At the forefront of state-of-the-art human alignment methods are preference optimization methods (*PO). Prior research has often concentrated on identifying the best-performing method, typically involving a grid search over hyperparameters, which can be impractical for general practitioners. In this paper, we examine the robustness of existing state-of-the-art methods to varying hyperparameters in a realistic out-of-distribution (OOD) scenario that mirrors real-world applications of human alignment. Our goal is to empirically find the method that increases the likelihood of achieving better results through the lens of various metrics, such as KL divergence and response length. We also introduce LN-DPO, a simple length-normalized version of DPO that is more stable across hyperparameters, effectively reduces the average response length, and improves performance. Our analysis of state-of-the-art reference-free (i.e., SimPO) and reference-dependent (i.e., DPO and LN-DPO) methods reveals that they perform similarly at their peak (i.e., best possible scenario). However, we uncover that the pattern of change in performance greatly varies as we move away from the best possible scenario.
One of the prominent issues stifling the current generation of large language models is their limited context length. Recent proprietary models such as GPT-4 and Claude 2 have introduced longer context lengths, 8k/32k and 100k, respectively; however, despite the efforts in the community, most common models, such as LLama-2, have a context length of 4k or less. Unlimiformer (Bertsch et al., 2023) is a recently popular vector-retrieval augmentation method that offloads cross-attention computations to a kNN index. However, its main limitation is incompatibility with decoder-only transformers out of the box. In this work, we explore practical considerations of adapting Unlimiformer to decoder-only transformers and introduce a series of modifications to overcome this limitation. Moreover, we expand the original experimental setup on summarization to include a new task (i.e., free-form Q&A) and an instruction-tuned model (i.e., a custom 6.7B GPT model). Our results showcase the effectiveness of these modifications on summarization, performing on par with a model with 2x the context length. Moreover, we discuss limitations and future directions for free-form Q&A and instruction-tuned models.
Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define
attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at
https://aka.ms/LeX-Transformer.