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Topic Models, Latent Space
Models, Sparse Coding,
and All That

XYY
A systematic understanding of ::::
probabilistic semantic extraction |eee
in large corpora :'
We are inundated with data ... o

i t (from images.google.cn)

e Humans cannot afford to deal with (e.g., search, browse, or
measure similarity) a huge number of text and media documents

o We need computers to help out ...
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To get started on intelligent systems for
automated processing and management of
large text or media corpora ...

e Here are some important elements to consider before you start:
e Task:
Embedding (visualization)? Classification? Clustering? Topic extraction? ...
e Data representation:
Input and output (e.g., continuous, binary, counts, ...)
e Model:
Latent Semantic Indexing? Bayesian Network? Markov Random Fields? Regression? SVM?
e Inference:
MCMC? Variational? Spectrum Analysis?
e Learning:
MLE? MCLE? Max margin?
e Computation:
Desktop? Hadoop? MPI?
e Evaluation:
Visualization? Human interpretability? Perperlexity? Predictive accuracy?

e It is better to consider one element at a time!
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Tasks:

e Say, we want to have a mapping ..., so that
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e Compare similarity

e Classify contents

e  Cluster/group/categorizing

e Distill semantics and perspectives

© Eric Xing @ CMU, ACL Tutorial 2012 4




Representation:

e Data: Bag of Words Representation

As for the Arabian and Palestinean voices that are against
the current negotiations and the so-called peace process,
they are not against peace per se, but rather for their well-
founded predictions that Israel would NOT give an inch of
the West bank (and most probably the same for Golan
Heights) back to the Arabs. An 18 months of "negotiations"
in Madrid, and Washington proved these predictions. Now
many will jump on me saying why are you blaming israelis

—

for no-result negotiations. I would say why would the
Arabs stall the negotiations, what do they have to loose ?

e Each document is a vector in the word space

e Ignore the order of words in a document. Only count matters

e A high-dimensional and sparse representation (|V| > D)

Not efficient text processing tasks, e.g., search, document

classification, or similarity measure

Not effective for browsing
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How to Model Semantic?

e Q: What is it about?
e A: Mainly MT, with syntax, some learning

|

0.6 0.3 0.1 Mixing
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A Hierarchical Phrase-Based Model
for isti ine Tr i

We present a statistical phrase-based
Translation model that uses hierarchical
phi phi that contain sub-pht
The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,
a state-of-the-art phrase-based system.

4

Unigram over vocabulary
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(X X J
[ X X J
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Topic Models: The Big Picture
Unstructured Collection Structured Topic Network
Topic Discoveiy
Wi T
W [
g w.| Dimensionality T T,
Reduction
Word Simplex Topic Simplex
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Topic Model as a graphical model

Generating a document

We can go beyond this by
adding more variables and
structures to the graph!
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Learning and Inference

Advanced issues:

—> “Arts” “Budgets” “Children” “Eduocation”
NEW MILLION CHILDREN  SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE  BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR WORK PUBLIC
BEST SPENDING PARENTS ‘TEACHER
ACTOR  NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE ~ NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS  PERCENT  PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center,
Metropolitan Opera Co., New York Philharmonic aud Juilliard School. “Omr board
felt that we had a real opportuuity to make a mark ou the future of the performing
arts with these prants an act every bit as important as onr traditional areas of support
in health, medical research, edncation and the social services,” Hearst Fonndation
M, President Randolph A.Hearst said Monday inamnomncing the grants. Lincoln Center’s
N share will b ) for its new building, which will iouse yonng artists and provide

new public facili The Metropolitan Opera Co. and New York Philharmonic will
receive §400000 each. The Juilliard School, where music and the performing arts are
tanght, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln
Center Comsolidated Corporate Fund, will make its usual annual $100,000 domation,

too.
e Objective function: likelihood? Margin? RSS? ...
e Data: iid docs, streaming text, multimodal media ...

e Algorithm: direct optimization, Monte Carlo, variational methods ...

o System: single machine, multi-care machine, distributed system ...
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Deliverables:

We want:

= o2
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e Topics and categorization of documents
e Semantic-based ranking of docs

e Multimedia inference

e Automatic translation

e Predict how topics evolve
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Questions: :
e What is the mathematical and computational basis of all
these?
e How to do it right, modular, fast, and real time?
e How to build other related applications on topic models?
e How to scale up?
© Eric Xing @ CMU, ACL Tutorial 2012 1
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Plan of this tutorial o

a
a

00000 D0 D

1. Overview of basic topic models

2. Computational Challenges and two classical algorithmic
paths

. Scenario |: Multimodal data
. Scenario Il: when supervision is available
. Scenario lll: what if | don't know the total number of topics

: Advanced subjects: Sparsity in topic modeling (Optional)
: Scalability, Complexity, and Fast algorithms (Optional)

3
4
5
6. Scenario IV: Topic evolution in Streaming Corpus.
7
8
9: Other applications (Optional)
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1. Overview of topic models

© Eric Xing @ CMU, ACL Tutorial 2012 13

Understanding document corpora

e A document collection is a dataset where each data point is
itself a collection of simpler data.

e Text documents are collections of words.
e Segmented images are collections of regions.
e User histories are collections of purchased items.

e Many modern problems ask questions on such data.

e What topics do these documents “span”?

e s this text document relevant to my query?
e Which category is this text/image in?

e How have topics changed over time?

e Who wrote this specific document?

e What will author X write about?

e andsoon.....

© Eric Xing @ CMU, ACL Tutorial 2012 14




The Vector Space Model

e Represent each document by a high-dimensional vector in the
space of words

learning
Joumal
intelligence document d
text

agent
internet

webwatcher i

perlS
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Latent Semantic Indexing

Document
| I : . | . | .
@
X T A D’
(mxn) (m x k) (k x k) (k xn)

K —_
i = delka

e LSI does not define a properly normalized probability distribution of
observed and latent entities
e Does not support probabilistic reasoning under uncertainty and data fusion

© Eric Xing @ CMU, ACL Tutorial 2012 16




How our brain
Apoptosis + Medicine

Apoptosis + Medicine

probabilistic
generative
model

© Eric Xing @ CMU, ACL Tutorial 2012 18




ight work ... sel
Apoptosis + Medicine )

How our bra

statistical
inference
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What is Learning

Learning is about seeking a predictive and/or executable understanding of natural/artificial
subjects, phenomena, or activities from ...

Apoptosis + M@

Grammatical rules

Manufacturing procedures

Natural laws Inference
NAS

© Eric Xing @ CMU, ACL Tutorial 2012 20
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- _— (X X J
Connecting Probability Models to | :3t:
Data 4

(Generative Model)
P(Data | Parameters)
Probabilistic Real World
Model Data
P(Parameters | Data)
(Inference)
. . eoes
What is a Graphical Model? T

--- example from a signal transduction pathway

e A possible world for cellular signal transduction:

Kinase

%XpXMX@X@XrXs)
1

e A tota

of 2% joint state
configurations

No "structured insight" of
the domain

© Eric Xing @ CMU, ACL Tutorial 2012
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Recap of Basic Prob. Concepts

e Representation: what is the joint probability dist. on multiple
variables?
P(XlaXZ’X3,X4’X59X67X7’X89)

e How many state configurations in total? --- 28
e Are they all needed to be represented?
e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how much data do we need?

e Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute
the conditional distribution of latent variables given evidence?

© Eric Xing @ CMU, ACL Tutorial 2012 23
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GM: Structure Simplifies oo
Representation H

e Dependencies among variables
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Probabilistic Graphical Models

e Represent dependency structure with a graph
e Node <-> random variable
e Edges encode dependencies
Absence of edge -> conditional independence
e Directed and undirected versions

O+—0—0

e Why is this useful?
e Alanguage for communication
e A language for computation
e Alanguage for development

e Oirigins:
e Wright 1920's

e Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s

© Eric Xing @ CMU, ACL Tutorial 2012 o5

Probabilistic Graphical Models, |
con'd o2

o If X's are conditionally independent (as described by a PGM), the joint
can be factored to a product of simpler terms, e.g.,

P(X], X_” Xi’ X4’ X5’ X(J’ X7' XV)

= P(X)) P(X;) P(X;| X)) P(X,| X5) P(X5| X5)
P(Xy| X5, X,) P(X;| Xg) P(X;| X5, Xg)

o Why we may favor a PGM?

= Representation cost: how many probability statements are needed?

. 2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 .
= Algorithms for systematic and efficient inference/learning computation

» Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian)
semantics

= Incorporation of domain knowledge and causal (logical) structures

© Eric Xing @ CMU, ACL Tutorial 2012 26
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Probabilistic Inference

e Computing statistical queries regarding the network, e.g.:
e Is node X independent on node Y given nodes Z,W ?
e What is the probability of X=true if (Y=false and Z=true)?
e What is the joint distribution of (X,Y) if Z=false?
e What is the likelihood of some full assignment?
e What is the most likely assignment of values to all or a subset the nodes of the

network?

e General purpose algorithms exist to fully automate such computation
e Computational cost depends on the topology of the network

e Exactinference:

The junction tree algorithm

e Approximate inference;

Loopy belief propagation, variational inference, Monte Carlo sampling

© Eric Xing @ CMU, ACL Tutorial 2012
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An
(incomplete)
genealogy -
of graphical
models

SBN,
Boltzmann
Machines

Cooperative
Vector

Quantization

(:'\9.1?‘(\

Factorial HMM

/

ﬁs{rb

84

Mixture of
Gaussians

y

HMM

Q)

Gaussian

/x
K{,dim

mix - mixture
red-dim : reduced
dimension
dyn tdynamics
distrib : distributed
representation

nonlin nonlinear
switch : switching

mix
red-dim

Mixture of
HMMs

Factor

Mixture of

Analyzers

Factor Analysis|
(PCA)

nony
ICA

/
N

N

Switching
State-space
Models

Linoar Af

(Picture by Zoubin S
Ghahramani and o \
. nonlin -
Sam Roweis) M bee
Nonlinear "
Gassian Norinesr
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Latent Semantic Structure in GM

Latent Structure £

P(w)

Prediction

Distribution over words

P(W) = 2 P(w, ()

Inferring latent structure
_Pw[DHP)
P(w)

P(W,, | W) =..

© Eric Xing @ CMU, ACL Tutorial 2012
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How to Model Semantics?

e Q: What is it about?
e A: Mainly MT, with syntax, some learning

|

0.6 0.3 0.1 AdMixing
Proportion
MT Syntax Learning
Source oo
Parse likelihood
Target
Tree EM
SMT .
. Noun Hidden 7
Alignment o
Phrase Parameters | &
Score s 8
BLEU Grammar Estimation =
CFG argMax

T~

Unigram over vocabulary Tt el
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A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
hi hi that contain sub-ph

?he moderis formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Why this is Useful?

e Q: What is it about?
e A: Mainly MT, with syntax, some learning

l

0.6 0.3 0.1 AdMixing
Proportion

MT Syntax Learning

e Q: give me similar document?

e Structured way of browsing the collection
e Other tasks

e Dimensionality reduction

TF-IDF vs. topic mixing proportion

Classification, clustering, and more ...

© Eric Xing @ CMU, ACL Tutorial 2012

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
hi that contain sub-ph

i
?he moderis formally a synchronous
context-free grammar but is learned

from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Words in Contexts

. “Itwas a nice Shot.”

© Eric Xing @ CMU, ACL Tutorial 2012
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Words in Contexts (con'd)

e the opposition Labor Party fared even worse, with a

predicted 35 seats, seven less than last election.

© Eric Xing @ CMU, ACL Tutorial 2012 33

"Words" in Contexts (con'd)
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[ X J
A possible generative process of |3
[ N
[ X ]
a document :
— 5
DOCUMENT 1: river? stream?
river2
stream? river? stream?
river?
“f \ stream?
;/
TOPIC 1
< DOCUMENT 2: river? stream? bank? stream? bank?
river? stream? bank? river? bank? stream?
'.\\4?}0@‘“ river? bank? stream? bank? river? stream?
> bank? stream? bank? river?  stream? bank?
stream & river?2 bank? stream? river? bank? stream?
bank?
el J/U@q
4,
[N %
TOPIC 2 . .
admixing weight ) )
Mixture vector 0 Bayesian approach: use priors
g (ic_’k’)“’ilone”ts (represents all Admixture weights ~ Dirichlet( &)
istributions over J . ..
( | components Mixture components ~ Dirichlet( 8)
elements) contributioB). xing @ cmu, ACL Tutorial 2012 35
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Method One:

e Hierarchical Bayesian Admixture (a.k.a.
probabilistic Topic Models)

© Eric Xing @ CMU, ACL Tutorial 2012 36
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Probabilistic LSI

Hoffman (1999)

@ .

wn, ~ p(Wn|zn, 3)

@

N

M

pld.w,) = p(d)E(Hp(Wn 1z,)p(z, |d))

© Eric Xing @ CMU, ACL Tutorial 2012
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Probabilistic LSI

A "generative" model

Models each word in a document as a sample from a mixture

model.

Each word is generated from a single topic, different words in
the document may be generated from different topics.

A topic is characterized by a distribution over words.

Each document is represented as a list of admixing
proportions for the components (i.e. topic vector 6 ).

@

@G-

N

© Eric Xing @ CMU, ACL Tutorial 2012
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. . . (YY)
Latent Dirichlet Allocation secs
Blei, Ng and Jordan (2003) :.
Essentially a Bayesian pLSl: 6 ~ Dir(a)

@0

@ zn, ~ Mult(8)
K wn ~ p(Wn|zn, B)

M

pw) =Y [ p@pB)| [ | p(z,|0)p(w,|B.)|d0 B

© Eric Xing @ CMU, ACL Tutorial 2012 39

LDA

Generative model

Models each word in a document as a sample from a mixture
model.

Each word is generated from a single topic, different words in
the document may be generated from different topics.

A topic is characterized by a distribution over words.

Each document is represented as a list of admixing
proportions for the components (i.e. topic vector).

The topic vectors and the word rates each follows a Dirichlet

prior --- essentially a Bayesian pLSI
&-O-o—®

N
© Eric Xing @ CMU, ACL Tutorial 2012 40
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"Correlated” Topic Model

Blei & Lafferty (2005), Ahmed & Xing (20006)

@ {a)

K

6 ~ Dir(c)
Zn ~ Mult(0)

Wn ~ p(Wn|Zna/3)

@ @

N

pw)= 3 [1O)CL

CMU, ACL Tutorial 2012

0)p(w,

p.

s

Topic Models = Mixed
Membership Models

Generating a document

Which prior to use?

PO

0

l

N

Y4
4
Ny
4

:
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Choices of Priors

e Dirichlet (LDA) (Blei et al. 2003)

e Conjugate prior means efficient inference )
e Can only capture variations in each topic’s & 1 @ [

intensity independently

e Logistic Normal (CTM=LoNTAM) A i i

(Blei & Lafferty 2005, Ahmed &
Xing 2006)

”

2888

o Capture the intuition that some topics are highly Aol 2 o I
correlated and can rise up in intensity together A » A p 9 A :AH
o Not a conjugate prior implies hard inference i '

e Nested CRP (Blei et al 2005)
e Defines hierarchy on topics

© Eric Xing @ CMU, ACL Tutorial 2012
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Generative Semantic of LONTAM

Generating a document u % Z?
"

© Eric Xing @ CMU, ACL Tutorial 2012
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Outcomes from a topic model

e The “topics” Bin a corpus:

T 59 T 104 T 31
Tmage Tp card
ipeg pub. ‘monitor
. color graphics dos
comp.graphics file ‘mail video
gif version apple
images tar windows
format file drivers
bit | information |  vga
fles sen cards
display server | graphics
T 30 T 84 T 44
power water sale
ground energy price
) : wire air offer
sci.electronics . P
cireuit muclear | shipping
supply loop se
voltage hot interested
current cold mail
wiring cooling | condition
signal heat email
cable ed

T4 T8 T47
sracl jows armenian
isracli jewish turkish

politics.mideast| P3¢ isracl armenians
‘writes israeli armenia
article arab turks
arab people genocide

war arabs Tussian
lebanese center soviet
lebanon jew people
people nazi muslim
T4 Tos T 49
sale don drive
price mail sesi
misc.forsale offer call diske
shipping |  package hard
sell writes mb
interested | send drives
‘mail number ide
condition ve controller
email hotel floppy
o credit system

e There is no name for each “topic”, you need to name it!

e There is no objective measure of good/bad

e The shown topics are the “good” ones, there are many many trivial ones, meaningless ones,
redundant ones, ... you need to manually prune the results

e How many topics? ...

© Eric Xing @ CMU, ACL Tutorial 2012
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Outcomes from a topic model

e The “topic vector” 0 of each doc

&
&
s

et Y

e Create an embedding of docs in a “topic space”

e  Their no ground truth of 6 to measure quality of inference

e Buton gitis possible to define an “objective” measure of goodness, such as classification
error, retrieval of similar docs, clustering, etc., of documents

e But there is no consensus on whether these tasks bear the true value of topic models ...

© Eric Xing @ CMU, ACL Tutorial 2012
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Outcomes from a topic model

e The per-word topic indicator z:

The William Randolph Hearst Foundation will give $1.25 million to Limcoln Center,
Metropolitan Opera Co., New York Philbarmonic and Juilliard School. “Our board
felt that we had a real opportunity to make a mark on the future of the performing
arts with these grants an act every bit as important as our traditional areas of support
in health, medical research, edncation and the social services,” Hearst Fonudation
President Randolph A.Hearst said Monday in annonncing the grants. Lincoln Center’s
share will be $200,000 for its new building, which will honse young artists and provide
new public facilities. The Metropolitan Opera Co. and New York Philharmonic will
receive $400,000 each. The Juilliard School, where music and the performing arts are
tanght, will get $250,000. The Hearst Fonndation, a leading snpporter of the Lincoln
Center Consolidated Corporate Fund, will make its nsual annnal $100,000 donation,
toa.

e Not very useful under the bag of word representation, . )
because of loss of ordering IV PN VALY

e Butitis possible to define simple probabilistic linguistic
constraints (e.g, bi-grams) over z and get potentially
interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]

© Eric Xing @ CMU, ACL Tutorial 2012 47

Outcomes from a topic model

e The topic graph X (when using CTM):

Graphical Models Classification

gaussian training

data set

model classification

distribution classifier

likelihood data

algorithm performance

network

density neural

models networks

function class

bayesian

prior test leaming

posterior error network

— - gradient
model N - function
time S~ algorithm
neural RN neural
network data Time
control model networks
system probability matrix
prediction algorithm vector
nonlinear . models convergence
state T | tree point |
models. clustering equation
series leaming state
networks descent
linear number system
data mixture dynamics
recurrent cluster weight
Time Series Clustering Algorithms

e Kind of interesting for understand/visualizing large corpora

© Eric Xing @ CMU, ACL Tutorial 2012
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Method Two:

e Layered Boltzmann machines (an undirected
Topic Model)

© Eric Xing @ CMU, ACL Tutorial 2012 49

The Harmonium

hidden units

visible units

Boltzmann machines:

p(x,h10) = exp{ Eei¢i(x,.) + 20j¢j(hj) + zei,jqz’j(x,.,hj) ~A®) }

© Eric Xing @ CMU, ACL Tutorial 2012 50
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[ X X ]
0000
[ X X
A Binomial Word-count Model oo
E.P. Xing, R. Yan and A. G. Hauptmann, UAI 2006 °
h; = 3: topic j has strength 3
hjER, <h_,-> =2Wi,jxi
X;=n: word i has count n
PSS |
words counts
pthix) = HNormalhj [2 Wl.j?ci,l}
J i
. exp(a; +E/-Wijhj)
P(X |h) = HBIX,-[ N, l+exp(a, +ijl_jhj) ]
= p(x)?exp{(zialxi “logI(x,) - logT(N - xi)) 0y _(E_Wi jxi)z}
© Eric Xing @ CMU, ACL Tutorial 2012 J ! ’ a1
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0000
0000
: 82
The Computational Trade-off o

Undirected model: Learning is hard, inference is easy.

Directed Model: Learning is "easier", inference is hard.

Example: Document Retrieval.

words

Retrieval is based on comparing (posterior) topic distributions of documents.
- directed models: inference is slow. Learning is relatively “easy”.
- undirected model: inference is fast. Learning is slow but can be done offline.

© Eric Xing @ CMU, ACL Tutorial 2012 52
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Method Three:

e Sparse topic coding (a non-probabilistic Topic
Model)

e And in this category recently there is also nonnegative
matrix factorization (NMF)

© Eric Xing @ CMU, ACL Tutorial 2012 53

Sparse Coding

L
CH
]
§
el
B e

X
e Let X be a signal, e.g., speech, image, etc.

S

e Let S be a set of normalized “basis vectors”
e We call it dictionary

e [is “adapted” to x if it can represent it with a few basis vectors
e There exists a sparse vector #such that x = 0
e We call 0the sparse code

© Eric Xing @ CMU, ACL Tutorial 2012
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o000
0000
000
L] - ..
Primer on Sparse Coding &
e Sparse Coding with appropriate constraints:
reconstruction loss sparsity-inducing regularizer
min Y £(0a, Bxa) + AT(O)
0.8
d
s.t.: B € N;0 €.
e Reconstruction loss can be:
e the general log-likelihood loss of an exponential family distribution (Lee et al.,
2010)
e Sparisty-inducing regularizer can be:
o the L, “pseudo-norm”  [|0]lo := 25(9170) NP-hard
o theL,norm: ||0||; := Z 16:] : Convex
e Structured regularizers, &g. group Lasso (Bengio etal. 2009) |6y /2 := Z (AP
e Suggests an alternating optimization procedure g
© Eric Xing @ CMU, ACL Tutorial 2012
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Sparse Topical Coding S

e Goal: design a non-probabilistic topic model that is amenable to
e direct control on the posterior sparsity of inferred representations
e avoid dealing with normalization constant when considering supervision or rich features
e seamless integration with a convex loss function (e.g., svm hinge loss)

e We extend sparse coding to hierarchical sparse topical coding
e word code 6

e document code s
B> San 4’@4 Bk

nelyl k=1

) d=1.D
reconstruction loss sparse codes

i) w83, 8,)+0) [18all+ Y (1lsin = Bl+plsanll)
{6asalB 221, d dnely

st.: 0420, sgp 20, Ydn€ly; By €P, VE,
truncated aggregation

non-negative codes topical bases
J. Zhu, & E.P. Xing. UAI,562011

© Eric Xing @ CMU, ACL Tutorial 2012
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Summary:
Latent Sub-space Models

The Model:

P(w,0)

Learning the subspace:

3 = argmin f,(w,0)

© Eric Xing @ CMU, ACL Tutorial 2012

J Inferring latent representation:

57

The Big Picture

Unstructured Collection Structured Topic Network

ﬁ Topic Discove%

W Dimen§ionality T T,
Reduction
Word Simplex Topic Space

(e.g, a Simplex)

© Eric Xing @ CMU, ACL Tutorial 2012
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(X X J
0000
0000
[
C i f model ti oo
omparison or model semantics o
documents topic
topic documents
) 122} L o
g w | £ BIEAlE © W -3
STC/NMF/LSI
documents topics
" documents
5 Bl AL Topic-Mixing is via matginalizing
g P(W) § E..% g O=(6y,...,0x), 6=P(2) over word labeling
LDA p(W)< z< 6
documents topic
documents
w 2 Mixing is via determining
E P (W) = g B é O=(0,,...,0)) individual word rate
Harmonium p(W)<— B'6
© Eric Xing @ CMU, ACL Tutorial 2012 59

Comparison of topic space

topic space

word count
quadrant

© Eric Xing @ CMU, ACL Tutorial 2012 60
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[ X X ]
0000
[ X X
[ N
H [ X ]
Comparisons :
LDA vs. Harmonium
[Xing, Yan, and Hauptman, UAI 2005]
J e g - e . o
Classification Retrieval Annotation
e LDA is actually doing very poor on several “objectively”
evaluatable predictive tasks
© Eric Xing @ CMU, ACL Tutorial 2012 61
[ X X J
0000
[ X X
[ )
= [ X ]
Comparisons :

LDAvs. STC

[Zhu and Xing, UAI 2011]

u.ro 10°
o7
0.65
06 2 10t
> L,
& 055 0
3 £
2 05 > DI—
ST _ e c
0.45 e _ﬁ gaussSTC g 10° g “=4=MedSTC 1
o - == NMF - P
04 g ~*~ regLDA" L osTe
= reg +=0='MedLDA
0.35 LDA sLDA
*=l—regLDA” .=o-LDA
0.3 1 ‘ ; s
20 40 60 80 100 120 20 40 60 80 100 120
K K
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Sparse word codes

e Sparsity ratio: percentage of non-zeros

1

09r

Sparsity Ratio
© © © © © o o ©
- N w £ o (=2} ~ =]

o

—&—sTC .
5 —f—- gaussSTC
+—=— MedSTC
- —4— gaussMedSTC
—x= - MedLDA 7
Lo s ¥ T E
regLDA’ e - o
-+ -LDA Rk
* TTH B ,*»/—;*—'lgfs
At % Ak . —f%""ff” % e -
== g T e e T T T e
20 30 40 50 60 70 80 90 100 110
Topics

© Eric Xing @ CMU, ACL Tutorial 2012

* NMF: non-negative matrix factorization
* MedLDA (Zhu et al., 2009)

« regLDA: LDA with entropic regularizer
* gaussSTC: use L2 rather than L1-norm

63

2. Computational Challenges and

three algorithmic paths

© Eric Xing @ CMU, ACL Tutorial 2012
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Computation on LDA

e Inference
e Given a Document D
Posterior: P(© | y,Z, B ,D)
Evaluation: P(D| u,Z, B)

e Learning

e Given a collection of documents {D;}
Parameter estimation

arg max E log(P(D,.‘M,Z, B ))

(1.2,5)

© Eric Xing @ CMU, ACL Tutorial 2012 65

eo00
Exact Bayesian inference on LDA | 23t
= H '3
is intractable o
e A possible query:
p(r, | D)=?
p(z,, | D)=?
e Close form solution? Dy < 2. D)
p(z, | D) (D)
» f(]‘[(]‘[p(xn,m 16,00, |m))p(nﬂ |a))p(¢ |Gy
_ ) n\
) p(D)
pDY="Y [ (H(Hp(xn,m|¢,")p(zn,mInn))p(nnla))p(d)é)dﬂ1-~~dﬂNd¢
{Zom) n m
e Sum in the denominator over T" terms, and integrate over n k-dimensional topic
vectors
© Eric Xing @ CMU, ACL Tutorial 2012 66

33



o000
o000
0000
. T
Approximate Inference °
e Variational Inference
e Mean field approximation (Blei et al)
e Expectation propagation (Minka et al)
e Variational 2"-order Taylor approximation (Ahmed and Xing)
e Markov Chain Monte Carlo
e Gibbs sampling (Griffiths et al)
© Eric Xing @ CMU, ACL Tutorial 2012 67
o000
i - s
Collapsed Gibbs sampling el
(Tom Griffiths & Mark Steyvers) e

e Collapsed Gibbs sampling

e Integrate out 6

2

For variables z = z,, z,, ..., z,

Draw z{®*" from P(z|z,; w) (¢.)
' I

= t+1 t+1 t+1 t t
z,=z,WN 2,0 7z W0 7 O . z®O

O

=
=

=

(1) (2 (T)
{2\ 29000 2%}

1

© Eric Xing @ CMU, ACL Tutorial 2012 68
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Gibbs sampling

e Need full conditional distributions for variables
e Since we only sample z we need

P(z; = jlz_i;, w) « P(wi|zi = j,2_i, W_;) P(z; = jlz_s)

n(u‘i)_}_ﬁ n(d?)~+a

— _z).? —%7
NO) (d;)
n;,+Wgen; +Ta
ng-w) number of times word w assigned to topic j
n;-d) number of times topic j used in document d

© Eric Xing @ CMU, ACL Tutorial 2012
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I~

-

Gibbs sampling

iteration
1
i Wi d, Zj
1 MATHEMATICS 1 2
2 KNOWLEDGE 1 2
3 RESEARCH 1 1
4 WORK 1 2
5 MATHEMATICS 1 1
6 RESEARCH 1 2
7 WORK 1 2
8 SCIENTIFIC 1 1
9 MATHEMATICS 1 2
10 WORK 1 1
11 SCIENTIFIC 2 1
12 KNOWLEDGE 2 1
50 JOY 5 2

© Eric Xing @ CMU, ACL Tutorial 2012
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Gibbs sampling

DSV s W — ~

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

Y R

iteration
1 2

Zj
?

N

—— e DD = DD D = B = NN

© Eric Xing @ CMU, ACL Tutorial 2012

1

Gibbs sampling

———
o — o © 00U & WN =~

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JoY

DO DD o QY

iteration
1 2

Zj
?

N

e N R ST NS R SR S )

P(z; = jlza_;,w)

© Eric Xing @ CMU, ACL Tutorial 2012

nf¥s) + 3 nld) 4 o

—4,J —%,J
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Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

Y R

DSV s W — ~

50 JOY 5

iteration

1

N

Cal el NS R NS RS R SR S )

2

Zj
?

n(wi) +8 n“)ta

—4J —%,J

n(;)i,j +wpn'Y 4 Ta

P(z; = jla—i, w) «

© Eric Xing @ CMU, ACL Tutorial 2012 73

Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

N

NS0 s W — ~

50 JoY 5

iteration

1 2
Zi Zj
2 2
2 ?
1

2

1

2

2

1

2

1

1

1

2

nf¥s) + 3 nld) 4 o

—4,J —%,J

P(zi = jlz—i,w) o :
n(_)” +Wg n(f’{). +To

© Eric Xing @ CMU, ACL Tutorial 2012 74
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Gibbs sampling

iteration
1 2
i Wi d,‘ Zj Zj
1 MATHEMATICS 1 2 2
2 KNOWLEDGE 1 2 1
3 RESEARCH 1 1 ?
4 WORK 1 2
5 MATHEMATICS 1 1
6 RESEARCH 1 2
7 WORK 1 2
8 SCIENTIFIC 1 1
9 MATHEMATICS 1 2
10 WORK 1 1
11 SCIENTIFIC 2 1
12 KNOWLEDGE 2 1
50 JOY 5 2

n(wi) +8 n“)ta

—4J —%,
n(;)i,j +Wg n(i-",)_ +Ta

© Eric Xing @ CMU, ACL Tutorial 2012 75

P(z; = jla—i, w) «

Gibbs sampling

iteration
1 2
i Wi d,‘ Zj Zj
1 MATHEMATICS 1 2 2
2 KNOWLEDGE 1 2 1
3 RESEARCH 1 1 1
4 WORK 1 2 ?
5 MATHEMATICS 1 1
6 RESEARCH 1 2
7 WORK 1 2
8 SCIENTIFIC 1 1
9 MATHEMATICS 1 2
10 WORK 1 1
11 SCIENTIFIC 2 1
12 KNOWLEDGE 2 1
50 JOY 5 2

nf¥s) + 3 nld) 4 o

—4J —%,5
n L+ WBn'Y) + Ta

© Eric Xing @ CMU, ACL Tutorial 2012 76
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Gibbs sampling

iteration
1 2

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

N

DSV s W — ~

N.\J._.._.._.._.._.._.._.._.._.._.&

—_— e = RN =N = NN
O = = o N

50 oy 5 2
P(z; = jla—i, w) «

© Eric Xing @ CMU, ACL Tutorial 2012

n(wi) +8 n“)ta

—4J —%,J

n(;)i,j +wpn'Y 4 Ta
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Gibbs sampling

iteration
1 2
i Wi d,’ Zj Zj
1 MATHEMATICS 1 2 2
2 KNOWLEDGE 1 2 1
3 RESEARCH 1 1 1
4 WORK 1 2 2
5 MATHEMATICS 1 1 2
6 RESEARCH 1 2 2
7 WORK 1 2 2
8 SCIENTIFIC 1 1 1
9 MATHEMATICS 1 2 2
10 WORK 1 1 2
11 SCIENTIFIC 2 1 1
12 KNOWLEDGE 2 1 2
50 JOY 5 2 1

P(z; = jlza_;,w)

© Eric Xing @ CMU, ACL Tutorial 2012

1000
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2
2
2
1
2
2
2 9= 1 Z 2®)
1 T
2 t
2
2
2

1
nf¥s) + 3 nld) 4 o

—4,J —%,J

n L+ WBn'Y) + Ta
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Variational Inference

(e.g., MF, Jordan et al 1999, GMF, Xing et al 2004)

e Variational approximation

BQ v o
9(6,2) = 4,(0)q,(2) oofoe | | = g 2

=Dir(0|y=f(a,<z>)}< P : i 5 “l,

Multi(z ¢ = £ (B,.(In6))) b = B, exp(Ey[loz(6) 1}
. — (x+ N_ .
e Data set: Ti i+ 21 Oni
15,000 documents
90,000 terms
2.1 million words

e Model:
100 factors
9 million parameters

e On a single machine MCMC could converge too slowly for this

problem
© Eric Xing @ CMU, ACL Tutorial 2012 79
[ X X ]
0000
[ X R
: e
Learninga TM o

e Maximum likelihood estimation:

{[3’1,/32,. .. ,/J’K},a = arilzl)aleog(P(Di a,/a’))

e Need statistics on topic-specific word assignment (due to z), topic
vector distribution (due to 6), etc.

e E.g,, this is the formula for topic &:
D Ny

Br = Zled S dzaa, k)waa,

d=1d,=1

e These are hidden variables, therefore need an EM algorithm (also
known as data augmentation, or DA, in Monte Carlo paradigm)

e This is a “reduce” step in parallel implementation

© Eric Xing @ CMU, ACL Tutorial 2012 80

40



(XX}
00
:o
The Correlated Topic Model
M
N - .
Y > o
o ————— s JO+O ) 8
: ~ '\774 Z{/n Win v b
y ) K
Two approaches to approximate it: Non-conjugacy comes
- Blei and Lafferty use tangent here
- (Xing 2005) uses second order truncated
Taylor approximation
© Eric Xing @ CMU, ACL Tutorial 2012 81
(XX}
0o
o0
°

Variational Inference of CTM

P(y.{z}ID)

Y

>* is full matrix

B

zj;ocp
O

w
9(.2,,)= a2 TaC,

4,)

Multivariate
Quadratic Approx.

Closed Form
Solution for p*, &*

Ahmed&Xing 05

Log Partition Function

>* is assumed to be diagonal

K -1
log(l + Z e’ )

© Eric Xing @ CMU, ACL Tutorial 2012

Tangent Approx.

Numerical
Optimization to
fit u*, Diag(Z*)

Blei&Lafferty 05
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Variational Inference With no Tears

Iterate until Convergence

o PIE[Zi,) b, 2)

s
.

e Now you know E[y]

B \i
w ° P(Z1:n|E[Y]v Wiins B1:k)

P(y.{z}ID)

e More Formally: g*(X.)= P(Xc

Message Passing Scheme (GMF)
Equivalent to previous method (Xing et. al.2003)

© Eric Xing @ CMU, ACL Tutorial 2012

e Pretend you know E[Z,.

n)

(8)), :VyEXMB)

83

LoNTAM Variations Inference

e Fully Factored Distribution

a6..)= a0 4G

e Two clusters: Aand Z,.,

g*(x,)= P(XC (s,), :VyEXMB)
e Fixed Point Equations
q, *()/)= PQ|<SZ>%,M,2)
qz *(Z)= P(Z<Sy>qy’ﬂl:k)

© Eric Xing @ CMU, ACL Tutorial 2012

[

T
2

w

P(y.{z}D)

1B
%Oz

P

D ) N

~o.,
o.2)= a0 [ [c,)
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Variational y

‘1/1*(7’) P‘K‘

o« P(J/ u, Z)P(S |J’) Now what is <Sz>q’i
S.=m= [Zl(zn =l)...,21(zn =k)}

« Ny, w2 )expy{m), v -NxCly)f

| R -
o exp{—iy'Z ly 492 1u+<m>qzy -
g

t Cy)=Cr)+g, (r-v. )+-5(7L—w)1ﬁl(y—w)<J

G

g

B

P(y.{z}|D)
N(u ) 5, =im (Z7+NH )
u, Z(Z u+NHy +< ) Ng)
[ X J
[ X}
[ ]

Variational Z

qz*(Z)=P(Z
OCP(Zk

< exp 4, JB,

(5,),,0w)
<SV>W)P(W/‘Z](’/3]

qy MK

)

Y
BN

v

i)
R

Y
BQ\iz
w

P(y,{z}|D)
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Tangent Approximation

vvvvvvv

Gamma Gamma

= Exact
——Quadratic| ~ Around

Different Learning/Inference “%?

deliver different performance _-7 ;
e ,_ﬁo\\i
/

Test on Synthetic Text

-

(of “known” ground truth): ~ -~

-

ppppppppp

vl

e =

i ol v |
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L2 error in topic vector est.

and # of iterations

e Varying Num. of Topics

e Varying Voc. Size

e Varying Num. Words Per
Document

—— Bty

L2 orrin Theta %
5 8w 5 @8 38

\{H\#Hr:l

Nuroor o Hor
H o8 5 8 8 &

N
© Eric Xing @ CMU, ABL Titorarsei2

Result on NIPS collection

e NIPS proceeding from 1988-2003

e 14036 words
e 2484 docs

e 80% for training and 20% for testing
e Fit both models with 10,20,30,40 topics

e Compare perplexity on held out data

e The perplexity of a language model with respect to text x is the reciprocal of the
geometric average of the probabilities of the predictions in text x. So, if text x has
k words, then the perplexity of the language model with respect to that text is

Pr(x) -1k

© Eric Xing @ CMU, ACL Tutorial 2012
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[ X X ]
HE
Comparison: perplexity o
2350, T T T
- AX
2300 ==BL| |
2250 B
gzzoo—
§'2150-
ii’zoso—
2000+
1950
190(%0 15 20 2'5 ?;0 3‘5 40
Number of topics
Classification Result on PNAS sels
collection ol

e PNAS abstracts from 1997-2002

e 2500 documents
e Average of 170 words per document

e Fitted 40-topics model using both approaches

e Use low dimensional representation to predict the abstract category

e Use SVM classifier
e 85% for training and 15% for testing

Classification Accuracy
Category Doc | BL | AX

Genetics 21 | 61.9 | 61.9

-Notable Difference

Immunology | 24 | 70.8 | 66.6

Biochemistry | 86 [ 65.1 [ 77.9 ) . .
-Examine the low dimensional
representations below

Biophysics 15 | 53.3 | 66.6
Total 146 | 64.3 | 72.6

© Eric Xing @ CMU, ACL Tutorial 2012
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Computation on undirected TM

[Welling et al NIPS 04, Xing et al, UAI 05]

Undirected model: Learning is hard, inference is easy.

Directed Model: Learning is "easier", inference is hard.

Example: Document Retrieval.

Retrieval is based on comparing (posterior) topic distributions of documents.
- directed models: inference is slow. Learning is relatively “easy”.
- undirected model: inference is fast. Learning is slow but can be done offline.

N

[ X LX)

[ XX
Properties of Directed Networks oo

e Factors are marginally . . .
independent.

e Factors are conditionally
dependent given observations
on the visible nodes.

_ P(w|0)P(0)
P(l|w)= B
. h~ p(h)
e Easy ancestral sampling. .
v
x~ p(x|h)

e Learning with (variational) EM
g with ( ) PRCIL

© Eric Xing @ CMU, ACL Tutorial 2012
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Properties of Harmoniums
e Factors are marginally dependent.
e Factors are conditionally
independent given observations on
the visible nodes.
P(Iw) =G P(L; |w)

o , h~ p(h|x)
e lterative Gibbs sampling. 4

R
x~ p(x|h)

e Learning with contrastive
divergence

© Eric Xing @ CMU, ACL Tutorial 2012

Learning and Inference

e Maximal likelihood learning based on gradient ascent.
591' « <f;(xi)>data _<f;(xi)>p

e gradient computation requires model distribution p(.)
e p(.)isintractable

e Contrastive Divergence
e approximate p(.) with Gibbs sampling

e Variational approximation
e GMF approximation

gx.zh) = [ Jatx, )] Jaz Vw00 Jathr, 17 )

© Eric Xing @ CMU, ACL Tutorial 2012 %

48



Performance

ooy LS| —=-Baselne
7 GM-Mix o LS|

o GM-LDA| 7 GM-Mix
o GM-LDA
—o—DWH

—o—DWH

Classification Error
Pl

<
Average Precision

£ § 8§ ¢

Average Precision

o~ GM-Mix
GM-LDA|
——DWH

o
e

-

ENE RN
# of Latent Variables

T m m  w %
#of Latent Variables

Classification Retrieval

© Eric Xing @ CMU, ACL Tutorial 2012

“# of Latent Variables

Annotation

97

Opt. Algorithm for Sparse Coding

e Much research has been done for optimizing a convex, but
non-smooth objective (may subject to some constraints, e.g.,

non-negativity)

e Greedy algorithm for the non-convex L, “pseudo-norm”:

e select the element with maximum correlation with the residual

e known as “matching pursuit” (Mallat & Zhang, 1993)
e Forthe convex L, norm, many algorithms:

e Soft-thresholding with coordinate descent (Friedman et al., 2007; Fu, 1998; Zhu &

Xing, 2011)

e Proximal methods (Nesterov, 2007; Jenatton et al., 2010)

e Active-set methods (Roth & Fischer, 2008)

e lterative Re-weighted Least Squares (Daubechies et al., 2008)

e LARS (Efron et al., 2004) solves for regularization path

e Online/stochastic variants

© Eric Xing @ CMU, ACL Tutorial 2012
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Opt. Algorithm for Dictionary
Learning

i

e Optimize a convex and usually smooth objective w/o (convex)
constraints

e General optimization procedure can be applied, less research
has been done for this step
e Projected gradient descent
e Block-wise coordinate descent

e A recent progress is made on online/stochastic optimization
method (Mairal et al., 2010)

eees

[ X X

[ )
Computation on STC 2w anaxing uai oo

e Hierarchical sparse coding
e for each document

min Y b(wn,S, Bu) FAI01+ D (1llsn—6]3+pllsnll1)

0,s
nel nel
s.t.: 0>0; s, >20,Vnel,
Word code

Snk = maX(O, Vk)
where 2vyBinvE + (294 + BrnMVik + 1N — wnBrn =0

Document code (truncated averaging)

1

0y = max(0, 5, — —— ) where Ek:—ank
ool i
e Dictionary learning
e projected gradient descent
e any faster alternative method can be used
© Eric Xing @ CMU, ACL Tutorial 2012 100
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Performance

10° 300 . . .
»
2501 i
A
% 10* gzoo i
(]
£ E 150 1
T T
c -
® 10° —+=-MedsTC 4 '1"3 100 1
N g A =E--STC
*=9= MedLDA
sLDA S0
-=o—LDA
10° L L n 0 M imim SRS
20 40 60 80 100 120 20 40 120
K
~ 10 times speed up in train &test
© Eric Xing @ CMU, ACL Tutorial 2012 101
[ X))
( X}
[ X ]
[ X
3.8 io I: Multimodal d .
. Scenario I: Multimodal data o
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Annotated data

e Many examples of multi-type data where one type serves as a
description of another type.
e Images and their captions
e Scholarly articles and their references
e Genes and their functions

e What can we do with annotated data:
e Which class does this image/caption belong in?
e Describe this image with words.
e |s this image relevant to this query of words?
e Joint probabilistic models to answer these questions:
e Provide a good joint distribution (as before)

e Provide good conditional distributions of the description type conditioned on the
primary type.

© Eric Xing @ CMU, ACL Tutorial 2012 103

Latent Space Models for Images

[ E =
[11 ” —
beach e =

ﬂu

K =

L&tent Dirichyet Allocation (LDA)

O

© Eric Xing @ CMU, ACL Tutorial 2012 Fei-Fei etal. ICCV 2(1)85
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Image representation

cat, grass, tiger, water

v v
(%, halls I "'W|V|]

representation vector : annotation vector
(real, 1 per image segment) « (binary, same for each segment)

7 1a ] 5 Iy "'W|V|]

© Eric Xing @ CMU, ACL Tutorial 2012

To Generate an Image ...

p(x,z, 7, cl0,n,0)

n=1
p(clm) = Mult(c|n)
C
p(wle.0) = ] Dir(x|6;))
j=1
plza|m) = Mult(z,|m)

K
- 7‘\: .
p(:l’n |Zn> B) = H p(xn |ﬁk~)d(~"'l>
k=1

© Eric Xing @ CMU, ACL Tutorial 2012
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Annotated images

{9.32,2.44,0.02, 3.23}
{4.35,3.12,-0.23, 9.41}
{6.65,2.11,1.02. 231}

This cozy place is nestled in the
heart of the Mission. Easy access
to bars, restuarants, and BART.

This, cozy. place, is. nestled, in. the,
_— heart, of, the, Mission. Easy. access,
to, bars, restuarants, and, BART

e Forsyth et. al. (2001): images as documents where region-
specific feature vectors are like visual words.

e A captioned image can be thought of as annotated data: two
documents, one of which describes the other.

cese

[ X LX)

[ XX
Gaussian-multinomial LDA °e

OrCX

;
I\
=()+()=0)

D

Top: a Gaussian-LDA

A natural next step is to glue two LDA models together.
Bottom: a traditional LDA model on captions

model on images

e each region is a multivariate Gaussian

Does not work well

© Eric Xing @ CMU, ACL Tutorial 2012 108
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Exchangeability

OO
1 MO0

;
A
=)=

D

e Like LDA, GM-LDA implicitly makes an exchangeability assumption about
words and regions, and their corresponding topics.

e The order in which words and regions are generated does not matter.
e But this is goes against the way we’re thinking about the data!
e The words are chosen to describe the image.

e The implicit exchangeability assumptions in the model should reflect this. In
other words, we want to model partial exchangeability

© Eric Xing @ CMU, ACL Tutorial 2012 109

Corr-LDA

OHO- =

Q

[en]

=

N
Nerere

D

e Since, w is conditioned on z, the image must be generated first.

e Unlike GM-LDA, the caption is guaranteed to be generated by a subset
of the same hidden factors which generated the image.

e The model enforces a correspondence between the latent space
associated with images and the latent space associated with captions.

© Eric Xing @ CMU, ACL Tutorial 2012 110
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YY)
o000
0000
: : 33
Automatic annotation °
True caption True caption
birds tree fish reefs water
Corr-LDA Corr—LDA
birds nest leaves branch tree fish water ocean tree coral
GM-LDA GM-LDA
water birds nest tree sky water sky vegetables tree people
GM-Mixture GM-Mixture
tree ocean fungus mushrooms coral fungus mushrooms tree flowers leaves
© Eric Xing @ CMU, ACL Tutorial 2012 111
000
o000
e000
- L) : : .
Text-based image retrieval 5

Candy Sunset People & Fish
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Multi-view social media data

Friendship Network
- 6 B

User Friends |* - 6 IntereSt
Text| = 6 — Labels

Interest

User
image

13

© Eric Xing @ CMU, ACL Tutorial 2012

Latent space models for network

e Micro-inference vs. Meso- or Macro-inference
Multi-role of every node

e Context dependent role-instantiation

e Role dynamics

© Eric Xing @ CMU, ACL Tutorial 2012
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Example:

. . ) eees
Mixed Membership Stochastic H

B I oc km Odel [Airoldi, Blei, Fienberg and Xing, 2008]

(07
Q 1. {0}, ~ p(0|a) = Dirichlet(6; o)
sample mixed membership vectors.

2. For each actor v; that actor v;
possibly interacts with:

e 2., ~ Multinomial(z|6;)
sample an indicator for v;;

e 2,.; ~ Multinomial(z|6;)
sample an indicator for v;;

—— e e, ~ Bernoulli(e|z], Bz, )

sample a link.
Kx K

© Eric Xing @ CMU, ACL Tutorial 2012 116
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In the mixed-membership

[ X XX R
- 1
SIm plex [Airoldi, Blei, Fienberg and Xing, 2008] ::.
‘// ,/‘\:\ Outcasts (4)
ay
\\
~
~
\\
Greg
© Eric Xing @ CMU, ACL Tutorial 2012 117
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The “Facebook’” model i
[ X J
Latent space
S Od€E s O 0dE

ric Xing 3 utorial
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The “Facebook” model

P users

, friends
D, docs . et Q
Sj
W, tokens
5 fikl
e

)

l M friendships

A

K topics

K topics

o

ab

B

119
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Camping Cooking
4.5
ge—
Ca 45 +2.48 Co 5% +138
couy, sk fam,
o, george sl
A f emssme W\ 6.9%
e v hoom
A—e— 4.3%
_———— =l — —-——=x
[ St Gt S e
i oo o ar.cota 1 e ity ot
| clmenansaren, |y cesiniom. ot | sokdor, sop,support, | (
AEE N B ) R .
s oo cograpy, sido P o o raion dosn Rakon
| S i S DN | | R o
\ - i
Facebook - s SEEEE d
Facebook fanpages
L] ——————— — ————————
communit P VALY )
o (12.5%) +1.04, 5p (14.7%) +1.25 Mo (1:3%) 2102, Sp (14%) 2.8 Ca (1.9%) 0,59, Co (2.0%) .88
| | I T vty e S |
btk co,dea, fan, g, s,
i, o, ofce, or.poge, role, oo, .o, .. o, Ko,
| o sy s || et s g ik S|
g, sre . .S, sy, g
[ . Y ——
Informal conversation in status updates
Ca (317 4145, Co T T T T T T T,
+6.24 oo seizan s2es |1 GETERGMMAE
e (29.6%) +5.17.sp 00w 1
an beauty, boy, boyiriend, cute, dude, friend, gir, ‘"h""':"”'“";’:“ dad, food, found, (;‘“"” 1
giifriend, guy, hot, mean, play, say, text, 1 'ey. house, "('“"“""’""“Y‘ ot h"
. care, don, f, ., har, veat vgy e |
\_ romowor. . mean. person. sz N e e
5.2%
—
So 0% +3.04
200 oo, iy endape, . lton ekl o o Gt
sy, oo mota e Gance oobal, 156,
e, s i, o s won i ke, o,
o po
—
13.3%
12.6% -
wosiazn V[ Twonsoas Y (e 20
g, music. bar conter, 1 ocmeemisn || o g coner cesen. |
onoton. oo L tamiyfoodant, | ol i ko, 1
1 on o | e e o bl o
PO » « man_y vedoelen
Movies 13.2% Sports
120

© Eric Xing @ CMU, ACL Tutorial 2012

60



The Harmonium Counterpart x..a, oo

Just add one more wing:
p(z1h) = [Normal *(a,+ 3W,h).0* |, phixz) =] [Nomal Yw,x +FU,z.1]
k J J i k

cese

[ X LX)

[ XX
Inter-Source Associations °e

/O DWH

u

/\

7

O
B

@

Q)

A
M » p

Co-LDA Z and X are marginally dependent
(same as GH-LDA)
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Multi-wing Harmoniums

© Eric Xing @ CMU, ACL Tutorial 2012 123

[ ]
[
[ X J
[ ]
Examples of Latent Topics
T storms gulf hawaii low forecast southeast showers
| -
T
T3
Ty
T
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0000
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eo0o
o0
Are we done? 8
e What was our task?
e Embedding (lower dimensional representation): yes, Dec > 6
o Distillation of semantics: kind of, we’ve learned “topics” 3
e Classification: is it good?
e Clustering: is it reasonable?
e Other predictive tasks?
© Eric Xing @ CMU, ACL Tutorial 2012 125
. . . (XX
. o000
4. Scenario ll: when supervision sess
- - . .
is available o

© Eric Xing @ CMU, ACL Tutorial 2012
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Problem 1: Discriminative topic

models for text classification/scoring

e Democratic or republican?

30,000

Barack Obama John McCain

i

e Movie review/scoring

V for Vendetta (2005)

Average rating

3.7/5

Based on 41 reviews

Al reviews (41)
Positive reviews (21)
Neutral reviews (7)
Negative reviews (4)

Search within the reviews

Frequently mentioned terms
natalie portman

wachowski brothers

Find theaters near you
US city or zip Go
v Remember this location

Sorted by relevance - Sort by date - Sort by rating

s Review: V for Vendett:

3.8/5 tis the year 2020. A virus runs wild in the
world, most Americans are dead, and
Britain is ruled by a fascist dictator who
promises security bu ...
Chicago Sun-Times - Roger Ebert - Mar 16,

Review: V for Vendetta

Comic-book superhero movies almost
always hijack reality, reducing cinema to a
state of pure, uncut escapism. You could
hardly level that ...

Entertainment Weekly - Owen Gleiberman -
Mar 15, 2006

No Anarchy rules!
rating  PLOT: My terrorism s better than your
available ~ terrorism. In a futuristic, fascist England,
one masked man hopes anarchy will rescue
his fellow citizens ...
Canoe.ca - LIZ BRAUN - Mar 17, 2006

USATODAY .com - Vengeance is
theirs in sharp 'Vendetta'

The dark and stylized V for Vendetta (* * *
1/2 out of four) is visually exhilarating,
provocative and disturbing. Set in a slightly
futuristic ...

USA Today - Claudia Puig - Mar 15, 2006

© Eric Xing @ CMU, ACL Tutorial 2012
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We want to answer ...

e Are we satisfying with the conventional topic models and the
MLE method for PREDICTION?

e Can we learn a PREDICTIVE model better?

@ CMU, March, 2010
© Eric Xing @ CMU, ACL Tutorial 2012
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= [ X ]
The shocking results on LDA o
Classification Retrieval Annotation
e LDA is actually doing very poor on several “objectively”
evaluatable predictive tasks
© Eric Xing @ CMU, ACL Tutorial 2012 129
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0000
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o H
Why? :

e LDA is not designed, nor trained for such tasks, such as
classification, there is not warrantee that the estimated topic
vector is good at discriminating documents

- Per-word
Dirichlet N
topic assignment
parameter
Per-document Observed
topic proportions word Topics
l J l 6
———
01
i 0.8
O+-O1+0O—@- O 0.2
@ Oa Zin Wan N Ok
“ID K

© Eric Xing @ CMU, ACL Tutorial 2012

g 0.70 0.05 0.03
T 012 052 0.05
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Unsupervised Latent Subspace
Discovery

e Finding latent subspace representations (an old topic)

. Mapping a high-dimensional representation into a latent low-dimensional representation, where each
dimension can have some interpretable meaning, e.g., a semantic topic

e Examples:
e Topic models (aka LDA) [Blei et al 2003]

;q‘wi i
OFOHO—-@—H1O )

@ bi | Zin Wan N B I‘&A
D K =

t al 2009]

o  Multi-view latent Markov models [Xing et al 2005]

o PCA CCA, ...

© Eric Xing @ CMU, ACL Tutorial 2012 131

Predictive :
Supervision :

e Unsupervised latent subspace representations are generic but
can be sub-optimal for predictions
e Many datasets are available with supervised side information

Tripadvisor Hotel Revie\)zv ( LabelMe
htp m http://labelme csail ¢

ww. tripadvisor.co

j vwoman entering shop
man walking towards camera
balcony rail
I

lcomming staff, good rooms that give a good

ation

Many others

,,,.,.:E,.‘,,.,,,,,.,,,,“MES IFMI(}-(&E’\/J/ELP w.flickr.com/)

e Can be noisy, but not random noise (Ames & Naaman, 2007)

e labels & rating scores are usually assigned based on some intrinsic property of the data

. helpful to suppress noise and capture the most useful aspects of the data
e Goals:

o Discover latent subspace representations that are both predictive and
interpretable by exploring weak supervision information
© Eric Xing @ CMU, ACL Tutorial 2012 132
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l. Supervised Topic Model 4
OO ! O
a 00 | Zin Wi B K
N|
‘O
Yo p 7, 52
(Blei & McAuliffe, 2007)
How to integrate the max-margin principle into a
probabilistic latent variable model?
Max-Likelihood Max-Margin and Max-
Estimation Likelihood
sLDA MedLDA
(Zhu et al, ICML 2009)

© Eric Xing @ CMU, ACL Tutorial 2012 133

[ X X J
0000
[ X X

: : HH

Supervised Topic Model :

e LDA ignores documents’ side information (e.g., categories or rating
score), thus lead to suboptimal topic representation for supervised
tasks

e Supervised Topic Models handle such problems, e.g., sSLDA (Blei &
McAuliffe, 2007) and DiscLDA(Simon et al., 2008)

Generative Procedure (SLDA): OO @)

* For each document d: a 10y | Zan\_ Win Br
Sample a topic proportion 4 ~ Dir(«)
For each word:

Sample a topic Zd.n ~ Mult(6a) Yo p| 1,8
Sample a word Wa,n ~ Mult(f., ) (Blei & McAuliffe, 2007)
ro T 7 2
Sample Y4y, ~ N(1' Z4,67) Continuous (regression)
ya ~ GLM(Zq, I/T, (52) Discrete (classification)

© Eric Xing @ CMU, ACL Tutorial 2012 134
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0000
e
How to train sLDA? -
e Maximize P(Y,W)?
e Maximize
P(Y|W)?
e Support vector machines
eoes
i
Support vector machines -

o

yi(wa,.+b)21—§,., Vi
§ =0, Vi

© Eric Xing @ CMU, ACL Tutorial 2012
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SVM using VC-dimension

VC Theory

(Vapnik, 1982)

Given xi, ....x, € R?iid and ||x;||» < D, if
H., is the hypothesis space of linear
classifiers in R with margin v,

vctry <min{a [ 2]}

i

VCH)(In y 2y +1) +In§

m

ETTOTtrue ( h) < €TTO0T¢rqin (h) + $

© Eric Xing @ CMU, ACL Tutorial 2012 137

SVM using VC-dimension

e Thus large-margin - small VC-dim - better generalization
bound

e Recall that d+1 is the upper bound for a linear classifier in d-

space
2
VC(H,) < min {d, [4[2 —‘ }

Y

VCH)(In &0y + 1) +In§

m

erroryrue(h) < erroriyqin(h) —|—$

© Eric Xing @ CMU, ACL Tutorial 2012 138
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MLE versus max-margin learning

e Likelihood-based estimation * Max-margin learning

Probabilistic (joint/conditional likelihood -
model)

Easy to perform Bayesian learning, =
and incorporate prior knowledge, latent

structures, missing data _

Bayesian regularization!!

Non-probabilistic (concentrate on input-
output mapping)

Not obvious how to perform Bayesian
learning or consider prior, and missing data
Sound theoretical guarantee with limited
samples

* Maximum Entropy Discrimination (MED) (Jaakkola, et al., 1999)
— Model averaging g =sign [ p(w)F(z;w)dw (y € {+1,—1})

— The optimization problem (binary classification)
min K'L(p(9)||po(©))

subsumes SVM.

s.t. / p(O)[yiF(x;w) — &]dO > 0,Vi,

where © is the parameter w when & are kept fized or the pair (w,&)
when we want to optimize over &

© Eric Xing @ CMU, ACL Tutorial 2012 139

A road map for max-margin
learning

Y= sign(wa + b)

min %HwH%céa mip %““’”24'0;5"

yi(wix +b)>1- &, Vi ﬁ WT[f(X@ — £, )] > Ay y) — &, Vi, Vy £y
. MED-MN 2

- - =) | SMED +Bayesian’ M°N
n =" 3 == \ .

y = sign({f(x, W)) o(w)): Primal and Dual Sparse!

min - KL(QIQo)

YD) > &, Vi

© Eric Xing @ CMU, ACL Tutorial 2012 140
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MaxEnt Discrimination Markov
Network

i

e Structured MaxEnt Discrimination (SMED):

PL: min K L(p(w)ll(w)) + U(€)

s.t. p(w) € Fp, & > 0,Vi.
generalized maximum entropy or regularized KL-divergence

e Feasible subspace of weight distribution:

Fi = {p(w) / P(W)[AF(y:w) — Ali(y)] dw > —&: Vi, Vy # y'),

expected margin constraints.

bo

e Average from distribution of M3Ns
hy(x;p(w)) = argygnﬁg()/p(W)F(x,y;W)dW

© Eric Xing @ CMU, ACL Tutorial 2012
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D(p,po) = KL(pllpo)

MedLDA: a max-margin approach

e Big picture of supervised topic models
sLDA: optimizes the joint likelihood for regression and classification
DiscLDA: optimizes the conditional likelihood for classification ONLY

MedLDA: based on max-margin learning for both regression and classification

© Eric Xing @ CMU, ACL Tutorial 2012 142
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N

MedLDA Regression Model ... cié

009)

Bayesian sLDA:

Q)

e MED Estimation:

D
P1(MedLDA") : min ~ L(q) +C (€ +E))
0,0,8,62 6,6 —
ya— En' Za] < e+ &a,
s.t. Vd - _yd+E[77TZd] S€+§;7 H
Ea >0, va
model fitting &; >0, vi \ predictive accuracy

o Variational bound (6,2,0]7.9) ~ p(0,2,n|a, 8,6%,y, W)
L(q) & —E[logp(6,2,n,y, Wla, 3,8)] = H(q(z,0,1)) > —logp(y, W]a, 5, 67)
® Predictive Rule:
g= BE[Y|wi.n,a, 3,0 &ﬁmﬂln T Z|wi.n, o, B, 6]

© Eric Xing @ CMU ACL Tt
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MedLDA Classification Model

(Zhu et al, ICML 2009)

Bayesian sLDA: N —— -
OO —— @ )
a | Oy | Zin\. Wan Br g
N
n K
Yy D\’\
5?2

® Multiclass MedLDA Classification Model:

P2(MedLDA®): min L(q)+C
( ) q,9(n),a,B,€ (q) ng

st.Vd, y #ya: Eln" Afa(y)] > 1—E&a; €a >0,

2
e Variational bound q(é’,Z,r]h,é) ~ p(G,z,n|a,B,5 Y, W)
L(q) & —E[logp(0,z, 7.y, Wla, 3,6%)] — H(q(z,0,n)) > —log p(y, Wla, 3,5?)

® Predictive Rule:

Y _argmaxE[r] f(y, Z)|a, B

© Eric Xingy@ CMU, ACL Tulonal 2012 144
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Variational EM Alg.

e E-step: infer the posterior distribution of hidden r.v. (0, z, 7) !

e M-step: estimate unknown parameters (a, 3, §%)

D N
e Independence assumption: ¢(6,z,nlv,¢) = a(n) [ [ a(6alva) [ ] a(zan|dan)
d=1

n=1

D D N
L(v,éva(n), a, 8,626, o pw* v, 0%) = L)+ C Y _(Ca+ ) — D D cai(D daij —1)

K
d=1 d=1i=1 =1
D

D
= nale+&a—ya+EMT Za)) = > (uile + € + va — Eln" Za)) + vaa + v5€5)
d=1 d=1

e Optimize L over ¢:

Yd
N§2

T 4 -y o
En) - 2Bl @dQ_N’Q; Elenl , %(ud - 1g))

i  exp (E[log 6]7] + Ellog p(wail )] +

— The first two terms are the same as in LDA

— The third and fourth terms are similar to those of sLDA, but in expected
version. The variance matters!

— The last term is a regularizer. Only support vectors affect the topic proportions

e Optimize L over other variables. See the paper for details!

© Eric Xing @ CMU, ACL Tutorial 2012 145

MedTM: a general framework

e MedLDA can be generalized to arbitrary topic models:
Unsupervised or supervised
Generative or undirected random fields (e.g., Harmoniums)

e MED Topic Model (MedTM):

PORITN - i, D)+ KLGCDlpo(1) + U(E

s.t. erpected margin constraints predictive accuracy
model fitting

- hidden r.v.s in the underlying topic model, e.g., (#,2) in LDA
: parameters in predictive model, e.g., 7] in sLDA

: parameters of the topic model, e.g., ¢x in LDA

: an variational upper bound of the log-likelihood

: a convex function over slack variables

[ ]
SN eRr X
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Experiments
e Goal:
e To qualitatively and quantitatively evaluate how the max-margin
estimates of MedLDA affect its topic discovering procedure
e Data Sets:
e 20 Newsgroups (classification)
Documents from 20 categories
~ 20,000 documents in each group
Remove stop word as listed in UMASS Mallet
e Movie Review (regression)
5006 documents, and 1.6M words
Dictionary: 5000 terms selected by tf-idf
Preprocessing to make the response approximately normal (Blei & McAuliffe, 2007)
© Eric Xing @ CMU, ACL Tutorial 2012 147
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Document Modeling 4
[ ]

e Data Set: 20 Newsgroups
e 110 topics + 2D embedding with t-SNE (var der Maaten & Hinton, 2008)

MedLDA LDA

© Eric Xing @ CMU, ACL Tutorial 2012 148
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Document Modeling (cont’)

comp.graphics

MedLDA
o024 ! ! MedLDA LDA
< o2
oS!
< o T 69 Tl T 80 T 59 T 104 T 31
005 image graphics db mage ftp card
e T I image key ipeg pub monitor
Topics gif data chip color graphics dos
LDA file ftp encryption file mail video
oF color software clipper gif version apple
- ooer files pub system images tar windows
3l A bit mail government format file drivers
Z oot images package keys bit information vea
o002 L l Ly l L J_h format ) fax law ﬁles send ca.rd§
ok Bl o ML L B ol st el | prooram | images escrow display server | graphics
. . Topics
politics.mideast
MedLDA
03, ' ' " ' ' ' ' y
oas T 30 T 40 T 51 T 42 T78 T 47
o israel turkish israel israel jews armenian
<., israeli armenian lebanese israell jewish turkish
”:__JL_ a1 A,,IL...A.. e ' jews armenians israeli peace israel armenians
oR® % Sopies ¢ arab armenia lebanon writes israeli armenia
LbA . . . . . writes people people article arab turks
people turks attacks arab peaple genocide
article areek soldiers war arabs russian
jewish turkey villages lebanese center soviet
state government peace lebanon jew people
TR0 TR0 A s e 76 8o o ioo 110 rights soviet writes people nazi muslim
Topics
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Classification

e Data Set: 20Newsgroups
Binary classification: “alt.atheism” and “talk.religion.misc” (Simon et al., 2008)
Multiclass Classification: all the 20 categories
e Models: DiscLDA, sLDA (Binary ONLY! Classification sLDA (Wang et al.,
2009)), LDA+SVM (baseline), MedLDA, MedLDA+SVM

o Measure: Relative Improvement Ratio

precision(M
RR(M) = — (M) -1
precision(LDA + SV M)
02 . - - 02— . . - -
0.15F - "é 1
0.2 i JL ¥ 1
TN
7 B\ ‘.
oaf & /7N _»‘%I 7 1
g o1t 1 % '
« @ PN F--B- B D Y
g % oost 1
& o 1€
e pTyTY L e e e e ]
o — © —MedLDA+SVM == MedLDA
1 - - DiscLDA _oos} — & —MedLDA+SVM i
—+#—sLDA - - DiscLDA
— ~ —LDA+SUM (baseline) — + —LDA+SUM (baseline)
-02 -0.1
o 10 20 a0 40 20 40 80 20 100
# Topies © Eric Xing @ CMU, ACL Tutorial 2012 # Topics 150
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Regression

e Data Set: Movie Review (Blei & McAuliffe, 2007)

e Models: MedLDA(partial), MedLDA(full), sLDA, LDA+SVR
e Measure: predictive R2 and per-word log-likelihood

>a(ya — Ga)?

2
PRE=1-SF—=5
>y — 7a)?

0.55— r : . . . -6.32
o5y ; -s24}
045} ~
I S %' < -8350
04 P 2
& - T
© 035 30 ; | % -sas
g /" | Sharp decrease in SVs ‘ =
T o T 1 &
a - L~ L
e £ )
02k —e— MedLDA (ful) || —— MedLDA (full)
- T — & — MedLDA (partial) _pash -8a- MedeA (pariial) |
0.15 {' —7—slDA i —o—sLD,
—#— LDA+SVR e4s —FLDA
01 :
5 10 15 20 25 a0 5 10 15” 20 25 20
# Topics # Topics
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(XY
o000
0000
. . . e00
Time Efficienc o
V' o
e Binary Classification
10°
—+— MedLDA
t/)105 —o—sLDA
o —&— LDA+SVM
S
10
®
I 10°
o}
o
O 102 WQ
10'
0 10 20 30 40
# Topics
e Multiclass:
MedLDA is comparable with LDA+SVM
e Regression:
—  MedLDA is comparable with sLDA
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ll. Supervised Multi-view MNs

e A probabilistic method with an additional view of response
variables Y

exp{V T f(h,y)}

p(y|h) = 70V, 1)

normalization factor

e Parameters can be learned with maximum likelihood
estimation, e.g., special supervised Harmonium (Yang et al.,
2007)

e contrastive divergence is the commonly used approximation method in learning
undirected latent variable models (Welling et al., 2004; Salakhutdinov & Murray,
2008).

esso

[ X R

[ X0
Max-margin learning of MNs o

e Expected discriminant function:
F(y;V) £ Ey[F(y, H; V)], where F(y,H;V) =V, H
e Prediction rule:

5l
:

X
X @

y* = argmax Eg[F(y, H; V)]
y

e Hinge loss: |
R)nge(v) = 5 Zln;lx[Agd(y) - VT]EH[Afd(y)H*
d

Joint max-margin and max-likelihood estimation:
. 1 .
min — L(O) + 5C VI + CaRpinge (V)

where [(6):= ) logp(x; ) is data likelihood
d
The rationale is: we want to find a latent representation and a prediction model ,
which on one hand tend to predict as accurate as possible on training data, while on the
other hand tend to explain the data well.
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Predictive Latent Representation

e t-SNE (van der Maaten & Hinton, 2008) 2D embedding of the
discovered latent space representation on the TRECVID 2003

601

40F

20

-8

e Avg-KL: average pair-wise divergence

© Eric Xing @ CMU, ACL Tutorial 2012

Avg-KL = ‘OESO5 50 AvgKL = 0.198 -
40 . i
o o 4
20 : ;ﬁ*‘o’ ﬁ&l ve
e 18
5 = g@ﬁ% Ay &
0 oL @2’%%*5?@%& ’
QO V4G T4
%‘ﬁ . Tig :HF[QH“;EL
-4
& @
e @
0 —4‘10 —l30 —‘20 -10 1‘0 Q‘D 3‘0 40 8 ’4‘10 ’50 ’50 -10 c 1‘0 2‘0 3‘0 40 5‘0
MMH TWH
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Predictive Latent Representation

e Example latent topics discovered by a 60-topic MMH on Flickr Animal Data

Topic 1

Topic 3

0.019

0018

o
2
]

probability

0.016

0.015

0.014

0.024

0.022

o
Q
N

probability
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Classification Results o
e Data Sets:
e (Left) TRECVID 2003: (text + image features)
e (Right) Flickr 13 Animal: (sift + image features)
e Models:
e baseline(SVM),DWH+SVM, GM-Mixture+SVM, GM-LDA+SVM, TWH, MedLDA
08 —— MMH —— MMH
- O -DpwH 06 = O - pwH
075 "= T AT
GM-Mix 0.55 MMH(SIFT)
oy ~ & - GM-LDA ) ~ & ~ MEDLDA(SIFT)
@ 07 c
3 g os
& 06 ©
.5 _§ 0.45
T o 8
8 055) , 8 ol
0.35
05
[ ) . . . A ) 0.3 . . . . T
045 10 15 20 25 30 35 40 10 20 30 40 50 60
# of latent topics # of latent topics
TRECVID o ) Flickr
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Retrieval Results °

e Data Set: TRECVID 2003

e Each test sample is treated as a query, training samples are ranked based on the
cosine similarity between a training sample and the given query

e Similarity is computed based on the discovered latent topic representations

e Models: DWH, GM-Mixture, GM-LDA, TWH, MMH

o | [—8—mMMH - O - DWH - 4= TWH GM-Mix = = GM-LDA|
8 05
£ .
8 508 50
S 045 3 3 »,
) ® 04 £ o4y >
o 04 o . @
Pl ¢
038 ¥ N o.sl 03
03 | 02l 0.2
0 10 20 30 40 0 05 10 05 1
# of latent topics Recall Recall
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lll. Supervised STC °
Oo > San—— 1T Bk
N K
Yq < n
D
e Joint loss minimization
1 2
min f({ba} {sa}. B) + CR({6a},m) + <[l
EHEN o T
st.: 8520, Vd; sg, 20, Yd,n € Iy; B €P, Vk,
e coordinate descent alg. applies with closed-form update rules
e No sum-exp function; seamless integration with non-probabilistic large-margin
principle
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o0
o0
°

Classification accuracy

e 20 newsgroup data:

Accuracy

0.85 I sTc 0.85 I \iedSTC
0.8 I gausssTC [ MedLDA
[ reglDAt [ DiscLDA
075 [ oA 0.8 I s DA
07 N gl DA I
0.65 2 0.75
s
0.6 = L
8
0.55 < o7
05
0.45 0.65
0.4
0.35 0.6
K=40 K=70 K=90 K=110 K=40 K=70 K=90 K=110
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Time efficiency

e training & testing time

o || I MedSTC I MedSTC
107 st [l stc
[—_IMedLDA [_1MedLDA
[EsLoa .|| sLoa
I L0A 107 I LDA

cpu-seconds
cpu-seconds

10°

K=20 K=40 K=70 K=90 K=110

e No calls of digamma function
e Converge faster with one additional dimension of freedom
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Summary

e Max-margin, instead of max-likelihood learning of supervised topic
models (MedLDA, MMH, MedSTC)
Explicit interpretation of effects by support vectors

MedLDA can discover discriminative topic representations that are more
suitable for supervised tasks

The classification model is efficient and can avoid dealing with the
normalization factor of a GLM

e The same principle can be applied to a wide variety of probabilistic
(MedTM) and non-probabilistic latent variable models
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Scenario lll: what if | don't know
the total number of topics?
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Clustering
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00
o000
o000
00
= ')
A Classical Approach o
e Clustering as Mixture Modeling
° ( :g ::f
.:.. :’ ...
'of. oo llll’»'«f. oo
D (N ° (N
°® o o® 0040
e ®
e Then "model selection"
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00
o000
o000
00
')
°
e Model selection
e 'intelligent" guess: 7?7
e cross validation: data-hungry ®
e information theoretic:
AIC . n )
o } - argminKLEQ) | gC100.K),
MDL : Parsimony, Ockam's Razor
e Bayes factor: need to compute data likelihood
e Posterior inference:
we want to handle uncertainty of model complexity explicitly
pM|D)x p(D|M)p(M)
M=b.x)
e we favor a distribution that does not constrain Min a "closed" space!
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Random Partition of Probability
Space

{Peaﬂé}
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HE
( T
Dirichlet Process oo
@ ® o e A CDF, G, on possible worlds

® of random partitions follows a
m Dirichlet Process if for any

measurable finite partition

® —
@ @ a distribution (4)1’ ¢2’ . ¢m):

@ ,
® )exij (G, G, ... G()) ~

Dirichlet( aGy(@,), ..... aGO(¢,) )
® @®
another

distribution

@ @ @ @ where G, is the base measure

and a is the scale parameter

Thus a Dirichlet Process G defines a distrib1L618ti0n of distribution
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Stick-breaking Process

65 0; 0306, 0,

© Eric Xing @ CMU, ACL Tutorial 2012

DP — a Pdlya urn Process

2

"Bia

p [ ]

Go=p(0oe@eo ..)

soint. G(GY) ~ DP(aG,)

K

Marginal: ¢, [¢_, 0, Gy ~ Z

n, a
Hi-1+a

6% +

G, .
i-lva °
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e Self-reinforcing property
e exchangeable partition
of samples

170

85



eoo
o000
o000
. . oo
Clustering and DP Mixture g
. 2 7
P 5ra ©
P S5+a
_ a
P S+a
Go=p(oe@eo ..)
00 0006 (6]
e \We can associate mixture components with colors in the Pdlya
urn model and thereby define a clustering of the data
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[ X X J
o000
o000
: H
Chinese Restaurant Process o
0
0
e
2+a
. 2 .
3+a 3ta 3+a
m m, a
ita-1 ita-1 ito-1
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MCMC for CRP

e Gibbs sampling for exploring the posterior distribution under
the proposed model

e Under the CRP metaphor, due to exchangeability, every sample
can be treated as the LAST sample!

p(c, =kle_,;,x,0) x p(c, =kle_;) p(x; 16, h_;.c_.)

Posterior Prior X Likelihood
. CRP

e One can also integrate out the parameters such as 6 and perform
collapse Gibbs sampling

e Gibbs sampling algorithm: draw samples of each random
variable to be sampled given values of all the remaining variables
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Convergence of Ancestral sels
Inference -
z

. . , . . \ .
0 1000 2000 3000 4000 5000 6000 7000 8000
# of samples
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Variational Inference [Blei &
Jordan 2005, Kurihara et al 2007]

On a single machine Gibbs sampling solution is not efficient

enough to scale up to the large scale problems.

Truncated stick-breaking approximation can be formulated in

the space of explicit, non-exchangeable cluster labels.

Variational inference can now be applied to such a finite-
dimensional distribution

Variational Inference:
For a complicated P(X,, X,

... X,), approximate it with O(X):
(@' (X))} = argmin KL(Q(X)|P(X))

© Eric Xing @ CMU, ACL Tutorial 2012
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Approximations to DP

e Truncated stick-breaking e Finite symmetric Dirichlet

representation approximation
v; ~ B(vi; 1, a) i=1..T-1
vr =1 y . & =S
T ™~ D7)
Wi:l'iH(l—lJ) i=1...T

i<t
m =0 i>T

The joint distribution can be
expressed as:

P(X,z,v,n) =

e The joint distribution can be
expressed as:

P(X,z, 7. n)=

N T N K
Hp(xn\n:,,)P(znlﬂ(V))} [HP("Ii)B(l'xilvﬂ):| [H P(xnl'hn)})<2n‘"):| [Hp(m)] D(r;
n=1 i=1 n=1 i=1
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(YY)
o000
o000
. it
VB inference o
e We can then apply the VB inference on the four approximations
{Q"(Xc,)} = argmin KL(Q(X)[P(X))
The approximated posterior distribution for TSB and FSD are
N T N K
Qres(zm.v) = [Hq@n)} [Hq(mq(m] Qesolem.7) = [Hq(zn} LHJ’("""} alm)
n =1 n =
Depending on marginalization or not, v and ™ may be integrated out.
© Eric Xing @ CMU, ACL Tutorial 2012
[ X X J
o000
. o000
LDA: The Generative Process HH
[ J
“7
-For each document d C'Pe
- Sample 6, . Dirichlet(a)
. z
- Foreachwordwind
- Sample z.. Multi(0,) w
-Sample w.. Multi(¢,) N 5

Topics’ trends evolve over time? X

Topics’ distributions evolve over time? X

Number of topics grow with the data? X
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The Chinese Restaurant
Franchise Process

e HDPM automatically determines number of topics in LDA

e We will focus on the Chinese Restaurant Franchise process
construction
e A set of restaurants that share a global menu

e Metaphor

e Restaurant = documents
Customer = word
H

L]
e Dish = topic
e Global Menu = Set of topics

-0

@

@@
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The Chinese Restaurant
Franchise Process

Global Menu m;: Number of tables
serving this dish (topic)

:@ o@. ¢,: distribution for
° topic 4
QA

Restaurant 1

Customers
Sharing the same dish Dish served
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The Chinese Restaurant

Franchise Process

Global Menu I I I

¢ ¢y

e @ e @ e @ ®e
[} e [} e
NONO), (= @3 = (W3

®ee® °® e
[}

(e (@ | |o® @ ||e(m o5
e ® <o ° LI ee

Restaurant 1 Restaurant 2 Restaurant 3

Generative Process

-For customer w in restaurant 3
- Choose table j « N;
- Choose a new table b < a
- Sample a new dish for this table

IIID

© Eric Xing @ CMU, ACL Tutorial 2012
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The Chinese Restaurant

Franchise Process

Global Menu I I I

I A
e @ e ©
[ ( ]
NONO (=) (w3
®ee® °®
[}
(Ws (@ | o(m @
e ® <o e e
Restaurant 1 Restaurant 2 Restaurant 3

Generative Process

-For customer w in restaurant 3
- Choose table j « N;
- Choose a new table b < a
- Sample a new dish for this table

© Eric Xing @ CMU, ACL Tutorial 2012
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(X X J
The Chinese Restaurant secs
Franchise Process o3
Global Menu I
10
b b ¢y gy
D@ Q LD -
Restaurant 1 Restaurant 2 Restaurant 3
-For customer w in restaurant 3 I
- Choose table j « N; I
_ ChO(_)SSZranr:Ie:/atra\:\ls dk:s:: f(ér this table lf]
The Chinese Restaurant sels
Franchise Process o2

Global Menu
ino B

I A

HONOMBRONOL

[}
@ @ | @ @ ||«@
e ® e e L
Restauran Restaurant 2 Restaurant 3

Generative Process

- Sample a new dish for this table
- Existing dish k o« my
- Anew dish o y
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The Chinese Restaurant
Franchise Process

?
(lobal Menu I I/I | Nl

OFONEEOROHIRONO}
QP QY

Restauran Restaurant 2 Restaurant 3
Generative Process

- Anew dish «y

- Sample a new dish for this table I I l -
- Existing dish k &« m, *
ACL Tutorial 2012 185
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The Chinese Restaurant §§'
Franchise Process oo

? / m
Global Menu I I I l\

ONOMBRONO:
ONORRIONO

Restauran Restaurant 2
Generative Process

- Sample a new dish for this table
- Existing dish k o« my
- Anew dish oy
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[ X X ]
The Chinese Restaurant sels
Franchise Process o2
Global Menu I | I l l
G 2 by g 95
RONOMEEOROHIROROHIO)
. °® : e
RN |Q PP @
Restaurant 1 Restaurant 2 Restaurant 3
Topics’ trends evolve over time? X
Topics’ distributions evolve over time? X
Number of topics grow with the data? Q?
eoes
HE
Hierarchical Dirichlet Process o

[Teh et al., 2005, Xing et al. 2005]
e Two level Pélya urn scheme

e At the i-th step in j-th "group”,

/

D ‘@) @ D ‘@) @ L
m., Oracle
- Choose0, with prob. ——-—— 7
M+ Ot Choose 6, with prob. *—
n, +
—Gototheupperlevel DP E U
Drawanew samp le
: A
with prob. ———— ) y
Ekmjk+ao wzthprob. W
k
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Hierarchical Dirichlet Process

[Teh et al., 2005, Xing et al. 2005]
e Two level Pélya urn scheme
e At the i-th step in j-th "group”,

@O @

Draw from stock urn define Dirichlet Process DP(y,H)
K
n
6,10, ~ 3 L3, (6)+ - H®)
SAi+y % ity

Conditioning on DP(y,H), the mth draw from the mth bottom-level
urn also form a Dirichlet measure

n,
x Mt

k
0, 16, ~ ”+Va¢4(9m)+
4 mj+a * 2 m

a

1@,
ity 2

K
= Z Pi8,:(6, )+ piuH,)
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Infinite Topic Model for Image

OH OH||IO—0s
Stick
Dirichlet breaking
7 9 6 g Q 0
k ©

N

Y
Asingle image Asingle image J images
with k topic with inf-topic with inf-topic
An LDA ADP An HDP
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6. Scenario IV: Topic evolution in
Streaming Corpus

© Eric Xing @ CMU, ACL Tutorial 2012 191

How to model topic evolution?

Research
topics

Natnre papers
from 1900-2000
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0000
Problem Statement 8
Topics
Research
Papers
1?00 - 2009

Potentially infinite number of topics
With time-varying trends
And time-varying distributions
And variable durations
e Topics can die
e New topics can born

2
=]
=]

T

LT ||

OH-0—0+
OH-@-00¢
o004,

) =),

Model Dimension
<€
CmG)
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The Big Picture

[Blei and Lafferty, 2006] Ti
me )

Model Dimension
€

Dynamic LDA

O O——O"

1]

e (5 0 ({L Do

| | !

Oz = Eg:

%D ‘ — .
‘ C D

3 3 B K

Text Stream

=

<\<>M

N

A

=
o

/Q'C
NGO ™M

A

1990

1991

Bl

2004

1

2005

© Eric Xing @ CMU, ACL Tutorial 2012

196

98



Text Stream e
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How to Model Topic Evolution

Topic Trends

Topic Keywords The Dynamic Correlated
Topic model

Topic correlations

Number of opics

1990 1991 2004 2005
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YY)
Y
:o
Building Blocks
u? §> s u <i §>2
=] =
V4 z
CTMs
W w
N N
D D
B n <
K N
| =l NGRS
Kalman Filters
Xi|Xey ~ N(AX, ®)
@ @ @ @ YfIXi ~ N(CX;, )
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The Dynamic CTM
Wy W, Ur
?21 2 QZT
=f =f =f
z z z
w w w
N N N
D, D, D,
ny ne n’
O—————— O —O
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Generalized Mean Field Inference

Wy Yy U
O————— O - —
Oy Oy Oy
OZ OZ OZ
N N N
D D, D4
N m uA
O — —O"

Generalized Mean Field Inference:

g(X)= P(X|<Sy>qy :VyEXMB)

© Eric Xing @ CMU, ACL Tutorial 2012
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Experimental Results

e NIPS data set
e 12 years
e 14036 words
e 2484 docs
e 90% for training and 10% for testing

© Eric Xing @ CMU, ACL Tutorial 2012
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0000
0000
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H [ X J
opic Irenas o
Graphical Models Neural Network sensorimotor
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|OpIC Words over Time o

1987
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Topic Correlations Over Time

Theory with GM with RL
0 0 o
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Dynamic LDA: Summary
L
N
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" " D
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P
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The Big Picture s 28 Time o
S (o |

£ ©

&

= ©

(@]

= )

\ 4

The Chinese Restaurant sels
Franchise Process oo

e HDPM automatically determines number of topics in LDA

e We will focus on the Chinese Restaurant Franchise process

construction
e A set of restaurants that share a global menu

e Metaphor
e Restaurant = documents
e Customer = word
e Dish = topic
e Global Menu = Set of topics

We have covered it already!

© Eric Xing @ CMU, ACL Tutorial 2012
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The Big Picture

[Ahmed and Xing, 2010] Time

>

Model Dimension
€

The Chinese Restaurant
Franchise Process

/ Global Menu T=1 \ Global Menu T=2

P14 ¢2,W1

%

\ Topics at end of epoch 1

Pseudo counts

Epoch 1

Documents in epoch 1 are
generated as before

- Height (m, ,) represent topic k's popularity
- ¢y 4 represents topic k’s word distribution

-Popular topics at epoch 1 are likely to be popular at

epoch 2
- ¢y 2 is likely to smoothly evolve from ¢, ,

© Eric Xing @ CMU, ACL Tutorial 2012
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The Chinese Restaurant
Franchise Process

Global Menu T=1 \ Global Menu T=2 ;
/ obal Menu obatMenu New real dish served

I I I i i1ff.. 9>~ Normal(.| g, 1)
P11 9219314 P4q P51 b2z 30—

RO
§ yONO) .
x LX) . / .:Q.

Epoch 1
Inherited but not yet used
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The Chinese Restaurant
Franchise Process

/ Global Menu T=1 \ Global Menu T=2
[ |
I I I (A | i1 ™

¢1,1 ¢2,1¢3,1 (/)4,1 ‘/’5,1 ¢2.2 ¢3,2

OJC) ®6:@ & O
@@ ® O -
{ = Epoch 1 } / @.

-For customer w in restaurant 1

-[as in static case] Choose table j o« N

- Choose a new table b o« a '
-Sample a new dish for this table
- Existing and inherited dish k o m'y , + my,
- Existing but NOT inherited dish k « m’, , Then ¢, , ~ Normal(.| ¢, 1,0)
- Anewdish oy Then ¢, ~H

© Eric Xing @ CMU, ACL Tutorial 2012

212

106



[ X X ]
The Chinese Restaurant secs
Franchise Process T
/ Global Menu T=1 \ Global Menu T=2
|
I I I Rl ik n
P11 9218314 41 P51 b22 P32
Do) [8&d | @ @
O30 ® @ -
{ : Epoch 1 } J @.
-[as in static case]
-Sample a new dish for this table
- Existing and inherited dish k o« m", , + m, ,
- Existing but NOT inherited dish k « m", , Then ¢, ,~ Normal(.| ¢, 1,p)
- Anewdish ! fhen (/)”CW~ " ic Xing @ CMU, ACL Tutorial 2012 213
The Chinese Restaurant sels
Franchise Process T

/ Global Menu T=1 \ Global Menu T=2
| |
IIIII i
]

D11 921 P31 41 P51 P12 Don P30

¢ ,~ Normal(.| ¢, ,,p)

(]
@'. o .' @
K Epoch 1 J

-[as in static case]

-Sample a new dish for this table

- Existing and inherited dish k o m", , + m, ,

- Existing but NOT inherited dish k « m’, , Then ¢, ,~ Normal(.| ¢, 1,0)
- Anewdish oy Then ¢, ~H

© Eric Xing @ CMU, ACL Tutorial 2012 214

107



[ X X ]
. 0000
The Chinese Restaurant sels
= [ X ]
Franchise Process o
/ Global Menu T=1 \ Global Menu T=2
| |
l l I R i |
P11 921 P31 41 P51 22 #32 D62
00 o % 0 ° @)
) : = ©®
(] U
@: L .'u @: @.'
\ Epoch 1 / s
-For customer w in restaurant 1
-[as in static case] Choose table j o« N
- Choose a new table b o a
-Sample a new dish for this table
- Existing and inherited dish k « m", , + m, ,
- Existing but NOT inherited dish k « m*,, Then ¢, ,~ Normal(.| ¢, 1,p)
- Anewdish oy Then ¢, ~H
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The Chinese Restaurant sels
u [ X ]
Franchise Process o

/ Global Menu T=1 \ ( Global Menu T=2 \ Global Menu T=3

11921031 41 P51 D12 ¢ ¢35, | ¢6,2\

Illll 'Il@l

OIeHO)
® @
—/

Epoch 1

died out topics
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The Chinese Restaurant
Franchise Process

/ Global Menu T=1 \ / Global Menu T=2 \ Global Menu T=3
l l l R l ' ull m i

P14 P21¢31 044 5,1 12 $22 P32 De2
DO |Deie

G ESVAN D

Epoch 1 Epoch 2

Topics’ trends evolve over time?

Topics’ distributions evolve over time?
Number of topics grow with the data?
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The Chinese Restaurant sels
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Franchise Process o
/ Global Menu T=1 \ / Global Menu T=2 \ Global Menu T=3
l ! l | ' l wll mn A n
P11 9219314 Guq P51 $12 $o2 ¢35 be2
: .@. .: °
AN )
Epoch 1 Epoch 2
-We just described a first order RCRF process
- for a general A-order process
A
/ =
my, = E eXPp A My s
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0000
[ XXX
Inference ses
°
e Gibbs Sampling
e Sample a table for each word
e Sample a topic for each table
e Sample the topic parameter over time
e Sample hyper-parameters
e How to deal with non-conjugacy
e Algorithm 8 in Neal’s 1998 + Metropolis-Hasting
e Efficiency
e The Markov blanket contains the previous and following A epochs
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$12 2 $32 b6

P(ktdb = 'l"lkt__th;H.A: btd~ ¢ wt) X

A
P(keay = F|kX,) P(Veay| D, Krar = k) HP(kt+5lkt_-:gi_A>i+6—1)

=1
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I I DJ;]D /3

by by,

Pk = k|kt_—tib:t+A’ b, b, w,) x
P(’Utdb|¢~ Keap = 'lv')

Non-Conjugacy
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Sampling a Topic for a Table
/ Global Menu T=1 \ / Global Menu T=2 \ Global Menu T=3

Pry Py P31 (o P51 $12 $2 $32 b6

@ ofe o @8 OO

®

P( ‘tdb = I‘lkt tibt+A b.a. ¢:wt) X

P(kt+5|kt_.:gizi+6—1)

v

o
Il
N

Future

Pre-compute
And update

222
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[ X X ]
0000

Sampling Topic Parameters 31
:.

E i _______________________ B

e V|d ~ Mult( Logistic(¢))

e Linear-State space model with non-Gaussian emission

e Use Laplace approximation inside the Forward-Backward

algorithm
e Use the resulting distribution as a proposal
© Eric Xing @ CMU, ACL Tutorial 2012
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0000
H [ X R

Experiments eee

[ ]

e Simulated data
e Simulated 20 epochs with 100 data points in each epoch

e Timeline of the NIPS conference
e 13 years
e 1740 documents
e 950 words per document
e ~3500 vocabulary
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Analyzing the NIPS Corpus

Start state
E 055+
': 05
g 04
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. (b) .
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1987 1990 1993 1996 1999
zzlide ftI:eli variables vzr::zlr?s probability
node variables
temperature level tree "
tree energy level probability tree field
boltzmann probability probability field distribution
energy node field structure graph nodes
annealing annealing distribution node belief node
structure distribution inference

node

1990

boltzmann

graph

1994 Mixtures 1999

em
expert
mixture
gating
missing
experts
gaussian
parameters

mixture

em
likelihood
missing

experts
mixtures
gaussian

parameters

gaussian
em
likelihood
parameters
analysis
density
factor
variables

1995 ICA

propagation

1999

wavelet
natural
separation
source
ica

coefficients
independent
basis

source
ica
blind
separation

coefficients

natural
independent
basis
wavel

method gradient gradient matrix
solution weight matrix algorithms
energy method weight gradient
values methods algorithms convergence Methods
gradient local rate local rate equation
convergence optimal problems optimal
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1996 1997 1998 1999

support
kernel

svm
regularization

Kernels
sv

vectors
feature
regression

-Support Vector Method for Function
Approximation, Regression Estimation,
and Signal Processing,

V.Vapnik, S. E. Golowich and A.Smola
- Support Vector Regression Machines
H. Drucker, C. Burges, L. Kaufman, A.
Smola and V. Vapnik

-Improving the Accuracy and Speed of
Support Vector Machines,

C. Burges and B. Scholkopf

kernel
support
sV
svm

machines

regression
vapnik
feature

solution

kernel
support
Svm
regression

feature
machines
solution
margin pca

Kernel svm
support
regression
solution
machines
matrix feature
regularization

- From Regularization Operators to
Support Vector Kernels,

A. Smola and B. Schoelkopf

- Prior Knowledge in Support Vector

- Uniqueness of the SVM Solution,
C. Burges and D.. Crisp

- An Improved Decomposition
Algorithm for Regression Support
Vector Machines,

Kernels,
B. Schoelkopf, P. Simard, A. Smola P. Laskov
and V.Vapnik | | e Many more
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The Big Picture
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Hyper-parameter Sensitivity
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Conclusions and Future Work

e Infinite Dynamic Topic Model
e Evolve all topical aspects

e Application to other data type

e Community discovery in social media

e Alternative inference algorithms
e Particle filters
e Collapsed Variational Inference

© Eric Xing @ CMU, ACL Tutorial 2012
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9: Other apps (Optional)

© Eric Xing @ CMU, ACL Tutorial 2012 237

. Machine translation

B. Zhao and E.P Xing,
© Eric Xing @ CMU, ACL Tutorial 2012 ACL 2006
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Word Alignment

Rt 5 @I 4R KR R

I i

The economy and trade relations between russ|a and tianjin develop steadily
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eoo
o000
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T . h
The Statistical Formulation £
contemporary comparable parallel monolingual
Translation model PI‘( f | e) Language model Pr(e)
| |
a =argmax Pr( f | e,a)Pr(e)
a
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BiTAM: From monolingual to bilingual
topic models  (znao & xing, AcLicoling 2006)

e Monolingual space, a unigram LM p(w|z)
e A topic corresponding to a point in the word simplex.
e AdMixture of unigrams (Blei, et al. 2003)

e Bilingual space, a translation lexicon p(fle, z)
e Given a topic z, a word usually has limited translations.
e Topic-specific translation lexicons are sharper
e Each topic is a point in the conditional simplex

e AdMixture of topic-specific translation lexicons
(Zhao & Xing, ACL/Coling 2006)

e Example
e A Chinese word “club”, the translations can be:

ogre war socialize interests
W | 0.4 0.5 0.0 0.1

© Eric Xing @ CMU, ACL Tutorial 2012

BiTAM: A Generative Process

e Sample topic weights @ from a Dirichlet(c)
e Sample a topic z from multinomial (@)

e For each word f in the sentence f
e Sample an alignment > an alignment model
e Generate f with word éam a topic-specific lexicon

© Eric Xing @ CMU, ACL Tutorial 2012 242
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BiTAM Model-1

e Graphical Model (a language to encode dependencies)

N\
2
O

QC

(@-O—G

N

P(F|A.E.a,B)= [ p(©] a)HE P(2:|0)p(f;| an,en, B-)dO
1.
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GMF Inference o
Approximate
the Integral
[ A
OsrOanO
0 Approximate
the Posterior - =
p(G, Z, a) q(0,z,a) = q(0]y) H q(znlon) H (I(UnJIAnj)
n=1 j=1
Optimization
argmin’y*,d)*,/\*KL(p(ea Z, a)’ q(ea Z, a)) Problem
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An upgrade path for BiTAMs

O

B =p(fle)

OHOTOE26 10 -y

a [ z 3 B

M

Sent-pair level topics

i 1 2

QT 9J10 198984

Word-pair level topics 7. Word-Pair & HMM
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Experiments

e Training data
e Small: Treebank 316 doc-pairs (133K English words)
e Large: FBIS-Beijing, Sinorama, XinHuaNews, (15M English words).

. #lokens
Train #Doc. #Sent. English Chinese
Treebank | 316 4172 133K 105K

FBIS.BJ 6,111 105K 4.18M 3.54M
Sinorama | 2,373 103K 3.81M 3.60M
XinHua 19,140 115K 3.85M 3.93M
FOUO 15,478 | 368K 13.14M 11.93M

| Test | 95 | 627 | 25,500 | 19,726 |
e Word Allgnment Accuracy & Iransiation Quality

e F-measure
e BLEU
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Model Selection e
e Choosing num-topics K
e 10-fold cross-validation
e Number of topics is set to be 50 for 23 million words corpus
430 %107 log(likelihood) over different num topics
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Translation Evaluations
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ooe
3
0o
: : o:e
Translation Evaluations o
| Systems | 1-gram | 2-gram | 3-gram | 4-gram || BLEUr4 |
Hiero Sys. 73.92 40.57 23.21 13.84 30.70
Gale Sys. 75.63 42.71 25.00 14.30 32.78
HM-BiTAM 7677 | 4299 | 2542 14.04 33.19
Ground Truth | 76.10 43.85 26.70 15.73 34.17
© Eric Xing @ CMU, ACL Tutorial 2012 251
ooe
. ] ] . o0
Il. Exploring and deciphering social 413
oo
°

networks
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Dynamic network tomography

e How to model dynamics in a simplex?

Project an individual/stock in Trajectory of an individual/stock
network into a "tomographic" space in the "tomographic" space

© Eric Xing @ CMU, ACL Tutorial 2012 253

Evolving networks

March 2005 Janquy 2006 AuguLt 2006
® © ©
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Dynamic MMSB (dMMSB) ... ...<...

AOAS 2009]

© Eric Xing @ CMU, ACL Tutorial 2012
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Dynamic Mixture of MMSB

(dM3SB)

[Ho, Le, and Xing, submitted 2010]

Time-varying
Role Prior

&

Cluster
Selection Prior

Legend

Observed interactions
Role compatibility matrix
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Algorithm: Generalized Mean Field

(xing et al. 2004)

Approximate the joint posterior

I

2
p({z0.70. i, BOYL |0 AG VYL, )
where © denotes the model
parameters, by a factored ap-
proximate distribution:

q({i(” 7O, BV ) 1
REARNTALR t:l

¢ Inference via variational EM |3

° Generalized mean field
. Laplace approximation
. Kalman filter & RTS smoother

© Eric Xing @ CMU, ACL Tutorial 2012

dMMSB vs. MMSB
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dM3SB vs. dMMSB

-+-dMMSB (avg. L2 0.084) +
0,095~ dM°SB (avg. L2 0.079) 4" H

Average L2 error

0.065 : ‘ : :
2 6

Time Point
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Goodness of fit

US Senator voting data
Average held-out marginal log-likelihood over 10 random hold-outs

x10% 10,000 samples taken per hold-out marginal log-likelihood
2L
|
|
|
|
|
=251 |
|
|
|
1
-3l
=35 !
-4} ‘
|
R —
dM3SB dMMSB
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Case Study 1: Sampson’s Monk :
Network

e Dataset Description
e 18 monks (junior members in a monastery)
e Liking relations recorded
e 3 time-points in one year period

e Timing: before a major conflict outbreak

1 Romul

e Recall static analysis: 2 onaven
’ N 4 th
’ 18
34y
i
. TERN
\
, \
/
/ \
\
\
\
\
\
\
/ \
/ N 14 Albert
\ 15 Amand
16 Basil
Young Turks Loyal Oppositions
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[ X X J
(X X J
J N
Sampson’s Monk Network: oo
role trajectories
e The trajectories of the varying role-vectors over time
100Wﬂ?omul 2 Bonaven3 Ambrose 4 Berth 5 Peter  BLlouis 7 Victor 8 Winf 9John 10 Greg
) iii iﬂﬂ !II H!I !!l iii !!!
0%
11 Hugh 12Boni 13 Mark 14 Albert 15 Amand 16 Basil 17 Elias 18 Simp
100%
-Young Turks
50% [JOutcasts
I Loyl Opposition
0%
123 123 123 123 123 123 123 123
T T T T T T T T
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Case Study 2: The 109t congress

March 2005 January 2006 August 2006

US senator voting records
100 senators, 109th Congress (Jan 2005 — Dec 2006) in 8 epochs

eseo

[ X R

[ R
Senate Network: role trajectories |:°

Voting data preprocessed into a network graph using (Kolar et al., 2008)

1D-H  2R-TN  3R-CO 4R-VA SD-MT  6D-IN 7R-UT 8D-DE 9D-NM 10R-MO  61D-NJ 62D-VT 63D-MI 64D-CT 65D-AR G66R-MS 67R-IN 68R-FL 69R-AZ TOR-KY

222222

zzzzzzzzzz

40 91D

93 o

2
54 55 T 58D 60
44444444 22222222 44444444 22222222 66662266 22222222 GGGGEG6S GGGEEE 44444444 11111111

Colored bars: Estimated latent space vector Role Compatibility Matrix B

Numbers under bars: Estimated cluster Role 1= Passive, 2/4 = Democratic clique,
. . - 3 = Republican clique

Letters beside actor index: Political party and State
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Jon Corzine’s seat (#28, Democrat,
™= New Jersey) was taken over by
Bob Menendez from t=5 onwards.

Cluster legend

DATASET [ | ]

Corzine was especially left-wing,

so much that his views did not Cluster
align with the majority of traject
Democrats (t=1to 4). )
Once Menendez took over, the ) P
latent space vector for senator E . \\ //l;
#28 shifted towards role 4, c b ? *

corresponding to the main

Ben Nelson (#75) is a right-wing Democrat
(Nebraska), whose views are more
consistent with the Republican party.

Observe that as the 109t Congress
proceeds into 2006, Nelson’s latent space
vector includes more of role 3,
corresponding to the main Republican
voting clique.

This coincides with Nelson’s re-election as
the Senator from Nebraska in late 2006,
during which a high proportion of

Democratic voting clique. / . Republicans voted for him.
it
‘L
—
#28 Corzine, #75 Nelson |
Menendeg v \ trajectory”
trajectory P
28 D-NJ Vo 75 D-NE
‘ ’/,r \ /
-V
T © Eric Xing @ CMU, ACL Tutorial 2012 T 1255

°
o0
o0
Conclusion :
o GM-based topic models are cool
e Flexible
e Modular
e Interactive
e There are many ways of implementing topic models
e unsupervised
e supervised
e Efficient Inference/learning algorithms
e GMF, with Laplace approx. for non-conjugate dist.
e MCMC
e Many applications
o
e Word-sense disambiguation
e Image understanding
e Network inference
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More research questions we ask:

e Event detection

e Emergence/disappearance/evolution of perspective, bias, object, theme, etc.
e Automated summary

e Temporally-connected storylines in the news

e Describe a scene or arbitrary image

e From keyword or class-label to story

e Hierarchical categorization of news, images, videos
e Semantic-based browsing and search

e Ranking/matching based on topic/perspective
e Can we Google image using image? Where is this place on earth?
e Video retrieval based on story

e Prediction
e Is there going to be a war? When?
e Can we predict the economy or stock from traditional or internet news?

e Doing all these with Facebook, MySpace, or Twitter

© Eric Xing @ CMU, ACL Tutorial 2012
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