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Motivation

In the text classification framework for online service,

Online Environment

- Data arrives incrementally, not all at once.

- Retraining from scratch with new data is costly and
inefficient.

Lack of Positivity

- Not all positive instances are explicitly labeled.

- Unlabeled samples may include both positive and
negative cases.
(e.g. Toxicity contents in social media.)

— Needs for Online and Positive-Unlabeled Learning

Fairness in Classification

Imbalanced Positivity in Dataset
Imbalanced positivity can cause overestimation of certain

groups as positive, leading to biased predictions.
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Equalized Odds

Without Sexuality Term

Model’s predictions should have equal TPR and FPR across

different groups.

EOd = |TPR,—; — TPR4—_1| + |FPR4-1 — FPR4—_||

Two-Fold Fairness Violation

Both Online Learning and PU Learning Deteriorate Fairness Issue
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“...It wasn't a POV dispute,
but rather a case of him/her trolling. ---”

black people to be intellectually

‘ “...some white people considered

and socially inferior ---”

--‘The cure for gay guys is to
lock them in cages ---”
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“...You have emotional

Classification

Evolving over time

problems, get psyched. ---”

“...the Christian God 1s never
lower case either. «--”
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“...I’ll try to find a better translation. ---”

Fairness Constraint j

Convex Equalized Odds Loss
Use relaxed form of EOd
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Theoretical Analysis

Fair Regret Bound

Measures how much online learning cumulates
fairness violations over time deviates from the
batch training, Regret = Y.{_1 E[R(f:) — R(fors)]

- Linear Classifier: o(VT/b)
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Positive Rate Penalty Loss

= max(0, TPRY%5¢ — TPR\") + max(0, TPR;%*¢ — TPR{") + max(FPR\" — FPRY%5¢,0) + max(FPR{" — FPR;**,0)

® Linear

MLP

+ LSTM

A BERT

- MLP Classifier: O(4/Tlog L +VT/b)
- Pretrained Model with Linear Classifier: O(¥T/b)

T: Total Number of Training Round
B: Batch Size of Incoming Data

L: Number of Layers

Experimental Results
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Offline Learning

Wikipedia Dataset (Toxicity Classification) <4

Apply various datasets and models.

® Linear MLP + LSTM A BERT O

—»> NELA-2018 Dataset (Misinformation Detection)

DistillBERT
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Offline Learning
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