Ghazal Khalighinejad


2025

pdf bib
MatViX: Multimodal Information Extraction from Visually Rich Articles
Ghazal Khalighinejad | Sharon Scott | Ollie Liu | Kelly L. Anderson | Rickard Stureborg | Aman Tyagi | Bhuwan Dhingra
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Multimodal information extraction (MIE) is crucial for scientific literature, where valuable data is often spread across text, figures, and tables. In materials science, extracting structured information from research articles can accelerate the discovery of new materials. However, the multimodal nature and complex interconnections of scientific content present challenges for traditional text-based methods. We introduce MatViX, a benchmark consisting of 324 full-length research articles and 1,688 complex structured JSON files, carefully curated by domain experts in polymer nanocomposites and biodegradation. These JSON files are extracted from text, tables, and figures in full-length documents, providing a comprehensive challenge for MIE. We introduce a novel evaluation method to assess the accuracy of curve similarity and the alignment of hierarchical structures. Additionally, we benchmark vision-language models (VLMs) in a zero-shot manner, capable of processing long contexts and multimodal inputs. Our results demonstrate significant room for improvement in current models.

2024

pdf bib
Extracting Polymer Nanocomposite Samples from Full-Length Documents
Ghazal Khalighinejad | Defne Circi | L. Brinson | Bhuwan Dhingra
Findings of the Association for Computational Linguistics: ACL 2024

This paper investigates the use of large language models (LLMs) for extracting sample lists of polymer nanocomposites (PNCs) from full-length materials science research papers. The challenge lies in the complex nature of PNC samples, which have numerous attributes scattered throughout the text. The complexity of annotating detailed information on PNCs limits the availability of data, making conventional document-level relation extraction techniques impractical due to the challenge in creating comprehensive named entity span annotations.To address this, we introduce a new benchmark and an evaluation technique for this task and explore different prompting strategies in a zero-shot manner. We also incorporate self-consistency to improve the performance. Our findings show that even advanced LLMs struggle to extract all of the samples from an article. Finally, we analyze the errors encountered in this process, categorizing them into three main challenges, and discuss potential strategies for future research to overcome them.

2023

pdf bib
Approximating CKY with Transformers
Ghazal Khalighinejad | Ollie Liu | Sam Wiseman
Findings of the Association for Computational Linguistics: EMNLP 2023

We investigate the ability of transformer models to approximate the CKY algorithm, using them to directly predict a sentence’s parse and thus avoid the CKY algorithm’s cubic dependence on sentence length. We find that on standard constituency parsing benchmarks this approach achieves competitive or better performance than comparable parsers that make use of CKY, while being faster. We also evaluate the viability of this approach for parsing under random PCFGs. Here we find that performance declines as the grammar becomes more ambiguous, suggesting that the transformer is not fully capturing the CKY computation. However, we also find that incorporating additional inductive bias is helpful, and we propose a novel approach that makes use of gradients with respect to chart representations in predicting the parse, in analogy with the CKY algorithm being a subgradient of a partition function variant with respect to the chart.

pdf bib
Exploring the Effect of Frequency Resolution in FNet
Gregory Szumel | Ghazal Khalighinejad | Rickard Stureborg | Sam Wiseman
Proceedings of the Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)