Elham Dolatabadi


2022

pdf bib
Bringing the State-of-the-Art to Customers: A Neural Agent Assistant Framework for Customer Service Support
Stephen Obadinma | Faiza Khan Khattak | Shirley Wang | Tania Sidhom | Elaine Lau | Sean Robertson | Jingcheng Niu | Winnie Au | Alif Munim | Karthik Raja K. Bhaskar | Bencheng Wei | Iris Ren | Waqar Muhammad | Erin Li | Bukola Ishola | Michael Wang | Griffin Tanner | Yu-Jia Shiah | Sean X. Zhang | Kwesi P. Apponsah | Kanishk Patel | Jaswinder Narain | Deval Pandya | Xiaodan Zhu | Frank Rudzicz | Elham Dolatabadi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Building Agent Assistants that can help improve customer service support requires inputs from industry users and their customers, as well as knowledge about state-of-the-art Natural Language Processing (NLP) technology. We combine expertise from academia and industry to bridge the gap and build task/domain-specific Neural Agent Assistants (NAA) with three high-level components for: (1) Intent Identification, (2) Context Retrieval, and (3) Response Generation. In this paper, we outline the pipeline of the NAA’s core system and also present three case studies in which three industry partners successfully adapt the framework to find solutions to their unique challenges. Our findings suggest that a collaborative process is instrumental in spurring the development of emerging NLP models for Conversational AI tasks in industry. The full reference implementation code and results are available at https://github.com/VectorInstitute/NAA.

2020

pdf bib
A Smart System to Generate and Validate Question Answer Pairs for COVID-19 Literature
Rohan Bhambhoria | Luna Feng | Dawn Sepehr | John Chen | Conner Cowling | Sedef Kocak | Elham Dolatabadi
Proceedings of the First Workshop on Scholarly Document Processing

Automatically generating question answer (QA) pairs from the rapidly growing coronavirus-related literature is of great value to the medical community. Creating high quality QA pairs would allow researchers to build models to address scientific queries for answers which are not readily available in support of the ongoing fight against the pandemic. QA pair generation is, however, a very tedious and time consuming task requiring domain expertise for annotation and evaluation. In this paper we present our contribution in addressing some of the challenges of building a QA system without gold data. We first present a method to create QA pairs from a large semi-structured dataset through the use of transformer and rule-based models. Next, we propose a means of engaging subject matter experts (SMEs) for annotating the QA pairs through the usage of a web application. Finally, we demonstrate some experiments showcasing the effectiveness of leveraging active learning in designing a high performing model with a substantially lower annotation effort from the domain experts.