Bingsheng He
2025
Evaluating Small Language Models for News Summarization: Implications and Factors Influencing Performance
Borui Xu
|
Yao Chen
|
Zeyi Wen
|
Weiguo Liu
|
Bingsheng He
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The increasing demand for efficient summarization tools in resource-constrained environments highlights the need for effective solutions. While large language models (LLMs) deliver superior summarization quality, their high computational resource requirements limit practical use applications. In contrast, small language models (SLMs) present a more accessible alternative, capable of real-time summarization on edge devices. However, their summarization capabilities and comparative performance against LLMs remain underexplored. This paper addresses this gap by presenting a comprehensive evaluation of 19 SLMs for news summarization across 2,000 news samples, focusing on relevance, coherence, factual consistency, and summary length. Our findings reveal significant variations in SLM performance, with top-performing models such as Phi3-Mini and Llama3.2-3B-Ins achieving results comparable to those of 70B LLMs while generating more concise summaries. Notably, SLMs are better suited for simple prompts, as overly complex prompts may lead to a decline in summary quality. Additionally, our analysis indicates that instruction tuning does not consistently enhance the news summarization capabilities of SLMs. This research not only contributes to the understanding of SLMs but also provides practical insights for researchers seeking efficient summarization solutions that balance performance and resource use.
2024
CryptoTrade: A Reflective LLM-based Agent to Guide Zero-shot Cryptocurrency Trading
Yuan Li
|
Bingqiao Luo
|
Qian Wang
|
Nuo Chen
|
Xu Liu
|
Bingsheng He
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The utilization of Large Language Models (LLMs) in financial trading has primarily been concentrated within the stock market, aiding in economic and financial decisions. Yet, the unique opportunities presented by the cryptocurrency market, noted for its on-chain data’s transparency and the critical influence of off-chain signals like news, remain largely untapped by LLMs. This work aims to bridge the gap by developing an LLM-based trading agent, CryptoTrade, which uniquely combines the analysis of on-chain and off-chain data. This approach leverages the transparency and immutability of on-chain data, as well as the timeliness and influence of off-chain signals, providing a comprehensive overview of the cryptocurrency market. CryptoTrade incorporates a reflective mechanism specifically engineered to refine its daily trading decisions by analyzing the outcomes of prior trading decisions. This research makes two significant contributions. Firstly, it broadens the applicability of LLMs to the domain of cryptocurrency trading. Secondly, it establishes a benchmark for cryptocurrency trading strategies. Through extensive experiments, CryptoTrade has demonstrated superior performance in maximizing returns compared to time-series baselines, but not compared to traditional trading signals, across various cryptocurrencies and market conditions. Our code and data are available at https://github.com/Xtra-Computing/CryptoTrade