Alexa Lintner
2025
Audio Description Generation in the Era of LLMs and VLMs: A Review of Transferable Generative AI Technologies
Yingqiang Gao
|
Lukas Fischer
|
Alexa Lintner
|
Sarah Ebling
Findings of the Association for Computational Linguistics: NAACL 2025
Audio descriptions (ADs) function as acoustic commentaries designed to assist blind persons and persons with visual impairments in accessing digital media content on television and in movies, among other settings. As an accessibility service typically provided by trained AD professionals, the generation of ADs demands significant human effort, making the process both time-consuming and costly. Recent advancements in natural language processing (NLP) and computer vision (CV), particularly in large language models (LLMs) and vision-language models (VLMs), have allowed for getting a step closer to automatic AD generation. This paper reviews the technologies pertinent to AD generation in the era of LLMs and VLMs: we discuss how state-of-the-art NLP and CV technologies can be applied to generate ADs and identify essential research directions for the future.
SwissADT: An Audio Description Translation System for Swiss Languages
Lukas Fischer
|
Yingqiang Gao
|
Alexa Lintner
|
Annette Rios
|
Sarah Ebling
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
Audio description (AD) is a crucial accessibility service provided to blind persons and persons with visual impairment, designed to convey visual information in acoustic form. Despite recent advancements in multilingual machine translation research, the lack of well-crafted and time-synchronized AD data impedes the development of audio description translation (ADT) systems that address the needs of multilingual countries such as Switzerland. Furthermore, most ADT systems rely on text alone, and it is unclear whether incorporating visual information from video clips improves the quality of ADT outputs.In this work, we introduce SwissADT, an **emerging** ADT system for three main Swiss languages and English, designed for future use by our industry partners. By collecting well-crafted AD data augmented with video clips in German, French, Italian, and English, and leveraging the power of Large Language Models (LLMs), we aim to enhance information accessibility for diverse language populations in Switzerland by automatically translating AD scripts to the desired Swiss language. Our extensive experimental ADT results, composed of both automatic and human evaluations of ADT quality, demonstrate the promising capability of SwissADT for the ADT task. We believe that combining human expertise with the generation power of LLMs can further enhance the performance of ADT systems, ultimately benefiting a larger multilingual target population.