Daniel E. Ho
2025
LawInstruct: A Resource for Studying Language Model Adaptation to the Legal Domain
Joel Niklaus
|
Lucia Zheng
|
Arya D. McCarthy
|
Christopher Hahn
|
Brian M Rosen
|
Peter Henderson
|
Daniel E. Ho
|
Garrett Honke
|
Percy Liang
|
Christopher D Manning
Findings of the Association for Computational Linguistics: NAACL 2025
Instruction tuning is an important step in making language models useful for direct user interaction. However, the legal domain is underrepresented in typical instruction datasets (e.g., only 10 out of 1600+ tasks in Super-NaturalInstructions). To study whether instruction tuning on legal datasets is necessary for strong legal reasoning, we aggregate 58 annotated legal datasets and write instructions for each, creating LawInstruct. LawInstruct covers 17 global jurisdictions, 24 languages and a total of 12M examples across diverse tasks such as legal QA, summarization of court cases, and legal argument mining. We evaluate our models on LegalBench, measuring legal reasoning across five categories in 162 challenging and realistic legal tasks, and MMLU, to measure potential drops in general reasoning capabilities. We find that legal-specific instruction tuning on Flan-T5 – yielding FLawN-T5 – improves performance on LegalBench across all model sizes, with an aggregate increase of 15 points or 50% over Flan-T5 for the base size. No model size shows performance drops in MMLU. We publish LawInstruct as a resource for further study of instruction tuning in the legal domain.
2024
Statistical Uncertainty in Word Embeddings: GloVe-V
Andrea Vallebueno
|
Cassandra Handan-Nader
|
Christopher D Manning
|
Daniel E. Ho
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Static word embeddings are ubiquitous in computational social science applications and contribute to practical decision-making in a variety of fields including law and healthcare. However, assessing the statistical uncertainty in downstream conclusions drawn from word embedding statistics has remained challenging. When using only point estimates for embeddings, researchers have no streamlined way of assessing the degree to which their model selection criteria or scientific conclusions are subject to noise due to sparsity in the underlying data used to generate the embeddings. We introduce a method to obtain approximate, easy-to-use, and scalable reconstruction error variance estimates for GloVe, one of the most widely used word embedding models, using an analytical approximation to a multivariate normal model. To demonstrate the value of embeddings with variance (GloVe-V), we illustrate how our approach enables principled hypothesis testing in core word embedding tasks, such as comparing the similarity between different word pairs in vector space, assessing the performance of different models, and analyzing the relative degree of ethnic or gender bias in a corpus using different word lists.