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Abstract

The paper presents a method for WordNet supersense tagging of Sanskrit, an ancient Indian
language with a corpus grown over four millenia. The proposed method merges lexical information
from Sanskrit texts with lexicographic definitions from Sanskrit-English dictionaries, and compares
the performance of two machine learning methods for this task. Evaluation concentrates on Vedic, the
oldest layer of Sanskrit. This level of Sanskrit contains numerous rare words that are no longer used
in the later language and whose word senses can, therefore, not be induced from their occurrences in
other texts. The paper studies how to efficiently transfer knowledge from later forms of Sanskrit and
from modern Western dictionaries for this special task of supersense disambiguation.

1 Introduction

The paper discusses experiments in coarse-grained word semantic disambiguation (WSD) for Classical
(CS) and Vedic Sanskrit (VS).1 These experiments are part of a project that deals with the verb-argument
labeling of Vedic texts. The project is based on a manual annotation of all 27,104 verbal forms and their
main arguments found in the R. gveda (R. V), the core text of the Vedic corpus (Hettrich, 2007).2 Apart
from relating arguments to their governing verbs, the annotation disambiguates case semantic functions
such as time or location for the locative, and it assigns a basic word semantic class to each argument
(refer to the sample annotation in Fig. 1). The word semantic annotations differentiate between eight
classes that include, among others, abstract concepts, humans, and animals. We are planning to use the
annotation of the R. V as training corpus for building a verb-argument labeler that can be applied to other
texts of the Vedic corpus.

Several publications on argument and role labeling use word semantic classes or distributional re-
presentations of words for modeling selectional preferences of verbs (Wilks, 1975; Che et al., 2010; Yu
et al., 2010; Roth and Lapata, 2015). Following this work, we are going to employ WordNet supersenses
(WNSS; Ciaramita and Johnson, 2003) of Vedic words as an additional prior in our argument labeling
pipeline, both for detecting arguments in unlabeled texts (see the semantic coherence criterion in Laparra
and Rigau (2013)), and for assigning appropriate word semantic classes to arguments.

The paper interprets WSD as a sentence classification task, where definitions from bilingual Sanskrit-
English dictionaries and sentential contexts serve for predicting word semantic classes of Sanskrit nouns.
The paper concentrates on rare nouns, because the vocabulary of Vedic texts contains numerous lemmata
that have disappeared in later Classical Sanskrit, so their distributional properties cannot be estimated

1Sanskrit can be divided into two historical layers, whose relationship resembles that of Homeric and Classical Ancient
Greek, or even the later koine. Vedic Sanskrit is one of the oldest Indo-European languages. Its earliest parts may have
been composed in the second millenium BCE (Witzel, 1995). Around 350 BCE, the grammarian Pān. ini compiled the grammar
As.t.ādhyāyı̄, a linguistic overview of a late form of VS, which became the prescriptive standard for CS (Scharfe, 1977). Although
the vast majority of Sanskrit texts is written in CS, VS also has produced a sizeable corpus of several million words.

2The annotation was performed by a H. Hettrich, and parts of it were later inspected randomly by linguists; personal
communication by H. Hettrich.
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Figure 1: Verb-argument annotation of R. gveda 1.1.3 (“He will obtain wealth [and] prosperity through
Agni every day.”). Labels on the arcs indicate the syntactic functions (soc[iative], ob[ject], loc[ation])
and coarse word semantic classes (m = human, g = object, a = generic expression) of the arguments. If
more than one word fits into an argument class, only the first one is annotated.

reliably from the later corpus. We will compare the efficiency of different machine learning models for
this task. In addition, the paper pays special attention to the philological setting of WSD. While most
NLP studies work with huge, contemporaneous corpora from closed domains (newspapers, Twitter), and
can rely on richly annotated data sets, WSD for Vedic and Classical Sanskrit lacks most of these pre-
requisites. As a consequence, transfer of knowledge between languages (English definitions to Sanskrit
word senses) and between different historical domains of Sanskrit literature plays an important role in
our research.

While there is, in principle, no lack of Sanskrit texts,3 the language is nevertheless under-resourced
from the perspective of NLP. First, large parts of the literature have not yet been digitized. This applies to
the Sanskrit source texts and to their translations into modern languages, and complicates unsupervised
knowlegde acquisition from large (parallel) corpora as, for instance, proposed by Prochasson and Fung
(2011). Second, the rich morphology, especially of VS, the lack of reliable punctuation marks4, and
the phonetic phenomenon of Sandhi (“combination [of phonemes]”) make linguistic analysis a hard task
for NLP. Due to these features, standard token-based NLP pipelines cannot be applied to Sanskrit, as
becomes apparent for a short phrase such as saitatpaśyatı̄tyuktvā. This string is formed by phonetically
merging the five inflected tokens sā, etad, paśyati, iti, and uktvā (tiny “equations” give the operative
Sandhi rules):

sā [ā+e=ai]

she:N.SG.
etad [d+p=tp]

this:A.SG.
paśyati [i+i=ı̄]

see:3.sg., pr.
iti [i+u=yu]

thus:ind.
uktvā
say:abs.

... having said: ‘She sees this’ ...

Apart from the correct analysis given above, this string has at least seven further readings that are lexi-
cally valid, though semantically meaningless. Because the valid tokenization of a Sanskrit text requires
a full morphological and lexical analysis, the methods described in this paper operate with fully disam-
biguated lemmata, instead of tokenized strings as is usually done in NLP of English.

In order to mitigate the problems introduced by size and structure of the corpus, we use bilingual
information for WSD. Sanskrit has a rich history of philological research both in India and in the West.
Part of this history are comprehensive Sanskrit-English dictionaries, which are also available in digital
form.5 These dictionaries provide English definitions for Sanskrit lemmata, and the definitions are or-
dered following lexicographic considerations. We will use the lexical definitions and their lexicographic
order along with Sanskrit context words for WNSS classification in VS and CS. This setting may remind

3The size of Sanskrit literature can not be estimated reliably. Wujastyk (2014) considers that there exists a total of 30,000,000
Indian manuscripts, a substantial number of which may contain Sanskrit works. Several thousand Sanskrit texts have been edited
and printed in the last 200 years, and a few hundred of them are available in digital form.

4Sanskrit texts are structured by dan. d. as ‘sticks’ (|). These symbols indicate the end of metrical sequences, which are quite
frequently not identical with sentence boundaries (Hellwig, 2016). Sentence internal structuring symbols such as commata and
colons are missing completely. When applied to a Sanskrit text, the term ‘sentence’ refers to dan. d. a-delimited sequences of
words in the rest of the paper.

5http://www.sanskrit-lexicon.uni-koeln.de/



of knowledge based approaches to WSD. However, it should be noted that the proposed method does
not calculate the lexical overlap between the Sanskrit text and dictionary glosses for determining the best
fitting word sense, as proposed by Lesk (1986) and later authors. Moreover, it does not use the graph
structure of OpenCyc for WSD (Agirre and Soroa (2009) et al.). On the technical side, the paper will
compare the efficiency of Maximum Entropy and of recurrent neural network models, both of which are
regularly applied to WSD.

The rest of the paper is organized as follows. After an overview of related research in Section
2, Section 3 introduces the corpus and describes its semantic annotation layer. Section 4 describes
how features for WSD are created, and which models are applied to the task. Section 5 compares the
performance of the models and gives a short error analysis. Section 6 summarizes the paper.

2 Related Research

Although there exists a Sanskrit WordNet (Kulkarni et al., 2010), Sanskrit WSD has found little atten-
tion in research. While Kulkarni et al. (2010) and Bhingardive and Bhattacharyya (2017) concentrate on
(broad) sense induction for Hindi and other modern Indian languages, Hellwig (2012) reports quantita-
tive results only for a few ambiguous Sanskrit lemmata. Some recent studies have dealt with WSD for
other classical languages such as Old English (Wunderlich et al., 2015) or Latin (Aguilar et al., 2016;
Bamman and Crane, 2011). The methodology described in the last two papers (structured prediction for
WSD, knowledge acquisition from parallel bilingual corpora) cannot be transferred to Sanskrit WSD,
because corpora with contiguous word semantic annotations and large parallel corpora are largely mis-
sing. Similarly, diachronic WSD using word embeddings (Hamilton et al., 2016) or graphical models
(Wijaya and Yeniterzi, 2011; Frermann and Lapata, 2016) cannot be applied due to the limited size of
the digital Sanskrit corpus and the uncertainties in its historical stratification.

Ciaramita and Johnson (2003) introduced the task of Wordnet supersense (WNSS) classification by
mapping fine-grained WordNet senses to the titles of the containing lexicographer files. The authors
report accuracy rates of 52.3% on the type and 53.4% on the token level for words contained in WordNet
1.71, but not found in WordNet 1.6. This work was continued by Curran (2005), who discusses linguistic
and lexicographic challenges in WNSS definition and assignment, and achieves an overall accuracy of
68% using a multi-class perceptron. Similar approaches are reported in Ciaramita and Altun (2006)
and Schneider and Smith (2015). Johannsen et al. (2014) study supersense tagging for English Twitter
data, using structured prediction and pretrained word embeddings. Flekova and Gurevych (2016) co-
train word and supersense embeddings using the word2vec model, and construct a supersense tagger for
English by feeding these embeddings along with further hand-crafted features into a multi-layer neural
network. The authors obtain a classifier that performs close to the state of the art.

To sum up, the present paper is, to the best of our knowledge, the first attempt to develop a WNSS
tagger for Sanskrit. Contrary to many proposed methods for WNSS of English, it relies heavily on cross-
lingual information, and cannot make use of Lesk-style measures of text-gloss overlap, because texts and
glosses are composed in different languages.

3 WordNet Supersenses for Sanskrit

We perform WSD with the 26 WordNet supersenses of nouns introduced in Ciaramita and Johnson
(2003). WNSS are generated from the word semantic annotation layer of the Digital Corpus of Sanskrit
(DCS; Hellwig, 2015). This corpus contains 4,170,064 word tokens (85,431 lexical types) with manually
validated morphological and lexical annotations from all periods of Sanskrit literature, but with a strong
focus on CS. 491,119 out of these 4,170,064 tokens are additionally annotated with fine-grained word
semantic labels by a single annotator, using the OpenCyc (Lenat, 1995) sense inventory as starting point.
Relying on the results of a single annotator is far from ideal, because there is no control of the error level,
and no baseline for disagreement of human annotators can be calculated. However, as in the case of
the verb-argument labelings themselves (see p. 1), other large scale annotations are not available at the



Word class Tokens Types
Nouns 294,506 20,307
Adjectives 67,958 3,521
Verbs 71,942 2,798
Particles, indeclinables 56,713 396

Table 1: Size of the word semantic annotation layer in the DCS: Number of lexical tokens and types with
word semantic annotations, split by word classes

moment. Table 1 shows that the majority of annotated lemmata, both on token and type level, are nouns.
These 294,506 sense annotated noun tokens serve for training and testing the WSD models in this paper.

Concepts not found in the original version of OpenCyc were added to the sense inventory during
annotation of texts. A total of 18,804 distinct concepts were annotated in the DCS, 10,065 of which were
not contained in the original OpenCyc inventory. Translations between OpenCyc concepts and WNSS
were generated by first mapping OpenCyc concepts onto the English Wordnet. For finding corresponding
entries, we compared the terms and the string based overlap of their definitions in OpenCyc and Wordnet.
Based on this information, supersenses were retrieved from the WordNet lexicographer files. Newly
created concepts, for which this mapping provides no WNSS, were labeled with the WNSS of their
parent concept.6

While parts of the alchemical literature (≥ 1300 CE) and the Bhagavadgı̄tā (100-300 CE?) were
sense annotated completely in the DCS, many semantic annotations were added to single, “philologi-
cally interesting” words; this means either to frequent words with an unusual meaning, or to rare words.
The majority of these words are nouns and refer to concrete entities. The bias introduced by this an-
notation mode is aggravated by the text-historical composition of the DCS, because scientific (medical,
alchemical) and epic texts such as the Mahābhārata (300 BCE - 500 CE?) are strongly overrepresen-
ted. The dominance of the scientific subcorpus is particularly relevant for WSD, because its vocabulary
contains numerous rare technical terms denoting plants, diseases, body parts, and medical or alchemical
procedures. As a consequence, senses denoting concrete entities and acts are overrepresented.

The semantic classification targets Vedic and rare nouns, and it cannot be taken for granted that
these nouns show the same distribution of WNSS as frequent ones. In addition, WNSS were originally
designed for modern Western texts, so that they may not cover the conceptual space of ancient Indian
texts in an appropriate way. In order to understand the distribution of supersenses over noun frequency
classes, we annotated three additional data sets S1−3 of 400 tokens each with WNSS. S1 simulates the
distribution of hapax legomena in a medium-sized corpus, and corresponds to the evaluation setting
Rare nouns (see Sec. 5). The complete DCS is split into 20 subcorpora of approximately 200,000
tokens, respectively.7 From each subcorpus, we randomly drew 20 tokens that are hapax legomena in
their respective subcorpus. S2 contains 400 randomly drawn hapax legomena from the Vedic layer of
the DCS, and corresponds to the evaluation setting Vedic nouns in Sec. 5. S3 consists of 400 randomly
drawn tokens from the complete DCS, which must not be hapax legomena. S3 is intended for simulating
the composition of the training set.

The frequency distribution of supersenses in the three samples displayed in Table 2 allows several
interesting insights. First, few supersenses are frequent in all three samples. When considering the nature
of the Sanskrit texts and the annotation mode, high frequencies could be expected for concrete super-
senses such as ‘artifact’, ‘person’, ‘plant’, and ‘substance’. Because most instances of ‘substance’ and

6OpenCyc is not structured in a strictly hierarchical manner. The parent concept P of a given concept C is obtained by
selecting the most frequently annotated item for which a subclass relation between P and C is recorded; if such a record does
not exist, P is set to the most frequently annotated item, for which an instance or member relation is recorded.

7We chose this size because it comes close to that of the R. gveda.



S1 S2 S3 N P
person 25.25 29.84 24.26 247 26.45
act 13.13 14.4 7.35 117 11.63
comm. 4.8 17.02 2.94 88 8.25
substance 9.34 2.62 14.71 67 8.89
artifact 5.56 6.28 7.35 56 6.4
plant 10.1 1.83 3.68 52 5.2
state 3.54 5.76 2.94 40 4.08
cognition 2.53 2.09 8.82 30 4.48
attribute 3.54 2.88 2.94 29 3.12
location 3.79 1.83 5.15 29 3.59
body 3.28 2.36 3.68 27 3.11
feeling 2.53 1.57 2.21 19 2.1
animal 1.77 2.09 2.21 18 2.02
group 2.02 1.57 0.74 15 1.44
time 0.51 1.83 4.41 15 2.25
object 1.52 1.31 1.47 13 1.43
process 1.77 1.31 0.74 13 1.27
quantity 1.01 0.26 2.94 9 1.4
event 0.76 0.79 0.74 7 0.76
phen. 1.01 0.79 0 7 0.6
poss. 0.76 0.52 0.74 6 0.67
shape 0.51 0.52 0 4 0.34
food 0.25 0.52 0 3 0.26
relation 0.76 0 0 3 0.25

Table 2: Proportions of WNSS in three manually annotated samples of 400 lexical tokens; S1: hapax
legomena in 200,00 token subcorpora; S2: hapax legomena in late Vedic texts; S3: random tokens
from the full DCS. – Rows are ordered by summed absolute frequencies (N) of supersenses in the three
samples (P: proportions in the three samples). Differences to the sum of 3 × 400 indicate that some
samples could not be labeled.

‘plant’ occur in the late medical and alchemical subcorpora, these two supersenses have low proportions
in the sample from old literature (S2). ‘cognition’, ‘time’, and ‘quantity’ are more frequent in S3 than
in the hapax legomena samples, because they comprise generic terms such as samaya ‘(right) moment’,
jñāna ‘knowledge’, and number words, which are frequent, but have few synonyms.

The supersenses ‘act’ and ‘communication’ show a somehow opposite distribution. These supersen-
ses are more frequent in S1 and S2 than in S3 and, therefore, relevant for the main task of this paper.
While ‘act’ often denotes special procedures in medicine and ritual such as mahāśānti ‘an expiatory
observance and recitation’, tokens annotated as ‘communication’ in S2 mostly denote special types of
Vedic hymns mentioned in theoretical passages.8 It is important to keep in mind that the R. GVEDA, whose
verb-argument annotation basically motivates this paper, comes from a different text genre than the other
Vedic texts. While it also deals with the invocation of deities, it puts no emphasis on the theoretical
reflection of the involved speech acts, but takes its imagery from battle, mythology, and daily life.

4 Models and Features

Classification cannot benefit from structured prediction, because the majority of annotations is attached to
isolated words (Sec. 4). Therefore, we perform WSD of single words using a Maximum Entropy model

8The ritual handbooks called Brāhman. as and the Upanis.ads constitute the major part of the old layer in the DCS, from
which S2 is drawn. These texts discuss the ritual and especially ritual formulae and hymns by drawing analogies between these
texts and the outer world (Hillebrandt, 1897).



(ME) and an ensemble of recurrent neural networks (RNN). This section describes the architecture of
these classifiers and the features used to train them.

4.1 Maximum Entropy

We use two types of features for training the ME model (Berger et al., 1996). Definitions are extracted
from the English glosses provided by Monier-Williams (1899). Each definition is parsed using the Stan-
ford NLP parser (Manning et al., 2014)9, and the syntactic root (“head”) and all other nouns, adjectives,
and verbs are extracted (“context”). The lexicographic definitions contain many entries of the form “a
kind of plant” or “name of a warrior”, where the direct syntactic dependent of the root better indicates
the semantic class of the lemma than the actual root (“a kind of plant” primarily denotes a plant). These
definitions are detected using the string pattern a* (name|kind|class) of .* The dependent of the syntactic
root is extracted from the parse tree of the definition, and selected as the head word of the definition. As
an example, the lexicographic definition “any cry or noise” (for ruta) produces “cry” as head and “noise”
as context word, while the definition “a particular class of gods under the Manu Tāmasa” yields the
head “god” (being the direct dependent of the syntactic root “class”) and the context words “particular”,
“class”, “Manu”, and “Tāmasa”.

Head and context words are weighted by their lexicographic ranks in Monier-Williams (1899), be-
cause the dictionary orders the defininitions mainly, though not fully consistently by their importance.10

Let N denote the number of definitions of a Sanskrit lemma, and ri the 1-based rank of a single definition
i, head and context words extracted from this definition are weighted with a factor wlex:

wlex =
N − ri + 1∑N

j=1(N − rj + 1)

The feature type definitions is generated for the target word itself, and for the two words directly pre-
ceding resp. following the target in the Sanskrit sentence.11 Heads and context words for targets and
surrounding lemmata are distinguished with prefixes.

The second type of features is the lexical context provided by the Sanskrit lemmata that surround
the target word in a sentence and that are not function words (lex_context). Lemmata are weighted with
their inverse distances to the target for ME.

The ME model is trained with limited-memory BFGS and L2 regularization of 0.5. We use the
implementation from http://www.logos.ic.i.u-tokyo.ac.jp/~tsuruoka/maxent/.

4.2 Baseline

We use the WNSS of the first head of the first definition of a lemma as a baseline for WSD. As an
example, the first definition of the lemma vis. n. u is given as “name of one of the principal Hindū deities”.
The head word of this definition according to 4.1 is “deity”, which is mapped to the WNSS ‘person’ as
baseline prediction. If WordNet contains more than one synset containing the head word, the supersense
of the first synset is chosen as prediction. If the head is not contained in WordNet, the baseline predicts
the UNK tag.

4.3 Recurrent Neural Network Model

The RNN model is an extension of the architecture proposed by Tang et al. (2015) for sentiment classi-
fication. We test this kind of architecture, because we try to predict a WNSS on the basis of sentences
(Sanskrit context) and phrases (English definitions). Both feature types are strictly ordered by sentence

9Package version 3.6.0; we use the pipeline “tokenize, ssplit, pos, lemma, parse”.
10Much of the material contained in Monier-Williams (1899) is translated from Böhtlingk and Roth (1875), and the lexico-

graphic order of this source influences the order in Monier-Williams (1899); see Zgusta (1988).
11Pre-tests with larger contexts showed no increase of accuracy.
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Figure 2: RNN architecture for joint training of English definitions and Sanskrit lemmata, illustrated for
disambiguating the central word vana ‘forest’ in the dummy sentence rāmo vanam. gacchati ‘Rāma goes
into the forest’; definitions: rāma→ “name of a man”, vana→ “a forest”, gam→ “to go”.

structure (“city of god” 6= “god of the city”) and the lexicographic order of definitions. Choosing a recur-
rent architecture seemed appropriate for capturing this order. In addition, the RNN produces fixed-size
numeric representations of the dictionary definitions, and thereby facilitates the transition from phrasal
to lexical semantics (Hill et al., 2016).

The RNN consists of four subunits. The first three subunits receive concatenated dictionary defi-
nitions, while the fourth subunit processes the Sanskrit lemmata in the source sentence. Each subunit
consists of an embedding layer of dimensions d × |V |, with d denoting the embedding dimension and
|V | the size of the vocabulary, a bidirectional LSTM layer (Hochreiter and Schmidhuber, 1997; Graves
et al., 2005) with 100 hidden units, and a dropout layer (Hinton et al., 2012) with a dropout rate of
25%. The outputs of the subunits at the last time step are concatenated and further processed with a fully
connected and a softmax layer (Fig. 2). The RNN is trained with cross-entropy error as loss function,
backpropagation, and a constant learning rate of 0.005 for 30 iterations.

The input for the three dictionary subunits consists of the definitions provided by Monier-Williams
(1899) for the target (first subunit) and its left and right context words (second and third subunits, re-
spectively). Definitions for each word are concatenated in their lexicographic order. Assume, for ex-
ample, that Monier-Williams (1899) provides the two definitions “name of a man” and “a town” for the
target word. The first subunit will receive the concatenated string “name of a man a town” in this case.
The Sanskrit subunit receives the lemmata of the full sentence, where the target lemma is replaced by the
UNK symbol.

The embeddings of the English words (subunits 1–3) are initialized with the pretrained vectors from
the GloVe database (Pennington et al., 2014).12 Embeddings of unknown English words are initialized
with random values, and trained together with the other embeddings. In this way, words not contained
in the GloVe database such as Sanskrit terms in IAST transliteration (“Śiva”, “Vis.n. u”; found as “shiva”
and “vishnu” in GloVe), or orthographic variants (“sun-flower”) are integrated into the feature space.
Embeddings of Sanskrit lemmata are pretrained using the word2vec tool (Mikolov et al., 2011).13

12Wikipedia 2014 + Gigaword 5 embeddings; embedding size: 50
13Settings: BOW, window size: 8, 5 iterations, minimal frequency of a lemma: 3, embedding size: 50. – Mixing embeddings

trained with different algorithms may not be a good idea, because the choice of the training algorithm may influence how well
the produced embeddings perform in specific linguistic tasks (Schnabel et al., 2015).



Rare nouns
Classifier Metrics P R F
baseline mi 58.46 34.82 43.64

ma 40.43 41.71 41.06
ME mi 76.5 76.5 76.5

ma 53.53 53.55 53.54
RNN mi 77.68 77.68 77.68

ma 56.19 55.25 55.71
Vedic nouns

Classifier Metrics P R F
baseline mi 55.7 47.16 51.08

ma 42.73 38.46 40.48
ME mi 56.82 56.82 56.82

ma 47.7 41.02 44.11
RNN mi 63 62.88 62.94

ma 53.74 51.09 52.38

Table 3: Results in terms of mi(cro-) and ma(cro-average) p(recision), r(ecall), and F-score; details in
Table 4.

5 Experiments and Results

The models are evaluated in two settings:

Rare nouns uses the 2,809 sense annotated noun tokens whose lemmata occur less than three times in
the complete DCS as test set, and the remaining sense annotated noun tokens as training set.

Vedic nouns uses the 528 sense annotated noun tokens whose lemmata occur only in the Vedic layer of
the DCS as test set, and the remaining sense annotated noun tokens as training set. This setting
simulates knowledge transfer from CS to VS. Note that lemmata in the test set are not required to
be rare, contrary to the rare nouns settings.

Table 3 presents micro- and macro-averaged precision, recall, and F-scores for the two settings, while
Table 4 breaks up these numbers by WNSS. Although the historical structure of the Sanskrit corpus,
the annotation mode (Sec. 3), and the classifier types do not allow direct comparison with the results
reported by Curran (2005) and Ciaramita and Altun (2006), Table 3 shows that ME and RNN achieve
good performance, especially for rare nouns. Both classifiers clearly improve over the baseline. Low
recall rates of the baseline indicate problems with WordNet coverage, while its low precision is caused
by the interaction between high semantic ambiguity of Sanskrit nouns and lexicographic arrangement
(refer to Fn. 10). For the word aurabhra, for example, Monier-Williams (1899) provides the definitions
“a coarse woollen blanket” and “name of a physician”. Although the first meaning occurs only in indige-
nous monolingual dictionaries, Monier-Williams (1899) places it at first position, because it may be the
etymologically older meaning (urabhra ‘sheep’� aurabhra). The baseline can, therefore, never access
the second, correct solution.

Details in Tab. 4 demonstrate that ME and RNN have problems with nouns denoting abstract con-
cepts.14 While ME and RNN obtain accuracy rates of 81.7% and 83.5% for concrete nouns in the setting
rare nouns, they only achieve 56.0% and 54.7% for abstract ones in the same setting. The higher error
rate for abstract nouns can partly be explained by missing specialization of the English dictionary. In

14The supersenses “animal”, “artifact”, “body”, “food”, “location”, “object”, “person”, “plant”, “substance” constitute the
set of concrete nouns. All other supersenses are counted as abstract.



the medical text Suśrutasam. hitā, Cik. 11.3, for example, the term parisaran. a denotes a symptom of
the urinary disease called prameha, as a patient suffering from prameha “gets the habit of parisaran. a.”
Monier-Williams (1899) glosses the hapax legomenon parisaran. a as “running or moving about”, which
is a direct translation of the meaning “Umherlaufen” in Böhtlingk and Roth (1875). Both dictionaries
were obviously not aware that the term has a medical meaning in this passage, and can best be translated
as “restlessness”. This translation was actually chosen as the word semantic annotation of parisaran. a,
and was connected with the synset “restlessness (inability to rest or relax or be still)” in OpenCyc. While
the WNSS of “restlessness” is “attribute”, both ME and RNN classify this occurrence of parisaran. a as
an “act” – a meaningful proposal given the limited amount of information available in Monier-Williams
(1899) and Böhtlingk and Roth (1875).

Other misclassified instances of the WNSS “attribute” point to the problems inherent in annotating
ancient languages, as in the case of the hapax legomenon anaveks. ā mentioned in the juridicial treatise
Manusmr.ti (Manusmr.ti, 7.111):

mohād
folly:AB.

rājā
king:N.

sva-rās. t.ram.
own-realm:A.

yah.
who:N.

kars. ayaty
oppress:3.sg.

anaveks. ayā
carelessness:I.

When a king in his folly oppresses his own realm indiscriminately, ... (Olivelle, 2005, 160)

The word was annotated with the OpenCyc concept “carelessness (the quality of not being careful or
taking pains)” (WNSS: “attribute”), but labeled as “act” by ME, and as “state” by RNN. All three so-
lutions can be justified semantically in the given textual context. While the gold annotation “attribute”
fits well into the scientific character of the text, which draws a systematic picture of the ideal king,
the solution “act” would highlight the voluntary negligence of royal duties. Interestingly, the semantic
ambiguity is reflected, and even increased by the Sanskrit commentaries of the text. The commentary
of Medhātithi seems to support a reading as an “act”, because he paraphrases the term with the clause
“when the king has not performed the considerations described above” (Mandlik (1886, 890); yastu rājā
pūrvoktavivekam akr. tvā ...). On the other hand, the commentators Kullūka (“through bad teachings and
lack of knowledge”, dus. t.aśis. t.ājñānena) and Rāmacandra (“through lack of consideration”, avicāren. a)
interpret anaveks. ā rather as a cognitive feature or process. If their interpretation is accepted, the term
should have been labeled as “cognition” in the given context. Apart from emphasizing the problem of
missing adjudication (Sec. 3), this example shows the limits of semantic differentiability when interpre-
ting ancient texts, whose languages are not spoken anymore.

ME and RNN consistently perform better for rare than for Vedic nouns. This behavior points to the
problems inherent in transfering word semantic knowledge over long distances in time, and supports
the conclusions reached by Sukhareva and Chiarcos (2014) for projecting parser annotations. The vast
majority of training records in both settings comes from CS, so that classifiers are biased towards this
form of Sanskrit. The composition of the test sets, on the other hand, shows clear differences: Out of
the 2,809 words in the test set of rare nouns, 1,363 belong to the medical and alchemical subcorpus,
574 to the epic literature, and 247 to the poetic and narrative subcorpus, while only 118 are from the
Vedic period (106 of them from the R. gveda). The training set of rare words provides plenty of data
for disambiguating the WNSS of nouns from the later subcorpora, because the alchemical and the epic
subcorpora are more densely annotated than other parts of the DCS (refer to page 4). These properties
are not met for the setting Vedic nouns.

Although the ME is trained with preprocessed English definitions, the RNN produces better over-
all results in both experimental settings. This conclusion holds for frequent and for rare WNSS, as is
evidenced by the macro-average values in Table 3 and the F-scores of rare WNSS in Table 4. We hypot-
hesize that the ME is not able to integrate context features appropriately in several cases. In the medical
passage Suśrutasam. hitā, Nidānasthāna 9.16, for example, the word vegāghāta ‘constipation’ is correctly
labeled as ‘state’ by the RNN, but as ‘act’ by the ME, although the head word “constipation” receives the
highest coefficient of 1.529 for the label ‘state’. The misclassification of this token is caused by context
features such as the Sanskrit lemma vyāyāma ‘exertion’, whose linear combination produces the final
decision for ‘act’. On the other hand, performance of the RNN model drops sharply, when randomly



Rare nouns
Baseline ME RNN

WNSS N P R F P R F P R F
act 124 25.42 24.19 24.79 53.1 48.39 50.63 63.24 34.68 44.79
animal 52 66.00 63.46 64.71 64.44 55.77 59.79 63.79 71.15 67.27
artifact 404 60.52 34.9 44.27 75.00 70.54 72.7 73.85 75.50 74.66
attribute 33 24.49 36.36 29.27 28.21 33.33 30.56 33.33 30.3 31.75
body 44 48.78 45.45 47.06 47.73 47.73 47.73 59.26 72.73 65.31
cognition 14 19.23 35.71 25 25.00 50.00 33.33 14.29 7.14 9.52
communication 111 30.99 19.82 24.18 73.33 69.37 71.3 70.8 72.07 71.43
event 23 16.22 26.09 20 50.00 30.43 37.84 47.06 34.78 40.00
feeling 3 30.00 100.00 46.15 20 33.33 25 28.57 66.67 40
food 58 61.11 18.97 28.95 61.7 50 55.24 73.17 51.72 60.61
group 10 9.76 40 15.69 55.56 50.00 52.63 100.00 10 18.18
location 101 65.85 26.73 38.03 75.21 87.13 80.73 76.15 82.18 79.05
object 172 74.35 82.56 78.24 85.47 85.47 85.47 90.74 85.47 88.02
person 834 89.29 35.97 51.28 90.25 92.09 91.16 93.62 91.49 92.54
phenomenon 7 25 57.14 34.78 50.00 28.57 36.36 50 28.57 36.36
plant 196 52.27 11.73 19.17 79.80 80.61 80.20 71.25 87.24 78.44
possession 11 21.62 72.73 33.33 75.00 81.82 78.26 60 81.82 69.23
process 83 66.67 2.41 4.65 55.41 49.4 52.23 63.01 55.42 58.97
quantity 20 13.51 25 17.54 52.17 60 55.81 34.15 70.00 45.9
relation 2 0 0 0 0 0 0
shape 1 12.5 100.00 22.22 0 0 0
state 113 67.61 42.48 52.17 68.97 70.8 69.87 64.03 78.76 70.63
substance 378 77.99 32.8 46.18 78.61 80.69 79.63 79.27 79.89 79.58
time 12 29.41 41.67 34.48 40.00 50 44.44 38.89 58.33 46.67
Tops 3 22.22 66.67 33.33 33.33 33.33 33.33 0 0

Vedic nouns
Baseline ME RNN

N P R F P R F P R F
act 51 62.96 33.33 43.59 62.26 64.71 63.46 57.69 58.82 58.25
animal 24 76.47 54.17 63.41 87.5 58.33 70 93.33 58.33 71.79
artifact 35 66.67 51.43 58.06 51.28 57.14 54.05 57.5 65.71 61.33
attribute 37 57.50 62.16 59.74 37.84 37.84 37.84 54.55 32.43 40.68
body 21 63.16 57.14 60.00 55.56 47.62 51.28 57.14 57.14 57.14
cognition 8 10 12.50 11.11 12.5 12.5 12.5 14.29 12.5 13.33
communication 32 41.94 40.62 41.27 64.00 50 56.14 60 65.62 62.69
event 10 18.18 20.00 19.05 66.67 20 30.77 14.29 10 11.76
feeling 11 43.75 63.64 51.85 20 9.09 12.5 44.44 36.36 40
food 3 50.00 33.33 40.00 18.18 66.67 28.57 16.67 66.67 26.67
group 13 16.67 15.38 16 50.00 15.38 23.53 33.33 7.69 12.5
location 20 63.64 35.00 45.16 33.33 30 31.58 46.67 35 40
object 14 46.15 42.86 44.44 26.09 42.86 32.43 58.82 71.43 64.52
person 163 87.13 53.99 66.67 70.85 86.5 77.9 76.72 88.96 82.39
phenomenon 15 42.86 40 41.38 60.00 20 30 42.86 60.00 50.00
plant 4 0 0 57.14 100.00 72.73 60.00 75 66.67
possession 7 60 85.71 70.59 33.33 42.86 37.5 75.00 42.86 54.55
process 5 0 0 0 100 40.00 57.14
quantity 7 0 0 50 14.29 22.22 77.78 100.00 87.5
shape 1 0 0 0 0
state 21 61.54 76.19 68.09 50 33.33 40 62.50 47.62 54.05
substance 14 77.78 50 60.87 47.62 71.43 57.14 76.92 71.43 74.07
time 7 36.36 57.14 44.44 42.86 42.86 42.86 55.56 71.43 62.50
Tops 5 0 0 100.00 20.00 33.33 0 0

Table 4: P(recision), r(ecall) and F-score for rare (upper subtable) and Vedic nouns (lower subtable).
Row-wise maxima are printed bold.



initialized English and Sanskrit word embeddings are used instead of pretrained ones (macro-averaged
P: 32.40, R: 34.44, F: 33.39, for the Vedic nouns settings; compare with Tab. 3). This finding underlines
the importance of using appropriate pretrained embeddings in downstream tasks (Schnabel et al., 2015).

6 Conclusion

The paper has demonstrated that definitions from modern Western dictionaries and the lemmatized sen-
tence context provide enough information for an efficient supersense disambiguation of rare and Vedic
nouns. We would like to argue that gold information on the lemmatization level is crucial for this task,
and compensates for the lack of large Sanskrit corpora to a certain degree. This indirect form of super-
vision is especially relevant for a morphologically rich language such as (Vedic) Sanskrit, where nouns
and adjectives regularly occur in 24 case forms, and a single verbal root can produce more than 100
inflected forms. It should be noted that lemmatization not only disambiguates the Sanskrit words in the
sentence context, but is equally relevant for retrieving the correct dictionary definitions of a word, which
are appended to the lemma in the database of the DCS.

Future work in this area will follow two tracks. First, sense tagging was performed without using
lemma information of the target word as a feature. The paper ignores the target lemma, because lemmata
are by definition not useful for semantically disambiguating rare words and especially hapax legomena.
It can, however, be expected that the lemma feature will clearly improve the accuracy of unrestricted
Sanskrit WSD. Second, we will try to include derivational information as an additional feature in WSD
of rare and Vedic nouns. Numerous Sanskrit nouns are derived from verbs or other nouns through
derivational morphology, as described in Pān. ini’s As.t.ādhyāyı̄, or by compounding. Such derivational
processes are recorded in Böhtlingk and Roth (1875) and Wackernagel and Debrunner (1954), but can
also be detected using probabilistic models such as Morfessor (Creutz and Lagus, 2007). Since derivation
can provide important semantic cues for the human reader, its inclusion may also improve automatic
supersense disambiguation of Sanskrit nouns.
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