Gao et al., 2019b) is a regular-

ized multi-task learning framework proposed
to learn a smooth and interpolatable latent
space.
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3.6 Knowledge grounded generation
We consider the following methods to consume
the retrieved knowledge passage and relevant long-
form text on the fly as a source of external knowl-
edge.

• Machine reading comprehension. In the code-
base, we fine-tuned BERT on SQuAD.
• Content transfer is a task proposed in (Prabhu-

moye et al., 2019) designed to, given a context,
generate a sentence using knowledge from an
external article. We implemented this algo-
rithm in the codebase.
• Knowledge grounded response generation

is a task firstly proposed in (Ghazvininejad
et al., 2018) and later extended in Dialog Sys-
tem Technology Challenge 7 (DSTC7)(Galley
et al., 2019). We implemented the CMR algo-
rithm (Conversation with on-demand Machine
Reading) proposed in (Qin et al., 2019).

3.7 Constrained generation
Besides the grounded generation, it is also useful to
apply constraints at the decoding stage that encour-
age the generated hypotheses contain the desired
phrases. We provide the following two ways to
obtain constraints.

• Key phrases extracted from the Knowledge
passage. We use the PKE package (Boudin,
2016) to identify the keywords.
• In some cases, users may want to use a styl-

ized version of the topic phrases or phrase
of a desired style as the constraints. We use
the stylized synonym algorithm as introduced
in Section 3.4 to provide such stylized con-
straints.

With the constraints obtained above, we provide
the following two ways to apply such constraints
during decoding.

• Hard constraint is applied via Grid Beam
Search (GBS) (Hokamp and Liu, 2017),
which is a lexically constrained decoding algo-
rithm that can be applied to almost any models
at the decoding stage and generate hypotheses
that contain desired paraphrases (i.e. the con-
straints). We implemented GBS to provide a
hard constrained decoding.
• Soft constraint refers the case that genera-

tion is likely, but not always, to satisfy con-
straints (e.g. include given keywords in the

Figure 3: A soft keywords constrained generation
model based on SpaceFusion (Gao et al., 2019b).

hypothesis). We provide an adapted version
of SpaceFusion (Gao et al., 2019b) for this
purpose. Gao et al. (2019b) proposed to align
the latent space of a Sequence-to-Sequence
(S2S) model and that of an Autoencoder (AE)
model to improve dialogue generation perfor-
mance. Inspired by this work, we proposed
to replace the S2S model by a keywords-to-
sequence model, which takes multi-hot input
of the keywords x identified from sentence y,
as illustrated in Fig. 3. During training, we
simply choose the top-k rare words (rareness
measured by inverse document frequency) as
the keywords, and k is randomly choose from
a Uniform distribution k ∼ U(1,K).

4 Cross-model integration

Multiple models may be called for the same query
and returns different responses. We propose the
following ways to organically integrate multiple
models, as illustrated in Fig. 4. User can apply
these strategies with customized models.

• Token probability interpolation refers pre-
diction of the next token using a (weighted)
average of the token probability distributions
from two or more models given the same time
step and given the same context and incom-
plete hypothesis. Previously, it has been pro-
posed to bridge a conversation model and styl-
ized language model (Niu and Bansal, 2018).
This technique does not require the models
to share the latent space but the vocabulary
should be shared across different models.
• Latent interpolation refers the technique in-

troduced in Section 3.3. It provides a way to
interpolate texts in the latent space. Unlike
the token-level strategy introduced above, this
technique focuses on the latent level and in-
gests information from the whole sentence.
However if the two candidates are too dissim-
ilar, the interpolation may result in undesired
outputs. The soft constraint algorithm intro-
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Figure 4: An example flow chart showing the integration of two models at different stages (blue boxes).

duced in Section 3.7 is one option to apply
such interpolation.
• Cross model pruning refers pruning the hy-

pothesis candidates (can be incomplete hy-
pothesis, e.g. during beam search) not just
based on the joint token probability, but also
the evaluated probability from a secondary
model. This strategy does not require a shared
vocabulary or a shared latent space. Interpolat-
ing two models trained on dissimilar domains
may be risky but the cross model pruning strat-
egy is safer as the secondary model is only
used roughly as a discriminator rather than a
generator.
• Unified hypothesis ranking is the final step

which sum up the hypotheses generated from
each single model and these from the inte-
gration of multiple models using the above
strategies. We consider the following crite-
ria for the hypothesis ranking: 1) likelihood,
measured by the conditional token probability
given the context; 2) informativeness, mea-
sured by average inverse document frequency
(IDF) of the tokens in the hypothesis; 3) rep-
etition penalty, measured by the ratio of the
number of unique ngrams and the number of
total ngrams. and 4) style intensity, measured
by a style classifiers, if style is considered.

5 Demos

5.1 Virtual Sherlock Holmes

This demo is a step towards a virtual version of
Sherlock Holmes, able to chat in Sherlock Holmes
style, with Sherlock Holmes background knowl-
edge in mind. As an extended version of the one in-
troduced by Gao et al. (2019c), the current demo is
grounded on knowledge and coupled with more ad-
vanced language modeling (Zhang et al., 2019). It
is designed to integrate the following components:
open-domain conversation, stylized response gener-
ation, knowledge-grounded conversation, and ques-
tion answering. Specifically, for a given query, the
following steps are executed:

• Call DialoGPT (Zhang et al., 2019) and Style-
Fusion (Gao et al., 2019c) to get a set of hy-
potheses.
• Call the knowledge passage selection module

to get a set of candidate passages. Then feed
these passages to the span selection algorithm
(Bert-based MRC (Devlin et al., 2018)) and
CMR (Qin et al., 2019) to get a set of knowl-
edge grounded response.
• Optionally, use the cross-model integration

strategies, such as interpolating the token
probability of DialoGPT and CMR.
• Based on TF-IDF similarity, best answer is

retrieved from a user provided corpus of
question-answer pairs. If the similarity is
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lower than certain threshold, the retrieved re-
sult will not be returned.
• Apply the style transfer module to obtain styl-

ized version of the the hypotheses obtained
from steps above.
• feed all hypotheses to the unified ranker and

return the top ones.

5.2 Document auto-completion assistant
This demo is designed as a writing assistant, which
provides suggestion of the next sentence given the
context. The assistant is expected to be knowledge-
able (able to retrieve relevant knowledge passage
from web or a given unstructured text source) and
stylized (if a given target style is specified). For a
given query, the following steps are executed:

• Call language model GPT2 (Radford et al.,
2019) to get a set of hypotheses
• Call the knowledge passage selection mod-

ule to get a set of candidate passages. Then
feed these passages to content transfer algo-
rithm (Prabhumoye et al., 2019) to get a set of
knowledge grounded response.
• Optionally, use the cross-model integration

strategies, such as latent interpolation to inter-
polate hypotheses from above models.
• Apply the style transfer module to obtain styl-

ized version of the the hypotheses obtained
from steps above.
• Feed all hypotheses to the unified ranker and

return the top ones.

6 User interface

We provided the following three ways to access
the demos introduced above for local developer, re-
mote human user, and interface for other programs.

• Command line interface is provided for lo-
cal interaction. This is designed for developer
to test the codebase.

• Webpage interface is implemented using the
Flask toolkit.5 A graphic interface is pro-
vided with html webpage for remote access
for human user. As illustrated in Fig. 5, the
Sherlock Holmes webpage consists of a input
panel where the user can provide context and
control style, a hypothesis list which specify
the model and scores of the ranked hypothe-
ses, and a knowledge passage list showing

5https://flask.palletsprojects.com/en/
1.1.x/

Figure 5: Sherlock Holmes webpage demo with
wikipedia knowledge example.

the retrieved knowledge passages. Another
example is given in Fig. 6 for document auto-
completion demo, where multiple options of
knowledge passage is given.

• RESTful API is implemented using the
Flask-RESTful toolkit.6 JSON object will be
returned for remote request. This interface
is designed to allow remote access for other
programs. One example is to host this REST-
ful API on a dedicated GPU machine, so the
webpage interface can be hosted on another
less powerful machine to send request through
RESTful API.

7 Conclusion

MIXINGBOARD is a new open-source platform to
organically integrate multiple state-of-the-art NLP
algorithms to build demo quickly with user friendly
interface. We unified these NLP algorithms in a
single codebase, implemented demos as top-level
managers to access different models, and provide
strategies to allow more organic integration across
the models. We provide the component to retrieve
knowledge passage on-the-fly from web or cus-
tomized document for grounded text generation.
For future work, we plan to keep adding the state-
of-the-art algorithms, reduce latency and fine-tune
the implemented models on larger and/or more
comprehensive corpus to improve performance.

6https://flask-restful.readthedocs.io/
en/latest/
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Figure 6: Document Auto-completion webpage demo
with user input knowledge passage.
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Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Florian Boudin. 2016. pke: an open source python-
based keyphrase extraction toolkit. In Proceedings
of COLING 2016, the 26th International Conference
on Computational Linguistics: System Demonstra-
tions, pages 69–73, Osaka, Japan.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Michel Galley, Chris Brockett, Xiang Gao, Jianfeng
Gao, and Bill Dolan. 2019. Grounded response gen-
eration task at DSTC7. In AAAI Dialog System Tech-
nology Challenges (DSTC7) Workshop.

Jianfeng Gao, Michel Galley, and Lihong Li. 2019a.
Neural approaches to conversational AI. Founda-
tions and Trends in Information Retrieval, 13(2-
3):127–298.

Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett,
Michel Galley, Jianfeng Gao, and Bill Dolan. 2019b.

Jointly optimizing diversity and relevance in neural
response generation. NAACL-HLT 2019.

Xiang Gao, Yizhe Zhang, Sungjin Lee, Michel Galley,
Chris Brockett, Jianfeng Gao, and Bill Dolan. 2019c.
Structuring latent spaces for stylized response gener-
ation. arXiv preprint arXiv:1909.05361.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint arXiv:1803.07640.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. arXiv preprint arXiv:1704.07138.

Zhiting Hu, Haoran Shi, Zichao Yang, Bowen Tan,
Tiancheng Zhao, Junxian He, Wentao Wang, Lian-
hui Qin, Di Wang, et al. 2018. Texar: A modular-
ized, versatile, and extensible toolkit for text genera-
tion. arXiv preprint arXiv:1809.00794.

HuggingFace. 2019. PyTorch transformer repos-
itory. https://github.com/huggingface/
pytorch-transformers.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. Parlai: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476.

Tong Niu and Mohit Bansal. 2018. Polite dialogue gen-
eration without parallel data. Transactions of the As-
sociation of Computational Linguistics, 6:373–389.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Shrimai Prabhumoye, Chris Quirk, and Michel Galley.
2019. Towards content transfer through grounded
text generation. In Proc. of NAACL.

Lianhui Qin, Michel Galley, Chris Brockett, Xiaodong
Liu, Xiang Gao, Bill Dolan, Yejin Choi, and Jian-
feng Gao. 2019. Conversing by reading: Contentful
neural conversation with on-demand machine read-
ing. In Proc. of ACL.

230



Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Vighnesh Leonardo Shiv, Chris Quirk, Anshuman Suri,
Xiang Gao, Khuram Shahid, Nithya Govindarajan,
Yizhe Zhang, Jianfeng Gao, Michel Galley, Chris
Brockett, et al. 2019. Microsoft icecaps: An open-
source toolkit for conversation modeling. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics: System Demonstra-
tions, pages 123–128.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2019. DialoGPT: Large-scale
generative pre-training for conversational response
generation. arXiv preprint arXiv:1911.00536.

231



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 232–255
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

NLP Scholar: An Interactive Visual Explorer for
Natural Language Processing Literature

Saif M. Mohammad
National Research Council Canada

saif.mohammad@nrc-cnrc.gc.ca

Abstract

As part of the NLP Scholar project, we cre-
ated a single unified dataset of NLP papers
and their meta-information (including citation
numbers), by extracting and aligning infor-
mation from the ACL Anthology and Google
Scholar. In this paper, we describe several
interconnected interactive visualizations (dash-
boards) that present various aspects of the data.
Clicking on an item within a visualization or
entering query terms in the search boxes fil-
ters the data in all visualizations in the dash-
board. This allows users to search for papers
in the area of their interest, published within
specific time periods, published by specified
authors, etc. The interactive visualizations pre-
sented here, and the associated dataset of pa-
pers mapped to citations, have additional uses
as well including understanding how the field
is growing (both overall and across sub-areas),
as well as quantifying the impact of different
types of papers on subsequent publications.

1 Introduction

NLP is a broad interdisciplinary field that draws
knowledge from Computer Science, Linguistics,
Information Science, Psychology, Social Sciences,
and more.1 Over the years, scientific publications
in NLP have grown in number and diversity; we
now see papers published on a vast array of re-
search questions and applications in a growing list
of venues—in journals such as CL and TACL, in
large conferences such as ACL and EMNLP, as
well as a number of small area-focused workshops.

The ACL Anthology (AA) is a digital repository
of public domain, free to access, articles on NLP.2

It includes papers published in the family of ACL
conferences as well as in other NLP conferences

1One can make a distinction between NLP and Compu-
tational Linguistics; however, for this work we will consider
them to be synonymous.

2https://www.aclweb.org/anthology/

such as LREC and RANLP. As of June 2019, it
provided access to the full text and metadata for
close to 50K articles published since 1965.3 It
is the largest single source of scientific literature
on NLP. However, the meta-data does not include
citation statistics.

Citation statistics are the most commonly used
metrics of research impact. They include: num-
ber of citations, average citations, h-index, relative
citation ratio, and impact factor. Note, however,
that the number of citations is not always a re-
flection of the quality or importance of a piece of
work. Furthermore, the citation process can be
abused, for example, by egregious self-citations
(Ioannidis et al., 2019). Nonetheless, given the im-
mense volume of scientific literature, the relative
ease with which one can track citations using ser-
vices such as Google Scholar (GS), and given the
lack of other easily applicable and effective metrics,
citation analysis is an imperfect but useful window
into research impact.

Google Scholar is a free web search engine for
academic literature.4 Through it, users can access
the metadata associated with an article such as the
number of citations it has received. Google Scholar
does not provide information on how many articles
are included in its database. However, sciento-
metric researchers estimated that it included about
389 million documents in January 2018 (Gusen-
bauer, 2019)—making it the world’s largest source
of academic information. Thus, it is not surprising
that there is growing interest in the use of Google
Scholar information to draw inferences about schol-
arly research in general (Martı́n-Martı́n et al., 2018;
Mingers and Leydesdorff, 2015; Orduña-Malea
et al., 2014; Khabsa and Giles, 2014; Howland,
2010) and on scholarly impact in particular (Bos

3ACL licenses its papers with a Creative Commons Attri-
bution 4.0 International License.

4https://scholar.google.com
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and Nitza, 2019; Ioannidis et al., 2019; Ravenscroft
et al., 2017; Bulaitis, 2017; Yogatama et al., 2011;
Priem and Hemminger, 2010).

Services such as Google Scholar and Semantic
Scholar cover a wide variety of academic disci-
plines. Wile there are benefits to this, the lack of
focus on NLP literature has some drawbacks as
well: e.g, the potential for too many search results
that include many irrelevant papers. For example,
if one is interested in NLP papers on emotion and
privacy, searching for them on Google Scholar is
less efficient than searching for them on a platform
dedicated to NLP papers. Further, services such
as Google Scholar provide minimal interactive vi-
sualizations. NLP Scholar with its focus on AA
data, is not meant to replace these tools, but act as
a complementary tool for dedicated visual search
of NLP literature.

ACL 2020 has a special theme asking re-
searchers to reflect on the state of NLP. In the spirit
of that theme, and as part of a broader project on an-
alyzing NLP Literature, we extracted and aligned
information from the ACL Anthology (AA) and
Google Scholar to create a dataset of tens of thou-
sands of NLP papers and their citations (Moham-
mad, 2020c, 2019). In separate work, we have used
the data to explores questions such as: how well
cited are papers of different types (journal articles,
conference papers, demo papers, etc.)? how well
cited are papers published in different time spans?
how well cited are papers from different areas of
research within NLP? etc. (Mohammad, 2020a).
We also explored gender gaps in Natural Language
Processing research, in terms of authorship and
citations (Mohammad, 2020b). In this paper we
describe how we built an interactive visual explorer
for this unified data, which we refer to as NLP
Scholar. Some notable uses of NLP Scholar are
listed below:

• Search for relevant related work in various
areas within NLP.

• Identify the highly cited articles on an interac-
tive timeline.

• Identify past papers published in a venue of
interest (such as ACL or LREC).

• Identify papers from the past (say ten years
back) published in a venue of interest (say
ACL or LREC) that have made substantial
impact through citations.

• Examine changes in number of articles and
number of citations in a chosen area of interest
over time.

• Identify citation impact of different types of
papers—e.g., short papers, shared task papers,
demo papers, etc.

Even beyond the dedicated interactive visualizer
described here, the underlying data with its align-
ment between AA and GS has potential uses in:

• Creating a web browser extension that allows
users of GS to look up the aligned AA infor-
mation (the full ACL BibTeX, poster, slides,
access to proceedings from the same venue,
etc.).

• Similarly, in the reverse direction, allowing
access from AA to the GS information on the
aligned paper. This could include number of
citations, lists of papers citing the paper, etc.

Perhaps most importantly, though, NLP Scholar
serves as a visual record of the state of NLP liter-
ature in terms of citations. We note again though,
that even though this work seeks to make citation
metrics more accessible for ACL Anthology papers,
citation metrics are not always accurate reflections
of the quality, importance, or impact of individual
papers.

All of the data and interactive visualizations as-
sociated with this work are freely available through
the project homepage.5

2 Background and Related Work

Much of the work in visualizing scientific litera-
ture has focused on showing topics of research (Wu
et al., 2019; Heimerl et al., 2012; Lee et al., 2005).
There is also notable work on visualizing communi-
ties through citation networks (Heimerl et al., 2015;
Radev et al., 2016).

Various subsets of AA have been used in the
past for a number of tasks, including: to study
citation patterns and intent (Radev et al., 2016;
Zhu et al., 2015; Nanba et al., 2011; Mohammad
et al., 2009; Teufel et al., 2006; Aya et al., 2005;
Pham and Hoffmann, 2003), to generate summaries
of scientific articles (Qazvinian et al., 2013), to
study gender disparities in NLP (Schluter, 2018),
to study subtopics within NLP (Anderson et al.,

5http://saifmohammad.com/WebPages/nlpscholar.html
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2012), and to create corpora of scientific articles
(Mariani et al., 2018; Bird et al., 2008).

However, none of these works provide an in-
teractive visualization for users to explore NLP
literature and their citations.

3 Data

We now briefly describe how we extracted informa-
tion from the ACL Anthology and Google Scholar.
(Further details about the dataset, as well as an
analysis of the volume of research in NLP over the
years, are available in Mohammad (2020c).)

3.1 ACL Anthology Data
The ACL Anthology provides access to its data
through its website and a github repository (Gildea
et al., 2018).6 We extracted paper title, names of au-
thors, year of publication, and venue of publication
from the repository.7

As of June 2019, AA had ∼50K entries; how-
ever, this includes forewords, schedules, etc. that
are not truly research publications. After discard-
ing them we are left with a set of 44,895 papers.

3.2 Google Scholar Data
Google Scholar does not provide an API to extract
information about the papers. This is likely because
of its agreement with publishing companies that
have scientific literature behind paywalls (Martı́n-
Martı́n et al., 2018). We extracted citation infor-
mation from Google Scholar profiles of authors
who published at least three papers in the ACL An-
thology. (This is explicitly allowed by GS’s robots
exclusion standard. This is also how past work has
studied Google Scholar (Khabsa and Giles, 2014;
Orduña-Malea et al., 2014; Martı́n-Martı́n et al.,
2018).) This yielded citation information for 1.1
million papers in total. We will refer to this dataset
as GS-NLP. Note that GS-NLP includes citation
counts not just for NLP papers, but also for non-
NLP papers published by the authors.

GS-NLP includes 32,985 of the 44,895 papers in
AA (about 74%). We will refer to this subset of the

6https://www.aclweb.org/anthology/
https://github.com/acl-org/acl-anthology

7Multiple authors can have the same name and the same
authors may use multiple variants of their names in papers.
The AA volunteer team handles such ambiguities using both
semi-automatic and manual approaches (fixing some instances
on a case-by-case basis). Additionally, the AA repository in-
cludes a file that has canonical forms of author names. Authors
can provide AA with their aliases, change-of-name informa-
tion, and preferred canonical name, which is then eventually
recorded in the canonical-name file.

ACL Anthology papers as AA′. The citation anal-
yses presented in this paper are on AA′. (Future
work will explore visualizations on GS-NLP.)

Entries across AA and GS are aligned by match-
ing the paper title, year of publication, and first
author last name.8

4 Building an Interactive Visualization to
Explore Scientific Literature

We now describe how we created an interac-
tive visualization—NLP Scholar—that allows one
to visually explore the data from the ACL An-
thology along with citation information from
Google Scholar. We first created a relational
database (involving multiple tables) that stores
the AA and GS data (§4.1). We then loaded the
database in Tableau—an interactive data visualiza-
tion software—to build the visualizations (§4.2).9

4.1 NLP Scholar Relational Database

Data from AA and GS is stored in four tables (tsv
files): papers, authors, title-unigrams, and title-
bigrams. They contain the following information:
papers: Each row corresponds to a unique paper.
The columns include: paper title, year of publica-
tion, list of authors, venue of publication, number
of citations at the time of data collection (June
2019), NLP Scholar paper id, ACL paper id, and
some other meta-data associated with the paper.

The NLP Scholar paper id is a concatenation of
the paper title, year of publication, and first author
last name. (This id was also used to align entries
across AA and GS).
authors: Each row corresponds to a paper–author
combination. The columns include: NLP Scholar
paper id, author first name, and author last name.
A paper with three authors contributes three rows
to the table (all three have the same paper id, but
different author names).
title-unigrams: Each row corresponds to a paper
title and unigram combination. The columns
include: NLP Scholar paper id and paper title
unigram (a word that occurs in the title of the
paper). A paper with five unique words in the title

8There were marked variations in how the same venue was
described in the meta-information across AA and GS; thus,
venue information was not used for alignment.

9Tableau: https://www.tableau.com
Even though there are paid versions of Tableau, the visualiza-
tions built with Tableau can be freely shared with others on
the world wide web. Users do not require any special software
to interact with these visualization on the web.
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contributes five rows to the table (all five have the
same paper id, but different words).
title-bigrams: Each row corresponds to a paper
title and bigram combination. The columns
include: NLP Scholar paper id and paper title
bigram (a two-word sequence that occurs in the
title of the paper). A paper with four unique
bigrams in the title contributes four rows to the
table (all four have the same paper id, but different
bigrams).

Once the tables are loaded in Tableau, the fol-
lowing pairs of tables are each joined (inner join)
using the NLP Scholar paper id:10 papers–authors,
papers–title-unigrams, and papers–title-bigrams.

4.2 NLP Scholar Interactive Visualization
We developed multiple visualizations to explore
various aspects of the data. We group and connect
several individual visualizations in dashboards that
allow one to explore several aspects of the data
together. Clicking on data attributes such as year
of publication or venue of publication in one visu-
alization, filters the data in all visualizations within
a dashboard to show only the relevant data.

Figure 1 shows a screenshot of the main dash-
board. At the top are the number of papers—total
(A1) and by year of publication (A2). This allows
one to see the growth/decline of the papers over the
years.

Below it, we see the number of citations—total
(B1) and by year of publication (B2). For a given
year, the bar is partitioned into segments corre-
sponding to individual papers. Each segment (pa-
per) has a height that is proportional to the number
of citations it has received and assigned a colour
at random. This allows one to quickly identify
high-citation papers.11

Hovering over individual papers in B2 pops open
an information box showing the paper title, authors,
year of publication, publication venue, and #cita-
tions. Figure 6 in the Appendix shows a blow up
of B2 along with examples of the hover informa-
tion box. Similarly, hovering over other parts of
the dashboard shows corresponding information.
(This is especially helpful, when parts of the text

10An inner join selects all rows from both participating
tables whose join column values match across the two tables.

11Note that since the number of colours is smaller than the
number of papers, multiple papers may have the same color;
however, the probability of adjacent papers receiving the same
colour is small—even then, the system will provide visual
clues distinguishing each segment when hovering over the
area.

are truncated or otherwise not visible due to space
constraints.)

Further below, we see lists of papers (C) and
authors (D)—both are ordered by number of cita-
tions. Search boxes in the bottom right (E) allow
searching for papers that have particular terms in
the title or searching for papers by author name.
One can also restrict the search to a span of years
using the slider.

Four other dashboards are also created that have
the same five elements as the main dashboard (A
through E), and additionally include a six element
F to provide a focused search facility. This sixth
element is a treemap that shows the most common:
venues and paper types (F1), title unigrams (F2),
title bigrams (F3), or language mentions in the title
(F4). (We only show one of the four treemaps at
a time to prevent overwhelming the user.) The
treemaps are shown in Figures 2 to 5, respectively.

5 Data Explorations with NLP Scholar

Figure 1 A1 shows that the dataset includes 44,895
papers. A2 shows that the volume of papers pub-
lished was considerably lower in the early years
(1965 to 1989); there was a spurt in the 1990s;
and substantial numbers since the year 2000. Also,
note that the number of publications is considerably
higher in alternate years. This is due to certain bi-
ennial conferences. Since 1998 the largest of such
conferences has been LREC (In 2018 alone LREC
had over 700 main conferences papers and addi-
tional papers from its 29 workshops). COLING,
another biennial conference (also occurring in the
even years) has about 45% of the number of main
conference papers as LREC.

B1 shows that AA′ papers have received ∼1.2
million citations (as of June 2019). The timeline
graph in B2 shows that, with time, not only have
the number of papers grown, but also the number
of high-citation papers. We see a marked jump in
the 1990s over the previous decades, but the 2000s
are the most notable in terms of the high number
of citations. The 2010s papers will likely surpass
the 2000s papers in the years to come.

The most cited papers list (C) shows influential
papers from machine translation, sentiment analy-
sis, word embeddings, syntax, and semantics.

Among the authors (D), observe that Christopher
Manning has not only received the most number of
citations, he has also received almost three times
as many citations as the next person in the list.
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Figure 1: A screenshot of NLP Scholar’s principle dashboard.

Search: NLP Scholar allows for search in a num-
ber of ways. Suppose we are interested in the topic
of sentiment analysis. Then we can enter the rel-
evant keywords in the search box: sentiment, va-
lence, emotion, emotions, affect, etc. Then the
visualizations are filtered to present details of only
those papers that have at least one of these key-
words in the title. (Future work will allow for
search in the abstract and the whole text.)

Figure 7 in the Appendix shows the filtered re-
sult. The system identified 1,481 papers that each
have at least one of the query terms in the title.
They have received more than 85K citations. The
citations timeline (B2 in Figure 7) shows that there
were just a few scattered papers in early years
(1987–2000) that received a small number of ci-
tations. However, two papers in 2002 received
a massive number of citations, and likely led to
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Figure 2: A treemap of popular NLP venues and paper types. Darker shades of green: higher volumes of papers.

Figure 3: A treemap of the most common unigrams in paper titles. Darker shades of green: higher frequencies.

Figure 4: A treemap of the most common bigrams in paper titles. Darker shades of green: higher frequencies.

Figure 5: A treemap of the most common language terms in titles. Darker shades of green: higher frequencies.
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the substantially increased interest in the field. The
number of papers has steadily increased since 2002,
with close to 250 papers in 2018, showing that the
area continues to enjoy considerable attention.

One can also fine tune the search as desired. Say
we are interested not in the broad area of sentiment
analysis, but specifically in the work on emotions
and affect. Then they can enter only emotion- and
affect-related keywords. A disadvantage of using
terms for search is that some terms are ambiguous
and they can pull in irrelevant articles; also if a
paper is about the topic of interest but its title does
not have one of the standard keywords associated
with the topic, then it might be left out. That said,
if one does come across a paper that has the query
term but is not in the topic of interest, they can right
click and exclude that paper from the visualization;
and as mentioned before, future work will allow
for searches in the abstract and full text as well.
We are also currently working on clustering papers
using the words in the articles as features.12

Below are some more examples of interactions
with NLP Scholar (Figures are in the Appendix
after references):

• Figure 8 shows the state of the visualization
when one clicks the year 2016 in A1.

• Figures 9 and 10 show examples of author
search by clicking on the authors list (D)
(Christopher Manning and Lillian Lee).

• Figures 11 and 12 show the dashboard when
one clicks on the Venue and Paper Type
treemap (F1): ACL main conference papers
and Workshop papers, respectively.

• Figures 13, 14 and 15 in the Appendix also
show examples of search for the terms parsing,
statistical and neural, respectively (accessed
by clicking on the title unigrams treemap
(F2)).

• Figures 16, 17, and 18 show the dashboard
when one clicks on the Title Bigrams treemap
(F3): machine translation, question answer-
ing, and word embeddings, respectively.

• Figures 19 and 20 show the dashboard when
one clicks on the Languages treemap (F4):
Chinese and Swahili, respectively.

12Note that clustering approaches also have limitations,
such as differing results depending on the parameters used.

Once the system goes live, we hope to collect fur-
ther usage scenarios from the users at large.

For this work, we chose not to stem the terms
in the titles before applying the search. This is
because in some search scenarios, it is beneficial
to distinguish the different morphological forms
of a word. For example, papers with emotions in
the titles are more likely to be dealing with mul-
tiple emotions than papers with the term emotion.
When such distinctions do not need to be made, it
is easy for users to include morphological variants
as additional query terms.

6 Conclusions and Future Work

We presented NLP Scholar—an interactive visual
explorer for the ACL Anthology. Notably, the tool
also has access to citation information from Google
Scholar. It includes several interconnected interac-
tive visualizations (dashboards) that allow users to
quickly and efficiently search for relevant related
work by clicking on items within a visualization
or through search boxes. All of the data and inter-
active visualizations associated with this work are
freely available through the project homepage.13

Future work will provide additional functionali-
ties such as search within abstracts and whole texts,
document clustering, and automatically identifying
related papers. We see NLP Scholar, with its dedi-
cated visual search capabilities for NLP papers, as
a useful complementary tool to existing resources
such as Google Scholar. We also note that the ap-
proach presented here is not required to be applied
only to the ACL Anthology or NLP papers; it can
be used to display papers from other sources too
such as pre-print archives and anthologies of papers
from other fields of study.
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Figures 6 through 20 (in the pages ahead) show
example interactions with NLP Scholar that were
discussed in Section 5.
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Figure 7: NLP Scholar: After entering terms associated with sentiment analysis in the search box.
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Figure 8: NLP Scholar: After clicking on the 2016 bar in the #papers by year viz (A2).
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Figure 9: NLP Scholar: After clicking on ‘Manning, Christopher’ in the Authors list (D).
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Figure 10: NLP Scholar: After clicking on ‘Lee, Lillian’ in the Authors list (D).
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Figure 11: NLP Scholar: After clicking on ‘ACL’ in the venue and paper type treemap (F1).
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Figure 12: NLP Scholar: After clicking on ‘Workshops’ in the venue and paper type treemap (F1).

247



Figure 13: NLP Scholar: After clicking on ‘parsing’ in the unigrams treemap (F2).
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Figure 14: NLP Scholar: After clicking on ‘statistical’ in the unigrams treemap (F2).
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Figure 15: NLP Scholar: After clicking on ‘neural’ in the unigrams treemap (F2).
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Figure 16: NLP Scholar: After clicking on ‘machine translation’ in the bigrams treemap (F3).
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Figure 17: NLP Scholar: After clicking on ‘question answering’ in the bigrams treemap (F3).
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Figure 18: NLP Scholar: After clicking on ‘word embeddings’ in the bigrams treemap (F3).
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Figure 19: NLP Scholar: After clicking on ‘Chinese’ in the languages treemap (F4).
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Figure 20: NLP Scholar: After clicking on ‘Swahili’ in the languages treemap (F4).
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Abstract

Building datasets of creative text, such as hu-
mor, is quite challenging. We introduce Fun-
Lines, a competitive game where players edit
news headlines to make them funny, and where
they rate the funniness of headlines edited by
others. FunLines makes the humor genera-
tion process fun, interactive, collaborative, re-
warding and educational, keeping players en-
gaged and providing humor data at a very low
cost compared to traditional crowdsourcing ap-
proaches. FunLines offers useful performance
feedback, assisting players in getting better
over time at generating and assessing humor,
as our analysis shows. This helps to further
increase the quality of the generated dataset.
We show the effectiveness of this data by train-
ing humor classification models that outper-
form a previous benchmark, and we release
this dataset to the public.

1 Introduction

While some data for machine learning tasks, like
image object detection, is relatively easy to anno-
tate, generating data that depends on human cre-
ativity is quite difficult. Unlike many objective
tasks, creativity is much less constrained, people
do not always agree on the quality of creative out-
put, and measuring creativity often requires more
effort. One such creative endeavor is humor, which
is subjective and hard to define, making consensus
difficult. Factors such as human preferences, mood,
world knowledge, and complex interrelationships
play important roles in determining what is funny,
making it challenging to generate humor datasets.

One approach to crowdsourcing creative data is
to hire workers, as we did for humorous headlines
in Hossain et al. (2019). An alternative is to make a
game for gathering the data. Games are especially
suitable for gathering creative output because it

is enjoyable to both generate and rate creative ar-
tifacts, particularly humor. The effectiveness of
games for labeling data has been shown in previous
work (Von Ahn and Dabbish, 2004, 2008).

In this paper, we introduce Funlines1, an online
game for generating funny news headlines for hu-
mor research. We explore and evaluate this fun,
competitive way of motivating people to contribute
creative text, addressing some of the special chal-
lenges of generating humor data mentioned above.

Generating a dataset of creative artifacts for ma-
chine learning requires ratings of the artifacts. This
has been done for sites like Reddit (reddit.com)
for jokes and Photofeeler (photofeeler.com)
for photos, both of which allow casual users to up-
vote/downvote creative content from others. The
Hafez research project lets users rate machine gen-
erated poetry (Ghazvininejad et al., 2017). In Fun-
Lines, one of the two main tasks for players is to
rate the funniness of headlines that have been edited
by other players. Humor is inherently social, and
the headlines’ collective exposure to, and rating
from, humans preserves this important feature.

The other main task in FunLines is to edit regu-
lar headlines to make them funny. To simplify ma-
chine learning and humor analysis, we want funny
headlines that are highly constrained. In FunLines,
players start with a regular headline from a news
source and they change a single word or entity to
make it funny, giving data that is particularly suit-
able for understanding the tipping point between
serious and humorous. This contrasts with Un-
fun.me, which is also a game for generating pairs
of funny and unfunny headlines (West and Horvitz,
2019). With Unfun.me, players start with a funny
headline and make it serious, where their edits are
unconstrained but encouraged to be minimal. Be-
cause it starts with regular headlines, FunLines has

1https://funlines.co
FunLines demo video: https://youtu.be/5OXJMxDBaLY

256



(a) The Headline Editing Task.

(b) The Headline Rating Task.

Figure 1: Screenshots of the FunLines humor tasks.

an enormous amount of raw source material. Also
related to FunLines’ editing tasks are projects that
help users create humor, like HumorTools (Chilton
et al., 2016) and Libitum (Hossain et al., 2017).

By deploying FunLines, we learned how players
behaved, and we responded with modifications to
encourage players to provide creative, high quality
data. We show that over time, players made sig-
nificant improvements in both the quality of their
humor and consistency of their ratings. We also
show that the resulting data is effective for training
humor detection systems. In fact, FunLines uses
one of our humor detectors to give instant feed-
back when players edit a headline. We compare the
FunLines data to Humicroedit, which is a humor-
ous headlines dataset we collected previously from
crowd workers (Hossain et al., 2019). FunLines
data is less expensive, higher quality, and leads to
improved automated humor detection. Overall, we
show that a competitive game is effective for gath-
ering data for a human creativity task based on an
experiment with a large number of users.

2 The FunLines Humor Game

FunLines is designed to collect a large volume of
rated, humorous headlines. It makes the humor
generation process fun, interactive, competitive, re-
warding and educational, keeping players engaged.

In FunLines, players can attempt two tasks: (i)
edit regular news headlines to make them funny,
and (ii) rate the funniness of headlines edited by
other players. They receive feedback for these
actions, which helps them get better at the game.
Players are ranked in our performance-based leader-

boards, which offer prize money. We now describe
the various aspects of the game that make it work.

2.1 Editing Headlines

Similar to our previous work (Hossain et al., 2019),
we restrict the headline editing task to the substitu-
tion of a noun, verb or entity in the headline with a
single word. This constraint enables focused analy-
sis on humor triggered by atomic changes in text.

Shown in Figure 1(a), the headline editing in-
terface highlights the headline’s replaceable words
in blue. It allows a single word substitute to be
submitted by the player. To help put the headline in
context, we provide information such as the news
source, category and date of publication, including
a link to the article (H16 in Fig. 1(a)). Upon sub-
mitting the edited headline, the player receives an
estimated funniness score from a humor classifier
built into FunLines (see Section 5.1).

2.2 Rating Headlines

As in Hossain et al. (2019), players rate a headline’s
funniness on a 4 point scale, as shown in Fig. 1(b):

0 - Not funny at all 2 - Funny
1 - Only slightly funny 3 - Very funny

We provide instant rating feedback to players when
they rate a headline that already has a consensus
rating from other players. This feedback includes
whether the player’s rating is reasonably close,
higher, or lower compared to ratings from others.

Each edited headline is made available in the
game until it has five funniness ratings, which con-
stitutes a fully rated edited headline.
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2.3 Competition Setting
We designed FunLines as a humor competition
to motivate players to perform well. Players are
scored based on their editing and rating, and they
are ranked on the game’s leaderboard page.

2.3.1 Leaderboard
We maintain two performance-based leaderboards:

1. Top points scorers: This ranks players by
points scored based on volume and quality of
editing and rating as well as keeping a good bal-
ance between the volume of editing and rating.

2. Highest average ratings: This ranks players
who received the highest mean funniness ratings
for their edited headlines.

Players who rank in the top 10 positions in any of
the two leaderboards at the end of the 5-week long
contest receive prize money between US$ 5-100.

The leaderboard page also lists the recent top
10 funny headlines to show players examples of
successful edits so that they can adjust their editing
style, and to encourage them to make it to this list.

2.3.2 Qualification Requirements
Our competition requires participants to edit be-
tween 50-150 headlines and to rate between 200-
500 headlines to be considered for prize money.
The upper limits prevent players from running up
their scores simply based on volume rather than
quality. The lower limits help us collect more data,
and since players get better at the game over time
(details in Section 4.1), the quality of data improves
with a larger volume of work from each player.

2.3.3 Scoring
Players receive humor points when they edit or rate
headlines. We do not reveal the precise scoring
formulae to the players to discourage them from
“gaming” the game. The three scoring factors are:
Editing Points: This score component exponen-
tially increases with a headline’s funniness ratings,
encouraging players to make each edited headline
as funny as possible.
Rating Points: This is a function of the difference
between the player’s ratings and ratings from other
players for the headline. The lower the difference,
the higher the points earned, and a large difference
gives the player negative points. This incentivizes
players to be objective, rating headlines based on
how others (e.g., a crowd) would rate them instead
of letting their own biases influence their decisions.

Task Balancing Points: Players are rewarded for
maintaining a good balance between the numbers
of edits and ratings. These points are maximized
if the ratio of total ratings to total edits is between
3-10. This discourages players from ignoring one
of the tasks, helping to keep our dataset balanced.

2.4 Protecting Against Abusive Behavior
During pilot tests, we noticed certain abusive player
behavior, which we minimized, as described below:
Abusive Edits: We prevent players from submit-
ting slang words, crude sexual references, bath-
room jokes and other cheap forms of humor using
blacklists. Also, players are encouraged to flag an
edited headline if it demonstrates abusive behavior,
and such headlines are removed from the rating
pool, depriving their editors of potential points.
Abusive Ratings: We forced a time delay to pre-
vent players from rapidly rating headlines without
reading them. Attempts at lowering others’ points
by consistently assigning low ratings cause players
to accumulate large negative points as these ratings
mostly disagree with ratings from other players.

Players who repeatedly show abusive behavior
are warned, and, in some cases, suspended in order
to maintain a healthy competition environment.

2.5 Performance Feedback
FunLines gives players feedback on their perfor-
mance so that they can improve their play:
Editing: Players see their top 5 most funny edited
headlines and their 10 most recent edited headlines
and the corresponding ratings for all. This helps
them monitor how their edited headlines appeal to
other players, and to adjust their editing style. They
also see which of their edits are marked as abusive.
Rating: Players see the histogram of their rating
selections and the percentage of their ratings that
are significantly above or below the ratings of oth-
ers who rated the same headlines. This helps them
spot and rectify errors such as frequently overesti-
mating or underestimating ratings, a common user
behavior we saw initially in the competition. Play-
ers also see the 10 most recent headlines they rated
and the ratings they assigned.

Players are advised on how many more edits or
ratings to do to optimize their task balancing score.

2.6 Ordering Headlines for Rating
The ordering of headlines displayed for rating
greatly influences which headlines receive more rat-
ings. Using their sampling weights, we re-compute
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the display order of headlines for rating every few
minutes. Headlines are assigned higher sampling
weights if they: (i) are from players with high vol-
umes of edited headlines, (ii) are from players who
received very few ratings, (iii) are recently submit-
ted, or (iv) have received more ratings.

Ratings are diversified by limiting each player
from rating more than 10 headlines of another
player. These design decisions make the game
fair, engaging, and rewarding to all players.

2.7 Popular Headlines and Player Flexibility

FunLines provides headlines from 5 diverse topics:
politics, world news, entertainment, technology
and sports. It daily adds about 300 trending English
headlines from major news outlets posted to Reddit.

FunLines gives players the flexibility to choose
which headlines to edit or rate, a freedom that the
crowd workers in Hossain et al. (2019) did not
have. Not all headlines are easy to edit or judge for
humor, and by providing a large pool of headlines,
FunLines allows players be strategic and selective.
For example, they can focus only on headlines they
appreciate and understand, and they can use the
SKIP button to permanently ignore headlines that
are confusing or simply too difficult to edit or rate.

Our editable headlines are sorted by most re-
cently published first, making it easier for players
to generate humor with stories that are fresh in their
minds. FunLines also offers players the option of
choosing to work on headlines by their preferred
news categories. Overall, these features help tackle
human preferences and knowledge related chal-
lenges associated with humor understanding.

3 Gathering Data

In this section, we describe our player recruiting
strategies, our gathered dataset, and its comparison
against Humicroedit (Hossain et al., 2019).

3.1 Attracting Players

To jump start data collection, we hired players from
Amazon Mechanical Turk (AMT). Our competition
budget was US$ 1,000, and since the total prize
money was US$ 560, we spent the remaining US$
440 to hire 100 US turkers. These turkers were
intended to seed the game, and many of them con-
tinued playing after their paid work was finished.

We sought additional players by advertising Fun-
Lines in our networks, making a TV news appear-
ance, and posting on relevant social media pages.

Original Headline (replaced word in bold) Edit RT
Sanders says he has more donors than Trump hair 3.0
‘What is the green new deal?’ ham 2.4
Japan begins controversial Taiji dolphin hunt ninja 2.0
Bolton confirms he’s willing to testify lie 1.6
A$AP Rocky found guilty of assault in Sweden singing 1.0
Netherlands to drop ’Holland’ as nickname Gangster 0.4
The useful idiot from Louisiana Louis 0.0
K-pop star Sulli found dead aged 25 skipped –

Table 1: Headlines in FunLines with ratings.

Metric Humicroedit FunLines
Size 15,095 8,248
Mean funniness 0.94 1.26
Cost per datum 29.8c 12.1c
Agreement α 0.20 0.25
Unique words used 41.2% 53.4%
No. of editors 73 214
No. of raters 131 246

Table 2: Humicroedit and FunLines data comparison.

Overall, we had 290 players, out of whom 204
completed at least 20 edits and ratings, 89 met
the competition qualification requirements, and 33
completed the maximum 150 edits and 500 ratings.

3.2 Dataset Quality
Here we examine the FunLines dataset2 and we
compare it to Humicroedit (Hossain et al., 2019),
the same type of headline data we previously ob-
tained using only AMT workers and without a
game. Table 1 shows sample headlines in FunLines
and Table 2 shows several quality measures.

In total, we received 13,063 edited headlines and
46,359 headline ratings, leading to 8,248 fully rated
headlines and only 55 abusive headlines. On aver-
age, players took about 25 seconds per edit and 5
seconds per rating, implying that they collectively
spent about 168 hours playing the game. Given that
our budget was US$ 1,000, this makes the hourly
participation rate only US$ 5.95. The cost of each
fully rated headline in FunLines is 12.1 cents vs
29.8 cents in Humicroedit, a nearly 60% cost reduc-
tion. The mean funniness rating for Humicroedit is
0.94 vs. 1.27 in FunLines, meaning that our com-
petition based approach enabled us to achieve a
35% boost in funniness on average. Funnier head-
lines are hard to obtain, which makes our FunLines
dataset more valuable for machine learning.

The annotator agreement score in FunLines,
measured by Krippendorf’sα (Krippendorff, 1970),
is 0.25 vs. 0.20 in Humicroedit, implying higher

2Dataset: cs.rochester.edu/u/nhossain/funlines.html
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agreement without spending funds for qualifying
players, which we did for Humicroedit. Instead,
the game’s real-time feedback helps people learn
how to be better editors and raters. 53.4% of the
words used in FunLines are unique vs. 41.2% in
Humicroedit, indicating more diversity of edits.

All these factors show that our competition based
approach to humor data collection is a better op-
tion than simply hiring crowd workers who are not
incentivized and rewarded based on performance.

Finally, our data size could be increased by rais-
ing the editing and rating caps, running the compe-
tition longer, reaching out to more people, or being
more efficient at rating partially rated headlines.

4 Analysis of Player Behavior

We examine how players adapted to the FunLines
competition and the headlines they attempted.

4.1 Player Improvement over Time

Figure 2(a) shows that over time, the mean fun-
niness of fully rated headlines steadily increases,
indicating that players are getting better at making
funnier edited headlines as the competition pro-
ceeds. In addition, Figure 2(b) shows that as play-
ers edit more headlines, they generally get better
at making funnier edits. Finally, Figure 2(c) shows
that as players rate more headlines, the difference
of their ratings from the mean ratings of others for
the same headline decreases, indicating that players
become more consistent at rating over time.

Overall, Figure 2 demonstrates the educational
aspect of FunLines, suggesting that by playing the
game, people can learn to be better at generating
humor and agreeing on its ratings. These results
emphasize the advantages of this competitive and
collaborative approach in helping us collect quality
humor data, mirroring the social nature of humor.

4.2 Choosing Headline Categories

We analyze whether players were strategic about
choosing headlines to edit. Table 3 shows the pro-
portions of the five headline categories in the head-
lines supplied by FunLines (H), the proportions of
headlines from each category that were edited (E),
the proportions of each category in the fully rated
FunLines dataset (FR), and the mean funniness
ratings of headlines from each category.

The two classes with the highest mean funniness
ratings are politics and world news. The E (edited)
column shows that players are ignoring about 30%

Category % H % E % FR Mean RT
Politics 70.0 71.5 56.4 1.32
World news 22.3 71.0 22.4 1.29
Technology 4.6 92.9 11.0 1.22
Sports 1.1 96.7 3.4 1.14
Entertainment 2.0 95.2 6.8 0.96

Table 3: FunLines headline categories with ratings.

of headlines from these categories, while they are
almost exhausting the headlines from the other
three categories. Not all headlines can be easily
made funny, and attempting almost all the head-
lines from these three categories is likely hurting
players’ funniness scores. Besides, politics and
world news are very popular topics, whereas the
others are somewhat niche categories with smaller
audiences, and thus the raters are perhaps not famil-
iar with the entities and events mentioned in their
articles, and thus might not be “getting” the jokes.

5 Detecting Humorous Headlines

We investigate if the FunLines dataset of 8,248 fully
rated headlines is suitable for humor detection.

5.1 Instant Editing Feedback
Whenever a player submits an edited headline, Fun-
Lines uses a humor detection system to provide
instant funniness feedback. This is a fine-tuned
BERT next sentence prediction model (Devlin et al.,
2019) in the regression setting that uses the input:

<original headline> [SEP] <edited headline>

We re-train this model as blocks of new data be-
comes available. We start by training on the first
1,000 fully rated headlines, and we test our model
against the next 1,000. Then we train on the first
2,000 and test on the next 1,000, and so on. The re-
sults, shown in Figure 3, suggest that the model gets
increasingly accurate in its funniness estimations
over time as more data becomes available, and thus
its feedback to the user improves over time. We
attribute this to both the increased volume of data
and the increased quality and consistency of edited
and rated headlines, as illustrated in Figure 2.

5.2 Improving Classification for Humicroedit
We explore whether using the FunLines data can
improve binary humor classification in Humi-
croedit (Hossain et al., 2019). We augment the
training data of Humicroedit with the FunLines
data, and we evaluate classification performance
with and without this dataset augmentation.
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(a) Dataset’s funniness. (b) Players’ editing quality. (c) Players’ rating differences.

Figure 2: Players get better at editing and rating headlines over time, helping to increase funniness in the dataset.

Figure 3: Results of re-training BERT funniness regres-
sion as more data becomes available in FunLines.

Humicroedit was trained on the top and bot-
tom X% funny and unfunny headlines in its
dataset. Each X% gives an upper and lower funni-
ness threshold, and we use these same thresholds
(MaxUF and MinF in Table 4) to select the aug-
mentation data from FunLines. We trimmed the
FunLines data so there was balanced augmentation
for funny and unfunny.

For a fair comparison with Hossain et al. (2019),
we ignore the original headlines and use only the
edited versions of headlines as classifier input. We
fine-tune the BERT sentence classification model
on both the original and augmented Humicroedit
dataset. In Table 4, we show the funniness thresh-
olds for each subset X , the benchmark results
in Hossain et al. (2019) obtained using LSTM with
GloVe word vectors, and we report our new results.

These results suggest that while BERT trained
on Humicroedit alone outperforms LSTM, the Fun-
Lines data helps further BERT’s classification ac-
curacy (BERT Aug.) by up to 2% for each of the
sub-datasets. This is good improvement given that
we are only augmenting Humicroedit with part of
the FunLines dataset and the 0-3 funniness scale
between the two datasets are not calibrated. Fur-
ther, in Humicroedit, each original headline was
edited three times, so there is overlap in its training
and test sets, which makes the task a bit easier. In
FunLines, headlines were mostly edited only once.

Our experiments used the BERT base model with
a learning rate of 1e−4, max seq length of 64, batch
size of 8, and we trained models for up to 3 epochs.

X MaxUF MinF LSTM BERT BERT Aug.
10 0.2 1.8 68.54 76.48 77.32
20 0.4 1.4 67.21 73.76 75.66
30 0.6 1.2 66.11 69.37 70.75
40 0.8 1.0 64.07 66.38 68.00
50 0.8 0.8 60.6 63.93 64.40

Table 4: Humicroedit classification accuracy with and
without using augmented training data from FunLines.

6 Conclusion and Future Work

FunLines is an online game for generating funny
headlines. While creative data can be difficult to ob-
tain, FunLines makes it easier by taking advantage
of the inherent fun of creativity and competition.
We described the game, including a rich set of feed-
back for players to assess their own performance
along with controls and incentives for them to cre-
ate funny headlines. Our deployment attracted 290
players for a total cost of US$ 1,000. Compared
to our earlier work for gathering the same type of
data from only turkers, FunLines produced funnier
headlines with better rating agreement and at nearly
60% lower cost per headline. We showed how play-
ers’ performance improves over time, both in terms
of their headline quality and rating consistency. We
showed how the FunLines data is effective for train-
ing machine learning models to detect and to rate
humorous headlines. Furthermore, this data has
already found use in a recent SemEval shared task
on humor recognition (Hossain et al., 2020)3.

Having built models for detecting humor, we see
this data as the foundation of the automatic creation
of humorous headlines in a generate-and-test ap-
proach. More generally, FunLines is a prototype for
gathering datasets of creative artifacts from people
that is engaging, interactive, competitive, reward-
ing, educational and inexpensive. In future, we
would like to extend the FunLines data collection
setup to a more general crowdsourcing framework,
for example, to collect style transfer data.

3https://competitions.codalab.org/competitions/20970
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Abstract
The reader of a choose your own adventure
novel and the user of a modern virtual assis-
tant have a subtle similarity; both may, through
the right lens, be viewed as engaging with a
work of Interactive Fiction. This literary form
emerged in the 1970s and has grown like a vine
along the branch of modern technology, one
guided by the advances of the other. In this
work we weave together threads from the Inter-
active Fiction community and neural semantic
parsing for dialog systems, defining the data
model and necessary algorithms for a novel
type of Interactive Fiction and open sourcing
its accompanying authoring tool. Specifically,
our work integrates retrieval based semantic
parsing predicates into the branching story
structures well known to the Interactive Fic-
tion community, relaxing the relatively strict
lexical options of preexisting systems.

1 Introduction

Interactive Fiction (IF) is a diverse genre of art
and entertainment that is most well known in the
context of video games, from text adventures (e.g.
Zork), to classic point and click adventures such
as Monkey Island to award winning modern games
like 80 Days (Time Magazine Game of the Year
2014). Less familiar to the general public is the lit-
erary tradition that recognizes IF as high art on par
with the novel and poem, and produces compelling
work collected in ever-growing online repositories1.
The signature techniques of IF include branching
story structure, multiple endings, and the use of
lamps to solve complex problems.

IF was born, they say, in 1979 as ADVENT, a
text based cave exploration game written by a fa-
ther to amuse and delight his daughters (Niesz and
Holland, 1984). Over the last 40 years, the inter-
active affordances of technology have grown from

∗∗ equal contribution
1https://www.ifarchive.org

text in a terminal to include modern marvels such
as graphics, audio, touchscreens, virtual reality, and
speech recognition, and with their added complex-
ity has come the creation of authorship software
that allows nontechnical authors to harness these
media. This is exemplified in Inform2, a compiled
programming language whose lines of code are
themselves grammatical English sentences.

Authorship tools for IF define some structure of
a story and provide suggested algorithms or soft-
ware itself to realize this structure in a form that a
reader can digest, which taken together we will call
a model specification. Our particular model specifi-
cation is inspired by recent work in neural dialog
systems for virtual assistants. While ADVENT
and Alexa may seem to have little in common, they
are both clearly a turn taking interaction between
a system and a reader3. Their internal workings
are also similar, as it is no coincidence that the
sub-genre of parser games like Zork shares a to-
ken in its name with the semantic parsers used in a
dialog agents; they share the common ancestor of
tree-structure parsers from the early days of com-
putational linguistics (Woods, 1973).

We make use of retrieval based semantic parsing
(Yao et al., 2019), a variant of nearest neighbor
classification using inverse semantic similarity as
its distance metric. One particular strength of this
method is that the semantic similarity metric, or
semantic kernel (Altınel et al., 2015), can be pre-
trained on general domain text pairs. Instantiating
a domain specific semantic parser is tantamount
to the definition of exemplars, strings paired with
class labels that indicate their known semantics.
Crucially, this is a task that can be done with no
machine learning or programming background. It

2http://inform7.com
3We avoid the term “user” in this work in order to differen-

tiate between users of the authoring tool (authors) and users
of the resulting literary work (readers).
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also avoids explicit formal semantic representations
such as FrameNet (Baker et al., 1998), eliminating
the learning curve required to bootstrap supervised
discriminative semantic parsing systems such as
Wang et al. (2015).

Our model grants the reader a more freeform
mode of interaction compared to many other ex-
amples of IF; as long as the author can guide and
anticipate the readers’ inputs into close neighbor-
hoods of their exemplars, the reader can both de-
cide what to say and how to say it. For the author,
we optimize for efficiency with features that col-
lapse common patterns observed in user testing
and components designed for the iterative tuning
of the semantic parser exemplars. We also consider
a third user type, the programmer who wishes to
extend our open source library, by implementing
our tool in Angular with extensive modularity via
dependency injection. The general tool architecture
is as an AppEngine hosted website, with Firebase
for persistance.

2 Interactive Fiction

2.1 Overview

In its broadest sense, IF is an entertainment ex-
perience in which the reader is not a passive ob-
server, or equivalently a sequence of reader turns
and system turns. The reader turns need not be self-
composed, as in the Choose Your Own Adventure
novel where the system turns are the book chapters
and the reader turns are selected from pre-written
choices. While the system turns need not be simple
text and often include audiovisual components, for
clarity we restrict the scope of our discussion of
IF in this work to the class in which our model
lies where both user and system turns are purely
textual.

Of the many members of this class, the two that
we keep top of mind in our model design are parser
games and dialogues. In parser games (Zorklikes),
the reader commonly plays as the protagonist and
system turns describe the reader’s current observa-
tions of the world around them. The reader has a
semantically rich but linguistically constrained set
of options supplied by a semantic parser that rec-
ognizes combinatoric verb / object pairings. Our
second focus is on dialogues, where the system
and reader turns are both conversational utterances.
This is motivated by the emergence of virtual as-
sistants as a potential delivery mechanism for IF
and the existing use of branching dialogues in story

rich video games.

2.2 History, Abridged

While IF has rarely gained recognition in the main-
stream media outside video games, it has been an
area of literary and academic interest for several
decades. Ziegfeld (1989) is especially prescient; in
their discussion of the then nascent intersection of
computer technology and storytelling, they explore
possibilities for the use of branching that both in-
clude and expand on some of our own ideas, as
well as raise thoughtful questions that remain unan-
swered today as to the eventual place of IF in art
history.

The first documented piece of IF was ADVENT,
written in the late seventies. Ziegfeld (1989) de-
scribes some other early IF work done in collab-
oration with well-known authors such as Michael
Crichton, Ray Bradbury, and Arthur C Clarke.
This early notoriety has faded, but the community
of writers has remained continuously productive;
Montfort (2005) provides a tour of the first two and
a half decades of IF, and the conference Narras-
cope4 is a hub for modern authors.

Many authorship tools have been created for IF,
often with general purpose features that have en-
abled unanticipated expressions of their models’
underlying mechanisms. Of particular importance
is the authorship tool Twine5, whose easy to use
interface has inspired a surge of IF work.

Outside of pure entertainment, IF has proven
potential in education(Squire, 2003), specifically as
a language learning tool(Baltra, 1990). One recent
example that uses a state based model specification
similar to our own is Ramanarayanan and LaMar
(2018), in which IF is used an assessment tool and
a correlation is demonstrated between proficiency
level and a learned student specific MDP parameter.

3 Related Work

In NLP literature, perhaps the closest touchpoint
to this work is Jonell et al. (2018), where a open
domain chatbot is constructed by crowdsourcing ap-
propriate responses for known chat histories. They
describe a nightly iteration process in which the
day’s user utterances are clustered using a simi-
larity function into paraphrase clusters and then
passed to crowdworkers to provide appropriate fol-
lowup system turns. They incrementally grow a

4https://narrascope.org/
5http://twinery.org
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directed graph based chatbot model of a similar
structure to our own, but approach the authorship
process in a drastically different manner and target
only the desiderata of chitchat dialog as opposed to
the general class of IF.

(Koller et al., 2018) also creates a directed graph
editing tool for dialogs, with API hooks allowing
the control of Lego Mindstorms robots. While
this application would at first glance seem quite
different, the data model is similar. The visual
similarity of our tools alone demonstrates their near
isomorphism; in both cases the authorship process
is tantamount to the definition of a graph topology
and the filling of schema for graph components.
The major difference arises instead from our use of
retrieval based semantic matching and focus on IF.

Our use of retrieval based (or paraphrase based)
methods draws from recent work in semantic pars-
ing (Berant and Liang, 2014) (Fader et al., 2013)
and one-shot classification (Koch et al., 2015) pow-
ered by the growing availability of general domain
semantic similarity training data (Yang et al., 2018)
(Cer et al., 2018). One notable addition in our
work is the introduction of anti-examples for tun-
ing parser quality.

4 Model Specification

Our model can be considered a marriage between
the intuitive design principles of Twine and mod-
ern methods in dialog systems. A typical dialog
system design consists of components responsible
for Language Understanding, Dialog Management,
and Language Generation (Bohus and Rudnicky,
2009) (Shum et al., 2018).

4.1 Language Understanding

We employ retrieval based semantic matching for
Language Understanding (LU), a close variant of
nearest neighbor classification. We assume a finite
set of unique semantic intents that our LU system
can recognize. Formally, this method requires

U : a set of exemplar strings

A: a set of anti-exemplar strings

E : a set of semantic intents

M : ∪{U ,A} → E : a mapping to semantic intents

D(x, y)→ R: a string similarity function

and semantic parsing is done with Nearest Neigh-
bor (NN) classification using 1

D as the distance
metric. The classifier has an additional rejection

option, triggered when no member of U produces
a similarity with the user utterance that exceeds
some author determined τ .

We augment the traditional NN classification
algorithm with anti-examples, letting A be a set of
anti-example strings. Their specific functionality
is outlined below in Algorithm 1, which shows the
full semantic parsing algorithm for an input x.

Algorithm 1: Semantic Parsing of input x
Result: Semantic intent e ∈ E or REJECT

S ← ∪{U ,A};
while S 6= ∅ do

z∗ ← argmaxz∈S D(x, z);
if D(x, z∗) ≥ τ then

if z∗ ∈ A then
forall w ∈ S | M(w) =M(z∗)

do
S ← S − w

end
else

returnM(z)
end

else
return REJECT

end
end
return REJECT

4.2 Dialogue Management
Our Dialogue Management (DM) system is based
on a directed graph, representing the definition and
evolution of dialog state by enumerating the finite
set of all possible states (the graph nodes), and the
allowed transitions between them (the graph edges).
We assume a unique global start node and allow
multiple end nodes. A node’s outgoing edges are ei-
ther directly associated with a semantic enum index
as described above or marked as a RepeatedFail
edge. The DM traverses the former when its out-
bound edge is returned by the semantic parser and
the latter when the semantic parser has returned
REJECT n times in a row, for some author con-
trolled n.

The fundamental task of the DM is to determine
U and A to be used in Algorithm 1, and a Markov-
like memoryless model that returns all outgoing
edges of the current node is sufficient for simple
dialogues. However, to enable more complex sto-
rytelling opportunities we add a global state which
we call the World.

265



The World is implemented as a string to string
map, and each edge may assigned a Condition and
Mutation. A Condition is any boolean predicate
on the World, which allows its edge as a candi-
date only if it is satisfied. A full Condition is the
conjunction of boolean subconditions, where each
subcondition is the presence or absence of a spe-
cific key or key/value pair in the World. A Mutation
is a list of operations to be performed on the World,
and is executed upon its edge’s traversal. We per-
mit the use of mutations that set key value pairs or
delete keys from the World.

We add one further augmentation: a boolean
AutoAdvance property on a node that, if enabled,
immediately randomly traverses an outgoing edge
instead of waiting for the reader turn. This simple
feature provides flexibility in graph design, allow-
ing patterns we observed a desire for in user testing.

4.3 Language Generation

Language Generation is simplified nearly to its
limit in our specification; each node is directly as-
sociated with a system turn, its Prompt, produced
when the node is visited. To allow for more for-
giving reader experiences we add two additional
optional sources of system text. The first is a Re-
prompt, shown in response to a REJECT from the
semantic parser, allowing the author to guide the
reader towards a sucessfully parseable utterance.
The second source of system text is an optional
message attached to RepeatedFail edges, to allow
acknowledgement of the perhaps unexpected tran-
sition.

5 Authoring Tool

Authoring under our model specification requires
both defining the topology of a directed graph
and filling the schema of node and edge proper-
ties (Figure 1). Some schema fields have complex
types, which have multiple isomorphic data mod-
els of negligible difference provided they fulfill
their functional purpose. MUTATIONS specifies a
set of string to string map mutations and CONDI-
TIONS a set of simple boolean key/value lookups,
while MATCHCANDIDATES are tuples of exemplar
strings and booleans indicating if they are anti-
examples.

5.1 Main Authoring Tool

The home screen of the tool (Figure 2) consists of
two panels. On the left is the graph editor, which vi-

• Node

– PROMPT : STRING

– REPROMPT : STRING

– AUTOADVANCE? : BOOLEAN

• Edge

– MUTATIONS : �
– CONDITIONS : �
– EITHER

∗ MATCHCANDIDATES : �
– OR

∗ REPEATEDFAILMESSAGE : STRING

∗ REPEATEDFAILN : NUMBER

Figure 1: Schema for graph specification, omitting stan-
dard graph topology information for a single source
directed graph. Fields with complex types � are dis-
cussed in Section 5.

sualizes and provides editing options for the graph
topology. On the right is the the graph inspector,
which allows the editing of the schema data out-
lined in Figure 1.

The graph inspector has a focus that determines
the schema editing options that it displays. Click-
ing on a node or edge in the graph editor will focus
it on that node or edge, while clicking on the back-
ground will focus the inspector on an editor for
global hyperparameters such as the project name
and persistence filename. Both node and edge edi-
tors contain buttons that delete them from the graph,
a sole exception to topology being the domain of
the graph editor alone.

The graph editor has its own toolbar containing
the following actions: Save, CopyToClipboard, Au-
toZoom, AutoLayout. We consider all of these to
be self-documenting with the exception of Auto-
Layout, whose intention is to produce a well packed
organization of the graph through the following
process.

Our AutoLayout algorithm first topologically
sorts the graph and checks it for cycles. If no cycles
exist then for each node n we calculate l(n), the
length of the longest path from the start node. The
nodes are then arranged in rows of regular spacing
such that each n appears in row l(n). A best effort
is made to choose a relative ordering of nodes in
each row that minimizes visually tangled webs of
edges, and we allow and rely on manual adjustment
to achieve the author’s ideal visual organization.
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Figure 2: The main editor window, showing a story with start node A. The node B is selected, and so its details
appear in the inspector on the right. Note that its display name is distinct from the richer game text (C). The results
of using the Node Tester on the potential input “battle the beast” are shown in (D). They demonstrate that this
utterance would cause a transition to node E, an AutoAdvance node that would immediately transition to one of
two end states depending on the player’s previous choices.

5.2 Node Tester

The authorship process is by nature iterative, and
we recognize the importance of facilitating the edit-
ing of existing content. In particular, we anticipate
a feedback loop in which the author observes or
imagines reader turns and wishes to test them and
tune the semantic matching model based on the re-
sults. For example, an author might want to verify
that some reader turn matches, or does not match,
a particular edge and add it to that edge as either a
positive or anti-example if the desired behavior is
not observed.

In aid of this use case, we provide an interactive
node tester, found in the graph inspector when fo-
cused on a node (lower right in Figure 2). This tool
allows the author to probe with a potential utter-
ance and view the most similar exemplar from each
possible edge and their similarity scores. With one
click, the author can then add their probe utterance
to an existing edge as a positive or anti-example, or
create a new edge and target node with the probe
utterance as a positive exemplar on the new edge.

5.3 Preview Mode

We follow the footsteps of Twine in the integration
of a modest implementation of a reading program
in the authoring tool, and allow the author to trigger

this “Preview Mode” starting from any node in the
graph. While we intend the debugging of semantic
matches to be more easily performed using the
Node Tester, Preview Mode is useful for authors to
get early feedback on their work without investing
in bespoke reader software.

As an alternative, we also add a toggle for Inter-
active Mode to the Node Tester described above; in
this mode if the probe user utterance would match
an edge, the editor selection and inspector focus au-
tomatically move to that edge’s target node. This is
functionally equivalent to (although certainly less
immersive than) the full Preview Mode and allows
the authors to maintain their cognitive connection
with the graph editor and inspector while testing
the boundaries of the semantic parser.

5.4 Implementation Considerations

We implement our tool in Angular, a web applica-
tion platform that supports dependency injection.
This not only facilitates the introduction of custom
node metadata and UI, but also enables modularity
in the services that drive the editor. Two key ser-
vices, the persistence (save/load) mechanism, and
the semantic similarity function D, are injected
and as such easy to override with custom code. We
hope that allowing flexibility in the storage medium
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Figure 3: Preview Mode, displaying two successive screenshots of a reading of the story shown in Figure 2. Note
that in the second panel the reader response “reason with it” is rejected, leading to the use of the retry prompt.

will allow for easier integration with custom reader
software and injection of D is in anticipation of
future superior models, some options for which are
discussed below.

We provide one instantiation of each service.
Our persistence service implementation uses Fire-
base, a popular cloud database, with instructions on
how to configure Firebase credentials when launch-
ing a server in the repository’s README. For D,
our implementation uses the open source Universal
Sentence Encoder of Cer et al. (2018).

We note that significantly better similarity mod-
els are easily attainable as Cer et al. (2018) pre-
dates recent breakthrough techniques in pretraining
(Devlin et al., 2018) (Yang et al., 2019). Further-
more, the dataset of paraphrase pairs used to train
the encoder of Cer et al. (2018) is drawn from
the SNLI corpus (Bowman et al., 2015) with addi-
tional unsupervised multi-task training data taken
from sources such as Wikipedia and web news; this
broad coverage will likely give reasonable results
for any domain, but the specific flavor of IF or its
subtypes (e.g. dialouge) would likely benefit from
domain specific fine-tuning.

6 Discussion

We present a flexible model specification for a
new flavor of Interactive Fiction inspired by re-
cent trends in retrieval based dialog systems, and
provide an accompanying authorship tool. Our tool
is deployed as an AppEngine app, is written in
Angular, and is open source 6.

Our model specification makes use of semantic
matching based predicates to traverse a directed

6http://borismus.github.io/usnea

graph, tracing out a “reading” of the piece. The use
of semantic matching allows active reader ideation
of their role while remaining within guard rails
that maintain narrative cohesion. Furthermore, its
use of text based exemplars in a non-parametric
model with a pretrained semantic kernel permits
the iterative tuning of the semantic parsing system
by an author with no programming or machine
learning background.

Interactive Fiction is an art form with an uncer-
tain future that is connected in no small way to its
proximity to games and the social norms separating
games and fine art. Ziegfeld (1989) muses that IF
may either be like American poetry waiting for its
Walt Whitman, or like the cutup poetry fad of the
beat poets, bound for obscurity. They perhaps did
not expect that the question would remain unan-
swered for thirty years. We hope foremost that
authors will enjoy using our tool to create some-
thing they care about, and that readers will enjoy
their creations.
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Abstract

We present a large, tunable neural conversa-
tional response generation model, DIALOGPT
(dialogue generative pre-trained transformer).
Trained on 147M conversation-like exchanges
extracted from Reddit comment chains over
a period spanning from 2005 through 2017,
DialoGPT extends the Hugging Face PyTorch
transformer to attain a performance close to
human both in terms of automatic and human
evaluation in single-turn dialogue settings. We
show that conversational systems that leverage
DialoGPT generate more relevant, contentful
and context-consistent responses than strong
baseline systems. The pre-trained model and
training pipeline are publicly released to facil-
itate research into neural response generation
and the development of more intelligent open-
domain dialogue systems.

1 Introduction

We introduce DIALOGPT, a tunable gigaword-
scale neural network model for generation of con-
versational reponses, trained on Reddit data.

Recent advances in large-scale pre-training
using transformer-based architectures (Radford
et al., 2018; Devlin et al., 2019; Raffel et al., 2019)
have achieved great empirical success. OpenAI’s
GPT-2 (Radford et al., 2018), for example, has
demonstrated that transformer models trained on
very large datasets can capture long-term depen-
dencies in textual data and generate text that is flu-
ent, lexically diverse, and rich in content. Such
models have the capacity to capture textual data
with fine granularity and produce output with a
high-resolution that closely emulates real-world
text written by humans.

DIALOGPT extends GPT-2 to address the chal-
lenges of conversational neural response genera-

∗ A collaboration between Microsoft Research and Mi-
crosoft Dynamics 365 AI Research.

tion. Neural response generation is a subcate-
gory of text-generation that shares the objective of
generating natural-looking text (distinct from any
training instance) that is relevant to the prompt.
Modelling conversations, however, presents dis-
tinct challenges in that human dialogue, which en-
capsulates the possibly competing goals of two
participants, is intrinsically more diverse in the
range of potential responses (Li et al., 2016a;
Zhang et al., 2018; Gao et al., 2019a,b). It thus
poses a greater one-to-many problem than is typ-
ical in other text generation tasks such as neural
machine translation, text summarization and para-
phrasing. Human conversations are also generally
more informal, noisy, and, when in the form of
textual chat, often contain informal abbreviations
or syntactic/lexical errors.

Most open-domain neural response generation
systems suffer from content or style inconsis-
tency (Li et al., 2016b; Zhang et al., 2019; Gao
et al., 2019c), lack of long-term contextual in-
formation (Serban et al., 2017), and blandness
(Li et al., 2016a; Zhang et al., 2018; Qin et al.,
2019). While these issues can be alleviated by
modelling strategies specifically designed to boost
information content, a transformer-based archi-
tecture like GPT-2 (Radford et al., 2018), which
uses a multi-layer self-attentive mechanism to al-
low fully-connected cross-attention to the full con-
text in a computationally efficient manner, seems
like a natural choice for exploring a more general
solution. Transformer models, for example, al-
low long-term dependency information to be bet-
ter be preserved across time (Radford et al., 2018),
thereby improving content consistency. They also
have higher model capacity due to their deep struc-
ture (up to 48 layers in GPT-2) and are more effec-
tive in leveraging large-scale datasets (more than
100 million training instances) than RNN-based
approaches (Vaswani et al., 2017).
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Like GPT-2, DIALOGPT is formulated as an
autoregressive (AR) language model, and uses
the multi-layer transformer as model architecture.
Unlike GPT-2, however, DIALOGPT is trained
on large-scale dialogue pairs/sessions extracted
from Reddit discussion chains. Our assumption
is that this should enable DIALOGPT to capture
the joint distribution of P (Target,Source) in con-
versational flow with finer granularity. In prac-
tice, this is what we observe: sentences gener-
ated by DIALOGPT are diverse and contain infor-
mation specific to the source prompt, analogous
what GPT-2 generates for continuous text. We
have evaluated the pre-trained model on a public
benchmark dataset (DSTC-7), and a new 6k multi-
reference test dataset extracted from Reddit post-
ings. DIALOGPT achieves state-of-the-art results
in both automatic and human evaluation, lifting
performance to near-human response quality.

We have released the source code and a
pre-trained model to facilitate future research.1.
Our model can be easily leveraged and adapted
to new dialogue datasets, especially datasets
with few training examples. The DIALOGPT
package also contains an open-source training
pipeline (data extraction/preparation and model
training/evaluation) built upon the Huggingface
PyTorch transformer (HuggingFace, 2019). 2

2 Dataset

The dataset is extracted from comment chains
scraped from Reddit spanning from 2005 till 2017.
Reddit discussions can be naturally expanded as
tree-structured reply chains, since a thread reply-
ing to one thread forms the root node of subse-
quent threads. We extract each path from the root
node to the leaf node as a training instance con-
taining multiple turns of dialogue.

We filter the data by removing the instances
where (1) there is a URL in source or target, (2)
where the target contains word repetitions of at
least three words, (3) where the response does
not contain at least one of the top-50 most fre-
quent English words (e.g., “the”, “of”, “a”), since
this probably indicates it might not be an English
sentence, (4) where the response contains special
markers such as “[” or “]”, as this could be markup

1GitHub: https://github.com/microsoft/
DialoGPT; Blog: https://aka.ms/dialogpt

2Our model is also available over Hugging face Trans-
formers. https://huggingface.co/microsoft/
DialoGPT-medium

language, (5) where source and target sequences
together are longer than 200 words, (6) where
the target contains offensive language, identified
by phrase matching against a large blocklist. We
also excluded a large number of subreddits that
had been identified as likely to contain offensive
content. In addition, we aggressively filtered out
blandness, e.g., removing instances where the re-
sponses contained 90% of tri-grams that have been
seen more than 1000 times. Often uninformative,
such responses account for about 1% of the data.
After filtering, the dataset comprises 147,116,725
dialogue instances, in total 1.8 billion words.

3 Method

3.1 Model Architecture

We trained our DIALOGPT model on the basis of
the GPT-2 (Radford et al., 2018) architecture.The
GPT-2 transformer model adopts the generic trans-
former language model (Vaswani et al., 2017)
and leverages a stack of masked multi-head self-
attention layers to train on massive web-text data.
The text generated either from scratch or based
on a user-specific prompt is realistic-looking. The
success of GPT-2 demonstrates that a transformer
language model is able to characterize human lan-
guage data distributions at a fine-grained level,
presumably due to large large model capacity and
superior efficiency.

Our model inherits from GPT-2 (Radford et al.,
2018), a 12-to-48 layer transformer with layer nor-
malization, a initialization scheme that accounts
for model depth that we modified, and byte pair
encodings (Sennrich et al., 2016) for the tokenizer.
We follow the OpenAI GPT-2 to model a multi-
turn dialogue session as a long text and frame the
generation task as language modeling. We first
concatenate all dialog turns within a dialogue ses-
sion into a long text x1, · · · , xN (N is the se-
quence length), ended by the end-of-text token.
We denote the source sentence (dialogue history)
as S = x1, · · · , xm and target sentence (ground
truth response) as T = xm+1, · · · , xN , the condi-
tional probability of P (T |S) can be written as the
product of a series of conditional probabilities:

p(T |S) =
N∏

n=m+1

p(xn|x1, · · · , xn−1) (1)

For a multi-turn dialogue session T1, · · · , TK , (1)
can be written as p(TK , · · · , T2|T1), which is
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essentially the product of conditional probabili-
ties of p(Ti|T1, · · · , Ti−1). Consequently, opti-
mizing a single objective p(TK , · · · , T2|T1) can
be perceived as optimizing all p(Ti|T1, · · · , Ti−1)
source-target pairs.

Our implementation is based on the open-
source PyTorch-transformer repository.3

3.2 Mutual Information Maximization

Open-domain text generation models are notori-
ous for generating bland, uninformative samples.
To address this problem, we implement a max-
imum mutual information (MMI) scoring func-
tion (Li et al., 2016a; Zhang et al., 2018). MMI
employs a pre-trained backward model to pre-
dict source sentences from given responses, i.e.,
P (Source|target). We first generate a set of hy-
potheses using top-K sampling. Then we use
the probability of P (Source|Hypothesis) to rerank
all hypotheses. Intuitively, maximizing backward
model likelihood penalizes the bland hypotheses,
as frequent and repetitive hypotheses can be asso-
ciated with many possible queries, thus yielding a
lower probability for any specific query.

We also attempted to optimize the reward R ,
P (Source|Hypothesis) using a policy gradient
(Williams, 1992) with a sample-averaged base-
line, following Zhang et al. (2018). The valida-
tion reward can be stably improved, but unlike the
training under RNN architecture, we observed that
reinforcement learning (RL) training easily con-
verges to a degenerate locally-optimal solution,
where the hypothesis simply repeats the source
sentence (i.e., a parroting model) and mutual in-
formation is maximized. We hypothesize that
transformers can become trapped in local optima
due to their strong model representation power.
We leave the investigation of regularized RL train-
ing to future work.

4 Result

4.1 Experimental Details

We trained 3 different sizes of the model with to-
tal parameters of 117M, 345M and 762M respec-
tively. The model specification follows Radford
et al. (2018) (Table 1).

Our model uses a vocabulary of 50,257 entries,
and was trained on 16 Nvidia V100 machines with

3https://github.com/huggingface/
pytorch-transformers

Model Layers Demb B
117M 12 768 128
345M 24 1024 64
762M 36 1280 32

Table 1: Model configurations. “B” denotes batch size
per GPU.

NVLink. We used the Noam learning rate sched-
uler with 16000 warm-up steps. The learning rate
is selected based on validation loss. Each model
is trained until there is no progress in validation
loss. For small and medium models, we trained
the models for up to 5 epochs. For the large model
we trained for at most 3 epochs.

Speeding up training To accelerate the training
process and accommodate GPU memory limita-
tions, we first compress all training data into a
lazy-loading database file, so that data is loaded
only when needed (pre-fetching large chunks to
reduce access frequency). We also leverage sepa-
rate asynchronous data processes to scale the train-
ing. As a result, training time declines approxi-
mately linearly w.r.t. the number of GPUs. We
further employed a dynamic batching strategy to
group conversations of similar lengths into the
same batch, thus increasing training throughput.

4.2 DSTC-7 Dialogue Generation Challenge

The DSTC (Dialog System Technology Chal-
lenges) 7 track (Galley et al., 2019) is an end-to-
end conversational modeling task,4 in which the
goal is to generate conversation responses that go
beyond chitchat by injecting information that is
grounded in external knowledge. This task is dis-
tinct from what is commonly thought of as goal-
oriented, task-oriented, or task-completion dialogs
in that there is no specific or predefined goal (e.g.,
booking a flight, or reserving a table at a restau-
rant). Instead, it targets human-like interactions
where the underlying goal is often ill-defined or
unknown in advance, of the kind seen in work and
other productive environments (e.g., brainstorm-
ing meetings) where people share information.

The DSTC-7 test data contains conversation
threads from Reddit data. In order to create a
multi-reference test set, we utilized conversation
sessions that contain 6 or more responses. Given

4https://github.com/mgalley/
DSTC7-End-to-End-Conversation-Modeling/
tree/master/evaluation
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other filtering criteria such as turn length, this
yields a 5-reference test set of size 2208. (For each
instance, one of the 6 human responses is set aside
to assess human performance on this task.) Note
that our training data is collected from a different
time span from the test set.

We performed automatic evaluation using stan-
dard machine translation metrics, including BLEU
(Papineni et al., 2002), METEOR (Lavie and
Agarwal, 2007), and NIST (Doddington, 2002).
NIST is a variant of BLEU that weights n-gram
matches by their information gain, i.e., it indi-
rectly penalizes uninformative n-grams. We also
use Entropy (Zhang et al., 2018) and Dist-n (Li
et al., 2016a) to evaluate lexical diversity. More
details are provided in Galley et al. (2019).

We compared DIALOGPT with our in-house
competitive sequence-to-sequence model PER-
SONALITYCHAT based on (Li et al., 2016a) and
trained on Twitter data, which has been used in
production as a Cognitive Service for Microsoft
Azure.5 Table 2 summarizes the automatic evalu-
ation results. DIALOGPT with 345M parameters
and beam search achieved the highest automatic
score across most metrics. Scores for DIALOGPT
with 345M parameters are better across the board
than with 117M parameters. Beam search (with
beam width 10) dramatically improves BLEU and
DIST scores, and marginally improves NIST and
METEOR. Note that our model is fine-tuned on
source-target pairs, and does not leverage ground-
ing information from the DSTC training set. Pre-
sumably, the model learns background informa-
tion during pre-training and is unhindered by the
lack of a grounding document.

The automatic scores of DIALOGPT are higher
than those for humans. This does not mean that
the generation is more “realistic” than human, but
is probably attributable to the one-to-many nature
of conversation. As illustrated in Figure 1, multi-
ple human responses (R1-R4) can correspond well
to a source utterance. Without loss of general-
ity, suppose R1-R3 are the “ground truth” refer-
ences that will be tested on, while R4 is the “held-
out” human response that serves to compute a “hu-
man” score. In semantic space, a generated re-
sponseRg from a well-trained model will presum-
ably tend to lie in the vicinity the geometric center

5Project PERSONALITYCHAT: https:
//docs.microsoft.com/en-us/
azure/cognitive-services/
project-personality-chat/overview

Source: I would like to report a break-in. 

R1: Was anything stolen?

R2: Is anyone hurt or injured? 

R4: Is the perpetrator still inside?

R3: I will send someone right away.

Rg: When was this break-in?

Figure 1: A generated response can surpass a human
response in automatic metrics. Example responses are
from Gupta et al. (2019)

of all possible responses, because the training ob-
jective seeks to generate the most likely response.
This may be close to the geometric mean of all
training instances, thus “averaging out” these in-
stances. Consequently, a generated response Rg

might have a lower “semantic distance” (mani-
fested in higher automatic scores like BLEU) from
R1-R3 than the targeted human response R4.

4.3 A New Reddit Multi-reference Dataset
We further evaluate DIALOGPT on a multi-
reference test set with 6K examples. The results
are shown in Table 3. We test our method on
two settings: training from scratch and fine-tuning
using GPT-2 as the pre-trained model. In both
settings, a larger model consistently outperforms
a smaller one. Comparing training from scratch
to fine-tuning from the pre-trained GPT-2 model,
when applying to smaller model, using GPT-2
model gives larger performance gains. Again, the
best system DIALOGPT (345M, w/ beam search)
scores higher on BLEU than humans. Larger mod-
els trained from scratch (345M and 762M) per-
form comparably to one finetuned on GPT-2.

4.4 Re-ranking The Response Using MMI
We perform mutual information maximization as
described in Section 3.2. Specifically, we gener-
ate 16 samples for each input source sentence by
using top-K sampling (K = 10) using the 345M
model fine-tuned from the GPT-2 medium model.
This is followed by a re-ranking step using a back-
ward model, which is also a 345M model fine-
tuned from the GPT-2 medium model. The re-
sponse that yields lowest backward model loss is
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NIST BLEU METEOR Entropy Dist Avg Len
Method N-2 N-4 B-2 B-4 E-4 D-1 D-2

PERSONALITYCHAT 0.19 0.20 10.44% 1.47% 5.42% 6.89 5.9% 16.4% 8.2
Team B 2.51 2.52 14.35% 1.83% 8.07% 9.03 10.9% 32.5% 15.1

DIALOGPT (117M) 1.58 1.60 10.36% 2.02% 7.17% 6.94 6.2% 18.94% 13.0
GPT(345M) 1.78 1.79 9.13% 1.06% 6.38% 9.72 11.9% 44.2% 14.7

DIALOGPT (345M) 2.80 2.82 14.16% 2.31% 8.51% 10.08 9.1% 39.7% 16.9
DIALOGPT (345M,Beam) 2.92 2.97 19.18% 6.05% 9.29% 9.57 15.7% 51.0% 14.2

Human 2.62 2.65 12.35% 3.13% 8.31% 10.45 16.7% 67.0% 18.8

Table 2: DSTC evaluation. “Team B” is the winner system of the DSTC-7 challenge. “Beam” denotes beam
search. “Human” represents the held-out ground truth reference.

NIST BLEU METEOR Entropy Dist Avg Len
Method N-2 N-4 B-2 B-4 E-4 D-1 D-2

PERSONALITYCHAT 0.78 0.79 11.22% 1.95% 6.93% 8.37 5.8% 18.8% 8.12

Training from scratch:
DIALOGPT (117M) 1.23 1.37 9.74% 1.77% 6.17% 7.11 5.3% 15.9% 9.41
DIALOGPT (345M) 2.51 3.08 16.92% 4.59% 9.34% 9.03 6.7% 25.6% 11.16
DIALOGPT (762M) 2.52 3.10 17.87% 5.19% 9.53% 9.32 7.5% 29.3% 10.72

Training from OpenAI GPT-2:
DIALOGPT (117M) 2.39 2.41 10.54% 1.55% 7.53% 10.77 8.6% 39.9% 12.82
DIALOGPT (345M) 3.00 3.06 16.96% 4.56% 9.81% 9.12 6.8% 26.3% 12.19

DIALOGPT (345M, Beam) 3.4 3.5 21.76% 7.92% 10.74% 10.48 12.38% 48.74% 11.34
DIALOGPT (762M) 2.84 2.90 18.66% 5.25% 9.66% 9.72 7.76% 29.93% 11.19

DIALOGPT (762M, Beam) 2.90 2.98 21.08% 7.57% 10.11% 10.06 11.62% 44.07% 10.68
DIALOGPT (345M, MMI) 3.28 3.33 15.68% 3.94% 11.23% 11.25 9.39% 45.55% 17.21

Human 3.41 4.25 17.90% 7.48% 10.64% 10.99 14.5% 63.0% 13.10

Table 3: 6K Reddit multi-reference evaluation. “Beam” denotes beam search. “Human” represents the held-out
ground truth reference.

selected for evaluation. The results are summa-
rized in the second to last row in Table 3. It can
be seen that compared with Greedy generation,
MMI re-ranking produces more diverse responses
with higher NIST, METEOR and Entropy and Dist
scores, but with a slight drop in BLEU.

4.5 Generation Examples
We provide sample generated dialogues in Table 4
(interactive chat) and Table 5 (a self-playing bot
with user prompt). The output is based on top-K
sampling.6 Interestingly, our model exhibits the
ability to address commonsense questions to some
extent, presumably owing to the rich amount of
information that can be learned from Reddit data.
In some cases, instead of giving the “desired” an-
swer, the system generates an alternative, reason-
able answer. Our observations suggest that the
system is able to deal with multi-turn generation
better than an RNN counterpart and tends to be

6Owing to occasional toxic outputs, we are unable to re-
lease the generation code at this time.

more consistent with respect to context (Table 5).7

source Response

who is the first president of the
United States?

George Washington

what is the boiling point of
water?

I think it’s about 212 F.

which one is bigger, sun or
moon?

The sun .

which animal has black and
white stripes?

A black and white
striped cat .

Table 4: Addressing commonsense questions

4.6 Human Evaluation
Human evaluations We evaluated 2000 ran-
domly sampled test sources from the Reddit 6K
test dataset using crowd-sourcing. Systems were
paired and each pair of system outputs was ran-
domly presented to 3 judges, who ranked them

7We provide a live invitation-only demonstration site for a
conversational agents with toxicity controls and mutual infor-
mation maximization features discussed in this paper. Check
our GitHub repository for more information.
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Role response

User Does money buy happiness?
Bot Depends how much money you spend on it .
User What is the best way to buy happiness ?
Bot You just have to be a millionaire by your early

20s, then you can be happy .
User This is so difficult !
Bot You have no idea how hard it is to be a mil-

lionaire and happy . There is a reason the rich
have a lot of money

Table 5: An interactive example of multi-turn dialogue

Role Response

User what is the meaning of life ?
Bot The meaning is to be with your family and

friends .
Bot I’m going to guess : It means that your par-

ents and friends have loved you . That’s the
meaning , I believe .

Bot I think the meaning is to make sure you’re
alive when you die . So you’ll be with your
family , friends , and yourself .

Bot It’s not , but thanks for trying to help .

Table 6: An example of multi-turn self-playing dia-
logue with user prompt

for relevance, informativeness and how human-
like the generating is using a 3-point Likert-like
scale. Judges were required to pass a qualifica-
tion test, and a regime of spam detection was im-
posed.8 Overall judge preferences for relevance,
informativeness and human-likeness, presented as
raw numbers and a percentage of the total, are
shown in Table 7. A strong preference can be ob-
served for DialoGPT over PersonalityChat. Ta-
ble 7 also suggests that the ”vanilla” DialoGPT
medium model may already be close to human
response quality. Unexpectedly, we found that
judges may prefer the MMI variant over human re-
sponses, probably because of many of the true hu-
man responses are erratic or idiosyncratic, or are
tied to internet memes that happened to be unfa-
miliar to the judges.9 (See Section 4.2 for the con-
ditions underlying this effect.) Further details, in-
cluding a test of significance and the human evalu-
ation template used, are provided in the Appendix.

8We used held-out hand-vetted data from the human and
PersonalityChat datasets to provide clear-cut cases for spam
prevention and judge training examples. We suspect that this
may have helped bias the results towards the extremes.

9For example, one judge protested that the internet meme
“I was today years old when I realized this.” did not seem
human-like.

5 Related work

There are several open-sourced toolkits for large-
scale pre-trained transformer models. Hugging-
face Conv-AI transfer learning repository (Wolf
et al., 2019) contains the code for training con-
versational AI systems with transfer learning
based on the GPT-2 transformer language model,
which achieves the state-of-the-art performance
on ConvAI-2 dialogue competition. DLGnet
(Olabiyi and Mueller, 2019) is a large transformer
model trained on dialogue dataset and achieves
good performance in multi-turn dialogue genera-
tion. AllenNLP (Gardner et al., 2018) is devel-
oped as a toolkit for many natural language pro-
cessing tasks, including the large-scale pre-trained
bi-LSTM sentence representation learning frame-
work ELMo (Peters et al., 2018). Texar (Hu et al.,
2018) focuses on text generation including style
transferring and controllable generation. It in-
cludes reinforcement learning capabilities along
with its sequence modelling tools. DeepPavlov
(Burtsev et al., 2018) is a popular framework fo-
cusing on task-oriented dialogue. This public
repository contains several demos and pre-trained
models for question answering and sentiment clas-
sification. Icecaps (Shiv et al., 2019) is a re-
sponse generation toolkit with techniques such
as grounding on personalities or external knowl-
edge and multi-task training. The ConvAI2 chal-
lenge (Dinan et al., 2019) has a focus on person-
alized conversations. ParlAI (Miller et al., 2017)
is another library for developing task-oriented di-
alogue systems. It contains pre-trained models for
knowledge-grounded chatbot trained with crowd-
sourced data. The Text-to-Text Transformer (Raf-
fel et al., 2019) unifies multiple text modeling
tasks, and achieves the state-of-the-art results in
various natural language generation and under-
standing benchmarks.

6 Limitations and risks

DIALOGPT is released as a model only; the
onus of decoder implementation resides with the
user. Despite our efforts to minimize the amount
of overtly offensive data prior to training, DI-
ALOGPT retains the potential to generate output
that may trigger offense. Output may reflect gen-
der and other historical biases implicit in the data.
Responses generated using this model may exhibit
a propensity to express agreement with proposi-
tions that are unethical, biased or offensive (or the
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Relevance: A and B, which is more relevant and appropriate to the immediately preceding turn?

System A Neutral System B

DialoGPT (345M) 3281 (72%) 394 (9% ) 882 (19%) PersonalityChat ****
DialoGPT (345M) 2379 (40%) 527 (9% ) 3094 (52%) DialoGPT (345M, w/ MMI) ****
DialoGPT (345M) 3019 (50%) 581 (10%) 2400 (40%) DialoGPT (345M, Beam) ****
DialoGPT (345M) 2726 (45%) 576 (10%) 2698 (45%) DialoGPT (762M)

DialoGPT (345M) 2671 (45%) 513 (9% ) 2816 (47%) Human response
DialoGPT (345M, w/ MMI) 2871 (48%) 522 (9%) 2607 (43%) Human response ***

Informative: A and B, which is more contentful, interesting and informative?

System A Neutral System B

DialoGPT (345M) 3490 (77%) 206 (5%) 861 (19% ) PersonalityChat ****
DialoGPT (345M) 2474 (41%) 257 (4%) 3269( 54%) DialoGPT (345M, w/ MMI) ****
DialoGPT (345M) 3230 (54%) 362 (6%) 2408( 40%) DialoGPT (345M, Beam) *****
DialoGPT (345M) 2856 (48%) 303 (5%) 2841( 47%) DialoGPT (762M)

DialoGPT (345M) 2722 (45%) 234 (4%) 3044( 51%) Human response ****
DialoGPT (345M, w/ MMI) 3011 (50%) 234 (4%) 2755( 46%) Human response **

Human-like: A and B, which is more likely to be generated by human rather than a chatbot?

System A Neutral System B

DialoGPT (345M) 3462 (76)% 196 (4%) 899 (20%) PersonalityChat ****
DialoGPT (345M) 2478 (41)% 289 (5%) 3233 (54%) DialoGPT (345M, w/ MMI) ****
DialoGPT (345M) 3233 (54)% 340 (6%) 2427 (40%) DialoGPT (345M, Beam) ****
DialoGPT (345M) 2847 (47)% 321 (5%) 2832 (47%) DialoGPT (762M)

DialoGPT (345M) 2716 (45)% 263 (4%) 3021 (50%) Human response ***
DialoGPT (345M, w/ MMI) 2978 (50)% 241 (4%) 2781 (46%) Human response *

Table 7: Results of Human Evaluation for relevance, informativeness and human-response possibility, showing
preferences (%) for our model (DialoGPT) vis-a-vis its variants and real human responses. Distributions skew
towards DialoGPT with MMI, even when compared with human outputs. Numbers in bold indicate the preferred
systems. Statistically significant results are indicated: * p ≤ 0.01, ** p ≤ 0.001, *** p ≤ 0.0001, **** p ≤
0.00001.

reverse, disagreeing with otherwise ethical state-
ments). These are known issues in current state-
of-the-art end-to-end conversation models trained
on large naturally-occurring datasets. A major
motive for releasing DIALOGPT is to enable re-
searchers to investigate these issues and develop
mitigation strategies. In no case should inappro-
priate content generated as a result of using DI-
ALOGPT be construed to reflect the views or val-
ues of either the authors or Microsoft Corporation.

7 Conclusion

We have released an open-domain pre-trained
model, DIALOGPT, trained on massive real-world
Reddit dataset. The package consists of a dis-
tributed training pipeline and several pre-trained
models that can be fine-tuned to obtain a conver-
sation model on a moderately-sized customized
dataset in few hours. DIALOGPT is fully open-
sourced and easy to deploy, allowing users to ex-

tend the pre-trained conversational system to boot-
strap training using various datasets. It serves as a
building block to novel applications and method-
ologies. Detection and control of toxic output
will be a major focus of future investigation. We
will investigate leveraging reinforcement learning
to further improve the relevance of the generated
responses and prevent the model from generating
egregious responses.
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Abstract

We present ADVISER1 - an open-source,
multi-domain dialog system toolkit that en-
ables the development of multi-modal (incor-
porating speech, text and vision), socially-
engaged (e.g. emotion recognition, engage-
ment level prediction and backchanneling)
conversational agents. The final Python-based
implementation of our toolkit is flexible, easy
to use, and easy to extend not only for techni-
cally experienced users, such as machine learn-
ing researchers, but also for less technically
experienced users, such as linguists or cog-
nitive scientists, thereby providing a flexible
platform for collaborative research.

1 Introduction

Dialog systems or chatbots, both text-based and
multi-modal, have received much attention in re-
cent years, with an increasing number of dialog
systems in both industrial contexts such as Ama-
zon Alexa, Apple Siri, Microsoft Cortana, Google
Duplex, XiaoIce (Zhou et al., 2018) and Furhat2, as
well as academia such as MuMMER (Foster et al.,
2016) and Alana (Curry et al., 2018). However,
open-source toolkits and frameworks for develop-
ing such systems are rare, especially for develop-
ing multi-modal systems comprised of speech, text,
and vision. Most of the existing toolkits are de-
signed for developing dialog systems focused only
on core dialog components, with or without the
option to access external speech processing ser-
vices (Bohus and Rudnicky, 2009; Baumann and
Schlangen, 2012; Lison and Kennington, 2016;
Ultes et al., 2017; Ortega et al., 2019; Lee et al.,
2019).

To the best of our knowledge, there are only two

* All authors contributed equally.
1Link to open-source code: https://github.com/

DigitalPhonetics/adviser
2https://docs.furhat.io

toolkits, proposed in (Foster et al., 2016) and (Bo-
hus et al., 2017), that support developing dialog
agents using multi-modal processing and social sig-
nals (Wagner et al., 2013). Both provide a decent
platform for building systems, however, to the best
of our knowledge, the former is not open-source,
and the latter is based on the .NET platform, which
could be less convenient for non-technical users
such as linguists and cognitive scientists, who play
an important role in dialog research.

In this paper, we introduce a new version of
ADVISER - previously a text-based, multi-domain
dialog system toolkit (Ortega et al., 2019) - that
supports multi-modal dialogs, including speech,
text and vision information processing. This pro-
vides a new option for building dialog systems that
is open-source and Python-based for easy use and
fast prototyping. The toolkit is designed in such
a way that it is modular, flexible, transparent, and
user-friendly for both technically experienced and
less technically experienced users.

Furthermore, we add novel features to AD-
VISER, allowing it to process social signals and to
incorporate them into the dialog flow. We believe
that these features will be key to developing human-
like dialog systems because it is well-known that
social signals, such as emotional states and engage-
ment levels, play an important role in human com-
puter interaction (McTear et al., 2016). However
in contrast to open-ended dialog systems (Weizen-
baum, 1966), our toolkit focuses on task-oriented
applications (Bobrow et al., 1977), such as search-
ing for a lecturer at the university (Ortega et al.,
2019). The purpose we envision for dialog sys-
tems developed using our toolkit is not the same
as the objective of a social chatbot such as XiaoIce
(Zhou et al., 2018). Rather than promoting “an AI
companion with an emotional connection to satisfy
the human need for communication, affection, and
social belonging” (Zhou et al., 2018), ADVISER
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helps develop dialog systems that support users in
efficiently fulfilling concrete goals, while at the
same time considering social signals such as emo-
tional states and engagement levels so as to remain
friendly and likeable.

2 Objectives

The main objective of this work is to develop a
multi-domain dialog system toolkit that allows for
multi-modal information processing and that pro-
vides different modules for extracting social sig-
nals such as emotional states and for integrating
them into the decision making process. The toolkit
should be easy to use and extend for users of all
levels of technical experience, providing a flexible
collaborative research platform.

2.1 Toolkit Design
We extend and substantially modify our previous,
text-based dialog system toolkit (Ortega et al.,
2019) while following the same design choices.
This means that our toolkit is meant to optimize
the following four criteria: Modularity, Flexibil-
ity, Transparency and User-friendliness at differ-
ent levels. This is accomplished by decomposing
the dialog system into independent modules (ser-
vices), which in turn are either rule-based, machine
learning-based or both. These services can easily
be combined in different orders/architectures, pro-
viding users with flexible options to design new
dialog architectures.

2.2 Challenges & Proposed Solutions
Multi-modality The main challenges in han-
dling multi-modality are a) the design of a synchro-
nization infrastructure and b) the large range of
different latencies from different modalities. To al-
leviate the former, we use the publisher/subscriber
software pattern presented in section 4 to synchro-
nize signals coming from different sources. This
software pattern also allows for services to run in a
distributed manner. By assigning computationally
heavy tasks such as speech recognition and speech
synthesis to a more powerful computing node, it is
possible to reduce differences in latency when pro-
cessing different modalities, therefore achieving
more natural interactions.

Socially-Engaged Systems Determining the
ideal scope of a socially-engaged dialog system is a
complex issue, that is which information should be
extracted from users and how the system can best

Figure 1: Tracking emotion states and engagement lev-
els using multi-modal information.

react to these signals. Here we focus on two major
social signals: emotional states and engagement
levels (see section 3.1), and maintain an internal
user state to track them over the course of a dialog.
Note that the toolkit is designed in such a way that
any social signal could be extracted and leveraged
in the dialog manager. In order to react to social sig-
nals extracted from the user, we provide an initial
affective policy module (see section 3.5) and an ini-
tial affective NLG module (see section 3.7), which
could be easily extended to more sophisticated be-
havior. Furthermore, we provide a backchanneling
module that enables the dialog system to give feed-
back to users during conversations. Utilizing these
features could lead to increased trust and enhance
the impression of an empathetic system.

3 Functionalities

3.1 Social Signal Processing

We present the three modules of ADVISER for pro-
cessing social signals: (a) emotion recognition, (b)
engagement level prediction, and (c) backchannel-
ing. Figure 1 illustrates an example of our system
tracking emotion states and engagement levels.

Multi-modal Emotion Recognition For recog-
nizing a user’s emotional state, all three available
modalities – text, audio, and vision – can poten-
tially be exploited, as they can deliver complemen-
tary information (Zeng et al., 2009). Therefore, the
emotion recognition module can subscribe to the
particular input streams of interest (see section 4
for details) and apply emotion prediction either in
a time-continuous fashion or discretely per turn.

In our example implementation in the toolkit,
we integrate speech emotion recognition, i.e. us-
ing the acoustic signal as features. Based on the
work presented in (Neumann and Vu, 2017) we use
log Mel filterbank coefficients as input to convo-
lutional neural networks (CNNs). For the sake of
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modularity, three separate models are employed
for predicting different types of labels: (a) basic
emotions {angry, happy, neutral, sad}, (b) arousal
levels {low, medium, high}, and (c) valence lev-
els {negative, neutral, positive}. The models are
trained on the IEMOCAP dataset (Busso et al.,
2008). The output of the emotion recognition
module consists of three predictions per user turn,
which can then be used by the user state tracker
(see section 3.4). For future releases, we plan to
incorporate multiple training datasets as well as
visual features.

Engagement Level Prediction User engage-
ment is closely related to states such as boredom
and level of interest, with implications for user
satisfaction and task success (Forbes-Riley et al.,
2012; Schuller et al., 2009). In ADVISER, we
assume that eye activity serves as an indicator of
various mental states (Schuller et al., 2009; Niu
et al., 2018) and implement a gaze tracker that
monitors the user’s direction of focus via webcam.

Using OpenFace 2.2.0, a toolkit for facial behav-
ior analysis (Baltrusaitis et al., 2018), we extract
the features gaze angle x and gaze angle y, which
capture left-right and up-down eye movement, for
each frame and compute the deviation from the
central point of the screen. If the deviation ex-
ceeds a certain threshold for a certain number of
seconds, the user is assumed to look away from
the screen, thereby disengaging. Thus, the output
of our engagement level prediction module is the
binary decision {looking, not looking}. Both the
spatial and temporal sensitivity can be adjusted,
such that developers have the option to decide how
far and how long the user’s gaze can stray from
the central point until they are considered to be dis-
engaged. In an adaptive system, this information
could be used to select re-engagement strategies,
e.g. using an affective template (see section 3.7).

Backchanneling In a conversation, a backchan-
nel (BC) is a soft interjection from the listener
to the speaker, with the purpose of signaling
acknowledgment or reacting to what was just
uttered. Backchannels contribute to a success-
ful conversation flow (Clark and Krych, 2004).
Therefore, we add an acoustic backchannel mod-
ule to create a more human-like dialog experi-
ence. For backchannel prediction, we extract
13 Mel-frequency-cepstral coefficients from the
user’s speech signal, which form the input to

the convolutional neural network based on Or-
tega et al. (2020). The model assigns one of
three categories from the proactive backchannel-
ing theory (Goodwin, 1986) to each user utter-
ance {no-backchannel, backchannel-continuer and
backchannel-assessment}. The predicted category
is used to add the backchannel realization, such as
Right or Uh-huh, to the next system response.

3.2 Speech Processing

Automatic Speech Recognition (ASR) The
speech recognition module receives a speech signal
as input, which can come from an internal or ex-
ternal microphone, and outputs decoded text. The
specific realization of ASR can be interchanged
or adapted, for example for new languages or dif-
ferent ASR methods. We provide an end-to-end
ASR model for English based on the Transformer
neural network architecture. We use the end-to-end
speech processing toolkit ESPnet (Watanabe et al.,
2018) and the IMS-speech English multi-dataset
recipe (Denisov and Vu, 2019), updated to match
the LibriSpeech Transformer-based system in ESP-
net (Karita et al., 2019) and to include more train-
ing data. Training data comprises the LibriSpeech,
Switchboard, TED-LIUM 3, AMI, WSJ, Com-
mon Voice 3, SWC, VoxForge and M-AILABS
datasets with a total amount of 3249 hours. As
input features, 80-dimensional log Mel filterbank
coefficients are used. Output of the ASR model
is a sequence of subword units, which include sin-
gle characters as well as combinations of several
characters, making the model lexicon independent.

Speech Synthesis For ADVISER’s voice output,
we use the ESPnet-TTS toolkit (Hayashi et al.,
2019), which is an extension of the ESPnet toolkit
mentioned above. We use FastSpeech as the synthe-
sis model speeding up mel-spectrogram generation
by a factor of 270 and voice generation by a fac-
tor of 38 compared to autoregressive Transformer
TTS (Ren et al., 2019). We use a Parallel Wave-
GAN (Yamamoto et al., 2020) to generate wave-
forms that is computationally efficient and achieves
a high mean opinion score of 4.16. The FastSpeech
and WaveGAN models were trained with 24 hours
of the LJSpeech dataset from a single speaker (Ito,
2017) and are capable of generating voice output in
real-time when using a GPU. The synthesis can run
on any device in a distributed system. Additionally,
we optimize the synthesizer for abbreviations, such
as Prof., Univ., IMS, NLP, ECTS and PhD, as well
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as for German proper names, such as street names.
These optimizations can be easily extended.

Turn Taking To make interacting with the sys-
tem more natural, we use a naive end-of-utterance
detection. Users indicate the start of their turn
by pressing a hotkey, so they can choose to pause
the interaction. The highest absolute peak of each
recording chunk is then compared with a prede-
fined threshold. If a certain number of sequential
chunks do not peak above the threshold, the record-
ing stops. We are currenlty in the process of plan-
ning more sophisticated turn taking models, such
as Skantze et al. (2015).

3.3 Natural Language Understanding
The natural language understanding (NLU) unit
parses the textual user input (De Mori et al., 2008)
- or the output from the speech recognition system -
and extracts the user action type, generally referred
to as intent in goal-oriented dialog systems (e.g.
Inform and Request), as well as the corresponding
slots and values. The domain-independent, rule-
based NLU presented in Ortega et al. (2019) is
integrated into ADVISER and adapted to the new
domains presented in section 5.

3.4 State Tracking
Belief State Tracking (BST): The BST tracks
the history of user informs and the user action types,
requests, with one BST entry per turn. This infor-
mation is stored in a dictionary structure that is
built up, as the user provides more details and the
system has a better understanding of user intent.

User State Tracking (UST): Similar to the BST,
the UST tracks the history of the user’s state over
the course of a dialog, with one entry per turn. In
the current implementation, the user state consists
of the user’s engagement level, valence, arousal,
and emotion category (details in section 3.1).

3.5 Dialog Policies
Policies To determine the correct system action,
we provide three types of policy services: a hand-
crafted and a reinforcement learning policy for find-
ing entities from a database (Ortega et al., 2019),
as well as a handcrafted policy for looking up in-
formation through an API call. Both handcrafted
policies use a series of rules to help the user find
a single entity or, once an entity has been found
(or directly provided by the user), find information
about that entity. The reinforcement learning (RL)

policy’s action-value function is approximated by
a neural network which outputs a value for each
possible system action, given the vectorized rep-
resentation of a turn’s belief state as input. The
neural network is constructed as proposed in Väth
and Vu (2019) following a duelling architecture
(Wang et al., 2016). It consists of two separate cal-
culation streams, each with its own layers, where
the final layer yields the action-value function. For
off-policy batch-training, we make use of priori-
tized experience replay (Schaul et al., 2015).

Affective Policy In addition, we have also imple-
mented a rule-based affective policy service that
can be used to determine the system’s emotional
response. As this policy is domain-agnostic, pre-
dicting the next system emotion output rather than
the next system action, it can be used alongside any
of the previously mentioned policies.

User Simulator To support automatic evaluation
and to train the RL policy, we provide a user simu-
lator service outputting at the user acts level. As we
are concerned with task-oriented dialogs here, the
user simulator has an agenda-based (Schatzmann
et al., 2007) architecture and is randomly assigned
a goal at the beginning of the dialog. Each turn, it
then works to first respond to the system utterance,
and then after to fulfill its own goal. When the
system utterance also works toward fulfilling the
user goal, the RL policy is rewarded by achieving a
shorter total dialog turn count (Ortega et al., 2019).

3.6 External Information Resources
ADVISER supports three options to access informa-
tion from external information sources. In addition
to being able to query information from SQL-based
databases, we add two new options that includes
querying information via APIs and from knowl-
edge bases (e.g. Wikidata (Vrandečić and Krötzsch,
2014)). For example, when a user asks a simple
question - Where was Dirk Nowitzki born?, our
pretrained neural network predicts the topic entity
- Dirk Nowitzki - and the relation - place of birth.
Then, the answer is automatically looked up using
Wikidata’s SPARQL endpoint.

3.7 Natural Language Generation (NLG)
In the NLG service, the semantic representation
of the system act is transformed into natural lan-
guage. ADVISER currently uses a template-based
approach to NLG in which each possible system
act is mapped to exactly one utterance. A special
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Figure 2: Example ADVISER toolkit configuration:
Grey represents backend components, blue represents
domain-specific services, and all other colors represent
domain-agnostic services. Two components are run re-
motely.

syntax using placeholders reduces the number of
templates needed and accounts for correct morpho-
logical inflections (Ortega et al., 2019). Addition-
ally, we developed an affective NLG service, which
allows for different templates to be used depending
on the user’s emotional state. This enables a more
sensitive/adaptive system. For example, if the user
is sad and the system does not understand the user’s
input, it might try to establish common ground to
prevent their mood from getting worse due to the
bad news. An example response would be “As
much as I would love to help, I am a bit confused”
rather than the more neutral “Sorry I am a bit con-
fused”. One set of NLG templates can be specified
for each possible emotional state. At runtime, the
utterance is then generated from the template asso-
ciated with the current system emotion and system
action.

4 Software Architecture

4.1 Dialog as a Collection of Services

To allow for maximum flexibility in combining and
reusing components, we consider a dialog system
as a group of services which communicate asyn-
chronously by publishing/subscribing to certain
topics. A service is called as soon as at least one
message for all its subscribed topics is received
and may additionally publish to one or more top-
ics. Services can elect to receive the most recent
message for a topic (e.g. up-to-date belief state) or

a list of all messages for that topic since the last
service call (e.g. a list of video frames). Construct-
ing a dialog system in this way allows us to break
free from a pipeline architecture. Each step in the
dialog process is represented by one or more ser-
vices which can operate in parallel or sequentially.
For example, tasks like video and speech capture
may be performed and processed in parallel before
being synchronized by a user state tracking module
subscribing to input from both sources. Figure 2
illustrates the system architecture. For debugging
purposes, we provide a utility to draw the dialog
graph, showing the information flow between ser-
vices, including remote services, and any inconsis-
tencies in publish/subscribe connections.

4.2 Support for Distributed Systems

Services are location-transparent and may thus be
distributed across multiple machines. A central dia-
log system discovers local and remote services and
provides synchronization guarantees for dialog ini-
tialization and termination. Distribution of services
enables, for instance, a more powerful computer to
handle tasks such as real-time text-to-speech gen-
eration (see Figure 2). This is particularly helpful
when multiple resource-heavy tasks are combined
into a single dialog system.

4.3 Support for Multi-Domain Systems

In addition to providing multi-modal support, the
publish/subscribe framework also allows for multi-
domain support by providing a structure which en-
ables arbitrary branching and rejoining of graph
structures. When a service is created, users sim-
ply specify which domain(s) it should publish/-
subscribe to. This, in combination with a domain
tracking service, allows for seamless integration
of domain-agnostic services (such as speech in-
put/output) and domain-specific services (such as
NLU/NLG for the lecturers domain).

5 Example Use Cases

5.1 Example Domains

We provide several example domains to demon-
strate ADVISER’s functionalities. Databases for
lecturers and courses at the Institute for Natural
Language Processing (IMS), which we used in the
previous version of ADVISER, were adapted to the
new system architecture. As example APIs, we
implemented a weather domain that makes calls to
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the OpenWeatherMap API3 and a mensa domain
for gathering information from the dining hall at
the university of Stuttgart. Note that affective tem-
plates were only added to the lecturers and mensa
domain. All domains can be used within the same
dialog, simply by switching the topic.

5.2 An Example Implementation

Our toolkit allows for easy creation of a dialog
system within a few lines of code as follows.

# domains
weather = WeatherDomain()
mensa = MensaDomain()
# create system from desired services
ds = DialogSystem(services=[

DomainTracker(domains=[mensa,
weather]),
SpeechRecorder(),
VideoInput(),
EngagementTracker(),
EmotionTracker(),
WeatherNLU(domain=weather),
MensaNLU(domain=mensa),
...,
SpeechOutputPlayer()])

ds.run_dialog(...)

As a first step, a dialog system object is initial-
ized, which is responsible for coordinating the ini-
tialization and graceful termination of all dialog
services. Talking about multiple domains in one
dialog is enabled by creating a simple keyword-
based domain tracker which is introduced as the
first argument to the dialog system. To make the
dialog multi-modal, speech and vision modules are
introduced next, along with modules to extract en-
gagement and emotion. So far, all of these modules
are domain-agnostic and can be used as shared
resources between all domains. Next, domain-
dependent services such as NLUs, BSTs and NLGs
for weather and mensa, are added. The following
shows an example dialog.

SYSTEM: Hello, please let me know how I can help
you, I can discuss the following domains: Mensa
Food and Weather.

USER: I could have something to eat. What does the
mensa offer today?

SYSTEM: What type of dish are you looking for?
USER: I would like a main dish.
SYSTEM: Should the meal be vegan?
USER: Yes.
SYSTEM: The meal mediterranean Ebly wheat is

served today, is a main dish and is vegan.
USER: Okay, cool, I will go there now! What is the

weather like?

3https://openweathermap.org/api

SYSTEM: The weather in Stuttgart on January 28 at 3
PM is 3 degrees celsius with light snow.

USER: Thank you, ADVISER, good bye!
SYSTEM: Thank you, good bye.

6 Related Work

Other tools for building dialog systems include
ConvLab (Lee et al., 2019), an open-source, text-
based dialog system platform that supports both
pipelined architectures and an end-to-end neural
architecture. ConvLab also provides reusable com-
ponents and supports multi-domain settings. Other
systems are largely text-based, but offer the in-
corporation of external speech components. In-
proTK (Baumann and Schlangen, 2012), for in-
stance, in which modules communicate by net-
works via configuration files, uses ASR based on
Sphinx-4 and synthesis based on MaryTTS. Simi-
larly, RavenClaw (Bohus and Rudnicky, 2009) pro-
vides a framework for creating dialog managers;
ASR and synthesis components can be supplied,
for example, by connecting to Sphinx and Kalliope.
OpenDial (Lison and Kennington, 2016) relies on
probabilistic rules and provides options to con-
nect to speech components such as Sphinx. Multi-
domain dialog toolkit - PyDial (Ultes et al., 2017)
supports connection to DialPort.

As mentioned in the introduction, Microsoft Re-
search’s \psi is an open and extensible platform
that supports the development of multi-modal AI
systems (Bohus et al., 2017). It further offers audio
and visual processing, such as speech recognition
and face tracking, as well as output, such as synthe-
sis and avatar rendering. And the MuMMER (multi-
modal Mall Entertainment Robot) project (Foster
et al., 2016) is based on the SoftBank Robotics
Pepper platform, and thereby comprises processing
of audio-, visual- and social signals, with the aim
to develop a socially engaging robot that can be
deployed in public spaces.

7 Conclusions

We introduce ADVISER – an open-source, multi-
domain dialog system toolkit that allows users to
easily develop multi-modal and socially-engaged
conversational agents. We provide a large variety
of functionalities, ranging from speech processing
to core dialog system capabilities and social signal
processing. With this toolkit, we hope to provide
a flexible platform for collaborative research in
multi-domain, multi-modal, socially-engaged con-
versational agents.
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Abstract
Recent events, such as the 2016 US Presi-
dential Campaign, Brexit and the COVID-19
“infodemic”, have brought into the spotlight
the dangers of online disinformation. There
has been a lot of research focusing on fact-
checking and disinformation detection. How-
ever, little attention has been paid to the spe-
cific rhetorical and psychological techniques
used to convey propaganda messages. Reveal-
ing the use of such techniques can help pro-
mote media literacy and critical thinking, and
eventually contribute to limiting the impact of
“fake news” and disinformation campaigns.

Prta (Propaganda Persuasion Techniques An-
alyzer) allows users to explore the articles
crawled on a regular basis by highlighting the
spans in which propaganda techniques occur
and to compare them on the basis of their use
of propaganda techniques. The system further
reports statistics about the use of such tech-
niques, overall and over time, or according to
filtering criteria specified by the user based on
time interval, keywords, and/or political orien-
tation of the media. Moreover, it allows users
to analyze any text or URL through a dedicated
interface or via an API. The system is available
online: https://www.tanbih.org/prta.

1 Introduction

Brexit and the 2016 US Presidential cam-
paign (Muller, 2018), as well as major events such
the COVID-19 outbreak (World Health Organiza-
tion, 2020), were marked by disinformation cam-
paigns at an unprecedented scale. This has brought
the public attention to the problem, which became
known under the name “fake news”. Even though
declared word of the year 2017 by Collins dictio-
nary,1 we find that term unhelpful, as it can easily
mislead people, and even fact-checking organiza-
tions, to only focus on the veracity aspect.

1https://www.bbc.com/news/uk-41838386

At the EU level, a more precise term is preferred,
disinformation, which refers to information that is
both (i) false, and (ii) intents to harm. The often-
ignored aspect (ii) is the main reasons why disin-
formation has become an important issue, namely
because the news was weaponized.

Another aspect that has been largely ignored
is the mechanism through which disinformation
is being conveyed: using propaganda techniques.
Propaganda can be defined as (i) trying to influ-
ence somebody’s opinion, and (ii) doing so on pur-
pose (Da San Martino et al., 2020). Note that this
definition is orthogonal to that of disinformation:
Propagandist news can be both true and false, and
it can be both harmful and harmless (it could even
be good). Here our focus is on the propaganda
techniques: on their typology and use in the news.

Propaganda messages are conveyed via spe-
cific rhetorical and psychological techniques, rang-
ing from leveraging on emotions —such as using
loaded language (Weston, 2018, p. 6), flag wav-
ing (Hobbs and Mcgee, 2008), appeal to author-
ity (Goodwin, 2011), slogans (Dan, 2015), and
clichés (Hunter, 2015)— to using logical fallacies
—such as straw men (Walton, 1996) (misrepresent-
ing someone’s opinion), red herring (Weston, 2018,
p. 78),(Teninbaum, 2009) (presenting irrelevant
data), black-and-white fallacy (Torok, 2015) (pre-
senting two alternatives as the only possibilities),
and whataboutism (Richter, 2017).

Here, we present Prta —the PRopaganda per-
suasion Techniques Analyzer. Prta makes online
readers aware of propaganda by automatically de-
tecting the text fragments in which propaganda
techniques are being used as well as the type of
propaganda technique in use. We believe that re-
vealing the use of such techniques can help promote
media literacy and critical thinking, and eventually
contribute to limiting the impact of “fake news”
and disinformation campaigns.
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Technique • Snippet

loaded language • Outrage as Donald Trump suggests injecting disinfectant to kill virus.
name calling, labeling • WHO: Coronavirus emergency is ’Public Enemy Number 1’
repetition • I still have a dream. It is a dream deeply rooted in the American dream. I have a dream that . . .
exaggeration, minimization • Coronavirus ‘risk to the American people remains very low’, Trump said.
doubt • Can the same be said for the Obama Administration?
appeal to fear/prejudice • A dark, impenetrable and “irreversible” winter of persecution of the faithful
by their own shepherds will fall.
flag-waving • Mueller attempts to stop the will of We the People!!! It’s time to jail Mueller.
causal oversimplification • If France had not have declared war on Germany then World War II would
have never happened.
slogans • “BUILD THE WALL!” Trump tweeted.
appeal to authority • Monsignor Jean-François Lantheaume, who served as first Counsellor of the Nun-
ciature in Washington, confirmed that “Viganò said the truth. That’s all.”
black-and-white fallacy • Francis said these words: “Everyone is guilty for the good he could have done
and did not do . . . If we do not oppose evil, we tacitly feed it.”
obfuscation, Intentional vagueness, Confusion • Women and men are physically and emotionally
different. The sexes are not “equal,” then, and therefore the law should not pretend that we are!
thought-terminating cliches • I do not really see any problems there. Marx is the President.
whataboutism • President Trump —who himself avoided national military service in the 1960’s— keeps beating
the war drums over North Korea.
reductio ad hitlerum • “Vichy journalism,” a term which now fits so much of the mainstream media. It
collaborates in the same way that the Vichy government in France collaborated with the Nazis.
red herring • “You may claim that the death penalty is an ineffective deterrent against crime – but what about
the victims of crime? How do you think surviving family members feel when they see the man who murdered their
son kept in prison at their expense? Is it right that they should pay for their son’s murderer to be fed and housed?”
bandwagon • He tweeted, “EU no longer considers #Hamas a terrorist group. Time for US to do same.”
straw man • “Take it seriously, but with a large grain of salt.” Which is just Allen’s more nuanced way of saying:
“Don’t believe it.”

Table 1: Our 18 propaganda techniques with example snippets. The propagandist span appears highlighted.

With Prta, users can explore the contents of
articles about a number of topics, crawled from a
variety of sources and updated on a regular basis,
and to compare them on the basis of their use of
propaganda techniques. The application reports
overall statistics about the occurrence of such tech-
niques, as well as their usage over time, or accord-
ing to user-defined filtering criteria such as time
span, keywords, and/or political orientation of the
media. Furthermore, the application allows users
to input and to analyze any text or URL of interest;
this is also possible via an API, which allows other
applications to be built on top of the system.

Prta relies on a supervised multi-granularity
gated BERT-based model, which we train on a cor-
pus of news articles annotated at the fragment level
with 18 propaganda techniques, a total of 350K
word tokens (Da San Martino et al., 2019).

Our work is in contrast to previous efforts, where
propaganda has been tackled primarily at the article
level (Rashkin et al., 2017; Barrón-Cedeño et al.,
2019; Barrón-Cedeño et al., 2019). It is also differ-
ent from work in the related field of computational
argumentation, which deals with some specific log-
ical fallacies related to propaganda, such as ad
hominem fallacy (Habernal et al., 2018b).

Consider the game Argotario, which educates
people to recognize and create fallacies such as
ad hominem, red herring and irrelevant authority,
which directly relate to propaganda (Habernal et al.,
2017, 2018a). Unlike them, we have a richer inven-
tory of techniques and we show them in the context
of actual news.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the machine learning
model at the core of the Prta system. Section 3
sketches the full architecture of Prta, with focus
on the process of collection and processing of the
input articles. Section 4 describes the system in-
terface and its functionality, and presents some ex-
amples. Section 5 draws conclusions and discusses
possible directions for future work.

2 Data and Model

Data We train our model on a corpus of 350K to-
kens (Da San Martino et al., 2019; Yu et al., 2019),
manually annotated by professional annotators with
the instances of use of eighteen propaganda tech-
niques. See Table 1 for a complete list and exam-
ples for each of these techniques.2

2Detailed list with definitions and examples is available at
http://propaganda.qcri.org/annotations/definitions.html
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Figure 1: The architecture of our model.

Model Our model is based on multi-task learning
with the following two tasks:

FLC Fragment-level classification. Given a sen-
tence, identify all spans of use of propaganda
techniques in it and the type of technique.

SLC Sentence-level classification. Given a sen-
tence, predict whether it contains at least one
propaganda technique.

Our model adds on top of BERT (Devlin et al.,
2019) a set of layers that combine information from
the fragment- and the sentence-level annotations
to boost the performance of the FLC task on the
basis of the SLC task. The network architecture
is shown in Figure 1, and we refer to it as a multi-
granularity network. It features 19 output units for
each input token in the FLC task, standing for one
of the 18 propaganda techniques or “no technique.”
A complementary output focuses on the SLC task,
which is used to generate, through a trainable gate,
a weight w that is multiplied by the input of the
FLC task. The gate consists of a projection layer
to one dimension and an activation function. The
effect of this modeling is that if the sentence-level
classifier is confident that the sentence does not
contain propaganda, i.e., w ∼ 0, then no propa-
ganda technique would be predicted for any of the
word tokens in the sentence.

The model we use in Prta outperforms BERT-
based baselines on both at the sentence-level (F1

of 60.71 vs. 57.74) and at the fragment-level (F1

of 22.58 vs. 21.39). At the fragment-level, the
model outperforms the best solution of a hackathon
organized on this data.3

3https://www.datasciencesociety.net/events/
hack-the-news-datathon-2019

For the Prta system, we applied a softmax oper-
ator to turn its output into a bounded value in the
range [0,1], which allows us to show a confidence
for each prediction. Further details about the tech-
niques, the model, the data, and the experiments
can be found in (Da San Martino et al., 2019).4

3 System Architecture

Prta collects news articles from a number of news
outlets, discards near-duplicates and finally identi-
fies both specific propaganda techniques and sen-
tences containing propaganda.

We crawl a growing list (now 250) of RSS feeds,
Twitter accounts, and websites, and we extract the
plain text from the crawled Web pages using the
Newspaper3k library5. We then perform deduplica-
tion based on a combination of URL partial match-
ing and content analysis using a hash function.

Finally, we use the model from Section 2 to iden-
tify sentences with propaganda and instances of
use of specific propaganda techniques in the text
and their types. We further organize the articles
into topics; currently, the topics are defined us-
ing keyword matching, e.g., an article mentioning
COVID-19 or Brexit is assigned to a corresponding
topic. By accumulating the techniques identified
in multiple articles, Prta can show the volume
of propaganda techniques used by each medium
—as well as aggregated over all media for a specific
topic— thus, allowing the user to do comparisons
and analysis, as described in the next section.

4 Interface

Prta offers the following functionality.

For each crawled news article:

1. It flags all text spans in which a propaganda
technique has been spotted.

2. It flags all sentences containing propaganda.

For a user-provided text or a URL:

3. It flags the same as in 1 and 2 above.

At the medium and at the topic level:

4. It displays aggregated statistics about the pro-
paganda techniques used by all media on a
specific topic, and also for individual media,
or for media with specific political ideology.

4The corpus and the models are available online at
propaganda.qcri.org/fine-grained-propaganda-emnlp.html

5http://newspaper.readthedocs.io
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Figure 2: Overall view for a topic.

This functionality is implemented in the three
interfaces we expose to the user: the main topic
page, the article page, and the custom article page,
which we describe in Sections 4.1–4.3. Although
points 1 and 2 above are run offline, they can also
be invoked for a custom text using our API.6

4.1 Main Topic Page

Figure 2 shows a snapshot of the main page for
a given topic: here, the Coronavirus Outbreak in
2019-20. We can see on the left panel, a list of
the media covering the topic, sorted by number
of articles. This allows the user to get a general
idea about the degree of coverage of the topic by
different media.

The right panel in Figure 2 shows statistics about
the articles from the left panel. In particular, we
can see the global distribution of the propaganda
techniques in the articles, both in relative and in
absolute terms. The right panel further shows a
graph with the number of articles about the topic
and the average number of propaganda techniques
per article over time. Finally, it shows another
graph with the relative proportion of propagandistic
content per article; it is possible to click and to
navigate from this graph to the target article. The
latter two graphs are not shown in Figure 2, as they
could not fit in this paper, but the reader is welcome
to check them online.

6Link to the API available at https://www.tanbih.org/prta

The set of articles on the left panel can be filtered
by time interval, by keyword, by political orienta-
tion of the media (left/center/right), as well as by
any combination thereof.

Clicking on a medium on the left panel expands
it, displaying its articles ranked on the basis of
Eq. (1). Given the output of the multi-granularity
network, we compute a simple score to assess the
proportion of propaganda techniques in an article or
in an individual media source. Let F (x) be a set of
fragment-level annotations in article x, where each
annotation is a sequence of tokens. We compute
the propaganda score for x as the ratio between the
number of tokens covered by some propagandist
fragment (regardless of the technique) and the total
number of tokens in the article:

Qa(x) =
|⋃f∈F (x) f |
|x| . (1)

Selecting a medium, or any other filtering crite-
rion, further updates the graph on the center-right
panel. For example, Figures 3a and 3b show the
distribution of the techniques used by the BBC vs.
Fox News when covering the topic of Gun Control
and Gun Rights. We can see that both media use
a lot of loaded language, which is the most
common technique media use in general. However,
the BBC also makes heavy use of labeling and
doubt, whereas Fox News has a higher preference
for flag waving and slogans.
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(a) BBC on Gun Control and Gun Rights

(b) Fox News on Gun Control and Gun Rights

(c) Fox News on Jamal Khashoggi’s Murder

Figure 3: Example of the distribution of the techniques
as used by two media and on two different topics. Note
that the scales are different.

Next, Figure 3c shows the propaganda tech-
niques used by Fox News when covering the
Khashoggi’s Murder, which has a very similar tech-
nique distribution to the plot in Figure 3b.

This similarity between the distribution of propa-
ganda techniques in Figures 3b and 3c might be a
coincidence, or it could represent a consistent style,
regardless of the topic. We leave the exploration
of this and other hypotheses to the interested user,
which is an easy exercise with the Prta system.

4.2 Article Page

When the user selects an article title on the left
panel (Figure 2), its full content will appear on a
middle panel with the propaganda fragments high-
lighted, as shown in Figure 4. Meanwhile, a right
panel will appear, showing the color codes used
for each of the techniques found in the article (the
techniques that are not present are shown in gray).

Moreover, using the slider bar on top of the right
panel, the user can set a confidence threshold, and
then only those propaganda fragments in the article
whose confidence is equal or higher than this set
threshold would be highlighted. When the user
hovers the mouse over a propagandist span, a short
description of the technique would pop up. If the
user wishes to find more information about the
propaganda techniques, she can simply click on the
corresponding question mark in the right panel.

4.3 Custom Article Analysis

Our interface allows the user to submit her own text
for analysis. This allows her to find the techniques
used in articles published by media that we do not
currently cover or to analyze other kinds of texts.
Texts can be submitted by copy-pasting in the text
box on top, or, alternatively, by using a URL. In
the latter case, the text box will be automatically
filled with the content extracted from the URL us-
ing the Newspaper3k library (see Section 3), but
the user can still edit the content before submitting
the text for analysis. The maximum allowed length
is the one enforced by the browser. Yet, we recom-
mend to keep texts shorter than 4k in order to avoid
blocking the server with too large requests.

Figure 5 shows the analysis for an excerpt of
Winston Churchill’s speech on May 10, 1940. All
the techniques found in this speech are highlighted
in the same way as described in Section 4.2. Notice
that, in this case, we have set the confidence thresh-
old to 0.4 and some of the techniques are conse-
quently not highlighted. We can see that the system
has identified heavy use of propaganda techniques.
In particular, we can observe the use of Flag Wav-
ing and Appeal to Fear, which is understandable
as the purpose of this speech was to prepare the
British population for war.

5 Conclusion and Future Work

We have presented the Prta system for detecting
and highlighting the use of propaganda techniques
in online news. The system further shows aggre-
gated statistics about the use of such techniques in
articles filtered according to several criteria, includ-
ing date ranges, media sources, bias of the sources,
and keyword searches. The system also allows
users to analyze their own text or the contents of a
URL of interest.

We have made publicly available our data and
models, as well as an API to the live system.
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Figure 4: Selecting an article from the left panel, loads it and highlights its propaganda techniques.

Figure 5: Analysis of a custom text, an excerpt from a speech by W. Churchill at the beginning of World War II.
The confidence threshold is set to 0.4, and thus fragments for which the confidence is lower are not highlighted.

We hope that the Prta system would help raise
awareness about the use of propaganda techniques
in the news, thus promoting media literacy and
critical thinking, which are arguably the best long-
term answer to “fake news” and disinformation.

In future work, we plan to add more media
sources, especially from non-English media and
regions. We further want to extend the tool to sup-
port other propaganda techniques such as cherry-
picking and omission, among others, which would
require analysis beyond the text of a single article.
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Abstract

In this paper, we introduce Clinical-Coder, an
online system aiming to assign ICD codes to
Chinese clinical notes. ICD coding has been
a research hotspot of clinical medicine, but
the interpretability of prediction hinders its
practical application. We exploit a Dilated
Convolutional Attention network with N-gram
Matching Mechanism (DCANM) to capture
semantic features for non-continuous words
and continuous n-gram words, concentrating
on explaining the reason why each ICD code
to be predicted. The experiments demonstrate
that our approach is effective and that our sys-
tem is able to provide supporting information
in clinical decision making.

1 Introduction

International Classification of Disease (ICD) is the
diagnostic classification standard in the field of
clinical medicine, which assigns unique code to
each disease. The popularization of ICD codes
immensely promotes the information sharing and
clinical research of disease worldwide and has a
positive influence on health condition research, in-
surance claims, morbidity and mortality statistics
(Shi et al., 2017). Therefore, ICD coding – which
assigns proper ICD codes to a clinical note – has
drawn much attention.

It is always that ICD coding relies on the manual
work of professional staff. The manual coding
is very error-prone and time-consuming since the
continuous updating version of ICD codes results
in a substantial increase in code numbers. The
number of ICD-10 codes is up to 72,184, more
than five times the previous version (i.e., ICD-9). It
allows for more detailed classifications of patients’
conditions, injuries, and diseases. However, there

∗co-first authors, they contributed equally to this work

is no doubt that the increased granularity increases
the difficulty of manual coding.

Existing studies came up with several ap-
proaches of automatic coding prediction to replace
the repetitive manual work, from the traditional
machine learning methods (Perotte et al., 2013;
Koopman et al., 2015), to neural network methods
(Shi et al., 2017; Yu et al., 2019). Although these
methods achieve great success, they are still con-
fronted with a critical challenge, which is the inter-
pretability of predicted codes. Explainable model
and results are essential for clinical medicine deci-
sion making (Mullenbach et al., 2018). Thus, the
practical approach is supposed to predict correct
codes and simultaneously give the reason why each
code is predicted.

Figure 1: Two kind of semantic phenomenon: explicit
semantic features and implicit semantic features.

In this paper, we try to provide the interpretabil-
ity of predictions from a semantic perspective. It is
a phenomenon that the exact disease names or simi-
lar expressions of disease names often appear in the
discharge summary. For example, as shown in Fig-
ure 1, the exact matching with disease name such
as “fatty liver” is a direct evidence of inference.
We call the continuous consistent words as explicit
semantic features. Moreover, the inexact matching
such as “rheumatoid multisite arthritis” is also very
useful to predict the codes and should be taken
into consideration. We refer to the non-continuous
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Figure 2: The screenshot of Clinical-Coder system, the English version can be found in the appendix A. (a) gives
the predicted diseases after users enter the clinical notes which contains four parts, admission situation, admission
diagnosis, discharge situation and discharge diagnosis. (b1) and (b2) are the visualization of supporting information
for predictions.

words as implicit semantic features. The two kinds
of semantic features are both clues to explain the
reason why to assign each code, which is also the
basis of experts in manual coding process. To cap-
ture the two semantic phenomena, we exploit di-
lated convolution and n-gram matching mechanism
to extract implicit semantic features and explicit
semantic features, respectively. Furthermore, we
develop a system to assist the professional coders
in assigning the correct codes. In summary, the
main contributions are as follows:

• We collect a large-scale Chinese Clinical
notes dataset, making up for the lack of Chi-
nese ICD coding corpus.

• We propose a novel method to simultaneously
capture implicit and explicit semantic features,
which enables to give interpretability for each
predicted code.

• We develop an open-access online system,
called clinical-coder, that automatically as-
signs codes to the free-text clinical notes
with an indication of the supporting informa-
tion for each code to be predicted. It uses
vivid visualization to provide interpretabil-
ity of prediction for each ICD code. The
site can be accessed by http://159.226.

21.226/disease-prediction, and instruc-
tions video is provided at https://youtu.

be/U4TImTwEysE.

Figure 2 illustrates an example of the automatic
coding for a Chinese Clinical note in our system

(For the convenience of readers, the English version
is included in the appendix A). The left of Figure 2
(a) is the free-text notes user entered, and the right
of Figure 2 (a) is predicted codes and correspond-
ing disease names. Figure 2 (b1) and Figure 2 (b2)
are the visualization of supporting information for
predictions. The detailed description is presented
in the section 3.2.

2 Related Work

2.1 Automatic ICD coding

Automatic ICD coding has recently been a research
hotspot in the field of clinical medicine, where neu-
ral network architecture methods show promising
results than traditional machine learning methods.

Most studies treat automatic ICD coding as a
multi-label classification problem and use only the
free-text in summaries to predict codes (Subotin
and Davis, 2015; Kavuluru et al., 2015; Yu et al.,
2019), while many methods benefit from extra in-
formation. Shi et al. (2017) encode label descrip-
tion with character-level and word-level long short-
term memory network. Rios and Kavuluru (2018)
encode label description with averaging words em-
bedding. Furthermore, adversarial learning is em-
ployed to unify writing styles of diagnosis descrip-
tions and ICD code descriptions (Xie et al., 2018).
Besides code descriptions, Wikipedia comes to be
regarded as an external knowledge source (Prakash
et al., 2017; Bai and Vucetic, 2019).

Additionally, inferring interpretability is a cru-
cial challenge and obstacle for practical automatic
coding, since professionals are willing to be con-
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Figure 3: The whole architecture of the model. The input is the clinical text, and output is the ICD codes. The
yellow dotted box indicates how to use attention-based dilated convolution to capture the implicit semantic of non-
continuous words. The green dotted box indicates how to use n-gram matching mechanism to capture the explicit
semantic of continuous n-gram words.

vinced by the model insights of vital supporting in-
formation or decision-making process (Vani et al.,
2017; Mullenbach et al., 2018). Baumel et al.
(2018) employ bidirectional Gated Recurrent Unit
with sentence-level attention to obtain relevant sen-
tences for each code. Mullenbach et al. (2018) use
attention at the word level, which is more fine-
grained. Our work is inspired by (Mullenbach
et al., 2018), assigning the importance value for
each label to the discharge summaries to assists in
explaining the model prediction process.

2.2 Dilated Convolution
Dilated convolution is designed for image classifi-
cation to aggregate multi-scale contextual informa-
tion without losing resolution in computer vision
(Yu and Koltun, 2016). It inserts “holes” in the
standard convolution map to increase the reception
field. The hole-structure brings a breakthrough
improvement to the semantic segmentation task.

Similarly, several hole-structured convolution
neural networks (CNNs) (Lei et al., 2015; Guo
et al., 2017) are designed to handle natural lan-
guage processing tasks. In the text, there exists non-
continuous semantic where useless information
may be interspersed among the sentences. Holes in
the dilated convolution can ignore the extra word
between the non-continuous words and well adapt
to match non-continuous semantic. Since the se-
mantic infomation is crutial when understanding

natural language(Zuo et al., 2019), we apply the
dilated convolution to encode the text, capturing
the non-continuous semantic information.

3 Clinical Coder System

3.1 Method
We propose a Dilated Convolutional Attention
network with N-gram Matching Mechanism
(DCANM) for ICD coding task. Figure 3 describes
the architecture of the model. The input of model
is all sentences in clinical notes, which are spliced
together. The input sentences interact with ICD
code names to capture explicit semantic features
and generate an n-gram matrix. At the same time,
the input sentences are transformed into vector and
processed by dilated CNN to capture implicit se-
mantic features. Attention mechanism is used to
improve the performance. Then all features are
concatenated to form the final features. Finally, we
use a sigmoid classifier to predict the probability of
each code. Next, we give the detailed descriptions.

Word Embedding. Word embedding is a low-
dimensional vector representation of a word. We
use the pre-trained embedded matrix Wwrd ∈
Rdw×|V |, where dw is the dimension of word em-
bedding and |V | is the size of vocabulary. Given
a sentence, S = [w1, w2, ..., wN ], where N is the
number of words in the sentence, we can get the
word embedding by:
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we =Wwrdvi, (1)

where vi is the one-hot representation of the current
word in the corresponding column of Wwrd.

Explicit Semantic Features. N-gram matching
mechanism is applied to capture explicit semantic
features. We use disease names (D) to sampling
on the text (T). First, move the sliding window on
the disease name dl ∈ D to get a n-gram substring.
Then, calculate the frequency of each n-gram sub-
string in the free-text. The sum of frequencies of
gram with same length n (denoted as gramn) has
reflected the emergence of disease names in the
text, nevertheless some grams have their unique
particularity. For example, given a 2-gram string,
“糖尿” (Diabetes) is more representative than “慢
性”(Chronic) though they have the same length.
To represent the degree of importance of different
n-gram, each n-gram is given a term frequency-
inverse document frequency (tf-idf) weight. Finally,
for each free-text clinical note, we calculate an
explicit semantic n-gram matrix (M ) with size of
L ×W , where L is numbers of labels and W is
the numbers of sliding windows. For example, we
have four sliding windows which lengths are 2, 3,
4, 5, so W is 4. For the l-th row the w-th column
item in the feature map, we have:

ml,w =

Lgramln∑

i=1

countgramlni
∗ tf idfgramlni

(2)

tf idfgrami =
n

Lnl

∗ L

freqgramlni

, (3)

where w is the index of n-length sliding window,
gramln is all n-length substrings of the l-th disease
name, gramlni is the i-th gramln, Lgramln

is the
number of gramln, countgramlni

is the frequen-
cies of gramlni in the text, Lnl

is the length of the
l-th disease name, freqgramlni

is the frequencies
of gramlni in all disease names.

In this calculation, we can distinguish the im-
portance degree of n-gram substring. It also works
on English clinical notes, for instance, in a spe-
cific case from MIMIC-III (Johnson et al., 2016),
the tf-idf value of “history of” is 1.79 while “atrial
fibrillation” is 9.32 because “history of” appears
249 times in all ICD disease names and “atrial fib-
rillation” only appears two times. The higher the
value is, the more representative the word is. There-
fore “atrial fibrillation” is more likely to indicate a
disease than “history of”.

Implicit Semantic Features. Dilated convolu-
tion is applied to capture implicit semantic fea-
tures. For a long clinical text, dilated convolution
extends the reception field in the situation of not
using pooling operation so that every kernel has a
wider range of information. More importantly, it
has “holes” in convolution map, which means it can
be adapted to match the non-continuous semantic
information. For example, “类风湿性多部位关节
炎”(Rheumatoid multisite arthritis) in the clinical
notes refers to “类风湿性关节炎”(Rheumatoid
arthritis) in ICD, the convolution map with holes
can tolerate the redundant parts, as shown in Figure
4. It is a distinct advantage of dilated convolution
for processing texts.

Figure 4: An example of the dilated convolution in pro-
cessing text.

Formally, the actual filter width of dilated con-
volutional neural network is computed as,

kd = r(k − 1) + 1, (4)

where r ∈ [1, 2, 3, ...] is the dilated rate, k is the
origin filter width.

For each step n, the typical convolution is com-
puted as formula 5 and dilated convolution is com-
puted as formula 6. The dilated CNN is same as
typical CNN when the dilated rate is 1, since kd
equals to k when r = 1:

hn = tanh(Wc ∗ xn:n+k−1 + bc) (5)

h′n = tanh(Wc ∗ xn:n+kd−1 + bc), (6)

where Wc ∈ Rkd×de×dc is the convolutional filter
map, kd is the actual filter width, de is the size of
the word embedding, an dc the size of the filter
output and bc ∈ Rdc is the bias.

Attention. After convolution, the sentence is rep-
resented as H ∈ Rdc×N . We employ the per-label
attention mechanism (Mullenbach et al., 2018) to
find the most contributed characters for each label.

For each label l, the distributed attention weight
is computed as:

αl = SoftMax(HTul), (7)
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where ul ∈ Rdc is the vector representation of label
l. Finally, the sentence is represented as:

ml = Hαl (8)

We employ attention both for typical CNN and
dilated CNN, for convenience of distinction, we
denote them as ml and m′l, respectively.

Classification. ml and m′l is concatenated with
the linear transformed n-gram matrix horizontally.
The aim of this step is to combining all the features
together. Then we exploit sigmoid classifier and
the prediction of label i is computed as,

ŷi = σ(W T [ml;m
′
l;m

′′
l ] + b), (9)

where i ∈ [1, 2, ..., L],W ∈ R3dc , b is the bias,m′′l
is the linear projection of n-gram matrix(M ).

The loss function is the multi-label binary cross-
entropy (Nam et al., 2013).

L =
L∑

i=1

[−yilog(ŷi)−(1−yi)log(1− ŷi)], (10)

where yi ∈ {0, 1} is the ground truth for the i-th
label and ŷi is the sigmoid score for the i-th label.

3.2 User Interface
Figure 2 illustrates the user interface of our system.

User Input. The left of Figure 2(a) displays the
user input. The user enters the whole free clinical
note, which includes at least one from admission
situation, admission diagnosis, discharge situation,
and discharge diagnosis into the input box.

Predicted Labels. The predicted labels are pre-
sented in the list of Figure 2(a), including disease
name and homologous ICD codes. The number
of predicted codes are not always the same as the
diseases in discharge diagnosis, because clinicians
may leave out certain diseases and several diag-
noses should be combined into one ICD code(Shi
et al., 2017). Our model can list all these diseases,
and give the reason why they should be predicted.

Interpretability. Interpretability is a critical as-
pect of the decision-making system, especially in
the clinical medicine domain. In our system, we
give two ways, n-gram matching mechanism and
attention, to assist users in understanding why each
code is predicted. A user can know why the model
predicted the labels, and what the key information
in its decision was:

(1) N-gram Matching Mechanism. When a pa-
tient suffering from a disease, the corresponding
text span related to disease names often appear in
the discharge summary. As shown in Figure 2 (b1),
the gram in disease name is highlighted to give a
hint to users if it appears in the clinical text. High-
lighting not only tells users why we predict each
code but also prompts the place of the important
information.

(2) Attention. As shown in Figure 2 (b2), the
red background is attention distribution, and the
darker the color is, the more useful the word is to
predict the current label. The darker color is also
helpful and attractive for human-being to double-
check the correction of labels.

4 Experiments

4.1 Dataset

We evaluate our model on both Chinese and En-
glish datasets. The Chinese dataset, collected by us,
contains 50,678 Chinese clinical notes and 6,200
unique ICD-10 codes. For each clinical note, it
contains five parts: admission situation, admission
diagnosis, discharge situation, discharge diagnosis
and annotated ICD-10 codes. Admission situation
involves chief complaints, past medical history, etc.
Discharge situation involves the results of general
examination. Admission diagnosis and discharge
diagnosis involve disease names, which may not be
totally consistent with standard names in ICD-10.
The manually annotated codes are based on ICD-
10, which are tagged by professional coders after
reading through the whole clinical note.

CN-Full CN-50 MIMIC-III-50
# Samples 50,678 36,758 9,795
# Labels 6200 50 50

Vocabulary size 3,957 3,957 51,917
# Average tokens per sample 621 655 1,530
# Average labels per sample 4.3 2.6 5.7

Table 1: Detailed information for three datasets.

The dataset (CN-Full) is formed with full labels
mentioned above, and it is divided into train set and
test set with the radio of 9:1. In addition, due to
the phenomenon that massive codes are infrequent,
and a small amount of codes are high-frequent, we
reconstructed a sub-dataset (CN-50) with the most
frequent 50 codes from the original dataset. The
specific process is that filtering the origin train set
and test set, and maintain the data which has at
least one of the top 50 most frequent codes.
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Dataset CN-Full CN-50

Model
F1 AUC R@k F1 AUC R@k

Macro Micro Macro Micro k=5 k=10 Macro Micro Macro Micro k=5 k=8

CAML(Mullenbach et al., 2018) 0.0600 0.6755 0.8832 0.9808 0.6099 0.7651 0.8305 0.8458 0.9846 0.9902 0.8796 0.9579
Dilated CNN 0.1017 0.6997 0.8637 0.9772 0.6268 0.7864 0.8399 0.8523 0.9849 0.9904 0.8807 0.9550

N-gram Matching 0.1200 0.7050 0.9574 0.9915 0.6393 0.8036 0.8385 0.8543 0.9867 0.9922 0.8900 0.9640
DACNM 0.1116 0.7127 0.9520 0.9909 0.6430 0.8043 0.8452 0.8602 0.9878 0.9932 0.8895 0.9657

Table 2: Evaluation on Chinese dataset CN-Full and CN-50.

To better compare with the previous works, we
also evaluate our method on the MIMIC-III dataset
(Johnson et al., 2016), which is the most authorita-
tive English dataset for evaluating the performance
of automatic ICD coding approaches. The detailed
description for these datasets is listed in Table 1.

4.2 Data Preprocess and Parameters

We splice the admission situation, admission diag-
nosis, discharge situation and discharge diagnosis
together, which is the input of the model. The max
length of the input is 1000. The word embedding is
pre-trained using Word2Vec (Mikolov et al., 2013)
with the dimensions of 100. The text is from all
clinical notes. The batch size is 16. The dropout
rate is 0.5. The optimizer is Adam (Kingma and
Ba, 2015) with a learning rate of 0.0001.

We use Micro-F1, Macro-F1, area under the
ROC (Receiver Operating Characteristic) curve
(AUC) and P@k as the metrics. P@k (Precision at
k) is the fraction of the k highest-scored labels that
are present in the ground truth.

4.3 Results

First, for the Chinese dataset (CN-Full and CN-50),
CAML (Mullenbach et al., 2018) is set as our base-
line, which use traditional convolutional attention
network. Moreover, we test the dilated CNN and n-
gram matching mechanism separately. The results
in Table 2 indicate that dilated CNN and n-gram
matching mechanism both have a positive effect on
improving performance from baseline, and the best
results are obtained when they combined.

We also evaluate our method on English dataset
(MIMIC-III-50). The results are shown in Table
3. The CNN and Bi-GRU are the classic methods
and the results are the same as (Mullenbach et al.,
2018). Our proposed model achieves the Micro-
F1 score of 0.641, which outperforms all previous
works, more importantly providing interpretability.

Besides, we notice that macro-F1 measure is al-
ways lower than micro-F1, especially in the full
labels datasets. It means the smaller classes have

Model F1 AUC P@k

Macro Micro Macro Micro k=5
CNN 0.576 0.625 0.876 0.907 0.620

Bi-GRU 0.484 0.549 0.828 0.868 0.591
C-MemNN(Prakash et al., 2017) - - 0.833 - 0.42

(Shi et al., 2017) - 0.532 - 0.900 -
HA-GRU(Baumel et al., 2018) - 0.366 - - -

CAML(Mullenbach et al., 2018) 0.532 0.614 0.875 0.909 0.609
DR-CAML(Mullenbach et al., 2018) 0.576 0.633 0.884 0.916 0.618

DACNM (Proposed model) 0.579 0.641 0.890 0.916 0.616

Table 3: Evaluation on MIMIC-III-50 dataset

poorer performance than larger classes, which is
consistent with the facts. Either MIMIC-III or the
Chinese dataset, the sample distributions are ex-
tremely imbalanced. Minority of codes are highly
frequent, while most codes are infrequent. N-gram
matching mechanism helps improve macro-F1 on
CN-Full dataset obviously, reaching two times than
baseline. It can be inferred that utilizing grams in
disease names is useful for the smaller class.

5 Conclusion

In this paper, we propose a Dilated Convolutional
Attention network with N-gram Matching Mech-
anism (DCANM) for automatic ICD coding. The
dilated CNN, which is first applied to the ICD cod-
ing task, aims to capture semantic information for
non-continuous words, and the n-gram matching
mechanism aims to capture the continuous seman-
tic. They both provide a pretty good interpretability
for prediction. Moreover, we develop an open-
access system to help users assign ICD codes. We
will try to utilize external resources to solve the
few-shot and zero-shot problem in the future.
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Admissions situation:

The middle-aged man was admitted to the hos-
pital because of a “blood glucose increase of 5
years and poor glycemic control in June”. The
patient’s routine physical examination five years
ago revealed an increase in blood glucose, about
9 mmol / L on an empty stomach, and the local
diagnosis was: “type 2 diabetes”. No obvious dry
mouth, frequent drinking, polyuria and weight loss,
no dizziness, no increased urine foam, no numb-
ness in hands, feet, and occasionally blurred vi-
sion. Diet and exercise were used to control blood
glucose. Normally, blood glucose was monitored
irregularly, and fasting blood glucose fluctuated
between 8-9mmol / L. During the course of the
disease, the general condition of the patient is OK,
the diet and sleep are OK, and there is no obvious
abnormality in the stool. The weight loss in the
last 2 months is about 3Kg. Auxiliary examina-
tion B: Ultralow hypoechoic nodules in the right
lobe of the thyroid gland, considering glial cysts;
bilateral carotid atherosclerosis with right plaque
formation; fatty liver; right renal cyst with calcium
milk; enlarged prostate; Atherosclerosis.

Admission diagnosis:

1. Type 2 diabetes 2. Kidney stones 3. Thyroid
nodules 4. Atherosclerosis 5. Fatty liver

Discharge situation:

The patient had no dry mouth and frequent drink-
ing, no polyuria, diet and sleep were OK, physi-
cal examination: clear mind, good spirits, slightly
thicker breathing sounds in both lungs, and no wet
and dry rales. Heart rhythm is uniform, and no
noise is heard. The abdomen is flat, the whole ab-
domen is soft, no tenderness, no tenderness, no
edema in both lower limbs.

Discharge diagnosis:

1.Type 2 diabetes 2. Right renal cyst 3. Thyroid
nodule 4. Atherosclerosis 5. Fatty liver 6. Hyper-
lipidemia

Predicted diseases and codes:

1. Thyroid nodule E04.101
2. Type 2 diabetes E11.9022
3. Hyperlipidemia E78.501
4. Atherosclerosis I70.904
5. Fatty liver K76.001
6. Kidney stones N20.000

7. Acquired renal cysts N28.100

301



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 302–311
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

ESPnet-ST: All-in-One Speech Translation Toolkit

Hirofumi Inaguma1 Shun Kiyono2 Kevin Duh3 Shigeki Karita4

Nelson Yalta5 Tomoki Hayashi6,7 Shinji Watanabe3
1 Kyoto University 2 RIKEN AIP 3 Johns Hopkins University

4 NTT Communication Science Laboratories 5 Waseda University
6 Nagoya University 7 Human Dataware Lab. Co., Ltd.

inaguma@sap.ist.i.kyoto-u.ac.jp

Abstract

We present ESPnet-ST, which is designed for
the quick development of speech-to-speech
translation systems in a single framework.
ESPnet-ST is a new project inside end-to-
end speech processing toolkit, ESPnet, which
integrates or newly implements automatic
speech recognition, machine translation, and
text-to-speech functions for speech transla-
tion. We provide all-in-one recipes including
data pre-processing, feature extraction, train-
ing, and decoding pipelines for a wide range
of benchmark datasets. Our reproducible re-
sults can match or even outperform the cur-
rent state-of-the-art performances; these pre-
trained models are downloadable. The toolkit
is publicly available at https://github.

com/espnet/espnet.

1 Introduction

Speech translation (ST), where converting speech
signals in a language to text in another language,
is a key technique to break the language barrier
for human communication. Traditional ST sys-
tems involve cascading automatic speech recogni-
tion (ASR), text normalization (e.g., punctuation
insertion, case restoration), and machine transla-
tion (MT) modules; we call this Cascade-ST (Ney,
1999; Casacuberta et al., 2008; Kumar et al., 2014).
Recently, sequence-to-sequence (S2S) models have
become the method of choice in implementing
both the ASR and MT modules (c.f. (Chan et al.,
2016; Bahdanau et al., 2015)). This convergence
of models has opened up the possibility of design-
ing end-to-end speech translation (E2E-ST) sys-
tems, where a single S2S directly maps speech in
a source language to its translation in the target
language (Bérard et al., 2016; Weiss et al., 2017).

E2E-ST has several advantages over the cas-
caded approach: (1) a single E2E-ST model can
reduce latency at inference time, which is useful for

time-critical use cases like simultaneous interpreta-
tion. (2) A single model enables back-propagation
training in an end-to-end fashion, which mitigates
the risk of error propagation by cascaded modules.
(3) In certain use cases such as endangered lan-
guage documentation (Bird et al., 2014), source
speech and target text translation (without the inter-
mediate source text transcript) might be easier to
obtain, necessitating the adoption of E2E-ST mod-
els (Anastasopoulos and Chiang, 2018). Neverthe-
less, the verdict is still out on the comparison of
translation quality between E2E-ST and Cascade-
ST. Some empirical results favor E2E (Weiss et al.,
2017) while others favor Cascade (Niehues et al.,
2019); the conclusion also depends on the nuances
of the training data condition (Sperber et al., 2019).

We believe the time is ripe to develop a unified
toolkit that facilitates research in both E2E and
cascaded approaches. We present ESPnet-ST, a
toolkit that implements many of the recent models
for E2E-ST, as well as the ASR and MT modules
for Cascade-ST. Our goal is to provide a toolkit
where researchers can easily incorporate and test
new ideas under different approaches. Recent re-
search suggests that pre-training, multi-task learn-
ing, and transfer learning are important techniques
for achieving improved results for E2E-ST (Bérard
et al., 2018; Anastasopoulos and Chiang, 2018;
Bansal et al., 2019; Inaguma et al., 2019). Thus,
a unified toolkit that enables researchers to seam-
lessly mix-and-match different ASR and MT mod-
els in training both E2E-ST and Cascade-ST sys-
tems would facilitate research in the field.1

ESPnet-ST is especially designed to target the
ST task. ESPnet was originally developed for the

1There exist many excellent toolkits that support both ASR
and MT tasks (see Table 1). However, it is not always straight-
forward to use them for E2E-ST and Cascade-ST, due to in-
compatible training/inference pipelines in different modules
or lack of detailed preprocessing/training scripts.
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Toolkit
Supported task Example (w/ corpus pre-processing) Pre-trained

modelASR LM E2E- Cascade- MT TTS ASR LM E2E- Cascade- MT TTSST ST ST ST
ESPnet-ST (ours) X X X X X X X X X X X X X
Lingvo1 X X X♣ X♣ X X♣ X X – – X – –
OpenSeq2seq2 X X – – X X X X – – X – X
NeMo3 X X – – X X X X – – X – X
RETURNN4 X X X – X – – – – – – – X
SLT.KIT5 X – X X X – X – X X X – X
Fairseq6 X X – – X – X X – – X – X
Tensor2Tensor7 X X – – X – – – – – X – X♦

OpenNMT-{py, tf}8 X X – – X – – – – – – – X
Kaldi9 X X – – – – X X – – – – X
Wav2letter++10 X X – – – – X X – – – – X

Table 1: Framework comparison on supported tasks in January, 2020. ♣Not publicly available. ♦Available only in
Google Cloud storage. 1(Shen et al., 2019) 2(Kuchaiev et al., 2018) 3(Kuchaiev et al., 2019) 4(Zeyer et al., 2018)
5(Zenkel et al., 2018) 6(Ott et al., 2019) 7(Vaswani et al., 2018) 8(Klein et al., 2017) 9(Povey et al., 2011) 10(Pratap
et al., 2019)

ASR task (Watanabe et al., 2018), and recently ex-
tended to the text-to-speech (TTS) task (Hayashi
et al., 2020). Here, we extend ESPnet to ST tasks,
providing code for building translation systems
and recipes (i.e., scripts that encapsulate the en-
tire training/inference procedure for reproducibility
purposes) for a wide range of ST benchmarks. This
is a non-trivial extension: with a unified codebase
for ASR/MT/ST and a wide range of recipes, we be-
lieve ESPnet-ST is an all-in-one toolkit that should
make it easier for both ASR and MT researchers to
get started in ST research.

The contributions of ESPnet-ST are as follows:

• To the best of our knowledge, this is the
first toolkit to include ASR, MT, TTS, and
ST recipes and models in the same codebase.
Since our codebase is based on the unified
framework with a common stage-by-stage pro-
cessing (Povey et al., 2011), it is very easy to
customize training data and models.

• We provide recipes for ST corpora such
as Fisher-CallHome (Post et al., 2013),
Libri-trans (Kocabiyikoglu et al., 2018),
How2 (Sanabria et al., 2018), and Must-
C (Di Gangi et al., 2019a)2. Each recipe con-
tains a single script (run.sh), which cov-
ers all experimental processes, such as corpus
preparation, data augmentations, and transfer
learning.

• We provide the open-sourced toolkit and the
pre-trained models whose hyper-parameters

2We also support ST-TED (Jan et al., 2018) and low-
resourced Mboshi-French (Godard et al., 2018) recipes.

are intensively tuned. Moreover, we provide
interactive demo of speech-to-speech transla-
tion hosted by Google Colab.3

2 Design

2.1 Installation

All required tools are automatically downloaded
and built under tools (see Figure 1) by a make
command. The tools include (1) neural network
libraries such as PyTorch (Paszke et al., 2019),
(2) ASR-related toolkits such as Kaldi (Povey
et al., 2011), and (3) MT-related toolkits such
as Moses (Koehn et al., 2007) and sentence-
piece (Kudo, 2018). ESPnet-ST is implemented
with Pytorch backend.

2.2 Recipes for reproducible experiments

We provide various recipes for all tasks in order to
quickly and easily reproduce the strong baseline
systems with a single script. The directory struc-
ture is depicted as in Figure 1. egs contains corpus
directories, in which the corresponding task direc-
tories (e.g., st1) are included. To run experiments,
we simply execute run.sh under the desired task
directory. Configuration yaml files for feature ex-
traction, data augmentation, model training, and
decoding etc. are included in conf. Model direc-
tories including checkpoints are saved under exp.
More details are described in Section 2.4.

3https://colab.research.google.com/
github/espnet/notebook/blob/master/st_
demo.ipynb
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Figure 1: Directory structure of ESPnet-ST
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Figure 2: All-in-one process pipelines in ESPnet-ST

2.3 Tasks

We support language modeling (LM), neural text-
to-speech (TTS) in addition to ASR, ST, and MT
tasks. To the best of our knowledge, none of frame-
works support all these tasks in a single toolkit.
A comparison with other frameworks are summa-
rized in Table 1. Conceptually, it is possible to
combine ASR and MT modules for Cascade-ST,
but few frameworks provide such examples. More-
over, though some toolkits indeed support speech-
to-text tasks, it is not trivial to switch ASR and
E2E-ST tasks since E2E-ST requires the auxiliary
tasks (ASR/MT objectives) to achieve reasonable
performance.

2.4 Stage-by-stage processing

ESPnet-ST is based on a stage-by-stage processing
including corpus-dependent pre-processing, feature
extraction, training, and decoding stages. We fol-
low Kaldi-style data preparation, which makes it
easy to augment speech data by leveraging other
data resources prepared in egs.

Once run.sh is executed, the following pro-
cesses are started.

Stage 0: Corpus-dependent pre-processing is con-
ducted using scripts under local and the result-
ing text data is automatically saved under data.
Both transcriptions and the corresponding transla-
tions with three different treatments of casing and
punctuation marks (hereafter, punct.) are gener-
ated after text normalization and tokenization with
tokenizer.perl in Moses; (a) tc: truecased
text with punct., (b) lc: lowercased text with punct.,
and (3) lc.rm: lowercased text without punct. ex-
cept for apostrophe. lc.rm is designed for the
ASR task since the conventional ASR system does

not generate punctuation marks. However, it is
possible to train ASR models so as to generate
truecased text using tc.4

Stage 1: Speech feature extraction based on Kaldi
and our own implementations is performed.

Stage 2: Dataset JSON files in a format in-
gestable by ESPnet’s Pytorch back-end (containing
token/utterance/speaker/language IDs, input and
output sequence lengths, transcriptions, and trans-
lations) are dumped under dump.

Stage 3: (ASR recipe only) LM is trained.

Stage 4: Model training (RNN/Transformer) is
performed.

Stage 5: Model averaging, beam search decoding,
and score calculation are conducted.

Stage 6: (Cascade-ST recipe only) The system
is evaluated by feeding ASR outputs to the MT
model.

2.5 Multi-task learning and transfer learning

In ST literature, it is acknowledged that the op-
timization of E2E-ST is more difficult than indi-
vidually training ASR and MT models. Multitask
training (MTL) and transfer learning from ASR
and MT tasks are promising approaches for this
problem (Weiss et al., 2017; Bérard et al., 2018;
Sperber et al., 2019; Bansal et al., 2019). Thus, in
Stage 4 of the E2E-ST recipe, we allow options to
add auxiliary ASR and MT objectives. We also sup-
port options to initialize the parameters of the ST
encoder with a pre-trained ASR encoder in asr1,
and to initialize the parameters of the ST decoder
with a pre-trained MT decoder in mt1.

4We found that this degrades the ASR performance.
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2.6 Speech data augmentation

We implement techniques that have shown to give
improved robustness in the ASR component.

Speed perturbation We augmented speech data
by changing the speed with factors of 0.9, 1.0, and
1.1, which results in 3-fold data augmentation. We
found this is important to stabilize E2E-ST training.

SpecAugment Time and frequency masking
blocks are randomly applied to log mel-filterbank
features. This has been originally proposed to im-
prove the ASR performance and shown to be effec-
tive for E2E-ST as well (Bahar et al., 2019b).

2.7 Multilingual training

Multilingual training, where datasets from differ-
ent language pairs are combined to train a single
model, is a potential way to improve performance
of E2E-ST models (Inaguma et al., 2019; Di Gangi
et al., 2019c). Multilingual E2E-ST/MT models
are supported in several recipes.

2.8 Additional features

Experiment manager We customize the data
loader, trainer, and evaluator by overriding
Chainer (Tokui et al., 2019) modules. The com-
mon processes are shared among all tasks.

Large-scale training/decoding We support job
schedulers (e.g., SLURM, Grid Engine), multiple
GPUs and half/mixed-precision training/decoding
with apex (Micikevicius et al., 2018).5 Our beam
search implementation vectorizes hypotheses for
faster decoding (Seki et al., 2019).

Performance monitoring Attention weights
and all kinds of training/validation scores and
losses for ASR, MT, and ST tasks can be collec-
tively monitored through TensorBoard.

Ensemble decoding Averaging posterior proba-
bilities from multiple models during beam search
decoding is supported.

3 Example Models

To give a flavor of the models that are supported
with ESPnet-ST, we describe in detail the construc-
tion of an example E2E-ST model, which is used
later in the Experiments section. Note that there are
many customizable options not mentioned here.

5https://github.com/NVIDIA/apex

Automatic speech recognition (ASR) We build
ASR components with the Transformer-based hy-
brid CTC/attention framework (Watanabe et al.,
2017), which has been shown to be more effec-
tive than RNN-based models on various speech
corpora (Karita et al., 2019). Decoding with the
external LSTM-based LM trained in the Stage 3
is also conducted (Kannan et al., 2017). The trans-
former uses 12 self-attention blocks stacked on
the two VGG blocks in the speech encoder and 6
self-attention blocks in the transcription decoder;
see (Karita et al., 2019) for implementation details.

Machine translation (MT) The MT model con-
sists of the source text encoder and translation de-
coder, implemented as a transformer with 6 self-
attention blocks. For simplicity, we train the MT
model by feeding lowercased source sentences
without punctuation marks (lc.rm) (Peitz et al.,
2011). There are options to explore characters and
different subword units in the MT component.

End-to-end speech translation (E2E-ST) Our
E2E-ST model is composed of the speech encoder
and translation decoder. Since the definition of
parameter names is exactly same as in the ASR and
MT components, it is quite easy to copy parameters
from the pre-trained models for transfer learning.
After ASR and MT models are trained as described
above, their parameters are extracted and used to
initialize the E2E-ST model. The model is then
trained on ST data, with the option of incorporating
multi-task objectives as well.

Text-to-speech (TTS) We also support end-to-
end text-to-speech (E2E-TTS), which can be ap-
plied after ST outputs a translation. The E2E-
TTS model consists of the feature generation net-
work converting an input text to acoustic fea-
tures (e.g., log-mel filterbank coefficients) and the
vocoder network converting the features to a wave-
form. Tacotron 2 (Shen et al., 2018), Transformer-
TTS (Li et al., 2019), FastSpeech (Ren et al., 2019),
and their variants such as a multi-speaker model
are supported as the feature generation network.
WaveNet (van den Oord et al., 2016) and Parallel
WaveGAN (Yamamoto et al., 2020) are available
as the vocoder network. See Hayashi et al. (2020)
for more details.

4 Experiments

In this section, we demonstrate how models from
our ESPnet recipes perform on benchmark speech
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Model
Es→ En

Fisher CallHome
dev dev2 test devtest evltest

E2E

Char RNN + ASR-MTL (Weiss et al., 2017) 48.30 49.10 48.70 16.80 17.40
ESPnet-ST (Transformer)
ASR-MTL (multi-task w/ ASR) 46.64 47.64 46.45 16.80 16.80
+ MT-MTL (multi-task w/ MT) 47.17 48.20 46.99 17.51 17.64

ASR encoder init. ( 1©) 46.25 47.11 46.21 17.35 16.94
+ MT decoder init. ( 2©) 46.25 47.60 46.72 17.62 17.50
+ SpecAugment ( 3©) 48.94 49.32 48.39 18.83 18.67
+ Ensemble 3 models ( 1© + 2© + 3©) 50.76 52.02 50.85 19.91 19.36

Cascade

Char RNN ASR→ Char RNN MT (Weiss et al., 2017) 45.10 46.10 45.50 16.20 16.60
Char RNN ASR→ Char RNN MT (Inaguma et al., 2019)♣ 37.3 39.6 38.6 16.8 16.5
ESPnet-ST
Transformer ASR♦→ Transformer MT 41.96 43.46 42.16 19.56 19.82

Table 2: BLEU of ST systems on Fisher-CallHome Spanish corpus. ♣Implemented w/ ESPnet. ♦w/ SpecAugment.

Model En→ Fr

E2E

Transformer + ASR/MT-trans + KD1 17.02
+ Ensemble 3 models 17.8
Transformer + PT4 + adaptor2 16.80
Transformer + PT4 + SpecAugment3 17.0
RNN + TCEN4,♣ 17.05
ESPnet-ST (Transformer)
ASR-MTL 15.30
+ MT-MLT 15.47
ASR encoder init. ( 1©) 15.53
+ MT decoder init. ( 2©) 16.22
+ SpecAugment ( 3©) 16.70
+ Ensemble 3 models ( 1© + 2© + 3©) 17.40

Cascade
Transformer ASR→ Transformer MT1 17.85
ESPnet-ST
Transformer ASR♦→ Transformer MT 16.96

Table 3: BLEU of ST systems on Libri-trans cor-
pus. ♣Implemented w/ ESPnet. 4Pre-training. ♦w/
SpecAugment. 1(Liu et al., 2019) 2(Bahar et al., 2019a)
3(Bahar et al., 2019b) 4(Wang et al., 2020)

translation corpora: Fisher-CallHome Spanish
En→Es, Libri-trans En→Fr, How2 En→Pt, and
Must-C En→8 languages. Moreover, we also per-
formed experiments on IWSLT16 En-De to validate
the performance of our MT modules.

All sentences were tokenized with the
tokenizer.perl script in the Moses
toolkit (Koehn et al., 2007). We used the
joint source and target vocabularies based on
byte pair encoding (BPE) (Sennrich et al., 2016)
units. ASR vocabularies were created with English
sentences only with lc.rm. We report 4-gram
BLEU (Papineni et al., 2002) scores with the
multi-bleu.perl script in Moses. For speech
features, we extracted 80-channel log-mel filter-
bank coefficients with 3-dimensional pitch features
using Kaldi, resulting 83-dimensional features per
frame. Detailed training and decoding configura-

Model En→ Pt

E2E

RNN (Sanabria et al., 2018) 36.0
ESPnet-ST
Transformer 40.59
+ ASR-MTL 44.90
+ MT-MLT 45.10

Transformer + ASR encoder init. ( 1©) 45.03
+ MT decoder init. ( 2©) 45.63
+ SpecAugment ( 3©) 45.68
+ Ensemble 3 models ( 1© + 2© + 3©) 48.04

Cascade ESPnet-ST
Transformer ASR→ Transformer MT 44.90

Table 4: BLEU of ST systems on How2 corpus

tions are available in conf/train.yaml and
conf/decode.yaml, respectively.

4.1 Fisher-CallHome Spanish (Es→En)

Fisher-CallHome Spanish corpus contains 170-
hours of Spanish conversational telephone speech,
the corresponding transcription, as well as the En-
glish translations (Post et al., 2013). All punc-
tuation marks except for apostrophe were re-
moved (Post et al., 2013; Kumar et al., 2014; Weiss
et al., 2017). We report case-insensitive BLEU on
Fisher-{dev, dev2, test} (with four references), and
CallHome-{devtest, evltest} (with a single refer-
ence). We used 1k vocabulary for all tasks.

Results are shown in Table 2. It is worth noting
that we did not use any additional data resource.
Both MTL and transfer learning improved the per-
formance of vanilla Transformer. Our best system
with SpecAugment matches the current state-of-
the-art performance (Weiss et al., 2017). Moreover,
the total training/inference time is much shorter
since our E2E-ST models are based on the BPE1k
unit rather than characters.6

6Weiss et al. (2017) trained their model for more than 2.5
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Model De Pt Fr Es Ro Ru Nl It

E2E

Transformer + ASR encoder init.1,♣ 17.30 20.10 26.90 20.80 16.50 10.50 18.80 16.80
ESPnet-ST (Transformer)
ASR encoder/MT decoder init. 22.33 27.26 31.54 27.84 20.91 15.32 26.86 22.81
+ SpecAugment 22.91 28.01 32.69 27.96 21.90 15.75 27.43 23.75

Cascade
Transformer→ Transformer ASR1 18.5 21.5 27.9 22.5 16.8 11.1 22.2 18.9
ESPnet-ST
Transformer ASR→ Transformer MT 23.65 29.04 33.84 28.68 22.68 16.39 27.91 24.04

Table 5: BLEU of ST systems on Must-C corpus. ♣Implemented w/ Fairseq. 1(Di Gangi et al., 2019b)

En→De De→En

Framework test2012 test2013 test2014 test2012 test2013 test2014

Fairseq 27.73 29.45 25.14 32.25 34.23 29.49
ESPnet-ST 26.92 28.88 24.70 32.19 33.46 29.22

Table 6: BLEU of MT systems on IWSLT 2016 corpus

4.2 Libri-trans (En→ Fr)

Libri-trans corpus contains 236-hours of English
read speech, the corresponding transcription, and
the French translations (Kocabiyikoglu et al., 2018).
We used the clean 100-hours of speech data and
augmented translation references with Google
Translate for the training set (Bérard et al., 2018;
Liu et al., 2019; Bahar et al., 2019a,b). We report
case-insensitive BLEU on the test set. We used 1k
vocabulary for all tasks.

Results are shown in Table 3. Note that all mod-
els used the same data resource and are competitive
to previous work.

4.3 How2 (En→ Pt)

How2 corpus contains English speech extracted
from YouTube videos, the corresponding transcrip-
tion, as well as the Portuguese translation (Sanabria
et al., 2018). We used the official 300-hour subset
for training. Since speech features in the How2 cor-
pus is pre-processed as 40-channel log-mel filter-
bank coefficients with 3-dimensional pitch features
with Kaldi in advance, we used them without speed
perturbation. We used 5k and 8k vocabularies for
ASR and E2E-ST/MT models, respectively. We
report case-sensitive BLEU on the dev5 set.

Results are shown in Table 4. Our systems
significantly outperform the previous RNN-based
model (Sanabria et al., 2018). We believe that our
systems can be regarded as the reliable baselines
for future research.

weeks with 16 GPUs, while ESPnet-ST requires just 1-2 days
with a single GPU. The fast inference of ESPnet-ST can be
confirmed in our interactive demo page (RTF 0.7755).

4.4 Must-C (En→ 8 langs)
Must-C corpus contains English speech extracted
from TED talks, the corresponding transcription,
and the target translations in 8 language directions
(De, Pt, Fr, Es, Ro, Ru, Nl, and It) (Di Gangi et al.,
2019a). We conducted experiments in all 8 direc-
tions. We used 5k and 8k vocabularies for ASR
and E2E-ST/MT models, respectively. We report
case-sensitive BLEU on the tst-COMMON set.

Results are shown in Table 5. Our systems
outperformed the previous work (Di Gangi et al.,
2019b) implemented with the custermized Fairseq7

with a large margin.

4.5 MT experiment: IWSLT16 En↔ De
IWSLT evaluation campaign dataset (Cettolo et al.,
2012) is the origin of the dataset for our MT exper-
iments. We used En-De language pair. Specifically,
IWSLT 2016 training set for training data, test2012
as the development data, and test2013 and test2014
sets as our test data respectively.

We compare the performance of Transformer
model in ESPnet-ST with that of Fairseq in Ta-
ble 6. ESPnet-ST achieves the performance almost
comparable to the Fairseq. We assume that the per-
formance gap is due to the minor difference in the
implementation of two frameworks. Also, we care-
fully tuned the hyper-parameters for the MT task in
the small ST corpora, which is confirmed from the
reasonable performances of our Cascaded-ST sys-
tems. It is acknowledged that Transformer model
is extremely sensitive to the hyper-parameters such
as the learning rate and the number of warmup

7https://github.com/mattiadg/
FBK-Fairseq-ST
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steps (Popel and Bojar, 2018). Thus, it is possi-
ble that the suitable sets of hyper-parameters are
different across frameworks.

5 Conclusion

We presented ESPnet-ST for the fast development
of end-to-end and cascaded ST systems. We pro-
vide various all-in-one example scripts containing
corpus-dependent pre-processing, feature extrac-
tion, training, and inference. In the future, we will
support more corpora and implement novel tech-
niques to bridge the gap between end-to-end and
cascaded approaches.
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Abstract

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a framework for se-
mantic dependencies that encodes its rooted
and directed acyclic graphs in a format called
PENMAN notation. The format is simple
enough that users of AMR data often write
small scripts or libraries for parsing it into
an internal graph representation, but there is
enough complexity that these users could ben-
efit from a more sophisticated and well-tested
solution. The open-source Python library Pen-
man provides a robust parser, functions for
graph inspection and manipulation, and func-
tions for formatting graphs into PENMAN no-
tation. Many functions are also available in a
command-line tool, thus extending its utility to
non-Python setups.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a framework for encoding
English language1 meaning as structural-semantic
graphs using a fork of Propbank (Kingsbury and
Palmer, 2002; O’Gorman et al., 2018) for its seman-
tic frames with additional AMR-specific roles. The
graphs are connected, directed, with node and edge
labels, and may have multiple roots but always
have exactly one distinguished top node. AMR
corpora, such as the recent AMR Annotation Re-
lease 3.0 (LDC2020T02),2 encode the graphs in
a format called PENMAN notation (Matthiessen
and Bateman, 1991). PENMAN notation is a text
stream and is thus linear, but it first uses brack-
eting to capture a spanning tree over the graph,
then inverted edge labels and references to node
IDs to capture re-entrancies. Proper interpretation

1Variations exist for other languages (e.g., Li et al., 2016;
Cabezudo and Pardo, 2019), but AMR is primarily English
and is not an interlingua (Xue et al., 2014).

2https://catalog.ldc.upenn.edu/
LDC2020T02

of the “pure” graph therefore requires the deinver-
sion of inverted edges and the resolution of node
IDs. Some tools that work with AMR use the in-
terpreted pure graph (Cai and Knight, 2013; Song
and Gildea, 2019; Chiang et al., 2013), but many
others work at the tree level for surface alignment
(Flanigan et al., 2014), for transformations from
syntax trees (Wang et al., 2015), or to make use
of tree-based algorithms (Pust et al., 2015; Takase
et al., 2016). Others, particularly sequential neural
systems (Konstas et al., 2017; van Noord and Bos,
2017), use the linear form directly.

Furthermore, while AMRs ostensibly describe
semantic graphs abstracted away from any particu-
lar sentence’s surface form, human annotators tend
to “leak information” (Konstas et al., 2017) about
the source sentence. This means that an annotator
might be expected to produce the AMR in Fig. 1 for
sentence (1), but then swap the relative order of the
adjunct relations :location and :time for (2).3

Van Noord and Bos (2017) embraced these biases
and intentionally reordered relations, even frame ar-
guments such as :ARG0 and :ARG1, by their surface
alignments, leading to a boost in their evaluation
scores.

(1) I swam in the pool today.

(2) Today I swam in the pool.

(s / swim-01
:ARG0 (i / i)
:location (p / pool)
:time (t / today))

Figure 1: An AMR for (1) or (2)

As illustrated above, work involving AMR may
use the PENMAN string, the tree structure, or the

3Graphically there is no difference, and a metric like
smatch (Cai and Knight, 2013) would return a perfect score
when comparing the two.
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pure graph, or possibly multiple representations.
This paper therefore describes and demonstrates
Penman, a Python library and command-line util-
ity for working with AMR data at both the tree
and graph levels and for encoding and decoding
these structures using PENMAN notation. Con-
verting a tree into a graph loses information that
the tree implicitly encodes, so Penman introduces
the epigraph:4 optional information that exists on
top of the graph and controls how the pure graph
is expressed as a tree. Penman is freely avail-
able under a permissive open-source license at
https://github.com/goodmami/penman/.

2 Decoding and Encoding Graphs

Penman uses three-stage processes to decode PEN-
MAN notation to a graph and to encode a graph to
PENMAN, as illustrated in Fig. 2. Parsing is the
process of getting a tree from a PENMAN string,
and interpretation is getting a graph from a tree,
while decoding is the whole string-to-graph pro-
cess. Going the other way, configuration is the
process of getting a tree from a graph and format-
ting is getting a string from a tree, while encoding
is the whole graph-to-string process. Splitting the
decoding and encoding processes into two steps
each allows one to work with AMR data at any
stage. The variant of PENMAN notation used by
Penman is described in §2.1. The tree, graph, and
epigraph data structures are described in §2.2. Get-
ting a tree from a string (and vice-versa) depends
only on understanding PENMAN notation, but get-
ting a graph from a tree (and vice-versa) requires
an understanding of the semantic model. Semantic
models are described in §2.4.

2.1 PENMAN Notation

The Penman project uses a less-strict variant of
PENMAN notation than is used by AMR in order
to robustly handle some kinds of erroneous output
by AMR parsers. The syntactic and lexical rules for
PENMAN notation in PEG syntax5 are shown in
Fig. 3. Optional whitespace (not shown) is allowed
around expressions in the syntactic rules.

In AMR, the Concept expression on Node,
the Atom expression on Concept, and the
(Node / Atom) expression on Reln are obligatory,
but they are optional for Penman and will get a

4A different sense than for an inscription on a building or
a short passage at the start of a book.

5See https://bford.info/packrat/

null value when missing. Also in AMR, the ini-
tial Symbol on Node may be further constrained
with a specific Variable pattern for node iden-
tifiers and the Symbol in Atom would become a
choice: Variable / Symbol. How Penman han-
dles variables is discussed in §2.2.

AMR corpora conventionally use blank lines to
delineate multiple graphs, but Penman relies on
bracketing instead and whitespace is not signifi-
cant. Penman also parses comments (not described
in Fig. 3), which are lines prefixed with # charac-
ters, and extracts metadata where keys are tokens
prefixed with two colons (e.g., ::id) and values
are anything after the key until the next key or a
newline.

2.2 Decoding: Trees, Graphs, and Epigraphs

In Penman, a tree data structure is a 〈n,B〉 tuple
where n is the node’s identifier (variable) and B
is a list of branches. Each branch is a 〈l, b〉 tuple
where l is a branch label (a possibly inverted role)
and b is a (sub)tree or an atom. The first branch on
B is the node’s concept, thus a tree is a near-direct
conversion of the Node rule in Fig. 3 where B is
the concatenation of Concept and Reln. The tree
corresponding to the AMR in Fig. 2 is shown in
Fig. 4.

A graph is a tuple 〈v, T 〉 where v is the top
variable and T is a flat list of triples. For each triple
〈s, r, t〉, the source s is always the head variable of
a dependency, r is the normalized role, and t is the
dependent. When interpreting a triple from a tree
branch, n becomes s and t comes from b unless
the branch label l is deinverted according to the
semantic model (described in §2.4) to produce r,
in which case s and t are swapped. In the graph, t
is designated a variable if it appears as the source
of any other triple; otherwise it is an atom. Triples
where t is a variable are called edge relations. If
t is an atom and r is the special role :instance,
then t is the node’s concept and the triple is an
instance relation. All other triples are attribute
relations. Fig. 5 shows the graph corresponding to
the AMR in Fig. 2.

Conversion from a PENMAN string to a tree
is straightforward: the only information lost in
parsing is formatting details like the amount of
whitespace. The interpretation of a graph from a
tree, however, loses information about the specific
tree configuration for the graph, as there are often
many possible configurations for the same graph.
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PENMAN Tree Graph

(a / alpha
:ARG0 (b / beta)
:ARG0-of (g / gamma

:ARG1 b))

top

a

b g

b

:ARG0 :ARG0-of

:ARG1

top

a

b

g

:ARG0
:ARG0

:ARG1

parse interpret

configureformat

decode

encode

Figure 2: The three-stage decoding/encoding processes

# Syntactic rules
Start <- Node
Node <- ’(’ Symbol Concept? Reln* ’)’
Concept <- ’/’ Atom?
Reln <- Role Algn? (Node / Atom)?
Atom <- (String / Symbol) Algn?

# Lexical rules
Symbol <- NameChr+
Role <- ’:’ NameChr*
Algn <- ’~’ Prefix? Indices
Prefix <- [a-zA-Z] ’.’?
Indices <- Digit+ (’,’ Digit+)*
String <- ’"’ (!’"’ (’\\’ . / .))* ’"’
NameChr <- ![ \n\t\r\f\v()/:~] .
Digit <- [0-9]

Figure 3: Syntactic and lexical rules of PENMAN

(’a’, [
(’/’, ’alpha’),
(’:ARG0’, (’b’, [

(’/’, ’beta’)])),
(’:ARG0-of’, (’g’, [

(’/’, ’gamma’),
(’:ARG1’, ’b’)]))])

Figure 4: Tree structure for the AMR in Fig. 2

(’a’,
[(’a’, ’:instance’, ’alpha’),
(’a’, ’:ARG0’, ’b’),
(’b’, ’:instance’, ’beta’),
(’g’, ’:ARG0’, ’a’),
(’g’, ’:instance’, ’gamma’),
(’g’, ’:ARG1’, ’b’)])

Figure 5: Graph structure for the AMR in Fig. 2

Therefore, upon interpretation, Penman stores in
two places the information that would be lost: in
the order of triples (meaning the graph’s triples are
a sequence, not an unordered bag or set), and in the
epigraph, which is a mapping of triples to lists of
epigraphical markers. The choice of the term epi-
graph is by analogy to the epigenome: just as epi-
genetic markers control how genes are expressed
in an organism, epigraphical markers control how
triples are expressed in a tree. In interpreting a
graph from a tree, when a branch’s target is another
subtree (e.g., when ( is encountered in the string),
a Push marker is assigned to the triple resulting
from the branch, indicating that that triple pushed a
new node context onto a stack representing the tree
structure. The final triple resulting from branches
in the subtree, even considering further nested sub-
trees (e.g., at the point where ) is encountered in
the string), gets a Pop marker indicating the end of
the node context. In addition to tree-layout mark-
ers, the epigraph is also where surface alignment
information is stored, as these alignments are not
part of the pure graph. Fig. 6 shows the epigraph
for the AMR in Fig. 2.

{
(’a’, ’:instance’, ’alpha’):[],
(’a’, ’:ARG0’, ’b’): [Push(’b’)],
(’b’, ’:instance’, ’beta’): [Pop],
(’g’, ’:ARG0’, ’a’): [Push(’g’)],
(’g’, ’:instance’, ’gamma’):[],
(’g’, ’:ARG1’, ’b’): [Pop]
}

Figure 6: Epigraph structure for the AMR in Fig. 2
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2.3 Encoding: No Surprises

When configuring a tree from a graph, the epigraph
is used to control where triples occur in the tree.
If at each step the layout markers in the epigraph
allow the configuration process to navigate a tree
with no surprises (that is, when the source or target
of each triple is the current node on a node-context
stack), then it will produce the same tree that was
decoded to get the graph.6 Otherwise, such as
when a graph is modified or constructed without
an epigraph, the algorithm will switch to another
procedure that repeatedly passes over the list of re-
maining triples and configures those whose source
or target are already in the tree under construction.
If no triples are inserted in a pass, the remaining
triples are discarded and a warning is logged that
the graph is disconnected. The semantic model
is used to properly configure inverted branches as
necessary.

Once a tree is configured, formatting it to a string
is simple, and users may customize the formatter
to adjust the amount of whitespace used. The de-
fault indentation width is an adaptive mode that
indents based on the initial column of the current
node context; otherwise an explicit width is mul-
tiplied by the nesting level, or a user may select
to print the whole AMR on one line. Another cus-
tomization option is a “compact” mode which joins
any attribute relations, but not edges, that immedi-
ately follow the concept onto the same line as the
concept.

2.4 Semantic Models

In order to interpret a tree into a graph, a se-
mantic model is used to get normalized, or
deinverted, triples. Penman provides a default
model which only checks if the role ends in
-of (the conventional indicator of role inver-
sion in PENMAN notation). Ideally this would
be all that is needed, but AMR defines sev-
eral primary (non-inverted) roles ending in -of,
such as :consist-of and :prep-on-behalf-of,
where the inverted forms are :consist-of-of

and :prep-on-behalf-of-of, respectively. The
model therefore first checks if a role is listed as a
primary role; if not and if it ends in -of, it is in-
verted, otherwise it is not. When the role of a triple

6There is currently one known situation where this is not
the case: when a graph has duplicate triples with the same
source, role, and target, as the epigraph cannot uniquely map
the triple to its epigraphical markers. These, however, are
likely bad graphs in AMR.

is deinverted, Penman also swaps its source and
target so the dependency relation remains intact.

The model has other uses, such as inverting
triples (useful when encoding), defining transfor-
mations as described in §3, and checking graphs
for compliance with the model. In addition to the
default model, Penman includes an AMR model
with the roles and transformations defined in the
AMR documentation.7

3 Graph and Tree Transformations

Goodman (2019a) described four transformations
of AMR graphs and trees—namely, role canonical-
ization, edge reification (including dereification),
attribute reification, and tree structure indica-
tion8—and how they could be used to improve
the comparability of parser-produced AMR cor-
pora by normalizing differences that are meaning-
equivalent in AMR and by allowing for partial
credit when, for example, a relation has a correct
role but an incorrect target value. Penman incorpo-
rates all of those transformations but it (a) depends
on the semantic model to define canonical roles and
reifications, whereas Goodman 2019a used hard-
coded transformations; and (b) inserts layout mark-
ers for a “no-surprises” configuration that results in
the expected tree. A separately-defined model al-
lows Penman to use the same transformation meth-
ods with different versions of AMR, for different
tasks, or even with non-AMR representations, by
creating different models. For the implementation
details of these transformations, refer to Goodman
2019a.

In addition to those four transformations, Pen-
man adds a few more methods. The rearrange
method operates on a tree and sorts the order of
branches by their branch labels. Besides changing
the order of branches, their structure is unchanged
by this method. Van Noord and Bos (2017) sim-
ilarly rearranged tree branches based on surface
alignments. The reconfigure method configures a
tree from a graph after discarding the layout mark-
ers in the epigraph and sorting the triples based
on their roles. Unlike the rearrange method, re-
configure affects the entire structure of the graph
except for which node is the graph’s top. For both
of these, the sorting methods are defined by the

7https://isi.edu/~ulf/amr/lib/roles.
html

8With the introduction of the epigraph, tree structure indi-
cation is somewhat redundant, however it differs in that the
transformation puts this information in the graph triples.
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model, and Penman includes three such methods:
original order, random order, and canonical order.
For rearrange there are additional sorting methods
applicable to trees: alphanumeric order, attributes-
first order, and inverted-last order. Since node vari-
ables in AMR are conventionally assigned in order
of their appearance and the above methods can
change this order, the reset-variables method reas-
signs the variables based on the new tree.

4 Use Cases

Here I describe a handful of use cases that motivate
the use of Penman.

4.1 Graph Construction
Users of the Penman library can programmati-
cally construct graphs and then encode them to
PENMAN notation. Penman allows users to di-
rectly append to the list of triples and assign epi-
graphical markers, or to assemble small graphs
and use set-union operations to combine them to-
gether. Another option is to assemble the tree di-
rectly, which may make more sense for some sys-
tems. Once the tree is configured or constructed,
users can use transformations such as rearrange
and reset-variables to make the PENMAN string
more canonical in form. Fig. 7 illustrates using the
Python API to construct and encode a graph.

>>> import penman
>>> g = penman.Graph(
... [(’s’, ’:instance’, ’swim-01’),
... (’s’, ’:ARG0’, ’i’),
... (’i’, ’:instance’, ’i’),
... (’s’, ’:location’, ’p’),
... (’p’, ’:instance’, ’pool’)])
>>> print(penman.encode(g))
(s / swim-01

:ARG0 (i / i)
:location (p / pool))

Figure 7: Example of using Penman’s Python API for
graph construction

Another possibility is for graph augmentation,
where users rely on Penman to parse a string to a
graph which they then modify, e.g., to add surface
alignments or wiki links, then serialize to a string
again. This allows them to focus on their primary
task without worrying about the details of parsing
and formatting.

4.2 Graph Validation
Whether one is generating AMR graphs with hand
annotation or by automatic means, the end result

is not guaranteed to be valid with respect to the
model, so Penman offers a function to check for
compliance. Currently, this check evaluates three
criteria:

1. Is each role defined by the model?

2. Is the top set to a node in the graph?

3. Is the graph fully connected?

To facilitate both library and tool usage, the li-
brary function returns a dictionary mapping triples
(for context) to error messages, as shown in Fig. 8,
while the tool encodes the errors as metadata com-
ments and has a nonzero exit-code on errors.

>>> from penman.models.amr import model
>>> g = penman.decode(
... ’(s / swim-01’
... ’ :ARG0 (i / i)’
... ’ :stroke (b / butterfly))’)
>>> model.errors(g)
{(’s’, ’:stroke’, ’b’): [’invalid role’]}

Figure 8: Example of using Penman’s Python API for
checking model compliance

4.3 Formatting for a Consistent Style
The official AMR corpora, such as the AMR Anno-
tation Release 3.0, are distributed with the graphs
serialized in a human-readable style that uses in-
creasing levels of indentation to show the nesting of
subgraphs. Furthermore, relations on a node appear
in a canonical order depending on their roles (e.g.,
ARG1 appears before ARG2) or their surface align-
ments, where the appearance of a node roughly
follows the order of corresponding words in a sen-
tence. The rearrange and reconfigure transforma-
tions can change the order of relations in the graph
to be more canonical, the reset-variables method
can ensure variable forms are as expected, and the
whitespace options of tree formatting can emulate
the same indentation style as the official corpora.
These features may be useful for users distributing
new AMR corpora.

4.4 Normalization for Fairer Evaluation
The normalization options in §3 can be useful when
evaluating the results of AMR parsing, as described
in Goodman 2019a. Penman is thus well-situated
as a preprocessor to an evaluation step using, e.g.,
smatch (Cai and Knight, 2013), SemBLEU (Song
and Gildea, 2019), or SEMA (Anchiêta et al., 2019).
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Fig. 9 shows the command-line tool performing
role canonicalization.

$ echo ’(c / chapter :domain-of 7)’ \
> | penman --amr --canonicalize-roles
(c / chapter

:mod 7)

Figure 9: Example of using Penman’s command-line
tool for normalization

4.5 Preprocessing for Machine Learning

Sequential neural models which use linearized
AMR graphs have been popular for both parsing
and generation (Barzdins and Gosko, 2016; Peng
et al., 2017; Konstas et al., 2017; van Noord and
Bos, 2017; Song et al., 2018; Damonte and Cohen,
2019; Zhang et al., 2019), but data sparsity is a
significant issue (Peng et al., 2017). One way to
address data sparsity is to remove senses on con-
cepts (Lyu and Titov, 2018). Fig. 10 shows how the
Python API can remove these senses in the tree.

>>> import re
>>> sense = re.compile(r’-\d+($|~)’)
>>> def desense(branch):
... role, tgt = branch
... if role == ’/’:
... tgt = sense.sub(r’\1’, tgt)
... return role, target
...
>>> t = penman.parse(
... ’(s / swim-01~e.1’
... ’ :ARG0 (i / i))’)
>>> for _, branches in t.nodes():
... branches[:] = map(desense,
... branches)
...
>>> print(penman.format(t))
(s / swim~e.1

:ARG0 (i / i))

Figure 10: Example of using Penman’s Python API to
remove concept senses

Other techniques include, but are not limited to,
normalizing linear forms, as discussed in §4.4; rear-
ranging graphs with alignments to match the input
string (van Noord and Bos, 2017); or randomiz-
ing branch orders to avoid overfitting to annotator
biases, as suggested by (Konstas et al., 2017). Pen-
man supports all these use cases via commands, as
in Fig. 9, without any coding required.

5 Applicability beyond AMR

This paper has described PENMAN as a notation
for encoding AMR graphs, but it is also applicable
to other dependency graphs that share the same con-
straints (e.g., connected, directed). PENMAN no-
tation can encode Dependency Minimal Recursion
Semantics (DMRS; Copestake, 2009; Copestake
et al., 2016), such as for learning graph-to-graph
machine translation rules (Goodman, 2018) and
neural generation (Hajdik et al., 2019), and it can
encode Elementary Dependency Structures (EDS;
Oepen et al., 2004; Oepen and Lønning, 2006),
as shown in Fig. 11 using PyDelphin (Goodman,
2019b) for conversion. It is also useful for exten-
sions of AMR, such as Uniform Meaning Repre-
sentation (UMR; Pustejovsky et al., 2019).

$ echo ’{e: x:pron[]
> _1:pronoun_q[BV x]
> e:_swim_v_1[ARG1 x]}’ \
> | delphin convert --from eds \
> --to eds-penman \
> --indent 3
(e / _swim_v_1

:ARG1 (x / pron
:BV-of (_1 / pronoun_q)))

Figure 11: Example of EDS in Penman notation

6 Conclusion

In this paper I have presented Penman, a Python
library and command-line tool for working with
AMR and other graphs serialized in the PENMAN
format. Existing work on AMR has targeted the
PENMAN string, the parsed tree, or the interpreted
graph, and Penman accommodates all of these use
cases by allowing users to work with the tree or
graph data structures or to encode them back to
strings. Transformations defined at both the graph
and tree level make it applicable for pre- and post-
processing steps for corpus creation, evaluation,
machine learning projects, and more. Penman
is available under the MIT open-source license
at https://github.com/goodmami/penman. In-
teractive notebook demonstrations and informa-
tional videos are available at https://github.

com/goodmami/penman#demo.
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Abstract

Each claim in a research paper requires all rel-
evant prior knowledge to be discovered, as-
similated, and appropriately cited. However,
despite the availability of powerful search en-
gines and sophisticated text editing software,
discovering relevant papers and integrating the
knowledge into a manuscript remain complex
tasks associated with high cognitive load. To
define comprehensive search queries requires
strong motivation from authors, irrespective of
their familiarity with the research field. More-
over, switching between independent appli-
cations for literature discovery, bibliography
management, reading papers, and writing text
burdens authors further and interrupts their cre-
ative process. Here, we present a web applica-
tion that combines text editing and literature
discovery in an interactive user interface. The
application is equipped with a search engine
that couples Boolean keyword filtering with
nearest neighbor search over text embeddings,
providing a discovery experience tuned to an
author’s manuscript and his interests. Our ap-
plication aims to take a step towards more en-
joyable and effortless academic writing.

The demo of the application1 and a short video
tutorial2 are available online.

1 Introduction

Writing is a complex problem-solving task that bur-
dens authors with a high cognitive load (Hayes,
2012), which especially applies to inexperienced
researchers (Shah et al., 2009). The typical work-
flow of composing an academic manuscript (be it a
proposal, report, or paper) is an iterative process of
conceptualizing ideas, formulating search queries,
browsing search results, reading papers, eventu-

1https://SciEditorDemo2020.herokuapp.
com/

2https://youtu.be/pkdVU60IcRc
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Figure 1: The typical workflow of scientific writing is
largely based on independent software tools (text pro-
cessor, reference manager, literature search engine, and
paper viewer) that draw on diverse cognitive processes
(recalling and citing articles, as well as searching, re-
trieving, and reading articles, black). Our web appli-
cation focuses on assisting authors in literature discov-
ery and in pinpointing relevant text passages in a paper
(red).

ally followed by assimilating and integrating the
discovered knowledge.

The current toolbox of scientific writing consists
of text editors, search engines, reference managers,
and paper viewers. These components are typically
independent applications with limited interactiv-
ity. Consequently, authors are forced to navigate
through diverse user interfaces repeatedly and need
to link different parts of their workflow manually.
We believe that there is a need for technology that
makes literature discovery a seamless extension of
the writing experience (Figure 1).

Implicitly, each scientific statement requires an
in-depth search for supporting or conflicting find-
ings in the literature. Accordingly, authors must
retain a strong motivation to iterate through many
combinations of search terms even when the ap-
parent gain from the search becomes sub-optimal
(Azzopardi et al., 2018). In addition, the keywords
intended for traditional search engines can be in-
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trinsically biased because authors seek confirma-
tion (Nickerson, 1998) or because of gaps in their
knowledge (Athukorala et al., 2013). The use of
synonymous terminology, such as with the names
of species in botany (Rivera et al., 2014) or field-
specific nomenclature (Hodges, 2008), further com-
plicates formulating comprehensive search queries.
Last but not least, the exponential increase in the
number of scientific publications (Larsen and von
Ins, 2010) makes it increasingly difficult to keep
track of the literature and to incorporate new find-
ings into one’s work.

Such challenges call for novel tools to alleviate
the obstacles faced by authors. We, therefore, set
out to design a workflow that simplifies the explo-
ration of the scientific literature by making use of
advances in natural language processing (NLP). We
introduce a web application for writing scientific
text with integrated literature discovery, paper read-
ing, and bibliography management capabilities.

Our application allows authors to retrieve papers
that are similar to their manuscript (or to some of
its parts) by utilizing text embeddings (Section 3.2).
In addition, the authors can confine the scope of
retrieved papers to specific interests by applying
keyword-based Boolean filters (Section 3.1). Fi-
nally, to guide the authors in skim reading, similar
sentences can be automatically highlighted in the
retrieved papers. With these features, we aim to
make the processes of literature discovery and sci-
entific writing more efficient and enjoyable.

2 Related Work

2.1 Platforms for Literature Search,
Discovery, and Reference Management

Currently, there are many independent applications
for searching for and sharing of publications (e.g.,
Google Scholar, Pubmed, Web of Science, Meta,
ResearchGate, and Iris.AI), for managing bibliog-
raphy (e.g., Mendeley, Readcube, Paperpile, End-
Note, and F1000), and for processing text (e.g.,
Microsoft Word, Google Docs, Overleaf, Dropbox
Paper, and Sciflow). However, end-to-end applica-
tions that combine text editing with NLP-powered
interactive literature discovery are scarce. Tradi-
tionally, text processors can interact with external
software to search for content, to manage refer-
ences, or to improve writing style via plug-ins, but
such interactions are typically limited.

A recent application, Raxter.io, provides a sin-
gle interface for document writing and literature

searching. Although Raxter.io allows fine-tuning
of document-based search queries, its methods are
not fully disclosed, and it neither supports flexible
keyword definitions nor the automatic highlight-
ing of relevant passages. Raxter.io also does not
display the full body of papers unless the users
manually import them.

2.2 Methods for Literature Discovery

Traditional search engines use a bag-of-words
model with a frequency-based ranking function
such as BM25 (Robertson, 2009) to retrieve doc-
uments that match a query of one or more search
terms. Obtaining useful search results requires
well-formulated search queries (Aula, 2003), which
can be a challenging task during exploratory search
(Belkin, 2000) and constitutes a cognitive load
(Gwizdka, 2010) that our application aims to ease.

Document similarity search methods (Wan et al.,
2008), by contrast, use entire documents as the
search queries, circumventing the need to define
keywords for the search. State-of-the-art methods
for retrieving similar documents rely on text em-
beddings (Conneau et al., 2018; Adi et al., 2016;
Le and Mikolov, 2014) and on efficient approxi-
mate nearest neighbor search algorithms (Johnson
et al., 2017). However, embedding-based search
methods seem rather inflexible in refining searches,
because it is unclear how to steer search results in
a particular direction without painstakingly having
to modify the query document.

Both keyword- and embedding-based search
methods provide unique advantages, but there have
not been many attempts at combining these meth-
ods to overcome their respective limitations.

3 Literature Discovery

The pipeline for literature discovery in our appli-
cation consists of two steps (Figure 2). First, the
search engine retrieves a subset of the papers from
our database that match a user-defined keyword-
based filter. Second, the search engine ranks the
filtered papers according to their similarity to the
manuscript using document embeddings. We de-
scribe each of the two steps in detail below. Our
database contains 2.7M papers from the Pubmed
Central Open-Access subset (PMC-OA)3.

3https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

321



    Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 

Aenean commodo ligula eget dolor. Aenean massa. Cum sociis 

natoque penatibus et magnis dis parturient montes, nascetur 

ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, 

pretium quis, sem. Nulla consequat massa quis enim.

    Donec pede justo, fringilla vel, aliquet nec, vulputate eget, 

arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, 

justo. Nullam dictum felis eu pede mollis pretium. Integer 
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enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, 

tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque 
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vitae sapien ut libero venenatis faucibus. Nullam quis ante.

     Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. 
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     Donec pede justo, fringilla vel, aliquet nec, vulputate eget, 

arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, 

justo. Nullam dictum felis eu pede mollis pretium. Integer 
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mauris. Praesent adipiscing. Phasellus ullamcorper ipsum 

rutrum nunc. Nunc nonummy metus. Vestibulum volutpat 

pretium libero. Cras id dui. Aenean ut eros et nisl sagittis 
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mauris. Praesent adipiscing. Phasellus ullamcorper ipsum 
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id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec 

vitae sapien ut libero venenatis faucibus. Nullam quis ante.

     Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. 
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ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum 

primis in faucibus orci luctus et ultrices posuere cubilia Curae; 
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arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, 
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Integer ante arcu, accumsan a, consectetuer eget, posuere ut, 
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     Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. 
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tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque 
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iaculis, ipsum. Sed aliquam ultrices mauris.

Integer ante arcu, accumsan a, consectetuer eget, posuere ut, 

mauris. Praesent adipiscing. Phasellus ullamcorper ipsum 

rutrum nunc. Nunc nonummy metus. Vestibulum volutpat 

pretium libero. Cras id dui. Aenean ut eros et nisl sagittis 

vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, 

imperdiet feugiat, pede. Sed lectus.
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Figure 2: Overview of the literature discovery pipeline
in our application. The search engine first filters our
database for papers that match a set of user-defined key-
words, and then ranks the filtered results according to
their embedding-based proximity to a ranking source,
such as an entire user manuscript. The top-ranked pa-
pers are presented to the user who can then save, cite,
or read them, with the possibility of highlighting the
most relevant sentences.

3.1 Keyword-based Filtering
An embedding-based search might return many pa-
pers that are similar to the manuscript but are of
limited interest to the author. For example, authors
of a medical manuscript on lung cancer may seek
similar treatments in the literature for another or-
gan, but embedding-based ranking might retrieve
papers only on lung cancer. The keyword-based
filter can, in such cases, be used to restrict the rank-
ing operation either to the papers mentioning that
other organ or to papers that do not mention lung.
Thus, filtering allows an author to focus the nearest
neighbor search on the target keywords or on their
absence.

The filtering operation uses an inverted index of
all unigrams in the database after the removal of
stop words and word stemming (snowball) using
the NLTK library4. The resulting index has a dic-
tionary size of 9.61M unigrams and requires ∼4

4https://www.nltk.org/

GB of memory.

3.2 Embedding-based Ranking

The ranking operation uses the document embed-
dings of the papers in our database. Given a
ranking source such as a paragraph or the entire
manuscript, “embedding-based ranking” sorts the
papers returned by the keyword-based filter accord-
ing to their cosine distance to the embedding of the
ranking source. In other words, embedding-based
ranking performs a brute-force nearest neighbor
search on a subset of papers. The embedding of the
ranking source is computed on demand whenever
a search is performed.

As the document embedding model, we use
Sent2Vec (Pagliardini et al., 2018) because of its
simplicity, speed, and good performance on vari-
ous benchmark datasets (Pagliardini et al., 2018;
Nikolov and Hahnloser, 2019). The model has 400
dimensions and is trained on the PMC-OA corpus
using a unigram vocabulary of ∼0.75M terms. Af-
ter the training, we pre-compute the embeddings of
all papers in our database and keep them in mem-
ory, which requires ∼4 GB.

To test the performance of our model, we per-
formed experiments on a simple text retrieval task.
The goal of this task was to retrieve the full body
of a parent paper given its abstract as the search
query. We randomly sampled 10000 abstracts from
the database and retrieved the 20 most similar pa-
pers for each abstract. As an evaluation metric,
we counted the fraction of retrievals in which the
parent paper appeared on top or among the top 20
results. Our model retrieved the correct parent pa-
per as the top search result in 83.1% of the trials,
compared to 71.0% when using a Sent2Vec model
trained on Wikipedia (Pagliardini et al., 2018). Fur-
thermore, the parent paper was among the top 20
retrievals in 95.1% of cases when using our model,
compared to 87.0% for the Wikipedia Sent2Vec
model. The higher retrieval performance of our
model in this task likely arises from its training on
a domain-specific corpus that contains rare words
and terminologies (Roy et al., 2017; Blagec et al.,
2019). This suggests that the model would need
to be retrained at regular intervals, particularly
when papers from other domains are added to the
database.

We have not systematically analyzed the retrieval
performance when the query is formed by merely
a part of the manuscript such as a block of a few
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sentences (Gong et al., 2018; De Boom et al., 2015).
We leave a detailed exploration of the effects of the
query length on performance to future work.

3.3 Scalability of Literature Discovery
Although fast and efficient approximate nearest
neighbor methods exist for retrieving the K nearest
neighbors of a query vector, such schemes apply
to ranking only, but not to the joint filtering and
ranking steps (when nearest neighbors are sought
among a subset of embeddings from the database).
For this reason, in our search engine, there is no
simple alternative to brute force search. Never-
theless, we find that retrieval is sufficiently fast,
largely because the filtering step reduces the num-
ber of neighbors that need to be ranked. In future
work, we will explore optimizations of the search
engine, such as using approximate hashing tech-
niques (Datar et al., 2004; Norouzi et al., 2012).

4 User Interface and Workflow

The user interface (UI) consists of (1) a text edi-
tor that provides basic functionality for drafting a
manuscript, such as loading saving documents, for-
matting text, and inserting LATEX equations, code
snippets, or bullet points (Figure 3a, left), and (2)
a literature explorer encompassing multiple com-
ponents, which can be accessed on their respective
tabs (Figure 3a, right):

• Discover for performing searches and brows-
ing the search results to discover relevant lit-
erature

• My Library for managing the user bibliogra-
phy and for citing papers in the manuscript

• Read for paper viewing and for actions that fa-
cilitate literature exploration, such as discover-
ing similar papers to the one being viewed and
highlighting the sentences in the paper that are
similar to the selected text in the manuscript
(Figure 3b, right)

A search can be initiated without keyword filters
by clicking the “Similar papers to the manuscript”
button located above the text editor. As a result,
the 1000 most similar papers are listed in the Dis-
cover tab with their metadata (title, authors, journal,
publication year, and abstract).

A more granular search can be performed by se-
lecting a section (e.g., sentences, paragraphs) from
the manuscript, which reveals a hovering menu

over the selected text (visible in Figure 3b). Click-
ing on the magnifying glass icon on this menu
performs a search using the selected text as the
ranking source and consequently returns the papers
similar to the selected text.

To steer discovery towards a particular
set of terms, the user can define a keyword-
based Boolean filter using the format
term1 term2|term3 !term4 to con-
fine the results to those papers that contain term1
and (term2 or term3), but not term4.

Clicking on a search result displays the content
of the paper in the Read tab. In this tab, the user
finds additional actions above the viewed paper to
interact with it.

If, after viewing the paper, the user finds it inter-
esting, then pressing the “Add to Library” button
saves the paper in the user bibliography, which can
be viewed under the My Library tab. Alternatively,
the “Cite” button places a reference to the paper
at the current cursor position in the text editor and
adds the paper to the user bibliography. Inserted
references in the manuscript are links, and clicking
on them conveniently opens the respective paper
in the Read tab. Deleting the link removes the
reference from the manuscript.

To facilitate the exploration of the literature fur-
ther, the Read tab contains additional functions:
“Discover similar papers” performs a search using
the viewed paper as the ranking source. If a filter is
already present in the Discover tab, then the search
results are filtered accordingly. The “Highlight”
button highlights the 20 sentences in the viewed pa-
per that are most similar to the ranking source, i.e.,
similar to the query of the last search performed
on the application. Alternatively, the user can se-
lect a part of the manuscript and press the marker
icon on the revealed hovering menu (Figure 3b) to
highlight the sentences that are most similar to the
selection. The highlighting feature computes the
embedding of each sentence in the viewed paper
to assess similarity. The ”Find Text” field uses the
web-browser’s built-in find functionality to match
the value of the field with the viewed paper.

The My Library tab lists all the papers in the user
bibliography. Ticking the “Cited content only” box
filters this list to show only the papers cited in the
manuscript. The user can press the “Cite” button
next to a paper to insert a reference to the paper at
the cursor position in the text editor. The user can
also add papers to the library manually by entering
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Figure 3: The user interface of the application. a) the Discover tab lists the retrieved papers that are similar to
the manuscript. b) the Read tab allows users to view papers and to highlight the sentences that are similar to the
selected text in the manuscript.

the digital object identifier of the paper in the form
that appears upon pressing the “Manual entry” but-
ton. Items under My Library can be removed by
clicking on the “Remove” button next to the item.

5 Conclusion

We have described an application that aims to re-
duce the manual workload involved in exploring
the scientific literature. Our application combines
the processes of reading papers and of writing sci-
entific manuscripts into a single user interface and
links them using NLP algorithms.

In future work, we will focus on expanding the
database to include additional domains and article
sources. We will work on augmenting the work-
flow with automated tasks, such as suggesting ref-

erences as the author writes a manuscript, or noti-
fying users about the latest publications relevant to
their work. We will also seek to improve discovery
performance by testing more recent text embed-
ding methods (e.g., BERT (Devlin et al., 2018))
and by optimizing the search for different input text
lengths, such as a whole document, a paragraph, or
even a single sentence.

Finally, we are aware that keyword-based
Boolean filtering might be prone to the same biases
and challenges inherent in the traditional search
queries, as discussed above. We will investigate
whether query expansion techniques (Azad and
Deepak, 2019) could mitigate this issue by sug-
gesting or automatically appending semantically
related keywords to the Boolean filters.
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Abstract

The shift from traditional translation to post-
editing (PE) of machine-translated (MT) text
can save time and reduce errors, but it also
affects the design of translation interfaces, as
the task changes from mainly generating text
to correcting errors within otherwise helpful
translation proposals. Since this paradigm
shift offers potential for modalities other than
mouse and keyboard, we present MMPE, the
first prototype to combine traditional input
modes with pen, touch, and speech modalities
for PE of MT. Users can directly cross out or
hand-write new text, drag and drop words for
reordering, or use spoken commands to update
the text in place. All text manipulations are
logged in an easily interpretable format to sim-
plify subsequent translation process research.
The results of an evaluation with professional
translators suggest that pen and touch interac-
tion are suitable for deletion and reordering
tasks, while speech and multi-modal combina-
tions of select & speech are considered suit-
able for replacements and insertions. Over-
all, experiment participants were enthusiastic
about the new modalities and saw them as use-
ful extensions to mouse & keyboard, but not as
a complete substitute.

1 Introduction & Related Work

As machine translation (MT) has been making sub-
stantial improvements in recent years1, more and
more professional translators are integrating this
technology into their translation workflows (Zaret-
skaya et al., 2016; Zaretskaya and Seghiri, 2018).
The process of using a pre-translated text as a
basis and improving it to create the final trans-
lation is called post-editing (PE). While transla-
tion memory (TM) is still often valued higher than
MT (Moorkens and O’Brien, 2017), a recent study

1WMT 2019 translation task: http://matrix.statmt.org/, ac-
cessed 07. Jan 2020

by Vela et al. (2019) shows that professional trans-
lators chose PE of MT over PE of TM and transla-
tion from scratch in 80% of the cases. Regarding
the time savings achieved through PE, Zampieri
and Vela (2014) find that PE was on average 28%
faster for technical translations, Toral et al. (2018)
report productivity gains of 36% when using mod-
ern neural MT, and Aranberri et al. (2014) show
that PE increases translation throughput for both
professionals and lay users. Furthermore, it has
been shown that PE not only leads to reduced time
but also reduces errors (Green et al., 2013).

Switching from traditional translation to PE re-
sults in major changes in translation workflows
(Zaretskaya and Seghiri, 2018), including the in-
teraction pattern (Carl et al., 2010), yielding a sig-
nificantly reduced amount of mouse and keyboard
events (Green et al., 2013). This requires thorough
investigation in terms of interface design, since the
task changes from mostly text production to com-
paring and adapting MT and TM proposals, or put
differently, from control to supervision.

While most computer-aided translation (CAT)
tools focus on traditional translation and incorpo-
rate only mouse & keyboard, previous research in-
vestigated other input modalities: automatic speech
recognition (ASR) for dictating translations has al-
ready been explored in the 90s (Dymetman et al.,
1994; Brousseau et al., 1995) and the more recent
investigation of ASR for PE (Martinez et al., 2014)
even argues that a combination with typing could
boost productivity. Mesa-Lao (2014) finds that PE
trainees have a positive attitude towards speech in-
put and would consider adopting it, and Zapata et al.
(2017) found that ASR for PE was faster than ASR
for translation from scratch. Due to these benefits,
commercial CAT tools like memoQ and MateCat
are also beginning to integrate ASR.

The CASMACAT tool (Alabau et al., 2013) al-
lows the user to input text by writing with e-pens in
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a special area. A vision paper (Alabau and Casacu-
berta, 2012) proposes to instead use e-pens for PE
sentences with few errors in place and provides ex-
amples of symbols that could be used for this. Stud-
ies on mobile PE via touch and speech (O’Brien
et al., 2014; Torres-Hostench et al., 2017) show
that participants especially liked reordering words
through touch drag and drop, and preferred voice
when translating from scratch, but used the iPhone
keyboard for small changes. Teixeira et al. (2019)
also explore a combination of touch and speech;
however, their touch input received poor feedback
since (a) their tile view (where each word is a tile
that can be dragged around) made reading more
complicated, and (b) touch insertions were rather
complex to achieve within their implementation. In
contrast, dictation functionality was shown to be
quite good and even preferred to mouse and key-
board by half of the participants. The results of an
elicitation study by Herbig et al. (2019a) indicate
that pen, touch, and speech interaction should be
combined with mouse and keyboard to improve
PE of MT. In contrast, other modalities like eye
tracking or gestures were seen as less promising.

This paper presents MMPE, the first translation
environment combining standard mouse & key-
board input with touch, pen, and speech interac-
tions for PE of MT. It allows users to directly cross
out or hand-write new text, drag and drop words
for reordering, or use spoken commands to update
the text in place. All text manipulations are logged
in an easily interpretable format (e.g., replaceWord
with the old and new word) to facilitate translation
process research. The results of a study with 11
professional translators show that participants are
enthusiastic about having these alternatives, and
suggest that pen and touch are well suited for dele-
tion and reordering operations, whereas speech and
multi-modal interaction are suitable for insertions
and replacements.

2 The MMPE Prototype

This section presents the MMPE prototype (see
Figure 1), which combines pen, touch, and speech
input with a traditional mouse and keyboard ap-
proach for PE of MT. The prototype is designed for
professional translators in an office setting. A video
demonstration is available at https://youtu.be/
tkJ9OWmDd0s.

2.1 Apparatus

On the software side, we decided to use Angular2

for the frontend, and node.js3 for the backend.
The frontend, including all of the newly imple-

mented modalities for text editing, is what the sys-
tem currently focuses on. While this Angular fron-
tend could be used in a browser on any device, we
initially design for the following hardware to op-
timally support the implemented interactions: we
use a large tiltable touch & pen screen (see Fig-
ure 1a), namely the Wacom Cintiq Pro 32 inch
display. Together with the Flex Arm, this screen
can be moved up in the air to work in a standing po-
sition, or it can be tilted and moved flat on the table
(similar to how users use a tablet), thereby support-
ing better pen and touch interaction (as requested
in Herbig et al. (2019a)). To avoid limitations in
ASR through a potentially bad microphone, we fur-
ther use the Sennheiser PC 8 Headset for speech
input. Last, mouse and keyboard are provided.

Since it is not the focus of this work, the backend
is kept rather minimal: it allows saving and loading
of projects (including the MT) from JSON files, can
store log files, etc. Here, the project files simply
contain an array of segments with source, target, as
well as any MT or TM proposal that should initially
be shown for PE.

2.2 Overall Layout

Figure 1d shows our implemented horizontal
source-target layout, where each segment’s status
(unedited, edited, confirmed) is visualized between
source and target. On the far right, support tools
are offered as requested in Herbig et al. (2019a):
(1) the unedited MT output, to which the user can
revert his editing using a button, and (2) a corpus
combined with a dictionary: when entering a word
or clicking/touching a word in the source view on
the left, the Linguee4 website is queried to show
the word in context and display its primary and
alternative translations. The top of the interface
shows a toolbar where users can enable or disable
speech recognition as well as spell checking, save
and load projects, or navigate to another project.

The current segment is enlarged, thereby offer-
ing space for handwritten input and allowing the
user to view a lot of context while still seeing the
current segment in a comfortable manner (Herbig

2https://angular.io/, accessed 07. Jan 2020
3https://nodejs.org/en/, accessed 07. Jan 2020
4https://www.linguee.com/, accessed 07. Jan 2020
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(a) Apparatus. (b) Handwriting on left target view. (c) Touch reordering on right target view.

(d) Screenshot of the interface.

Figure 1: Overview of the MMPE prototype.

et al. (2019a)). The view for the current segment
is further divided into the source segment (left)
and two editing planes for the target, one for hand-
writing and drawing gestures (middle), and one
for touch deletion & reordering, as well as stan-
dard mouse and keyboard input (right). Both ini-
tially show the MT proposal, and synchronize on
changes to either one. The reason for having two
editing fields instead of only one is that some in-
teractions are overloaded, e.g., a touch drag can
be interpreted as both hand-writing (middle) and
reordering (right). Undo and redo functionality
for all modalities, as well as confirming segments,
are also implemented through buttons between the
source and target texts, and can further be triggered
through hotkeys. The target text is spell-checked,
as a lack of this feature was criticized in Teixeira
et al. (2019).

2.3 Left Target View: Handwriting

For handwriting recognition (see Figure 1b), we
use the MyScript Interactive Ink SDK5. Apart from
merely recognizing the written input, it offers ges-

5https://developer.myscript.com/, accessed 07. Jan 2020

tures6 like strike-through or scribble for deletions,
breaking a word into two (draw line from top to
bottom), and joining words (draw line from bot-
tom to top). For inserting words, one can directly
write into empty space, or create such space first
by breaking the line (draw a long line from top
to bottom), and hand-writing the word then. All
changes are immediately interpreted, i.e., striking
through a word deletes it immediately instead of
showing it in a struck-through visualization. While
it is not necessary to convert text from the hand-
written appearance into computer font, the user can
do so using a small button at the top of the editor.
The editor further shows the recognized handwrit-
ten text immediately at the very top of the drawing
view in a small gray font, where alternatives for
the current recognition are offered when clicking
on a recognized word. Since all changes from this
drawing view are immediately synchronized into
the right-hand view, the user can also see the recog-
nized text there. Apart from using the pen, the user
can use his/her finger or the mouse on the left-hand
editing view for hand-writing.

6https://developer.myscript.com/docs/concepts/editing-
gestures/, accessed 07. Jan 2020
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2.4 Right Target View: Touch Reordering,
Mouse & Keyboard

On the right-hand editing view, the user can
delete words by simply double-tapping them with
pen/finger touch, or reorder them through a sim-
ple drag and drop procedure (see Figure 1c). This
procedure visualizes the picked-up word as well
as the current drop position through a placeholder
element. Spaces between words and punctuation
marks are automatically fixed, i.e., double spaces
at the pickup position and missing spaces at the
drop position are corrected. This reordering func-
tionality is strongly related to Teixeira et al. (2019);
however, only the currently dragged word is tem-
porarily visualized as a tile to offer better readabil-
ity. Furthermore, the cursor can be placed between
words using a single tap, allowing the user to com-
bine touch input with e.g., the speech or keyboard
modalities (see below). Naturally, the user can also
edit and navigate using mouse and keyboard, where
all common shortcuts work as expected from other
software (e.g., ctrl+arrow keys or ctrl+c).

2.5 Speech Input

To minimize lag during speech recognition, we use
a streaming approach, sending the recorded audio
to IBM Watson servers to receive a transcription,
which is then interpreted in a command-based fash-
ion. Thus, our speech module not only handles
dictations as in Teixeira et al. (2019) but can cor-
rect mistakes in place.

The transcription itself is visualized at the
top of the right target view (see Figure 1c).
As commands, the user has the option to “in-
sert”, “delete”, “replace”, and “reorder” words
or subphrases. To specify the position if it is
ambiguous, one can define anchors as in “af-
ter”/“before”/“between”, or define the occurrence
of the token (“first”/“second”/“last”). A full exam-
ple is “insert A after second B”, where A and B can
be words or subphrases. In contrast to the other
modalities, character-level commands are not sup-
ported, so instead of deleting an ending, one should
replace the word. Again, spaces between words and
punctuation marks are automatically fixed upon
changes. For the German language, nouns are au-
tomatically capitalized using the list of nouns from
Wiktionary7.

7https://en.wiktionary.org/wiki/Category:German noun forms,
accessed 07. Jan 2020

2.6 Multi-modal Combinations

Last, the user can use a multi-modal combination,
i.e., pen/touch/mouse combined with speech. For
this, a target word/position first needs to be spec-
ified by placing the cursor on or next to a word
using the pen, finger touch, or the mouse/keyboard;
alternatively, the word can be long-pressed with
pen/touch. Afterwards, the user can use a voice
command like “delete”, “insert A”, “move af-
ter/before A/between A and B”, or “replace by
A” without needing to specify the position/word,
thereby making the commands less complex.

2.7 Logging

We implemented extensive logging functionality:
on the one hand, we log the concrete keystrokes,
touched pixel coordinates, etc.; on the other
hand, all UI interactions (like segmentChange or
undo/redo/confirm) are stored, allowing us to ana-
lyze the translator’s use of MMPE.

Most importantly, however, we also log all text
manipulations on a higher level to simplify text
editing analysis: for insertions, we log whether a
single or multiple words were inserted, and add
the actual words and their positions as well as the
segment’s content before and after the insertion to
the log entry. Deletions are logged analogously,
and for reorderings, we add the old and the new
position of the moved words to the log entry. Last,
for replacements, we log whether only a part of a
word was replaced (i.e., changing the word form),
whether the whole word was replaced (i.e., correct-
ing the lexical choice), or whether a group of words
was replaced. In all cases, the words before and
after the change, as well as their positions and the
overall segment text are specified in the log entry.

Furthermore, all log entries contain the modality
that was used for the interaction, e.g., Speech or
Pen, thereby allowing the analysis of which modal-
ity was used for which editing operation. All log
entries with their timestamps are created within the
Angular client and sent to the node.js server for
storage in a JSON file.

3 Evaluation

We evaluated the prototype with 11 professional
translators8. Since our participants were German

8The study has been approved by the university’s ethical
review board, and participants were paid for their time. The
data and analysis scripts can be found at https://mmpe.
dfki.de/data/ACL2020/.
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natives, we chose a EN-DE translation task to avoid
ASR recognition errors occurring in non-native
commands (Dragsted et al., 2011). In the following,
“modalities” refers to Touch (T), Pen (P), Speech
(S), Mouse & Keyboard (MK), and Multi-Modal
combinations (MM, see Section 2.6), while “op-
erations” refers to Insertions, Deletions, Replace-
ments, and Reorderings. More details on the evalu-
ation are presented in Herbig et al. (2020).

3.1 Method

The study took approximately 2 hours per partici-
pant and involved three separate stages. First, par-
ticipants filled in a questionnaire capturing demo-
graphics as well as information on CAT usage. In
stage two, participants received an explanation of
all of the prototype’s features and then had 10–15
minutes to explore the prototype on their own and
become familiar with the interface. Finally, stage
three included the main experiment, which is a
guided test of all implemented features combined
with Likert scales and interviews, as described in
detail below.

The main part tests each of the 5 modalities for
each of our 4 operations in a structured way. For
this, we prepared four sentences for each operation
by manually introducing errors into the reference
sentences from the WMT news test set 2018. Thus,
overall each participant had to correct 4 segments
per operation (4) using each modality (5), which
results in 4 × 4 × 5 = 80 segments. Within the
four sentences per operation, we tried to capture
slightly different cases, like deleting single words
or a group of words. The prototype was adapted
for this controlled task such that it displays a popup
when selecting a segment, visualizing the neces-
sary correction to apply as well as the modality to
use. The reason why we provided the correction to
apply was to ensure a consistent editing behavior
across all participants, thereby making the follow-
ing measurements comparable: each modality had
to be rated for each operation on 7-point Likert
scales assessing whether the modality is a good fit,
whether it is easy to use, and whether it is a good
alternative to MK. Furthermore, participants had
to order the modalities from best to worst for each
operation. Last, we captured their comments in an
interview after each operation and measured the
times required to fix the introduced errors. In the
end, a final unstructured interview to capture high-
level feedback on the interface was conducted.

3.2 Results & Discussion

Figure 2 depicts the results of the 3 Likert scales of
the 5 modalities for the 4 tasks. The participants’
orderings of modalities for the operations were
mostly in line with these ratings, as we will discuss
in the next sections.

According to subjective ratings, modality order-
ing, and comments, P(en) is among the best modal-
ities for deletions and reordering. However, other
modalities are superior for insertions and replace-
ments, where P was seen as suitable only for short
modifications, and to be avoided for more extended
changes. In terms of timings, P was also among the
fastest for deletions and reorderings, and among
the slowest for insertions. What is interesting, how-
ever, is that P was significantly faster than S and
MM for replacements (by 6 and 7 seconds on av-
erage) even though it was rated lower. Participants
also commented very enthusiastically about pen
reordering and deletions, as they would nicely re-
semble manual copy-editing. The main concern for
hand-writing was the need to think about and to
create space before actually writing.

Results for T(ouch) were similarly good for dele-
tions and reorderings, but it was considered worse
for insertions and replacements. Furthermore, and
as we expected due to its precision, pen was pre-
ferred to finger touch by most participants. How-
ever, in terms of timings, the two did not differ
significantly, apart from replace operations (where
pen was faster). Even for replacements, where T
was rated as the worst modality, it actually was
(non-significantly) faster than S and MM.

S(peech) and M(ulti)-M(odal) PE were consid-
ered the worst and were also the slowest modal-
ities for reordering and deletions. For insertions
and replacements, however, these two modalities
were rated and ordered 2nd (after MK) and in par-
ticular much better than P and T. Timing analysis
agrees for insertions, being 2nd after MK; for re-
placements, however, S and MM were the slowest
even though the ratings put them ahead of P and T.
Insertions are the only operation where MM was
(non-significantly) faster than S, since the position
did not have to be verbally specified. Even though
participants were concerned regarding formulating
commands while mentally processing text, they
considered S and MM especially interesting for
adding longer text. The main advantage of MM
would be that one has to speak less, albeit at the
cost of doing two things at once.
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(a) Insertions.
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(b) Deletions.
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(c) Replacements.
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(d) Reorderings.

Figure 2: Subjective ratings of the five modalities for the four operations on the 7-point Likert scales for goodness,
ease of use, and whether it is a good alternative to MK.

M(ouse) & K(eyboard) received the best scores
for insertions and replacements, where it was also
the fastest. Furthermore, it got good ratings for
deletions and reorderings. For deletions, MK was
comparably fast to P, T, and S. For reordering, how-
ever, it was slower than P and T. Some participants
commented negatively on MK, stating that it only
works well because of “years of expertise”, and
being “unintuitive” especially for reordering.

Overall, many participants provided very pos-
itive feedback on this first prototype combining
pen, touch, speech, and multi-modal combinations
for PE MT, encouraging us to continue. They espe-
cially highlighted that it was nice to have the option
to switch between modalities. Furthermore, several
promising ideas for improving the prototype were
proposed, e.g., to visualize whitespaces.

4 Conclusion

While more and more professional translators are
switching to the use of PE to increase productiv-
ity and reduce errors, current CAT interfaces still
heavily focus on traditional mouse and keyboard
input. This paper therefore presents MMPE, a CAT
prototype combining pen, touch, speech, and multi-
modal interaction together with common mouse
and keyboard input possibilities. Users can directly

cross out or hand-write new text, drag and drop
words for reordering, or use spoken commands to
update the text in place. Our study with profes-
sional translators shows a high level of interest and
enthusiasm about using these new modalities. For
deletions and reorderings, pen and touch both re-
ceived high subjective ratings, with pen being even
better than mouse & keyboard. For insertions and
replacements, speech and multi-modal interaction
were seen as suitable interaction modes; however,
mouse & keyboard were still favored and faster.

As a next step, we will improve the prototype
based on the participants’ valuable feedback. Fur-
thermore, an eye tracker will be integrated into the
prototype that can be used in combination with
speech for cursor placement, thereby simplifying
multi-modal PE. Last, we will investigate whether
using the different modalities has an impact on
cognitive load during PE (Herbig et al., 2019b).
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Abstract

The literature on structured prediction for NLP
describes a rich collection of distributions
and algorithms over sequences, segmentations,
alignments, and trees; however, these algo-
rithms are difficult to utilize in deep learning
frameworks. We introduce Torch-Struct, a li-
brary for structured prediction designed to take
advantage of and integrate with vectorized,
auto-differentiation based frameworks. Torch-
Struct includes a broad collection of proba-
bilistic structures accessed through a simple
and flexible distribution-based API that con-
nects to any deep learning model. The li-
brary utilizes batched, vectorized operations
and exploits auto-differentiation to produce
readable, fast, and testable code. Internally,
we also include a number of general-purpose
optimizations to provide cross-algorithm effi-
ciency. Experiments show significant perfor-
mance gains over fast baselines. Case studies
demonstrate the benefits of the library. Torch-
Struct is available at https://github.com/
harvardnlp/pytorch-struct.

1 Introduction

Structured prediction is an area of machine learning
focusing on representations of spaces with combi-
natorial structure, as well as algorithms for infer-
ence and parameter estimation over these struc-
tures. Core methods include both tractable exact
approaches like dynamic programming and span-
ning tree algorithms as well as heuristic techniques
such linear programming relaxations and greedy
search.

Structured prediction has played a key role in
the history of natural language processing. Ex-
ample methods include techniques for sequence
labeling and segmentation (Lafferty et al., 2001;
Sarawagi and Cohen, 2005), discriminative depen-
dency and constituency parsing (Finkel et al., 2008;
McDonald et al., 2005), unsupervised learning for

Figure 1: Distribution of binary trees over an 1000-
token sequence. Coloring shows the marginal proba-
bilities of every span. Torch-Struct is an optimized col-
lection of common CRF distributions used in NLP that
is designed to integrate with deep learning frameworks.

labeling and alignment (Vogel et al., 1996; Gold-
water and Griffiths, 2007), approximate translation
decoding with beam search (Tillmann and Ney,
2003), among many others.

In recent years, research into deep structured pre-
diction has studied how these approaches can be in-
tegrated with neural networks and pretrained mod-
els. One line of work has utilized structured predic-
tion as the final layer for deep models (Collobert
et al., 2011; Durrett and Klein, 2015). Another
has incorporated structured prediction within deep
learning models, exploring novel models for latent-
structure learning, unsupervised learning, or model
control (Johnson et al., 2016; Yogatama et al., 2016;
Wiseman et al., 2018). We aspire to make both of
these use-cases as easy to use as standard neural
networks.

The practical challenge of employing structured
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Name Structure (Z) Parts (P) Algorithm
(A(`))

LoC T/S Sample Reference

Linear-Chain,
HMM

Labeled Chain Edges (NC2) Forward-
Backward

20 390k (Lafferty et al., 2001)

Factorial-HMM Labeled Chains Trans. (LC2)
Obs. (NCL)

Factorial F-B 20 25k (Ghahramani and Jordan,
1996)

Alignment Alignment Match (NM)
Skips (2NM)

DTW, CTC 50 13k (Needleman and Wunsch,
1970)

Semi-Markov Seg. Labels Edge(NKC2) Segmental F-B 30 87k (Baum and Petrie, 1966)
(Sarawagi and Cohen, 2005)

Context-Free Labeled Tree CF Rules (G)
Term. (CN)

I-O CKY 70 37k (Kasami, 1966)

Simple CKY Labeled Tree Splits (CN2) 0-th order CKY 30 118k (Kasami, 1966)

Dependency Proj. Tree Arcs (N2) Eisner Alg 40 28k (Eisner, 2000)

Dep (NP) Non-Proj. Tree Arcs (N2) Matrix-Tree
Chiu-Liu (MAP)

40 1.1m (Koo et al., 2007)
(McDonald et al., 2005)

Auto-Regressive Sequence Prefix (CN ) Greedy Search,
Beam Search

60 - (Tillmann and Ney, 2003)

Table 1: Models and algorithms implemented in Torch-Struct. Notation is developed in Section 5. Parts are
described in terms of sequence lengths N,M , label size C, segment length K, and layers / grammar size L,G.
Lines of code (LoC) is from the log-partition (A(`)) implementation. T/S is the tokens per second of a batched
computation, computed with batch 32, N = 25, C = 20,K = 5, L = 3 (K80 GPU run on Google Colab).

prediction is that many required algorithms are dif-
ficult to implement efficiently and correctly. Most
projects reimplement custom versions of standard
algorithms or focus particularly on a single well-
defined model class. This research style makes it
difficult to combine and try out new approaches, a
problem that has compounded with the complexity
of research in deep structured prediction.

With this challenge in mind, we introduce Torch-
Struct with three specific contributions:

• Modularity: models are represented as distri-
butions with a standard flexible API integrated
into a deep learning framework.

• Completeness: a broad array of classical algo-
rithms are implemented and new models can
easily be added.

• Efficiency: implementations target computa-
tional/memory efficiency for GPUs and the
backend includes extensions for optimization.

In this system description, we first motivate the ap-
proach taken by the library, then present a technical
description of the methods used, and finally present
several example use cases.

2 Related Work

Several software libraries target structured pre-
diction. Optimization tools, such as SVM-

struct (Joachims, 2008), focus on parameter estima-
tion. Model libraries, such as CRFSuite (Okazaki,
2007), CRF++ (Kudo, 2005), or NCRF++(Yang
and Zhang, 2018), implement inference for a
fixed set of popular models, usually linear-chain
CRFs. General-purpose inference libraries, such
as PyStruct (Müller and Behnke, 2014) or Tur-
boParser (Martins et al., 2010), utilize external
solvers for (primarily MAP) inference such as inte-
ger linear programming solvers and ADMM. Prob-
abilistic programming languages, for example lan-
guages that integrate with deep learning such as
Pyro (Bingham et al., 2019), allow for specification
and inference over some discrete domains. Most
ambitiously, inference libraries such as Dyna (Eis-
ner et al., 2004) allow for declarative specifications
of dynamic programming algorithms to support in-
ference for generic algorithms. Torch-Struct takes
a different approach and integrates a library of op-
timized structured distributions into a vectorized
deep learning system. We begin by motivating this
approach with a case study.

3 Motivating Case Study

While structured prediction is traditionally pre-
sented at the output layer, recent applications have
deployed structured models broadly within neural
networks (Johnson et al., 2016; Kim et al., 2017;
Yogatama et al., 2016, inter alia). Torch-Struct
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aims to encourage this general use case.
To illustrate, we consider a latent tree model.

ListOps (Nangia and Bowman, 2018) is a dataset
of mathematical functions. Each input/output pair
consists of a prefix expression x and its result y,
e.g.

x = [ MAX 2 9 [ MIN 4 7 ] 0 ] y = 9

Models such as a flat RNN will fail to capture the
hierarchical structure of this task. However, if a
model can induce an explicit latent z, the parse tree
of the expression, then the task is easy to learn by a
tree-RNN model p(y|x, z) (Yogatama et al., 2016;
Havrylov et al., 2019).

Let us briefly summarize a latent-tree RL model
for this task. The objective is to maximize the
probability of the correct prediction under the ex-
pectation of a prior tree model, p(z|x;φ),

Obj = Ez∼p(z|x;φ)[log p(y | z, x)]

Computing the expectation is intractable so pol-
icy gradient is used. First a tree is sampled z̃ ∼
p(z|x;φ), then the gradient with respect to φ is
approximated as,

∂

∂φ
Obj ≈ (log p(y |z̃, x)− b)( ∂

∂φ
p(z|x;φ))

where b is a variance reduction baseline. A com-
mon choice is the self-critical baseline (Rennie
et al., 2017),

b = log p(y | z∗, x) with z∗ = argmax
z
p(z|x;φ)

Finally an entropy regularization term is added to
the objective encourage exploration of different
trees, Obj + λH(p(z | x;φ)).

Even in this brief overview, we can see how
complex a latent structured learning problem can
be. To compute these terms, we need 5 different
properties of the structured prior model p(z |x;φ):

Sampling Policy gradient, z̃ ∼ p(z | x;φ)
Density Score policy samples, p(z | x;φ)
Gradient Backpropagation, ∂

∂φp(z | x;φ)
Argmax Self-critical, argmaxz p(z | x;φ)
Entropy Objective regularizer, H(p(z | x;φ))

For structured models, each of these terms is non-
trivial to compute. A goal of Torch-Struct is to
make it seamless to deploy structured models for
these complex settings.

Figure 2: Latent Tree CRF example where each cell
represents a span (i, j). Torch-Struct can be used to
compute many different properties of a structured dis-
tribution. (a) Log-potentials ` for each part/span. (b)
Marginals for CRF(`) computed by backpropagation.
(c) A single argmax tree argmaxz CRF(z; `). (d) A
single sampled tree z ∼ CRF(`).

4 Library Design

The library design of Torch-Struct follows the dis-
tributions API used by both TensorFlow and Py-
Torch (Dillon et al., 2017). For each structured
model in the library, we define a conditional ran-
dom field (CRF) distribution object. From a user’s
standpoint, this object provides all necessary distri-
butional properties. Given log-potentials ` output
from a deep network, the user can request sam-
ples z ∼ CRF(`), probabilities CRF(z; `), modes
argmaxz CRF(`), or other distributional proper-
ties such as H(CRF(`)). The library is agnostic
to how these are utilized, and when possible, they
allow for backpropagation to update the input net-
work. The same distributional object can be used
for standard output prediction as for more complex
operations like attention or reinforcement learning.

Figure 2 demonstrates this API for a binary tree
CRF over an ordered sequence, such as p(z | x;φ)
from the previous section. The distribution takes in
log-potentials ` which score each possible span in
the input. The distribution converts these to proba-
bilities of a specific tree. This distribution can be
queried for predicting over the set of trees, sam-
pling a tree for model structure, or even computing
entropy over all trees.

Table 1 shows all of the structures and distribu-
tions implemented in Torch-Struct. While each is
internally implemented using different specialized
algorithms and optimizations, from the user’s per-
spective they all utilize the same external distribu-
tional API, and pass a generic set of distributional
tests.1 This approach hides the internal complexity

1The test suite for each distribution enumerates over all
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of the inference procedure, while giving the user
full access to the model.

5 Technical Approach

5.1 Conditional Random Fields
We now describe the technical approach underlying
the library. To establish notation, first consider the
implementation of a softmax categorical distribu-
tion, CAT(`), with one-hot categories z with zi = 1
from a set Z and probabilities given by the softmax
over logits `,

CAT(z; `) =
exp(z · `)∑

z′∈Z exp(z′ · `) =
exp `i∑K
j=1 exp `j

Define the log-partition as A(`) = LSE(`), i.e.
log of the denominator, where LSE is the log-sum-
exp operator. Computing probabilities or sampling
from this distribution, requires enumerating Z to
compute the log-partition A. A useful identity is
that derivatives of A yield category probabilities,

p(zi = 1) =
exp `i∑n
j=1 exp `j

=
∂

∂`i
A(`)

Other distributional properties can be similarly ex-
tracted from variants of the log-partition. For in-
stance, define A∗(`) = logmaxKj=1 exp `j then2:
I(z∗i = 1) = ∂

∂`i
A∗(`).

Conditional random fields, CRF(`), extend the
softmax to combinatorial spaces where Z is expo-
nentially sized. Each z, is now represented as a
binary vector over polynomial-sized set of parts,
P , i.e. Z ⊂ {0, 1}|P|. Similarly log-potentials
are now defined over parts ` ∈ R|P|. For instance,
in Figure 2 each span is a part and the ` vector is
shown in the top-left figure. Define the probability
of a structure z as,

CRF(z; `) =
exp z · `∑
z′ exp z

′ · ` =
exp

∑
p `pzp∑

z′ exp
∑

p `pz
′
p

Computing probabilities or sampling from this dis-
tribution, requires computing the log-partition term
A. In general, computing this term is now in-
tractable, however for many core algorithms in
NLP there are exist efficient combinatorial algo-
rithms for this term (a list of examples is given in
Table 1).

structures to ensure that properties hold. While this is in-
tractable for large spaces, it can be done for small sets and
was extremely useful for development.

2This is a subgradient identity, but that deep learning li-
braries like PyTorch generally default to this value.

Name Ops (
⊕

,⊗) Backprop Gradients

Log LSE,+ ∆ p(zp = 1)
Max max,+ ∆ arg maxz

K-Max k max,+ ∆ K-Argmax
Sample LSE,+ ∼ z ∼ CRF(`)
K-Sample LSE,+ ∼ K-Samples

Count
∑

,×
Entropy (H) See (Li and Eisner, 2009)

Exp. See (Li and Eisner, 2009)
Sparsemax See (Mensch and Blondel, 2018)

Table 2: (Top) Semirings implemented in Torch-Struct.
Backprop/Gradients gives overridden backpropagation
computation and value computed by this combination.
(Bot) Example of gradients from different semirings on
sequence alignment with dynamic time warping.

Derivatives of the log-partition again provide
useful distributional properties. For instance, the
marginal probabilities of parts are given by,

p(zp = 1) =
exp

∑
z:zp=1 z · `∑

z′∈ exp z
′ · ` =

∂

∂`p
A(`)

Similarly derivatives of A∗ correspond to whether
a part appears in the argmax structure, I(z∗p = 1) =
∂
∂`p
A∗(`).

While these gradient identities are well-known
(Eisner, 2016), they are not commonly deployed
in practice. Computing CRF properties is typi-
cally done through two-step specialized algorithms,
such as forward-backward, inside-outside, or simi-
lar variants such as viterbi-backpointers (Jurafsky
and Martin, 2014). Common wisdom is that these
approaches are more efficient implementations.

However, we observe that recent engineering of
faster gradient computation for deep learning has
made gradient-based calculations competitive with
hand-written calculations. In our experiments, we
found that using these identities with autodiffer-
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entiation was often faster, and much simpler, than
custom two-pass approaches. Torch-Struct is thus
designed around using gradients for distributional
computations.

5.2 Dynamic Programming and Semirings
Torch-Struct is a collection of generic algorithms
for CRF inference. Each CRF distribution object,
CRF(`), is constructed by providing ` ∈ R|P|
where the parts P are specific to the type of distri-
bution. Internally, each distribution is implemented
through a single function for computing the log-
partition function A(`). From this function, the
library uses autodifferentiation and the identities
from the previous section, to define a complete dis-
tribution object. The core models implemented by
the library are shown in Table 1.

To make the approach concrete, we consider the
example of the simplest structured model, a linear-
chain CRF p(z1, z2, z3 | x).

z1 z2 z3

The model hasC labels per node with a lengthN
utilizing a first-order linear-chain (Markov) model.
This model hasN−1×C×C parts corresponding
to edges in the chain, and thus ` ∈ RN−1×C×C log-
potentials. The log-partition function A(`) factors
into two reduce computations,

A(`) = log
∑

c3,c2

exp `2,c2,c3
∑

c1

exp `1,c1,c2

= LSEc3,c2 [`2,c2,c3 + [LSEc1`1,c1,c2 ]]

Computing this function left-to-right using dy-
namic programming yields the standard forward
algorithm for computing the log-partition of se-
quence models. As we have seen, the gradient with
respect to ` produces marginals for each part, i.e.
the probability of a specific labeled edge.

We can further extend the same function
to support generic semiring dynamic program-
ming (Goodman, 1999). A semiring is defined
by a pair (⊕,⊗) with commutative ⊕, distribution,
and appropriate identities.

A(`) =
⊕

c3,c2

[`2,c2,c3 ⊗ [
⊕

c1

`1,c1,c2 ]]

The log-partition utilizes ⊕,⊗ = (LSE,+), but
we can substitute alternatives. For instance, uti-
lizing the log-max semiring (max,+) in the for-
ward algorithm yields the max score. As we have

seen, its gradient with respect to ` is the argmax
sequence, negating the need for a separate argmax
(Viterbi) algorithm. Some distributional proper-
ties cannot be computed directly through gradient
identities but still use a forward-backward style
compute structure. For instance, sampling requires
first computing the log-partition term and then sam-
pling each part, (forward filtering / backward sam-
pling). We can compute this value by overriding
each backpropagation operation for the

⊕
to in-

stead compute a sample.
Table 2 shows the set of semirings and back-

propagation steps for computing different terms of
interest. We note that many of the terms necessary
in the case-study can be computed with variant
semirings, negating the need for specialized algo-
rithms.

6 Optimizations

Torch-Struct aims for computational and memory
efficiency. Implemented naively, dynamic program-
ming algorithms in Python are prohibitively slow.
As such Torch-Struct provides key primitives to
help batch and vectorize these algorithms to take ad-
vantage of GPU computation and to minimize the
overhead of backpropagating through chart-based
dynamic programmming. We discuss three opti-
mizations: a) Parallel Scan, b) Vectorization, and c)
Semiring Matrix Multiplications. Figure 3 shows
the impact of these optimizations on the core algo-
rithms.

Parallel Scan Inference The commutative prop-
erties of semiring algorithms allow flexibility in the
order in which we compute A(`). Typical imple-
mentations of dynamic programming algorithms
are serial in the length of the sequence. On par-
allel hardware, an appealing approach is a paral-
lel scan ordering (Särkkä and Garcı́a-Fernández,
2019), typically used for computing prefix sums.
To compute, A(`) in this manner we first pad the
sequence length N out to the nearest power of two,
and then compute a balanced parallel tree over the
parts, shown in Figure 4. Concretely each node
layer would compute a semiring matrix multipli-
cation, e.g.

⊕
c `n,·,c ⊗ `n+1,c,·. Under this ap-

proach, assuming enough parallel cores, we only
needO(logN) steps in Python and can use parallel
operations for the rest. Similar parallel approach
can also be used for computing sequence alignment
and semi-Markov models.
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Figure 3: Speed impact of optimizations. Time is given in seconds for 10 runs with batch 16. (a) Speed of a linear-
chain forward with 20 classes for lengths up to 500. Compares left-to-right ordering to parallel scan. (b) Speed of
CKY inside with lengths up to 80. Compares inner loop versus vectorization. (c) Speed of linear-chain forward of
length 20 with up to 100 classes. Compares broadcast-reduction versus CUDA semiring kernel. (Baseline memory
is exhausted after 100 classes.)

Vectorization Computational complexity is even
more of an issue for algorithms that cannot easily
be parallelized. For example, parsing algorithms
the generalize CKY are common in NLP. The CKY
algorithm has a bottleneck that it must compute
each width from 1 through N in serial; however
internally each one of these steps can be vectorized.
Assuming we have computed all inside spans of
width less than d, computing the inside span of
width d requires computing for all i,

C[i, i+ d] =
i+d−1⊕

j=i

C[i, j]⊗ C[j + 1, i+ d]

In order to vectorize this loop over i, j, we need
to reindex the chart. Instead of using a single
chart C, we split it into two parts: one right-
facing Cr[i, d] = C[i, i + d] and one left facing,
Cl[i+d,N−d] = C[i, i+d]. After this reindexing,
the update can be written.

Cr[i, d] =

j−1⊕

j=1

Cr[i, j]⊗ Cl[i+ d,N − d+ j]

Unlike the original, this formula can easily be com-
puted as a vectorized semiring dot product. This
allows use to compute Cr[·, d] in one operation.
Variants of this same approach can be used for
many more complex dynamic programs.

Semiring Matrix Operations The two previous
optimizations reduce most of the cost to semiring
matrix multiplication. In the specific case of the
(
∑
,×) semiring these can be computed very effi-

ciently using matrix multiplication, which is highly-
tuned on GPU hardware. However, this semiring is
not particularly useful and prone to underflow. For

A(`)

⊕⊗
⊕⊗

I`7,·,·

⊕⊗

`6,·,·`5,·,·

⊕⊗
⊕⊗

`4,·,·`3,·,·

⊕⊗

`2,·,·`1,·,·

Figure 4: Parallel scan implementation of the linear-
chain CRF inference algorithm (parallel forward).
Here

⊕⊗ represents a semiring matrix operation and
I is padding to produce a balanced tree.

other semirings, such as log and max, these oper-
ations are either slow or very memory inefficient.
For instance, for matrices T and U of sizedN×M
and M × O, we can broadcast with ⊗ to a tensor
of size N ×M ×O and then reduce dim M by

⊕

at a huge memory cost.
To avoid this issue, we implement custom CUDA

kernels targeting fast and memory efficient tensor
operations. For log, this corresponds to computing,

Vm,o = log
∑

n

exp(Tm,n + Un,o − q) + q

where q = maxn Tm,n + Un,o. To optimize this
operation on GPU we utilize the TVM language
(Chen et al., 2018) to layout the CUDA loops and
tune it to hardware. This produces much faster
operations, although still less efficient that matrix
multiplication which is heavily customized to hard-
ware.

7 Conclusion and Future Work

We present Torch-Struct, a library for deep struc-
tured prediction. The library achieves modular-
ity through its adoption of a generic distributional
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API, completeness by utilizing CRFs and semir-
ings to make it easy to add new algorithms, and
efficiency through core optimizations to vector-
ize important dynamic programming steps. In
addition to the problems discussed so far, Torch-
Struct also includes several other example im-
plementations including supervised dependency
parsing with BERT, unsupervised tagging, struc-
tured attention, and connectionist temporal clas-
sification (CTC) for speech. Code demonstrates
that the model is able to replicate standard deep
learning results, although we focus here on the fi-
delity and implementation approach of the core
library. The full library is available at https:

//github.com/harvardnlp/pytorch-struct.
In the future, we hope to support research and

production applications employing structured mod-
els. We also believe the library provides a strong
foundation for building generic tools for inter-
pretablity, control, and visualization through its
probabilistic API. Finally, we hope to explore fur-
ther optimizations to make core algorithms compet-
itive with highly-optimized neural network compo-
nents. These approaches provide a benchmark for
improving autodifferentiation systems and extend-
ing their functionality to higher-order properties.
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André FT Martins, Noah A Smith, Eric P Xing, Pe-
dro MQ Aguiar, and Mário AT Figueiredo. 2010.
Turbo parsers: Dependency parsing by approximate
variational inference. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 34–44. Association for
Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Abstract
Traditionally, industry solutions for building
a task-oriented dialog system have relied on
helping dialog authors define rule-based di-
alog managers, represented as dialog flows.
While dialog flows are intuitively interpretable
and good for simple scenarios, they fall short
of performance in terms of the flexibility
needed to handle complex dialogs. On the
other hand, purely machine-learned models
can handle complex dialogs, but they are con-
sidered to be black boxes and require large
amounts of training data. In this demonstra-
tion, we showcase Conversation Learner, a
machine teaching tool for building dialog man-
agers. It combines the best of both approaches
by enabling dialog authors to create a dialog
flow using familiar tools, converting the dia-
log flow into a parametric model (e.g., neural
networks), and allowing dialog authors to im-
prove the dialog manager (i.e., the parametric
model) over time by leveraging user-system di-
alog logs as training data through a machine
teaching interface.

1 Introduction

The proliferation of messaging applications and
hardware devices with personal assistants has
spurred the imagination of many in the technol-
ogy industry to create task-oriented dialog systems
that help users complete a wide range of tasks
through natural language conversations. Tasks in-
clude customer support, IT helpdesk, information
retrieval, appointment booking, etc. The wide va-
riety of tasks has created the need for a flexible
task-oriented dialog system development platform
that can support many different use cases, while re-
maining simple for developers to use and maintain.

A task-oriented dialog system is typically built
as a combination of three discrete systems, per-
forming language understanding (for identifying

∗Equal contribution.

user intent and extracting associated information),
dialog management (for guiding users towards task
completion), and language generation (for convert-
ing agent actions to natural-language system re-
sponses). The Dialog Manager (DM) contains two
sub-systems: the Dialog State Tracker (DST) for
keeping track of the current dialog state, and the
Dialog Policy (DP) for determining the next action
to be taken in a given dialog instance. The DP re-
lies on the internal state provided by DST to select
an action, which can be a response to the user, or
some operation on the back-end database (DB). In
this paper, we present a novel approach to building
dialog managers (DMs).

Language 
Understanding

(NLU)

Language 
Generation

(NLG)

Dialog State 
Tracker
(DST)

Dialog Policy
(DP)

Dialog Manager (DM)

DB

Input x

output y

Figure 1: An architecture for a task-oriented dialog sys-
tem.

In a typical industrial implementation of a task-
oriented dialog system, the DM is expressed as a
dialog flow, which is often a finite state machine,
with nodes representing dialog activities (system
actions) and edges representing conditions (dialog
states that represent the previous user-system inter-
actions). Since a dialog flow can be viewed as a set
of rules that specify the flow between dialog states,
it may also be called a rule-based DM.

There has been an increasing need for tools to
help dialog authors1 develop and maintain rule-

1In this paper, “author” may refer to developers, business
owners, or domain experts who define and maintain the con-
versational aspects of a task-oriented dialog system.
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based DMs. These tools are often implemented as
drag-and-drop WYSIWYG tools that allow users
to specify and visualize all the details of the dialog
flow. They often have deep integration with popu-
lar Integrated Development Environments (IDEs)
as editing frontends. Examples of rule-based or par-
tially rule-based DMs include Microsoft’s Power
Virtual Agents (PVA) 2 and Bot Framework (BF)
Composer 3, Google’s Dialog Flow 4, IBM’s Wat-
son Assistant 5, Facebook’s Wit.ai 6 and Amazon’s
Lex 7. It should be noted that most of these tools
have some built-in machine-learned NLU capabil-
ities, i.e. intent classification and entity detection,
that can be leveraged to trigger different rule-based
dialog flows, e.g. asking appropriate questions
based on missing slots from the dialog state.

However, a rule-based DM suffers from two ma-
jor problems. First, these systems can have diffi-
culty handling complex dialogs. Second, updat-
ing a rule-based DM to handle unexpected user
responses and off-track conversations is often diffi-
cult due to the rigid structure of the dialog flow, the
long-tail (sparseness) of user-system dialogs, and
the complexity in jumping to unrelated parts of the
flow.

In end-to-end approaches proposed recently
(Madotto et al., 2018; Lei et al., 2018), the DM
is implemented as a neural network model that is
trained directly on text transcripts of dialogs. Gao
et al. (2019) presents a survey of recent approaches.
One benefit provided by using a neural network
model is that the network infers a latent repre-
sentation of dialog state, eliminating the need for
explicitly specifying dialog states. Neural-based
DMs has been an area of active development for
the research community as well as in industry; Py-
Dial (Ultes et al., 2017), ParlAI (Miller et al., 2017),
Plato (Papangelis et al., 2020), Rasa (Bocklisch
et al., 2017), DeepPavlov (Burtsev et al., 2018),
and ConvLab (Lee et al., 2019) are a few examples.
However, these machine-learned neural DMs are
often viewed as black boxes from which dialog
authors have difficulty interpreting why individual
use cases succeed or fail. Further, these approaches
often lack a general mechanism for accepting task-

2https://powervirtualagents.microsoft.
com/

3https://github.com/microsoft/
BotFramework-Composer

4https://dialogflow.com/
5https://www.ibm.com/watson/
6https://wit.ai/
7https://aws.amazon.com/lex/

specific knowledge and constraints, thus requiring
a large number of validated dialog transcripts for
training. Collection and curation of this type of
corpus is often infeasible.

This paper presents Conversation Learner, a ma-
chine teaching tool for building DMs, which com-
bines the strengths of both rule-based and machine-
learned approaches. Conversation Learner is based
on Hybrid Code Networks (HCNs) (Williams et al.,
2017) and the machine teaching discipline (Simard
et al., 2017). Conversation Learner allows dialog
authors to (1) import a dialog flow developed us-
ing popular dialog composers, (2) convert the di-
alog flow to an HCN-based DM, (3) continuously
improve the HCN-based DM by reviewing user-
system dialog logs and providing updates via a
machine teaching UI, and (4) convert the (revised)
HCN-based DM back into a dialog flow for further
editing and verification.

Section 2 describes the architecture and main
components of Conversation Learner. Section 3
demonstrates Conversation Learner features. Sec-
tion 4 presents a case study of using Conversation
Learner as the DM of a text-based customer support
dialog system.

2 Conversation Learner

Development of any DM follows an iterative pro-
cess of generation, testing, and revision. Conversa-
tion Learner follows a three-stage DM development
process:

1. Dialog authors develop a rule-based DM (dia-
log flow) using a dialog composer.

2. The DM is imported into a HCN dialog sys-
tem. Users (or human subjects recruited for
system fine-tuning) interact with the system
and generate user-system dialog logs.

3. Dialog authors revise the DM by selecting
representative failed dialogs from the logs and
teaching the system to complete these dialogs
successfully. Run regression testing. Return
to step 2.

This development process is illustrated in Fig-
ure 2 (Bottom). The overall architecture of Con-
versation Learner is shown in Figure 2 (Top). It
consists of four components: (1) a DM converter
that converts a dialog flow between rule-based
and HCN-based DM representations; (2) an HCN-
based DM engine; (3) a machine teaching module
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Figure 2: The architecture of Conversation Learner
(Top) and the development of DMs using Conversation
Learner (Bottom).

that allows dialog authors to revise the HCN-based
DM; and (4) an evaluation module that allows side-
by-side comparison of the dialogs generated by
different DMs. We describe each component in
detail below.

2.1 HCN-based DM

The Conversation Learner HCN consists of a set of
task-specific action templates, an entity module, a
set of action masks, and a Recurrent Neural Net-
work (RNN). Each action template can be a textual
communicative action, rich card, or an API call.
The entity module detects entity mentions in user
utterances, grounds the entity mentions (e.g., by
mapping an entity mention to a specific row in a
dataset), and performs entity substitution in a se-
lected action template to produce a fully-formed
action (e.g., by mapping the template “the weather
of [city]?” to “the weather of Seattle?”

Each action mask represents an “if-then” rule
that determines the set of valid actions for some
conditions (i.e., particular dialog states or user in-
puts).

The RNN maintains dialog states and selects sys-
tem actions. For each turn in a training dialog, a
combination of features, including the user utter-
ance embedding, its bag of words vector, and the
set of extracted entities are concatenated to form
a feature vector that is passed to the RNN, specifi-
cally a Long Short Term Memory (LSTM) network.
The RNN computes a hidden state vector, which
is retained for the next timestep. Next, a softmax
activation layer is used to calculate a probability
distribution over the available system action tem-

plates. An action mask is then applied, and the re-
sult is normalized to select the highest-probability
action as the best response for the current turn.

The HCN can be trained on a collection of user-
system dialogs. For each system response in a dia-
log, the action template is labeled. The training of
HCN takes two steps. First, all unique action tem-
plates are imported into the HCN. Then, the RNN,
which maps states to action templates, is optimized
for minimizing the categorical cross-entropy on
training data. More specifically, each dialog forms
one minibatch, and updates of the RNN are done
via non-truncated back-propagation through time.

Readers are referred to Williams et al. (2017) for
a detailed description of HCN. It should be noted
that CL leverages the same network architecture
as HCN with enhancements and modifications to
generate context features from training samples.

2.2 DM converter

The DM converter converts a rule-based DM, de-
veloped using a dialog composer, to an HCN-based
DM, which can then be improved via training di-
alogs and machine teaching.

Given a dialog flow, the DM converter automat-
ically generates a set of training dialogs that rep-
resent the dialog flow. This process is done by
performing an exhaustive set of walks over the di-
alog flow and generating training dialog instances
for each walk. Rules that determine transitions in
the dialog flow are represented as action masks in
the HCN. The HCN is trained on the generated
training dialogs as described in Section 2.1.

The DM converter can also convert a revised
HCN-based DM back to a dialog flow by aggre-
gating the individual training dialogs back into a
graph for further editing and verification using a
dialog composer.

2.3 Machine Teaching

The HCN-based DM can be improved via machine
teaching (Simard et al., 2017). “Machine teach-
ing” is an active learning paradigm that focuses
on leveraging the knowledge and expertise of do-
main experts as “teachers”. This paradigm puts a
strong emphasis on tools and techniques that en-
able teachers - particularly non-data scientists and
non-machine-learning experts - to visualize data,
find potential problems, and provide corrections or
additional training inputs in order to improve the
system’s performance.
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For Conversation Learner, we developed a UI for
visualizing and editing logged user-system dialogs
that had failed to complete their tasks successfully.
The teacher does not need to revise the DM directly
(e.g., via writing code or by modifying dialog struc-
ture in a hierarchical composer tool). The teacher
simply corrects cases where the dialog system re-
sponded poorly or incorrectly.

The teacher can make three types of corrections:
(1) correct entity detection and grounding errors;
(2) correct state-to-action mapping; or (3) create a
new action template.

In cases where a large number of logged dialogs
exists, we use active learning to provide a ranking
of the candidate dialogs most likely to benefit from
machine teaching intervention.

Our empirical tests show that machine teach-
ing requires considerably fewer training samples
than traditional machine learning approaches to im-
prove system performance. We commonly observe
significant improvements in DM performance by
providing a dozen or fewer teaching examples.

There are three main reasons the HCN + machine
teaching combination is so effective. First, dialog
authors are generally subject matter experts who
can make well-informed decisions about which ac-
tions the DM should perform in individual situ-
ations. If the DM has to automatically learn an
action policy from logs, a large corpus of data is
required. Second, the HCN allows dialog authors
to explicitly encode domain-specific knowledge as
action templates (bot activities or responses) and
action masks (when a given response should be
disallowed) without learning. Third, we can use in-
telligent filtering to select the most impactful failed
dialogs for teachers to review.

2.4 Regression Testing

To effectively compare the performance of various
dialog systems using different DMs, we developed
a regression testing module. The module replays
user utterances from transcripts of existing conver-
sations against the DMs being tested; each DM
then provides response action(s) for each turn. The
module displays side-by-side comparisons of the re-
sulting conversations from each DM, up to the point
where the DM responses diverge. Human judges
then rate the conversations as “left better”,“right
better” or “same”.

At the end of the rating session, a report is gener-
ated showing the performance of conversational

flow amongst the DMs, as rated by the human
judges.

3 System Demonstration

The system demonstration consists of the following
steps:

1. The dialog author creates a rule-based DM
using a dialog composer tool. We showcase
the usage of Microsoft Power Virtual Agent
system for this step.

2. The rule-based DM is exported to a com-
mon representation, e.g. Microsoft’s ‘.dialog’
schema8.

3. The dialog flow is then imported into the Con-
versation Learner system. The import pro-
cess involves traversing the dialog flow and
creating dialog transcript instances for each
traversal.

4. The generated dialog transcripts are run
through both the rule-based system and Con-
versation Learner to demonstrate the improve-
ment in dialog-handling flexibility provided
by Conversation Learner’s machine-learned
DM.

5. For transcripts containing failures to complete
the user’s desired task, we demonstrate the
machine teaching UI used to ‘correct’ errors
and generate new training examples for revis-
ing the DM.

4 Case Study

To evaluate Conversation Learner’s performance,
we used dialog transcripts from Microsoft’s text-
based customer support system9. This customer
support system uses a sophisticated rule-based DM
to handle various customer support scenarios. It
was created and is regularly updated by domain
experts. We chose to use transcripts of actual user-
system dialogs in order to measure the performance
of the DMs in a realistic setting.

The customer support system consists of hun-
dreds of “topics” out of which we selected three:
“language settings”, “installing or changing fonts”,

8https://github.com/microsoft/
botbuilder-dotnet/blob/master/schemas/
sdk.schema

9These transcripts were scrubbed of any personally identi-
fiable information.
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Turn Dialog

1 usr: How to reduce font size
agt: How can I help you with fonts today?

2 usr: Adjust font size
agt: Would you like to change the font size in an
app or the size of text on your screen?

3 usr: Change size of text on screen
agt: Change the size of text in Windows 10 using
Display settings or use Magnifier. <Link to
solution>

4 agt: Did that solve your problem?
usr: Yes

5 agt: Great! Glad that helped.

Table 1: A sample human-agent dialog from the cus-
tomer support logs

and “sign in problems”. Table 1 shows an example
of a user-system dialog for “change font” topic.
Figure 3 shows the representation of a specific
topic’s dialog flow in the Microsoft Power Virtual
Agents dialog composer. We exported the dialog
flow graph of the support system from this system,
then followed the process described in Section 2.2
to train our machine-learned HCN-based DM. Fig-
ure 4 shows an example of a generated train dialog.

Figure 3: An example of a rule-based dialog defined in
the Microsoft Power Virtual Agents system

After generating the HCN-based DM, we ran
the set of dialog transcripts against both rule-based
and HCN-based DMs. For the majority of conver-
sations, users followed the expected flow, so the
HCN-based DM produced the same results as the
rule-based DM. For those that differed, we used
human judges to do a blind qualitative evaluation
of the conversations and choose the conversation

Figure 4: An example train dialog generated by travers-
ing the different paths of a dialog tree (left), and DM
actions generated from the tree (right)

that provided the best task-completion result.

User Rating # of Convs. %
CL is same 2749 91.63%
CL is better 136 4.53%
CL is worse 115 3.83%
Overall variation 0.7% (better)

Table 2: Initial results of human evaluation of 3000
dialogs against Conversation Learner (CL) and a rule-
based dialog system.

As shown in Table 2, the HCN-based DM pro-
vided better results for many transcripts, but there
was an almost equal number of dialogs where the
rule-based DM was rated better. The rule-based
DM may perform better in cases where specialized
hard-coded logic was added to handle issues such
as input normalization or rewriting.

An example dialog comparison is shown in Fig-
ures 5 and 6. As seen in Figure 6, the HCN-based
DM handles cases where the user utterance does
not match a known phrase, better than the rules-
based system. The HCN is also able to handle
unexpected transitions between dialog nodes.

In a rule-based system, updating the DM to han-
dle unexpected user responses and off-track con-
versations is much harder due to the rigid structure
of the dialog flow graph, the long-tail nature of
user-system dialog transcripts (a large number of
sparse examples), and complexity in transitioning
between unrelated parts of the dialog flow.

Next, we demonstrate that the performance of
the HCN DM can be substantially improved by
adding just 3 to 5 teaching examples via the ma-
chine teaching UI presented in Section 2.3. For
this experiment, we chose dialog transcripts that
contained common patterns of conversational prob-
lems, like users switching context, repeating them-
selves or asking follow-up questions, and corrected
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Figure 5: A sample dialog from a rule-based sys-
tem. Notice that the system just repeats its previous
question (as a rule) since it did not understand the
user reply.

Figure 6: Same dialog as Figure 5 in Conversation
Learner. Notice that the user response is accurately
generalized to one of the available options when
possible.

Figure 7: Machine Teaching UI for correcting dialogs
to revise DM.

the dialog policy by creating or selecting the appro-
priate system action to resolve the problem. Once
these additional examples are added, as illustrated
in Figure 7 the HCN-based DM’s performance im-
provement over the rule-based DM nearly tripled,
from 4.53% to 13.8%.

User Rating # of Convs. %
CL is same 2562 85.4%
CL is better 414 13.8%
CL is worse 24 0.81%
Overall variation 12.99% (better)

Table 3: Results of human evaluation of 3000 dialogs
after improving Conversation Learner (CL) model with
machine teaching.

As shown in Table 3, minimal intervention from
a dialog author by providing a small number of
corrections to problematic user-system dialog logs

can have a significant impact on the performance of
the DM. As new users interact with the system and
new transcripts are generated, the dialog author can
continuously improve the HCN DM’s performance
by making corrections and adding new training
data.

5 Conclusion

In this paper, we presented Conversation Learner,
a machine teaching tool for building dialog policy
managers. We have shown that the CL HCN-based
DM can be bootstrapped from a rule-based DM
preserving the same behavior expected from the
rule-based system. Using the CL machine teaching
UI, the dialog author can provide corrections to
the logged user-system dialogs and further improve
the CL’s DM performance. We demonstrated this
through a case study based on dialog transcripts
from Microsoft’s text-based customer support sys-
tem where the gains were approximately 13%.

We are planning to extend this work by look-
ing into following problems: 1) Investigating ef-
fectiveness of different ranking algorithms for log
correction recommendation, 2) Optimizing num-
ber of training samples and action masks generated
from the rule-based DM, and 3) Improving predic-
tions of HCN-based DM by looking into alternative
network architectures.
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Abstract

Millions of news articles from hundreds of
thousands of sources around the globe appear
in news aggregators every day. Consuming
such a volume of news presents an almost
insurmountable challenge. For example, a
reader searching on Bloomberg’s system for
news about the U.K. would find 10,000 arti-
cles on a typical day. Apple Inc., the world’s
most journalistically covered company, gar-
ners around 1,800 news articles a day.

We realized that a new kind of summarization
engine was needed, one that would condense
large volumes of news into short, easy to ab-
sorb points. The system would filter out noise
and duplicates to identify and summarize key
news about companies, countries or markets.

When given a user query, Bloomberg’s solu-
tion, Key News Themes (or NSTM), leverages
state-of-the-art semantic clustering techniques
and novel summarization methods to produce
comprehensive, yet concise, digests to dramat-
ically simplify the news consumption process.

NSTM is available to hundreds of thousands of
readers around the world and serves thousands
of requests daily with sub-second latency. At
ACL 2020, we will present a demo of NSTM.

1 Introduction

In many domains, finding contextually-important
news as fast as possible is a key goal. With millions
of articles published around the globe each day,
quickly finding relevant and actionable news can
mean the difference between success and failure.

When provided with a search query, a traditional
system returns links to articles sorted by relevance.
However, users typically encounter (near) duplicate
or overlapping articles, making it hard to quickly
identify key events and easy to miss less-reported

∗Order reflects writing contributions; M.X., I.C.C., and
J.B. designed and developed a prototype of the system; All
implemented the production system; A.A. managed the project.
I.C.C. worked on the project while employed by Bloomberg.

stories. Moreover, news headlines are frequently
sensational, opaque, or verbose, forcing readers to
open and read individual articles.

For illustration, imagine an analyst sees the price
of Amazon.com stock drop and wants to know why.
With a traditional system, they would search for
news on the company and wade through many sto-
ries (307 in this case1), often with duplicate infor-
mation or unhelpful headlines, to slowly build up a
full picture of what the key events were.

By contrast, using NSTM (Key News Themes),
this same analyst can search for ‘Amazon.com’,
over a given time horizon, and promptly receive a
concise and comprehensive overview of the news,
as shown in Fig. 1. We tackle the challenges in-
volved with consuming vast quantities of news by
leveraging modern techniques to semantically clus-
ter stories, as well as innovative summarization
methods to extract succinct, informational sum-
maries for each cluster. A handful of key stories are
then selected from each cluster. We define a (story
cluster, summary, key stories) triple as one theme
and an ordered list of themes as an overview.

NSTM works at web scale but responds to ar-
bitrary user queries with sub-second latency. It is
deployed to hundreds of thousands of users around
the globe and serves thousands of requests per day.

2 Design Goals

We focus on the scenario where a news search
query can render many matching news articles,
from tens up to hundreds of thousands. The task is
to create a succinct overview of the results to help
our users to easily grasp the gist of them without
combing through the individual articles.

Since the matching articles often cover various
aspects and events, NSTM must first cluster related
stories to form a clear separation among them.

Furthermore, the system must extract a concise

1The corresponding overview can be found in Appendix C.
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Search box Summary Cluster size Total search results

Key stories Feedback buttons

Time period selection

Source Publication date

Figure 1: A query-based UI for NSTM showing two themes. The un-cropped screenshot is in Appendix C.

(up to 50 characters, or roughly 6 tokens) summary
for each cluster. It needs to be short enough to
be understandable to humans with a single glance,
but also rich enough to retain critical details from a
minimal ‘who-does-what’ stub, so the most popular
noun phrase or entity alone will not suffice. Such
conciseness also helps when screen space is limited
(for context-driven applications or mobile devices).

From each cluster, NSTM must surface a few key
stories to provide a sample of its contents. The clus-
ters themselves should also be ranked to highlight
the most important few in limited screen space.

Finally, the system must be fast. It may only
take up to a few seconds for the slowest queries.

Main technical challenges: 1) There is no pub-
lic dataset corresponding to this overview composi-
tion problem with all the requirements set above, so
we were required to either define new (sub-)tasks
and collect new annotations, or select techniques
by intuition, implement them, and iterate on feed-
back; 2) Generating summaries which are simulta-
neously accurate, informational, fluent, and highly
concise necessitates careful and innovative choices
of summarization techniques; 3) Supporting arbi-
trary user searches in real-time places significant
performance requirements on the system whilst
also setting a high bar for its robustness.

3 Related Work

A comparable system is Google News’ ‘Full Cover-
age’ feature2, which groups stories from different
sources, akin to our clustering approach. However,
it doesn’t offer summarization and its clustered
view is unavailable for arbitrary search queries.

SUMMA (Liepins et al., 2017) is another com-
parable system which integrates a variety of NLP
components and provides support for numerous
media and languages, to simultaneously monitor

2https://www.blog.google/products/news/new-google-
news-ai-meets-human-intelligence/

several media broadcasts. SUMMA applies the
online clustering algorithm by Aggarwal and Yu
(2006) and the extractive summarization algorithm
by Almeida and Martins (2013). In contrast to
NSTM, SUMMA focuses on scenarios with contin-
uous multimedia and multilingual data streams and
produces much longer summaries.

4 Approach

4.1 Architecture
The functionality of NSTM can be formulated
as: given a search query, generate a ranked list
(overview) of the key themes, or (news cluster, sum-
mary, key stories) triples, that concisely represent
the most important matching news events.

Fig. 2 depicts the system’s architecture. The
story ingestion service processes millions of pub-
lished news stories each day, stores them in a search
index, and applies online clustering to them. When
a search query is submitted via a user interface ( 1©
in the diagram), the overview composition service
retrieves matching stories and their associated on-
line cluster IDs from the search index ( 2©). The
system then further clusters the retrieved online
clusters into the final clusters, each correspond-
ing to one theme ( 3©). For each such cluster, the
system extracts a concise summary and a handful
of key stories to reflect the cluster’s contents ( 4©).
This creates a set of themes, which NSTM ranks to
create the final overview. Lastly, the system caches
the overview for a limited time to support future
reuse ( 5©) before returning it to the UI ( 6©).

4.2 News Search
The first step in the NSTM pipeline is to retrieve
relevant news stories ( 1© in Fig. 2), for which we
leverage a customized in-house news search engine
based on Apache Solr.3 This supports searches
based on keywords, metadata (such as news source

3http://lucene.apache.org/solr/
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Overview composition service

③ Cluster search 
results① Send search query

⑥ Return overview

④ Summarize 
clusters

Search index

② Retrieve stories & 
online cluster IDs

Real-time stream 
of news stories

⑤ Cache 
overview

User interface

Story ingestion service

Index & cluster stories
Cache

Figure 2: The architecture of NSTM. The digits indicate the order of execution whenever a new request is made.

and time of ingestion), and tags generated during
ingestion (such as topics, regions, securities, and
people). For example, TOPIC:ECOM AND NOT
COMPANY:AMZN4 will retrieve all news about ‘E-
commerce’ but exclude Amazon.com.

NSTM uses Solr’s facet functionality to surface
the largest k online clusters (detailed in Sec. 4.3.2)
in the search results, before returning n stories from
each. This tiered approach offers better coverage
and scalability than direct story retrieval.

4.3 Clustering

4.3.1 News Embedding and Similarity
At the core of any clustering system is a similar-
ity metric. In NSTM, we define the similarity be-
tween two articles as the cosine similarity between
their embeddings as computed by NVDM (Miao
et al., 2016), i.e., τ(d1, d2) = 0.5(cos(z1, z2)+1),
where z ∈ Rn denotes the NVDM embedding.

Our choice is motivated by two observations: 1)
The generative model of NVDM is based on bag-
of-words (BoW) and P (w|z) = σ(W>z) where
σ is the softmax function, W ∈ Rn×V is the word
embedding matrix in the decoder and V is the size
of the vocabulary. This resembles the latent topic
structure popularized by LDA (Blei et al., 2003)
which has proven effective in capturing textual se-
mantics. Additionally, the use of cosine similarities
is naturally motivated by the fact that the genera-
tive model is directly defined by the dot-product
between the story embedding (z) and a shared vo-
cabulary embedding (W ). 2) NVDM’s Variational
Autoencoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014) framework makes the infer-
ence procedure much simpler than LDA and it also
supports decoder customizations. For example, it
allows us to easily integrate the idea of introducing

4This is Bloomberg’s internal news search query syntax,
which maps closely to the final query submitted to Solr.

a learnable common background word distribution
into the generative model (Arora et al., 2017).

We trained the model on an internal corpus of
1.85M news articles, using a vocabulary of size
about 200k and a latent dimension n of 128.

4.3.2 Clustering Stages
We divide clustering into two stages in the pipeline,
1) online incremental clustering at story ingestion
time, and 2) hierarchical agglomerative clustering
(HAC) at query time ( 3© in Fig. 2). The former is
used to produce query-agnostic online clusters at
a relatively low cost to handle the daily influx of
millions of news stories. These clusters reduce the
computational cost at query time. However, due
to its online nature, over-fragmentation, among
other quality issues, occurs in the resulting clusters.
This necessitates further refinement at query time
when an offline HAC step is performed on top of
the retrieved online clusters. A similar, but more
complicated, design was adopted in Vadrevu et al.
(2011) for clustering real-time news search results.

At both stages, we compute the cluster embed-
ding zc ∈ Rn as the mean of all the story em-
beddings therein, and evaluate similarities between
clusters (individual stories are taken as singleton
clusters) using the metric τ defined in Sec. 4.3.1.

For online clustering, we apply an in-house im-
plementation which uses a distributed pool of work-
ers to reduce latency and increase throughput. It
merges each incoming story with the closest cluster
if the similarity is within a parameterized threshold
and otherwise creates a new singleton cluster.

For HAC, we apply fastcluster5 (Müllner,
2013) to construct the dendrogram. We use com-
plete linkage to encourage more congruent clusters
and then form flat clusters by cutting the dendro-
gram at the same (height) threshold. To further

5https://www.jstatsoft.org/article/view/v053i09
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reduce fragmentation where similar clusters are
left un-clustered, we apply HAC twice recursively.

To find a reasonable similarity threshold, we
manually annotated just over 1k pairs of news arti-
cles. Each annotator indicated whether they would
expect to see the articles grouped together or not
in an overview. We then selected the threshold
which achieved the highest F1 score on this binary
classification task, which was 0.86.

4.4 Summary Extraction

Clustering search results (Vadrevu et al., 2011) is a
meaningful step towards creating a useful overview.
With NSTM, we push this one step further by ad-
ditionally generating a concise, yet still human-
readable, summary for each cluster ( 4© in Fig. 2).

Due to the unique style of the summary ex-
plained in Sec. 2, the scarcity of training data makes
it hard to train an end-to-end seq2seq (Sutskever
et al., 2014) model, as is typical for abstractive sum-
marization. Also, this technique would only offer
limited control over the output. Hence, we opt for
an extractive method, leveraging OpenIE (Banko
et al., 2007) and a BERT-based (Devlin et al., 2019)
sentence compressor (both illustrated in Fig. 3) to
surface a pool of sub-sentence-level candidate sum-
maries from the headline and the body, which are
then scored by a ranker.

4.4.1 OpenIE-based Tuple Extraction

Open Domain Information Extraction (OpenIE)
presents an unsupervised approach to extract sum-
mary candidates from an input sentence.

First, we construct a dependency parse tree of
the sentence, using a model based on Kiperwasser
and Goldberg (2016) ( 1© in Fig. 3).

From this tree, we extract predicate-argument n-
tuples using an adapted reimplementation of Pred-
Patt (White et al., 2016) ( 2©). The tuples represent
nested proto-semantic parses of the sentence, and
typically correspond to well-formed phrases. This
method applies rules cast over Universal Depen-
dencies (Nivre et al., 2016) so syntactic patterns
are unlexicalized and language-neutral.

We then prune these tuples ( 3©), applying rules
which reduce the arguments to their syntactic heads,
while heuristics keep named entities and multi-
word expressions intact. We recursively intersect
the resulting tuples to create more tuples.

Finally, to render summary candidates, we create
a titlecased surface form of each tuple ( 4©).

4.4.2 BERT-based Sentence Compression
In addition to the rule-based OpenIE system, we
apply a Transfer Learning-based solution, using a
novel in-house dataset specific to our sub-task. In
particular, we model candidate summary extraction
as a ‘sentence compression’ task (Filippova et al.,
2015), where each story is split into sentences and
tokens are classified as keep or delete to make each
sentence shorter, while retaining the key message.

We oversaw the manual annotation of a dataset
which maps sentences to compressed equivalents
that correspond to summaries. When presented
with a news story, annotators selected one sentence
and deleted words to create a high quality summary.
This rendered 10k annotations which we randomly
partitioned into train (80%) and test (20%) sets.

The task is formulated as sequence tagging,
whereby each sub-token ( 1© in Fig. 3), defined
using the BERT vocabulary, is classified as keep or
delete ( 2©). We implement this using a feedforward
layer on top of a Bloomberg-internal pre-trained
neural network, akin to the uncased English BERT-
Base model, applying an adapted implementation.

To create a compression, we stitch sub-tokens
labelled keep together ( 3©). Lastly, we use postpro-
cessing rules to improve formatting ( 4©), such as
titlecasing and fixing partial-entity deletion (where
only some sub-tokens of a token/entity are deleted).

4.4.3 Summary Candidate Ranking
Tuple generation and sentence compression pro-
vide a pool of summary candidates for individ-
ual news stories. These are further aggregated
across stories within a cluster to form the final
pool. To identify the best summary for the cluster,
we trained a sequence-pair model sθ(a, c) to score
each candidate c given an article a. Such article-
level scores for a candidate are computed against
all the stories in a cluster and then aggregated (e.g.,
averaged) to produce the final cluster-level scores,
which we use for ranking.

For this purpose, we collected an in-house anno-
tated dataset. We sampled a few thousand news ar-
ticles and generated 33k summary candidates from
them using OpenIE,6. Then we asked internal anno-
tators to label each as Great, Acceptable or Terrible
were it to be used as a summary for the article, con-
sidering both readability and informativeness.

From this dataset, we constructed about 48k pair-
wise samples (c, c′)|a where c is labelled more

6At this time, we hadn’t considered sentence compression.
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Automaker ST is investing $2B in electric vehicles (EVs), atoning for the 2018 scandal

① Parse dependencies (shown cropped)

② Extract pred-arg n-tuples (1 output shown)

③ Prune tuples (1 output shown)

④ Create surface form

① Create sub-tokens

② Classify sub-tokens

③ Stitch sub-tokens (with score greater than 0.5)

④ Postprocess

(atoning, Automaker ST, for the 2018 scandal)
    PRED                     ARG                                   ARG

['automaker’, ‘ST’, 'is', 'investing', '$',  '2', ‘##B’, …]

ST Atoning For 2018 Scandal

st investing 2b in evs

ST Investing $2B in EVs
OpenIE Pipeline BERT-based Sentence Compression Pipeline

(atoning, ST, for 2018 scandal)
          PRED        ARG                 ARG

[      0.3,          0.8,  0.2,      0.8,      0.4, 0.6,  0.8,   …]

Figure 3: Illustrations of the symbolic OpenIE (left) and neural sentence compression (right) candidate extraction
pipelines. We apply both, to render a diverse pool of candidate summaries, and use a ranker to select the best.

favorably than c′ for a given common article a,
and the model sθ(a, c) was then trained to match
such preferences using pairwise margin loss, i.e.,
max(0, 1− sθ(a, c) + sθ(a, c

′)).
We considered a few models, including a

parameter-free baseline which scores candidate-
article pairs as the dot-product of their NVDM
(Sec. 4.3.1) embeddings, i.e., s = z>a zc. We
also considered this model’s bilinear extension
s = z>a Wzc where W is the learnable weight ma-
trix. Lastly, we tried neural network models, such
as DecAtt (Parikh et al., 2016). We evaluated these
models on a held-out test set with metrics such as
pairwise ranking accuracy and NDCG. We opted
to productionize the baseline model, since it was
the simplest and performed on par with the others.7

Because NVDM uses a bag-of-words model, this
ranker ignores syntax entirely. We believe that its
empirical success owes to both the well-formedness
of the majority of the candidates and the averaging
effect that amplifies the ‘signal-noise ratio’ when
the scores are averaged over the cluster.

Empirically, this approach tends to surface ‘in-
formational’ summaries, in contrast to headlines
which are often ‘sensational’. We posit that this
is because high-ranked summaries must also be
representative of story bodies, not just headlines.

4.4.4 Combining Summary Candidates

OpenIE and sentence compression offer distinct
ways to extract candidates, and we experimented
with each as the sole source of summary candi-
dates in our pipeline. On the basis of ROUGE

7E.g., with NDCG5, the (untrained) NVDM dot-product
yields 0.61, while the bilinear model and DecAtt yield 0.64.

scores (Lin and Hovy, 2003; Lin, 2004) (details in
Appendix B), the latter provides superior results.

However, in a production system which informs
business decisions, we must consider factors which
aren’t readily captured by metrics which compare
generated and ‘gold’ outputs. For example, chang-
ing a single word can reverse the meaning of a
summary, with only a small change in such scores.
Hence, we consider a range of pros and cons.

The sentence compression method is supervised
and is trained to produce summaries which can
take advantage of news-specific grammatical styles.
However, the OpenIE system is much faster and
offers greater interpretability and controllability.

Since the neural and symbolic systems provide
different advantages, we apply both. This renders
a diverse pool of candidate summaries from which
the ranker’s task is to select the best. At the pool-
ing stage we also impose a length constraint of 50
characters and exclude any longer candidates.

4.5 Key Story Selection

As a sample from the full story cluster, NSTM se-
lects an ordered list of key stories which are deemed
to be representative. We select these using a heuris-
tic based on intuition and client feedback.

Our approach is to re-cluster all stories in the
cluster using HAC (see Sec. 4.3.2), to create a
parameterized number of sub-clusters. For each
sub-cluster, we select the story that has maximum
average similarity τ (as per Sec. 4.3.1) to the other
sub-cluster stories. This strategy is intended to se-
lect stories which represent each cluster’s diversity.

We sort the key stories by sub-cluster size and
time of ingestion, in that order of precedence.
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4.6 Theme Ranking
We have described how (story cluster, summary,
key stories) triples, or themes, are created. How-
ever, some themes are considered to be more im-
portant than others since they are more useful to
readers. It is tricky to define this concept concretely
but we apply proxy metrics in order to estimate an
importance score for each theme. We rank themes
by this score and, in order to save screen space, re-
turn only the top few (‘key’) themes as an overview.

The main factor considered in the importance
score is the size of the story cluster – the larger
the cluster, the larger the score. This heuristic cor-
responds to the observation that more important
themes tend to be reported on more frequently. Ad-
ditionally, we consider the entropy of the news
sources in the cluster, which corresponds to the ob-
servation that more important themes are reported
on by a larger number of publishers and reduces
the impact of a source publishing duplicate stories.

4.7 Caching
Since many user requests are the same or use sim-
ilar data, caching is useful to minimize response
times. When NSTM receives a request, it checks
whether there is a corresponding overview in the
cache, and immediately returns it if so. 99.6% of
requests hit the cache and 99% of requests are han-
dled within 215ms.8 In the event of a cache miss,
NSTM responds in a median time of 723ms.9

We apply two mechanisms to ensure cache fresh-
ness. Firstly, we preemptively invoke NSTM us-
ing requests that are likely to be queried by users
(e.g., most read topics) and re-compose them from
scratch at fixed intervals (e.g., every 30 min). Once
computed, they are cached. The second mecha-
nism is user-driven: every time a user requests an
overview which is not cached, it will be created and
added to the cache. The system will subsequently
preemptively invoke NSTM using this request for
a fixed period of time (e.g., 24 hours).

5 Demonstration

NSTM was deployed to our clients in 2019. Using
the UI depicted in Fig. 1, users can find overviews
for customized queries to help support their work.
From this screen, the user can enter a search query
using any combination of Boolean logic with tag-
or keyword-based terms. They may also alter the

8Computed for all requests over a 90-day period.
9Computed for the top 50 searches over a 7-day period.

Summary Size

1 Facebook to Settle Recognition Privacy Lawsuit 90
2 Facebook Warns Revenue Growth Slowing 79
3 Facebook Stock Drops 7% Despite Earnings Beat 70
4 Facebook to Remove Coronavirus Misinformation 49
5 Mark Zuckerberg to Launch WhatsApp Payments 19

Table 1: Ranked theme summaries and cluster sizes for
‘Facebook’ (1,176 matching stories) from 31 Jan. 2020.

Summary Size

1 Britain to Leave the EU 459
2 Bank of England Would Keep Interest Rate Unchanged 141
3 Sturgeon Demands Scottish Independence Vote 71
4 Pompeo in UK for Trade Talks 45
5 Boris Johnson Hails ‘Beginning’ on Brexit Day 63

Table 2: Ranked theme summaries and cluster sizes for
‘U.K.’ (13,858 matching stories) from 31 Jan. 2020.

period that the overview is calculated over (this UI
offers 1 hour, 8 hour, 1 day, and 2 day options).

This interface also allows users to provide feed-
back via the ‘thumb’ icons or plain-text comments.
Of several hundred per-overview feedback submis-
sions, over three quarters have been positive.

Tables 1 and 2 show example theme summaries
generated for the queries ‘Facebook’ and ‘U.K.’.
Note that the summaries are quite different from
what has previously been studied by the NLP com-
munity (in terms of brevity and grammatical style)
and that they accurately represent distinct events.

In addition to user-driven settings, NSTM can
be used to supplement context-driven applications.
One example, demonstrated in Appendix D, uses
themes provided by NSTM to help explain why
companies or topics are ‘trending’.

6 Conclusion

We presented NSTM, a novel and production-ready
system that composes concise and human-readable
news overviews given arbitrary user search queries.

NSTM is the first of its kind; it is query-driven,
it offers unique news overviews which leverage
clustering and succinct summarization, and it has
been released to hundreds of thousands of users.

We also demonstrated effective adoption of mod-
ern NLP techniques and advances in the design and
implementation of the system, which we believe
will be of interest to the community.

There are many open questions which we intend
to research, such as whether autoregressivity in
neural sentence compression can be exploited and
how to compose themes over longer time periods.
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B End-To-End Evaluation

We evaluate the end-to-end NSTM system when
using the OpenIE (Sec. 4.4.1) and the BERT-based
sentence compression (Sec. 4.4.2) algorithms as the
sole source of candidate summaries. We also con-
ducted one experiment where both were used to cre-
ate a shared pool of candidates (as per Sec. 4.4.4).

We test the system end-to-end using the
manually-annotated Single Document Summariza-
tion (SDS) test set described in Sec. 4.4.2. To
implement SDS, our experimental setup assumes
that only one story was returned by a search request
(as per Sec. 4.2). We evaluate the output from each
system with ROUGE (Lin and Hovy, 2003; Lin,
2004)10. The results are presented in Table 3.

Metric OpenIE BSC Both

ROUGE-1 F1 0.831 0.863 0.851
ROUGE-2 F1 0.609 0.701 0.667
ROUGE-3 F1 0.530 0.640 0.599
ROUGE-4 F1 0.492 0.603 0.562
ROUGE-L F1 0.621 0.706 0.670

Table 3: ROUGE scores for the Single-Document Sum-
marization task in the end-to-end system, when using
OpenIE, BERT-based sentence compression (BSC) and
both to construct the pool of candidate summaries.

10https://github.com/google/seq2seq/blob/master/seq2seq/metrics/rouge.py
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C Screenshots of A Query-Driven User Interface

Figure 4: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
the company ‘Amazon.com’.

Figure 5: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
the topic ‘Electric Vehicles’.
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Figure 6: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
the region ‘Canada’.

Figure 7: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
a complex query, including a keyword.
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D Screenshots of A Context-Driven User Interface

Figure 8: Screenshot (taken on 29 January 2020) of a context-driven application of NSTM. In the ‘Security’ column
are the companies that have seen the largest increase in news readership over the last day. Each entry in the ‘News
Summary’ column is the summary of the top theme provided by NSTM for the adjacent company.

Figure 9: Screenshot (taken on 29 January 2020) of a context-driven application of NSTM. In the ‘News Topic’
column are the topics that have seen the largest volume of news readership over the past 8 hours. Each entry in the
‘News Summary’ column is the summary of the top theme provided by NSTM for the adjacent topic.
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Abstract

Dietary supplements are used by a large por-
tion of the population, but information on
their pharmacologic interactions is incom-
plete. To address this challenge, we present
SUPP.AI, an application for browsing evi-
dence of supplement-drug interactions (SDIs)
extracted from the biomedical literature. We
train a model to automatically extract supple-
ment information and identify such interac-
tions from the scientific literature. To address
the lack of labeled data for SDI identifica-
tion, we use labels of the closely related task
of identifying drug-drug interactions (DDIs)
for supervision. We fine-tune the contextu-
alized word representations of the RoBERTa
language model using labeled DDI data, and
apply the fine-tuned model to identify supple-
ment interactions. We extract 195k evidence
sentences from 22M articles (P=0.82, R=0.58,
F1=0.68) for 60k interactions. We create
the SUPP.AI application for users to search
evidence sentences extracted by our model.
SUPP.AI is an attempt to close the informa-
tion gap on dietary supplements by making up-
to-date evidence on SDIs more discoverable
for researchers, clinicians, and consumers.

1 Introduction

More than half of US adults use dietary supple-
ments (Kantor et al., 2016). Supplements include
vitamins, minerals, enzymes, and other herbal and
animal products. Supplements and pharmaceutical
drugs, when taken together, can cause adverse in-
teractions (Sprouse and van Breemen, 2016; Asher
et al., 2017; Ronis et al., 2018). Some studies
describe the prevalence of supplement-drug inter-
actions (SDIs) in the hospital setting (Levy et al.,
2016, 2017a,b) or among groups such as patients
with cancer (Alsanad et al., 2014), cardiac disease
(Karny-Rahkovich et al., 2015), HIV/AIDS (Jal-
loh et al., 2017), or Alzheimer’s disease (Spence

et al., 2017). However, these studies largely rely
on manual curation of the literature, and are slow
and expensive to produce and update. It is also
difficult to aggregate their results, and researchers,
clinicians, and consumers can lack appropriate up-
to-date information to make informed decisions
about supplement use.

A resource that provides experimental evidence
for SDIs could serve as a good intermediary tool,
allowing experts to quickly access information and
translate it for healthcare providers and consumers.
Such a tool could ease the bottleneck of manual cu-
ration by directing researcher attention to the most
pertinent and novel interactions appearing in recent
trials and case reports. Our goal is to create such a
resource using state-of-the-art methods in NLP and
IE, and allow users to better identify appropriate
uses of supplements as well as risks for SDIs.

Automated approaches have been used to extract
drug-drug interactions (DDIs) from literature and
other documents (Tari et al., 2010; Percha et al.,
2011; Segura-Bedmar et al., 2011; Kim et al., 2014;
Zhang et al., 2016; Noor et al., 2017; Lim et al.,
2018), complementing broadly-used but primarily
manual methods (Grizzle et al., 2019). We ex-
pand upon this work to automatically extract evi-
dence for SDIs, as well as supplement-supplement
interactions (SSIs), from a large corpus of 22M
biomedical and clinical texts derived from Seman-
tic Scholar.1 We leverage labeled datasets for DDI
identification for supervision, and train a model
that transfers to the related task of identifying sup-
plement interactions. We surface the resulting evi-
dence on SUPP.AI for browsing and search.

To summarize, our contributions are:

1. A model for identifying SDI/SSI evidence

2. A dataset of 195k evidence sentences support-
ing supplement interactions, publicly accessi-

1https://www.semanticscholar.org/

362



ble for download or via a web API, and

3. SUPP.AI, an application for browsing and
searching the extracted evidence.

2 Supplement interaction browser

Information on supplement interactions have imme-
diate implications on public health, which can only
be realized by making the data easily accessible
to any interested researcher, clinician or consumer.
We note that many medical providers in develop-
ing countries do not have subscriptions to clinical
databases such as TRC2 and UpToDate,3 and may
lack an easy way to identify possible supplement in-
teractions before prescribing drugs to their patients.
To fill this gap, we develop SUPP.AI (available
at https://supp.ai/), an application for brows-
ing evidence of supplement interactions extracted
from clinical and biomedical literature. SUPP.AI
allows users to:

• Search for supplements or drugs,

• Search through potential interactions,

• Browse evidence sentences with supplement
and drug entities highlighted,

• Navigate links to source papers

We design SUPP.AI to be a rapid way for users
to access and search extracted SDI and SSI evi-
dence. Our goal for this application is to provide a
high quality, broadly-sourced, up-to-date, and eas-
ily accessible platform for searching through SDI
and SSI evidence, while providing sufficient infor-
mation for users to judge the quality of each piece
of evidence. In Section 3, we describe the NLP
pipeline used to extract evidence from scientific
papers. Below, we describe the user interface and
data features of SUPP.AI.

2.1 User interface
Besides the main search page seen by users when
they first navigate to the site, SUPP.AI consists
of two other types of pages: entity and interac-
tion pages. Entity pages provide information about
one supplement or drug, and a list of potential in-
teracting entities, sorted by quantity of evidence.
We provide information such as synonyms, drug
trade names, and definitions about each entity upon
hover over or expansion. Interaction pages display

2https://naturalmedicines.therapeuticresearch.com/
3https://www.uptodate.com/

all discovered pieces of evidence supporting an in-
teraction between a pair of entities. The evidence is
sorted by additional features extracted from source
papers, such as the level of evidence and recency,
discussed in Section 2.2.

Figure 1 shows the interface, with results for
the ginkgo supplement. Results on the entity page
(left) list 140 possible interactions to entities such
as Warfarin and Nitric Oxide. When a result is
selected, the interaction page is displayed (right),
showing evidence sentences supporting the interac-
tion along with metadata and links to each source
paper. Spans linked to supplement and drug entities
in evidence sentences are highlighted. To see more
context or detail about the interaction, the user can
navigate to the source paper to continue reading.

2.2 Supporting data for search
We extract additional paper metadata as a way to
judge evidence quality. From Semantic Scholar, we
retrieve the paper title, authors, publication venue,
and year of publication. Medical Subject Head-
ings (MeSH) tags associated with each paper are
used to determine whether its results are derived
from clinical trials, case reports, or animal studies.
We also attempt to identify the retraction status
of each paper, again using MeSH tags. Evidence
sentences are ordered and presented based on as-
sociated paper metadata, prioritizing non-retracted
studies, clinical trials, human studies, and recency
(year of publication).

Using the RxNorm relationship has_tradename
via the Unified Medical Language System (UMLS)
Metathesaurus (Bodenreider, 2004), we derive
trade names associated with drug ingredients, e.g.
Prozac and Sarafem are trade names of the ingredi-
ent fluoxetine. Trade drugs are associated with ac-
tive drug ingredients and indexed for search. Users
can query a trade name rather than an active ingre-
dient and be directed to the relevant interactions.

2.3 Data & API
Data on the site are periodically updated as new pa-
pers are incorporated into the Semantic Scholar
corpus. Snapshots of the data are available
for download at https://api.semanticscholar.
org/supp/. Live data on the site, which is up-
dated more frequently, can be accessed through
our search API, documented at https://supp.ai/
docs/api. Additionally, we provide training data,
evaluation data, and the curated drug/supplement
identifier lists (discussed in Section 3) used to
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Figure 1: Top results for interactions with Ginkgo (left), and top evidence sentences for the SDI between Ginkgo
and Warfarin (right). Source paper metadata are given below each evidence sentence.

produce the dataset of interactions at https://

github.com/allenai/sdi-detection. We en-
courage others to reuse our data and model to im-
prove information availability around supplement
interactions and safety.

3 Methods

An overview of our NLP pipeline is given in Figure
2. We first retrieve Medline-indexed articles using
the Semantic Scholar API,4 and pre-process the
text to generate candidate evidence sentences (Sec-
tion 3.1). We then use our DDI-detection model,
a neural network classifier based on BERT (De-
vlin et al., 2018) and fine-tuned on labeled DDI
data from Ayvaz et al. (2015) (Section 3.2), to clas-
sify sentences for the existence of an interaction.
Sentences classified as positive by our model are
collated and surfaced on SUPP.AI (Section 2).

3.1 Generating candidate evidence

Approximately 22M Medline-indexed articles are
downloaded using the Semantic Scholar API. The
scispaCy library (Neumann et al., 2019) is used
to perform sentence tokenization, NER, and entity
linking over all paper abstracts. Entity mentions
are linked to Concept Unique Identifiers (CUIs)
from the UMLS Metathesaurus. An example sen-
tence from Vaes and Hendeles (2000) is shown
with linked entity mentions:

Hemorrhage
C0019080

and tendencies were noted in

four cases
C0868928

with ginkgo
C0330205

use and in three

4https://api.semanticscholar.org/

cases
C0868928

with garlic
C0017102

; in none of these

cases
C0868928

were patients
C0030705

receiving warfarin
C0043031

.

Of these linked entities, we preserve entities
on a list of curated supplements and drugs (en-
tities in blue). We generate these curated lists in a
semi-automatic fashion, by querying the children of
UMLS supplement and drug classes and perform-
ing fuzzy name matching to known supplements
or drugs crawled from the web. We also perform
clustering of similar entities to reduce redundancy
in the final dataset, e.g., combining several variants
of Vitamin D together into a single entity. Details
on identifier curation and clustering are given in
Appendix A.

We retain all sentences containing at least two
entity mentions. For each sentence, we generate
candidate evidence as each combination of two
entity spans from that sentence.

3.2 DDI-detection model

We train a DDI-detection model to predict whether
a given candidate sentence provides evidence of
an interaction between two drug entities. Our
DDI-detection model uses pre-trained BERT mod-
els (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2018) to encode in-
put sequences. These models have been shown
to be effective at domain transfer, and are able
to achieve high performance using small amounts
of task-specific annotated data. In particular, we
use the large version of the pre-trained RoBERTa
model, a further-optimized BERT model, that has
approximately 340M parameters (Liu et al., 2019).
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Figure 2: Pipeline for identifying sentences containing evidence of SDIs and SSIs.

We fine-tune the pre-trained embeddings of the
RoBERTa language model using labeled data for
DDI classification, and we call the resulting model
RoBERTa-DDI.

Input layer: The input layer consists of the se-
quence of byte-pair encoding word pieces (Radford
et al., 2019) in a sentence. We replace entity men-
tion spans with the special tokens [Arg1] and
[Arg2]. This helps generalization by preventing
the model from memorizing entity pairs with posi-
tive interactions in the training set. For example:

[CLS] Combination [Arg1] may also
decrease the plasma concentration of
[Arg2]. [SEP]

where [Arg1] and [Arg2] replace the spans
“hormonal contraceptives” and “acetaminophen” re-
spectively. We add special tokens [CLS] and
[SEP] at the beginning and end of each sentence
to leverage their representations learned in pre-
training. At prediction time, candidate sentences
are masked similarly and fed to the trained model.

Model architecture: As the name implies,
RoBERTa-DDI uses the pre-trained RoBERTa rep-
resentations (Liu et al., 2019) to encode input se-
quences. We refer readers to Liu et al. (2019),
Devlin et al. (2018), and Vaswani et al. (2017) for
more details on BERT and transformer architecture.
For the RoBERTa-DDI model, we add a dropout
layer followed by one feedforward (output) layer
with a softmax non-linearity, which takes the repre-
sentation of the [CLS] token at the top transformer
layer as input and outputs probabilities for labels
{0, 1}, where 1 indicates an interaction.

Model training: Due to similarities between
DDIs and SDIs/SSIs, we hypothesize that a clas-
sifier trained to identify DDI evidence should per-
form well in identifying SDI and SSI evidence. We
therefore take advantage of existing labeled data

for categorizing DDIs to fine-tune the model. We
use pre-trained weights distributed by the authors
of Liu et al. (2019), and further fine-tune the model
parameters (as well as parameters of the output
layer) using labeled DDI data from the Merged-
PDDI dataset (Ayvaz et al., 2015).

In particular, we use training data from the
DDI-2013 (Segura-Bedmar et al., 2013) and NLM-
DailyMed (Stan et al., 2014) datasets, as they are
relatively large and contain evidence sentences with
annotated drug mention spans. The DDI-2013
dataset consists of sentences extracted from Drug-
Bank and Medline; the NLM-DailyMed dataset
draws sentences from cardiovascular drug prod-
uct labels retrieved from DailyMed. Both datasets
contain multi-class labels for different types of in-
teractions. We distinguish between detection, a
binary classification problem where the goal is to
determine whether an interaction exists or not, and
multi-class classification, where the goal is to de-
termine the type of interaction. In this work, we
focus on detection, but provide results for a variant
of our model trained on classification that obtains
SOTA performance compared to prior work.

For detection, we collapse labels corresponding
to all interaction types (e.g., mechanism, advise,
effect, etc.) into binary labels of 0 and 1, where 0
means no interaction, and 1 means an interaction of
some type exists. Collapsing the positive labels is
necessary for training one DDI-detection model on
both the DDI-2013 and NLM-DailyMed datasets,
since the two datasets are annotated with inconsis-
tent interaction types. We preserve the train/test
splits used in Ayvaz et al. (2015), and create a de-
velopment set from the training set for iteration on
model design and tuning.

A sentence from the training data can contain
multiple drug entities. For training, we generate
pairwise combinations of drug mention spans in
each sentence. We note that many sentences are
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seen multiple times by our model with different
labeled spans. Due to combinatorial explosion,
and to prevent our model from learning excessively
from a few instances containing lots of entity men-
tions, we restrict the training data to sentences con-
taining less than or equal to 100 pairwise entity
combinations. Table 1 shows the resulting data
splits for the two datasets.

Dataset Train Dev. Test Label=1

DDI-2013 18362 2069 5688 17.2%
NLM-DailyMed 11372 1255 927 22.7%

Table 1: DDI training data split.

Our training hyperparameters follow those pre-
sented by Liu et al. (2019) (learning rate = 1e-5; 4
epochs). No additional hyperparameter tuning is
performed.

4 Results & evaluation

Of the 22M articles we retrieve, around 4.6M
abstracts contain candidate sentences. After ini-
tial filtering, 33.0M candidate sentences contain-
ing supplement entity mentions are classified by
RoBERTa-DDI. Around 625k (1.9%) of these sen-
tences are classified as positive for an interaction.
We perform entity normalization across positive
sentences based on CUI clusters, and perform ad-
ditional ad hoc filtering of evidence to eliminate
incorrectly detected spans resulting from poor NER
and linking, such as the span “retina” linking to Vi-
tamin A (C0040845). The resulting 195k sentences
contain mentions of 2044 unique supplements and
2772 unique drugs, and provide evidence sentences
for 60k interactions sourced from 133k papers.

Comparisons of model variants on DDI classi-
fication and detection (including SOTA results on
both tasks) are given in Appendix B. To evaluate
the transferability of DDI detection to the related
task of SDI/SSI detection, we use a test set con-
sisting of 500 sentences annotated for the presence
or absence of a supplement interaction. To ob-
tain a balanced test set despite the rare presence
of a positive interaction, we sample half the in-
stances from the set of sentences labeled as posi-
tive by a previous variant of our model based on
fine-tuning BERT-large, and the other half from
those labeled as negative. After manual annotation,
40% of the sampled instances were positive for
an interaction. Annotation was performed by two
authors without seeing model predictions, with an

inter-annotator agreement of 94%. This test set was
used for final evaluation, and never for model devel-
opment or tuning. Table 2 shows the performance
of RoBERTa-DDI on the DDI and supplement test
sets. Performance on the SDI test set has preci-
sion 0.82, recall 0.58, and F1-score 0.68. Although
there is performance degradation during transfer,
the precision of detection remains high at 0.82.

Decrease in recall can be attributed to a larger
percentage of positive instances in the SDI test
set (roughly 40%, compared to 20% in the DDI
training data). Another factor is the presence of
incorrectly labeled entity spans in the supplements
test set due to NER/linking errors. To better un-
derstand this second source of errors, we attempt
to evaluate the performance of the scispaCy entity
linker. Processing each sentence from the two DDI
training sets using scispaCy, we determine that only
80% of drug entities from DDI-2013 and 76% from
NLM-DailyMed are recognized and linked. The
likelihood of supplement entities being success-
fully linked is likely lower, due to sparse training
data for supplement NER and linking. These num-
bers provide an estimate of the global ceiling on
recall for our model. In future work, we aim to
explore ways to improve NER and linking and as-
sess their impact on the results of SDI detection.
SDI/SSI sentences in our output set can also be
labeled by biomedical expert annotators and used
to further tune the model for SDI/SSI detection.

Evaluation set Prec. Rec. F1

Drugs (DDI-2013) 0.90 0.87 0.88
Drugs (NLM-DailyMed) 0.83 0.85 0.84
Supplements-500 0.82 0.58 0.68

Table 2: The RoBERTa-DDI model (trained on drug-
drug interaction labels) is evaluated on two DDI evalu-
ation sets (first two rows) and our supplement interac-
tion evaluation set (last row).

5 Discussion

Information describing the safety and efficacy of
dietary supplements can be difficult to find. The
inability to locate evidence of SDIs can challenge
clinician ability to advise patients and cause risks
for consumers of dietary supplements. It is our
hope that extracting evidence for SDIs/SSIs from
a large corpus of scientific literature and making
the evidence available through an easily accessible
search interface can offset some of these risks.
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This work demonstrates how NLP techniques
can be extraordinarily useful for extracting infor-
mation and relationships specific to an application
domain in healthcare. Re-purposing existing la-
beled data from related domains (that would be ex-
pensive to generate in a new domain) can be a way
to derive maximum utility from curation efforts.
Continuing, we look to investigate fine-grained in-
teraction types, and provide better classification of
the level of evidence provided by each sentence or
document towards a particular SDI or SSI. We also
aim to leverage similar techniques for identifying
evidence of indications, contraindications, and side
effects of dietary supplements from the biomedical
and clinical literature, and make these discoverable
on SUPP.AI.

5.1 Related Work

Consumer-facing websites such as the NIH Office
of Dietary Supplements5 or WebMD6 provide facts
about common supplements, but this information
can be incomplete and may not support researcher
or clinician needs. TRC Natural Medicines7 and
UpToDate8, two dedicated clinical resources, con-
tain high-quality, curated evidence, but may not
be broadly accessible due to their subscription for-
mat. Drug databases like DrugBank (Wishart et al.,
2018), RxNorm (Nelson et al., 2011), and the Na-
tional Drug File Reference Terminology (NDFRT)
(Simonaitis and Schadow, 2010) contain only par-
tial coverage of supplement terminology (Manohar
et al., 2015b), and primarily focus on aggregating
drug information.

Several prior studies have experimented with
extracting safety information of supplements and
supplement interactions from various forms of text.
Zhang et al. (2015) employ machine learning tech-
niques to filter supplement interaction relationships
in SemMedDB, a database of relationships ex-
tracted from Medline articles. Jiang et al. (2017)
develop a model for identifying adverse effects
related to dietary supplements as reported by con-
sumers on Twitter, and discover 191 adverse ef-
fects pertaining to 4 dietary supplements. Fan et al.
(2016) and Fan and Zhang (2018) analyze unstruc-
tured clinical notes to predict whether a patient
started, continued or discontinued a dietary sup-
plement, which can be useful as a building block

5https://ods.od.nih.gov/
6https://www.webmd.com/vitamins/index
7https://naturalmedicines.therapeuticresearch.com/
8https://www.uptodate.com/

for identifying adverse effects in clinical notes (as
attempted by the same authors in Fan et al. (2017)
for the drug warfarin). Wang et al. (2017) proposes
using topic models to analyze the adverse effects
of dietary supplements as mentioned in the Dietary
Supplement Label Database, and finds that Latent
Dirichlet Allocation models (Blei et al., 2003) can
be used to group dietary supplements with similar
adverse effects based on their labels. As far as we
know, there are no other studies investigating the
task of sentence-level identification of SDI/SSI ev-
idence from the scientific literature. No previous
work has investigated the utility of using labeled
DDI data for transfer learning to SDI/SSI identifi-
cation.

5.2 Limitations
There are several limitations of this work. First, we
distinguish between supplements and drugs. Both
supplements and drugs are pharmacologic entities,
with their separate classification more attributable
to marketing and social pressures rather than func-
tional differences. However, due to this somewhat
arbitrary distinction, supplement entities are not
well represented in databases of pharmaceutical
entities, and less information is publicly available
on their interactions. We also use UMLS CUIs as
a way of identifying supplement and drug entities.
The lack of a standardized terminology to describe
dietary supplements is discussed in Manohar et al.
(2015a) and Wang et al. (2016), which estimate
UMLS coverage of these terms to be between 14-
54%. This limitation prevents us from identifying
many supplement entities. Lastly, our dependence
on NLP-pipeline tools sets a performance ceiling
due to unsolved problems in NER and linking. Al-
though scispaCy is performant and detects a large
number of relevant entities, our evaluations show
that many supplement and drug entities are missed.
A system such as MetaMapLite (Demner-Fushman
et al., 2017) has higher recall, but performance is
slow and there are practical challenges to using it
to process large numbers of documents.

Conclusion
Insufficient regulation in the supplement space in-
troduces dangers for the many users of these sup-
plements. Claims of interactions are difficult to val-
idate without links to source evidence. We create
an NLP pipeline to detect SDI/SSI evidence from
scientific literature, leveraging UMLS identifiers,
scispaCy for NER and entity linking, BERT-based
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language models for classification, and labeled data
from a related domain for training. We use this
pipeline to extract evidence from 22M biomedi-
cal and clinical articles with high precision. The
extracted SDI/SSI evidence are made search-able
through a public web interface, SUPP.AI, where
we integrate additional metadata about source pa-
pers to help users make decisions about the relia-
bility of evidence. Our dataset and web interface
can be leveraged by researchers, clinicians, and cu-
rious individuals to increase understanding about
supplement interactions. We hope to encourage ad-
ditional research to improve the safety and benefits
of dietary supplements for their consumers.
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A Supplement and drug identifiers

We generate lists of supplement and drug enti-
ties based on UMLS Concept Unique Identifiers
(CUIs) using a semi-automated method. For supple-
ments, we identify NCI thesaurus (NCIT) concepts

Test dataset Num.
pairwise
instances

RoBERTa-
DDI
(Trained on
DDI-2013
and NLM-
DailyMed)

RoBERTa-
DDI
(Trained on
DDI-2013
only)

DDI-2013 (All) 5688 0.88 0.89
DDI-2013 (DrugBank) 5251 0.89 0.90
DDI-2013 (Medline) 437 0.73 0.77
NLM-DailyMed 927 0.84 0.70

All 6615 0.87 0.85

Table 3: F1-scores of RoBERTa-DDI trained using dif-
ferent training data. Test data contains all pairwise com-
binations of entities in test sentences.

such as “Dietary Supplement” (NCIT: C1505, CUI:
C0242295), “Vascular Plant” (NCIT: C14336, CUI:
C0682475), and “Antioxidant” (NCIT: C275, CUI:
C0003402) as likely parents of supplement terms.
We recursively extract child entities of these par-
ent classes from UMLS, deriving an initial list of
supplements. To improve recall, we extract sup-
plement names from the TRC Natural Medicines
database,9 perform fuzzy string matching to enti-
ties in UMLS, and add any identified CUIs to our
list of supplements. The list is manually reviewed
to remove non-supplement entities, those for which
we could not identify any marketed supplement or
medicinal uses. Following curation, we retain 2139
unique supplement entities.

Similarly, we generate a corresponding list of
drug CUIs from parent entity “Pharmacologic Sub-
stance” (NCIT: C1909, CUI: C1254351) and any
UMLS entity with a DrugBank identifier. Fuzzy
name matching between drugs on drugs.com10 and
UMLS entities is used to identify drugs and exper-
imental chemicals missed through UMLS search
alone. Due to the significantly larger number of
drugs compared to supplements, manual curation
of this list is impractical at this time. This process
generates a list of 15252 unique drug CUIs. Any
entity that is identified as both a supplement and a
drug is categorized exclusively as a supplement for
the purposes of this work.

Similar supplement and drug entities are merged,
such as those with overlapping names, e.g., enti-
ties corresponding to UMLS C0006675, C0006726,
C0596235, and C3540037 all describe variants of
Calcium and are merged under the supplement
entity C3540037 (“Calcium Supplement”). The

9https://naturalmedicines.therapeuticresearch.com/
10https://drugs.com/
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Model Reference F1 (classification) F1 (detec-
tion)

Bi-LSTM (w/ max and attentive pooling) Sahu and Anand (2017) 0.69 (macro-F1) -
Hierarchical Bi-LSTM + Attention + dependency path Zhang et al. (2018) 0.73 (unspecified) -
Bi-LSTM (w/ attention and negative instance filtering) Zheng et al. (2017) 0.77 (unspecified) 0.84
BioBERT embeddings Chauhan et al. (2019) 0.72 (macro-F1) 0.87
BERT-large embeddings fine-tuned on DDI-2013 Peng et al. (2019) 0.79 (micro-F1) -
RoBERTa-DDI fine-tuned on DDI-2013 - 0.82 (micro-F1) 0.89

Table 4: Baseline models for DDI detection and reported performance on the DDI-2013 test set. Results are shown
for classification (5-way classification) and detection (binary classification).

canonical CUI representing a cluster is selected
manually. Drug, supplement, and canonical map-
pings are provided in our data repository.

B DDI model performance

We train RoBERTa-DDI on a combination of DDI-
2013 and NLM-DailyMed training data. In Table
3, we report the F1-scores of model variants on the
test data. We show the performance of the final
variant of RoBERTa-DDI (trained on both DDI-
2013 and NLM-DailyMed) as well as a variant
trained only on DDI-2013 training data (last col-
umn), which performs best on the DDI-2013 test
set, but suffers when tested on NLM-DailyMed.
We also further break down performance on the
DrugBank and Medline sub-corpora within DDI-
2013.

The DDI-2013 dataset is used as a bench-
mark dataset for DDI detection and classification,
and is part of the BLUE benchmark suite (Peng
et al., 2019). RoBERTa-DDI outperforms recently-
reported SOTA performance on DDI detection in
the DDI-2013 dataset using BioBERT (Lee et al.,
2019) (F1 = 0.87) (Chauhan et al., 2019). Peng
et al. (2019) also report SOTA performance on
the DDI-2013 classification task, achieving 0.79
micro-F1 using a tuned BERT-large model. For
comparison, we show the results of RoBERTa-
DDI trained on DDI-2013 multi-class classification,
which achieves 0.82 micro-F1 on DDI-2013 clas-
sification. We provide previously reported SOTA
performance metrics on DDI-2013 in Table 4. We
note that because the interaction classes are unbal-
anced in the DDI-2013 dataset, reported classifica-
tion micro- and macro-F1-scores in previous work
are not directly comparable.

The inclusion of the NLM-DailyMed corpus in-
creases training data diversity and should improve
generalization for the task of detecting SDI/SSI ev-
idence. Thus, although RoBERTa-DDI trained on

DDI-2013 has the highest performance on the DDI-
2013 test set, RoBERTa-DDI trained over all train-
ing data performs the best overall, and we use this
model variant to classify evidence for SUPP.AI.
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Abstract

Successfully training a deep neural network
demands a huge corpus of labeled data. How-
ever, each label only provides limited in-
formation to learn from and collecting the
requisite number of labels involves massive
human effort. In this work, we introduce
LEAN-LIFE1, a web-based, Label-Efficient
AnnotatioN framework for sequence labeling
and classification tasks, with an easy-to-use UI
that not only allows an annotator to provide
the needed labels for a task, but also enables
LearnIng From Explanations for each labeling
decision. Such explanations enable us to gen-
erate useful additional labeled data from un-
labeled instances, bolstering the pool of avail-
able training data. On three popular NLP tasks
(named entity recognition, relation extraction,
sentiment analysis), we find that using this en-
hanced supervision allows our models to sur-
pass competitive baseline F1 scores by more
than 5-10 percentage points, while using 2X
times fewer labeled instances. Our framework
is the first to utilize this enhanced supervi-
sion technique and does so for three impor-
tant tasks––thus providing improved annota-
tion recommendations to users and an ability
to build datasets of (data, label, explanation)
triples instead of the regular (data, label) pair.

1 Introduction

Deep neural networks have achieved state-of-the-
art performance on a wide range of sequence la-
beling and classification tasks such as named en-
tity recognition (NER) (Lample et al., 2016; Ma
and Hovy, 2016), relation extraction (RE) (Zeng
et al., 2015; Zhang et al., 2017; Ye et al., 2019),
and sentiment analysis (SA) (Wang et al., 2016).
However, they only yield such performance levels

∗Both authors contributed equally.
1The source code is publicly available at http://

inklab.usc.edu/leanlife/.

Quality ingredients preparation all around, and a very fair price for NYC.SA
POSITIVE

Delicious food with a fair price

We had a fantastic lunch at Rumble Fish yesterday, where the food is my favorite.
I-RESTAURANTB-RESTAURANT

Where the food

NER

I had a dinner at McDonalds, where the food is cheap

because the word price is directly preceded by fair

Had lunch at

POSITIVE

B-RESTAURANT

UNLABELED
SENTENCE

UNLABELED
SENTENCE

The increase is caused by the absorption of UV radiation by the oxygen and ozone.RE

Cause-Effect Because the phrase “caused by” occurs between SUBJ and OBJ

The burst has been caused by water hammer pressureUNLABELED
SENTENCE

Cause-Effect

SUBJ OBJ

SUBJ OBJ

Figure 1: Leveraging Labeling Explanations: 1) RE:
the explanation “the phrase ‘caused by’ occurs be-
tween SUBJ and OBJ” can aid in weakly labeling unla-
beled instances like “The burst has been caused by wa-
ter hammer pressure” with the label “cause-effect”; 2)
NER: Trigger spans near the labeled restaurant such as
“had lunch at” and “where the food” can aid in weakly
labeling unlabeled instances like “I had a dinner at Mc-
Donalds, where the food is cheap”.

in supervised learning scenarios, and in particular
when human-annotated data is abundant. As we
seek to apply NLP models to larger variety of do-
mains, such as product reviews (Luo et al., 2018),
social media messages (Lin et al., 2017), while
reducing human annotation efforts, better annota-
tion frameworks with label-efficient learning tech-
niques are crucial to our progress.

Annotation frameworks have been explored by
several previous works (Stenetorp et al., 2012;
Bontcheva et al., 2014; Morton and LaCivita,
2003; de Castilho et al., 2016; Yang et al., 2018a).
These existing open-source sequence annotation
tools mainly focus on optimizing user-friendly
user interfaces, such as providing shortcut key
functionality to allow for faster tagging. The
frameworks also attempt to provide annotation
recommendation to reduce human annotation ef-
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forts. However, these recommendations are pro-
vided by a pre-trained model or via dictionary
look-ups. This methodology of providing recom-
mendations often proves to be unhelpful when lit-
tle annotated data exists for pre-training, as is usu-
ally the case for natural language tasks being ap-
plied to domain-specific or user-provided corpora.

To resolve this issue, AlpacaTag, an annota-
tion framework for sequence labeling (Lin et al.,
2019) attempts to provide annotation recommen-
dations from a learned sequence labeling model
that is incrementally updated by batches of in-
coming human annotations. Its model training
follows an active learning strategy (Shen et al.,
2017), which is shown to be a label-efficient, thus
it attempts to minimize human annotation efforts.
AlpacaTag selects the most informative batches
of documents for humans to annotate and thus
achieves a more cost-effective way of using human
efforts. While active learning allows the model to
achieve higher performance earlier in the learning
process, model performance could be improved if
additional supervision existed. It is imperative that
provided annotation recommendations be as accu-
rate as possible, as inaccurate annotation recom-
mendations from the framework can push users to-
wards generating noisy data, hindering instead of
aiding the model training process.

Our effort to prevent this problem is cen-
tered around allowing annotators to provide ad-
ditional supervision by capturing labeling expla-
nations, while still taking advantage of the cost-
effectiveness of active learning. Specifically,
as shown in Fig. 1, we allow annotators to
provide explanations for their decisions in nat-
ural language or by selecting triggers––nearby
phrases that provide helpful context for their
decisions. These enhanced annotations allow
for model training over both user-provided la-
bels, as well as weakly labeled data created by
parsing explanations into high precision labeling
rules. We therefore make attempts to amelio-
rate the erroneous recommendation problem by a
performance-boosting training strategy that incor-
porates both labeled and unlabeled data.

Our work is also similar to recent attempts that
exploit explanations for an improved training pro-
cess (Srivastava et al., 2017; Hancock et al., 2018;
Zhou et al., 2020; Wang* et al., 2020), but with
two main differences. First, we embed this im-
proved process in a practical application and sec-

Label

Explanation

Unlabeled
Instances

USER

Explanation
Parsing / Encoding

Weak Label

Recommendation

Model

UI
Softly Matching

Module

Figure 2: System Architecture.

ond, we design task specific architectures to incor-
porate the now captured explanations into training.

To the best of our knowledge, there is no ex-
isting open-source, easy-to-use, recommendation-
providing, online-learning annotation framework
that can also capture explanations. LEAN-LIFE
is the first framework to capture and leverage ex-
planations for improved model training and per-
formance, while still inheriting the advantages of
existing tools. We summarize our contributions as:
• Improved Model Training: Our recommenda-
tion models use a performance improving training
process that leverages explanations to weakly la-
bel unlabeled instances. Our models improve on
competitive baseline F-1 scores by more than 5-10
percentage points, while using 2X less data.
• Multiple Supported Tasks: Our framework
supports both sequence labeling (as in NER) and
sequence classification (as in RE, SA).
• Explanation Dataset Creation: We make it
easy to build a new type of dataset, one that con-
sists of triples of: text, labels and labeling explana-
tions. The exporting of this captured data is avail-
able in two common data formats, CSV and JSON.

2 System Overview

As shown in Fig. 2, our framework consists of
two main components, a user-friendly web-UI that
can capture labels and explanations for labeling
decisions, and a weak supervision framework that
parses explanations for the creation of weakly la-
beled data. The framework then uses this weakly
labeled data in conjunction with user-provided la-
bels to train models for improved annotation rec-
ommendations. Our UI shows annotators unla-
beled instances (can be sampled using active learn-
ing), along with annotation recommendations in
an effort to reduce annotation costs. We use Py-
Torch to build our models and implement an API
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for communication between the web-UI and our
weak supervision framework. The learned param-
eters of our framework are updated in an online
fashion, thus improving in near real time. We will
first touch on the annotation UI (§3) and then go
into our weak supervision framework (§4).

3 UI for Capturing Human Explanation

The emphasis of our front-end design is to sim-
plify the capture of both label and explanation for
each labeling decision, while reducing annotation
effort via accessible annotation recommendation.
Our framework supports two forms of explana-
tions, Triggers and Natural Language. A Trigger
is a group of words in the sentence being annotated
that aided the annotator’s labeling decision, while
Natural Language is a written explanation of the
labeling decision. This section presents first the
UI for capturing triggers (§3.1) and then the UI for
capturing natural language explanations (§3.2).

3.1 Capturing Triggers

Fig. 3 illustrates how our framework can capture
both a named entity (NE) label and triggers for
the sentence “We had a fantastic lunch at Rumble
Fish yesterday where the food is my favorite”. The
user is first presented with a piece of text to anno-
tate (Annotating Section), the available labels that
may be applied to sub-sequences (spans) of text
(in the blue header) and recommendations of what
spans of text should be considered as NE men-
tions (Named Entity Recommendation Section).
The user may choose to select a span of text to la-
bel, or they may click on one of the recommended
spans below (Fig. 2a). If the user clicks on a
recommended span, a small pop-up displaying the
available labels appear with the recommended la-
bel circled in red (Fig. 2a). Once the user selects
a label for a span of text by either clicking on the
desired label button or via a predefined shortcut
key (ex: for Restaurant the shortcut key is r), a
pop-up appears (Fig. 2b), asking the user to se-
lect helpful spans (triggers) from the text that pro-
vide useful context in deciding the label for the
NEM––multiple triggers may be selected. The
user may cancel their decision to label a span of
text with a label by clicking the x button in the
pop-up, but if the user wants to proceed and has se-
lected at least one trigger, they finish the labeling
by hitting done. Then, their label is visualized in
the Annotating Section by highlighting the NEM.

(b) after clicking a label to assign to a text span, 
a pop up appears asking the user to explain their 
decision by selecting nearby “trigger” text spans.

(a) the labels appear in the header, followed by an 
annotating section; tagging suggestions are shown 
as underlined spans at the bottom of the page.
A user may hover over a tagging suggestion or 
select a span in order to apply a label to a substring.

Figure 3: The workflow to annotate a NE label and trig-
ger span. (“Rumble Fish” as Restaurant).

3.2 Capturing Natural Language

Fig. 4 illustrates how for the sentence “Tahawwur
Hussain Rana who was born in Pakistan but is a
Canadian citizen” our framework can capture both
a relation label between NEs and the subsequent
natural language explanation. First, the user is
tasked to find the NEs in the sentence. After la-
beling at least two non-consecutive spans of text
as NEs, the user may check off the boxes that ap-
pear above the labeled NEs. Once two boxes have
been checked off, the labels in the blue header are
replaced with the labels for relations. The click-
order of the checked boxes is displayed and is con-
sidered the order of the relation. Also, we display
a recommend label to the user in the header section
with a circle (Fig. 2a). After clicking on a label, a
pop-up appears asking the user to indicate seman-
tic and syntactic reasons as to why the labeling
decision is true. Since the natural language expla-
nations are assumed to be made up of predefined
predicates, as the user types we incrementally pro-
vide predicates to aid the construction of an ex-
planation (Fig. 2b). In this way, we nudge users
towards writing explanations the semantic parser
is able to break down, allowing our framework to
extract a useful logical form from the explanation.
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(a) After two NEs have been checked off, the 
relation labels replace the entity labels in the header; 
a suggested relation label is again circled in red.

(b) After selecting a label for a relation, a pop up 
will ask the user to explain their decision in natural 
language. As the reasons must be parsed for 
understanding, suggested parsable predicates are 
shown to lead users to parsable explanations.

The word “citizen” appears

The word ‘‘citizen’’ appears right
The word ‘‘citizen’’ appears left
The word ‘‘citizen’’ appears between
The word ‘‘citizen’’ appears within
The word ‘‘citizen’’ appears (numberOf)

Figure 4: The workflow to annotate a relation label and
NL explanation. (“per:nationality” as a relation label
between “Tahawwur Hussain Rana” and “Canadian”).

4 LEAN-LIFE Framework

Our Weak Supervision Framework is composed
of two main components, a weak labeling mod-
ule that parses explanations to create labeling rules
and a downstream model. The framework parses
user-provided explanations to generate weakly la-
beled data and then trains the appropriate down-
stream model with this augmented training data.
Our weak labeling module supports both expla-
nation formats provided to the annotator in the
UI––triggers and natural language. This section
first introduces how the module utilizes triggers
(§4.1) and then presents how the module deals
with natural language(§4.2).

4.1 Input: Trigger
When a trigger is inputted into the system, we gen-
erate weak labels for our training data via soft-
matching between trigger representations and un-
labeled sentences (Lin et al., 2020). Each sentence
may contain one or more triggers, but each trigger
is associated with only one label. Our framework
jointly learns a mapping between triggers and their
label using a linear layer with a soft-max output

and a log-likelihood loss, as well as the semantic
similarity between the triggers and their associated
sentences using contrastive loss––we weigh both
objectives equally. Through this joint learning, our
trigger representations can capture label knowl-
edge as well as semantic information. We use
these representations to improve model training
by generating weakly labeled data via soft match-
ing on the unlabeled sentences. More specifically,
for each unlabeled sentence, we first calculate the
semantic similarity between the sentence and all
collected triggers and then filter out all triggers
where the similarity distance is larger than our
fixed threshold. We then generate a trigger-aware
sentence encoding for each threshold-passing trig-
ger and feed these encodings into a downstream
classifier for label inference. Finally, we conduct
majority vote over outputted label sequences to fi-
nalize our weak labels for the unlabeled sentence.
In this manner we are able to train over more data,
where a good portion of it is weakly labeled.

4.2 Input: Natural Language

When natural language is inputted into the system,
our module grows training data via soft-matching
between logical forms parsed from natural lan-
guage explanations and unlabeled sentences. The
module follows the Neural Execution Tree frame-
work of (Wang* et al., 2020) when dealing with
natural language. First, the explanation is parsed
into a logical form by a semantic parser. Previous
works have suggested using similar logical forms
to improve model training by strict matching on
the pool of unlabeled sentences to generate addi-
tional labeled data. However, (Wang* et al., 2020)
proposes an improved model training paradigm,
which relaxes this strict matching constraint, sub-
sequently improving weak labeling coverage and
allowing for a larger pool of unlabeled data to be
used for model training. Our module does assume
each NL explanation can be broken down into a
logical form composed of clauses consisting of
predicates from four categories––hence the auto-
suggest feature in the UI. At weak labeling, the
module scores how likely a given unlabeled sen-
tence fits each clause and then constructs an aggre-
gate score representing the match between the log-
ical form and the unlabeled sentence. If the final
score is above configurable thresholds, we weakly
label the sentence with the appropriate label.

As shown in Fig. 5, the scoring portion of our
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Figure 5: Weakly labeling module for exploiting natu-
ral language explanation. the keyword is ‘happy’

module has four parts: String Matching Module,
Distant Counting Module, Deterministic Function
Module, and the Logical Calculation Module. The
first three modules are responsible for evaluating if
different clauses in the logical form are applicable
for the given unlabeled sentence, while the Logical
Calculation Module’s job is to aggregate scores
between the various clauses. The String Matching
Module returns a sequence of scores [s1, s2, ..., sn]
indicating the similarity between each token wi

and the keyword q––“happy” in Fig. 5. Our
Distant Counting Module aims to relax the dis-
tance constraint stated in the explanation, ex: “by
no more than 5 words”. If the position of key-
word q strictly satisfies the constraint, the score is
set to 1, otherwise the score decreases as the con-
straint is less satisfied. Finally, the Deterministic
Function Module deals with deterministic predi-
cates like “LEFT”, “BETWEEN”, which can only
be exactly matched in terms of the keyword q.
Scores are the aggregated by the Logical Calcu-
lation Module to output a final relevancy score.

5 Experiments

We conduct extensive experiments investigating
label efficiency to prove the effectiveness of our
annotation models. We found that using natu-
ral language explanations for RE and SA, and
trigger explanations for NER provided the best
results. For the downstream model portion of
our weak supervision framework, we use com-
mon supervised method for each task: (1-RE)
BLSTM+ATT (Bahdanau et al., 2015) adds an at-
tention layer onto LSTM to encode an sequence.
(2-SA) ATAE-LSTM (Wang et al., 2016) com-
bines the aspect term information into both the
embedding layer and attention layer to help the
model concentrate on different parts of a sentence.

(a) relation extraction (b) sentiment analysis

(c) named entity recognition

Figure 6: Label Efficiency. We choose commonly-
used supervised baselines for comparison.

(3-NER) BLSTM+CRF (Ma and Hovy, 2016) en-
codes character sequences into a vector and con-
catenates the vector with pre-trained word embed-
dings to feed into word-level BLSTM. Then, it ap-
plies a CRF layer to predict sequence labels. Then
we compare these methods as baselines.

Tasks and Datasets We test our implementa-
tion on three tasks: RE, SA, NER. We use TA-
CRED (Zhang et al., 2017) for RE, Restaurant re-
view from SemEval 2014 Task 4 for SA, and Lap-
top reviews (Pontiki et al., 2016) for NER.

Label Efficiency We claim that when starting
with little to no labeled data, it is more effective
to ask annotators to provide a label and an ex-
planation for the label, than to just request a la-
bel. To support this claim, we conduct experi-
ments to demonstrate the label efficiency of our
explanation-leveraging-model. We found that the
time for labeling one instance plus providing an
explanation takes 2X times more time than just
simply providing a label. Given this annotation
time observation, we compare the performance
between our improved training process and the
traditional label-only training process by holding
annotation time constant between the two trials.
This means we expose the label-only supervised
model to the appropriate multiple of labeled in-
stances that the label-and-explanation supervised
model is shown Fig. 6. Each marker on the x-axis
of the plots indicate a certain interval of annota-
tion time, which is represented by the number of

376



label+explanations our augmented model training
paradigm is given vs. how many labels the tra-
ditional label-only model training is shown. We
use the F-1 metric to compare the performances.
As shown in Fig. 6, we see that our model not
only is more time and label efficient than the label-
only training process, but it also outperforms the
label-only training process. Given these results,
we believe it is worth to request a user to provide
both a label and an explanation for the label. Not
only does the improvement in performance justify
the extra time required to provide the explanation,
but we also can achieve higher performance with
fewer datapoints / less annotation time.

6 Related Works

Leveraging natural language explanations for ad-
ditional supervision has been explored by many
works. (Srivastava et al., 2017) first demonstrated
the idea of using natural language explanations for
weak labeling by jointly training a task-specific
semantic parser and label classifier to generate
weak labels. This method is limited though, as
the parser is too tightly coupled to the already la-
beled data, thus their weak learning framework is
not able to build a much larger dataset than the
one it already has. To address this issue, (Han-
cock et al., 2018) proposed a weak supervision
framework that utilizes a more practical rule-based
semantic parser. The parser constructs a logical
form for an explanation that is then used as a la-
beling function––this resulted in a significant in-
crease of the training set. Another effort can be
found in (Camburu et al., 2018) work to extend
the Stanford Natural Language Inference dataset
with natural language explanations––this exten-
sion was done for the important textual entailment
recognition task. They demonstrate the usefulness
of explanations as an additional training signal for
learning more comprehensive sentence representa-
tions. Even earlier (Andreas et al., 2016) explored
breaking down natural language explanation into
linguistic sub-structures for learning collections of
neural modules which can be assembled into neu-
ral networks. Our framework is very related to the
above weak supervision methods via explanation.

Another approach to weak supervision is at-
tempting to transfer knowledge from a related
source to the target domain corpus (Lin and Lu,
2018; Lan et al., 2020). Shang et al. (2018)
and Yang et al. (2018) proposed using a domain-

specific dictionary for matching on the unanno-
tated target corpus. Both efforts employ Partial
CRFs (Liu et al., 2014) which assign all possible
labels to unlabeled words and maximize the total
probability. This approach addresses the incom-
plete annotation problem, but heavily relies on a
domain-specific seed dictionary.

7 Conclusion

In this paper, we propose an open-source web-
based annotation framework LEAN-LIFE that not
only allows an annotator to provide the needed la-
bels for a task, but can also capture explanation for
each labeling decision. Such explanations enable
a significant improvement in model training while
only doubling per instance annotation time. This
increase in per instance annotation time is greatly
outweighed by the benefits in model training, es-
pecially in a low resource settings, as proven by
our experiments. This is an important considera-
tion for any annotation framework, as the quicker
the framework is able to train annotation recom-
mendation models to reach high performance, the
sooner the user receives useful annotation recom-
mendations, which in turn cut down on the anno-
tation time required per instance.

Better training methods also allow us to fight
the potential generation of noisy data due to in-
accurate annotation recommendations. We hope
that our work on LEAN-LIFE will allow for re-
searches and practitioners alike to more easily ob-
tain useful labeled datasets and models for the var-
ious NLP tasks they face.
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Ré. 2018. Training classifiers with natural lan-
guage explanations. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1884–
1895, Melbourne, Australia. Association for Com-
putational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proc. of NAACL-HLT, pages 260–270. Associa-
tion for Computational Linguistics.

Ouyu Lan, Xiao Huang, Bill Yuchen Lin, He Jiang,
Liyuan Liu, and Xiang Ren. 2020. Learning to con-
textually aggregate multi-source supervision for se-
quence labeling. In Proceedings of Association for
Computational Linguistics.

Bill Y. Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu.
2017. Multi-channel BiLSTM-CRF model for
emerging named entity recognition in social media.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 160–165, Copenhagen, Den-
mark. Association for Computational Linguistics.

Bill Yuchen Lin, Dong-Ho Lee, Ming Shen, Ryan
Moreno, Xiao Huang, Prashant Shiralkar, and Xiang
Ren. 2020. Triggerner: Learning with entity trig-
gers as explanations for named entity recognition. In
Proceedings of Association for Computational Lin-
guistics.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu
Lan, and Xiang Ren. 2019. AlpacaTag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Bill Yuchen Lin and Wei Lu. 2018. Neural adapta-
tion layers for cross-domain named entity recogni-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2012–2022, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Yijia Liu, Yue Zhang, Wanxiang Che, Ting Liu, and
Fan Wu. 2014. Domain adaptation for CRF-based
Chinese word segmentation using free annotations.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 864–874, Doha, Qatar. Association
for Computational Linguistics.

Zhiyi Luo, Shanshan Huang, Frank F. Xu, Bill Yuchen
Lin, Hanyuan Shi, and Kenny Zhu. 2018. ExtRA:
Extracting prominent review aspects from customer
feedback. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3477–3486, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin,
Germany. Association for Computational Linguis-
tics.

Thomas Morton and Jeremy LaCivita. 2003. Word-
Freak: An open tool for linguistic annotation. In
Companion Volume of the Proceedings of HLT-
NAACL 2003 - Demonstrations, pages 17–18.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
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2016. SemEval-2016 task 5: Aspect based senti-
ment analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 19–30, San Diego, California. Associ-
ation for Computational Linguistics.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054–2064, Brussels, Belgium. Association for
Computational Linguistics.

378



Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.
Deep active learning for named entity recognition.
In Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2017. Joint concept learning and semantic parsing
from natural language explanations. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1527–1536,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
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Abstract

This work describes an automatic news chat-
bot that draws content from a diverse set of
news articles and creates conversations with
a user about the news. Key components of
the system include the automatic organization
of news articles into topical chatrooms, inte-
gration of automatically generated questions
into the conversation, and a novel method for
choosing which questions to present which
avoids repetitive suggestions. We describe the
algorithmic framework and present the results
of a usability study that shows that news read-
ers using the system successfully engage in
multi-turn conversations about specific news
stories.

1 Introduction

Chatbots offer the ability for interactive informa-
tion access, which could be of great value in the
news domain. As a user reads through news con-
tent, interaction could enable them to ask clarifying
questions and go in depth on selected subjects. Cur-
rent news chatbots have minimal capabilities, with
content hand-crafted by members of news organi-
zations, and cannot accept free-form questions.

To address this need, we design a new approach
to interacting with large news collections. We de-
signed, built, and evaluated a fully automated news
chatbot that bases its content on a stream of news
articles from a diverse set of English news sources.
This in itself is a novel contribution.

Our second contribution is with respect to the
scoping of the chatbot conversation. The system
organizes the news articles into chatrooms, each
revolving around a story, which is a set of auto-
matically grouped news articles about a topic (e.g.,
articles related to Brexit).

The third contribution is a method to keep track
of the state of the conversation to avoid repetition of
information. For each news story, we first generate

a set of essential questions and link each question
with content that answers it. The motivating idea
is: two pieces of content are redundant if they an-
swer the same questions. As the user reads content,
the system tracks which questions are answered
(directly or indirectly) with the content read so far,
and which remain unanswered. We evaluate the
system through a usability study.

The remainder of this paper is structured as fol-
lows. Section 2 describes the system and the con-
tent sources, Section 3 describes the algorithm for
keeping track of the conversation state, Section 4
provides the results of a usability study evaluation
and Section 5 presents relevant prior work.

The system is publicly available at https://
newslens.berkeley.edu/ and a demonstration
video is available at this link: https://www.

youtube.com/watch?v=eze9hpEPUgo.

2 System Description

This section describes the components of the chat-
bot: the content source, the user interface, the sup-
ported user actions and the computed system an-
swers. Appendix A lists library and data resources
used in the system.

2.1 Content Sources
We form the content for the chatbot from a set of
news sources. We have collected an average of
2,000 news articles per day from 20 international
news sources starting in 2010. The news articles
are clustered into stories: groups of news articles
about a similar evolving topic, and each story is
automatically named (Laban and Hearst, 2017).
Some of the top stories at the time of writing are
shown in Figure 1(a).

2.2 User Interface
The chatbot supports information-seeking: the user
is seeking information and the system delivers in-
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(a) Homepage (b) Initiating a Chatroom (c) Chatroom Q&A

Figure 1: Screenshots of the news chatbot (a) Homepage lists most recently active chatrooms (Zone 1 is an ex-
ample chatroom) (b) Newly opened chatroom: Zone 2 is an event message, Zone 3 the Question Recommendation
module, and Zone 4 a text input for user-initiated questions. Event messages are created via abstractive summa-
rization. (c) Conversation continuation with Q&A examples. Sentences shown are extracted from original articles,
whose sources are shown. Answers to questions are bolded.

formation in the form of news content.
The homepage (Figure 1(a)) lists the most active

stories, and a user can select a story to enter its
respective chatroom (Figure 1(b)). The separation
into story-specific rooms achieves two objectives:
(1) clarity to the user, as the chatrooms allow the
user to exit and enter chatrooms to come back to
conversations, and (2) limiting the scope of each
dialogue is helpful from both a usability and a tech-
nical standpoint, as it helps reduce ambiguity and
search scope. For example, answering a question
like: “What is the total cost to insurers so far?”
is easier when knowing the scope is the Australia
Fires, compared to all of news.

Articles in a story are grouped into events, corre-
sponding to an action that occurred in a particular
time and place. For each event, the system forms
an event message by combining the event’s news
article headlines generated by an abstractive sum-
marizer model (Laban et al., 2020).

Zone 2 in Figure 1(b) gives an example of an
event message. The event messages form a chrono-
logical timeline in the story.

Because of the difference in respective roles, we
expect user messages to be shorter than system
responses, which we aim to be around 30 words.

2.3 User Actions

During the conversation, the user can choose
among different kinds of actions.

Explore the event timeline. A chatroom con-
versation starts with the system showing the two
most recent event messages of the story (Fig-
ure 1(b)). These messages give minimal context to
the user necessary to start a conversation. When
the event timeline holds more than two events, a
“See previous events” button is added at the top of
the conversation, allowing the user to go further
back in the event timeline of the story.

Clarify a concept. The user can ask a clarifi-
cation question regarding a person or organization
(e.g., Who is Dennis Muilenburg?), a place (e.g.,
Where is Lebanon?) or an acronym (e.g., What
does NATO stand for?). For a predetermined list
of questions, the system will see if an appropriate
Wikipedia entry exists, and will respond with the
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  Since October in Australia, fires scorched
  more than 10.3 million hectares and 27
  people have been killed

 what else should I know 

  The fires, which have been raging since 
  October, have killed at least 24 people and
  burned 10 million hectares

 you said that already...

Figure 2: Example of repetition from the system. Re-
peating facts with different language is undesirable in a
news chatbot. We introduce a novel question tracking
method that attempts to minimize repetition.

first two paragraphs of the Wikipedia page. For
geographical entities, the system additionally re-
sponds with a geographic map when possible.

Ask an open-ended question. A text box (Zone
4 in Figure 1(b)) can be used to ask any free-form
question about the story. A Q&A system described
in Section 3 attempts to find the answer in any
paragraph of any news article of the story. If the
Q&A system reaches a confidence level about at
least one paragraph containing an answer to the
question, the chatbot system answers the question
using one of the paragraphs. In the system reply
the Q&A selected answer is bolded. Figure 1(c)
shows several Q&A exchanges.

Select a recommended question. A list of
three questions generated by the algorithm de-
scribed in Section 3 is suggested to the user at the
bottom of the conversation (Zone 3 in Figure 1(b)).
Clicking on a recommended questions corresponds
to asking the question in free-form. However, be-
cause recommended questions are known in ad-
vance, we pre-compute their answers to minimize
user waiting times.

3 Conversation State

One key problem in dialogue systems is that of
keeping track of conveyed information, and avoid-
ing repetition in system replies (see example in
Figure 2). This problem is amplified in the news
setting, where different news organizations cover
content redundantly.

We propose a solution that takes advantage of
a Question and Answer (Q&A) system. As noted
above, the motivating idea is that two pieces of
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Figure 3: Conversation state is tracked with the P/Q
graph. As the conversation advances, the system keeps
track of answered questions. Any paragraph that does
not answer a new question is discarded. Questions that
are not answered yet are recommended.

content are redundant if they answer the same ques-
tions. In the example of Figure 2, both system
messages answer the same set of questions, namely:
“When did the fires start?”, “How many people have
died?” and “How many hectares have burned?”,
and can therefore be considered redundant.

Our procedure to track the knowledge state
of a news conversation consists of the following
steps: (1) generate candidate questions spanning
the knowledge in the story, (2) build a graph con-
necting paragraphs with questions they answer, (3)
during a conversation, use the graph to track what
questions have been answered already, and avoid
using paragraphs that do not answer new questions.

Question Candidate Generation. We fine-tune
a GPT2 language model (Radford et al., 2019) on
the task of question generation using the SQuAD
2.0 dataset (Rajpurkar et al., 2018). At training, the
model reads a paragraph from the training set, and
learns to generate a question associated with the
paragraph. For each paragraph in each article of
the story (the paragraph set), we use beam search to
generate K candidate questions. In our experience,
using a large beam size (K=20) is important, as one
paragraph can yield several valid questions. Beam
search enforces exploration, with the first step of
beam search often containing several interrogative
words (what, where...).

For a given paragraph, we reduce the set of ques-
tions by deduplicating questions that are lexically
close (differ by at most 2 words), and removing
questions that are too long (>12 words) or too
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short (<5 words).

Building the P/Q graph. We train a standard
Q&A model, a Roberta model (Liu et al., 2019)
finetuned on SQuAD 2.0 (Rajpurkar et al., 2018),
and use this model to build a paragraph / question
bipartite graph (P/Q graph). In the P/Q graph, we
connect any paragraph (P node), with a question
(Q node), if the Q&A model is confident that para-
graph P answers question Q. An example bipartite
graph obtained is illustrated in Figure 3, with the
question set on the left, the paragraph set on the
right, and edges between them representing model
confidence about the answer.

Because we used a large beam-size when gener-
ating the questions, we perform a pruning step on
the questions set. Our pruning procedure is based
on the realization that two questions are redundant
if they connect to the same subset of paragraphs
(they cover the same content). Our objective is
to find the smallest set of questions that cover all
paragraphs. This problem can be formulated as a
standard graph theory problem known as the set
cover problem, and we use a standard heuristic al-
gorithm (Caprara et al., 1999). After pruning, we
obtain a final P/Q graph, a subgraph of the original
consisting only of the covering set questions.

The P/Q graph embodies interesting properties.
First, the degree of a question node measures how
often a question is answered by distinct paragraphs,
providing a measure of the question’s importance to
the story. The degree of a paragraph node indicates
how many distinct questions it answers, an estimate
of its relevance to a potential reader. Finally, the
graph can be used to measure question relatedness:
if two questions have non-empty neighboring sets
(i.e., some paragraphs answer both questions), they
are likely to be related questions, which can be
used as a way to suggest follow-up questions.

Using the P/Q graph. At the start of a conver-
sation, no question is answered, since no paragraph
has been shown to the user. Therefore, the system
initializes a blank P/Q graph (left graph in Figure 3).
As the system reveals paragraphs in the conversa-
tion, they are marked as read in the P/Q graph
(shaded blue paragraphs in the right graph of Fig-
ure 3). According to our Q&A model, any question
connected to a read paragraph is answered, so we
mark all neighbors of read paragraphs as answered
questions (shaded blue questions on the right graph
of Figure 3). At any stage in the conversation, if a
paragraph is connected to only answered questions,

it is deemed uninformative, as it will not reveal the
answer to a new question.

As the conversation moves along, more para-
graphs are read, increasing the number of answered
questions, which in turn, increases the number of
uninformative paragraphs. We program the sys-
tem to prioritize paragraphs that answer the most
unanswered questions, and disregard uninforma-
tive paragraphs. We further use the P/Q graph
to recommend questions to the user. We select
unanswered questions and prioritize questions con-
nected to more unread paragraphs, recommending
questions three at a time.

4 Study Results

We conducted a usability study in which partici-
pants were assigned randomly to one of three con-
figurations:

• TOPQR: the recommended questions are the
most informative according to the algorithm
in Section 3 (N=18),

• RANDQR: the recommended questions are
randomly sampled from the questions TOPQR
would not select (however, near duplicates
will appear in this set) (N=16),

• NOQR: No questions are recommended, and
the Question Recommendation module (Zone
3 in Figure 1(b)) is hidden (N=22).

These are contrasted in order to test (a) if show-
ing automatically generated questions is beneficial
to news readers, and (b) to assess the question track-
ing algorithm against a similar question recommen-
dation method with no conversation state.

4.1 Study Setup

We used Amazon Mechanical Turk to recruit par-
ticipants, restricting the task to workers in English-
speaking countries having previous completed
1500 tasks (HITs) and an acceptance rate of at least
97%. Each participant was paid a flat rate of $2.50
with the study lasting a total of 15 minutes. During
the study, the participants first walked through an
introduction to the system, then read the news for
8 minutes, and finally completed a short survey.

During the eight minutes of news reading, par-
ticipants were requested to select at least 2 stories
to read from a list of the 20 most recently active
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Measured Value TOPQR RANDQR NOQR
# participants 18 16 22
# chatrooms opened 3.2 2.9 3.1
# msgs. / chatroom 24.9 ∗ 15.3 ∗ 8.1
# rec. questions asked 11.9 ∗ 8.2 ∗ -
# own questions asked 1.5 1.1 2.2
# total questions asked 13.4 ∗ 9.3 ∗ 2.2
latency (seconds) 1.84 ∗ 1.88 ∗ 4.51

Table 1: Usage statistics of the news chatbot during
the usability study. Participants either saw most infor-
mative recommended questions (TOPQR), randomly
selected recommended questions (RANDQR) or no
recommended questions (NOQR). ∗ signifies statistical
difference with NOQR (p < 0.05).

news stories.1 The participants were prompted to
choose stories they were interested in.

The survey consisted of two sections: a satisfac-
tion section, and a section for general free-form
feedback. The satisfaction of the participants was
surveyed using the standard Questionnaire for User
Interaction Satisfaction (QUIS) (Norman et al.,
1998). QUIS is a series of questions about the
usability of the system (ease of use, learning curve,
error messages clearness, etc.) answered on a 7-
point Likert scale. We modify QUIS by adding two
questions regarding questions and answers: “Are
suggested questions clear?” and “Are answers to
questions informative?” A total of fifty-six partici-
pants completed the study. We report on the usage
of the system, the QUIS Satisfaction results and
textual comments from the participants.

4.2 Usage statistics

We observed that participants in the QR-enabled
interfaces (TOPQR and RANDQR) had longer con-
versations than the NOQR setting, with an average
chatroom conversation length of 24.9 messages in
the TOPQR setting. Even though the TOPQR set-
ting had average conversation length longer than
RANDQR, this was not statistically significant.

This increase in conversation length is mostly
due to the use of recommended questions, which
are convenient to click on. Indeed, users clicked
on 8.2 questions on average in RANDQR and 11.9
in TOPQR. NOQR participants wrote on average
2.2 of their own questions, which was not statis-
tically higher than TOPQR (1.5) and RANDQR
(1.1), showing that seeing recommended questions

1We manually removed news stories that were predomi-
nantly about politics, to avoid heated political questions, which
were not under study here.

Measured Value TOPQR RANDQR NOQR
(1) dull ... stimulating (7) 5.28 ∗ 5.06 4.20
(1) frustrating ... satisfying (7) 5.00 ∗ 4.43 4.00
(1) rigid ... flexible (7) 4.71 4.66 4.14
(1) terrible ... wonderful (7) 4.79 4.69 4.20
exploring new features 5.80 5.50 5.14
learning to operate 5.40 5.25 5.06
performing task is
straightforward

5.40 5.56 5.20

system reliability 5.80 5.19 5.67
system speed 6.20 5.87 5.44
rec. questions are clear 5.78 ∗ 4.87 4.28
answers are informative 5.07 ∗ 4.44 3.64

Table 2: QUIS satisfaction results. Likert values on
a scale from 1 to 7, higher is better unless stated other-
wise. ∗ signifies statistical difference with NOQR (p <
0.05).

did not prevent participants from asking their own
questions.

When measuring the latency of system answers
to participant questions, we observe that the av-
erage wait time in TOPQR (1.84 seconds) and
RANDQR (1.88 seconds) settings is significantly
lower than NOQR (4.51 seconds). This speedup is
due to our ability to pre-compute answers to rec-
ommended questions, an additional benefit of the
QR graph pre-computation.

4.3 QUIS Satisfaction Scores

Overall, the systems with question recommenda-
tion enabled (TOPQR and RANDQR) obtained
higher average satisfaction on most measures than
the NOQR setting. That said, statistical signif-
icance was only observed in 4 cases between
TOPQR and NOQR, with participants judging the
TOPQR interface to be more stimulating and satis-
fying.

Although not statistically significant, partici-
pants rated the suggested questions for TOPQR
almost 1 point higher than RANDQR, providing
some evidence that incorporating past viewed in-
formation into question selection is beneficial.

Participants judged the answers to be more in-
formative in the TOPQR setting. We interpret this
as evidence that the QR module helps teach users
what types of questions the system can answer, en-
abling them to get better answers. Several NOQR
participants asked “What can I ask?” or equivalent.

4.4 Qualitative Feedback

Thirty-four of the fifty-six participants opted to
give general feedback via an open ended text box.
We tagged the responses into major themes:
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1. 19 participants (7 TOPQR, 7 RANDQR, 5
NOQR) expressed interest in the system (e.g.,
I enjoyed trying this system out. I particu-
larly liked that stories are drawn from various
sources.)

2. 11 participants (4, 3, 4) mentioned the sys-
tem did not correctly reply to questions asked
(e.g., Some of the questions kind of weren’t
answered exactly, especially in the libya arti-
cle),

3. 10 participants (2, 3, 5) found an aspect of
the interface confusing (e.g., This system has
potential, but as of right now it seems too
overloaded and hard to sort through.)

4. 6 participants (4, 2, 0) thought the questions
were useful (e.g., I especially like the ques-
tions at the bottom. Sometimes it helps to
remember some basic facts or deepen your
understanding)

The most commonly mentioned limitation was
Q&A related errors, a limitation we hope to miti-
gate as automated Q&A continues progressing.

5 Related Work

News Chatbots. Several news agencies have ven-
tured in the space of dialogue interfaces as a way
to attract new audiences. The chatbots are often
manually curated for the dialogue medium and ad-
vanced NLP machinery such as a Q&A systems are
not incorporated into the chatbot.

On BBC’s Messenger chatbot2, a user can en-
ter search queries, such as “latest news” or “Brexit
news” and obtain a list of latest BBC articles match-
ing the search criteria. In the chatbot produced by
Quartz3, journalists hand-craft news stories in the
form of pre-written dialogues (aka choose-your-
own adventure). At each turn, the user can choose
from a list of replies, deciding which track of the
dialogue-article is followed. CNN4 has also experi-
mented with choose-your-own adventure articles,
with the added ability for small talk.

Relevant Q&A datasets. NewsQA (Trischler
et al., 2017) collected a dataset by having a crowd-
worker read the summary of a news article and ask a
follow-up question. Subsequent crowd-workers an-
swered the question or marked it as not-answerable.

2https://www.messenger.com/t/BBCPolitics
3https://www.messenger.com/t/quartznews
4https://www.messenger.com/t/cnn

NewsQA’s objective was to collect a dataset, and
we focus on building a usable dialogue interface
for the news with a Q&A component.

CoQA (Reddy et al., 2019) and Quac (Choi
et al., 2018) are two datasets collected for ques-
tions answering in the context of a dialogue. For
both datasets, two crowd-workers (a student and
a teacher) have a conversation about a piece of
text (hidden to the student in Quac). The student
must ask questions of the teacher, and the teacher
answers using extracts of the document. In our sys-
tem, the questions asked by the user are answered
automatically, introducing potential errors, and the
user can choose to ask questions or not.

In this work, the focus is not on the collection
of naturally occurring questions, but in putting a
Q&A system in use in a news dialogue system, and
observing the extent of its use.

Question Generation (QG) has become an ac-
tive area for text generation. A common approach
is to use a sequence to sequence model (Du et al.,
2017), encoding the paragraph (or context), an
optional target answer (answer-aware (Sun et al.,
2018)), and decoding a paired question. This com-
mon approach focuses on the generation of a sin-
gle article, from a single piece of context, often a
paragraph. We argue that our framing of the QG
problem as the generation of a series of questions
spanning several (possibly redundant) documents
is a novel task.

Krishna and Iyyer (2019) build a hierarchy of
questions generated for a single document; the doc-
ument is then reorganized into a “Squashed” doc-
ument, where paragraphs and questions are inter-
leaved. Because our approach is based on using
multiple documents as the source, compiling all
questions into a single document would be long to
read, so we opt for a chatbot.

6 Discussion

During the usability study, we obtained direct and
indirect feedback from our users, and we summa-
rize limitations that could be addressed in the sys-
tem.

Inability to Handle Small Talk. 4 participants
attempted to have small talk with the chatbot (e.g.
asking “how are you”). The system most often
responded inadequately, saying it did not under-
stand the request. Future work may include gently
directing users who engage in small talk to a chit-
chat-style interface.

385



Inaccurate Q&A system. 32% of the partici-
pants mentioned that answers are often off-track or
irrelevant. This suggests that further improvements
in Q&A systems are needed.

Dealing with errors. Within the current frame-
work, errors are bound to happen, and easing the
user’s path to recovery could improve the user ex-
perience.

7 Conclusion

We presented a fully automated news chatbot sys-
tem, which leverages an average of 2,000 news arti-
cles a day from a diverse set of sources to build cha-
trooms for important news stories. In each room,
the system takes note of generated questions that
have already been answered, to minimize repetition
of information to the news reader.

A usability study reveals that when the chat-
bot recommends questions, news readers tend to
have longer conversations, with an average of 24
messages exchanged. These conversation consist
of combination of recommended and user-created
questions.

Acknowledgments

We would like to thank Ruchir Baronia for early
prototyping and the ACL reviewers for their help-
ful comments. This work was supported by a
Bloomberg Data Science grant. We also gratefully
acknowledge support received from an Amazon
Web Services Machine Learning Research Award
and an NVIDIA Corporation GPU grant.

References
Alberto Caprara, Matteo Fischetti, and Paolo Toth.

1999. A heuristic method for the set covering prob-
lem. Operations research, 47(5):730–743.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2174–2184.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1342–
1352.

Kalpesh Krishna and Mohit Iyyer. 2019. Generating
question-answer hierarchies. In ACL.

Philippe Laban and Marti A Hearst. 2017. newslens:
building and visualizing long-ranging news stories.
In Proceedings of the Events and Stories in the News
Workshop, pages 1–9.

Philippe Laban, Andrew Hsi, John Canny, and Marti A
Hearst. 2020. The summary loop: Learning to write
abstractive summaries without examples. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). To appear.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kent L Norman, Ben Shneiderman, B Harper, and
L Slaughter. 1998. Questionnaire for user interac-
tion satisfaction. University of Maryland (Norman,
1989) Disponı́vel em.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun
Ma, and Shi Wang. 2018. Answer-focused and
position-aware neural question generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3930–
3939.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. Newsqa: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200.

386



A Resources Used

The libraries and data sources used in the described
system are as follows:

Transformers library5 used to train the GPT2-
based Question Generation model and the Roberta-
based Q&A model.

spaCy library6 used to do named-entity extrac-
tion, phrase and keyword extraction.

Wikidata7 for entity linking and collection of
textual content of relevant Wikipedia pages used in
special case questions.

MongoDB8 and Flask9 for storing and serving
the content to the user.

SetCoverPy10 for its implementation of stan-
dard set cover algorithms in Python.

List of news sources present in the dataset used
by the system, in alphabetical order: Aa.com.tr,
Afp.com, Aljazeera.com, Allafrica.com, Ap-
news.com, Bbc.co.uk, Bloomberg.com, Chicagotri-
bune.com, Chinadaily.com.cn, Cnet.com, Cnn.com,
Foxnews.com, France24.com, Independent.co.uk,
Indiatimes.com, Latimes.com, Mercopress.com,
Middleeasteye.net, Nytimes.com, Reuters.com,
Rt.com, Techcrunch.com, Telegraph.co.uk, The-
guardian.com, Washingtonpost.com

5https://github.com/huggingface/transformers
6https://github.com/explosion/spaCy
7https://www.wikidata.org/
8https://www.mongodb.com/
9https://flask.palletsprojects.com/en/1.1.x/

10https://github.com/guangtunbenzhu/SetCoverPy
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