Hongliang Li
2025
Multi-Stage LLM Fine-Tuning with a Continual Learning Setting
Changhao Guan
|
Chao Huang
|
Hongliang Li
|
You Li
|
Ning Cheng
|
Zihe Liu
|
Yufeng Chen
|
Jinan Xu
|
Jian Liu
Findings of the Association for Computational Linguistics: NAACL 2025
In recent years, large language models (LLMs) have made significant progress in knowledge-intensive applications. However, when adapting them to specific domains, we may encounter a multi-stage continuous learning scenario, especially in cases where domain knowledge evolves rapidly.This issue severely limits traditional fine-tuning approaches for LLMs.To overcome this limitation, we propose a new learning paradigm designed specifically for multi-stage continuous learning. This paradigm includes a preference-based learning bias to identify potential knowledge conflicts, as well as a self-distillation-based data augmentation strategy to expand and enrich the training corpus, thereby improving the integration of knowledge-compatible information.In the experiments, we show that our proposed method achieves a significant improvement in accuracy after 7 stages of fine-tuning compared to previous methods, while also demonstrating excellent performance in preserving general knowledge.We have released our code and dataset at Multi-Stage-Learning.
2023
Novel Slot Detection With an Incremental Setting
Chen Liang
|
Hongliang Li
|
Changhao Guan
|
Qingbin Liu
|
Jian Liu
|
Jinan Xu
|
Zhe Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023
Current dialogue systems face diverse user requests and rapid change domains, making quickly adapt to scenarios with previous unseen slot types become a major challenge. Recently, researchers have introduced novel slot detection (NSD) to discover potential new types. However, dialogue system with NSD does not bring practical improvements due to the system still cannot handle novel slots in subsequent interactions. In this paper, we define incremental novel slot detection (INSD), which separates the dialogue system to deal with novel types as two major phrases: 1) model discovers unknown slots, 2) training model to possess the capability to handle new classes. We provide an effective model to extract novel slots with set prediction strategy and propose a query-enhanced approach to overcome catastrophic forgetting during the process of INSD. We construct two INSD datasets to evaluate our method and experimental results show that our approach exhibits superior performance.
Search
Fix data
Co-authors
- Changhao Guan 2
- Jian Liu (刘健) 2
- Jinan Xu (徐金安) 2
- Yufeng Chen (陈钰枫) 1
- Ning Cheng 1
- show all...