Julius Cheng


2025

pdf bib
A Bayesian Optimization Approach to Machine Translation Reranking
Julius Cheng | Maike Züfle | Vilém Zouhar | Andreas Vlachos
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Reranking, or scoring a list of prediction candidates from a machine translation system with an external scoring model and returning the highest-scoring candidate, remains a simple and effective method for improving prediction quality. However, reranking with high quality scoring models can add substantial computational cost to the translation pipeline, which we address in this work by framing list reranking as a Bayesian optimization (BayesOpt) problem over the candidate list, where unknown scores are modeled with a Gaussian process. This algorithm scores candidates iteratively, choosing next candidates by balancing between exploration, choosing to score those that differ from candidates already scored, and exploitation, choosing to score those that resemble high-scoring candidates.This procedure finds high-scoring candidates while scoring only a fraction of the candidates list; given candidate lists of 200 random samples (before deduplication), our method achieves the same CometKiwi score using only 70 scoring evaluations on average compared to scoring a random subset of 180 candidates. We also propose multi-fidelity BayesOpt for list reranking, where scores obtained from a noisier but cheaper proxy scoring model are incorporated into the search process. We show that well-trained distilled proxy scorers can further improve the performance of BayesOpt.

2024

pdf bib
Measuring Uncertainty in Neural Machine Translation with Similarity-Sensitive Entropy
Julius Cheng | Andreas Vlachos
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Uncertainty estimation is an important diagnostic tool for statistical models, and is often used to assess the confidence of model predictions. Previous work shows that neural machine translation (NMT) is an intrinsically uncertain task where there are often multiple correct and semantically equivalent translations, and that well-trained NMT models produce good translations despite spreading probability mass among many semantically similar translations. These findings suggest that popular measures of uncertainty based on token- and sequence-level entropies which measure surface form diversity may not be good proxies of the more useful quantity of interest, semantic diversity. We propose to adapt similarity-sensitive Shannon entropy (S3E), a concept borrowed from theoretical ecology, for NMT. By demonstrating significantly improved correlation between S3E and task performance on quality estimation and named entity recall, we show that S3E is a useful framework for measuring uncertainty in NMT.

2023

pdf bib
Faster Minimum Bayes Risk Decoding with Confidence-based Pruning
Julius Cheng | Andreas Vlachos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Minimum Bayes risk (MBR) decoding outputs the hypothesis with the highest expected utility over the model distribution for some utility function. It has been shown to improve accuracy over beam search in conditional language generation problems and especially neural machine translation, in both human and automatic evaluations. However, the standard sampling-based algorithm for MBR is substantially more computationally expensive than beam search, requiring a large number of samples as well as a quadratic number of calls to the utility function, limiting its applicability. We describe an algorithm for MBR which gradually grows the number of samples used to estimate the utility while pruning hypotheses that are unlikely to have the highest utility according to confidence estimates obtained with bootstrap sampling. Our method requires fewer samples and drastically reduces the number of calls to the utility function compared to standard MBR while being statistically indistinguishable in terms of accuracy. We demonstrate the effectiveness of our approach in experiments on three language pairs, using chrF++ and COMET as utility/evaluation metrics.