Adrien Coulet


2025

pdf bib
Comparing representations of long clinical texts for the task of patient-note identification
Safa Alsaidi | Marc Vincent | Olivia Boyer | Nicolas Garcelon | Miguel Couceiro | Adrien Coulet
Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health)

In this paper, we address the challenge of patient-note identification, which involves accurately matching an anonymized clinical note to its corresponding patient, represented by a set of related notes. This task has broad applications, including duplicate records detection and patient similarity analysis, which require robust patient-level representations. We explore various embedding methods, including Hierarchical Attention Networks (HAN), three-level Hierarchical Transformer Networks (HTN), LongFormer, and advanced BERT-based models, focusing on their ability to process medium-to-long clinical texts effectively. Additionally, we evaluate different pooling strategies (mean, max, and mean_max) for aggregating word-level embeddings into patient-level representations and we examine the impact of sliding windows on model performance. Our results indicate that BERT-based embeddings outperform traditional and hierarchical models, particularly in processing lengthy clinical notes and capturing nuanced patient representations. Among the pooling strategies, mean_max pooling consistently yields the best results, highlighting its ability to capture critical features from clinical notes. Furthermore, the reproduction of our results on both MIMIC dataset and Necker hospital data warehouse illustrates the generalizability of these approaches to real-world applications, emphasizing the importance of both embedding methods and aggregation strategies in optimizing patient-note identification and enhancing patient-level modeling.

2018

pdf bib
Syntax-based Transfer Learning for the Task of Biomedical Relation Extraction
Joël Legrand | Yannick Toussaint | Chedy Raïssi | Adrien Coulet
Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis

Transfer learning (TL) proposes to enhance machine learning performance on a problem, by reusing labeled data originally designed for a related problem. In particular, domain adaptation consists, for a specific task, in reusing training data developed for the same task but a distinct domain. This is particularly relevant to the applications of deep learning in Natural Language Processing, because those usually require large annotated corpora that may not exist for the targeted domain, but exist for side domains. In this paper, we experiment with TL for the task of Relation Extraction (RE) from biomedical texts, using the TreeLSTM model. We empirically show the impact of TreeLSTM alone and with domain adaptation by obtaining better performances than the state of the art on two biomedical RE tasks and equal performances for two others, for which few annotated data are available. Furthermore, we propose an analysis of the role that syntactic features may play in TL for RE.

2015

pdf bib
Extracting Disease-Symptom Relationships by Learning Syntactic Patterns from Dependency Graphs
Mohsen Hassan | Olfa Makkaoui | Adrien Coulet | Yannick Toussaint
Proceedings of BioNLP 15