Chunhong Zhang


2025

pdf bib
CycleOIE: A Low-Resource Training Framework For Open Information Extraction
Zhihong Jin | Chunhong Zhang | Zheng Hu | Jibin Yu | Ruiqi Ma | Qingyun Chen | Xiaohao Liao | Yanxing Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Open Information Extraction (OpenIE) aims to extract structured information in the form of triples from unstructured text, serving as a foundation for various downstream NLP tasks. Despite the success of neural OpenIE models, their dependence on large-scale annotated datasets poses a challenge, particularly in low-resource settings. In this paper, we introduce a novel approach to address the low-resource OpenIE task through two key innovations: (1) we improve the quality of training data by curating small-scale, high-quality datasets annotated by a large language model (GPT-3.5), leveraging both OpenIE principles and few-shot examples to form LSOIE-g principles and LSOIE-g examples; (2) we propose CycleOIE, a training framework that maximizes data efficiency through a cycle-consistency mechanism, enabling the model to learn effectively from minimal data. Experimental results show that CycleOIE, when trained on only 2k+ instances, achieves comparable results to models trained on over 90k instances. Our contributions are further validated through extensive experiments, demonstrating the superior performance of CycleOIE and our curated LSOIE-g datasets in low-resource OpenIE as well as revealing the internal mechanisms of CycleOIE.

pdf bib
Instruct-of-Reflection: Enhancing Large Language Models Iterative Reflection Capabilities via Dynamic-Meta Instruction
Liping Liu | Chunhong Zhang | Likang Wu | Chuang Zhao | Zheng Hu | Ming He | Jianping Fan
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Self-reflection for Large LanguageModels (LLMs) has gained significant attention. Existing approaches involve models iterating and improving their previous responses based on LLMs’ internal reflection ability or external feedback. However, recent research has raised doubts about whether intrinsic self-correction without external feedback may even degrade performance. Based on our empirical evidence, we find that current static reflection methods may lead to redundant, drift, and stubborn issues. To mitigate this, we introduce **I**nstruct-**o**f-**R**eflec**t**ion (**IoRT**), a novel and general reflection framework that leverages dynamic-meta instruction to enhance the iterative reflection capability of LLMs. Specifically, we propose the instructor driven by the meta-thoughts and self-consistency classifier, generates various instructions, including refresh, stop, and select, to guide the next reflection iteration. Our experiments demonstrate that IoRT achieves an average improvement of 10.1% over established baselines in mathematical and commonsense reasoning tasks, highlighting its efficacy and applicability. Our code is available at https://github.com/llp635/IoRT.

2020

pdf bib
A Practice of Tourism Knowledge Graph Construction based on Heterogeneous Information
Dinghe Xiao | Nannan Wang | Jiangang Yu | Chunhong Zhang | Jiaqi Wu
Proceedings of the 19th Chinese National Conference on Computational Linguistics

The increasing amount of semi-structured and unstructured data on tourism websites brings a need for information extraction (IE) so as to construct a Tourism-domain Knowledge Graph (TKG), which is helpful to manage tourism information and develop downstream applications such as tourism search engine, recommendation and Q & A. However, the existing TKG is deficient, and there are few open methods to promote the construction and widespread application of TKG. In this paper, we present a systematic framework to build a TKG for Hainan, collecting data from popular tourism websites and structuring it into triples. The data is multi-source and heterogeneous, which raises a great challenge for processing it. So we develop two pipelines of processing methods for semi-structured data and unstructured data respectively. We refer to tourism InfoBox for semi-structured knowledge extraction and leverage deep learning algorithms to extract entities and relations from unstructured travel notes, which are colloquial and high-noise, and then we fuse the extracted knowledge from two sources. Finally, a TKG with 13 entity types and 46 relation types is established, which totally contains 34,079 entities and 441,371 triples. The systematic procedure proposed by this paper can construct a TKG from tourism websites, which can further applied to many scenarios and provide detailed reference for the construction of other domain-specific knowledge graphs.