Bowen Yi


2025

pdf bib
Causally Modeling the Linguistic and Social Factors that Predict Email Response
Yinuo Xu | Hong Chen | Sushrita Rakshit | Aparna Ananthasubramaniam | Omkar Yadav | Mingqian Zheng | Michael Jiang | Lechen Zhang | Bowen Yi | Kenan Alkiek | Abraham Israeli | Bangzhao Shu | Hua Shen | Jiaxin Pei | Haotian Zhang | Miriam Schirmer | David Jurgens
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Email is a vital conduit for human communication across businesses, organizations, and broader societal contexts. In this study, we aim to model the intents, expectations, and responsiveness in email exchanges. To this end, we release SIZZLER, a new dataset containing 1800 emails annotated with nuanced types of intents and expectations. We benchmark models ranging from feature-based logistic regression to zero-shot prompting of large language models. Leveraging the predictive model for intent, expectations, and 14 other features, we analyze 11.3M emails from GMANE to study how linguistic and social factors influence the conversational dynamics in email exchanges. Through our causal analysis, we find that the email response rates are influenced by social status, argumentation, and in certain limited contexts, the strength of social connection.

pdf bib
Examining Spanish Counseling with MIDAS: a Motivational Interviewing Dataset in Spanish
Aylin Ece Gunal | Bowen Yi | John D. Piette | Rada Mihalcea | Veronica Perez-Rosas
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Cultural and language factors significantly influence counseling, but Natural Language Processing research has not yet examined whether the findings of conversational analysis for counseling conducted in English apply to other languages. This paper presents a first step towards this direction. We introduce MIDAS (Motivational Interviewing Dataset in Spanish), a counseling dataset created from public video sources that contains expert annotations for counseling reflections and questions. Using this dataset, we explore language-based differences in counselor behavior in English and Spanish and develop classifiers in monolingual and multilingual settings, demonstrating its applications in counselor behavioral coding tasks.

2024

pdf bib
The Generation Gap: Exploring Age Bias in the Value Systems of Large Language Models
Siyang Liu | Trisha Maturi | Bowen Yi | Siqi Shen | Rada Mihalcea
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We explore the alignment of values in Large Language Models (LLMs) with specific age groups, leveraging data from the World Value Survey across thirteen categories. Through a diverse set of prompts tailored to ensure response robustness, we find a general inclination of LLM values towards younger demographics, especially when compared to the US population. Although a general inclination can be observed, we also found that this inclination toward younger groups can be different across different value categories. Additionally, we explore the impact of incorporating age identity information in prompts and observe challenges in mitigating value discrepancies with different age cohorts. Our findings highlight the age bias in LLMs and provide insights for future work. Materials for our analysis will be available via https://github.com/anonymous