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1 Paraphrase Lexicon

While PARANMT-50M consists of sentence
pairs, we demonstrate how a paraphrase lexicon
can be extracted from it. One simple approach is to
extract and rank word pairs 〈u, v〉 using the cross-
sentence pointwise mutual information (PMI):

PMIcross(u, v) = log
#(u, v)#(·, ·)
#(u)#(v)

where joint counts #(u, v) are incremented when
u appears in a sentence and v appears in its para-
phrase. The marginal counts (e.g., #(u)) are com-
puted based on single-sentence counts, as in ordi-
nary PMI. This works reasonably well but is not
able to differentiate words that frequently occur in
paraphrase pairs from words that simply occur fre-
quently together in the same sentence. For exam-
ple, “Hong” and “Kong” have high cross-sentence
PMI. We can improve the score by subtracting the
ordinary PMI that computes joint counts based on
single-sentence co-occurrences. We call the result
the adjusted PMI:

PMIadj(u, v) = PMIcross(u, v)− PMI(u, v)

Before computing these PMIs from PARANMT-
50M, we removed sentence pairs with a para-
phrase score less than 0.35 and where either sen-
tence is longer than 30 tokens. When comput-
ing the ordinary PMI with single-sentence con-
text, we actually compute separate versions of this
PMI score for translations and references in each
PARANMT-50M pair, then we average them to-
gether. We did this because the two sentences in
each pair have highly correlated information, so
computing PMI on each half of the data would cor-
respond to capturing natural corpus statistics in a
standard application of PMI.

Table 2 shows an evaluation of the resulting
score functions on the SimLex-999 word similar-
ity dataset (Hill et al., 2015). As a baseline, we

use the lexical portion of PPDB 2.0 (Pavlick et al.,
2015), evaluating its ranking score as a similar-
ity score and assigning a similarity of 0 to unseen
word pairs.1 Our adjusted PMI computed from
PARANMT-50M is on par with the best PPDB
lexicon.

Table 1 shows examples from PPDB and our
paraphrase lexicon computed from PARANMT-
50M. Paraphrases from PPDB are ordered by the
PPDB 2.0 scoring function. Paraphrases from our
lexicon are ordered using our adjusted PMI scor-
ing function; we only show paraphrases that ap-
peared at least 10 times in PARANMT-50M.

2 General-Purpose Sentence Embedding
Evaluations

We evaluate our sentence embeddings on a range
of tasks that have previously been used for
evaluating sentence representations (Kiros et al.,
2015). These include sentiment analysis (MR,
Pang and Lee, 2005; CR, Hu and Liu, 2004;
SST, Socher et al., 2013), subjectivity classifica-
tion (SUBJ; Pang and Lee, 2004), opinion polarity
(MPQA; Wiebe et al., 2005), question classifica-
tion (TREC; Li and Roth, 2002), paraphrase detec-
tion (MRPC; Dolan et al., 2004), semantic relat-
edness (SICK-R; Marelli et al., 2014), and textual
entailment (SICK-E). We use the SentEval pack-
age from Conneau et al. (2017) to train models on
our fixed sentence embeddings for each task.2

Table 3 shows results on the general sentence
embedding tasks. Each of our individual models
produces 300-dimensional sentence embeddings,
which is far fewer than the several thousands (of-
ten 2400-4800) of dimensions used in most prior

1If both orderings for a SimLex word pair appear in
PPDB, we average their PPDB 2.0 scores. If multiple lexi-
cal entries are found with different POS tags, we take the first
instance.

2 github.com/facebookresearch/SentEval

github.com/facebookresearch/SentEval


PPDB giggled, smiled, funny, used, grew, bust, ri, did
laughed PARANMT-50M chortled, guffawed, pealed, laughin, laughingstock, cackled, chuckled, snickered, mirth-

less, chuckling, jeered, laughs, laughing, taunted, burst, cackling, scoffed,...

respectful
PPDB respect, respected, courteous, disrespectful, friendly, respecting, respectable, humble,

environmentally-friendly, child-friendly, dignified, respects, compliant, sensitive,...

PARANMT-50M reverent, deferential, revered, respectfully, awed, respect, respected, respects, respectable,
politely, considerate, treat, civil, reverence, polite, keeping, behave, proper, dignified,...

Table 1: Example lexical paraphrases from PPDB ranked using the PPDB 2.0 scoring function and from
the paraphrase lexicon we induced from PARANMT-50M ranked using adjusted PMI.

Dataset Score ρ× 100
PPDB L PPDB 2.0 37.97
PPDB XL PPDB 2.0 52.32
PPDB XXL PPDB 2.0 60.44
PPDB XXXL PPDB 2.0 61.47
PARANMT-50M cross-sentence PMI 52.12
PARANMT-50M adjusted PMI 61.59

Table 2: Spearman’s ρ× 100 on SimLex-999 for
scored paraphrase lexicons.

work. While using higher dimensionality does not
improve correlation on the STS tasks, it does help
on the general sentence embedding tasks. Using
higher dimensionality leads to more trainable pa-
rameters in the subsequent classifiers, increasing
their ability to linearly separate the data.

To enlarge the dimensionality, we concatenate
the forward and backward states prior to averag-
ing. This is similar to Conneau et al. (2017),
though they used max pooling. We experi-
mented with both averaging (“BLSTM (Avg.,
concatenation)”) and max pooling (“BLSTM
(Max, concatenation)”) using recurrent networks
with 2048-dimensional hidden states, so con-
catenating them yields a 4096-dimension embed-
ding. These high-dimensional models outper-
form SkipThought (Kiros et al., 2015) on all tasks
except SUBJ and TREC. Nonetheless, the In-
ferSent (Conneau et al., 2017) embeddings trained
on AllNLI still outperform our embeddings on
nearly all of these general-purpose tasks.

We also note that on five tasks (SUBJ, MPQA,
SST, TREC, and MRPC), all sentence embedding
methods are outperformed by supervised base-
lines. These baselines use the same amount of
supervision as the general sentence embedding
methods; the latter actually use far more data over-
all than the supervised baselines. This suggests
that the pretrained sentence representations are not
capturing the features learned by the models engi-
neered for those tasks.

We take a closer look of how our embeddings
compare to InferSent (Conneau et al., 2017). In-

ferSent is a supervised model trained on a large
textual entailment dataset (the SNLI and MultiNLI
corpora (Bowman et al., 2015; Williams et al.,
2017), which consist of nearly 1 million human-
labeled examples).

While InferSent has strong performance across
all downstream tasks, our model obtains better re-
sults on semantic similarity tasks. It consistently
reach correlations approximately 10 points higher
than those of InferSent.

Regarding the general-purpose tasks, we note
that some result trends appear to be influenced by
the domain of the data. InferSent is trained on a
dataset of mostly captions, especially the model
trained on just SNLI. Therefore, the datasets for
the SICK relatedness and entailment evaluations
are similar in domain to the training data of In-
ferSent. Further, the training task of natural lan-
guage inference is aligned to the SICK entailment
task. Our results on MRPC and entailment are sig-
nificantly better than SkipThought, and on a para-
phrase task that does not consist of caption data
(MRPC), our embeddings are competitive with In-
ferSent. To quantify these domain effects, we per-
formed additional experiments that are described
in Section 2.1.

There are many ways to train sentence embed-
dings, each with its own strengths. InferSent, our
models, and the BYTE mLSTM of Radford et al.
(2017) each excel in particular classes of down-
stream tasks. Ours are specialized for semantic
similarity. BYTE mLSTM is trained on review
data and therefore is best at the MR and CR tasks.
Since the InferSent models are trained using en-
tailment supervision and on caption data, they ex-
cel on the SICK tasks. Future work will be needed
to combine multiple supervision signals to gener-
ate embeddings that perform well across all tasks.

2.1 Effect of Training Domain on InferSent

We performed additional experiments to inves-
tigate the impact of training domain on down-



Model Dim. MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E
Unsupervised (Unordered Sentences)
Unigram-TFIDF (Hill et al., 2016) 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - -
SDAE (Hill et al., 2016) 2400 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - -
Unsupervised (Ordered Sentences)
FastSent (Hill et al., 2016) 100 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - -
FastSent+AE (Hill et al., 2016) 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - -
SkipThought (Kiros et al., 2015) 4800 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 85.8 82.3
Unsupervised (Structured Resources)
DictRep (Hill et al., 2016) 500 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - -
NMT En-to-Fr (Hill et al., 2016) 2400 64.7 70.1 84.9 81.5 - 82.8 -
BYTE mLSTM (Radford et al., 2017) 4096 86.9 91.4 94.6 88.5 - - 75.0/82.8 79.2 -
Individual Models (Our Work)
WORD 300 75.8 80.5 89.2 87.1 80.0 80.1 68.6/80.9 83.6 80.6
TRIGRAM 300 68.8 75.5 83.6 82.3 73.6 73.0 71.4/82.0 79.3 78.0
LSTM 300 73.8 78.4 88.5 86.5 80.6 76.8 73.6/82.3 83.9 81.9
LSTM 900 75.8 81.7 90.5 87.4 81.6 84.4 74.7/83.0 86.0 83.0
BLSTM 900 75.6 82.4 90.6 87.7 81.3 87.4 75.0/82.9 85.8 84.4
Mixed Models (Our Work)
WORD + TRIGRAM (addition) 300 74.8 78.8 88.5 87.4 78.7 79.0 71.4/81.4 83.2 80.6
WORD + TRIGRAM + LSTM (addition) 300 75.0 80.7 88.6 86.6 77.9 78.6 72.7/80.8 83.6 81.8
WORD, TRIGRAM (concatenation) 600 75.8 80.5 89.9 87.8 79.7 82.4 70.7/81.7 84.6 82.0
WORD, TRIGRAM, LSTM (concatenation) 900 77.6 81.4 91.4 88.2 82.0 85.4 74.0/81.5 85.4 83.8
BLSTM (Avg., concatenation) 4096 77.5 82.6 91.0 89.3 82.8 86.8 75.8/82.6 85.9 83.8
BLSTM (Max, concatenation) 4096 76.6 83.4 90.9 88.5 82.0 87.2 76.6/83.5 85.3 82.5
Supervised (Transfer)
InferSent (SST) (Conneau et al., 2017) 4096 - 83.7 90.2 89.5 - 86.0 72.7/80.9 86.3 83.1
InferSent (SNLI) (Conneau et al., 2017) 4096 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 88.5 86.3
InferSent (AllNLI) (Conneau et al., 2017) 4096 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 88.4 86.3
Supervised (Direct)
Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - -
AdaSent (Zhao et al., 2015) 83.1 86.3 95.5 93.3 - 92.4 - - -
BLSTM-2DCNN (Zhou et al., 2016) 82.3 - 94.0 - 89.5 96.1 - - -
TF-KLD (Ji and Eisenstein, 2013) - - - - - - 80.4/85.9 - -
Illinois-LH (Lai and Hockenmaier, 2014) - - - - - - - - 84.5
Dependency Tree-LSTM (Tai et al., 2015) - - - - - - - 86.8 -

Table 3: General-purpose sentence embedding tasks, divided into categories based on resource require-
ments.

stream tasks. We first compare the performance
of our “WORD, TRIGRAM (concatenation)” model
to the InferSent SNLI and AllNLI models on all
STS tasks from 2012-2016. We then compare
the overall mean with that of the three caption
STS datasets within the collection. The results are
shown in Table 4. The InferSent models are much
closer to our WORD, TRIGRAM model on the cap-
tion datasets than overall, and InferSent trained
on SNLI shows the largest difference between its
overall performance and its performance on cap-
tion data.

We also compare the performance of these mod-
els on the STS Benchmark under several condi-
tions (Table 5). Unsupervised results were ob-
tained by simply using cosine similarity of the pre-
trained embeddings on the test set with no train-
ing or tuning. Supervised results were obtained by
training and tuning using the training and develop-

Data AllNLI SNLI
Overall mean diff. 10.5 12.5
MSRvid (2012) diff. 5.2 4.6
Images (2014) diff. 6.4 4.8
Images (2015) diff. 3.6 3.0

Table 4: Difference in correlation (Pearson’s
r × 100) between “WORD, TRIGRAM” and In-
ferSent models trained on two different datasets:
AllNLI and SNLI. The first row is the mean differ-
ence across all 25 datasets, then the following rows
show differences on three individual datasets that
are comprised of captions. The InferSent mod-
els are much closer to our model on the caption
datasets than overall.

ment data of the STS Benchmark.

We first compare unsupervised results on the
entire test set, the subset consisting of captions
(3,250 of the 8,628 examples in the test set), and



Model All Cap. No Cap.
Unsupervised
InferSent (AllNLI) 70.6 83.0 56.6
InferSent (SNLI) 67.3 83.4 51.7
WORD, TRIGRAM 79.9 87.1 71.7
Supervised
InferSent (AllNLI) 75.9 85.4 64.8
InferSent (SNLI) 75.9 86.4 63.1

Table 5: STS Benchmark results (Pearson’s r ×
100) comparing our WORD, TRIGRAM model to
InferSent trained on AllNLI and SNLI. We report
results using all of the data (All), only the caption
portion of the data (Cap.), and all of the data ex-
cept for the captions (No Cap.).

the remainder. We include analogous results in
the supervised setting, where we filter the respec-
tive training and development sets in addition to
the test sets. Compared to our model, InferSent
shows a much larger gap between captions and
non-captions, providing evidence of a bias. Note
that this bias is smaller for the model trained on
AllNLI, as its training data includes other do-
mains.
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