As the capabilities of Large Language Models (LLMs) expand, it becomes increasingly important to evaluate them beyond basic knowledge assessment, focusing on higher-level language understanding. This study introduces MultiPragEval, the first multilingual pragmatic evaluation of LLMs, designed for English, German, Korean, and Chinese. Comprising 1200 question units categorized according to Grice’s Cooperative Principle and its four conversational maxims, MultiPragEval enables an in-depth assessment of LLMs’ contextual awareness and their ability to infer implied meanings. Our findings demonstrate that Claude3-Opus significantly outperforms other models in all tested languages, establishing a state-of-the-art in the field. Among open-source models, Solar-10.7B and Qwen1.5-14B emerge as strong competitors. By analyzing pragmatic inference, we provide valuable insights into the capabilities essential for advanced language comprehension in AI systems.
Almost all frameworks for the manual or automatic evaluation of machine translation characterize the quality of an MT output with a single number. An exception is the Multidimensional Quality Metrics (MQM) framework which offers a fine-grained ontology of quality dimensions for scoring (such as style, fluency, accuracy, and terminology). Previous studies have demonstrated the feasibility of MQM annotation but there are, to our knowledge, no computational models that predict MQM scores for novel texts, due to a lack of resources. In this paper, we address these shortcomings by (a) providing a 1200-sentence MQM evaluation benchmark for the language pair English-Korean and (b) reframing MT evaluation as the multi-task problem of simultaneously predicting several MQM scores using SOTA language models, both in a reference-based MT evaluation setup and a reference-free quality estimation (QE) setup. We find that reference-free setup outperforms its counterpart in the style dimension while reference-based models retain an edge regarding accuracy. Overall, RemBERT emerges as the most promising model. Through our evaluation, we offer an insight into the translation quality in a more fine-grained, interpretable manner.