Noisy Channel for Low Resource Grammatical Error Correction

Simon Flachs'?, Ophélie Lacroix', Anders Sggaard?
! Siteimprove, Denmark
2 CoAStaL. DIKU, Department of Computer Science, University of Copenhagen, Denmark
{sfl, ola}@siteimprove.com,
soegaard@di.ku.dk

Abstract

This paper describes our contribution to the
low-resource track of the BEA 2019 shared
task on Grammatical Error Correction (GEC).
Our approach to GEC builds on the theory
of the noisy channel by combining a chan-
nel model and language model. We generate
confusion sets from the Wikipedia edit history
and use the frequencies of edits to estimate the
channel model. Additionally, we use two pre-
trained language models: 1) Google’s BERT
model, which we fine-tune for specific error
types and 2) OpenAl’s GPT-2 model, utilizing
that it can operate with previous sentences as
context. Furthermore, we search for the opti-
mal combinations of corrections using beam
search.

1 Introduction

Grammatical Error Correction Grammatical
Error Correction (GEC) is the task of automat-
ically correcting grammatical errors in written
text. The task is relevant for users producing text
through text interfaces, both as assistance dur-
ing the writing process and for proofreading al-
ready written work. In recent years, GEC has re-
ceived increasing attention in the research commu-
nity with several shared tasks on the topic, such
as CoNLL 13-14 (Ng et al., 2013, 2014), HOO
(Dale and Kilgarriff, 2011), and AESW (Daudar-
avicius et al., 2016), and most recently the BEA
2019 shared task on GEC (Bryant et al., 2019),
which this work is a contribution to.

Supervised GEC Current state-of-the-art ap-
proaches to GEC use a supervised machine trans-
lation setup (Ge et al., 2018; Grundkiewicz and
Junczys-Dowmunt, 2018), that relies on large
amounts of annotated learner data. This means
that systems do not generalize well to non-learner
domains and that these approaches do not work
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well for low-resource languages. As most existing
datasets are not freely available for commercial
use, the supervised approach also limits industrial
uses.

Unsupervised GEC In order to combat these
problems, in recent years several approaches to
GEC have used the concept of language modeling,
which allows for training GEC systems without
supervised data, and have so far given promising
results. Bryant and Briscoe (2018) uses a 5-gram
language model while Makarenkov et al. (2019)
uses a bidirectional LSTM-based language model.
Kaili et al. (2018) fine-tunes LSTM-based lan-
guage models for specific error types.

Using a language modeling approach means
that we can create models that are trained unsuper-
vised by only being based on high quality native
text corpora. This means that our systems will only
require a small amount of labeled data for tuning
purposes. We can therefore build GEC systems for
any language given enough native text.

The Noisy Channel The core idea that these
language modeling approaches are using for GEC
is that low probability sequences are more likely
to contain grammatical errors than high probabil-
ity sequences. However this formulation does not
take into account the writer’s likelihood of making
particular errors. For example, “then” — “than” is
much more common than “then” — “the” due to
an underlying similarity in phonetics.

In order to take this into account we utilize the
concept of the noisy channel model, which allows
for modeling the users likelihood of making par-
ticular errors, instead of only relying on which se-
quences of words are more probable.

Contributions In the following, we present our
low-resource approach to GEC, which ranked as
the 6th best performing system in the low-resource
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track of the BEA 2019 shared task. We utilize con-
fusion sets and edit statistics gathered from the
Wikipedia edit history, as well as unsupervised
language models in a noisy channel setting.

Our contributions are 1) formalizing GEC in the
noisy channel framework, 2) generating confusion
sets from the Wikipedia edit history, 3) estimat-
ing a channel model based on frequencies of ed-
its from the confusion sets, 4) combining existing
pre-trained language models, with each their own
strength, 5) specializing models for specific gram-
matical error types, and 6) using beam search to
find the optimal combination of corrections.

2 The Noisy Channel

The intuition of the noisy channel model
(Kernighan et al., 1990; Mays et al., 1990) is that
for any given word in a sentence, we have a true
underlying word, that has been passed through a
noisy communication channel, which potentially
has modified the word into an erroneous surface
form.

Our goal is to build a model of the channel. With
this, given a confusion set, we can pass every can-
didate correction through this noisy channel to see
which one is most likely to have produced the sur-
face word.

The noisy channel model can be formulated as
a form of Bayesian inference. Given a potentially
erroneous surface word, z, we want to find the hid-
den word, c*, from all candidates ¢ € (', that gen-
erated x.

¢ = argmax P(c|x)
ceC
Using Bayes’ rule this can be restated as
¢ = argmax P(z|c) * P(c)
ceC

where P(z|c) is the likelihood of the noisy
channel producing a particular z. This is referred
to as the channel model. The prior probability of
a hidden word, P(c), is modeled by a language
model (Jurafsky and Martin, 2009).

3 System

Our system is a combination of several com-
ponents: a PoS tagger, the channel model, two
language models (BERT and GPT-2) and beam
search. We first PoS tag the sentence. Then, the
sentence is processed from left to right, and for ev-
ery word z, we identify the set C' of possible cor-
rection candidates, based on the PoS tag and our
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generated confusion sets. We then pick the ¢ € C'
with the highest P(c|z) estimated using our com-
ponents in the following formula:

P(c|z) = Pchannet * PBERT * Papr—2

We allow the system to consider multiple hypothe-
ses by using beam search, which continuously
keeps track of a beam of the most likely hypothe-
ses.

In the following, we describe the different com-
ponents that make up our GEC system in more de-
tail.

3.1 Channel Model

We estimate the channel model in two ways, de-
pending if the written word is in our vocabulary
(real-word error) or not (non-word error).

Real-word errors In order to estimate the chan-
nel model P(z|c) for real-word errors, we first
make a simplifying assumption that a human only
makes a mistake for 1 in 20 words. This means
that there is a 5% probability (denoted as «) of the
surface word = being wrong. This probability can
be distributed between the candidate corrections
taken from the confusion set. For a given candi-
date word ¢; we can calculate the channel proba-
bility using frequency counts of edits for all can-
didates in C. We gather frequency counts from the
Wikipedia edit history (§ 4.1).

|z — ¢
IC]
> |z = g
=1

P(z|c;) = a

Non-word errors For non-word errors we as-
sume that any = not in our vocabulary and not a
named entity! is an error. Assuming a list of can-
didate corrections, we use the inverse Levenshtein
distance to distribute the error probability between
the candidates. Hereby, candidates which are lex-
ically closer to the original word are made more
likely.

3.2 Language Models

For language modeling we use a combination of
two pre-trained models that have recently given
good results: BERT (Devlin et al., 2018) and
GPT-2 (Radford et al., 2019).

'as estimated by Spacy, https://spacy.io


https://spacy.io

BERT BERT is a Transformer-based (Vaswani
etal., 2017) language model pre-trained on a large
text corpus. It estimates probabilities by jointly
conditioning on both left and right context. We use
the pre-trained BERT-Base Uncased model as a
starting point for several models, which are each
fine-tuned for specific error types on sentences ex-
tracted from a Wikipedia dump. We do three types
of fine-tuning, using the default hyperparameters
of BERT.

e PoS-based fine-tuning, where a word is re-
moved and the model predicts its PoS tag.
This is used to classify which word category
should be at the position for verb form errors
and noun number errors.

e Word-based fine-tuning, where a word is re-
moved and the model predicts the word from
a vocabulary of the most common 40.000
words from the Wikipedia dump. This is used
to estimate probabilities for words in our con-
fusion sets.

Comma prediction, where we remove all
commas and let the model predict where to
insert commas. Any discrepancies between
the produced and original sentence is used as
comma edits, if the model is more than 95%
certain.

GPT-2 GPT-2is another Transformer-based lan-
guage model trained on a dataset of 8 million web
pages. GPT-2 only looks at the previous context
to estimate probabilities. We take advantage of
the fact that GPT-2 is trained using previous sen-
tences as context by including the previous sen-
tence when estimating probabilities.

3.3 Beam Search

Since our error correction models make a decision
separately for every word, sometimes conflicting
corrections can be made, e.g., “the cats is big.”
might be corrected to “the cat are big”. Therefore
we utilize beam search in order to efficiently ex-
plore combinations of corrections in order to find
the optimal output sentence. We utilize a beam
width of 3.

4 Confusion Sets

The first step in correcting a sentence is to identify
the potentially erroneous tokens (or groups of to-
kens) and determine a set of possible corrections
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for each. We use several methods for deducing
these confusion sets according to different error

types.

4.1 Wikipedia Edit History

We utilize the WikEd Error Corpus (Grund-
kiewicz and Junczys-Dowmunt, 2014) generated
from Wikipedia revision histories to create confu-
sion sets. We only retain edits of sentences where
only a single word has been changed. We first end
up with a list of confused token pairs which in-
cludes all types of edits, i.e., semantic or gram-
matical. We set up a set of rules to filter the
edits not adapted to the task (e.g., the seman-
tic replacements), and infrequent ones. We thus
remove confusion pairs which define: (i) the re-
placement of a verb form (e.g., tense/subject—verb
agreement errors); (ii) noun number errors; (iii) re-
placement of numbers or dates; (iv) synonyms and
antonyms (using Wordnet® (Miller, 1995)); (v) re-
placement of pronouns with determiners; (vi) in-
sertion/deletion of content words (e.g., nouns) and
numbers; (vii) spelling errors.

We end up with a list of 348 edit pairs and their
corresponding frequency counts in the WikedEd
Error Corpus (ranging from 741 to 60,184 in-
stances). The list includes, for instance, deter-
miner replacements (e.g., “a”—‘“an”) and fre-
quently confused tokens (e.g. “to”—*“too”). It
covers most replacement error types but mostly
closed-class words replacements such as R:DET
or R:PREP.

4.2 Misspelled Words

Given a misspelled word (which we refer as non-
word in the channel model) we use the Enchant
library? to derive a set of suggestions for correc-
tions. It mostly covers the R:SPELL error type but
can also include other replacement types (such as
content word replacements).

4.3 Specialized Models

For fine-tuned models on specific error types,
we define specific rules (mainly based on Part-
of-Speech tags) to detect the corresponding to-
kens and their possible replacements. We use the
Spacy” library to PoS-tag the sentences.

https://wordnet.princeton.edu/
3Wrapper for various spell checker engines.
*nttps://spacy.io/
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Noun number model We detect the nouns by
their PoS-tags: NN (singular) and NNS (plural)
and use a list of matching singular/plural nouns
derived from Wiktionary> to suggest a correction.
It covers the R:NOUN:NUM and R:NOUN:INFL
error types.

Verb forms model We detect all forms of verbs
through their PoS-tags and derive a list of potential
corrections (i.e., all possible inflections) using the
list of English verb inflections from the Unimorph
project (Kirov et al., 2016). Here, we mainly
cover the R:VERB:FORM and R:VERB:Sva
error types but also cases of R:VERB:INFL and
R:VERB:TENSE error types.

5 Discussion

5.1 Results

Results on the BEA 2019 shared task test dataset
are listed per edit and error type in Table 1. It is
evident, that out approach deals with a wide ar-
ray of error types, but with varying quality. The
model performs particularly well on spelling er-
rors, subject—verb agreement errors and inserting
missing commas. However, the model performs
rather poorly on the replacement of adjectives, ad-
verbs and conjunctions which are based on confu-
sion sets derived from Wikipedia edits suggesting
that more filtering would be necessary.

5.2 Ablation analysis

We do an ablation analysis of the different com-
ponents of our model to see how each part con-
tributes to the performance. The global results are
shown in Table 2. Detailed results per error type
are shown in Appendix A for all models.

Beam search removing the beam search results
in a considerable drop in Fy 5 by 2.73. This shows
that figuring out how to optimally combine multi-
ple local edits is important.

GPT-2 removing GPT-2 results in the largest
drop in Fj 5 score of 5.09. The drop is large for
most error types but the ablation is especially dam-
aging on the precision of verb form errors.

BERT dropping BERT results in a 1.11 drop in
Fo.5 score. This indicates that GPT-2 is pulling
most of the weight.

‘https://www.wiktionary.org/
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Error type | # | P R Fos
M:PUNCT 422 80.10 38.15 65.66
R:ADJ 24 12.50 4.17 8.93
R:ADV 17 33.33 5.88 17.24
R:CoNJ 5 2.22  20.00 2.70
R:DET 129 2048 5271 23.34
R:MORPH 128 46.15 18.75 35.71
R:NOUN 70 50.00 8.57 2542
R:NOUN:INFL 19 4286 31.58 40.00
R:NOUN:NUM 290 4379 68.31 47.18
R:ORTH 349 10.20 1.43 4.59
R:OTHER 618 20.43 6.15 13.95
R:PART 15 38.89 46.67 40.23
R:PREP 292 39.49 5856 4224
R:PRON 50 34.15 56.00 37.04
R:SPELL 321 76.51 75.08 76.22
R:VERB 134 25.00 2.99 10.10
R:VERB:FORM 169 4796 55.62 49.32
R:VERB:INFL 7 | 100.00 85.71 96.77
R:VERB:SVA 146 7439 83.56 76.06
R:VERB:TENSE 160 42,50 10.62 26.56
U:PUNCT 118 3490 88.14 39.69
Allerror types | 4498 | 44.52 28.88 40.17

Table 1: Span-level correction results of our system. We
do not show results for the error types we do not pre-
dict.

Channel model we ablate the channel model by
dividing out probabilities by uniform distribution
over the candidates instead of using the frequency
counts of the confusion sets and reverse Leven-
shtein distance. It results in a drop in Fj 5 score
by 0.44.

P R Fos
Chan + BERT + GPT 40.29 29.19 37.44
Chan + BERT + beam 37.03 2898 35.08
Chan + GPT + beam 4231 29.89 39.06
BERT + GPT + beam 4350 29.49 39.73
Chan + BERT + GPT + beam 44.52 28.88 40.17

Table 2: Span-level correction results of the ablated
models.

6 Conclusions

In this work we have presented our system for the
BEA 2019 shared task on Grammatical Error Cor-
rection, which ranked as the 6th best in the low
resource track.

Our ablation analysis showed that each of the
components of our system has a positive effect on
the overall performance, meaning that the combi-
nation of all of our components leads to the best
score.

Future work could explore using more advanced
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channel models, such as using phonetic features
to determine the similarity of words. Furthermore
our approach could also be adapted to handle in-
sertions and deletions. Additionally, there are sev-
eral parameters that could be tuned for better per-
formance, including for example, «, the probabil-
ity that the channel inserts an error, and the beam
width.
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A Results per error type

Error type | # | Allmodels | C+B+G | C+B+beam | C+G+beam | B+G+beam
M:PUNCT 422 65.66 |  65.86 65.54 64.15 65.65
R:ADJ 24 8.93 7.69 8.20 7.81 15.38
R:ADV 17 17.24 | 12220 17.24 16.67 13.16
R:CoNJ 5 2.70 1.92 2.65 2.65 236
R:DET 129 2334 | 19.92 23.15 22.24 23.29
R:MORPH 128 3571 | 29.48 28.12 31.18 35.09
R:NOUN 70 2542 | 2381 2521 23.08 23.81
R:NOUN:INFL 19 40.00 | 38.46 3731 69.57 46.67
R:NOUN:NUM | 290 47.18 || 43.82 42.59 47.11 46.46
R:ORTH 349 4.59 4.58 4.57 4.61 4.60
R:OTHER 618 13.95 || 13.30 14.24 13.29 15.07
R:PART 15 40.23 || 44.12 38.89 33.98 41.67
R:PREP 292 4224 || 39.47 41.46 40.46 42.01
R:PRON 50 37.04 | 3425 3222 34.04 35.48
R:SPELL 321 76.22 || 73.66 75.59 70.85 75.02
R:VERB 134 10.10 9.76 9.35 11.57 10.47
R:VERB:FORM | 169 4932 || 44.53 17.86 46.58 48.03
R:VERB:INFL 7 96.77 | 96.77 96.77 96.77 96.77
R:VERB:SVA 146 76.06 || 72.73 72.66 73.16 74.88
R:VERB:TENSE | 160 26.56 |  26.88 26.61 31.73 30.03
U:PRON 21 0.00 | 20.00 0.00 18.52 20.00
U:PUNCT 118 39.69 | 39.13 39.91 39.79 39.91
All types | 4498 | 40.17 || 37.44 | 35.08 | 39.06 39.73

Table 3: Span-level correction results (Fy 5) for different error types (we do not show results for the error types that
we do not predict). C: Channel Model, B: BERT, G: GPT-2.
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