

Fairness-Aware Online Positive-Unlabeled Learning **Hoin Jung and Xiaoqian Wang**

Motivation

In the text classification framework for online service,

Online Environment

- Data arrives incrementally, not all at once.
- Retraining from scratch with new data is costly and inefficient.

Lack of Positivity

Fairness in Classification

Imbalanced Positivity in Dataset

Imbalanced positivity can cause overestimation of certain groups as positive, leading to biased predictions.

- Not all positive instances are explicitly labeled.
- Unlabeled samples may include both positive and negative cases.
 - (e.g. Toxicity contents in social media.)
- \Rightarrow Needs for Online and Positive-Unlabeled Learning

Two-Fold Fairness Violation

Both Online Learning and PU Learning Deteriorate Fairness Issue

Fairness Constraint

Convex Equalized Odds Loss Use relaxed form of EOd

 $EOd(f) = \mathbb{E}\left[\frac{\mathbb{I}_{a=1,y=1}}{p_{1,1}}\mathbb{I}_{f(x)>0} - \left(1 - \frac{\mathbb{I}_{a=-1,y=1}}{\pi - p_{1,1}}\mathbb{I}_{f(x)<0}\right)\right] + \mathbb{E}\left[\frac{\mathbb{I}_{a=1,y=-1}}{p_{1,-1}}\mathbb{I}_{f(x)>0} - \left(1 - \frac{\mathbb{I}_{a=-1,y=-1}}{1 - \pi - p_{1,-1}}\mathbb{I}_{f(x)<0}\right)\right]$

Convex-Concave Surrogate Function

 $EOd_{\kappa}(f) = \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=1}}{p_{1,1}}\kappa(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=1}}{\pi - p_{1,1}}\kappa(-f(x))\right)\Big] + \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=-1}}{p_{1,-1}}\kappa(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=-1}}{1 - \pi - p_{1,-1}}\kappa(-f(x))\right)\Big] \qquad R_{EOd}(f) = \begin{cases} EOd_{\kappa}(f) & \text{if } EOd(f) \ge 0 \\ EOd_{\delta}(f) & \text{if } EOd(f) < 0 \end{cases}$ $EOd_{\delta}(f) = \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=1}}{p_{1,1}}\delta(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=1}}{\pi - p_{1,1}}\delta(-f(x))\right)\Big] + \mathbb{E}\Big[\frac{\mathbb{I}_{a=1,y=-1}}{p_{1,-1}}\delta(f(x)) - \left(1 - \frac{\mathbb{I}_{a=-1,y=-1}}{1 - \pi - p_{1,-1}}\delta(-f(x))\right)\Big] \quad \kappa(z) = \max(z+1,0), \ \delta(z) = \min(z,1)$

Positive Rate Penalty Loss

 $\pi = P(y = +1)$ $1 - \pi = P(y = -1)$ $p_{1,1} = P(a = +1, y = +1)$ $p_{1,-1} = P(a = +1, y = -1)$

 $EOd_{\kappa}(f)$ if $EOd(f) \ge 0$

Theoretical Analysis

Fair Regret Bound

Measures how much online learning cumulates fairness violations over time deviates from the batch training, $Regret = \sum_{t=1}^{T} \mathbb{E}[R(f_t) - R(f_{off})]$

- Linear Classifier: $O(\sqrt{T}/b)$
- MLP Classifier: $O(\sqrt{T \log L} + \sqrt{T}/b)$
- Pretrained Model with Linear Classifier: $O(\sqrt{T}/b)$

T: Total Number of Training Round

B: Batch Size of Incoming Data $= \max(0, TPR_1^{base} - TPR_1^{(t)}) + \max(0, TPR_0^{base} - TPR_0^{(t)}) + \max(FPR_1^{(t)} - FPR_1^{base}, 0) + \max(FPR_0^{(t)} - FPR_0^{base}, 0)$ *L*: Number of Layers **Experimental Results** DistillBERT 🔫 BERT DistillBERT BERT LSTM Linear LSTM Apply various datasets and models. Wikipedia Dataset (Toxicity Classification) NELA-2018 Dataset (Misinformation Detection) Offline Learning Offline Learning Online Learning Online Learning 0.70 -0.82 **Score** 0.65 200 0.78 200 o.78 С С 0.60 <mark>С</mark> 0.76 **Improve fairness without** 0.74 0.55 compromising performance. 0.72 0.50 🕹 0.06 0.10 0.08 0.04 0.02 0.14 0.10 0.08 0.04 0.16 0.14 0.12 0.10 0.08 0.060 0.055 0.045 0.16 0.12 0.050 0.040 0.035 0.030 0.025 ∆EOd ∆EOd ∆EOd ∆EOd