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Biological, translational, and clinical language processing

K. BRETONNEL COHEN, DINA DEMNER-FUSHMAN, CAROL FRIEDMAN, LYNETTE HIRSCHMAN,
AND JOHN P. PESTIAN

1 Background and goals of the workshop

Natural language processing has a long history in the medical domain, with research in the field dating
back to at least the early 1960s. In the late 1990s, a separate thread of research involving natural
language processing in the genomic domain began to gather steam. It has become a major focus of
research in the bioinformatics, computational biology, and computational linguistics communities. A
number of successful workshops and conference sessions have resulted, with significant progress in the
areas of named entity recognition for a wide range of key biomedical classes, concept normalization,
and system evaluation. A variety of publicly available resources have contributed to this progress, as
well.

Recently, the widely recognized disconnect between basic biological research and patient care delivery
stimulated development of a new branch of biomedical research—translational medicine. Translational
medicine, sometimes defined as the facilitation of “bench-to-bedside” transmission of knowledge, has
become a hot topic, with a National Center for Biocomputing devoted to this theme established last
year.

This workshop has the goal of addressing and bringing together these three threads in biomedical natural
language processing, or “BioNLP:” biological, translational, and clinical language processing.

2 Submissions and acceptance rate

The workshop received 59 submissions—almost twice the number of submissions of any previous
BioNLP workshop or conference session that we are aware of (31 for last year’s PSB session on New
frontiers in text mining, [18]). The submissions covered a wide range of topics from most areas of
natural language processing and from both the clinical and the genomics domains. There were 48
full-paper submissions and 11 poster submissions. A strong program committee comprising members
of the BioNLP community from North America, Europe, and Asia provided three reviews for each
submission. Out of the many strong pieces of work submitted, fourteen papers were accepted for oral
presentation, as well as nineteen posters. The subjects of the papers fell into five or six broad categories:

• Syntax
• Lexical semantics and terminology
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• Named entity recognition and word sense disambiguation
• Information extraction
• Usability and user interface design
• Shared tasks

3 Themes in the papers

A number of trends were notable in the accepted papers. Compared to past years, the number of papers
on gene mention recognition was quite small. We did see strong work on named entity recognition for
new semantic classes, as well as on the gene normalization task.

There were also a number of papers on syntactic topics. Other than the pioneering work of the GENIA
group some years ago and two recent papers on parser evaluation [4, 5], there has been little work on
syntax in biomedical NLP to date. However, three papers on syntactic topics appear in this proceedings
volume–[12, 14, 15]. [15] is especially unique in dealing with an actual clinical application.

Lexical semantics and terminology also figured heavily in this year’s workshop. [16] discussed the
gene symbol disambiguation problem. [8] presented a system for mapping clinical terminology to lay
terminology. [6] presented work on the development of a corpus annotated with a semantic class of
entity that has previously received scant attention in the field. [7] explored the potential of domain-
specific semantic roles for use in information extraction and document classification. It is notable that
there were no papers on the classic “gene mention” problem; although it is clear that gene mention
recognition is not yet a solved problem [17], it is encouraging that work in this area is progressing, and
our sole paper on this task dealt with the more complex problem of recognizing nested entities [1].

The work on information extraction that appeared this year was often quite innovative. Chapman
described an extension of the NegEx algorithm to extract various kinds of context-establishing
information. [11] presented work on an unsupervised method for protein-protein interaction detection,
using graph-based mutual reinforcement.

Finally, three papers demonstrated the continued contribution of shared tasks to progress in the field.
[13] described a shared task that resulted in the public availability of a large document collection of
clinical texts. [2] used the data from that task and the associated evaluation itself to test a number of
hypotheses regarding the differences between published and clinical texts and regarding the portability
of text mining systems to new domains. [16] (also mentioned above in the context of lexical semantics
and terminology) utilitized data from the BioCreative shared tasks as a source of test data.

There were an encouraging number of papers that focussed on the usability and accessibility of text
mining and of information access systems. [9] describes a novel search interface, and provides valuable
insight into the design of usability studies. [8] (like [16], also mentioned above in the context of lexical
semantics and terminology) described a system that aids in the process of making medical information
more intelligible to the lay public.

There was a notable broadening of the types of genres of textual inputs that this year’s papers dealt with.
In previous years, most work has tended to deal with abstracts drawn from PubMed/MEDLINE or with
ontologies, with occasional forays into longer texts, such as full-text journal articles, or shorter ones,
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such as GeneRIFs. This year’s workshop contains work on newsfeeds [7], clinical data [2, 3, 12, 13],
full text [9], and speech [15]—a genre heretofore essentially entirely neglected in the BioNLP field.

Finally, the accepted posters reflect an enormously fertile field. The poster session includes much work
that would have had oral presentations in a less-competitive meeting. The topics of the posters cover a
range of subjects every bit as diverse and interesting as the work with oral presentation; the executive
committee regrets that time constraints did not allow for more of it to have oral presentations.
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Syntactic complexity measures for detecting Mild Cognitive Impairment
Brian Roark, Margaret Mitchell and Kristy Hollingshead

Center for Spoken Language Understanding
OGI School of Science & Engineering
Oregon Health & Science University

Beaverton, Oregon, 97006 USA
{roark,meg.mitchell,hollingk}@cslu.ogi.edu

Abstract
We consider the diagnostic utility of vari-
ous syntactic complexity measures when ex-
tracted from spoken language samples of
healthy and cognitively impaired subjects.
We examine measures calculated from man-
ually built parse trees, as well as the same
measures calculated from automatic parses.
We show statistically significant differences
between clinical subject groups for a num-
ber of syntactic complexity measures, and
these differences are preserved with auto-
matic parsing. Different measures show dif-
ferent patterns for our data set, indicating
that using multiple, complementary mea-
sures is important for such an application.

1 Introduction
Natural language processing (NLP) techniques are
often applied to electronic health records and other
clinical datasets. Another potential clinical use of
NLP is for processing patient language samples,
which can be used to assess language development
(Sagae et al., 2005) or the impact of neurodegenera-
tive impairments on speech and language (Roark et
al., 2007). In this paper, we present methods for au-
tomatically measuring syntactic complexity of spo-
ken language samples elicited during neuropsycho-
logical exams of elderly subjects, and examine the
utility of these measures for discriminating between
clinically defined groups.

Mild Cognitive Impairment (MCI), and in par-
ticular amnestic MCI, the earliest clinically de-
fined stage of Alzheimer’s-related dementia, often
goes undiagnosed due to the inadequacy of com-
mon screening tests such as the Mini-Mental State
Examination (MMSE) for reliably detecting rela-
tively subtle impairments. Linguistic memory tests,
such as word list and narrative recall, are more ef-
fective than the MMSE in detecting MCI, yet are
still individually insufficient for adequate discrimi-

nation between healthy and impaired subjects. Be-
cause of this, a battery of examinations is typically
used to improve psychometric classification. Yet the
summary recall scores derived from these linguistic
memory tests (total correctly recalled) ignore poten-
tially useful information in the characteristics of the
spoken language itself.

Narrative retellings provide a natural, conversa-
tional speech sample that can be analyzed for many
of the characteristics of speech and language that
have been shown to discriminate between healthy
and impaired subjects, including syntactic complex-
ity (Kemper et al., 1993; Lyons et al., 1994) and
mean pause duration (Singh et al., 2001). These
measures go beyond simply measuring fidelity to
the narrative, thus providing key additional dimen-
sions for improved diagnosis of impairment. Recent
work (Roark et al., 2007) has shown significant dif-
ferences between healthy and MCI groups for both
pause related and syntactic complexity measures de-
rived from transcripts and audio of narrative recall
tests. In this paper, we look more closely at syntac-
tic complexity measures.

There are two key considerations when choos-
ing how to measure syntactic complexity of spoken
language samples for the purpose of psychometric
evaluation. First and most importantly, the syntactic
complexity measures will be used for discrimination
between groups, hence high discriminative utility is
desired. It has been demonstrated in past studies
(Cheung and Kemper, 1992) that many competing
measures are in fact very highly correlated, so it may
be the case that many measures are equally discrimi-
native. For this reason, previous results (Roark et al.,
2007) have focused on a single syntactic complexity
metric, that of Yngve (1960).

A second key consideration, however, is the fi-
delity of the measure when derived from transcripts
via automatic parsing. Different syntactic complex-
ity measures rely on varying levels of detail from
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the parse tree. Some syntactic complexity measures,
such as that of Yngve (1960), make use of unla-
beled tree structures to derive their scores; others,
such as that of Frazier (1985), rely on labels within
the tree, in addition to the tree structure, to pro-
vide the scores. Given these different uses of detail,
some measures may be less reliable with automa-
tion, hence dis-preferred in the context of automated
evaluation. Ideally, simple, easy-to-automate mea-
sures with high discriminative utility are preferred.

In the current paper, we demonstrate that various
syntactic complexity measures capture complemen-
tary systematic differences between subject groups,
suggesting that the best approach to discriminating
between healthy and impaired subjects is to collect
various measures, as a way of capturing language
“signatures” of the impairment.

For many measures of syntactic complexity, the
nature of the syntactic annotation is critical – differ-
ent conventions of structural annotation will yield
different scores. We will thus spend the next sec-
tion briefly detailing the syntactic annotation con-
ventions that were followed for this work. This is
followed by a section describing a range of complex-
ity measures to be derived from these annotations.
Finally, we present empirical results on the samples
of spoken narrative retellings.

2 Syntactic annotation
For manual syntactic annotation of collected data
(see Section 4), we followed the syntactic annota-
tion conventions of the well-known Penn Treebank
(Marcus et al., 1993). This provides several key ben-
efits. First, there is an extensive annotation guide
that has been developed, not just for written but also
for spoken language, so that consistent annotation
was facilitated. Second, the large out-of-domain
corpora, in particular the 1 million words of syn-
tactically annotated Switchboard telephone conver-
sations, provide a good starting point for training
domain adapted parsing models. Finally, we can use
multiple domains for evaluating the correlations be-
tween various syntactic complexity measures.

There are characteristics of Penn Treebank anno-
tation that can impact syntactic complexity scoring.
First, prenominal modifiers are typically grouped in
a flat constituent with no internal structure. This an-
notation choice can result in very long noun phrases
(NPs) which pose very little difficulty in terms of
human processing performance, but can inflate com-

plexity measures that measure deviation from right-
branching structures, such as that of Yngve (1960).
Second, in spoken language annotations, a reparan-
dum1 is denoted with a special non-terminal cate-
gory EDITED. For this paper, we remove from the
tree these non-terminals, and the structures under-
neath them, prior to evaluating syntactic complexity.

3 Syntactic complexity
There is no single agreed-upon measurement of
syntactic complexity. A range of measures have
been proposed, with different primary considera-
tions driving the notion of complexity for each.
Many measures focus on the order in which vari-
ous constructions are acquired by children learning
the syntax of their native language – later acquisi-
tions being taken as higher complexity. Examples
of this sort of complexity measure are: mean length
of utterance (MLU), which is typically measured
in morphemes (Miller and Chapman, 1981); the
Index of Productive Syntax (Scarborough, 1990),
a multi-point scale which has recently been auto-
mated for child-language transcript analysis (Sagae
et al., 2005); and Developmental Level (Rosenberg
and Abbeduto, 1987), a 7-point scale of complex-
ity based on the presence of specific grammatical
constructions. Other approaches have relied upon
the right-branching nature of English syntactic trees
(Yngve, 1960; Frazier, 1985), under the assump-
tion that deviations from that correspond to more
complexity in the language. Finally, there are ap-
proaches focused on the memory demands imposed
by “distance” between dependent words (Lin, 1996;
Gibson, 1998).

3.1 Yngve scoring
The scoring approach taken in Yngve (1960) is re-
lated to the size of a “first in/last out” stack at each
word in a top-down, left-to-right parse derivation.
Consider the tree in Figure 1. If we knew exactly
which productions to use, the parse would begin
with an S category on the stack and advance as
follows: pop the S and push VP and NP onto the
stack; pop NP and push PRP onto the stack; pop
PRP from the stack; pop VP from the stack and
push NP and VBD onto the stack; and so on. At
the point when the word ‘she’ is encountered, only
VP remains on the stack of the parser. When ‘was’

1A reparandum is a sequence of words that are aborted by
the speaker, then repaired within the same utterance.
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Figure 1: Parse tree with branch scores for Yngve scoring.

is reached, just NP is on the stack. Thus, the Yn-
gve score for these two words is 1. When the next
word ‘a’ is reached, however, there are two cate-
gories on the stack: PP and NN, so this word re-
ceives an Yngve score of 2. Stack size has been re-
lated by some (Resnik, 1992) to working memory
demands, although it most directly measures devia-
tion from right-branching trees.

To calculate the size of the stack at each word,
we can use the following simple algorithm. At each
node in the tree, label the branches from that node
to each of its children, beginning with zero at the
rightmost child and continuing to the leftmost child,
incrementing the score by one for each child. Hence,
each rightmost branch in the tree of Figure 1 is la-
beled with 0, the leftmost branch in all binary nodes
is labeled with 1, and the leftmost branch in the
ternary node is labeled with 2. Then the score for
each word is the sum of the branch scores from the
root of the tree to the word.

Given the score for each word, we can then de-
rive an overall complexity score by summing them
or taking the maximum or mean. For this paper,
we report mean scores for this and other word-based
measures, since we have found these means to pro-
vide better performing scores than either total sum
or maximum. For the tree in Figure 1, the maximum
is 2, the total is 9 and the mean over 8 words is 11
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3.2 Frazier scoring
Frazier (1985) proposed an approach to scoring syn-
tactic complexity that traces a path from a word up
the tree until reaching either the root of the tree or
the lowest node which is not the leftmost child of its
parent.2 For example, Figure 2 shows the tree from

2An exception is made for empty subject NPs, in which case
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Figure 2: Parse tree fragments with scores for Frazier scoring.

Figure 1 broken into distinct paths for each word
in the string. The first word has a path up to the
root, while the second word just up to the VP, since
the VP has an NP sibling to its left. The word is
then scored, as in the Yngve measure, by summing
the scores on the links along the path. Each non-
terminal node in the path contributes a score of 1,
except for sentence nodes and sentence-complement
nodes,3 which score 1.5 rather than 1. Thus em-
bedded clauses contribute more to the complexity
measure than other embedded categories, as an ex-
plicit acknowledgment of sentence embeddings as a
source of syntactic complexity.

As with the Yngve score, we can calculate the
total and the mean of these word scores. In con-
trast to the maximum score calculated for the Yngve
measure, Frazier proposed summing the word scores
for each 3-word sequence in the sentence, then tak-
ing the maximum of these sums as a measure of
highly-localized concentrations of grammatical con-
stituents. For the example in Figure 2, the maximum
is 2.5, the maximum 3-word sum is 5.5, and the total
is 7.5, yielding a mean of 15

16 .

3.3 Dependency distance
Rather than examining the tree structure itself, one
might also extract measures from lexical depen-
dency structures. These dependencies can be de-
rived from the tree using standard rules for estab-
lishing head children for constituents, originally at-

the succeeding verb receives an additional score of 1 (for the
deleted NP), and its path continues up the tree. Empty NPs are
annotated in our manual parse trees but not in the automatic
parses, which may result in a small disagreement in the Frazier
scores for manual and automatic trees.

3Every non-terminal node beginning with an S, including
SQ and SINV, were counted as sentence nodes. Sequences of
sentence nodes, i.e. an SBAR appearing directly under an S
node, were only counted as a single sentence node and thus only
contributed to the score once.
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she was a cook in a school cafeteria

1

Figure 3: Dependency graph for the example string.

tributed to Magerman (1995), to percolate lexical
heads up the tree. Figure 3 shows the dependency
graph that results from this head percolation ap-
proach, where each link in the graph represents a de-
pendency relation from the modifier to the head. For
example, conventional head percolation rules spec-
ify the VP as the head of the S, so ‘was’, as the head
of the VP, is thus the lexical head of the entire sen-
tence. The lexical heads of the other children of the
S node are called modifiers of the head of the S node;
thus, since ‘she’ is the head of the subject NP, there
is a dependency relation between ‘she’ and ‘was’.

Lin (1996) argued for the use of this sort of depen-
dency structure to measure the difficulty in process-
ing, given the memory overhead of very long dis-
tance dependencies. Both Lin (1996) and Gibson
(1998) showed that human performance on sentence
processing tasks could be predicted with measures
of this sort. While details may differ – e.g., how
to measure distance, what counts as a dependency –
we can make use of the general approach given Tree-
bank style parses and head percolation, resulting in
graphs of the sort in Figure 3. For the current paper,
we count the distance between words for each de-
pendency link. For Figure 3, there are 7 dependency
links, a distance total of 11, and a mean of 14
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3.4 Developmental level (D-Level)
D-Level defines eight levels of sentence complex-
ity, from 0-7, based on the development of complex
sentences in normal-development children. Each
level is defined by the presence of specific grammat-
ical constructions (Rosenberg and Abbeduto, 1987);
we follow Cheung and Kemper (1992) in assigning
scores equivalent to the defined level of complex-
ity. A score of zero corresponds to simple, single-
clause sentences; embedded infinitival clauses get
a score of 1 (She needs to pay the rent); conjoined
clauses (She worked all day and worried all night),
compound subjects (The woman and her four chil-
dren had not eaten for two days), and wh-predicate
complements score 2. Object noun phrase rela-
tive clauses or complements score 3 (The police
caught the man who robbed the woman), whereas
the same constructs in subject noun phrases score

5 (The woman who worked in the cafeteria was
robbed). Gerundive complements and comparatives
(They were hungrier than her) receive a score of 4;
subordinating conjunctions (if, before, as soon as)
score 6. Finally, a score of 7 is used as a catch-all
category for sentences containing more than one of
any of these grammatical constructions.

3.5 POS-tag sequence cross entropy
One possible approach for detecting rich syntactic
structure is to look for infrequent or surprising com-
binations of parts-of-speech (POS). We can measure
this over an utterance by building a simple bi-gram
model over POS tags, then measuring the cross en-
tropy of each utterance.4

Given a bi-gram model over POS-tags, we can
calculate the probability of the sequence as a whole.
Let τi be the POS-tag of word wi in a sequence of
words w1 . . . wn, and assume that τ0 is a special start
symbol, and that τn+1 is a special stop symbol. Then
the probability of the POS-tag sequence is

P(τ1 . . . τn) =
n+1∏
i=1

P(τi | τi−1) (1)

The cross entropy is then calculated as

H(τ1 . . . τn) = − 1
n

log P(τ1 . . . τn) (2)

With this formulation, this basically boils down to
the mean negative log probability of each tag given
the previous tag.

4 Data
4.1 Subjects
We collected audio recordings of 55 neuropsycho-
logical examinations administered at the Layton Ag-
ing & Alzheimer’s Disease Center, an NIA-funded
Alzheimer’s center for research at OHSU. For this
study, we partitioned subjects into two groups: those
who were assigned a Clinical Dementia Rating
(CDR) of 0 (healthy) and those who were assigned
a CDR of 0.5 (Mild Cognitive Impairment; MCI).
The CDR (Morris, 1993) is assigned with access to
clinical and cognitive test information, independent
of performance on the battery of neuropsychologi-
cal tests used for this research study, and has been
shown to have high expert inter-annotator reliability
(Morris et al., 1997).

4For each test domain, we used cross-validation techniques
to build POS-tag bi-gram models and evaluate with them in that
domain.
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CDR = 0 CDR = 0.5
(n=29) (n=18)

Measure M SD M SD t(45)
Age 88.1 9.0 91.9 4.4 −1.65
Education (Y) 15.0 2.2 14.3 2.8 1.04
MMSE 28.4 1.4 25.9 2.6 4.29***

Word List (A) 20.0 4.0 15.4 3.3 4.06***

Word List (R) 6.8 2.0 3.9 1.7 5.12***

Wechsler LM I 17.2 4.0 10.9 4.2 5.20***

Wechsler LM II 15.8 4.3 9.5 5.4 4.45***

Cat.Fluency (A) 17.2 4.1 13.9 4.2 2.59*

Cat.Fluency (V) 12.8 4.5 9.6 3.6 2.57*

Digits (F) 6.6 1.4 6.1 1.2 1.11
Digits (B) 4.7 1.0 4.7 1.1 −0.04

Table 1: Neuropsychological test results for subjects.
***p < 0.001; **p < 0.01 ; *p < 0.05

Of the collected recordings, three subjects were
recorded twice; for the current study only one
recording was used for each subject. Three subjects
were assigned a CDR of 1.0 and were excluded from
the study; two further subjects were excluded for er-
rors in the recording that resulted in missing audio.
Of the remaining 47 subjects, 29 had CDR = 0, and
18 had CDR = 0.5.

4.2 Neuropsychological tests
Table 1 presents means and standard deviations for
age, years of education and the manually-calculated
scores of a number of standard neuropsychological
tests that were administered during the recorded ses-
sion. These tests include: the Mini Mental State Ex-
amination (MMSE); the CERAD Word List Acqui-
sition (A) and Recall (R) tests; the Wechsler Logical
Memory (LM) I (immediate) and II (delayed) narra-
tive recall tests; Category Fluency, Animals (A) and
Vegetables (V); and Digit Span (WAIS-R) forward
(F) and backward (B).

The Wechsler Logical Memory I/II tests are the
basis of our study on syntactic complexity measures.
The original narrative is a short, 3 sentence story:

Anna Thompson of South Boston, employed as a cook in a
school cafeteria, reported at the police station that she had
been held up on State Street the night before and robbed of
fifty-six dollars. She had four small children, the rent was
due, and they had not eaten for two days. The police, touched
by the woman’s story, took up a collection for her.

Subjects are asked to re-tell this story immediately
after it is told to them (LM I), as well as after ap-
proximately 30 minutes of unrelated activities (LM
II). We transcribed each retelling, and manually an-
notated syntactic parse trees according to the Penn
Treebank annotation guidelines. Algorithms for au-
tomatically extracting syntactic complexity markers
from parse trees were written to accept either man-

System LR LP F-measure
Out-of-domain (WSJ) 77.7 80.1 78.9
Out-of-domain (SWBD) 84.0 86.2 85.1
Domain adapted from SWBD 87.9 88.3 88.1

Table 2: Parser accuracy on Wechsler Logical Memory re-
sponses using just out-of-domain data (either from the Wall St.
Journal (WSJ) or Switchboard (SWBD) treebanks) versus using
a domain adapted system.

ually annotated trees or trees output from an auto-
matic parser, to demonstrate the plausibility of using
automatically generated parse trees.

4.3 Parsing
For automatic parsing, we made use of the well-
known Charniak parser (Charniak, 2000). Following
best practices (Charniak and Johnson, 2001), we re-
moved sequences covered by EDITED nodes in the
tree from the strings prior to parsing. For this pa-
per, EDITED nodes were identified from the manual
parse, not automatically. Table 2 shows parsing ac-
curacy of our annotated retellings under three pars-
ing model training conditions: 1) trained on approx-
imately 1 million words of Wall St. Journal (WSJ)
text; 2) trained on approximately 1 million words
of Switchboard (SWBD) corpus telephone conver-
sations; and 3) using domain adaptation techniques
starting from the SWBD Treebank. The SWBD out-
of-domain system reaches quite respectable accura-
cies, and domain adaptation achieves 3 percent ab-
solute improvement over that.

For domain adaptation, we used MAP adapta-
tion techniques (Bacchiani et al., 2006) via cross-
validation over the entire set of retellings. For
each subject, we trained a model using the SWBD
treebank as the out-of-domain treebank, and the
retellings of the other 46 subjects as in-domain train-
ing. We used a count merging approach, with the
in-domain counts scaled by 1000 relative to the out-
of-domain counts. See Bacchiani et al. (2006) for
more information on stochastic grammar adaptation
using these techniques.

5 Experimental results
5.1 Correlations
Our first set of experimental results regard correla-
tions between measures. Table 3 shows results for
five of our measures over all three treebanks that we
have been considering: Penn WSJ Treebank, Penn
SWBD Treebank, and the Wechsler LM retellings.
The correlations along the diagonal are between the
same measure when extracted from manually an-
notated trees and when extracted from automatic
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Penn WSJ Treebank Penn SWBD Treebank Wechsler LM Retellings
(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

(a) Frazier 0.89 0.96 0.94
(b) Yngve -0.31 0.96 -0.72 0.96 -0.69 0.95
(c) Tree nodes 0.91 -0.16 0.92 0.58 -0.06 0.93 0.93 -0.48 0.85
(d) Dep len -0.29 0.75 -0.13 0.93 -0.74 0.97 -0.08 0.96 -0.72 0.96 -0.51 0.96
(e) Cross Ent 0.17 0.18 0.15 0.19 0.93 -0.55 0.76 0.09 0.76 0.98 -0.13 0.45 0.05 0.41 0.97
Table 3: Correlation matrices for several measures on an utterance-by-utterance basis. Correlations along the diagonal are between
the manual measures and the measures when automatically parsed. All other correlations are between measures when derived from
manual parse trees.

parses. All other correlations are between mea-
sures derived from manual trees. All correlations
are taken per utterance.

From this table, we can see that all of the mea-
sures derived from automatic parses have a high
correlation with the manually derived measures, in-
dicating that they may preserve any discriminative
utility of these markers. Interestingly, the num-
ber of nodes in the tree per word tends to corre-
late well with the Frazier score, while the depen-
dency length tends to correlate well with the Yngve
score. Cross entropy correlates with Yngve and de-
pendency length for the SWBD and Wechsler tree-
banks, but not for the WSJ treebank.

5.2 Manually derived measures
Table 4 presents means and standard deviations
for measures derived from the LM I and LM II
retellings, along with the t-value and level of sig-
nificance. The first three measures presented in the
table are available without syntactic annotation: to-
tal number of words, total number of utterances, and
words per utterance in the retelling. None of these
three measures on either retelling show statistically
significant differences between the groups.

The first measure to rely upon syntactic annota-
tions is words per clause. The number of clauses are
automatically extracted from the parses by counting
the number of S nodes in the tree.5 Normalizing the
number of words by the number of clauses rather
than the number of utterances (as in words per ut-
terance) results in statistically significant differences
between the groups for LM I though not for LM II.

The other measures are as described in Section
3. Interestingly, Frazier score per word, the number
of tree nodes per word, and POS-tag cross entropy
all show a significant negative t-value on the LM I
retellings, meaning the CDR 0.5 subjects had sig-
nificantly higher scores than the CDR 0 subjects for

5For coordinated S nodes, the root of the coordination,
which in Penn Treebank style annotation also has an S label,
does not count as an additional clause.

these measures on this task. These measures showed
no significant difference on the LM II retellings.

The Yngve score per word and the dependency
length per word showed no significant difference on
LM I retellings but a statistically significant differ-
ence on LM II, with the expected outcome of higher
scores for the CDR 0 subjects. The D-Level measure
showed no significant differences.

5.3 Automatically derived measures
In addition to manual-parse derived measures, Table
4 also presents the same measures when automatic,
rather than manual, parses are used. Given the rela-
tively high quality of the automatic parses, most of
the means and standard deviations are quite close,
and all of the patterns observed in the upper half of
Table 4 are preserved, except that the Yngve score
per word no longer shows a statistically significant
difference for the LM II retelling.

5.4 Left-corner trees
For the tree-based complexity metrics (Frazier and
Yngve), we also investigated alternative imple-
mentations that make use of the left-corner trans-
formation (Rosenkrantz and Lewis II, 1970) of
the tree from which the measures were extracted.
This transformation is widely known for remov-
ing left-recursion from a context-free grammar, and
it changes the tree shape by transforming left-
branching structures into right-branching structures,
while leaving center-embedded structures center-
embedded. This property led Resnik (1992) to pro-
pose left-corner processing as a plausible mecha-
nism for human sentence processing, since it is pre-
cisely these center-embedded structures, and not the
left- or right-branching structures, that are problem-
atic for humans to process.

Table 5 presents results using either manually an-
notated trees or automatic parses to extract the Yn-
gve and Frazier measures after a left-corner trans-
form has been applied to the tree. The Frazier
scores are very similar to those without the left-
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Logical Memory I Logical Memory II
CDR = 0 CDR = 0.5 CDR = 0 CDR = 0.5

Measure M SD M SD t(45) M SD M SD t(45)
Total words in retelling 71.0 26.0 58.1 31.9 1.49 70.6 21.5 58.5 36.7 1.43

Total utterances in retelling 8.86 4.16 7.72 3.28 0.99 8.17 2.77 7.06 4.86 1.01
Words per utterance in retelling 8.57 2.44 7.78 3.67 0.89 9.16 3.06 7.82 4.76 1.18

Manually extracted: Words per clause 6.33 1.39 5.25 1.25 2.68* 6.12 1.20 5.48 3.37 0.93
Frazier score per word 1.19 0.09 1.26 0.11 −2.68* 1.19 0.09 1.13 0.43 0.67

Tree nodes per word 1.96 0.07 2.01 0.10 −2.08* 1.96 0.07 1.80 0.66 1.36
Yngve score per word 1.44 0.23 1.39 0.30 0.61 1.53 0.27 1.26 0.62 2.01*

Dependency length per word 1.54 0.25 1.47 0.27 0.90 1.63 0.30 1.34 0.60 2.19*

POS-tag Cross Entropy 1.83 0.16 1.96 0.26 −2.18* 1.93 0.14 1.86 0.59 0.54
D-Level 1.07 0.75 1.03 1.23 0.14 1.23 0.81 1.68 1.41 −1.42

Auto extracted: Words per clause 6.42 1.53 5.10 1.16 3.13** 6.04 1.25 5.61 3.67 0.59
Frazier score per word 1.16 0.10 1.24 0.10 −2.92** 1.15 0.10 1.09 0.41 0.69

Tree nodes per word 1.96 0.07 2.03 0.10 −2.55* 1.96 0.08 1.79 0.66 1.38
Yngve score per word 1.41 0.23 1.37 0.29 0.54 1.50 0.27 1.28 0.64 1.70

Dependency length per word 1.51 0.25 1.47 0.28 0.54 1.61 0.28 1.35 0.61 2.04*

POS-tag Cross Entropy 1.83 0.17 1.96 0.26 −2.12* 1.92 0.14 1.86 0.58 0.53
D-Level 1.09 0.73 1.11 1.20 −0.08 1.28 0.77 1.61 1.22 −1.15

Table 4: Syntactic complexity measure group differences when measures are derived from either manual or automatic parse trees.
**p < 0.01 ; *p < 0.05

corner transform, while the Yngve scores are re-
duced across the board. With the left-corner trans-
formed tree, the automatically derived Yngve mea-
sure retains the statistically significant difference
shown by the manually derived measure.

6 Discussion and future directions
The results presented in the last section demonstrate
that NLP techniques applied to clinically elicited
spoken language samples can be used to automat-
ically derive measures that may be useful for dis-
criminating between healthy and MCI subjects. In
addition, we see that different measures show differ-
ent patterns when applied to these language samples,
with Frazier scores and tree nodes per word giving
quite different results than Yngve scores and depen-
dency length. It would thus appear that, for Penn
Treebank style annotations at least, these measures
are quite complementary.

There are two surprising aspects of these results:
the significantly higher means of three measures on
LM I samples for MCI subjects, and the fact that one
set of measures show significant differences on LM
I while another shows differences on LM II. We do
not have definitive explanations for these phenom-
ena, but we can speculate about why such results
were obtained.

First, there is an important difference between the
manner of elicitation for LM I versus LM II. LM I
is an immediate recall, so there will likely be, for
unimpaired subjects, much higher verbatim recall of
the story than in the delayed recall of LM II. For

the MCI group, which exhibits memory impairment,
there will be little in the way of verbatim recall, and
potentially much more in the way of spoken lan-
guage phenomena such as filled pauses, parenthet-
icals and off-topic utterances. This may account for
the higher Frazier score per word for the MCI group
on LM I. Such differences will likely be lessened in
the delayed recall.

Second, the Frazier and Yngve metrics differ in
how they score long, flat phrases, such as typical
base NPs. Consider the ternary NP in Figure 1. The
first word in that NP (‘a’) receives an Yngve score
of 2, but a Frazier score of only 1 (Figure 2), while
the second word in the NP receives an Yngve score
of 1 and a Frazier score of 0. For a flat NP with
5 children, that difference would be 4 to 1 for the
first child, 3 to 0 for the second child, and so forth.
This difference in scoring relatively common syn-
tactic constructions, even those which may not affect
human memory load, may account for such different
scores achieved with these different measures.

In summary, we have demonstrated an important
clinical use for NLP techniques, where automatic
syntactic annotation provides sufficiently accurate
parse trees for use in automatic extraction of syntac-
tic complexity measures. Different syntactic com-
plexity measures appear to be measuring quite com-
plementary characteristics of the retellings, yielding
statistically significant differences from both imme-
diate and delayed retellings.

There are quite a number of questions that we will

7



Logical Memory I Logical Memory II
CDR = 0 CDR = 0.5 CDR = 0 CDR = 0.5

Measure M SD M SD t(45) M SD M SD t(45)
Manually extracted: Left-corner Frazier 1.20 0.10 1.28 0.12 −2.60* 1.20 0.11 1.18 0.45 0.29

Left-corner Yngve 1.33 0.20 1.25 0.23 1.20 1.37 0.21 1.14 0.52 2.14*

Auto extracted: Left-corner Frazier 1.16 0.10 1.27 0.13 −3.02** 1.15 0.11 1.10 0.42 0.64
Left-corner Yngve 1.31 0.19 1.23 0.21 1.33 1.36 0.21 1.13 0.51 2.11*

Table 5: Syntactic complexity measure group differences when measures are derived from left-corner parse trees.
**p < 0.01 ; *p < 0.05

continue to pursue. Most importantly, we will con-
tinue to examine this data, to try to determine what
characteristics of the spoken language are leading to
the unexpected patterns in the results. In addition,
we will begin to explore composite measures, such
as differences in measures between LM I and LM II,
which promise to better capture some of the patterns
we have observed. Ultimately, we would like to
build classifiers making use of a range of measures
as features, although in order to demonstrate statisti-
cally significant differences between classifiers, we
will need much more data than we currently have.
Eventually, longitudinal tracking of subjects may be
the best application of such measures on clinically
elicited spoken language samples.
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Abstract

This paper demonstrates a method for de-
termining the syntactic structure of medi-
cal terms. We use a model-fitting method
based on the Log Likelihood Ratio to clas-
sify three-word medical terms as right or
left-branching. We validate this method by
computing the agreement between the clas-
sification produced by the method and man-
ually annotated classifications. The results
show an agreement of 75% - 83%. This
method may be used effectively to enable
a wide range of applications that depend
on the semantic interpretation of medical
terms including automatic mapping of terms
to standardized vocabularies and induction
of terminologies from unstructured medical
text.

1 Introduction

Most medical concepts are expressed via a domain
specific terminology that can either be explicitly
agreed upon or extracted empirically from domain
specific text. Regardless of how it is constructed,
a terminology serves as a foundation for informa-
tion encoding, processing and exchange in a special-
ized sub-language such as medicine. Concepts in the
medical domain are encoded through a variety of lin-
guistic forms, the most typical and widely accepted
is the noun phrase (NP). In some even further spe-
cialized subdomains within medicine, such as nurs-
ing and surgery, an argument can be made that some
concepts are represented by an entire predication

rather than encapsulated within a single nominal-
ized expression. For example, in order to describe
someone’s ability to lift objects 5 pounds or heav-
ier above their head, it may be necessary to use a
term consisting of a predicate such as [LIFT] and a
set of arguments corresponding to various thematic
roles such as<PATIENT> and<PATH> (Ruggieri
et al., 2004). In this paper, we address typical med-
ical terms encoded as noun phrases (NPs) that are
often structurally ambiguous, as in Example 1, and
discuss a case for extending the proposed method to
non-nominalized terms as well.

small1 bowel2 obstruction3 (1)

The NP in Example 1 can have at least two interpre-
tations depending on the syntactic analysis:

[[small1 bowel2] obstruction3] (2)

[small1 [bowel2 obstruction3]] (3)

The term in Example 2 denotes an obstruction in
the small bowel, which is a diagnosable disorder;
whereas, the term in Example 3 refers to a small un-
specified obstruction in the bowel.

Unlike the truly ambiguous general English cases
such as the classical “American History Professor”
where the appropriate interpretation depends on the
context, medical terms, such as in Example 1, tend
to have only one appropriate interpretation. The
context, in this case, is the discourse domain of
medicine. From the standpoint of the English lan-
guage, the interpretation that follows from Example
3 is certainly plausible, but unlikely in the context
of a medical term. The syntax of a term only shows9



what interpretations are possible without restricting
them to any particular one. From the syntactic anal-
ysis, we know that the term in Example 1 has the po-
tential for being ambiguous; however, we also know
that it does have an intended interpretation by virtue
of being an entry term in a standardized terminology
with a unique identifier anchoring its meaning. What
we do not know is which syntactic structure gen-
erated that interpretation. Being able to determine
the structure consistent with the intended interpreta-
tion of a clinical term can improve the analysis of
unrestricted medical text and subsequently improve
the accuracy of Natural Language Processing (NLP)
tasks that depend on semantic interpretation.

To address this problem, we propose to use a
model-fitting method which utilizes an existing sta-
tistical measure, the Log Likelihood Ratio. We val-
idate the application of this method on a corpus
of manually annotated noun-phrase-based medical
terms. First, we present previous work on structural
ambiguity resolution. Second, we describe the Log
Likelihood Ratio and then its application to deter-
mining the structure of medical terms. Third, we
describe the training corpus and discuss the compi-
lation of a test set of medical terms and human ex-
pert annotation of those terms. Last, we present the
results of a preliminary validation of the method and
discuss several possible future directions.

2 Previous Work

The problem of resolving structural ambiguity has
been previously addressed in the computational lin-
guistics literature. There are multiple approaches
ranging from purely statistical (Ratnaparkhi, 1998),
to hybrid approaches that take into account the lexi-
cal semantics of the verb (Hindle and Rooth, 1993),
to corpus-based, which is the approach discussed
in this paper. (Marcus, 1980) presents an early ex-
ample of a corpus-based approach to syntactic am-
biguity resolution. One type of structural ambigu-
ity that has received much attention has to do with
nominal compounds as seen in the work of (Resnik,
1993), (Resnik and Hearst, 1993), (Pustejovsky et
al., 1993), and (Lauer, 1995).

(Lauer, 1995) points out that the existing ap-
proaches to resolving the ambiguity of noun phrases
fall roughly into two camps: adjacency and de-

pendency. The proponents of the adjacency model
((Liberman and Sproat, 1992), (Resnik, 1993) and
(Pustejovsky et al., 1993)) argue that, given a three
word noun phrase XYZ, there are two possible an-
alyzes [[XY]Z] and [X[YZ]]. The correct analysis
is chosen based on the “acceptability” of the adja-
cent bigrams A[XY] and A[YZ]. If A[XY] is more
acceptable than A[YZ], then the left-branching anal-
ysis [[XY]Z] is preferred.

(Lauer and Dras, 1994) and (Lauer, 1995) address
the issue of structural ambiguity by developing a de-
pendency model where instead of computing the ac-
ceptability of A[YZ] one would compute the accept-
ability of A[XZ]. (Lauer, 1995) argues that the de-
pendency model is not only more intuitive than the
adjacency model, but also yields better results. (La-
pata and Keller, 2004) results also support this as-
sertion.

The difference between the approaches within the
two models is the computation of acceptability. Pro-
posals for computing acceptability (or preference)
include raw frequency counts ((Evans and Zhai,
1996) and (Lapata and Keller, 2004)), Latent Se-
mantic Indexing ((Buckeridge and Sutcliffe, 2002))
and statistical measures of association ((Lapata et
al., 1999) and (Nakov and Hearst, 2005)).

One of the main problems with using frequency
counts or statistical methods for structural ambigu-
ity resolution is the sparseness of data; however,
(Resnik and Hearst, 1993) used conceptual associa-
tions (associations between groups of terms deemed
to form conceptual units) in order to alleviate this
problem. (Lapata and Keller, 2004) use the doc-
ument counts returned by WWW search engines.
(Nakov and Hearst, 2005) use theχ2 measure based
on statistics obtained from WWW search engines to
compute values to determine acceptability of a syn-
tactic analysis for nominal compounds. This method
is tested using a set of general English nominal com-
pounds developed by (Lauer, 1995) as well as a set
of nominal compounds extracted from MEDLINE
abstracts.

The novel contribution of our study is in demon-
strating and validating a corpus-based method for
determining the syntactic structure of medical terms
that relies on using the statistical measure of asso-
ciation, the Log Likelihood Ratio, described in the
following section.10



3 Log Likelihood Ratio

The Log Likelihood Ratio (G2) is a “goodness of
fit” statistic first proposed by (Wilks, 1938) to test if
a given piece of data is a sample from a set of data
with a specific distribution described by a hypothe-
sized model. It was later applied by (Dunning, 1993)
as a way to determine if a sequence of N words (N-
gram) came from an independently distributed sam-
ple.

(Pedersen et al., 1996) pointed out that there ex-
ists theoretical assumptions underlying theG2 mea-
sure that were being violated therefore making them
unreliable for significance testing. (Moore, 2004)
provided additional evidence that althoughG2 may
not be useful for determining the significance of an
event, its near equivalence to mutual information
makes it an appropriate measure of word associa-
tion. (McInnes, 2004) appliedG2 to the task of ex-
tracting three and four word collocations from raw
text.

G2, formally defined for trigrams in Equation 4,
compares the observed frequency counts with the
counts that would be expected if the words in the
trigram (3-gram; a sequence of three words) corre-
sponded to the hypothesized model.

G2 = 2 ∗

∑

x,y,z

nxyz ∗ log(
nxyz

mxyz

) (4)

The parameternxyz is the observed frequency of
the trigram wherex, y, andz respectively represent
the occurrence of the first, second and third words
in the trigram. The variablemxyz is the expected
frequency of the trigram which is calculated based
on the hypothesized model. This calculation varies
depending on the model used. Often the hypothe-
sized model used is the independence model which
assumes that the words in the trigram occur together
by chance. The calculation of the expected values
based on this model is as follows:

mxyz = nx++ ∗ n+y+ ∗ n++z/n+++ (5)

The parameter,n+++, is the total number of tri-
grams that exist in the training data, andnx++,
n+y+, andn++z are the individual marginal counts
of seeing wordsx, y, andz in their respective posi-
tions in a trigram. AG2 score reflects the degree to
which the observed and expected values diverge. A

G2 score of zero implies that the observed values are
equal to the expected and the trigram is represented
perfectly by the hypothesized model. Hence, we
would say that the data ’fits’ the model. Therefore,
the higher theG2 score, the less likely the words
in the trigram are represented by the hypothesized
model.

4 Methods

4.1 Applying Log Likelihood to Structural
Disambiguation

The independence model is the only hypothesized
model used for bigrams (2-gram; a sequence of
two words). As the number of words in an N-
gram grows, the number of hypothesized models
also grows. The expected values for a trigram can
be based on four models. The first model is the
independence model discussed above. The second
is the model based on the probability that the first
word and the second word in the trigram are depen-
dent and independent of the third word. The third
model is based on the probability that the second
and third words are dependent and independent of
the first word. The last model is based on the prob-
ability that the first and third words are dependent
and independent of the second word. Table 1 shows
the different models for the trigram XYZ.

Table 1: Models for the trigram XYZ
Model 1 P(XYZ) / P(X) P(Y) P(Z)
Model 2 P(XYZ) / P(XY) P(Z)
Model 3 P(XYZ) / P(X) / P(YZ)
Model 4 P(XYZ) / P(XZ) P(Y)

Slightly different formulas are used to calculate
the expected values for the different hypothesized
models. The expected values for Model 1 (the in-
dependence model) are given above in Equation 5.
The calculation of expected values for Model 2, 3, 4
are seen in Equations 6, 7, 8 respectively.

mxyz = nxy+ ∗ n++z/n+++ (6)

mxyz = nx++ ∗ n+yz/n+++ (7)

mxyz = nx+z ∗ n+y+/n+++ (8)

The parameternxy+ is the number of times words
x andy occur in their respective positions,n+yz is11



the number of times wordsy and z occur in their
respective positions andnx+z is the number of times
that wordsx andz occur in their respective positions
in the trigram.

The hypothesized models result in different ex-
pected values which results in a differentG2 score.
A G2 score of zero implies that the data are perfectly
represented by the hypothesized model and the ob-
served values are equal to the expected. Therefore,
the model that returns the lowest score for a given
trigram is the model that best represents the struc-
ture of that trigram, and hence, best ’fits’ the trigram.
For example, Table 2 shows the scores returned for
each of the four hypothesized models for the trigram
“small bowel obstruction”.

Table 2: Example for the term “small bowel obstruc-
tion”

Model G2 score Model G2 score
Model 1 11,635.45 Model 2 5,169.81
Model 3 8,532.90 Model 4 7,249.90

The smallestG2 score is returned by Model 2
which is based on the first and second words be-
ing dependent and independent of the third. Based
on the data, Model 2 best represents or ’fits’ the tri-
gram, “small bowel obstruction”. In this particular
case that happens to be the correct analysis.

The frequency counts andG2 scores for each
model were obtained using the N-gram Statistics
Package1 (Banerjee and Pedersen, 2003).

4.2 Data

The data for this study was collected from two
sources: the Mayo Clinic clinical notes and
SNOMED-CT terminology (Stearns et al., 2001).

4.2.1 Clinical Notes

The corpus used in this study consists of over
100,000 clinical notes covering a variety of ma-
jor medical specialties at the Mayo Clinic. These
notes document each patient-physician contact and
are typically dictated over the telephone. They range
in length from a few lines to several pages of text
and represent a quasi-spontaneous discourse where
the dictations are made partly from notes and partly

1http://www.d.umn.edu/ tpederse/nsp.html

from memory. At the Mayo Clinic, the dictations
are transcribed by trained personnel and are stored
in the patient’s chart electronically.

4.2.2 SNOMED-CT

SNOMED-CT (Systematized Nomenclature of
Medicine, Clinical Terminology) is an ontologi-
cal resource produced by the College of American
Pathologists and distributed as part of the Unified
Medical Language System2 (UMLS) Metathesaurus
maintained by the National Library of Medicine.
SNOMED-CT is the single largest source of clini-
cal terms in the UMLS and as such lends itself well
to the analysis of terms found in clinical reports.

SNOMED-CT is used for many applications in-
cluding indexing electronic medical records, ICU
monitoring, clinical decision support, clinical trials,
computerized physician order entry, disease surveil-
lance, image indexing and consumer health informa-
tion services. The version of SNOMED-CT used in
this study consists of more than 361,800 unique con-
cepts with over 975,000 descriptions (entry terms)
(SNOMED-CT Fact Sheet, 2004).

4.3 Testset of Three Word Terms

We used SNOMED-CT to compile a list of terms
in order to develop a test set to validate theG2

method. The test set was created by extracting all
trigrams from the corpus of clinical notes and all
three word terms found in SNOMED-CT. The inter-
section of the SNOMED-CT terms and the trigrams
found in the clinical notes was further restricted to
include only simple noun phrases that consist of a
head noun modified with a set of other nominal or
adjectival elements including adjectives and present
and past participles. Adverbial modification of ad-
jectives was also permitted (e.g. “partially edentu-
lous maxilla”). Noun phrases with nested prepo-
sitional phrases such as “fear of flying” as well as
three word terms that are not noun phrases such as
“does not eat” or “unable to walk” were excluded
from the test set. The resulting test set contains 710
items.

The intended interpretation of each three word
term (trigram) was determined by arriving at a

2Unified Medical Language System is a compendium of
over 130 controlled medical vocabularies encompassing over
one million concepts.12



consensus between two medical index experts
(kappa=0.704). These experts have over ten years of
experience with classifying medical diagnoses and
are highly qualified to carry out the task of deter-
mining the intended syntactic structure of a clinical
term.

Table 3: Four Types of Syntactic Structures of Tri-
gram Terms

left-branching ((XY)Z):
[[urinary tract] infection]
[[right sided] weakness]

right-branching (X(YZ)):
[chronic [back pain]]
[low [blood pressure]]

non-branching ((X)(Y)(Z)):
[[follicular][thyroid][carcinoma]]
[[serum][dioxin][level]]

monolithic (XYZ):
[difficulty finding words]
[serous otitis media]

In the process of annotating the test set of tri-
grams, four types of terms emerged (Table 3). The
first two types are left and right-branching where the
left-branching phrases contain a left-adjoining group
that modifies the head of the noun phrase. The right-
branching phrases contain a right-adjoining group
that forms the kernel or the head of the noun phrase
and is modified by the remaining word on the left.
The non-branching type is where the phrase contains
a head noun that is independently modified by the
other two words. For example, in “follicular thyroid
carcinoma”, the experts felt that “carcinoma” was
modified by both “follicular” and “thyroid” indepen-
dently, where the former denotes the type of cancer
and the latter denotes its location. This intuition is
reflected in some formal medical classification sys-
tems such as the Hospital International Classifica-
tion of Disease Adaptation (HICDA) where cancers
are typically classified with at least two categories -
one for location and one for the type of malignancy.
This type of pattern is rare. We were able to iden-
tify only six examples out of the 710 terms. The
monolithic type captures the intuition that the terms
function as a collocation and are not decomposable
into subunits. For example, “leg length discrepancy”

denotes a specific disorder where one leg is of a dif-
ferent length from the other. Various combinations
of subunits within this term result in nonsensical ex-
pressions.

Table 4: Distribution of term types in the test set
Type Count %total
Left-branching 251 35.5
Right-branching 378 53.4
Non-branching 6 0.8
Monolithic 73 10.3

Total 708 100

Finally, there were two terms for which no con-
sensus could be reached: “heart irregularly irregu-
lar” and “subacute combined degeneration”. These
cases were excluded from the final set. Table 4
shows the distribution of the four types of terms in
the test set.

5 Evaluation

We hypothesize that general English typically has
a specific syntactic structure in the medical domain,
which provides a single semantic interpretation. The
patterns observed in the set of 710 medical terms
described in the previous section suggest that the
G2 method offers an intuitive way to determine the
structure of a term that underlies its syntactic struc-
ture.

Table 5:G2 Model Descriptions
left-branching Model 2 [ [XY] Z ]
right-branching Model 3 [ X [YZ] ]

The left and right-branching patterns roughly cor-
respond to Models 2 and 3 in Table 5. Models 1
and 4 do not really correspond to any of the pat-
terns we were able to identify in the set of terms.
Model 1 would represent a term where words are
completely independent of each other, which is an
unlikely scenario given that we are working with
terms whose composition is dependent by definition.
This is not to say that in other applications (e.g.,
syntactic parsing) this model would not be relevant.
Model 4 suggests dependence between the outer
edges of a term and their independence from the13



Figure 1: Comparison of the results with two base-
lines: L-branching and R-branching assumptions

middle word, which is not motivated from the stand-
point of a traditional context free grammar which
prohibits branch crossing. However, this model may
be welcome in a dependency grammar paradigm.

One of the goals of this study is to test an ap-
plication of theG2 method trained on a corpus of
medical data to distinguish between left and right-
branching patterns. The method ought to suggest
the most likely analysis for an NP-based medical
term based on the empirical distribution of the term
and its components. As part of the evaluation, we
compute theG2 scores for each of the terms in the
test set, and picked the model with the lowest score
to represent the structural pattern of the term. We
compared these results with manually identified pat-
terns. At this preliminary stage, we cast the problem
of identifying the structure of a three word medical
term as a binary classification task where a term is
considered to be either left or right-branching, ef-
fectively forcing all terms to either be represented
by either Model 2 or Model 3.

6 Results and Discussion

In order to validate theG2 method for determin-
ing the structure of medical terms, we calculated
the agreement between human experts’ interpreta-
tion of the syntactic structure of the terms and the
interpretation suggested by theG2 method. The
agreement was computed as the ratio of match-
ing interpretations to the total number of terms be-
ing interpreted. We used two baselines, one estab-
lished by assuming that each term is left-branching

and the other by assuming that each term is right-
branching. As is clear from Table 4, the left-
branching baseline is 35.5% and the right-branching
baseline is 53.4% meaning that if we simply as-
sign left-branching pattern to each three word term,
we would agree with human experts 35.5% of the
time. TheG2 method correctly identifies 185 tri-
grams as being left-branching (Model 2) and 345 tri-
grams as being right-branching (Model 3). There are
116 right-branching trigrams incorrectly identified
as left-branching, and 62 left-branching trigrams in-
correctly identified as right- branching. Thus the
method and the human experts agreed on 530 (75%)
terms out of 708 (kappa=0.473), which is better than
both baselines (Figure 1). We did not find any over-
lap between the terms that human experts annotated
as non-branching and the terms whose corpus dis-
tribution can be represented by Model 4 ([[XZ]Y]).
This is not surprising as this pattern is very rare.
Most of the terms are represented by either Model 2
(left-branching) or Model 3 (right-branching). The
monolithic terms that the human experts felt were
not decomposable constitute 10% of all terms and
may be handled through some other mechanism
such as collocation extraction or dictionary lookup.
Excluding monolithic terms from testing results in
83.5% overall agreement (kappa=0.664).

We observed that 53% of the terms in our test
set are right-branching while only 35% are left-
branching. (Resnik, 1993) found between 64% and
67% of nominal compounds to be left-branching and
used that finding to establish a baseline for his exper-
iments with structural ambiguity resolution. (Nakov
and Hearst, 2005) also report a similar percentage
(66.8%) of left-branching noun compounds. Our
test set is not limited to nominal compounds, which
may account for the fact that a slight majority of the
terms are found to be right-branching as adjectival
modification in English is typically located to the
left of the head noun. This may also help explain
the fact that the method tends to have higher agree-
ment within the set of right-branching terms (85%)
vs. left-branching (62%).

We also observed that many of the terms marked
as monolithic by the experts are of Latin origin such
as the term in Example 9 or describe the functional14



status of a patient such as the term in Example 10.

erythema1 ab2 igne3 (9)

difficulty1 swallowing2 solids3 (10)

Example 10 merits further discussion as it illus-
trates another potential application of the method
in the domain of functional status terminology. As
was mentioned in the introduction, functional status
terms may be be represented as a predication with
a set of arguments. Such view of functional status
terminology lends itself well to a frame-based repre-
sentation of functional status terms in the context of
a database such as FrameNet3 or PropBank4. One of
the challenging issues in representing functional sta-
tus terminology in terms of frames is the distinction
between the core predicate and the frame elements
(Ruggieri et al., 2004). It is not always clear what
lexical material should be part of the core predicate
and what lexical material should be part of one or
more arguments. Consider the term in Example 10
which represents a nominalized form of a predica-
tion. Conceivably, we could analyze this term as a
frame shown in Example 11 where the predication
consists of a predicate [DIFFICULTY] and two ar-
guments. Alternatively, Example 12 presents a dif-
ferent analysis where the predicate is a specific kind
of difficulty with a single argument.

[P:DIFFICULTY]
[ARG1:SWALLOWING<ACTIVITY >]
[ARG2:SOLIDS<PATIENT>]

(11)

[P:SWALLOWING DIFFICULTY]
[ARG1: SOLIDS<PATIENT>]

(12)

The analysis dictates the shape of the frames
and how the frames would fit into a network of
frames. TheG2 method identifies Example 10 as
left-branching (Model 2), which suggests that it
would be possible to have a parent DIFFICULTY
frame and a child CLIMBING DIFFICULTY that
would inherit form its parent. An example where
this is not possible is the term “difficulty staying
asleep” where it would probably be nonsensical or at
least impractical to have a predicate such as [STAY-
ING DIFFICULTY]. It would be more intuitive to

3http://www.icsi.berkeley.edu/framenet/
4http://www.cis.upenn.edu/ ace/

assign this term to the DIFFICULTY frame with
a frame element whose lexical content is “staying
asleep”. The method appropriately identifies the
term “difficulty staying asleep” as right-branching
(Model 3) where the words “staying asleep” are
grouped together. This is an example based on in-
formal observations; however, it does suggest a util-
ity in constructing frame-based representation of at
least some clinical terms.

7 Limitations

The main limitation of theG2 method is the expo-
nential growth in the number of models to be evalu-
ated with the growth in the length of the term. This
limitation can be partly alleviated by either only con-
sidering adjacent models and limiting the length to
5-6 words, or using a forward or backward sequen-
tial search proposed by (Pedersen et al., 1997) for
the problem of selecting models for the Word Sense
Disambiguation task.

8 Conclusions and Future Work

This paper presented a simple but effective method
based onG2 to determine the internal structure of
three-word noun phrase medical terms. The abil-
ity to determine the syntactic structure that gives
rise to a particular semantic interpretation of a med-
ical term may enable accurate mapping of unstruc-
tured medical text to standardized terminologies and
nomenclatures. Future directions to improve the ac-
curacy of our method include determining how other
measures of association, such as dice coefficient and
χ2, perform on this task. We feel that there is a pos-
sibility that no single measure performs best over all
types of terms. In that case, we plan to investigate in-
corporating the different measures into an ensemble-
based algorithm.

We believe the model-fitting method is not lim-
ited to structural ambiguity resolution. This method
could be applied to automatic term extraction and
automatic text indexing of terms from a standard-
ized vocabulary. More broadly, the principles of us-
ing distributional characteristics of word sequences
derived from large corpora may be applied to unsu-
pervised syntactic parsing.
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Abstract

This paper investigates the roles of named
entities (NE’s) in annotated biomedical text
classification. In the annotation schema of
BioCaster, a text mining system for pub-
lic health protection, important concepts that
reflect information about infectious diseases
were conceptually analyzed with a formal
ontological methodology. Concepts were
classified as Types, while others were iden-
tified as being Roles. Types are specified
as NE classes and Roles are integrated into
NEs as attributes. We focus on the Roles
of NEs by extracting and using them in
different ways as features in the classifier.
Experimental results show that: 1) Roles
for each NE greatly helped improve perfor-
mance of the system, 2) combining informa-
tion about NE classes with their Roles con-
tribute significantly to the improvement of
performance. We discuss in detail the effect
of each Role on the accuracy of text classifi-
cation.

1 Introduction

Today, the Internet is a powerful tool for discov-
ering novel information via news feed providers.
This is becoming increasingly important for the
public health domain because it can help to de-
tect emerging and re-emerging diseases. In infec-
tious disease surveillance systems such as the Global
Public Health Intelligence Network (GPHIN) sys-
tem (Public Health Agency of Canada, 2004) and

ProMed-Mail (International Society for Infectious
Diseases, 2001), the detection and tracking of out-
breaks using the Internet has been proven to be a
key source of information for public health work-
ers, clinicians, and researchers interested in com-
municable diseases. The basis for such systems is
the monitoring of a large number of news articles
simultaneously. The classification of news articles
into disease-related or none disease-related classes
is the first stage in any automated approach to this
task. In practice though there are a large number of
news articles whose main subject is related to dis-
eases but which should not necessarily be notified
to users together with a relatively small number of
high priority articles that experts should be actively
alerted to. Alerting criteria broadly include news re-
lated to newly emerging diseases, the spread of dis-
eases across international borders, the deliberate re-
lease of a human or engineered pathogen, etc. The
use of only raw text in the classification process in-
evitably fails to resolve many subtle ambiguities, for
example semantic class ambiguities in polysemous
words like “virus”, “fever”, “outbreak”, and “con-
trol” which all exhibit a variety of senses depending
on context. These different senses appear with rela-
tively high frequency in the news especially in head-
lines. A further challenge is that diseases can be de-
noted by many variant forms. Therefore we consider
that the use of advanced natural language process-
ing (NLP) techniques like named entity recognition
(NER) and anaphora resolution are needed in order
to achieve high classification accuracy.

Text classification is defined as the task of as-
signing documents into one or more predefined cat-
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egories. As shown by (Cohen and Hersh, 2005),
an accurate text classification system can be espe-
cially valuable to database curators. A document in
the biomedical domain can be annotated using NER
techniques with enriched semantic information in
the form of NEs such as the disease, pathogen, loca-
tion, and time. NER and term identification in gen-
eral have been recognized as an important research
topic both in the NLP and biomedical communities
(Krauthammer and Nenadic, 2004). However, an in-
vestigation into the contribution of NEs on the per-
formance of annotated biomedical text classification
has remained an open question until now. There are
two main reasons for this: Firstly there are a small
number of open annotation schema for biomedical
text, and secondly there is no benchmark annotated
data for testing.

The BioCaster project (Collier, 2006) is working
towards the detection and tracking of disease out-
breaks from Internet news articles. Although there
are several schema for biomedical text (Wilbur et al.,
2006), little work has been done on developing one
specifically for public health related text. BioCaster
therefore provides an annotation schema that can fill
this gap. Our schema, which is based on discussions
with biologists, computational linguists and public
health experts, helps identify entities related to in-
fectious diseases which are then used to build up a
detailed picture of events in later stages of text min-
ing. One significant aspect of the schema is that it
is based on conceptual analysis with a formal on-
tological methodology. As discussed in (Kawazoe
et al., 2006), by applying meta-properties (Guarino
and Welty, 2000a; Guarino and Welty, 2000b), our
“markable” concepts are classified into “Type” and
“Role”. Information about Role concepts is inte-
grated into the schema as attributes on NEs. This
work takes the investigation one step forward by
showing empirical evidence for the usefulness of
Role concepts in a practical application.

In this paper, we focus on the task of text classifi-
cation, proceeding under the simplifying assumption
that given enough annotated training data for NEs
and their Roles both can be automatically tagged
with high accuracy. In recent years there have been
many studies on text classification using general
methods (Sebastiani, 2002; Yang and Liu, 1999)
semi-structured texts (Kudo and Matsumoto, 2004),

and XML classification (Zaki and Aggarwal, 2003).
Other research has investigated the contribution of
semantic information in the form of synonyms, syn-
tax, etc. in text representation (Bloehdorn and
Hotho, 2004; Hotho et al., 2003; Fr¨urnkranz et al.,
1998). Feature selection (Scott and Matwin, 1999)
has also been studied. The contribution of this paper
is to provide an analysis and evaluation on the Roles
of NEs in annotated text classification.

The rest of this paper is organized as follows: in
Section 2, we outline the BioCaster schema for the
annotation of terms in biomedical text; Section 3
presents a description of the BioCaster gold standard
corpus; Section 4 provides details of the method
and experimental results of classification on the gold
standard corpus. Finally we draw some conclusions
in Section 5.

2 BioCaster Schema for Annotation of
Terms in Biomedical Text

The BioCaster annotation schema is a component of
the BioCaster text mining project. We have iden-
tified several important concepts that reflect infor-
mation about infectious diseases, and created guide-
lines for annotating them as target entity classes
in texts. Based on the conceptual analysis using
meta-properties (rigidity, identity, and dependency)
developed by Guarino and Welty (2000a; 2000b),
categories of important concepts were classified as
Types, i.e., properties which are rigid1 and supply
identity conditions, while others were identified as
being Roles, properties which are anti-rigid2 and
dependent. The18 categories of Type concepts
are specified as NE classes which we denote here
in upper case. These include PERSON, LOCA-
TION, ORGANIZATION, TIME, DISEASE, CON-
DITION (status of patient such as “hospitalized”
or “in stable condition”), OUTBREAK (event of
group infection), VIRUS, ANATOMY (body part),
PRODUCT (biological product such as “vaccine”),
NONHUMAN (animals), DNA, RNA, PROTEIN,
CONTROL (control measures to contain the dis-
ease), BACTERIA, CHEMICAL and SYMPTOM.
The three Role concepts we explore arecase (dis-

1A property isrigid if every instance of that property neces-
sarily has the property, i.e. in every possible world.

2A property isanti-rigid if no instance of that property nec-
essarily has the property.

18



eased person),transmission (source of infection)
andtherapeutic (therapeutic agent). These are inte-
grated into the annotation schema as XML attributes
which are associated with some XML elements de-
noting Type concepts. PERSON takes acase at-
tribute, NONHUMAN and ANATOMY taketrans-
mission, PRODUCT takestransmission and thera-
peutic and CHEMICAL takestherapeutic. For PER-
SON we added another attributenumber (number
of people). Each attribute has only one value, the
value of number is one or many, and the value of
case, transmission, therapeutic is true or false. This
is summarized in Table 1. In the rest of this paper,
we callcase, transmission, andtherapeutic “Role at-
tributes” (or “Role” for short) andnumber a “Qual-
ity attributes” (or “Quality” for short).

A NE in a biomedical text is annotated following
the BioCaster annotation schema in XML format as
follows,
<NAME cl="Named Entity"

attribute1="value1" attribute2="value2"

... </NAME>,
where"Named Entity" is one of the names for the
18 BioCaster NEs andattribute1, attribute2,

... are the names of the NE’s Role/Quality at-
tributes,"value1", "value2", ... are values cor-
responding to Role/Quality attributes. Further de-
tails of the annotation guidelines are discussed in
(Kawazoe et al., 2006).

3 BioCaster Gold Standard Data Corpus

The BioCaster gold standard corpus was collected
from Internet news and manually annotated by two
doctoral students. The annotation of a news article
proceeded as follows. Firstly, NEs are annotated fol-
lowing the BioCaster schema and guidelines. Sec-
ondly, each annotated article is manually assigned
into one of four relevancy categories:alert, publish,
check, andreject. The assignment is based on guide-
lines that we made following discussions with epi-
demiologists and a survey of World Health Organi-
zation (WHO) reports (World Health Organization,
2004). These categories are currently being used op-
erationally by the GPHIN system which is used by
the WHO and other public health agencies. Where
there were major differences of opinion in NE anno-
tation or relevancy assignment between the two an-

notators, we consulted a public health expert in order
to decide the most appropriate assignment. Finally
we had a total of500 articles that were fully anno-
tated. While this is small compared to other data
sets in text classification, we consider that it is large
enough to obtain a preliminary indication about the
usefulness of Role attributes.

The following is an example of an annotated arti-
cle in the BioCaster gold standard corpus.

Example.
<DOC id="000125" language="en-us"

source="WHO" domain="health"

subdomain="disease"

date published="2005-03-17"

relevancy="alert"> <NAME cl="DISEASE">

Acute fever </NAME> and <NAME

cl="DISEASE"> rash syndrome </NAME> in

<NAME cl="LOCATION">Nigeria</NAME> <NAME

cl="TIME"> 17 March 2005 </NAME><NAME

cl="ORGANIZATION"> WHO</NAME> has received

reports of <NAME cl="PERSON" case="true"

number="many"> 1118 cases </NAME>

including <NAME cl="PERSON" case="true"

number="many">76 deaths</NAME>case

fatality rate, 6.8% reported in 12

Local Government Areas (LGAs) of <NAME

cl="LOCATION">damawa </NAME> state, <NAME

cl="LOCATION"> Nigeria</NAME> as of <NAME

cl="TIME">28 February 2005</NAME>. The

cases have been clinically diagnosed

as <NAME cl="DISEASE"> measles </NAME>

but no laboratory diagnosis has been

made to date. Other states, including

<NAME cl="LOCATION">Gombe</NAME>,

<NAME cl="LOCATION">Jigawa</NAME>,<NAME

cl="LOCATION">Kaduna</NAME>, <NAME

cl="LOCATION">Kano</NAME>, and <NAME

cl="LOCATION">Kebbi</NAME> have all

reported <NAME cl="OUTBREAK"> outbreaks

</NAME> of <NAME cl="DISEASE"> measles

</NAME>... </DOC>

We grouped the500 articles into 2 categories:re-
ject and relevant. The reject category corresponds
simply to articles with labelreject while therelevant
category includes articles with labelsalert, pub-
lish, andcheck. We conflated thealert, publish and
check categories because we hypothesized that dis-
tinguishing between non-reject (relevant) categories
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Named entity Role/Quality attributes Named entity Role/Quality attributes
PERSON case, number ANATOMY transmission
ORGANIZATION none SYMPTOM none
LOCATION none CONTROL none
TIME none CHEMICAL therapeutic
DISEASE none BACTERIA none
CONDITION none PRODUCT transmission, therapeutic
NONHUMAN transmission DNA none
VIRUS none RNA none
OUTBREAK none PROTEIN none

Table 1: Lists of Named entity classes and their Role/Quality attributes in BioCaster annotation schema.

would require higher level semantic knowledge such
as pathogen infectivity and previous occurrence his-
tory which is the job of the text mining system and
the end user. Finally we had a total of269 news
articles belong to thereject category and231 news
articles belong to therelevant category. The statis-
tical information about NEs is shown in Table 2. In
the table, “+” stands for the frequency of NEs in the
relevant category and “-” stands for the frequency of
NEs in thereject category.

4 Experiments

4.1 Method

We used the BioCaster gold standard corpus to in-
vestigate the effect of NE classes and their Role at-
tributes on performance of classification. In order
to avoid unnecessary data, we removed the first line
containing DOC tag of all article in the corpus. The
validation is as follows. We randomly divided the
data set into 10 parts. Each of the first 9 parts has 23
articles belonging to therelevant category and 27 ar-
ticles belonging to thereject category; the 10th part
has 24 articles belonging to therelevant and 26 arti-
cles belonging to thereject categories. Then, we im-
plemented 10-fold cross validation: 9 parts for train-
ing and 1 part for testing sets. For the training set we
extracted NEs classes and their Roles as features to
build a classifier. The remaining part was used for
testing.

The classifier we use in this paper is the standard
Näive Bayes classifier (Mitchell, 1997). In the pre-
processing we did not use a stop list and no word
stemming. The experiments were implemented in
Linux OS, using the Bow toolkit (McCallum, 1996).

The details of extracting NEs and their Roles
from annotated texts are the followings. For the
sake of convenience, we divided features into 3
groups: Features for each NE, features for NEs with
Role/Quality, and features for combined NEs with
Role/Quality.

1. Features for each NE: Each NE is extracted and
used with raw text as features. We denoted NE1
as features extracted from named entity NE1.
For example, DISEASE1 means features are
raw text and DISEASE class, VIRUS1 means
features are raw text and VIRUS class. An ex-
ample of features for PERSON1 is shown in
Table 3.

2. Features for NEs with Role/Quality: We inves-
tigated the effect of NEs with Roles/Qualities,
i.e., case, number, therapeutic, and transmis-
sion. Features are chosen as follows.

- PERSON+case+number: Raw text and
PERSON class with both Rolecase and
Quality number are used as features.

- PERSON+case: Raw text and PERSON
class with Rolecase are used as features.

- PERSON+number: Raw text and PER-
SON class and Qualitynumber are used
as features.

- NONHUMAN+trans: Raw text and
NONHUMAN class and Roletransmis-
sion are used as features.

- ANATOMY+trans: Raw text and
ANATOMY class and Roletransmission
are used as features.
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NE class Frequency Total NE class Frequency Total
PERSON +3291/-4978 8269 ANATOMY +263/-224 487
ORGANIZATION +1405/-3460 4865 SYMPTOM +293/-105 398
LOCATION +2432/-2409 4841 CONTROL +282/-87 369
TIME +1159/-1518 2677 CHEMICAL +108/-185 293
DISEASE +1164/-456 1620 BACTERIA +136/-103 239
CONDITION +689/-206 895 PRODUCT +124/-74 198
NONHUMAN +393/-344 737 DNA +8/-55 63
VIRUS +428/-127 555 RNA +0/-55 55
OUTBREAK +460/-75 535 PROTEIN +5/-32 37

Table 2: The frequency of NE classes in the BioCaster gold standard corpus, “+” denotes the frequency in
therelevant category and “-” denotes the frequency in thereject category.

Example of <NAME cl="ORGANIZATION"> WHO</NAME> has
annotated text received reports of <NAME cl="PERSON" case="true"

number="many"> 1118 cases </NAME>
Text only “WHO”, “has”, “received”, “reports”, “of”, “1118”, “cases”
PERSON1 “WHO”, “has”, “received”, “reports”, “of”, “1118”, “cases”, “PERSON”
PERSON+case+number “WHO”, “has”, “received”, “reports”, “of”, “1118”, “cases”, “PERSON”,

“case”, “number”
PERSON+case “WHO”, “has”, “received”, “reports”, “of”, “1118”, “cases”, “PERSON”,

“case”
PERSON+number “WHO”, “has”, “received”, “reports”, “of”, “1118”, “cases”, “PERSON”,

“number”

Table 3: An example of using different features for PERSON class as training data.

- PRODUCT+trans+thera: Raw text and
PRODUCT class and both Rolestransmis-
sion andtherapeutic are used as features.

- PRODUCT+trans: Raw text and PROD-
UCT class and Roletransmission are used
as features.

- PRODUCT+thera: Raw text and PROD-
UCT class and Roletherapeutic are used
as features.

- CHEMICAL+thera: Raw text and
CHEMICAL class and Roletherapeutic
are used as features.

3. Features for combined NEs with Roles. We
investigate features for disease-related NEs
which include DISEASE, VIRUS, BACTE-
RIA, SYMPTOM, CONDITION, CONTROL,
DNA, PROTEIN, RNA, OUTBREAK, PROD-
UCT, ANATOMY, NONHUMAN, CHEMI-
CAL and features for all NEs with their Roles,

i.e., therapeutic and transmission. We investi-
gated 5 different features as follows:

- Text only: Only raw text is used as fea-
tures.

- Text+DiseaseNEs: Raw text and all 14
NEs disease-related classes are used as
features.

- Text+DiseaseNEs+Roles: Raw text and
all 14 NEs disease-related classes with
Roles are used as features. We note that
there are two Rolestherapeutic andtrans-
mission in this case.

- Text+AllNEs: Raw text and all NE classes
are used as features.

- Text+AllNEs+Roles: Raw text and all NE
classes with Roles are used as features. In
this case we have all 3 Rolescase, thera-
peutic andtransmission.

An example of using different features for PER-
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YES is correct NO is correct
AssignedYES a b
AssignedNO c d

Table 4: A contingency table.

SON class is shown in Table 3.

4.2 Results and Discussions

The details of experimental results are shown in the
following sections. We use two performance mea-
sures, standard Precision/Recall and accuracy. They
are calculated based on the two-way contingency ta-
ble in Table 4. In the table,a counts the assigned
and correct cases,b counts the assigned and incor-
rect cases,c counts the not assigned but incorrect
cases, andd counts the not assigned and correct
cases (Yang, 1999). Then,

Precision=
a

a + b
, and Recall=

a

a + c
.

Accuracy is defined as accuracy=(a + d)/(a + b +
c + d).

4.2.1 Effectiveness of Each NE Class

In order to investigate the effect of NEs on per-
formance, we consider the baseline as the method
using text only. In experiment the baseline achieved
a performance of74.40% accuracy and64.35% Pre-
cision,100% Recall. We can see that Recall always
achieves100% in all cases. This may be due to the
small size of data. However it is interesting that we
can observe the change of Precision measure - an
important measure in our case. Hereafter we discuss
accuracy and Precision only.

The effectiveness of each NE class is shown in Ta-
ble 5. The results show that each NE does not have
the same effect. Compared to the baseline, nearly
half the total NEs (7/18) help improve performance
while the others do not have a significant affect.

Looking at the distribution of NE frequency in Ta-
ble 2, it seems that the higher the frequency of the
NE class, the better the performance it provides. For
example, PERSON achieved the best of all (76.80%
accuracy,66.57% Precision compared to74.40% ac-
curacy and64.35% Precision when using raw text).
However this trend is not always followed, for ex-
ample, the TIME class tends to reduce performance

when compared to raw text. This is natural as there
is no obvious correlation between time and rele-
vancy. From the result tables we can conclude that
the effectiveness of each NE on the performance of
classification in our corpus is decreased in the fol-
lowing order.
PERSON> LOCATION > ORGANIZATION >
DISEASE > CONDITION = VIRUS = OUT-
BREAK > NONHUMAN = ANATOMY = SYMP-
TOM = CONTROL = BACTERIA = PRODUCT =
PROTEIN> CHEMICAL = DNA = RNA > TIME

In particular, 7 NEs, i.e., PERSON, LO-
CATION, ORGANIZATION, DISEASE, CONDI-
TION, VIRUS, OUTBREAK improve performance,
while TIME significantly reduces it. Two NEs DNA
and RNA that have low frequency weakly reduce
performance.

4.2.2 Effectiveness of Roles on Classification

In this Section we investigate the effect of each
Role on performance. The experimental results are
shown in Table 6. We can easily observe that Roles
in NEs improved both the accuracy and Precision
significantly.

We first consider the Rolecase. This Role is as-
sociated to PERSON which has highest frequency
in the corpus. Rolecase helped improve the ac-
curacy from76.8% to 80.60%, and Precision from
66.57% to 74.43% for PERSON. This is significant
when we compare to the baseline with74.4% ac-
curacy and64.35% Precision. We note that PER-
SON has another attribute, the Qualitynumber. Role
case helps PERSON with Quality number improve
the accuracy from78.00% to 81.80% and Precision
from 67.74% to 71.74%. Moreover, we can obvi-
ously draw the relative comparison about effective-
ness between Rolecase and Qualitynumber from
these results, it yields thatcase > number.

We proceed to investigate the effect of Rolesther-
apeutic and transmission. Obviously we see that
their effects on performance are positive. Specifi-
cally, transmission help NONHUMAN improve the
accuracy from74.40% to 74.60%, therapeutic helps
CHEMICAL improve the accuracy from74.20% to
74.40%. They both have not effects on some mi-
nor NE classes like ANATOMY and PRODUCT. If
we had more training data with more of these mi-
nor NE classes we hope to see a positive effect from
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Named entity Accuracy Pre/Rec Named entity Accuracy Pre/Rec
PERSON1 76.80 66.57/100 ANATOMY1 74.40 64.35/100
ORGANIZATION1 75.40 65.25/100 SYMPTOM1 74.40 64.35/100
LOCATION1 75.60 65.44/100 CONTROL1 74.40 64.35/100
TIME1 73.00 63.11/100 CHEMICAL1 74.20 64.17/100
DISEASE1 75.00 64.89/100 BACTERIA1 74.40 64.35/100
CONDITION1 74.60 64.53/100 PRODUCT1 74.40 64.35/100
NONHUMAN1 74.40 64.35/100 DNA1 74.20 64.17/100
VIRUS1 74.60 64.53/100 RNA1 74.20 64.17/100
OUTBREAK1 74.60 64.53/100 PROTEIN1 74.40 64.35/100

Table 5: Performance of each NE class in which features of NEs in bold text have Role attributes.

FEATURES Accuracy Pre/Rec
Baseline 74.40 64.35/100
PERSON1 76.80 66.57/100
PERSON+number 78.00 67.74/100
PERSON+case 80.60 74.43/100
PERSON+case+number 81.80 71.74/100
NONHUMAN1 74.40 64.35/100
NONHUMAN+trans 74.60 64.53/100
ANATOMY1 74.40 64.35/100
ANATOMY+trans 74.40 64.35/100
PRODUCT1 74.40 64.35/100
PRODUCT+trans 74.40 64.35/100
PRODUCT+therapeutic 74.40 64.35/100
PRODUCT+trans+thera 74.40 64.35/100
CHEMICAL1 74.20 64.17/100
CHEMICAL+therapeutic 74.40 64.35/100

Table 6: Performance of Role attributes with their
NEs.

Roles on them. Interestingly, while NEs associated
to Roles do not improve the accuracy like NONHU-
MAN and CHEMICAL, their Roles helped improve
the accuracy. Based on the improvements oftrans-
mission and therapeutic in Table 6, we can draw
their effectiveness are the same on their NEs, that
is therapeutic = transmission.

When we compare the effect of all Roles on per-
formance, we can see that the improvements of Role
case and also Qualitynumber are much higher than
the improvements of Rolestherapeutic and trans-
mission. We think this is because the frequency of
PERSON (NE associated to Rolecase and Quality
number) is higher than the frequency of NEs which

FEATURES Accuracy Pre/Rec
Baseline 74.40 64.35/100
Text+DiseaseNEs 75.80 65.63/100
Text+DiseaseNEs+Roles76.20 66.00/100
Text+AllNEs 79.40 69.16/100
Text+AllNEs+Roles 84.40 74.76/100

Table 7: The performance of combined NEs with
their Roles.

are associated to Rolestherapeutic and transmis-
sion in the corpus. Then, we can have the effect
of Roles/Qualities is in the ordercase > number >
therapeutic = transmission.

4.2.3 Effectiveness of Combined NEs with
Roles

We continue to investigate the effectiveness of
Roles for combined NEs. The experimental re-
sults are given in Table 7. We note that there are
two Rolestherapeutic and transmission in disease-
related NE classes, and all 3 Rolescase, therapeutic
andtransmission in all NE classes.

We can easily see that Roles improved perfor-
mance of text classification significantly. In de-
tails, for disease-related NE classes, Rolesthera-
peutic and transmission helped to improve the ac-
curacy from74.40% to 76.20%, and Precision from
64.35% to 66.% compared to the baseline. For all
NE classes, all 3 Rolescase, therapeutic, andtrans-
mission help to improve the accuracy from74.40%
to 84.40% and Precision from64.35% to 74.76%.
We conclude that all 3 Roles achieved the best re-
sults in performance.
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5 Conclusion

This paper has focused on the contribution of Roles
in biomedical annotated text classification. The ex-
perimental results indicated that:

1. Roles of each NE greatly help improve perfor-
mance of the system.

2. The effect of Role/Quality attributes on classi-
fication was decreased in the order as follows:
case > number > therapeutic = transmission.

3. Combined NE classes with Roles contribute
significantly to the improvement of perfor-
mance.
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Abstract

Several incompatible syntactic annotation
schemes are currently used by parsers and
corpora in biomedical information extrac-
tion. The recently introduced Stanford de-
pendency scheme has been suggested to be
a suitable unifying syntax formalism. In this
paper, we present a step towards such uni-
fication by creating a conversion from the
Link Grammar to the Stanford scheme. Fur-
ther, we create a version of the BioInfer cor-
pus with syntactic annotation in this scheme.
We present an application-oriented evalua-
tion of the transformation and assess the
suitability of the scheme and our conversion
to the unification of the syntactic annotations
of BioInfer and the GENIA Treebank.

We find that a highly reliable conversion is
both feasible to create and practical, increas-
ing the applicability of both the parser and
the corpus to information extraction.

1 Introduction

One of the main challenges in biomedical infor-
mation extraction (IE) targeting entity relationships
such as protein-protein interactions arises from the
complexity and variability of the natural language
statements used to express such relationships. To
address this complexity, many biomedical IE sys-
tems (Alphonse et al., 2004; Rinaldi et al., 2004;
Fundel et al., 2007) and annotated corpora (Kim et
al., 2003; Aubin, 2005; Pyysalo et al., 2007) incor-
porate full syntactic analysis. However, there are

significant differences between the syntactic anno-
tation schemes employed. This leads to difficulties
in sharing data between corpora and establishing the
relative performance of parsers as well as to a lack
of interchangeability of one parser for another in IE
systems, among other issues.

Syntax formalisms are broadly divided into con-
stituency and dependency. Constituency schemes
are dominant in many fields and are unified under
the established Penn Treebank (PTB) scheme (Bies
et al., 1995). However, dependency schemes have
been suggested to be preferable in IE, as they repre-
sent the semantic structure of the sentences more di-
rectly (see, e.g., de Marneffeet al. (2006)). Further,
Lin (1998) argues for dependency-based evaluation
of both dependency and constituency parsers since
it allows evaluation metrics that are more relevant
to semantic interpretation as well as intuitively more
meaningful. Even though there is clearly a need for a
unifying scheme for dependency comparable to that
of PTB for constituency, no widely adopted standard
currently exists.

In this paper, we present a step towards unify-
ing the diverse syntax schemes in use in IE sys-
tems and corpora such as the GENIA Treebank1 and
the recently introduced BioInfer corpus (Pyysalo et
al., 2007). Clegg and Shepherd (2007) have re-
cently proposed to use the Stanford dependency
scheme (de Marneffe et al., 2006) as a common,
application-oriented syntax representation. To as-
sess this choice, we develop a set of conversion
rules for transforming the Link Grammar (LG) de-
pendency scheme (Sleator and Temperley, 1993) to

1http://www-tsujii.is.s.u-tokyo.ac.jp/∼genia
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the Stanford scheme and then create a version of
the BioInfer corpus in the Stanford scheme by ap-
plying the conversion rules and manually correcting
the errors. By making the BioInfer corpus available
in the Stanford scheme, we also increase the value
of the corpus for biomedical IE. The transforma-
tion has the further benefit of allowing Link Gram-
mar output to be normalized into a more application-
oriented form. Finally, to assess the practical value
of the conversion method and of the BioInfer syntac-
tic annotation in the Stanford scheme, we compare
the Charniak-Lease constituency parser2 (Charniak
and Lease, 2005) and BioLG,3 an adaptation of LG
(Pyysalo et al., 2006), on the newly unified dataset
combining the constituency-annotated GENIA Tree-
bank with the dependency-annotated BioInfer cor-
pus.

The transformation rules and software as well as
the Stanford annotation of the BioInfer corpus, the
main practical results of this work, are freely avail-
able athttp://www.it.utu.fi/BioInfer.

2 Motivation

To support the development of IE systems, it is im-
portant for a corpus to provide three key types of
annotation capturing the named entities, their rela-
tionships and the syntax. To our knowledge, there
are only two corpora in the biomedical domain that
currently provide these three annotation types simul-
taneously, BioInfer and LLL (Aubin, 2005). In ad-
dition, GENIA, thede factostandard domain corpus
for named entity recognition and syntactic analysis,
is in the process of adding a relationship annota-
tion. The corpora have different strengths; BioInfer
provides a detailed relationship annotation, while
GENIA has a broader coverage of named entities
and a larger treebank. Unifying the syntactic anno-
tations of these two corpora allows these strengths
to be combined.

The BioInfer syntactic annotation follows the LG
dependency scheme, addressing the recent interest
in LG in the biomedical NLP community (Ding et
al., 2003; Alphonse et al., 2004; Aubin et al., 2005).
However, the LG scheme has been criticized for be-
ing oriented more towards structural than semantic

2http://nlp.stanford.edu/software/,
version 1.5.1

3http://www.it.utu.fi/BioLG, version 1.2.0

relations and having excessively detailed link types
whose functional meaning and value for semantic
analysis is questionable (Schneider, 1998; de Marn-
effe et al., 2006). Our experience with LG leads us
to largely agree with these criticisms.

De Marneffeet al. (2006) have recently intro-
duced a transformation from PTB to the Stanford
scheme. Clegg and Shepherd (2007) have ap-
plied this transformation to perform a dependency-
based comparison of several statistical constituency
parsers on the GENIA Treebank and have argued for
the adoption of the Stanford scheme in biomedical
IE. Moreover, the IE system of Fundelet al. (2007),
which employs the Stanford scheme, was shown to
notably outperform previously applied systems on
the LLL challenge dataset, finding an F-score of
72% against a previous best of 54%. This further
demonstrates the suitability of the Stanford scheme
to IE applications.

3 Dependency schemes

In this section, we present the Stanford and LG
dependency schemes and discuss their relative
strengths.

3.1 Stanford dependency scheme

A parse in the Stanford scheme (SF) is a directed
graph where the nodes correspond to the words and
the edges correspond to pairwise syntactic depen-
dencies between the words. The scheme defines
a hierarchy of 48 grammatical relations, or depen-
dency types. The most generic relation,dependent,
can be specialized asauxiliary, argument, or modi-
fier, which again have several subtypes (de Marneffe
et al., 2006).

The Stanford conversion transforms phrase struc-
ture parses into the Stanford scheme. First, the se-
mantic head of each constituent is identified using
head rules similar to those of Collins (1999) and un-
typed dependencies are then extracted and labeled
with the most specific grammatical relations possi-
ble using Tregex rules (Levy and Andrew, 2006).

The system additionally provides a set ofcollaps-
ing rules, suggested to be beneficial for IE appli-
cations (de Marneffe et al., 2006; Clegg and Shep-
herd, 2007). These rules collapse some dependen-
cies by incorporating certain parts of speech (mostly
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Vimentin and actin were also up-regulated , whereas an isoform of myosin heavy chain was down-regulated .

A/ANPv Cs
Mp

Ss

A/AN PvDsuE

Js

MVsCC
Spx
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Vimentin and actin were also up-regulated , whereas an isoform of myosin heavy chain was down-regulated .
cc>
conj>

<nsubjpass
<auxpass

<advmod

advcl>
<mark

<det prep>

<nsubjpass
pobj>

<nmod
<nmod <auxpass

Vimentin and actin were also up-regulated , whereas an isoform of myosin heavy chain was down-regulated .

conj_and>

<nsubjpass
<nsubjpass

<auxpass
<advmod

advcl>
<mark

<det

prep_of>
<nsubjpass

<nmod
<nmod <auxpass

Figure 1: A sentence from the BioInfer corpus with its LG linkage (top), theStanford parse (middle), and
the collapsed Stanford parse (bottom). The< and> symbols denote the direction of dependencies.

during incubation , actin suffered degradation
Jp

CO
Ss Os

actin suffered degradation during incubation
Jp

MVp
Ss Os

actin suffered degradation during incubation
JpMpSs Os

Figure 2: Variation in the link type connecting a
preposition: CO to the main noun in topicalized
prepositional phrases,MVp when modifying a verb,
andMp when modifying a noun.

conjunctions and prepositions) in grammatical rela-
tions. This is realized by combining two relations
and denominating the resulting dependency with a
type based on the word to which the original two
relations were linked (see Figure 1).

In the LG-SF conversion, we target the uncol-
lapsed Stanford scheme, as the collapsing rules have
already been developed and reported by de Marn-
effe et al.; reimplementing the collapsing would be
an unnecessary duplication of efforts. Also, the col-
lapsed relations can be easily created based on the
uncollapsed ones, whereas reversing the conversion
would be more complicated.

3.2 LG dependency scheme

Link Grammar (Sleator and Temperley, 1993) is
closely related to dependency formalisms. It is
based on the notion of typedlinksconnecting words.

While links are not explicitly directional, the roles
of the words can be inferred from their left-to-right
order and the link type. An LG parse, termedlink-
age, consists of a set of links that connect the words
so that no two links cross or connect the same two
words. When discussing LG, we will use the terms
dependency and link interchangeably.

Compared to the 48 dependency types of the Stan-
ford scheme, the LG English grammar defines over
100 main link types which are further divided into
400 subtypes. The unusually high number of dis-
tinct types is one of the properties of the LG English
grammar that complicate the application of LG in
information extraction. Consider, for instance, the
case of prepositional phrase attachment illustrated in
Figure 2, where all the alternative attachment struc-
tures receive different types. Arguably, this distinc-
tion is unimportant to current IE systems and there-
fore should be normalized. This normalization is in-
herent in the Stanford scheme, where the preposition
always attaches using aprepdependency.

In contrast to such unnecessarily detailed distinc-
tions, in certain cases LG types fail to make seman-
tically important distinctions. For instance, theCO
link type is used to mark almost all clause openers,
not distinguishing between, for example, adverbial
and prepositional openers.

4 Our contributions

In this section, we describe the LG-SF conversion
as well as SF BioInfer, the BioInfer corpus syntactic
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annotation in the Stanford scheme. These are the
two primary contributions of this study.

4.1 LG-SF conversion

The LG-SF conversion transforms the undirected
LG links into directed dependencies that follow the
Stanford scheme. The transformation is based on
handwritten rules, each rule consisting of a pattern
that is matched in the LG linkage and generating a
single dependency in the Stanford parse. Since the
conversion rules only refer to the LG linkage, they
do not influence each other and are applied inde-
pendently in an arbitrary order. The pattern of each
rule is expressed as a set of positive or negative con-
straints on the presence of LG links. The constraints
typically restrict the link types and may also refer to
the lexical level, restricting only to links connecting
certain word forms. Since LG does not define link
directionality, the patterns refer to the left-to-right
order of tokens and the rules must explicitly specify
the directionality of the generated SF dependencies.

As an example, let us consider the rule
[X Pv— Y] ⇒ Y

auxpass
→ X. The pattern matches two

tokens connected with an LG link of typePv and
generates the corresponding directedauxpassde-
pendency. This rule applies twice in the linkage
in Figure 1. It is an example of a rare case of a
one-to-one correspondence between an LG and an
SF type. Many-to-many correspondences are much
more common: in these cases, rules specify multiple
restrictions and multiple rules are needed to gener-
ate all instances of a particular dependency type. As
a further example, we present the three rules below,
which together generate all left-to-rightprepdepen-
dencies. An exclamation mark in front of a restric-
tion denotes a negative restriction, i.e., the link must
not exist in order for the rule to apply. The link types
are specified as regular expressions.

[A Mp|MX[a-z]x— B]![B Cs— C]![A RS— D] ⇒ A
prep
→ B

[A OF|MVx— B]![A RS— C]⇒ A
prep
→ B

[A MVp— B]![A RS— C]![C MVl— A] ⇒ A
prep
→ B

The first of the above three rules generates theprep
dependency in the parse in Figure 1, withA=isoform
andB=of. The variablesC andD are not bound to
any tokens in this sentence, as they only occur in
negative restrictions.

actin , profilin and cofilin

CC
CC CC

Figure 3: Example of a structure where the relative
order of the first two tokens cannot be resolved by
the rules.

To resolve coordination structures, it is crucial to
recognize the leftmost coordinated element, i.e. the
head of the coordination structure in the SF scheme.
However, the conversion rule patterns are unable to
capture general constraints on the relative order of
the tokens. For instance, in the linkage in Figure 3, it
is not possible to devise a pattern only matching one
of the tokensactin andprofilin, while not matching
the other. Therefore, we perform a pre-processing
step to resolve the coordination structures prior to
the application of the conversion rules. After the
pre-processing, the conversion is performed with the
lp2lp software (Alphonse et al., 2004), previously
used to transform LG into the LLL competition for-
mat (Aubin, 2005).

In the development of the LG-SF conversion and
SF BioInfer, we make the following minor modifi-
cations to the Stanford scheme. The scheme dis-
tinguishes nominal and adjectival pre-modifiers of
nouns, a distinction that is not preserved in the
BioInfer corpus. Therefore, we merge the nom-
inal and adjectival pre-modifier grammatical rela-
tions into a single relation,nmod. For the same rea-
son, we do not distinguish between apposition and
abbreviation, and only use theapposdependency
type. Finally, we do not annotate punctuation.

Schneider (1998) has previously proposed a strat-
egy for identifying the head word for each LG link,
imposing directionality and thus obtaining a depen-
dency graph. Given the idiosyncrasies of the LG
linkage structures, this type of transformation into
dependency would clearly not have many of the nor-
malizing benefits of the LG-SF transformation.

4.2 SF BioInfer

For creating the BioInfer corpus syntactic annota-
tion in the Stanford scheme, the starting point of
the annotation process was the existing manual an-
notation of the corpus in the LG scheme to which
we applied the LG-SF conversion described in Sec-
tion 4.1. The resulting SF parses were then manu-
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ally corrected by four annotators. In the manual cor-
rection phase, each sentence was double-annotated,
that is, two annotators corrected the converted out-
put independently. All disagreements were resolved
jointly by all annotators.

To estimate the annotation quality and the sta-
bility of the SF scheme, we determined annotator
agreement as precision and recall measured against
the final annotation. The average annotation preci-
sion and recall were 97.5% and 97.4%, respectively.
This high agreement rate suggests that the task was
well-defined and the annotation scheme is stable.

The BioInfer corpus consists of 1100 sentences
and, on average, the annotation consumed approxi-
mately 10 minutes per sentence in total.

5 Evaluation

In this section, we first evaluate the LG-SF conver-
sion. We then present an evaluation of the Charniak-
Lease constituency parser and the BioLG depen-
dency parser on BioInfer and GENIA.

5.1 Evaluation of the conversion rules

In the evaluation of the conversion rules against the
gold standard SF BioInfer annotation, we find a pre-
cision of 98.0% and a recall of 96.2%. Currently,
the LG-SF conversion consists of 114 rules, each
of which specifies, on average, 4.4 restrictions. Al-
together the rules currently generate 32 SF depen-
dency types, thus averaging 3.5 rules per SF type.
Only 9 of the SF types are generated by a single
rule, while the remaining require several rules. We
estimate that the current ruleset required about 100
hours to develop.

In Figure 4, we show the cumulative precision and
recall of the rules when added in the descending or-
der of their recall. Remarkably, we find that a recall
of 80% is reached with just 13 conversion rules, 90%
with 28 rules, and 95% with 56 rules. These fig-
ures demonstrate that while the SF and LG schemes
are substantially different, a high-recall conversion
can be obtained with approximately fifty carefully
crafted rules. Additionally, while precision is con-
sistently high, the highest-recall rules also have the
highest precision. This may be related to the fact
that the most common SF dependency types have a
straightforward correspondence in LG types.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  20  40  60  80  100

Number of conversion rules

Recall
Precision

Figure 4: Cumulative precision and recall of the con-
version rules.

A common source of errors in the LG-SF conver-
sion are the Link Grammaridiomatic expressions,
which are analyzed as a chain ofID links (0.7% of
all links in the BioInfer corpus) and connected to
the linkage always through their last word. Some
examples of LG idiomatic expressions includeeach
other, no one, come of age, gotten rid of, for good,
and the like. These expressions are often problem-
atic in the SF conversion as well. We did not at-
tempt any wide-coverage systematic resolution of
the idiomatic expressions and, apart from the most
common cases such asin vitro, we preserve the LG
structure of connecting these expressions through
their last word. We note, however, that the list of
idiomatic LG expressions is closed and therefore a
case-by-case resolution leading to a full coverage is
possible, although not necessarily practical.

Similar to the LG idiomatic expressions are the
SF depdependencies, generated when none of the
SF rules assigns a more specific type. In most cases,
dep is a result of a lack of coverage of the SF con-
version rules typically occurring in rare or idiomatic
expressions. We assume that many of thedepdepen-
dencies will be resolved in the future, given that the
SF conversion and the SF dependency scheme itself
are presented by the authors as a work in progress.
Therefore, we do not attempt to replicate most of
the SFdepdependencies with the LG-SF conversion
rules; much of the effort would be obsoleted by the
progress of the SF conversion. Thedepdependen-
cies account for 23% of the total 3.8% of dependen-
cies not recovered by the LG-SF conversion.
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Charniak-Lease BioLG
corpus Prec. Rec. F Prec. Rec. F
GENIA 81.2 81.3 81.3 76.9 72.4 74.6
BioInfer 78.4 79.9 79.4 79.6 76.1 77.8

Table 1: Parser performance. Precision, recall and
F-measure for the two parsers on the two corpora.

5.2 Evaluated parsers and corpora

The Charniak-Lease parser is a statisti-
cal constituency parser developed by Char-
niak and Lease (2005). It is an adaptation of the
Charniak parser (Charniak, 1999) to the biomedical
domain. For example, it uses a POS-tagger trained
on the GENIA corpus, although the parser itself has
been trained on the Penn Treebank. The Charniak-
Lease parser is of particular interest, because in a
recent comparison performed by Clegg and Shep-
herd (2007) on the GENIA Treebank, it was the
best performing of several state-of-the-art statistical
constituency parsers.

The LG parser is a rule-based dependency parser
with a broad coverage grammar of newspaper-type
English. It has no probabilistic component and does
not perform pruning of ambiguous alternatives dur-
ing parsing. Instead, the parser generates all parses
accepted by the grammar. Simple heuristics are ap-
plied to rank the alternative parses.

Here, we evaluate a recently introduced adap-
tation of LG to the biomedical domain, BioLG
(Pyysalo et al., 2006), incorporating the GENIA
POS tagger (Tsuruoka et al., 2005) as well as a num-
ber of modifications to lexical processing and the
grammar.

To facilitate the comparison of results with those
of Clegg and Shepherd, we use their modified subset
of GENIA Treebank.4 As 600 of the 1100 BioInfer
sentences have previously been used in the develop-
ment of the BioLG parser, we only use the remaining
500 blind sentences of BioInfer in the evaluation.

5.3 Parser performance

To evaluate the performance of the parsers, we de-
termined theprecision, recall and F-measureby
comparing the parser output against the corpus gold

4http://chomsky-ext.cryst.bbk.ac.uk/
andrew/downloads.html

BioLG
scheme Prec. Rec. F
LG 78.2 77.2 77.7
SF 79.6 76.1 77.8

Table 2: BioLG performance on the BioInfer corpus
with and without the LG-SF conversion.

standard dependencies. The matching criterion re-
quired that the correct words are connected and
that the direction and type of the dependency are
correct. The dependency-based evaluation results
for the Charniak-Lease and BioLG parsers on the
GENIA and BioInfer corpora are shown in Table 1.
We note that Clegg and Shepherd (2007) report
77% F-score performance of Charniak-Lease on the
GENIA corpus, using the collapsed variant of the SF
scheme. We replicated their experiment using the
uncollapsed variant and found an F-score of 80%.
Therefore, most of the approximately 4% difference
compared to our finding reported in Table 1 is due
to this difference in the use of collapsing, with our
modifications to the SF scheme having a lesser ef-
fect. The decrease in measured performance caused
by the collapsing is, however, mostly an artifact
caused by merging several dependencies into one; a
single mistake of the parser can have a larger effect
on the performance measurement.

We find that while the performance of the
Charniak-Lease parser is approximately 2 percent-
age units better on GENIA than on BioInfer, for
BioLG we find the opposite effect, with performance
approximately 3 percentage units better on BioInfer.
Thus, both parsers perform better on the corpora
closer to their native scheme. We estimate that this
total 5 percentage unit divergence represents an up-
per limit to the evaluation bias introduced by the two
sets of conversion rules. We discuss the possible
causes for this divergence in Section 5.4.

To determine whether the differences between the
two parsers on the two corpora were statistically
significant, we used the Wilcoxon signed-ranks test
for F-score performance using the Bonferroni cor-
rection for multiple comparisons (N = 2), follow-
ing the recent recommendation of Demšar (2006).
We find that the Charniak-Lease parser outperforms
BioLG statistically significantly on both the GENIA
corpus (p ≪ 0.01) and on the BioInfer corpus
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  Z   protein  but  not  c-myb  protein 
<nmod <dep

cc>
<nmod

conj>

  Z   protein  but  not  c-myb  protein 
<nmod dep>

cc>
<nmod

conj>

Figure 5: Example of divergence on the interpreta-
tion of the Stanford scheme. Above: GENIA and
Stanford conversion interpretation. Below: BioInfer
and LG-SF rules interpretation.

(p < 0.01). Thus, the relative performance of the
parsers can, in this case, be established even in the
presence of opposing conversion biases on the two
corpora.

In Table 2, we present an evaluation of the BioLG
parser with and without the LG-SF conversion,
specifically evaluating the effect of the conversion
presented in this study. Here we find a substantially
more stable performance, including even an increase
in precision. This further validates the quality of the
conversion rules.

Finally, we note that the processing time required
to perform the conversions is insignificant compared
to the time consumed by the parsers.

5.4 Discussion

Evaluating BioLG on GENIA and the Charniak-
Lease parser on BioInfer includes multiple sources
of divergence. In addition to parser errors, differ-
ences can be created by the LG-SF conversion and
the Stanford conversion. Moreover, in examining
the outputs we identified that a further source of
divergence is due to differing interpretations of the
Stanford scheme. One such difference is illustrated
in Figure 5. Here the BioLG parser with the LG-
SF conversion produces an analysis that differs from
the result of converting the GENIA Treebank analy-
sis by the Stanford conversion. This is due to the
Stanford conversion producing an apparently flawed
analysis that is not replicated by the LG-SF con-
version. In certain cases of this type, the lack of a
detailed definition of the SF scheme prevents from
distinguishing between conversion errors and inten-
tional analyses. This will necessarily lead to differ-
ing interpretations, complicating precise evaluation.

6 Conclusions

We have presented a step towards unifying syntactic
annotations under the Stanford dependency scheme
and assessed the feasibility of this unification by
developing and evaluating a conversion from Link
Grammar to the Stanford scheme. We find that a
highly reliable transformation can be created, giv-
ing a precision and recall of 98.0% and 96.2%, re-
spectively, when compared against our manually an-
notated gold standard version of the BioInfer cor-
pus. We also find that the performance of the BioLG
parser is not adversely affected by the conversion.
Given the clear benefits that the Stanford scheme
has for domain analysis, the conversion increases the
overall suitability of the parser to IE applications.
Based on these results, we conclude that converting
to the Stanford scheme is both feasible and practical.

Further, we have developed a version of the
BioInfer corpus annotated with the Stanford scheme,
thereby increasing the usability of the corpus. We
applied the LG-SF conversion to the original LG
BioInfer annotation and manually corrected the er-
rors. The high annotator agreement of above 97%
precision and recall confirms the stability of the SF
scheme.

We have also demonstrated that the unification
permits direct parser comparison that was previously
impossible. However, we found that there is a cer-
tain accumulation of errors caused by the conver-
sion, particularly in a case when two distinct rule
sets are applied. In our case, we estimate this error
to be on the order of several percentage units, never-
theless, we were able to establish the relative perfor-
mance of the parses with a strong statistical signif-
icance. These results demonstrate the utility of the
Stanford scheme as a unifying representation of syn-
tax. We note that an authoritative definition of the
Stanford scheme would further increase its value.
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Faculty of Computer Science, Dalhousie University, Canada, {haibin,cblouin,vlado}@cs.dal.ca

Abstract

We propose an unsupervised method to au-
tomatically extract domain-specific prefixes
and suffixes from biological corpora based
on the use of PATRICIA tree. The method is
evaluated by integrating the extracted affixes
into an existing learning-based biological
term annotation system. The system based
on our method achieves comparable experi-
mental results to the original system in locat-
ing biological terms and exact term match-
ing annotation. However, our method im-
proves the system efficiency by significantly
reducing the feature set size. Additionally,
the method achieves a better performance
with a small training data set. Since the af-
fix extraction process is unsupervised, it is
assumed that the method can be generalized
to extract domain-specific affixes from other
domains, thus assisting in domain-specific
concept recognition.

1 Introduction

Biological term annotation is a preparatory step in
information retrieval in biological science. A bi-
ological term is generally defined as any technical
term related to the biological domain. Consider-
ing term structure, there are two types of biologi-
cal terms: single word terms and multi-word terms.
Many systems (Fukuda et al., 1998; Franzn et al.,
2002) have been proposed to annotate biological
terms based on different methodologies in which de-
termining term boundaries is usually the first task. It
has been demonstrated (Jiampojamarn et al., 2005a),
however, that accurately locating term boundaries
is difficult. This is so because of the ambiguity of
terms, and the peculiarity of the language used in
biological literature.

(Jiampojamarn et al., 2005b) proposed an auto-
matic biological term annotation system (ABTA)
which applies supervised learning methods to an-
notate biological terms in the biological litera-
ture. Given unstructured texts in biological research,
the annotation system first locates biological terms
based on five word position classes, “Start”, “Mid-
dle”, “End”, “Single” and “Non-relevant”. There-
fore, multi-word biological terms should be in a con-
sistent sequence of classes “Start (Middle)* End”
while single word terms will be indicated by the
class “Single”. Word n-grams (Cavnar and Tren-
kle, 1994) are used to define each input sentence
into classification instances. For each element in
an n-gram, the system extracts feature attributes as
input for creating the classification model. The ex-
tracted feature attributes include word feature pat-
terns(e.g., Greek letters, uppercase letters, digits and
other symbols), part-of-speech (POS) tag informa-
tion, prefix and suffix characters. Without using
other specific domain resources, the system achieves
comparable results to some other state-of-the-art
systems (Finkel et al., 2004; Settles, 2004) which
resort to external knowledge, such as protein dictio-
naries. It has been demonstrated (Jiampojamarn et
al., 2005b) that the part-of-speech tag information
is the most effective attribute in aiding the system
to annotate biological terms because most biologi-
cal terms are partial noun phrases.

The ABTA system learns the affix feature by
recording only the first and the lastn characters (e.g.,
n = 3) of each word in classification instances, and
the authors claimed that then characters could pro-
vide enough affix information for the term annota-
tion task. Instead of using a certain number of char-
acters to provide affix information, however, it is
more likely that a specific list of typically used pre-
fixes and suffixes of biological words would provide
more accurate information to classifying some bio-
logical terms and boundaries. We hypothesize that
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a more flexible affix definition will improve the per-
formance of the taks of biological term annotation.

Inspired by (Jiampojamarn et al., 2005b), we
propose a method to automatically extract domain-
specific prefixes and suffixes from biological cor-
pora. We evaluate the effectiveness of the extracted
affixes by integrating them into the parametrization
of an existing biological term annotation system,
ABTA (Jiampojamarn et al., 2005b), to evaluate the
impact on performance of term annotation. The pro-
posed method is completely unsupervised. For this
reason, we suggest that our method can be gener-
alized for extracting domain-specific affixes from
many domains.

The rest of the paper is organized as follows: In
section 2, we review recent research advances in bi-
ological term annotation. Section 3 describes the
methodology proposed for affix extraction in detail.
The experiment results are presented and evaluated
in section 4. Finally, section 5 summarizes the paper
and introduces future work.

2 Related Work

Biological term annotation denotes a set of proce-
dures that are used to systematically recognize per-
tinent terms in biological literature, that is, to differ-
entiate between biological terms and non-biological
terms and to highlight lexical units that are related to
relevant biology concepts (Nenadic and Ananiadou,
2006).

Recognizing biological entities from texts allows
for text mining to capture their underlying meaning
and further extraction of semantic relationships and
other useful information. Because of the importance
and complexity of the problem, biological term an-
notation has attracted intensive research and there is
a large number of published work on this topic (Co-
hen and Hersh, 2005; Franzn et al., 2003).

Current approaches in biological term annota-
tion can be generalized into three main categories:
lexicon-based, rule-based and learning-based (Co-
hen and Hersh, 2005). Lexicon-based approaches
use existing terminological resources, such as dic-
tionaries or databases, in order to locate term oc-
currences in texts. Given the pace of biology re-
search, however, it is not realistic to assume that a
dictionary can be maintained up-to-date. A draw-
back of lexicon-based approaches is thus that they
are not able to annotate recently coined biological

terms. Rule-based approaches attempt to recover
terms by developing rules that describe associated
term formation patterns. However, rules are often
time-consuming to develop while specific rules are
difficult to adjust to other types of terms. Thus, rule-
based approaches are considered to lack scalability
and generalization.

Systems developed based on learning-based ap-
proaches use training data to learn features useful for
biological term annotation. Compared to the other
two methods, learning-based approaches are theo-
retically more capable to identify unseen or multi-
word terms, and even terms with various writing
styles by different authors. However, a main chal-
lenge for learning-based approaches is to select a set
of discriminating feature attributes that can be used
for accurate annotation of biological terms. The fea-
tures generally fall into four classes: (1) simple de-
terministic features which capture use of uppercase
letters and digits, and other formation patterns of
words, (2) morphological features such as prefix and
suffix, (3) part-of-speech features that provide word
syntactic information, and (4) semantic trigger fea-
tures which capture the evidence by collecting the
semantic information of key words, for instances,
head nouns or special verbs.

As introduced earlier, the learning-based biologi-
cal term annotation system ABTA obtained an 0.705
F-score in exact term matching on Genia corpus
(v3.02)1 which contains 2,000 abstracts of biolog-
ical literature. In fact, the morphological features
in ABTA are learned by recording only the first and
the lastn characters of each word in classification
instances. This potentially leads to inaccurate affix
information for the term annotation task.

(Shen et al., 2003) explored an adaptation of a
general Hidden Markov Model-based term recog-
nizer to biological domain. They experimented with
POS tags, prefix and suffix information and noun
heads as features and reported an 0.661 F-score in
overall term annotation on Genia corpus. 100 most
frequent prefixes and suffixes are extracted as can-
didates, and evaluated based on difference in likeli-
hood of part of a biological term versus not. Their
method results in a modest positive improvement in
recognizing biological terms. Two limitations of this
method are: (1) use of only a biological corpus, so

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
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that the general domain-independent affixes are not
removed, and (2) a supervised process of choosing a
score threshold that is used in affix selection.

(Lee et al., 2003) used prefix and suffix fea-
tures coupled with a dictionary-based refinement of
boundaries of the selected candidates in their exper-
iments for term annotation. They extracted affix fea-
tures in a similar way with (Shen et al., 2003). They
also reported that affix features made a positive ef-
fect on improving term annotation accuracy.

In this project, we consider the quality of domain-
specific affix features extracted via an unsupervised
method. Successful demonstration of the quality of
this extraction method implies that domain-specific
affixes can be identified for arbitrary corpora without
the need to manually generate training sets.

3 PATRICIA-Tree-based Affix Extraction

3.1 PATRICIA Tree

The method we propose to extract affixes from bio-
logical words is based on the use of PATRICIA tree.
“PATRICIA” stands for “Practical Algorithm To Re-
trieve Information Coded In Alphanumeric”. It was
first proposed by (Morrison, 1968) as an algorithm
to provide a flexible means of storing, indexing, and
retrieving information in a large file. PATRICIA
tree uses path compression by grouping common se-
quences into nodes. This structure provides an ef-
ficient way of storing values while maintaining the
lookup time for a key of O(N) in the worst case,
whereN is the length of the longest key. Meanwhile,
PATRICIA tree has little restriction on the format of
text and keys. Also it does not require rearrange-
ment of text or index when new material is added.
Because of its outstanding flexibility and efficiency,
PATRICIA tree has been applied to many large in-
formation retrieval problems (Morrison, 1968).

In our project, all biological words are inserted
and stored in a PATRICIA tree, using which we can
efficiently look up specific biological word or extract
biological words that share specified affixes and cal-
culated required statistics.

3.2 Experiment Design

In this work, we have designed the experiments to
extract domain-specific prefixes and suffixes of bio-
logical words from a biological corpus, and investi-
gate whether the extracted affix information could

facilitate better biological term annotation. The
overall design of our experiments consists of three
major processes: affix extraction, affix refining and
evaluation of experimental results. It is seen that
every node in PATRICIA tree contains exactly one
string of 1 or more characters, which is the preced-
ing substring of its descendant nodes. Meanwhile,
every word is a path of substrings from the root node
to a leaf. Therefore, we propose that every substring
that can be formed from traversing the internal nodes
of the tree is a potential affix.

In the affix extraction process, we first populate a
PATRICIA tree using all words in the combined cor-
pus(CC) of a Biological Corpus(BC) and a General
English Corpus(GEC). GEC is used againstBC in
order to extract more accurate biological affix infor-
mation. Two PATRICIA trees are populated sepa-
rately for extracting prefixes and suffixes. The suffix
tree is based on strings derived by reversing all the
input words from the combined corpus. All the po-
tential prefixes and suffixes are then extracted from
the populated PATRICIA trees.

In the affix refining process, for each extracted
potential affix, we compute its joint probability of
being both an English affix and a biological affix,
P (D = Biology, A = Yes|PA), whereD stands
for Domain, A stands forAffix and PA represents
Potential Affix. This joint probability can be fur-
ther decomposed as shown in Eq.(1). In the for-
mula,P (A = Yes|PA) denotes the probability that
a given potential affix is a true English affix while
P (D = Biology|A = Yes, PA) refers to the proba-
bility that a given English affix is actually a biologi-
cal affix.

P (D = Biology, A = Yes|PA) =
P (D=Biology|A=Yes, PA)× P (A=Yes|PA) (1)

To calculateP (A = Yes|PA), the probabilities of
prefixes and suffixes are measured separately. In
linguistics, a prefix is described as a type of affix
that precedes the morphemes to which it can attach
(Soanes and Stevenson, 2004). Simply speaking, a
prefix is a substring that can be found at the begin-
ning of a word. Our functional definition of a prefix
is a substring which precedes words existing in the
English language. This can be done by enumerating,
for each node, all descendant substring and assess-
ing their existence as stand-alone words. For exam-
ple, “radioimmunoassay”, “radioiodine” and “radio-
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labeled” are three words and have a common start-
ing string “radio”. If we take out the remaining part
of each word, three new strings are obtained, “im-
munoassay”, “iodine” and “labeled”. Since all the
input words are already stored in PATRICIA tree,
we lookup these three strings in PATRICIA tree and
find that “immunoassay”, “iodine” and “labeled” are
also meaningful words in the tree. This indicates
that “radio” is a prefix among the input words. On
the other hand, it is obvious that “radioimmunoas-
say” and “radioiodine” share another string “radioi”.
However, “mmunoassay” and “odine” are not mean-
ingful words due to their absence in the PATRICIA
tree. This suggests that “radioi” is not a prefix.

For each extracted potential prefix,
P (A = Yes|PA) is computed as the proportion of
strings formed by traversing all descendant nodes
that are meaningful terms. In our experiments,
the measure of determining a string meaningful
is to look up whether the string is an existing
word present in the built prefix PATRICIA tree.
Algorithm 1 shows the procedure of populating a
PATRICIA tree and calculatingP (A = Yes|PA)
for each potential prefix.

Algorithm 1 P (A = Yes|PA) for Prefix

Input: words(w) ∈ Combined Corpus(CC)
Output: P (A = Yes|PA) for each potential prefix

PT = ∅ //PT : Patricia Trie
for all wordsw ∈ CC do

PT← Insert(w) //Populating Patricia Trie
for all nodesni ∈ PTdo

PA← String(ni) //Concatenate strings
// in nodes from root toni,

// which is a potential prefix
TPA ← PrefixSearch(PA)
//TPA : all wordsw ∈ CC beginning withPA
score← 0
for all wordsw ∈ TPA do

if Extrstr(PA,w) in PT then
//Extrstr() returns the remaining string
// of w withoutPA
score ++

P (A = Yes|PA) ← score/|TPA|
//|TPA| is the number of words inTPA

Likewise, in linguistics a suffix is an affix that
follows the morphemes to which it can attach

(Soanes and Stevenson, 2004). Simply speaking,
a suffix of a word is a substring exactly match-
ing the last part of the word. Similar to the idea
of calculatingP (A = Yes|PA) for potential pre-
fix, we conjecture that the extracted potential suf-
fix could be a reasonable English suffix if the in-
verted strings formed from traversing the descen-
dant nodes of the potential suffix in the suffix PA-
TRICIA tree are meaningful words. For instance,
“Calcium-dependent”, “Erythropoietin-dependent”
and “Ligand-dependent” share a common ending
string “-dependent”. Since the remaining strings of
each word, “Calcium”, “Erythropoietin” and “Lig-
and” can be found in the “forward” PATRICIA tree,
“-dependent” is a potentially useful suffix.

However, it is often observable that some English
words do not begin with another meaningful word
but a typical prefix, for example, “alpha-bound” and
“pro-glutathione”. It is known that “-bound”and
“-glutathione” are good suffixes in biology. “al-
pha” and “pro”, however, are not meaningful words
but typical prefixes, and in fact have been extracted
when calculatingP (A = Yes|PA) for potential pre-
fix. Therefore, in order to detect and capture such
potential suffixes, we further assume that if a word
begins with a recognized prefix instead of another
meaningful word, the remaining part of the word
still has the potential to be an informative suffix.
Therefore, strings “-bound” and “-glutathione” can
be successfully extracted as potential suffixes. In our
experiments, an extracted potential prefix is consid-
ered a recognized prefix if itsP (A = Yes|PA) is
greater than 0.5.

To calculateP (D = Biology|A = Yes, PA), it
is necessary to first determine true English affixes
from extracted potential affixes. In our experiments,
we consider that an extracted potential prefix or suf-
fix is a recognized affix only if itsP (A = Yes|PA)
is greater than 0.5. It is also necessary to consider
the biological corpusBC and the general English
corpusGEC separately. It is assumed that a biol-
ogy related affix tends to occur more frequently in
words ofBC thanGEC. Eq.(2) is used to estimate
P (D = Biology|A = Yes, PA).

P (D = Biology|A = Yes, PA) =
(#Words with PA in BC/Size (BC))/
(#Words with PA in BC/Size (BC) +

#Words with PA in GEC/Size (GEC)), (2)
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where onlyPA with P (A = Yes|PA) greater than
0.5 are used, and the number of words with a certain
PA is further normalized by the size of each corpus.

Finally, the joint probability of each potential af-
fix, P (D = Biology, A = Yes|PA), can be used to
parametrize a word beginning or ending withPA.

In the evaluation process of our experiments, the
prefix-suffix pair with maximum joint probability
values is used to parametrize a word. Therefore,
each word inBC has exactly two values as affix fea-
ture: a joint probability value for its potential prefix
and a joint probability value for its potential suffix.
We then replace the original affix feature of ABTA
system with our obtained joint probability values,
and investigate whether these new affix information
leads to equivalent or better term annotation onBC.

4 Results and Evaluation

4.1 Dataset and Environment

For our experiments, it is necessary to use a corpus
that includes widely used biological terms and com-
mon English words. This dataset, therefore, will al-
low us to accurately extract the information of bi-
ology related affixes. As a proof-of-concept proto-
type, our experiments are conducted on two widely
used corpora: Genia corpus (v3.02) and Brown cor-
pus2.The Genia version 3.02 corpus is used as the
biological corpusBC in our experiments. It contains
2,000 biological research paper abstracts. They were
selected from the search results in the MEDLINE
database3, and each biological term has been an-
notated into different terminal classes based on the
opinions of experts in biology. Used as the general
English corpusGEC, Brown corpus includes 500
samples of common English words, totalling about
a million words drawn from 15 different text cate-
gories.

All the experiments were executed on a Sun So-
laris server Sun-Fire-880. Our experiments were
mainly implemented using Perl and Python.

4.2 Experimental Results

We extracted 15,718 potential prefixes and 21,282
potential suffixes from the combined corpus of Ge-
nia and Brown. Among them, there are 2,306 poten-
tial prefixes and 1,913 potential suffixes with joint

2http://clwww.essex.ac.uk/w3c/corpusling/
3http://www.ncbi.nlm.nih.gov/PubMed/

probability value P (D = Biology, A = Yes|PA)
greater than 0.5. Table 1 shows a few examples
of extracted potential affixes whose joint probabil-
ity value is equal to 1.0. It is seen that most of
these potential affixes are understandable biological
affixes which directly carry specific semantic mean-
ings about certain biological terms. However, some
substrings are also captured as potential affixes al-
though they may not be recognized as “affixes” in
linguistics, for example “adenomyo” in prefixes, and
“mopoiesis” in suffixes. In Genia corpus, “adeno-
myo” is the common beginning substring of biologi-
cal terms “adenomyoma”, “adenomyosis” and “ade-
nomyotic” , while “plasias” is the common ending
substring of biological terms “neoplasias” and “hy-
perplasias”. The whole list of extracted potential af-
fixes is available upon request.

In order to investigate whether the extracted af-
fixes improves the performance of biological term
annotation, it is necessary to obtain the experimen-
tal results of both original ABTA system and the
ABTA system using our extracted affix information.
In ABTA, the extraction of feature attributes is per-
formed on the whole 2000 abstracts of Genia cor-
pus, and then 1800 abstracts are used as training
set while the rest 200 abstracts are used as testing
set. The evaluation measures are precision, recall
and F-score. C4.5 decision tree classifier (Alpay-
din, 2004) is reported as the most efficient classi-
fier which leads to the best performance among all
the classifiers experimented in (Jiampojamarn et al.,
2005b). Therefore, C4.5 is used as the main clas-
sifier in our experiments. The experimental results
of ABTA system with 10 fold cross-validation based
on different combinations of the original features are
presented in Table 2 in which feature“WFP” is short
for Word Feature Patterns, feature“AC” denotes Af-
fix Characters, and feature“POS” refers to POS tag
information. The setting of parameters in the exper-
iments with ABTA is: the word n-gram size is 3, the
number of word feature patterns is 3, and the number
of affix characters is 4. We have reported the F-score
and the classification accuracy of the experiments in
the table. It is seen that there is a tendency with the
experimental performance that for a multi-word bi-
ological term, the middle position is most difficult
to detect while the ending position is generally eas-
ier to be identified than the starting position. The
assumed reason for this tendency is that for multi-
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Potential Prefixes Potential Suffixes
13-acetate

B-cell
endotoxin
I-kappaB

macrophage

adenomyo
Rel/NF-kappaB

anti-CD28
VitD3

cytokine

3-kinase
CD28
HSV-1
ligand

N-alpha-tosyl-L

platelet
pharmaco
adenovirus
chromatin

hemoglobin

-T-cell
-coated

-expressed
-inducer
plasias

-alpha-activated
mopoiesis

-nonresponsive
coagulant
-soluble

cytoid
-bearing

-kappaB-mediated
-globin-encoding

-immortalized

-methyl
lyse

-receptor
glycemia
racrine

Table 1: Examples of Extracted Potential Affixes with Joint Probability Value 1.0

word biological terms, many middle words of are
seemingly unrelated to biology domain while many
ending words directly indicate their identity, for in-
stances, “receptor”, “virus” or “expression”.

Table 3 shows the experimental results of ABTA
system after replacing the original affix feature with
our obtained joint probability values for each word
in Genia corpus.“JPV” is used to denote Joint Prob-
ability Values. It is seen that based on all three
features the system achieves a classification accu-
racy of 87.5%, which is comparable to the results
of the original ABTA system. However, the size of
the feature set of the system is significantly reduced,
and the classification accuracy of 87.5% is achieved
based on only 18 parameters, which is 1/2 of the size
of the original feature set. Meanwhle, the execution
time of the experiments generally reduces to nearly
half of the original ABTA system (e.g., reduces from
4 hours to 1.7 hours). Furthermore, when the feature
set contains only our extracted affix information, the
system reaches a classification accuracy of 81.46%
based on only 6 parameters. It is comparable with
the classification accuracy achieved by using only
POS information in the system. In addition, Table 3
also presents the experimental results when our ex-
tracted affix information is used as an addtional fea-
ture to the original feature set. It is expected that the
system performance is further improved when the
four features are applied together. However, the size
of the feature set increases to 42 parameters, which
increases the data redundancy. This proves that the
extracted affix information has a positive impact on
locating biological terms, and it could be a good re-
placement of the original affix feature.

Moreover, we also evaluated the performance of
the exact matching biological term annotation based
on the obtained experimental results of ABTA sys-
tem. The exact matching annotation in ABTA sys-
tem is to accurately identify every biological term,
including both multi-word terms and single word
terms, therefore, all the word position classes of
a term have to be classified correctly at the same

time. An error occurring in any one of “Start” “Mid-
dle” and “End” classes leads the system to annotate
multi-word terms incorrectly. Consequently, the ac-
cumulated errors will influence the exact matching
annotation performance. Table 4 presents the exact
matching annotation results of different combination
of features based on 10 fold cross-validation over
Genia corpus. It is seen that after replacing the orig-
inal affix feature of ABTA system with our obtained
joint probability values for each word in Genia cor-
pus, the system achieves an 0.664 F-score on exact
matching of biological term annotation, compara-
ble to the exact matching performance of the orig-
inal ABTA system. In addition, when the feature
set contains only our extracted affix information, the
system reaches an 0.536 F-score on exact matching.
Although it is a little lower than the exact matching
performance achieved by using only the original af-
fix features in the system, the feature set size of the
system is significantly reduced from 24 to 6.

In order to further compare our method with the
original ABTA system, we attempted eleven differ-
ent sizes of training data set to run the experiments
separately based on our method and the original
ABTA system. They can then be evaluated in terms
of their performance on each training set size. These
eleven different training set sizes are: 0.25%, 0.5%,
1%, 2.5%, 5%, 7.5%, 10%, 25%, 50%, 75% and
90%. For instance, 0.25% denotes that the train-
ing data set is 0.25% of Genia corpus while the
rest 99.75% becomes the testing data set for exper-
iments. It is observed that there are about 21 paper
abstracts in training set when its size is 1% , and 52
abstracts when its size is 2.5%. It is expected that
larger training set size leads to better classification
accuracy of experiments.

For each training set size, we randomly extracted
10 different training sets from Genia corpus to run
the experiments. We then computed themean clas-
sification accuracy (MCA)of 10 obtained classifi-
cation accuracies. Figure 1 was drawn to illustrate
the distribution of MCA of each training set size
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Feature F-Measure Classification #
sets Start Middle End Single Non Accuracy (%) Parameters

WFP 0.467 0.279 0.495 0.491 0.864 74.59 9
AC 0.709 0.663 0.758 0.719 0.932 85.67 24
POS 0.69 0.702 0.775 0.67 0.908 83.96 3

WFP+AC 0.717 0.674 0.762 0.730 0.933 86.02 33
WFP+POS 0.726 0.721 0.793 0.716 0.923 85.96 12
AC+POS 0.755 0.741 0.809 0.732 0.930 87.14 27

WFP+AC+POS 0.764 0.745 0.811 0.749 0.933 87.59 36

Table 2: Experimental Results of Original ABTA System

Feature F-Measure Classification #
sets Start Middle End Single Non Accuracy (%) Parameters
JPV 0.652 0.605 0.713 0.602 0.898 81.46 6

WFP+JPV 0.708 0.680 0.756 0.699 0.919 84.84 15
JPV+POS 0.753 0.740 0.805 0.722 0.928 86.92 9

WFP+JPV+POS 0.758 0.749 0.809 0.74 0.933 87.50 18
WFP+AC+POS+JPV 0.767 0.746 0.816 0.751 0.934 87.77 42

Table 3: Experimental Results of ABTA System with Extracted Affix Information

for both methods, with the incremental proportion of
training data. It is noted in Figure 1 that the change
patterns of MCA obtained by our method and the
original ABTA system are similar. It is also seen
that our method achieves marginally better classifi-
cation performance when the proportion of training
data is under 2.5%.

Figure 1: MCA Distribution

In order to determine if the classification perfor-
mance difference between our method and the origi-
nal ABTA system is statistically significant, we per-
formed one-tailed t-Test (Alpaydin, 2004) on the
classification results with our hypothesis that MCA
of our proposed method is higher than MCA of orig-
inal ABTA system. The significance levelα is set
to be the conventional value 0.05. As a result, the
classification performance difference between two
methods is statistically significant when the propor-

tion of training data is 0.25%, 0.5%, 1% or 2.5%.
Table 5 shows theP values of t-Test results for the
various training set sizes. This demonstrates that
the ABTA system adopting our method outperforms
the original ABTA system in classification accuracy
when the proportion of training data is lower than
2.5% of Genia corpus, and achieves comparable
classification performance with the original ABTA
system when the proportion continuously increases.

One-tailed Training set size
t-Test 0.25% 0.5% 1% 2.5%

P value 0.0298 0.0006 0.0002 0.0229

Table 5: One-tailed t-Test Results

5 Conclusions

In this paper, we have presented an unsupervised
method to extract domain-specific prefixes and suf-
fixes from the biological corpus based on the use
of PATRICIA tree. The ABTA system (Jiampoja-
marn et al., 2005b) adopting our method achieves
an overall classification accuracy of 87.5% in locat-
ing biological terms, and derives an 0.664 F-score in
exact term matching annotation, which are all com-
parable to the experimental results obtained by the
original ABTA system. However, our method helps
the system significantly reduce the size of feature set
and thus improves the system efficiency. The sys-
tem also obtains a classification accuracy of 81.46%
based only on our extracted affix information. This
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Feature Exact Matching Annotation #
sets Precision Recall F-score Parameters
AC 0.548 0.571 0.559 24

WFP+AC+POS 0.661 0.673 0.667 36
JPV 0.527 0.545 0.536 6

WFP+JPV+POS 0.658 0.669 0.664 18

Table 4: Exact Matching Annotation Performance

demonstates that the affix information acheived by
the proposed method is important to accurately lo-
cating biological terms.

We further explored the reliability of our method
by gradually increasing the proportion of training
data from 0.25% to 90% of Genia corpus. One-tailed
t-Test results confirm that the ABTA system adopt-
ing our method achieves more reliable performance
than the original ABTA system when the training
corpus is small. The main result of this work is thus
that affix features can be parametrized from small
corpora at no cost in performance.

There are some aspects in which the proposed
method can be improved in our future work. We
are interested in investigating whether there exists
a certain threshold value for the joint probability
which might improve the classification accuracy of
ABTA system to some extent. However, this could
import supervised elements into our method. More-
over, we would like to incorporate our method into
other published learning-based biological term an-
notation systems to see if better system performance
will be achieved. However, superior parametriza-
tion will improve the annotation performance only
if the affix information is not redundant with other
features such as POS.
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Abstract 

Gene names and symbols are important 
biomedical entities, but are highly 
ambiguous. This ambiguity affects the 
performance of both information extraction 
and information retrieval systems in the 
biomedical domain. Existing knowledge 
sources contain different types of 
information about genes and could be used 
to disambiguate gene symbols. In this 
paper, we applied an information retrieval 
(IR) based method for human gene symbol 
disambiguation and studied different 
methods to combine various types of 
information from available knowledge 
sources. Results showed that a combination 
of evidence usually improved performance. 
The combination method using coefficients 
obtained from a logistic regression model 
reached the highest precision of 92.2% on a 
testing set of ambiguous human gene 
symbols.         

1 Introduction 

In the past decade, biomedical discoveries and 
publications have increased exponentially due to 
high-throughput technologies such as automated 
genomic sequencing, and therefore, it is impossible 
for researchers to keep up-to-date with the most 
recent knowledge by manually reading the litera-
ture. Therefore, automated text mining tools, such 
as information retrieval and information extraction 
systems, have received great amounts of interest 
(Erhardt et al., 2006; Krallinger and Valencia, 
2005). Biomedical entity recognition is a  first cru-

cial step for text mining tools in this domain, but is 
a very challenging task, partially due to the ambi-
guity (one name referring to different entities) of 
names in the biomedical field.  

Genes are among the most important biological 
entities for understanding biological functions and 
processes, but gene names and symbols are highly 
ambiguous. Chen et al. (2005) obtained gene in-
formation from 21 organisms and found that ambi-
guities within species, across species, with English 
words and with medical terms were 5.02%, 
13.43%, 1.10%, 2.99%, respectively, when both 
official gene symbols and aliases were considered. 
When mining MEDLINE abstracts, they found that 
85.1% of mouse genes in the articles were am-
biguous with other gene names. Recently, Fundel 
and Zimmer (2006) studied gene/protein nomen-
clature in 5 public databases. Their results showed 
that the ambiguity problem was not trivial. The 
degree of ambiguity also varied among different 
organisms. Unlike other abbreviations in the litera-
ture, which usually are accompanied by their cor-
responding long forms, many gene symbols occur 
alone without any mention of their long forms. Ac-
cording to Schuemie et al. (2004), only 30% of 
gene symbols in abstracts and 18% in full text 
were accompanied by their corresponding full 
names, which makes the task of gene symbol nor-
malization much harder.  

Gene symbol disambiguation (GSD) is a par-
ticular case of word sense disambiguation (WSD), 
which has been extensively studied in the domain 
of general English. One type of method for WSD 
uses established knowledge bases, such as a ma-
chine readable dictionary (Lesk, 1986; Harley and 
Glennon, 1997). Another type of WSD method 
uses supervised machine learning (ML) technolo-
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gies (Bruce and Wiebe, 1994; Lee and Ng, 2002; 
Liu et al., 2002).  

In the biomedical domain, there are many gene 
related knowledge sources, such as Entrez Gene 
(Maglott et al., 2005), developed at NCBI (Na-
tional Center for Biotechnology Information), 
which have been used for gene symbol disam-
biguation. Podowski et al. (2004) used MEDLINE 
references in the LocusLink and SwissProt data-
bases to build Bayesian classifiers for GSD. A 
validation on MEDLINE documents for a set of 66 
human genes showed most accuracies were greater 
than 90% if there was enough training data (more 
than 20 abstracts for each gene sense). 

More recently, information retrieval (IR) based 
approaches have been applied to resolve gene am-
biguity using existing knowledge sources. Typi-
cally, a profile vector for each gene sense is built 
from available knowledge source(s) and a context 
vector is derived from the context where the am-
biguous gene occurs. Then similarities between the 
context vector and candidate gene profile vectors 
are calculated, and the gene corresponding to the 
gene profile vector that has the highest similarity 
score to the context vector is selected as the correct 
sense. Schijvenaars et al. (2005) reported on an IR-
based method for human GSD. It utilized informa-
tion from either Online Mendelian Inheritance in 
Man (OMIM) annotation or MEDLINE abstracts.  
The system achieved an accuracy rate of 92.7% on 
an automatically generated testing set when five 
abstracts were used for the gene profile. Xu et al. 
(2007) studied the performance of an IR-based ap-
proach for GSD for mouse, fly and yeast organ-
isms when different types of information from dif-
ferent knowledge sources were used. They also 
used a simple method to combine different types of 
information and reported that a highest precision of 
93.9% was reached for a testing set of mouse genes 
using multiple types of information.  

In the field of IR, it has been shown that com-
bining heterogeneous evidence improves retrieval 
effectiveness. Studies on combining multiple rep-
resentations of document content (Katzer et al., 
1982), combining results from different queries 
(Xu and Croft, 1996), different ranking algorithms 
(Lee, 1995), and different search systems (Lee, 
1997) have shown improved performance of re-
trieval systems. Different methods have also been 
developed to combine different evidence for IR 
tasks. The inference-network-based framework, 

developed by Turtle and Croft (1991), was able to 
combine different document representations and 
retrieval algorithms into an overall estimate of the 
probability of relevance. Fox et al. (1988) extended 
the vector space model to use sub-vectors to de-
scribe different representations derived from 
documents. An overall similarity between a docu-
ment and a query is defined as a weighted linear 
combination of similarities of sub-vectors. A linear 
regression analysis was used to determine the 
value of the coefficients. 

 Though previous related efforts (Schijvenaars et 
al., 2005, Xu et al., 2007) have explored the use of 
multiple types of information from different 
knowledge sources, none have focused on devel-
opment of formal methods for combining multiple 
evidence for the GSD problem to optimize per-
formance of an IR-based method. In this study, we 
adapted various IR-based combination models spe-
cifically for the GSD problem. Our motivation for 
this work is that there are diverse knowledge 
sources containing different types of information 
about genes, and the amount of such information is 
continuously increasing. A primary source contain-
ing gene information is MEDLINE articles, which 
could be linked to specific genes through annota-
tion databases. For example, Entrez Gene contains 
an annotated file called “gene2pubmed”, which 
lists the PMIDs (PubMed ID) of articles associated 
with a particular gene. From related MEDLINE 
articles, words and different ontological concepts 
can be obtained and then be used as information 
associated with a gene. However they could be 
noisy, because one article could mention multiple 
genes. Another type of source contains summa-
rized annotation of genes, which are more specific 
to certain aspects of genes. For example, Entrez 
Gene contains a file called “gene2go”. This file 
lists genes and their associated Gene Ontology 
(GO) (Ashburner et al., 2000) codes, which include 
concepts related to biological processes, molecular 
functions, and cellular components of genes. 
Therefore, methods that are able to efficiently 
combine the different types of information from 
the different sources are important to explore for 
the purpose of improving performance of GSD 
systems. In this paper, we describe various models 
for combining different types of information from 
MEDLINE abstracts for IR-based GSD systems. 
We also evaluated the combination models using 
two data sets containing ambiguous human genes. 
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Figure 1 Overview of an IR combination-based gene symbol disambiguation approach using different 
types of information.

2 Methods 

In this paper, we extend the IR vector space model 
to be capable of combining different types of gene 
related information in a flexible manner, thus im-
proving the performance of an IR-based GSD sys-
tem. Figure 1 shows an overview of the IR combi-
nation-based approach. We generated three differ-
ent sub-vectors for the context and three for the 
profile, so that each sub-vector corresponded to a 
different type of information. The similarity scores 
between context and profile were measured for 
each type of sub-vector and then combined to gen-
erate the overall similarity scores to determine the 
correct sense. We explored five different combina-
tion methods using two testing sets. 

2.1 Knowledge Sources and Available Infor-
mation 

The “gene2pubmed” file in Entrez Gene was 
downloaded in January 2006. A profile was then 
built for each gene using information derived from 
the related articles. We used the following three 
types of information: 1) Words in the related 
MEDLINE articles (title and abstract). This is the 
simplest type of information about a gene. General 
English stop words were removed and all other 
words were stemmed using the Porter stemming 
algorithm (Porter, 1980). 2) UMLS (Unified 
Medical Language System) (Bodenreider 2004) 
CUIs (Concept Unique Identifier), which were 
obtained from titles and abstracts of MEDLINE 
articles using an NLP system called MetaMap 
(Aronson 2001). 3) MeSH (Medical Subject 
Headings) terms, which are manually annotated by 
curators based on full-text articles at the National 
Library of Medicine (NLM) of the United States. 

2.2 Document Set and Testing Sets 

Using the “gene2pubmed” file, we downloaded the 
MEDLINE abstracts that were known to be related 
to human genes. Articles associated with more than 
25 genes (as determined by our observation) were 
excluded, since they mostly discussed high-
throughput technologies and provided less valuable 
information for GSD. This excluded 168 articles 
and yielded a collection of 116,929 abstracts, 
which were used to generate gene profiles and one 
of the test sets. Two test sets were obtained for 
evaluating the combination methods: testing set 1 
was based on the “gene2pubmed” file, and testing 
set 2 was based on the BioCreAtIvE II evaluation. 
  Testing set 1 was automatically generated from 
the 116,929 abstracts, using the following 3 steps:  

1) Identifying ambiguous gene symbols in the 
abstracts. This involved processing the entire col-
lection of abstracts using an NLP system called 
BioMedLEE (Biomedical Language Extracting and 
Encoding System) (Lussier et al. 2006), which was 
shown to identify gene names/symbols with high 
precision when used in conjunction with GO anno-
tations. When an ambiguous gene was identified in 
an article, the candidate gene identifiers (GeneID 
from Entrez Gene) were listed by the NLP system, 
but not disambiguated. For each ambiguous gene 
that was detected, a pair was created consisting of 
the PMID of the article and the gene symbol, so 
that each pair would be considered a possible test-
ing sample. Repeated gene symbols in the same 
article were ignored, because we assumed only one 
sense per gene symbol in the same article. Using 
this method, 69,111 PMID and ambiguous human 
gene symbol pairs were identified from the above 
collection of abstracts. 
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2) Tagging the correct sense of the ambiguous 
gene symbols. The list of candidate PMID/gene 
symbol pairs generated from the articles was then 
compared with the list of gene identifiers known to 
be associated with the articles based on 
“gene2pubmed”. If one of the candidate gene 
senses matched, that gene sense was assumed to be 
the correct sense. Then the PMID/gene-symbol 
pair was tagged with that sense and set aside as a 
testing sample. We identified a pool of 12,289 test-
ing samples, along with the corresponding tagged 
senses. 

3) Selecting testing set 1. We randomly selected 
2,000 testing samples from the above pool to form 
testing set 1. 

Testing set 2 was derived using the training and 
evaluation sets of the BioCreAtIvE II Gene Nor-
malization (GN) task (Morgan 2007). The Bio-
CreAtIvE II GN task involved mapping human 
gene mentions in MEDLINE abstracts to gene 
identifiers (Entrez Gene ID), which is a broader 
task than the GSD task. However, these abstracts 
were useful for creating a testing set for GSD, be-
cause whenever a gene mention mapped to more 
than one identifier, disambiguation was required. 
Therefore, it was possible to derive a list of am-
biguous gene symbols based on data that was pro-
vided by BioCreAtIvE. We combined both manu-
ally annotated training (281 abstracts) and evalua-
tion (262 abstracts) sets provided by BioCreAtIvE. 
Using the same process as described in step 1 of 
testing set 1, we processed the abstracts and identi-
fied 217 occurrences of ambiguous gene symbols 
from the combined set. Following a similar proce-
dure as was used for step 2 in the testing set 1 (ex-
cept that the reference standard in this case was the 
manually annotated results obtained from Bio-
CreAtIvE instead of “gene2pubmed”), we obtained 
124 PMID/gene-symbol pairs with the correspond-
ing tagged senses, which formed testing set 2. 

Because one article may contain multiple am-
biguous gene symbols, a total of 2,048 PMIDs 
were obtained from both testing sets 1 and 2. Arti-
cles with those PMIDs were excluded from the 
collection of 116,929 abstracts. We used the re-
maining document set to generate gene profiles, 
which were used for both testing sets. 

2.3 Profile and Context Vectors 

For each gene in “gene2pubmed” file, we created a 
profile. It consisted of three sub-vectors containing 

word, CUI, or MeSH, respectively, using the in-
formation derived from the related MEDLINE ab-
stracts. Similarly, a context vector was also formed 
for each testing sample, using three sub-vectors 
containing word, CUI, or MeSH, which were de-
rived from the abstract whose PMID was stated in 
the testing sample.  The tf-idf weighting schema 
(Salton and Buckley, 1988) was used to assign 
weights to index terms in the profile and context 
sub-vectors. Given a document d, the Term Fre-
quency (tf) of term t is defined as the frequency of 
t occurring in d. The Inverse Document Frequency 
(idf) of term t is defined as the logarithm of the 
number of all documents in the collection divided 
by the number of documents containing the term t. 
Then term t in document d is weighted as tf*idf. 

2.4 Similarity Measurement 

The similarity score between the same type of con-
text and profile sub-vectors were measured as co-
sine similarity of two vectors. The cosine similarity 
between two vectors a and b is defined as the inner 
product of a and b, normalized by the length of 
two vectors. See the formula below: 

Sim(a,b) = cosine ө = 
ba
ba ⋅

  where  

22
2

2
1 ... naaaa +++=    22

2
2

1 ... nbbbb +++=   
 
We built three basic classifiers that used only 

one type of sub-vector: word, CUI, or MeSH, re-
spectively, recorded three individual similarity 
scores of each sub-vector for each candidate gene 
of all testing samples. We implemented five meth-
ods to combine similarity scores from each basic 
classifier, which are described as follows: 
1) CombMax - Each individual similarity score 

from a basic classifier was normalized by di-
viding the sum of similarity scores of all 
candidate genes for that basic classifier. 
Then the decision made by the classifier with 
the highest normalized score was selected as 
the final decision of the combined method. 

2) CombSum - Each individual similarity score 
from a basic classifier was normalized by di-
viding the maximum similarity score of all 
candidate genes for that basic classifier. The 
overall similarity score of a candidate gene 
was considered to be the sum of the normal-
ized similarity scores from all three basic 
classifiers for that gene. The candidate gene 
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with the highest overall similarity was se-
lected as the correct sense. 

3) CombSumVote - The overall similarity score 
was considered as the similarity score from 
CombSum, multiplied by the number of basic 
classifiers that voted for that gene as the cor-
rect sense.  

4) CombLR - The overall similarity score was 
defined as a predicted probability (P) of be-
ing the correct sense, given the coefficients 
obtained from a logistic regression model 
and similarity scores from all three basic 
classifiers for that gene. The relation be-
tween dependent variable (probability of be-
ing the correct sense) and independent vari-
ables (similarity scores from individual basic 
classifiers) of the logistic regression model is 
shown below, where Cs (Cword, Ccui, Cmesh and 
C) are the coefficients, and SIMs (SIMword, 
SIMcui, SIMmesh) are the individual similarity 
scores from the basic classifiers. To obtain 
the model, we divided 2,000 testing samples 
into a training set and a testing set, as de-
scribed in section 2.5. For samples in the 
training set, the correct gene senses were la-
beled as “1” and incorrect gene senses were 
labeled as “0”. Then logistic regression was 
applied, taking the binary labels as the value 
of the dependent variable and the similarities 
from the basic classifiers as the independent 
variables. In testing, coefficients obtained 
from training were used to predict each can-
didate gene’s probability of being the correct 
sense for a given ambiguous symbol. 

 

CSIMmeshCmeshSIMcuiCcuiSIMwordCword

CSIMmeshCmeshSIMcuiCcuiSIMwordCword

e
eP +++

+++

+
= ***

***
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5) CombRank – Instead of using the similarity 

scores, we ranked the similarity scores and 
used the rank to determine the combined 
output. Following a procedure called Borda 
count (Black, 1958), the top predicted gene 
sense was given a ranking score of N-1, the 
second top was given N-2, and so on, where 
N is the total number of candidate senses. 
After each sense was ranked for each basic 
classifier, the combined ranking score of a 
candidate gene was determined by the sum 
of ranking scores from all three basic classi-
fiers.  The sense with the highest combined 

ranking score was selected as the correct 
sense. 

2.5 Experiments and Evaluation 

In this study, we measured both precision and cov-
erage of IR-based GSD approaches. Precision was 
defined as the ratio between the number of cor-
rectly disambiguated samples and the number of 
total testing samples for which the disambiguation 
method yielded a decision. When a candidate gene 
had an empty profile or different candidate gene 
profiles had the same similarity scores (e.g. zero 
score) with a particular context vector, the disam-
biguation method was not able to make a decision. 
Therefore, we also reported on coverage, which 
was defined as the number of testing samples that 
could be disambiguated using the profile-based 
method over the total number of testing samples. 
We evaluated precision and coverage of different 
combined methods for gene symbol disambigua-
tion on both testing sets. 

Results of three basic classifiers that used a sin-
gle type of information were reported as well. We 
also defined a baseline method. It used the major-
ity sense of an ambiguous gene symbol as the cor-
rect sense. The majority sense is defined as the 
gene sense which was associated with the most 
MEDLINE articles based on the “gene2pubmed” 
file.  

To evaluate the CombLR, we used 10-fold cross 
validation. We divided the sense-tagged testing set 
into 10 equal partitions, which resulted in 200 test-
ing samples for each partition. When one partition 
was used for testing, the remaining nine partitions 
were combined and used for training, which also 
involved deriving coefficients for each round. To 
make other combination methods comparable with 
CombLR, we tested the performance of other com-
bination methods on the same partitions as well. 
Therefore, we had 10 measurements for each com-
bination method. Mean precision and mean cover-
age were reported for those 10 measurements. For 
testing set 2, we did not test the CombLR method 
because the set was too small to train a regression 
model. 

We used Friedman’s Test (Friedman, 1937) fol-
lowed by Dunn’s Test (Dunn, 1964), which are 
non-parametric tests, to assess whether there were 
significant differences in terms of median precision 
among the different single or combined methods. 

45



3 Results 

Results of different combination methods for test-
ing set 1 are shown in Table 1, which contains the 
mean precision and coverage for 10-fold cross 
validation, as well as the standard errors in paren-
theses. All IR-based gene symbol disambiguation 
approaches showed large improvements when 
compared to the baseline method. All of the com-
bination methods showed improved performance 
when compared to results from any run that used a 
single type of information. Among the five differ-
ent combination methods, CombLR achieved the 
highest mean precision of 0.922 for testing set 1. 
CombSum, which is a simple combination method, 
also had a good mean precision of 0.920 on testing 
set 1. The third Column of Table 1 shows that cov-
erage was in a range of 0.936-0.938. 
 

Table 1. Results on testing set 1. 
 

Table 2. Results on testing set 2. 
 

We performed Friedman’s test followed by 
Dunn’s test on each single run: word, CUI or 
MeSH, with all combination runs respectively. 
Friedman tests showed that differences of median 
precisions among the different methods were sta-
tistically significant at α=0.05.  Dunn tests showed 

that combination runs CombSum, CombSumVote, 
CombLR, and CombRank were statistically signifi-
cantly better than single runs using word or CUI. 
For single run using MeSH, combination runs 
CombLR and CombSum were statistically signifi-
cantly better. 

The results of different runs on testing set 2 are 
shown in Table 2. Most combined methods, except 
CombRank, showed improved precision. The high-
est precision of 0.906 was reached when using 
CombSum and CombMax methods. Note that the 
logistic regression method was not applicable. The 
coverage for testing set 2 was 0.944 for all of the 
methods. 

4 Discussion 

4.1 Why Combine? 

As stated in Croft (2002), a Bayesian probabilistic 
framework could provide the theoretical justifica-
tion for evidence combination. Additional evidence 
with smaller errors can reduce the effect of large 
errors from one piece of evidence and lower the 
average error.  

The idea behind CombMax was to use the single 
classifier that had the most confidence, but it did 
not seem to improve performance very much be-
cause it ignored evidence from the other two basic 
classifiers. The CombSum was a simple combina-
tion method, but with reasonable performance, 
which was also observed by other studies for the 
IR task (Fox and Shaw, 1994).  CombSumVote was 
a variant of CombSum. It favors the candidate 
genes selected by more basic classifiers. In Lee 
(1997), a similar implementation of CombSumVote 
(named “CombMNZ”) also achieved better per-
formance in the IR task. CombLR, the combination 
method trained on a logistic regression model, 
achieved the best performance in this study. It used 
a set of coefficients derived from the training data 
when combining the similarities from individual 
basic classifiers. Therefore, it could be considered 
as a more complicated linear combination model 
than CombSum. In situations where training data is 
not available, CombSum or CombSumVote would 
be a good choice. CombRank did not perform as 
well as methods that used similarity scores, proba-
bly due to the loss of subtle probability information 
in the similarity scores. We explored ranking be-
cause it was independent of the weighting schema 
and could be valuable if it performed well. 

Run Precision Coverage 
Baseline 0.707 (0.032) 0.992 (0.005) 
Word 0.882 (0.023)  0.937 (0.017) 
CUI 0.887 (0.022) 0.938 (0.017) 
MeSH 0.900 (0.021) 0.936 (0.017) 
CombMax 0.909 (0.020) 0.938 (0.017) 
CombSum 0.920 (0.019) 0.937 (0.017) 
CombSumVote 0.917(0.019) 0.938 (0.017) 
CombLR 0.922 (0.019) 0.938 (0.017) 
CombRank 0.918 (0.020) 0.938 (0.017) 

Run Precision Coverage 
Baseline 0.593 0.991 
Word 0.872 0.944 
CUI 0.897 0.944 
MeSH 0.863 0.944 
CombMax 0.906 0.944 
CombSum 0.906 0.944 
CombSumVote 0.897 0.944 
CombRank 0.889 0.944 
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The typical scenario where combination should 
help is when a classifier based on one type of in-
formation made a wrong prediction, but the 
other(s), based on different types of information, 
made the correct predictions. In those cases, the 
overall prediction may be correct when an appro-
priate combination method applies. For example, 
an ambiguous gene symbol PDK1 (in the article 
with PMID 10856237), which has two possible 
gene senses (‘GeneID:5163 pyruvate dehydro-
genase kinase, isoenzyme 1’ and ‘GeneID:5170 3-
phosphoinositide dependent protein kinase-1’), 
was incorrectly predicted as ‘GeneID: 5163’ when 
only “word” was used. But the classifiers using 
“CUI” and “MeSH” predicted it correctly. When 
the CombSum method was used to combine the 
similarity scores from all three classifiers, the cor-
rect sense ‘GeneID: 5170’ was selected. When all 
three classifiers were incorrect in predicting a test-
ing sample, generally none of the combination 
methods would help in making the final decision 
correct. Therefore, there is an upper bound on the 
performance of the combined system. In our case, 
we detected that all three classifiers made incorrect 
predictions for 65 testing samples of the 2,000 
samples. Therefore, the upper bound would be 
1,935/2,000=96.7%. 

The methods for combining different types of 
information from biomedical knowledge sources 
described in this study, though targeted to the GSD 
problem, could be also applicable to other text 
mining tasks that are based on similarity measure-
ment, such as text categorization, clustering, and 
the IR task in the biomedical domain.  

4.2 Coverage of the Methods 

The IR-based gene symbol disambiguation method 
described in this paper aims to resolve intra-
species gene ambiguity. We focused on ambiguous 
gene symbols within the human species and used 
articles known to be associated with human genes. 
Fundel and Zimmer (2006) reported that the degree 
of ambiguity of the human gene symbols from En-
trez Gene was 3.16%–3.32%, which is substantial. 
However, this is only part of the gene ambiguity 
problem.  

Based on the “gene_info” file downloaded in 
January 2006 from Entrez Gene, there were a total 
of 32,852 human genes. Based on the 
“gene2pubmed” file, 24,170 (73.4%) out of 32,852 
human genes have at least one associated MED-

LINE article, which indicates that profiles could be 
generated for at least 73.4% of human genes. On 
average, there are 9.02 MEDLINE articles associ-
ated with a particular human gene. Coverage re-
ported in this study was relatively high because the 
testing samples were selected from annotated arti-
cles as listed in “gene2pubmed”, and not randomly 
from the collection of all MEDLINE abstracts. 

4.3 Evaluation Issues 

It would be interesting to compare our work with 
other related work, but that would require use of 
the same testing set. For example, it is not straight-
forward to compare our precision result (92.2%) 
with that (92.7%) reported by Schijvenaars et al. 
(2005), because they used a testing set that was 
generated by removing ambiguous genes with less 
than 6 associated articles for each of their senses, 
and they did not report on coverage. The data set 
from the BioCreAtIvE II GN task therefore is a 
valuable testing set that enables evaluation and 
comparison of other gene symbol disambiguation 
methods. From the BioCreAtIvE abstracts, we 
identified 217 occurrences of ambiguous gene 
symbols, but only 124 were annotated in the Bio-
CreAtIvE data set. There are a few possible expla-
nations for this. First, the version of the Entrez 
Gene database used by the NLP system was not the 
most recent one, so some new genes were not 
listed as possible candidate senses. The second is-
sue is related to gene families or genes/proteins 
with multiple sub-units. According to the 
‘gene_info’ file, the gene symbol “IL-1” is a syno-
nym for both “GeneID: 3552 interleukin 1, alpha” 
and “GeneID: 3553 interleukin 1, beta”. Therefore, 
the NLP system identified it as an ambiguous gene 
symbol.  When annotators in the BioCreAtIvE II 
task saw a gene family name that was not clearly 
mapped to a specific gene identifier in Entrez 
Gene, they may not have added it to the mapped 
list. In Morgan et al. (2007), it was suggested that 
mapping gene family mentions might be appropri-
ate for those entities. Testing set 2 was a small set 
and results from that set might not be statistically 
meaningful, but it is useful for comparing with 
others working on the same data set. 

In this paper, we focused on the study of im-
provements in precision of the gene symbol dis-
ambiguation system. When combining information 
from different knowledge sources, coverage may 
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also be increased by benefiting from the cross-
coverage of different knowledge sources.  

5 Conclusion and Future Work 

We applied an IR-based approach for human gene 
symbol disambiguation, focusing on a study of 
different methods for combining various types of 
information from available knowledge sources. 
Results showed that combination of multiple 
evidence usually improved the performance of 
gene symbol disambiguation. The combination 
method using coefficients obtained from a logistic 
regression model reached the highest precision of 
92.2% on an automatically generated testing set of 
ambiguous human gene symbols. On a testing set 
derived from BioCreAtIvE II GN task, the combi-
nation method that performed summation of indi-
vidual similarities reached the highest precision of 
90.6%. However, the regression-based method 
could not be used, because the testing sample was 
small.  

In the future, we will add information that is 
specifically related to genes, such as GO codes, 
into the combination model. Meanwhile, we will 
also study the performance gain in terms of 
coverage by integrating different knowledge 
sources.    
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Abstract

We present a corpus-driven method for
building a lexicon of semantically equiva-
lent pairs of technical and lay medical terms.
Using a parallel corpus of abstracts of clin-
ical studies and corresponding news sto-
ries written for a lay audience, we identify
terms which are good semantic equivalents
of technical terms for a lay audience. Our
method relies on measures of association.
Results show that, despite the small size of
our corpus, a promising number of pairs are
identified.

1 Introduction

The field of health literacy has garnered much at-
tention recently. Studies show that most docu-
ments targeted at health consumers are ill-fitted to
the intended audience and its level of health liter-
acy (Rudd et al., 1999; McCray, 2005). While there
are many components involved in health literacy that
are specific to the reader (e.g., reading level and cul-
tural background), we investigate what can be done
from the standpoint of the text to adapt it to the liter-
acy level of a given reader. As such, we set ourselves
in the context of a text-to-text generation system,
where a technical text is edited to be more compre-
hensible to a lay reader. An essential resource for
such an editing tool is a lexicon of paraphrases, or
semantically equivalent terms. In this paper, we in-
vestigate a corpus-driven method for building such
a lexicon. We focus on terms that are recognized by
the UMLS (UMLS, 1995), both for technical and lay
candidate terms for equivalence.

Because we have lay audiences in mind, our defi-
nition of semantic equivalence must be broader than
a notion of strict medical equivalence utilized by
medical experts. Thus, while a medical dictionary

like UMLS assigns different concept unique identi-
fiers (CUIs) to two particular terms, such as percu-
taneous transluminal coronary angioplasty and an-
gioplasty, these terms should be considered seman-
tically equivalent for the purposes of lay readers.

Besides enabling a text tailoring system to adapt
technical texts for a lay audience, a lexicon of
semantically equivalent technical/lay terms would
benefit other tools as well. For instance, the Con-
sumer Health Vocabulary initiative1 is a comprehen-
sive list of UMLS terms familiar to lay readers. Our
lexicon could help augment the terms with equiva-
lence links to technical terms. While much research
of late has been devoted to identifying terms incom-
prehensible to lay readers, such research has not es-
tablished links between technical terms and equiva-
lent lay terms beyond their CUI information (Zeng
et al., 2005; Elhadad, 2006).

The key points of our approach are: (1) the use
of combined measures of association to identify
pairs of semantically equivalent terms, and (2) a
knowledge-based heuristic which acts as a powerful
filter for identifying semantically equivalent pairs.
Our method does not rely on human labeling of se-
mantically equivalent term pairs. As such, it is un-
supervised, and achieves results that are promising
considering the small size of the corpus from which
the results are derived.

This paper is organized as follows. The next sec-
tion describes our parallel corpus of paired techni-
cal/lay documents. The Methods section describes
the different measures of association we experi-
mented with, how we combine them to leverage their
complimentary strengths, and our semantic filter.
The Results section reports the evaluation against
our gold standard and a discussion of our results.

1http://www.consumerhealthvocab.org49



2 Data Description

Because our ultimate goal is to learn, in a data-
driven fashion, semantic equivalents of terms that
are too technical for lay readers, we can benefit from
having instances of texts which relay similar infor-
mation but are conveyed in different styles. We
collect a corpus similar in structure to those used
in the field of statistical machine translation. But,
instead of having two collections in different lan-
guages, we collect texts written for two different au-
diences: medically trained readers (technical collec-
tion) and health consumers (lay collection).

The lay collection is composed of news stories
from the ReutersHealth E-line newsfeed2 summariz-
ing research in the medical field. Reuters journalists
take technical publications and report the main find-
ings and methods and, on occasion, include inter-
views with the authors of the scientific publication.
The stories are targeted at a lay audience with a 12th-
grade reading level. Furthermore, every story in our
collection contains a reference to the original scien-
tific publication. Thus, it is possible to gather the
original texts, which convey similar information but
were written for a technical audience. The stories
draw upon studies from reputable medical journals,
such as Annals of Internal Medicine, New England
Journal of Medicine and Lancet.

The technical collection in our corpus is com-
posed of the original scientific articles correspond-
ing to each news story in the lay collection. Accord-
ingly, the lay and technical collections contain the
same number of documents and are parallel at the
document level. That is, each technical document
has a lay equivalent and vice-versa. Because a lay
document is a summary of a technical article and is,
hence, much shorter than the original scientific ar-
ticle, we decided to include only the abstract of the
technical document in our collection. This way, the
technical and lay documents are comparable in con-
tent and length. It should be noted, however, that
the content in a technical/lay document pair is not
parallel, but comparable (McEnery and Xiao, 2007):
there is no natural sentence-to-sentence correspon-
dence between the two texts. This is to be expected:
technical abstracts contain many technical details,
while lay stories, to provide background, introduce

2http://www.reutershealth.com

Words Sentences
Min Max Avg Min Max Avg

Technical 137 565 317 5 18 10
Lay 187 1262 444 6 42 15

Table 1: Statistics for the Technical and Lay collec-
tions. Each contains 367 documents.

information entirely absent from abstracts. In addi-
tion, the lay stories drastically rearrange the order in
which information is typically conveyed in technical
abstracts. For these reasons, our corpus is not paral-
lel at the sentence level and, thus, differs from other
bilingual parallel corpora used in machine transla-
tion.

To ensure that some significant number of terms
appears with sufficient frequency in our corpus in
order to induce equivalent pairs automatically, we
focused on articles and stories in a single domain:
cardiology. We identified the original scientific ar-
ticle manually, as the lay document only contains a
reference, not an actual link. For this reason, only a
relatively small amount of data could be collected:
367 pairs of documents (see Table 1 for statistics).

3 Methods

3.1 Data Processing

We focus in this paper on finding term equiva-
lents when both terms are recognized by the UMLS.
Thus, our first step in processing our collections is to
identify terms as defined by the UMLS. Both collec-
tions are processed by our tool TermFinder (Teufel
and Elhadad, 2002). Sentences are identified and the
texts are tokenized and tagged with part-of-speech
information. Noun phrases are identified with a shal-
low parser. Next, terms are identified by looking up
the noun phrases in the meta-lexicon of UMLS for
an exact match. Terms are tagged with their con-
cept unique identifier (CUI) and a semantic type,
both provided by UMLS. For our purposes, we only
consider a subset of all the terms listed in UMLS,
based on their semantic type. This is due to the
fact that certain UMLS semantic types are unlikely
to yield technical terms in need of simplification.
As such, terms belonging to semantic types such
as “Activity,” “Family Group” or “Behavior” were
left untagged. Terms with semantic types such as
“Disease or Syndrome” or “Therapeutic or Preven-50



Corresponding
lay doc. contains
lay term

Corresponding lay
doc. does not con-
tain lay term

Technical
doc. contains
tech term

a b

Technical doc.
does not con-
tain tech term

c d

Table 2: Contingency table for (tech term,
lay term).

tive Procedure,” on the other hand, were considered
terms. For instance, both the terms PTCA and percu-
taneous transluminal coronary angioplasty have the
same CUI C0002997, as they are considered syn-
onyms by UMLS. The term balloon angioplasty has
the CUI C0002996. Both C0002997 and C0002996
have the semantic type “Therapeutic or Preventive
Procedure.”

3.2 Contingency Table

We call (tech term, lay term) a term pair, where
tech term is a term occurring in one or more tech-
nical documents and lay term is a term present
in at least one of the corresponding lay docu-
ments.3 For any such pair, we can compute a
contingency table based on co-occurrence. Our
definition of co-occurrence is slightly unusual:
tech term and lay term co-occur in one document
pair if tech term appears at least once in the techni-
cal document and lay term appears at least once in
the corresponding lay document. Our unit of content
is document frequency for a CUI, i.e., the number of
documents in which a given CUI appears. For in-
stance, in our data, the contingency table for the term
pair (MI, heart attack) shows the following counts:
the document frequency of the CUI corresponding
to MI in the technical collection is 98; the docu-
ment frequency of the CUI corresponding to heart
attack in the lay collection is 161. Among these doc-
uments, there are 84 technical/lay document pairs
(out of the total of 367 paired documents) in which
the CUI for MI occurs on the technical side and the
CUI for heart attack occurs on the lay side. Hence,
the contingency table for this term pair is, following

3This means that if tech term and lay term have no tech-
nical/lay document in common, lay term is not considered a
possible candidate for semantic equivalence for tech term.

the notations of Table 2: a = 84, b = 98-84 = 14, c =
161-84 = 77, and d = 367-98-161+84 = 192.

At this stage of processing, lexical terms are ab-
stracted by their CUIs. We do this to maximize the
possible evidence that two terms co-occur. For in-
stance, the document frequency for MI in our tech-
nical collection is 20, while the document frequency
for its corresponding CUI is 98. Section 3.7 de-
scribes how we proceed from identifying equivalent
terms at the CUI level to finding lexical equivalents.

3.3 Gold Standard

To evaluate the validity of our approach, we col-
lected all possible term pairs at the CUI level in our
corpus (that is, all the term pairs for which a con-
tingency table is computed). We then whittled this
set down to those pairs where each CUI occurs in
at least two documents. This resulted in 2,454 pairs
of CUIs. We asked our medical expert, an internist
in practice who interacts with patients on a daily ba-
sis, to indicate for each pair whether the terms were
equivalent from a medical standpoint in the con-
text of communicating with a patient.4 An opera-
tional test for testing the equivalence of two terms is
whether he would use one term for the other when
talking to a patient. We indicated to our expert that
the terms should be equivalent out of context. So,
for instance, while the pair (myocardial infarction,
complication) could be deemed equivalent in certain
specific contexts, these terms are not generally con-
sidered equivalent. Table 3 shows examples of pairs
annotated as semantic equivalents for lay readers.5

The list of terms contained only the actual lexical
terms and no information from the UMLS to avoid
biasing our expert.

Out of the 2,454 CUI pairs provided to our medi-
cal expert, 152 pairs were labeled as equivalent. Out
of the 152 pairs, only 8 (5.3%) had different seman-
tic types. Interestingly, 84 pairs (55.3%) had differ-
ent CUIs. This confirms our intuition that the notion
of semantic equivalence for lay readers is looser than
for medically knowledgeable readers.

4While it is in some ways counterintuitive to rely on a tech-
nical expert to identify lay semantic equivalents, this expertise
helps us validate equivalences from a medical standpoint.

5In the table, DIGN stands for “Diagnostic Procedure,”
DISS for “Disease or Symptom,” FIND for “Finding,” and
PATH for “Pathological Finding.”51



Technical term Lay term
myocardial infarction | C0027051 | DISS heart attack | C0027051 | DISS
SBP | C0428880 | DIGN systolic blood pressure | C0428880 | DIGN
atrial fibrillation | C0004238 | PATH arrhythmia | C0003811 | PATH
hypercholesterolemia | C0020443 | DISS high cholesterol | C0848569 | FIND
mental stress | C0038443 | DISS stress | C0038435 | PATH

Table 3: Examples from the gold standard of term pairs considered equivalent.

3.4 Measures of Association

Given a term pair (tech term, lay term) and its cor-
responding contingency table, we want to determine
whether lay term is a valid semantic equivalent of
tech term from the standpoint of a lay reader. We
rely on three alternative measures of association in-
troduced in the Statistics literature: the χ2 statis-
tic, the λ measure, and odds ratio. All of these
measures are computed as a function of the contin-
gency table, and do not rely on any human labeling
for equivalence. Measures of association have been
used traditionally to identify collocations (Manning
and Schütze, 1999). Here we investigate their use
for building a lexicon.

3.4.1 The χ2 Statistic

The standard chi-square statistic (χ2) is used
to determine whether the deviation of observed
data from an expected event occurs solely by
chance (Goodman and Kruskal, 1979). Our null
hypothesis for this task is that the presence of
lay term in a lay document is independent of the
presence of tech term in its correspondent techni-
cal document. Thus, any pair of terms for which the
χ2 is above the critical value at a given level of sig-
nificance are considered semantic equivalents. One
important constraint for the measures to be valid is
that the observed data be large enough (more than
five observations per cell in the contingency table).

The χ2 statistic for our 2x2 contingency table,
and with N being the total number of document
pairs, is calculated as follows:

χ2 =
N(ad− bc)2

(a + b)(a + c)(c + d)(b + d)

Since χ2 is a true statistic, we can rely on critical
values to filter out pairs with low associative power.
In our case, we set the significance level at .001
(with a critical value for χ2 of 10.83).

C0011847 ¬ C0011847 Sum
C0011849 a = 13 b = 8 21
¬ C0011849 c = 40 d = 306 346
Sum 53 314 367

Table 4: Contingency table for (C0011849,
C0011847).

3.4.2 The λ and λ* Measures

The lambda measure (λ) assesses the extent to
which we can predict the presence of lay term in a
lay document by knowing whether the original tech-
nical document contained tech term (Goodman and
Kruskal, 1979). λ is an asymmetrical measure of
association. Since a lay document is always writ-
ten based on an original technical document, it is
a plausible assumption that the presence of a spe-
cific term in the technical document influenced the
lexical choices of the author of the lay document.
Thus, we consider the presence of tech term in a
technical document the antecedent to the presence
of lay term in the corresponding lay document, and,
accordingly, operate in the setting of predicting the
presence of lay term.

We present the intuition behind λ in the context
of the following example. Consider the contingency
table for the technical CUI C0011849 (diabetes mel-
litus) and C0011847 (diabetes) in Table 4. The task
is, given a random lay document, to predict which of
two available categories it belongs to: either it con-
tains the lay CUI (in our example, CUI C0011847
for diabetes) or it does not. There are two possi-
ble cases: either (1) we do not have any knowl-
edge about the original technical document, or (2)
we know the original technical document and, there-
fore, we know whether it contains the antecedent (in
our example, CUI C0011849 for diabetes mellitus).

Without any prior knowledge (case (1)), the
safest prediction we can make about the lay doc-
ument is the category with the highest probabil-52



ity. The probability of error in case (1) is Perr1 =
N−Max(a+c,b+d)

N
.

In our example, the safest bet is ¬ C0011847, with
a raw count of 314 documents, and a probability of
error of Perr1 = 0.1444.

If we have prior knowledge about the original
technical document (case (2)), then our safest pre-
diction differs. If we know that the technical doc-
ument contains the CUI C0011849 (diabetes melli-
tus), then our safest prediction is the category with
the highest probability: C0011847, with a raw count
of 13 documents. If, on the other hand, we know
that the technical document does not contain the
CUI C0011849, our safest prediction is the category
¬ C0011847, with a raw count of 306 documents.
Thus, overall the probability of error in case (2) is
Perr2 = N−(Max(a,b)+Max(c,d))

N
.

In our example, knowledge about the original tech-
nical document lowers the probability of error to
Perr2 = 0.1308.

The λ measure is defined as the relative decrease
in probability of error in guessing the presence of
lay term in a lay document λ = Perr1−Perr2

Perr1

which, using our notation for contingency tables,
can be expressed as

λ =
Max(a, b) + Max(c, d) −Max(a + c, b + d)

N −Max(a + c, b + d)

In our example, λ = 0.094. λ ranges between 0
and 1. A value of 1 means that knowledge about
the presence of tech term in the original techni-
cal document completely specifies the presence of
lay term in its corresponding lay document. A value
of 0 means that knowledge about the presence of
tech term in the original technical document does
not help in predicting whether lay term is present in
its corresponding lay document.

The λ measure is not a test of significance like
χ2. For instance, while two independent variables
necessarily have a λ of 0, the opposite is not neces-
sarily true: it is possible for two dependent variables
to have a λ of 0. In our setting in particular, any
contingency table where a=b will provide a λ of 0.

Since λ is computed as a function of maxima of
rows and columns, λ can easily be biased toward the
original proportions in the antecedent. In our exam-
ple, for instance, a very large proportion of technical

documents has no occurrence of C0011849, diabetes
mellitus (94.3% of the technical documents). But
for our purposes, such contingencies should not af-
fect our measure of association, as the proportion of
technical documents happening not to contain a par-
ticular term is just an artificial consequence of cor-
pus collection. λ* is a variant of λ also proposed by
Goodman and Kruskal (1979) and is able to take this
fact into account. It is computed using the same for-
mula as λ, but the elements of the contingency table
are modified so that each category of the antecedent
is equally likely. In our case, this means: N*=1,
a*=0.5a/N(a+b), b*=0.5b/N(a+b), c*=0.5c/N(c+d),
and d*=0.5d/N(c+d). Going back to our example of
diabetes mellitus and diabetes, we now find λ∗ =
0.324, which is much higher than the original λ of
0.094, and which indicates a strong association.

We focus on λ* as a measure of association for
semantic equivalence of term pairs. Since λ and λ*
are not true statistics, there is no significance level
we can rely on to set a threshold for them. Instead,
we estimate an optimal threshold from the perfor-
mance of λ* on a development set. The develop-
ment set was obtained in the same manner as the
gold standard and contains 50 term pairs. This is
a small number of pairs, but the term pairs in the
development set were carefully chosen to contain
mostly semantically equivalent pairs. In our experi-
ments, the optimal value for λ* was 0.3. Thus, λ* is
used as a binary test for our purposes: tech term and
lay term are considered semantically equivalent if
their λ* is above 0.3.

3.4.3 Odds Ratio

Odds ratio is a measure of association that focuses
on the extent to which one category in the contin-
gency table affects another (Fleiss et al., 2003). For
our contingency table, the odds ratio is expressed as
follows:

OR =
ad

bc

For instance, given the contingency table of Ta-
ble 4, the odds ratio for the pair (diabetes mellitus,
diabetes) is 12.43, which means that a lay docu-
ment is 12.43 times more likely to contain the CUI
C0011847, for diabetes, if its original technical doc-
ument contains the term C0011849, for diabetes
mellitus.53



Like λ*, odds ratio is not a true statistic and,
therefore, does not have any critical value for sta-
tistical significance. We estimated the optimal value
of a threshold for OR based on the same develop-
ment set described above. The threshold for OR is
set to 6. Thus, OR is used as a binary test for our
purposes: tech term and lay term are considered
semantically equivalent if their OR is above 6.

3.5 Combining the Measures of Association

Each of the measures of association described above
leverages different characteristics of the contingency
tables, and similarly, each has its limitations. For
instance, χ2 cannot be computed when there are
not sufficient observations, and λ* can equal 0, even
when there is a strong association between the two
terms. We combine measures of association in the
following fashion: two terms are considered equiva-
lent if at least one of the measures determined so.

3.6 Semantic Filtering

The measures of association described above and
their combination provide information solely based
on corpus-derived data. Since all our counts are
based on co-occurrence, a measure of association by
itself can encompass many types of semantic rela-
tions. For instance, the pair for (stroke, brain) tests
positive with our three measures of association. In-
deed, there is a strong semantic association between
the two terms: strokes occur in the brain. These
terms, however, do not fit our definition of seman-
tic equivalence.

We rely on knowledge provided by the UMLS,
namely semantic types, to help us filter equiv-
alent types of associations among the candidate
term pairs. One can assume that sharing semantic
types is a necessary condition for semantic equiva-
lence. Our semantic filter consists of testing whether
tech term and lay term share the same semantic
types, as identified by our tool TermFinder.

3.7 Lexical Choice

So far, term pairs are at the CUI level. The measures
of association and the semantic filter provide a way
to identify candidates for semantic equivalence. We
still have to figure out which particular lexical items
among the different lexical terms of a given CUI are
appropriate for a lay reader. For instance, the pair

(C0027051, C0027051) is considered a good candi-
date for semantic equivalence. In the technical col-
lection, the lexical terms contributing to the CUI are
AMI, AMIs, MI, myocardial infarction, myocardial
infarct and myocardial necrosis. In the lay collec-
tion, however, the lexical terms contributing to the
same CUI are heart attack, heart attacks, and my-
ocardial infarction. Clearly, not all lexical items for
a given CUI are appropriate for a lay reader.

To select an appropriate lay lexical term, we rely
on the term frequency of each lexical item in the
lay collection (Elhadad, 2006). In our example, the
lexical term “heart attack” has the highest term fre-
quency in the lay collection among all the variants
with the same CUI. Thus, we chose it as a semantic
equivalent of any lexical term of the CUI C0027051
in the technical collection.

If a technical term has several candidate semantic
equivalents at the CUI level, the lexical lay term is
chosen among all the lay terms. For instance, (ad-
verse effect, side effect) and (adverse effect, compli-
cations) are two valid equivalents, but side effects
has a term frequency of 16 in our lay collection, and
complications has a lay term frequency of 35. Thus,
complication is selected as the lay equivalent for ad-
verse effect.

4 Results

We report on the two steps of our system: (1) find-
ing semantic equivalents at the CUI level, and (2)
finding an appropriate lay lexical equivalent.

Finding Semantic Equivalents at the CUI Level
Table 5 shows the precision, recall and F-measure
(computed as the harmonic mean between precision
and recall) against our gold standard for the three
alternative measures of association, including dif-
ferent combinations of these, and also adding the
semantic filter. In addition, we report results for a
competitive baseline based solely on CUI informa-
tion, where tech term and lay term are considered
equivalent if they have the same CUI.

The baseline is fairly competitive only because
of its perfect precision (CUI in Table 5). Its recall,
however (44.7), indicates that building a lexicon of
technical and lay equivalents based solely on CUI
information would miss too many pairs within the
UMLS.54



Method P R F Method P R F Method P R F
lam 40.8 20.4 27.2 chi,odds 20.6 78.3 32.6 CUI 100 44.7 61.8
chi 38.7 23.7 29.4 chi,lam,odds 20.6 80.3 32.8 sem,odds 57.8 71.1 63.7
sem,lam 76.3 19.1 30.5 sem,chi 81.8 23.7 36.7 sem,lam,odds 57.4 73.7 64.6
odds 20.4 74.3 32 chi,lam 38.2 39.5 38.8 sem,chi,odds 58.5 75 65.7
lam,odds 20.5 77 32.3 sem,chi,lam 79.5 38.2 51.6 sem,chi,lam,odds 57.9 77 66.1

Table 5: Precision, Recall and F measures for different variants of the system.

Relying on only one measure of association with-
out any semantic filtering to determine semantic
equivalents is not a good strategy: λ* (lam in Ta-
ble 5), χ2(chi) and OR (odds), by themselves, yield
the worst F measures. Interestingly, the measures
of association identify different equivalent pairs in
the pool of candidate pairs. Thus, combining them
increases the coverage (or recall) of the system.
For instance, λ* by itself has a low recall of 20.4
(lam). When combined with OR, it improves the re-
call from 74.3 (odds) to 77 (lam,odds); when com-
bined with χ2, it improves the recall from 23.7 (chi)
to 39.5 (chi,lam). Combining the three measures
of association (chi,lam,odds) yields the best recall
(80.3), confirming our hypothesis that the measures
are complementary and identify pairs with different
characteristics in our corpus.

While combining measures of association im-
proves recall, the semantic filter is very effective in
filtering inaccurate pairs and, therefore, improving
precision: λ*, for instance, improves from a pre-
cision of 40.8 (lam) to 76.3 (sem,lam) when the
filter is added, with very little change in recall.
The best variant of our system in terms of F mea-
sure is, not surprisingly, combining the three mea-
sures of association and adding the semantic filter
(sem,chi,lam,odds in Table 5).

The results of these experiments are surprisingly
good, considering that the contingency tables are
built from a corpus of only 367 document pairs and
rely on document frequency (not term frequency).
These quantities are much smaller than those used
in machine translation, for instance.

Finding Lay Lexical Equivalents We evaluate
our strategy for finding an appropriate lay lexical
item on the list of 152 term pairs identified by our
medical expert as semantic equivalents. Our strat-
egy achieves an accuracy of 86.7%.

5 Related Work

Our work belongs to the field of paraphrase identi-
fication. Much work has been done to build lexi-
cons of semantically equivalent phrases. In gener-
ation systems, a lexicon is built manually (Robin,
1994) or by relying on an electronic thesaurus like
WordNet (Langkilde and Knight, 1998) and setting
constraints on the type of accepted paraphrases (for
instance, accepting only synonyms as paraphrases,
and not hypernyms). Building paraphrase lexicons
from a corpus has also been investigated. Jacquemin
and colleagues (1997) identify morphological and
syntactic variants of technical terms. Barzilay and
McKeown (2001) identify multi-word paraphrases
from a sentence-aligned corpus of monolingual par-
allel texts. One interesting finding of this work is
that the mined paraphrases were distributed across
different semantic links in WordNet: some para-
phrases had a hypernym relation, while others were
synonyms, and others had no semantic links at all.
The composition of our gold standard confirms this
finding, since half of the semantically equivalent
terms had different CUIs (see Table 3 for examples
of such pairs).

If we consider technical and lay writing styles as
two sublanguages, it is easy to see an analogy be-
tween our task and that of machine translation. Iden-
tifying translations for words or phrases has been
deeply investigated in the field of statistical machine
translation. The IBM models of word alignments are
the basis for most algorithms to date. All of these are
instances of the EM algorithm (Expectation Maxi-
mization) and rely on large corpora aligned at the
sentence level. We cannot apply an EM-based model
to our task since we have a very small corpus of
paired technical/lay documents, and EM requires
large amounts of data to achieve accurate results.
Moreover, the technical and lay documents are not
parallel, and thus, we do not have access to a sen-55



tence alignment. Of course, our task is easier than
the one of machine translation, since we focus on
“translating” only technical terms, rather than every
single word in a technical document.

Gale and Church (1991) do not follow the EM
model, but rather find French translations of English
words using a χ2-like measure of association. Their
corpus is the parallel, sentence-aligned Hansard cor-
pus. Our method differs from theirs, as we do build
the contingency table based on document frequen-
cies. Gale and Church employ sentence-level fre-
quencies. Our corpus is much smaller, and the sen-
tences are not aligned (for comparison, we have
367 document-pairs, while they have nearly 900,000
sentence pairs). Another difference between our ap-
proach and theirs is our use of the semantic filter
based on UMLS. We can afford to have such a filter
because we focus on finding semantic equivalents of
UMLS terms only.

6 Conclusions and Future Work

We presented an unsupervised method for identi-
fying pairs of semantically equivalent technical/lay
terms. Such a lexicon would benefit research in
health literacy. In particular, it would benefit a sys-
tem which automatically adapts a medical technical
text to different levels of medical expertise.

We collected a corpus of pairs of technical/lay
documents, where both documents convey similar
information, but each is written for a different au-
dience. Based on this corpus, we designed a method
based on three alternative measures of association
and a semantic filter derived from the UMLS. Our
experiments show that combining data-driven statis-
tics and a knowledge-based filter provides the best
results.

Our method is concerned specifically with pairs
of terms, as recognized from UMLS. While UMLS
provides high coverage for technical terms, that is
not the case for lay terms. In the future, we would
like to extend our investigation to pairs consisting
of a technical term and any noun phrase which is
sufficiently frequent in our lay collection. Finding
such pairs would have the side effect of augmenting
UMLS, a primarily technical resource, with mined
lay terms. One probable step towards this goal will
be to increase the size of our corpus of paired tech-

nical and lay documents.
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Abstract

We describe the annotation of chemical
named entities in scientific text. A set of an-
notation guidelines defines 5 types of named
entities, and provides instructions for the
resolution of special cases. A corpus of full-
text chemistry papers was annotated, with an
inter-annotator agreement

�
score of 93%.

An investigation of named entity recogni-
tion using LingPipe suggests that

�
scores

of 63% are possible without customisation,
and scores of 74% are possible with the ad-
dition of custom tokenisation and the use of
dictionaries.

1 Introduction

Recent efforts in applying natural language pro-
cessing to natural science texts have focused on
the recognition of genes and proteins in biomedi-
cal text. These large biomolecules are—mostly—
conveniently described as sequences of subunits,
strings written in alphabets of 4 or 20 letters. Ad-
vances in sequencing techniques have lead to a boom
in genomics and proteomics, with a concomitant
need for natural language processing techniques to
analyse the texts in which they are discussed.

However, proteins and nucleic acids provide only
a part of the biochemical picture. Smaller chemical
species, which are better described atom-by-atom,
play their roles too, both in terms of their inter-
actions with large biomolecules like proteins, and
in the more general biomedical context. A num-
ber of resources exist to provide chemical infor-
mation to the biological community. For example,

the National Center For Biotechnology Information
(NCBI) has added the chemical database PubChem1

to its collections of bioinformatics data, and the on-
tology ChEBI (Chemical Entities of Biological In-
terest) (de Matos et al., 2006) has been added to the
Open Biological Ontologies (OBO) family.

Small-molecule chemistry also plays a role in
biomedical natural language processing. PubMed
has included abstracts from medicinal chemistry
journals for a long time, and is increasingly carry-
ing other chemistry journals too. Both the GENIA
corpus (Kim et al., 2003) and the BioIE cytochrome
P450 corpus (Kulick et al., 2004) come with named
entity annotations that include a proportion of chem-
icals, and at least a few abstracts that are recognis-
able as chemistry abstracts.

Chemical named entity recognition enables a
number of applications. Linking chemical names to
chemical structures, by a mixture of database lookup
and the parsing of systematic nomenclature, allows
the creation of semantically enhanced articles, with
benefits for readers. An example of this is shown in
the Project Prospect2 annotations by the Royal So-
ciety of Chemistry (RSC). Linking chemical NER
to chemical information retrieval techniques allows
corpora to be searched for chemicals with similar
structures to a query molecule, or chemicals that
contain a particular structural motif (Corbett and
Murray-Rust, 2006). With information extraction
techniques, chemicals could be linked to their prop-
erties, applications and reactions, and with tradi-
tional gene/protein NLP techniques, it could be pos-

1http://pubchem.ncbi.nlm.nih.gov/
2http://www.projectprospect.org/57



sible to discover new links between chemical data
and bioinformatics data.

A few chemical named entity recognition (Cor-
bett and Murray-Rust, 2006; Townsend et al., 2005;
Vasserman, 2004; Kemp and Lynch, 1998; Sun et
al., 2007) or classification (Wilbur et al., 1999) sys-
tems have been published. A plugin for the GATE
system3 will also recognise a limited range of chem-
ical entities. Other named entity recognition or
classification systems (Narayanaswamy et al., 2003;
Torii et al., 2004; Torii and Vijay-Shanker, 2002;
Spasic and Ananiadou, 2004) sometimes include
chemicals as well as genes, proteins and other bio-
logical entities. However, due to differences in cor-
pora and the scope of the task, it is difficult to com-
pare them. There has been no chemical equivalent
of the JNLPBA (Kim et al., 2004) or BioCreAtIvE
(Yeh et al., 2005) evaluations. Therefore, a corpus
and a task definition are required.

To find an upper bound on the levels of perfor-
mance that are available for the task, it is necessary
to study the inter-annotator agreement for the man-
ual annotation of the texts. In particular, it is useful
to see to what extent the guidelines can be applied by
those not involved in their development. Producing
guidelines that enable a highly consistent annotation
may raise the quality of the results of any machine-
learning techniques that use training data applied to
the guidelines, and producing guidelines that cover
a broad range of subdomains is also important (Din-
gare et al., 2005).

2 Annotation Guidelines

We have prepared a set of guidelines for the an-
notation of the names of chemical compounds and
related entities in scientific papers. These guide-
lines grew out of work on PubMed abstracts, and
have since been developed with reference to organic
chemistry journals, and later a range of journals en-
compassing the whole of chemistry.

Our annotation guidelines focus on the chemicals
themselves; we believe that these represent the ma-
jor source of rare words in chemistry papers, and
are of the greatest interest to end-users. Further-
more, many chemical names are formed systemat-
ically or semi-systematically, and can be interpreted

3http://www.gate.ac.uk/

without resorting to dictionaries and databases. As
well as chemical names themselves, we also con-
sider other words or phrases that are formed from
chemical names.

The various types are summarised in Table 1.

Type Description Example
CM chemical compound citric acid
RN chemical reaction 1,3-dimethylation
CJ chemical adjective pyrazolic
ASE enzyme methylase
CPR chemical prefix 1,3-

Table 1: Named entity types

The logic behind the classes is best explained with
an example drawn from the corpus described in the
next section:

In addition, we have found in previous
studies that the Zn �

�
–Tris system is also

capable of efficiently hydrolyzing other
�

-
lactams, such as clavulanic acid, which
is a typical mechanism-based inhibitor of
active-site serine

�
-lactamases (clavulanic

acid is also a fairly good substrate of the
zinc-

�
-lactamase from B. fragilis).

Here, ‘clavulanic acid’ is a specific chemical com-
pound (a CM), referred to by a trivial (unsystem-
atic) name, and ‘

�
-lactams’ is a class of chemi-

cal compounds (also a CM), defined by a particu-
lar structural motif. ‘Zn �

�
–Tris’ is another CM (a

complex rather than a molecule), and despite be-
ing named in an ad hoc manner, the name is com-
positional and it is reasonably clear to a trained
chemist what it is. ‘Serine’ (another CM) can be
used to refer to an amino acid as a whole compound,
but in this case refers to it as a part of a larger
biomolecule. The word ‘hydrolyzing’ (an RN) de-
notes a reaction involving the chemical ‘water’. ‘

�
-

lactamases’ (an ASE) denotes a class of enzymes
that process

�
-lactams, and ‘zinc-

�
-lactamase’ (an-

other ASE) denotes a
�

-lactamase that uses zinc.
By our guidelines, the terms ‘mechanism-based in-
hibitor’ or ‘substrate’ are not annotated, as they de-
note a chemical role, rather than giving information
about the structure or composition of the chemicals.58



The full guidelines occupy 31 pages (including a
quick reference section), and contain 93 rules. Al-
most all of these have examples, and many have sev-
eral examples.

A few distinctions need to be explained here. The
classes RN, CJ and ASE do not include all reactions,
adjectives or enzymes, but only those that entail
specific chemicals or classes of chemicals—usually
by being formed by the modification of a chemical
name—for example, ‘

�
-lactamases’ in the example

above is formed from the name of a class of chem-
icals. Words derived from Greek and Latin words
for ‘water’, such as ‘aqueous’ and ‘hydrolysis’, are
included when making these annotations.

The class CPR consists of prefixes, more often
found in systematic chemical names, giving details
of the geometry of molecules, that are attached to
normal English words. For example, the chemi-
cal 1,2-diiodopentane is a 1,2-disubstituted pentane,
and the ‘1,2-’ forms the CPR in ‘1,2-disubstituted’.
Although these contructions sometimes occur as in-
fixes within chemical names, we have only seen
these used as prefixes outside of them. We believe
that identifying these prefixes will be useful in the
adaptation of lexicalised parsers to chemical text.

The annotation task includes a small amount of
word sense disambiguation. Although most chemi-
cal names do not have non-chemical homonyms, a
few do. Chemical elements, and element symbols,
give particular problems. Examples of this include
‘lead’, ‘In’ (indium), ‘As’ (arsenic), ‘Be’ (beryl-
lium), ‘No’ (nobelium) and ‘K’ (potassium—this is
confusable with Kelvin). These are only annotated
when they occur in their chemical sense.

2.1 Related Work

We know of two publicly available corpora that also
include chemicals in their named-entity markup. In
both of these, there are significant differences to
many aspects of the annotation. In general, our
guidelines tend to give more importance to concepts
regarding chemical structure, and less importance to
biological role, than the other corpora do.

The GENIA corpus (Kim et al., 2003) in-
cludes several different classes for chemi-
cals. Our class CM roughly corresponds to
the union of GENIA’s atom, inorganic,
other organic compound, nucleotide

and amino acid monomer classes, and also
parts of lipid and carbohydrate (we ex-
clude macromolecules such as lipoproteins and
lipopolysaccharides). Occasionally terms that
match our class RN are included as other name.
Our CM class also includes chemical names
that occur within enzyme or other protein names
(e.g. ‘inosine-5 � -monophosphate’ in ‘inosine-5 � -
monophosphate dehydrogenase’) whereas the
GENIA corpus (which allows nesting) typically
does not. The GENIA corpus also sometimes
includes qualifiers in terms, giving ‘intracellular
calcium’ where we would only annotate ‘calcium’,
and also includes some role/application terms such
as ‘antioxidant’ and ‘reactive intermediate’.

The BioIE P450 corpus (Kulick et al., 2004), by
contrast, includes chemicals, proteins and other sub-
stances such as foodstuffs in a single category called
‘substance’. Again, role terms such as ‘inhibitor’ are
included, and may be merged with chemical names
to make entities such as ‘fentanyl metabolites’ (we
would only mark up ‘fentanyl’). Fragments of
chemicals such as ‘methyl group’ are not marked up;
in our annotations, the ‘methyl’ is marked up.

The BioIE corpus was produced with extensive
guidelines; in the GENIA corpus, much more was
left to the judgement of the annotators. These lead
to inconsistencies, such as whether to annotate ‘an-
tioxidant’ (our guidelines treat this as a biological
role, and do not mark it up). We are unaware of an
inter-annotator agreement study for either corpus.

Both of these corpora include other classes of
named entities, and additional information such as
sentence boundaries.

3 Inter-annotator Agreement

3.1 Related Work

We are unaware of any studies of inter-annotator
agreement with regards to chemicals. However, a
few studies of gene/protein inter-annotator agree-
ment do exist. Demetriou and Gaizauskas (2003)
report an

�
score of 89% between two domain ex-

perts for a task involving various aspects of protein
science. Morgan et al. (2004) report an

�
score of

87% between a domain expert and a systems devel-
oper for D. melanogaster gene names. Vlachos and
Gasperin (2006) produced a revised version of the59



guidelines for the task, and were able to achieve an
�

score of 91%, and a kappa of 0.905, between a
computational linguist and a domain expert.

3.2 Subjects

Three subjects took part in the study. Subject A
was a chemist and the main author of the guidelines.
Subject B was another chemist, highly involved in
the development of the guidelines. Subject C was a
PhD student with a chemistry degree. His involve-
ment in the development of guidelines was limited to
proof-reading an early version of the guidelines. C
was trained by A, by being given half an hour’s train-
ing, a test paper to annotate (which satisfied A that C
understood the general principles of the guidelines),
and a short debriefing session before being given the
papers to annotate.

3.3 Materials

The study was performed on 14 papers (full pa-
pers and communications only, not review articles
or other secondary publications) published by the
Royal Society of Chemistry. These were taken from
the journal issues from January 2004 (excluding a
themed issue of one of the journals). One paper was
randomly selected to represent each of the 14 jour-
nals that carried suitable papers. These 14 papers
represent a diverse sample of topics, covering areas
of organic, inorganic, physical, analytical and com-
putational chemistry, and also areas where chemistry
overlaps with biology, environmental science, mate-
rials and mineral science, and education.

From these papers, we collected the title, section
headings, abstract and paragraphs, and discarded the
rest. To maximise the value of annotator effort, we
also automatically discarded the experimental sec-
tions, by looking for headers such as ‘Experimen-
tal’. This policy can be justified thus: In chemistry
papers, a section titled “Results and Discussion” car-
ries enough information about the experiments per-
formed to follow the argument of the paper, whereas
the experimental section carries precise details of the
protocols that are usually only of interest to people
intending to replicate or adapt the experiments per-
formed. It is increasingly common for chemistry pa-
pers not to contain an experimental section in the
paper proper, but to include one in the supporting
online information. Furthermore, experimental sec-

tions are often quite long and tedious to annotate,
and previous studies have shown that named-entity
recognition is easier on experimental sections too
(Townsend et al., 2005).

A few experimental sections (or parts thereof)
were not automatically detected, and instead were
removed by hand.

3.4 Procedure

The papers were hand-annotated using our in-house
annotation software. This software displays the text
so as to preserve aspects of the style of the text such
as subscripts and superscripts, and allows the anno-
tators to freely select spans of text with character-
level precision—the text was not tokenised prior to
annotation. Spans were not allowed to overlap or to
nest. Each selected span was assigned to exactly one
of the five available classes.

During annotation the subjects were allowed to
refer to the guidelines (explained in the previous sec-
tion), to reference sources such as PubChem and
Wikipedia, and to use their domain knowledge as
chemists. They were not allowed to confer with
anyone over the annotation, nor to refer to texts an-
notated during development of the guidelines. The
training of subject C by A was completed prior to A
annotating the papers involved in the exercise.

3.5 Evaluation Methodology

Inter-annotator agreement was measured pairwise,
using the

�
score. To calculate this, all of the ex-

act matches were found and counted, and all of the
entities annotated by one annotator but not the other
(and vice versa) were counted. For an exact match,
the left boundary, right boundary and type of the an-
notation had to match entirely. Thus, if one anno-
tator had annotated ‘hexane–ethyl acetate’ as a sin-
gle entity, and the other had annotated it as ‘hexane’
and ‘ethyl acetate’, then that would count as three
cases of disagreement and no cases of agreement.
We use the

�
score as it is a standard measure in the

domain—however, as a measure it has weaknesses
which will be discussed in the next subsection.

Given the character-level nature of the annotation
task, and that the papers were not tokenised, the task
cannot sensibly be cast as a classification problem,
and so we have not calculated any kappa scores.60



Overall results were calculated using two meth-
ods. The first method was to calculate the total lev-
els of agreement and disagreement across the whole
corpus, and to calculate a total

�
score based on that.

The second method was to calculate
�

scores for in-
dividual papers (removing a single paper that con-
tained two named entities—neither of which were
spotted by subject B—as an outlier), and to calculate
an unweighted mean, standard deviation and 95%
confidence intervals based on those scores.

3.6 Results and Discussion

Subjects
�

(corpus)
�

(average) std. dev.
A–B 92.8% 92.9%

�
3.4% 6.2%

A–C 90.0% 91.4%
�

3.1% 5.7%
B–C 86.1% 87.6%

�
3.1% 5.7%

Table 2: Inter-annotator agreement results.
�

values
are 95% confidence intervals.

The results of the analysis are shown in Table 2.
The whole-corpus

�
scores suggest that high levels

of agreement (93%) are possible. This is equivalent
to or better than quoted values for biomedical inter-
annotator agreement. However, the poorer agree-
ments involving C would suggest that some of this is
due to some extra information being communicated
during the development of the guidelines.

A closer analysis shows that this is not the case. A
single paper, containing a large number of entities, is
notable as a major source of disagreement between
A and C, and B and C, but not A and B. Looking
at the annotations themselves, the paper contained
many repetitions of the difficult entity ‘Zn �

�
–Tris’,

and also of similar entities. If the offending paper is
removed from consideration, the agreement between
A and C exceeds the agreement between A and B.

This analysis is confirmed using the per-paper
�

scores. Two-tailed, pairwise t-tests (excluding the
outlier paper) showed that the difference in mean

�

scores between the A–B and A–C agreements was
not statistically significant at the 0.05 significance
level; however, the differences between B–C and A–
B, and between B–C and A–C were.

A breakdown of the inter-annotator agreements
by type is shown in Table 3. CM and RN, at least,
seem to be reliably annotated. The other classes are
less easy to assess, due to their rarity, both in terms

Type
�

Number
CM 93% 2751
RN 94% 79
CJ 56% 20
ASE 96% 25
CPR 77% 10

Table 3: Inter-annotator agreement, by type.
�

scores are corpus totals, between Subjects A and C.
The number is the number of entities of that class
found by Subject A.

of their total occurrence in the corpus and the num-
ber of papers that contain them.

We speculate that the poorer B–C agreement may
be due to differing error rates in the annotation. In
many cases, it was clear from the corpus that errors
were made due to failing to spot relevant entities, or
by failing to look up difficult cases in the guidelines.
Although it is not possible to make a formal analy-
sis of this, we suspect that A made fewer errors, due
to a greater familiarity with the task and the guide-
lines. This is supported by the results, as more er-
rors would be involved in the B–C comparison than
in comparisons involving A, leading to higher levels
of disagreement.

We have also examined the types of disagree-
ments made. There were very few cases where two
annotators had annotated an entity with the same
start and end point, but a different type; there were
2 cases of this between A and C, and 3 cases in each
of the other two comparisons. All of these were con-
fusions between CM and CJ.

In the A–B comparison, there were 415 entities
that were annotated by either A or B that did not
have a corresponding exact match. 183 (44%) of
those were simple cases where the two annotators
did not agree as to whether the entity should be
marked up or not (i.e. the other annotator had not
placed any entity wholly or partially within that
span). For example, some annotators failed to spot
instances of ‘water’, or disagreed over whether ‘fat’
(as a synonym for ‘lipid’) was to be marked up.

The remainder of those disagreements are due
to disagreements of class, of where the boundaries
should be, of how many entities there should be in
a given span, and combinations of the above. In all61



of these cases, the fact that the annotators produce at
least one entity each for a given case means that dis-
agreements of this type are penalised harshly, and
therefore are given disproportionate weight. How-
ever, it is also likely that disagreements over whether
to mark an entity up are more likely to represent a
simple mistake than a disagreement over how to in-
terpret the guidelines; it is easy to miss an entity that
should be marked up when scanning the text.

A particularly interesting class of disagreement
concerns whether a span of text should be anno-
tated as one entity or two. For example, ‘Zn �

�
–Tris’

could be marked up as a single entity, or as ‘Zn �
�

’
and ‘Tris’. We looked for cases where one annota-
tor had a single entity, the left edge of which cor-
responded to the left edge of an entity annotated by
the other annotator, and the right edge corresponded
to the right edge of a different entity. We found 43
cases of this. As in each of these cases, at least three
entities are involved, this pattern accounts for at least
30% of the inter-annotator disagreement. Only 17 of
these cases contained whitespace—in the rest of the
cases, hyphens, dashes or slashes were involved.

4 Analysis of the Corpus

To generate a larger corpus, a further two batches of
papers were selected and preprocessed in the manner
described for the inter-annotator agreement study
and annotated by Subject A. These were combined
with the annotations made by Subject A during the
agreement study, to produce a corpus of 42 papers.

Type Entities Papers
CM 6865 94.1% 42 100%
RN 288 4.0% 23 55%
CJ 60 0.8% 20 48%
ASE 31 0.4% 5 12%
CPR 53 0.7% 9 21%

Table 4: Occurrence of entities in the corpus, and
numbers of papers containing at least one entity of a
type.

From Table 4 it is clear that CM is by far the most
common type of named entity in the corpus. Obser-
vation of the corpus shows that RN is common in
certain genres of paper (for example organic synthe-
sis papers), and generally absent from other genres.

ASE, too, is a specialised category, and did not occur
much in this corpus.

A closer examination of CM showed more than
90% of these to contain no whitespace. However,
this is not to say that there are not significant num-
bers of multi-token entities. The difficulty of to-
kenising the corpus is illustrated by the fact that
1114 CM entities contained hyphens or dashes, and
388 CM entities were adjacent to hyphens or dashes
in the corpus. This means that any named entity
recogniser will have to have a specialised tokeniser,
or be good at handling multi-token entities.

Tokenising the CM entities on whitespace and
normalising their case revealed 1579 distinct
words—of these, 1364 only occurred in one paper.
There were 4301 occurrences of these words (out of
a total of 7626). Whereas the difficulties found in
gene/protein NER with complex multiword entities
and polysemous words are less likely to be a prob-
lem here, the problems with tokenisation and large
numbers of unknown words remain just as pressing.

As with biomedical text (Yeh et al., 2005), cases
of conjunctive and disjunctive nomenclature, such
as ‘benzoic and thiophenic acids’ and ‘bromo- or
chlorobenzene’ exist in the corpus. However, these
only accounted for 27 CM entities.

5 Named-Entity Recognition

To establish some baseline measures of perfor-
mance, we applied the named-entity modules from
the toolkit LingPipe,4 which has been success-
fully applied to NER of D. melanogaster genes
(e.g. by Vlachos and Gasperin (2006)). Ling-
Pipe uses a first-order HMM, using an enriched
tagset that marks not only the positions of the
named entities, but the tokens in front of and
behind them. Two different strategies are em-
ployed for handling unknown tokens. The
first (the TokenShapeChunker) replaces un-
known or rare tokens with a morphologically-
based classification. The second, newer module
(the CharLmHmmChunker) estimates the prob-
ability of an observed word given a tag us-
ing language models based on character-level � -
grams. The LingPipe developers suggest that the
TokenShapeChunker typically outperforms the

4http://www.alias-i.com/lingpipe/62



CharLmHmmChunker. However, the more so-
phisticated handling of unknown words by the
CharLmHmmChunker suggests that it might be a
good fit to the domain.

As well as examining the performance of Ling-
Pipe out of the box, we were also able to make some
customisations. We have a custom tokeniser, con-
taining several adaptations to chemical text. For ex-
ample, our tokeniser will only remove brackets from
the front and back of tokens, and only if that would
not cause the brackets within the token to become
unbalanced. For example, no brackets would be re-
moved from ‘(R)-acetoin’. Likewise, it will only
tokenise on a hyphen if the hyphen is surrounded
by two lower-case letters on either side (and if the
letters to the left are not common prehyphen com-
ponents of chemical names), or if the string to the
right has been seen in the training data to be hy-
phenated with a chemical name (e.g. ‘derived’ in
‘benzene-derived’). By contrast, the default Ling-
Pipe tokeniser is much more aggressive, and will to-
kenise on hyphens and brackets wherever they occur.

The CharLmHmmChunker’s language models
can also be fed dictionaries as additional training
data—we have experimented with using a list of
chemical names derived from ChEBI (de Matos et
al., 2006), and a list of chemical elements. We have
also made an extension to LingPipe’s token classi-
fier, which adds classification based on chemically-
relevant suffixes (e.g. -yl, -ate, -ic, -ase, -lysis), and
membership in the aforementioned chemical lists, or
in a standard English dictionary.

We analysed the performance of the different
LingPipe configurations by 3-fold cross-validation,
using the 42-paper corpus described in the previous
section. In each fold, 28 whole papers were used as
training data, holding out the other 14 as test data.
The results are shown in Table 5.

From Table 5, we can see that the character � -
gram language models offer clear advantages over
the older techniques, especially when coupled to a
custom tokeniser (which gives a boost to

�
of over

7%), and trained with additional chemical names.
The usefulness of character-based � -grams has also
been demonstrated elsewhere (Wilbur et al., 1999;
Vasserman, 2004; Townsend et al., 2005). Their use
here in an HMM is particularly apt, as it allows the
token-internal features in the language model to be

Configuration
� � �

TokenShape 67.0% 52.9% 59.1%
+ � 71.2% 62.3% 66.5%
+ � 67.4% 52.5% 59.0%
+ � + � 73.3% 62.5% 67.4%
CharLm 62.7% 63.4% 63.1%
+ � 59.8% 68.8% 64.0%
+ � 71.1% 70.0% 70.5%
+ � + � 75.3% 73.5% 74.4%

Table 5: LingPipe performance using different con-
figurations. � = custom token classifier, � = chemical
name lists, � = custom tokeniser

combined with the token context.
The impact of custom tokenisation upon

the older TokenShapeChunker is less dra-
matic. It is possible that tokens that contain
hyphens, brackets and other special characters are
more likely to be unknown or rare tokens—the
TokenShapeChunker has previously been
reported to make most of its mistakes on these
(Vlachos and Gasperin, 2006), so tokenising them
is likely to make less of an impact. It is also
possible that chemical names are more distinctive
as a string of subtokens rather than as one large
token—this may offset the loss in accuracy from
getting the start and end positions wrong. The
CharLmHmmChunker already has a mecha-
nism for spotting distinctive substrings such as
‘N,N’-’ and ‘-3-’, and so the case for having long,
well-formed tokens becomes much less equivocal.

It is also notable that improvements in tokenisa-
tion are synergistic with other improvements—the
advantage of using the CharLmHmmChunker is
much more apparent when the custom tokeniser is
used, as is the advantage of using word lists as addi-
tional training data. It is notable that for the unmod-
ified TokenShapeChunker, using the custom to-
keniser actually harms performance.

6 Conclusion

We have produced annotation guidelines that enable
the annotation of chemicals and related entities in
scientific texts in a highly consistent manner. We
have annotated a corpus using these guidelines, an
analysis of which, and the results of using an off-63



the-shelf NER toolkit, show that finding good ap-
proaches to tokenisation and the handling of un-
known words is critical in the recognition of these
entities. The corpus and guidelines are available by
contacting the first author.
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Abstract

Although recent named entity (NE) annotation ef-
forts involve the markup of nested entities, there has
been limited focus on recognising such nested struc-
tures. This paper introduces and compares three
techniques for modelling and recognising nested
entities by means of a conventional sequence tag-
ger. The methods are tested and evaluated on two
biomedical data sets that contain entity nesting. All
methods yield an improvement over the baseline tag-
ger that is only trained on flat annotation.

1 Introduction

Traditionally, named entity recognition (NER) has
focussed on entities which arecontinuous, non-
nestedand non-overlapping. In other words, each
token in the text belongs to at most one entity, and
NEs consist of a continuous sequence of tokens.
However, in some situations, it may make sense to
relax these restrictions, for example by allowing en-
tities to benestedinside other entities, or allowing
discontinuousentities. GENIA (Ohta et al., 2002)
and BioInfer (Pyysalo et al., 2007) are examples of
recently producedNE-annotated biomedical corpora
where entities nest. Corpora in other domains, for
example the ACE1 data, also contain nested entities.

This paper compares techniques for recognising
nested entities in biomedical text. The difficulty of
this task is that the standard method for convert-
ing NER to a sequence tagging problem withBIO-
encoding (Ramshaw and Marcus, 1995), where each

1http://www.nist.gov/speech/tests/ace/
index.htm

token is assigned a tag to indicate whether it is at the
beginning (B), inside (I), or outside (O) of an en-
tity, is not directly applicable when tokens belong to
more than one entity. Here we explore methods of
reducing the nestedNER problem to one or moreBIO

problems so that existingNER tools can be used.
This paper is organised as follows. In Section 2,

the problem of nested entities is introduced and mo-
tivated with examples from GENIA and ourEPPI

(enriched protein-protein interaction) data. Related
work is reviewed in Section 3. The proposed tech-
niques enablingNER for nestedNEs are explained in
Section 4. Section 5 details the experimental setup,
including descriptive statistics of the corpora and
specifics of the classifier. The results of comparing
different tagging methods are analysed in Section 6,
with a discussion and conclusion in Section 7.

2 Nested Entities

The majority of previous work onNER is conducted
using data sets annotated either with continuous,
non-nested and non-overlappingNEs or an annota-
tion scheme reduced to a flat annotation of a similar
kind in order to simplify the recognition task. How-
ever, annotated corpora often contain entities that are
nested or discontinuous. For example, the GENIA
corpus contains nested entities such as:

<RNA><DNA>CIITA</DNA>mRNA</RNA>

where the string “CIITA” denotes a DNA and the en-
tire string “CIITA mRNA” refers to an RNA. Such
nesting complicates the task of traditionalNER sys-
tems, which generally rely on data represented with
the BIO encoding or other flat annotation variations
thereof. The majority ofNER studies on corpora65



GENIA EPPI

Count Nesting Count Nesting
3,614 ( other name ( proteint ) t ) 1,698 ( fusion ( proteint ) t ( proteint ) )

907 ( DNA ( proteint ) t ) 1,269 ( drug/compound ( proteint ) )
856 ( protein ( proteint ) t ) 455 ( fusion ( fragmentt ) t ( proteint ) )
661 ( proteint ( proteint ) ) 412 ( protein ( proteint ) t )
546 ( other name ( DNAt ) t ) 361 ( complex ( proteint ) t ( proteint ) )
541 ( other namet ( other namet ) ) 298 ( fusion ( proteint ) t ( fragmentt ) )
470 ( cell typet ( cell typet ) ) 246 ( fragmentt ( fragmentt ) )
351 ( DNA t ( DNA t ) ) 241 ( cell line t ( cell line t ) )
326 ( other name ( virust ) t ) 207 ( fragment ( proteint ) )
262 ( other name ( lipidt ) t ) 201 ( fusion ( proteint ) t ( mutantt ) )

Table 1: 10 most frequent types of nesting in the GENIA corpusand the combinedTRAIN and DE-
VTEST sections of theEPPIdata (see Section 5.1), wheret represents the text.

containing nested structures focus on recognising
the outermost (non-embedded) entities (e.g. Kim et
al. 2004) , as they contain the most information,
including that of embedded entities (Zhang et al.,
2004). This enables a simplification of the recog-
nition task to a sequential analysis problem.

Our aim is to recognise all levels ofNE nesting
occurring in two biomedical corpora: the GENIA
corpus (Version 3.02) and theEPPI corpus (see Sec-
tion 5.1). The latter data set was collected and an-
notated as part of theTXM project. Its annotation
contains 9 different biomedical entities. While the
GENIA corpus contains nested entities up to a level
of four layers of embedding, the nested entities in
theEPPI corpus only have three layers. Table 1 lists
the ten most frequent types of entity nesting occur-
ring in both corpora. In the remainder of the paper,
we differentiate between:

embedded NEs: contained in otherNEs

non-embedded NEs: not contained in otherNEs

containing NEs: containing otherNEs

non-containing NEs: not containing otherNEs

The GENIA corpus is made up of a larger per-
centage of both embedded entity (18.61%) and con-
taining entity (16.95%) mentions than theEPPI data
(12.02% and 8.27%, respectively). In both corpora,
nesting can occur in three different ways:

1. Entities containing one or more shorter embed-
ded entities.Such nesting is very frequent in both
data sets. For example, the DNA “IL-2 promoter” in
the GENIA corpus contains the protein “IL-2”. In

the EPPI corpus, fusions and complexes often con-
tain nested proteins, e.g. the complex “CBP/p300”,
where “CBP” and “p300” are marked as proteins.

2. Entities with more than one entity type.Al-
though they occur in both data sets, they are very
rare in the GENIA corpus. For example, the string
“p21ras” is annotated both as DNA and protein. In
the EPPI data, proteins can also be annotated as
drug/compound, where it can be clearly established
that the protein is used as a drug to affect the func-
tion of an organism, cell, or biological process.

3. Coordinated entities.CoordinatedNEs account
for approximately 2% of allNEs in the GENIA and
EPPI data. In the original corpora they are anno-
tated differently, but for this work they are all con-
verted to a common format.2 The outermost anno-
tation of coordinated structures and any continuous
entity mark-up within them is retained. For exam-
ple, in “human interleukin-2 and -4” both the con-
tinuous embedded entity “human interleukin-2” and
the entire string are marked as proteins. The markup
for discontinuous embedded entities, like “human
interleukin-4” in the previous example, is not re-
tained, as they could be derived in a post-processing
step once nested entities are recognised.

3 Related Work

In previous work addressing nested entities, Shen et
al. (2003), Zhang et al. (2004), Zhou et al. (2004),
Zhou (2006), and Gu (2006) considered the GENIA

2Both corpora are represented in XML with standoff anno-
tation, potentionally allowing overlappingNEs.66



corpus, where nested entities are relatively frequent.
All these studies ignore embedded entities occur-
ring in coordinated structures and only retain their
outermost annotation. Shen et al. (2003), Zhang et
al. (2004), and Zhou et al. (2004) all report on a rule-
based approach to dealing with nestedNEs in the
GENIA corpus (Version 3.0) in combination with a
Hidden Markov Model (HMM) that first recognises
innermostNEs. They use four basic hand-crafted
patterns and a combination thereof to generate nest-
ing rules from the training data and thereby derive
NEs containing the innermostNEs. The experimen-
tal setup of these studies differs slightly. While Shen
et al. (2003) and Zhang et al. (2004) report results
testing on 4% of the abstracts in the GENIA corpus,
Zhou et al. (2004) report 10-fold cross-validation
scores. Zhou (2006) applies the same rule-based
method for dealing with nested entities to the out-
put of a mutual information independence model
(MIIM) combined with a support vector machine
(SVM) plus sigmoid. His results are based on 5-fold
cross-validation on the GENIA corpus (Version 3.0).
In each of the studies, the rule-based approach to
nested entities results in an improvement of between
3.0 and 3.5 points inF1 over the baseline model.
However, as explicitly stated by Shen et al. (2003)
and Zhang et al. (2004), this evaluation is limited to
non-embedded (i.e. top-level and non-nested) enti-
ties. The highest overallF1-score reported for all
entities in the GENIA corpus is 71.2 (Zhou, 2006),
which again only appears to reflect the performance
on non-embedded entities.

Zhang et al. (2004) also compare the rule-based
method with HMM-based cascaded recognition that
extends iteratively from the shortest to the longest
entities. Their basic HMM model is combined with
HMM models trained on transformed cascaded an-
notations. During training, embedded entity terms
are replaced by their entity type as a way of unnest-
ing the data. During testing, subsequent iterations
rely on the tagging of the first recognition pass and
are repeated until no more entities are recognised.
However, this method only results in an improve-
ment of 1.2 points inF1 over their basic classifier.

Gu (2006) reports results on recognising nested
entities in the GENIA corpus (Version 3.02) when
training an SVM-light binary classifier to recognise
either proteins or DNA. Training with the outermost
labelling yields better performance on recognising

outermost entities and, conversely, using the inner
labelling results in highest scores for recognising in-
ner entities. The best exact matchF1-scores of 73.0
and 47.5 for proteins and DNA, respectively, are ob-
tained when training on data with inner labelling and
evaluating on the inner entities.

McDonald et al. (2005) propose structured multil-
abel classification as opposed to sequential labelling
for dealing with nested, discontinuous, and overlap-
ping NEs. This approach uses a novel text segment
representation in preference to theBIO-encoding.
Their corpus contains MEDLINE abstracts on the
inhibition of the enzyme CYP450 (Kulick et al.,
2004), specifically those abstracts that contain at
least one overlapping and one discontinuous anno-
tation. While this data does not contain nestedNEs,
discontinuous and overlappingNEs make up 6% of
all NEs. The classifier performs competitively with
sequential tagging models on continuous and non-
overlapping entities forNER and noun phrase chunk-
ing. On discontinuous and overlappingNEs in the
biomedical data alone, its best performance is 56.25
F1. As the corpus does not contain nestedNEs, it
would be of interest to investigate the algorithm’s
performance on the GENIA corpus.

4 Modelling Techniques

As large amounts of time and effort have been de-
voted to work on non-nestedNER using theBIO-
encoding approach, it would be useful if this work
could be easily applied to nestedNER. In this paper,
three different ways of addressing nestedNER will
be compared:layering, cascading, and joined la-
bel tagging. All techniques aim to reduce the nested
NER problem to one or moreBIO problems, so that
existingNER tools can be used. Table 2 shows an ex-
ample representation for each modelling technique
of the following two non-nested and nested entity
annotations found in a GENIA abstract:

<multi cell>mice</multi cell> . . .
<other name><RNA><protein>tumor
necrosis factor-alpha</protein>
(<protein>TNF- alpha</protein>)
messenger RNA</RNA> levels</other name>

In layering, each level of nesting is modelled as a
separateBIO problem. The output of models trained
on individual layers is combined subsequent to tag-
ging by taking the union. Layers can be created67



Token Inside-out layering Outside-in layering
Model Layer 1 Layer 2 Layer 3 Layer 3 Layer 2 Layer 1
mice B-multi cell O O B-multi cell O O
. . . . . . . . . . . . . . . . . . . . .
tumor B-protein B-RNA B-othername B-othername B-RNA B-protein
necrosis I-protein I-RNA I-other name I-other name I-RNA I-protein
factor-alpha I-protein I-RNA I-other name I-other name I-RNA I-protein
( O I-RNA I-other name I-other name I-RNA O
TNF-alpha B-protein I-RNA I-other name I-other name I-RNA B-protein
) O I-RNA I-other name I-other name I-RNA O
messenger O I-RNA I-other name I-other name I-RNA O
RNA O I-RNA I-other name I-other name I-RNA O
levels O O I-other name I-other name O O

Cascading Joined label tagging
Model All entity types other RNA Joined labels
mice B-multi cell O O B-multi cell+O+O
. . . . . . . . . . . . . . .
tumor B-protein B-othername B-RNA B-protein+B-RNA+B-othername
necrosis I-protein I-other name I-RNA I-protein+I-RNA+I-othername
factor-alpha I-protein I-other name I-RNA I-protein+I-RNA+I-othername
( O I-other name I-RNA O+I-RNA+I-other name
TNF-alpha B-protein I-other name I-RNA B-protein+I-RNA+I-othername
) O I-other name I-RNA O+I-RNA+I-other name
messenger O I-other name I-RNA O+I-RNA+I-other name
RNA O I-other name I-RNA O+I-RNA+I-other name
levels O I-other name O O+O+I-othername

Table 2: Example representation of nested entities for various modelling techniques.

inside-outor outside-in. For inside-out layering, the
first layer is made up of all non-containing entities,
the second layer is composed of all those entities
which only contain one layer of nesting, etc. Con-
versely, outside-in layering means that the first layer
contains all non-embedded entities, the second layer
contains all entities which are only contained within
one outer entity, etc. Both directions of layering can
be modelled using a conventionalNE tagger.

Cascading reduces the nestedNER task to sev-
eral BIO problems by grouping one or more entity
types and training a separate model for each group.
Again, the output from individual models is com-
bined during tagging. Subsequent models in the cas-
cade may have access to the guesses of previous
ones by means of aGUESS feature. The cascaded
method is unable to recognise entities containing en-
tities of the same type, which may be a drawback for
some data sets. Cascading also raises the issue of
how to group entity types. This is dependent on the
types of entities that nest within a given data set and
would potentially require large amounts of experi-
mentation to determine the best combination. More-
over, training a model for each entity type lengthens
training time considerably, and may degrade perfor-
mance due to the dominance of theO tags for infre-

quent categories. It is possible, however, to create a
cascaded tagger combining one model trained on all
entity types with models trained on entity types that
frequently contain other entities.

Finally, joined label tagging entails creating one
tagging problem for all entities by concatenating the
BIO tags of all levels of nesting. A conventional
named entity recogniser is then trained on the data
containing the joined labels. Once the classifier has
assigned the joined labels during tagging, they are
decoded into their originalBIO format for each in-
dividual entity type. Compared to the other tech-
niques, joined label tagging involves a much larger
tag set, which can increase dramatically with the
number of entity types occurring in a data set. This
can result in data sparsity which may have a detri-
mental effect on performance.

5 Experimental Setup

5.1 Corpora

GENIA (V3.02), a large publicly available biomedi-
cal corpus annotated with biomedicalNEs, is widely
used in the text mining community (Cohen et al.,
2005). This data set consists of 2,000 MEDLINE ab-
stracts in the domain of molecular biology (⋍0.5m
tokens). The annotations used for the experiments68



reported here are based on the GENIA ontology,
published in Ohta et al. (2002). It contains the fol-
lowing classes: amino acid monomer, atom, body
part, carbohydrate, cell component, cell line, cell
type, DNA, inorganic, lipid, mono-cell, multi-cell,
nucleotide, other name, other artificial source, other
organic compound, peptide, polynucleotide, protein,
RNA, tissue, and virus. In this work, protein, DNA
and RNA sub-types are collapsed to their super-type,
as done in previous studies (e.g. Zhou 2006). To the
best of our knowledge, no inter-annotator agreement
(IAA ) figures on theNE-annotation in the GENIA
corpus are reported in the literature.

The EPPI corpus consists of 217 full-text papers
selected from PubMed and PubMedCentral as con-
taining protein-protein interactions (PPIs). The pa-
pers were either retrieved inXML or HTML , depend-
ing on availability, and converted to an internalXML

format. Domain experts annotated all documents
for NEs and PPIs, as well as extra (enriched) in-
formation associated with PPIs and normalisations
of entities to publicly available ontologies. The en-
tity annotations are the focus of the current work.
The types of entities annotated in this data set are:
complex, cell line, drug/compound, experimental
method, fusion, fragment, modification, mutant, and
protein. Out of the 217 papers, 125 were singly
annotated, 65 were doubly annotated, and 27 were
triply annotated. TheIAA , measured by taking the
F1 score of one annotator with respect to another
when the same paper is annotated by two different
annotators, ranges from 60.40 for the entity type
mutant to 91.59 for protein, with an overall micro-
averagedF1-score of 84.87. TheEPPIcorpus (⋍2m
tokens) is divided into three sections,TRAIN (66%),
DEVTEST (17%), andTEST (17%), withTEST only
to be used for final evaluation, and not to be con-
sulted by the researchers in the development and fea-
ture optimisation phrase. The experiments described
here involve theEPPI TRAIN andDEVTEST sets.

5.2 Pre-processing

All documents are passed through a sequence of pre-
processing steps implemented using theLT-XML 2

andLT-TTT2 tools (Grover et al., 2006) with the out-
put of each step encoded inXML mark-up. Tokeni-
sation and sentence splitting is followed by part-of-
speech tagging with the Maximum Entropy Markov
Model (MEMM) tagger developed by Curran and

Clark (2003) (hereafter referred to as C&C ) for
the CoNLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003), trained on the MedPost data
(Smith et al., 2004). Information on lemmatisa-
tion, as well as abbreviations and their long forms, is
added using themorphalemmatiser (Minnen et al.,
2000) and theExtractAbbrevscript of Schwartz and
Hearst (2003), respectively. A lookup step uses on-
tological information to identify scientific and com-
mon English names of species. Finally, a rule-based
chunker marks up noun and verb groups and their
heads (Grover and Tobin, 2006).

5.3 Named Entity Tagging

The C&C tagger, referred to earlier, forms the basis
of the NER component of theTXM natural language
processing (NLP) pipeline designed to detect entity
relations and normalisations (Grover et al., 2007).
The tagger, in common with manyML approaches
to NER, reduces the entity recognition problem to
a sequence tagging problem by using theBIO en-
coding of entities. As well as performing well on
the CoNLL-2003 task, Maximum Entropy Markov
Models have also been successful on biomedical
NER tasks (Finkel et al., 2005). As the vanilla C&C
tagger (Curran and Clark, 2003) is optimised for
performance on newswire text, various modifica-
tions were applied to improve its performance for
biomedical NER. Table 3 lists the extra features
specifically designed for biomedical text. The C&C
tagger was also extended using several gazetteers,
including a protein, complex, experimental method
and modification gazetteer, targeted at recognising
entities occurring in theEPPI data. Further post-
processing specific to theEPPIdata involves correct-
ing boundaries of some hyphenated proteins and fil-
tering out entities ending in punctuation.

All experiments with the C&C tagger involve 5-
fold cross-validation on all 2,000 GENIA abstracts
and the combinedEPPI TRAIN andDEVTEST sets.
Cross-validation is carried out at the document level.
For simple tagging, the C&C tagger is trained on
the non-containing entities (innermost) or on the
non-embedded entities (outermost). For inside-out
and outside-in layering, a separate C&C model is
trained for each layer of entities in the data, i.e. four
models for the GENIA data and three models for
theEPPIdata. Cascading is performed on individual
entities with different orderings, either ordering en-69



Feature Description
CHARACTER Regular expressions match-

ing typical protein names
WORDSHAPE Extended version of the C&C

WORDTYPE feature
HEADWORD Head word of the current

noun phrase
ABBREVIATION Term identified as an abbre-

viation of a gazetteer term
within a document

TITLE Term seen in a noun phrase in
the document title

WORDCOUNTER Non-stop word that is among
the 10 most frequent ones in
a document

VERB Verb lemma information
added to each noun phrase
token in the sentence

FONT Text in italic and subscript
contained in the original doc-
ument format

Table 3: Extra features added to C&C .

tity models according to performance or entity fre-
quency in the training data, ranging from highest to
lowest. Cascading is also carried out on groups of
entities (e.g. one model for all entities, one for a
specific entity type, and combinations). Subsequent
models in the cascade have access to the guesses of
previous ones via aGUESS feature. Finally, joined
label tagging is done by concatenating individual
BIO tags from the innermost to the outermost layer.

As in the GENIA corpus, the most frequently an-
notated entity type in theEPPIdata is protein with al-
most 55% of all annotations in the combinedTRAIN

and DEVTEST data (see Table 5). Given that the
scores reported in this paper are calculated asF1

micro-averages over all categories, they are strongly
influenced by the classifier’s performance on pro-
teins. However, scoring is not limited to a particular
layer of entities (e.g. only outermost layer), but in-
cludes all levels of nesting. During scoring, a correct
match is achieved when exactly the same sequence
of text (encoded in start/end offsets) is marked with
the same entity type in the gold standard and the sys-
tem output. Precision, recall andF1 are calculated
in standard fashion from the number of true positive,
false positive and false negativeNEs recognised.

6 Results
Table 4 lists overall cross-validationF1-scores cal-
culated for allNEs at all levels of nesting when ap-
plying the various modelling techniques. For GE-
NIA, cascading on individual entities when order-
ing entity models by performance yields the high-
est F1-score of 67.88. Using this method yields
an increase of 3.26F1 over the best simple tag-
ging method, which scores 64.62F1. Joined label
tagging results in the second best overallF1-score
of 67.82. Both layering (inside-out) and cascading
(combining a model trained on allNEs with 4 mod-
els trained on other name, DNA, protein, or RNA)
also perform competitively, reachingF1-scores of
67.62 and 67.56, respectively. In the experiments
with the EPPI corpus, cascading is also the winner
with anF1-score of 70.50 when combining a model
trained on allNEswith one trained on fusions. This
method only results in a small, yet statistically sig-
nificant (χ2, p ≤ 0.05), increase inF1 of 0.43 over
the best simple tagging algorithm. This could be due
to the smaller number of nestedNEs in theEPPIdata
and the fact that this data contains manyNEs with
more than one category. Layering (inside-out) per-
forms almost as well as cascading (F1=70.44).

The difference in the overall performance be-
tween the GENIA and theEPPI corpus is partially
due to the difference in the number ofNEs which
C&C is required to recognise, but also due to the
fact that all features used are optimised for theEPPI

data and simply applied to the GENIA corpus. The
only feature not used for the experiments with the
GENIA corpus isFONT, as this information is not
preserved in the originalXML of that corpus.

7 Discussion and Conclusion
According to the results for the modelling tech-
niques, each proposed method outperforms simple
tagging. Cascading yields the best result on the GE-
NIA (F1=67.88) andEPPIdata (F1=70.50), see Ta-
ble 5 for individual entity scores. However, it in-
volves extensive amounts of experimentation to de-
termine the best model combination. The best setup
for cascading is clearly data set dependent. With
larger numbers of entity types annotated in a given
corpus, it becomes increasingly impractical to ex-
haustively test all possible orders and combinations.
Moreover, training and tagging times are lengthened
as more models are combined in the cascade.70



GENIA V3.02 EPPI

Technique F1 Technique F1

Simple Tagging
Training on innermost entities 64.62 Training on innermost entities 70.07
Training on outermost entities 62.72 Training on outermost entities 69.18

Layering
Inside-out 67.62 Inside-out 70.44
Outside-in 67.02 Outside-in 70.21

Cascading
Individual NE models (by performance) 67.88 Individual NE models (by performance) 70.42
Individual NE models (by frequency) 67.72 Individual NE models (by frequency) 70.43
All-cell type 64.55 All-complex 70.03
All-DNA 65.02 All-drug/compound 70.08
All-other name 66.99 All-fusion 70.50
All-protein 64.77 All-protein 70.02
All-RNA 64.80 All-complex-fusion 70.46
All-other name-DNA-protein-RNA 67.56 All-drug/compound-fusion 70.50

Joined label tagging
Inside-out 67.82 Inside-out 70.37

Table 4: Cross-validationF1-scores for different modelling techniques on the GENIA andEPPIdata. Scores
in italics mark statistically significant improvements (χ2, p ≤ 0.05) over the best simple tagging score.

Despite the large number of tags involved in us-
ing joined label tagging, this method outperforms
simple tagging for both data sets and even results in
the second-best overallF1-score of 67.72 obtained
for the GENIA corpus. The fact that joined label
tagging only requires training and tagging with one
model makes this approach a viable alternative to
cascading which is far more time-consuming to run.

Inside-out layering performs competitively both
for the GENIA corpus (F1=67.62) and theEPPIcor-
pus (F1=70.37), considering how little time is in-
volved in setting up such experiments. As with
joined label tagging, minimal optimisation is re-
quired when using this method. One disadvantage
(as compared to simple, and to some extent joined
label tagging) is that training and tagging times in-
crease with the number of layers that are modelled.

In conclusion, this paper introduced and tested
three different modelling techniques for recognising
nestedNEs, namely layering, cascading, and joined
label tagging. As each of them reduces nestedNER

to one or moreBIO-encoding problems, a conven-
tional sequence tagger can be used. It was shown
that each modelling technique outperfoms the sim-

ple tagging method for both biomedical data sets.
Future work will involve testing the proposed

techniques on other data sets containing entity nest-
ing, including the ACE data. We will also determine
their merit when applying a different learning algo-
rithm. Furthermore, possible solutions for recognis-
ing discontinuous entities will be investigated.
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Abstract

This paper presents the results of a pilot us-
ability study of a novel approach to search
user interfaces for bioscience journal arti-
cles. The main idea is to support search over
figure captions explicitly, and show the cor-
responding figures directly within the search
results. Participants in a pilot study ex-
pressed surprise at the idea, noting that they
had never thought of search in this way.
They also reported strong positive reactions
to the idea: 7 out of 8 said they would use a
search system with this kind of feature, sug-
gesting that this is a promising idea for jour-
nal article search.

1 Introduction

For at least two decades, the standard way to search
for bioscience journal articles has been to use the
National Library of Medicine’s PubMed system to
search the MEDLINE collection of journal articles.
PubMed has innovated search in many ways, but to
date search in PubMed is restricted to the title, ab-
stract, and several kinds of metadata about the doc-
ument, including authors, Medical Subject Heading
(MeSH) labels, publication year, and so on.

On the Web, searching within the full text of doc-
uments has been standard for more than a decade,
and much progress has been made on how to do
this well. However, until recently, full text search
of bioscience journal articles was not possible due
to two major constraints: (1) the full text was not
widely available online, and (2) publishers restrict
researchers from downloading these articles in bulk.

Recently, online full text of bioscience journal ar-
ticles has become ubiquitous, eliminating one bar-
rier. The intellectual property restriction is under
attack, and we are optimistic that it will be nearly
entirely diffused in a few years. In the meantime,
the PubMedCentral Open Access collection of jour-
nals provides an unrestricted resource for scientists
to experiment with for providing full text search.1

Full text availability requires a re-thinking of how
search should be done on bioscience journal arti-
cles. One opportunity is to do information extrac-
tion (text mining) to extract facts and relations from
the body of the text, as well as from the title and
abstract as done by much of the early text mining
work. (The Biocreative competition includes tasks
that allow for extraction within full text (Yeh et al.,
2003; Hirschman et al., 2005).) The results of text
extraction can then be exposed in search interfaces,
as done in systems like iHOP (Hoffmann and Va-
lencia, 2004) and ChiliBot (Chen and Sharp, 2004)
(although both of these search only over abstracts).

Another issue is how to adjust search ranking al-
gorithms when using full text journal articles. For
example, there is evidence that ranking algorithms
should consider which section of an article the query
terms are found in, and assign different weights to
different sections for different query types (Shah et
al., 2003), as seen in the TREC 2006 Genomics
Track (Hersh et al., 2006).

Recently Google Scholar has provided search

1The license terms for use for BioMed Central can be
found at: http://www.biomedcentral.com/info/authors/license
and the license for PubMedCentral can be found at:
http://www.pubmedcentral.gov/about/openftlist.html

73



over the full text of journal articles from a wide
range of fields, but with no special consideration
for the needs of bioscience researchers2. Google
Scholar’s distinguishing characteristic is its ability
to show the number of papers that cite a given arti-
cle, and rank papers by this citation count. We be-
lieve this is an excellent starting point for full text
search, and any future journal article search system
should use citation count as a metric. Unfortunately,
citation count requires access to the entire collection
of articles; something that is currently only avail-
able to a search system that has entered into con-
tracts with all of the journal publishers.

In this article, we focus on another new opportu-
nity: the ability to search over figure captions and
display the associated figures. This idea is based
on the observation, noted by our own group as well
as many others, that when reading bioscience arti-
cles, researchers tend to start by looking at the title,
abstract, figures, and captions. Figure captions can
be especially useful for locating information about
experimental results. A prominent example of this
was seen in the 2002 KDD competition, the goal
of which was to find articles that contained exper-
imental evidence for gene products, where the top-
performing team focused its analysis on the figure
captions (Yeh et al., 2003).

In the Biotext project, we are exploring how to
incorporate figures and captions into journal article
search explicitly, as part of a larger effort to provide
high-quality article search interfaces. This paper re-
ports on the results of a pilot study of the caption
search idea. Participants found the idea novel, stim-
ulating, and most expressed a desire to use a search
interface that supports caption search and figure dis-
play.3

2 Related Work

2.1 Automated Caption Analysis

Several research projects have examined the auto-
mated analysis of text from captions. Srihari (1991;
1995) did early work on linking information be-
tween photographs and their captions, to determine,
for example, which person’s face in a newspaper

2http://scholar.google.com
3The current version of the interface can be seen at

http://biosearch.berkeley.edu

photograph corresponded to which name in the cap-
tion. Shatkay et al. (2006) combined information
from images as well as captions to enhance a text
categorization algorithm.

Cohen, Murphy, et al. have explored several dif-
ferent aspects of biological text caption analysis. In
one piece of work (Cohen et al., 2003) they devised
and tested algorithms for parsing the structure of im-
age captions, which are often quite complex, espe-
cially when referring to a figure that has multiple
images within it. In another effort, they developed
tools to extract information relating to subcellular
localization by automatically analyzing fluorescence
microscope images of cells (Murphy et al., 2003).
They later developed methods to extract facts from
the captions referring to these images (Cohen et al.,
2003).

Liu et al. (2004) collected a set of figures and
classified them according to whether or not they de-
picted schematic representations of protein interac-
tions. They then allowed users to search for a gene
name within the figure caption, returning only those
figures that fit within the one class (protein interac-
tion schematics) and contained the gene name.

Yu et al. (2006) created a bioscience image tax-
onomy (consisting ofGel-Image, Graph, Image-of-
Thing, Mix, Model, and Table) and used Support
Vector Machines to classify the figures, using prop-
erties of both the textual captions and the images.

2.2 Figures in Bioscience Article Search

Some bioscience journal publishers provide a ser-
vice called “SummaryPlus” that allows for display
of figures and captions in the description of a partic-
ular article, but the interface does not apply to search
results listings.4

A medical image retrieval and image annotation
task have been part of the ImageCLEF competition
since 2005 (Muller et al., 2006).5 The datasets for
this competition are clinical images, and the task is
to retrieve images relevant to a query such as “Show
blood smears that include polymorphonuclear neu-

4Recently a commercial offering by a company called CSA
Illustrata was brought to our attention; it claims to use figures
and tables in search in some manner, but detailed information is
not freely available.

5CLEF stands for Cross-language Evaluation Forum; it orig-
inally evaluated multi-lingual information retrieval, but has
since broadened its mission.
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trophils.” Thus, the emphasis is on identifying the
content of the images themselves.

Yu and Lee (2006) hypothesized that the infor-
mation found in the figures of a bioscience article
are summarized by sentences from that article’s ab-
stract. They succeeded in having 119 scientists mark
up the abstract of one of their own articles, indicat-
ing which sentence corresponded to each figure in
the article. They then developed algorithms to link
sentences from the abstract to the figure caption con-
tent. They also developed and assessed a user inter-
face called BioEx that makes use of this linking in-
formation. The interface shows a set of very small
image thumbnails beneath each abstract. When the
searcher’s mouse hovers over the thumbnail, the cor-
responding sentence from the abstract is highlighted
dynamically.

To evaluate BioEx, Yu and Lee (2006) sent a ques-
tionnaire to the 119 biologists who had done the
hand-labeling linking abstract sentences to images,
asking them to assess three different article display
designs. The first design looked like the PubMed
abstract view. The second augmented the first view
with very small thumbnails of figures extracted from
the article. The third was the second view aug-
mented with color highlighting of the abstract’s sen-
tences. It is unclear if the biologists were asked to
do searches over a collection or were just shown a
sample of each view and asked to rate it. 35% of the
biologists responded to the survey, and of these, 36
out of 41 (88%) preferred the linked abstract view
over the other views. (It should be noted that the
effort invested in annotating the abstracts may have
affected the scientists’ view of the design.)

It is not clear, however, whether biologists would
prefer to see the caption text itself rather than the
associated information from the abstract. The sys-
tem described did not allow for searching over text
corresponding to the figure caption. The system also
did not focus on how to design a full text and caption
search system in general.

3 Interface Design and Implementation

The Biotext search engine indexes all Open Access
articles available at PubMedCentral. This collection
consists of more than 150 journals, 20,000 articles
and 80,000 figures. The figures are stored locally,

and at different scales, in order to be able to present
thumbnails quickly. The Lucene search engine6 is
used to index, retrieve, and rank the text (default sta-
tistical ranking). The interface is web-based and is
implemented in Python and PHP. Logs and other in-
formation are stored and queried using MySQL.

Figure 1a shows the results of searching over the
caption text in the Caption Figure view. Figure
1b shows the same search in the Caption Figure
with additional Thumbnails (CFT) view. Figure 2a-
b shows two examples of the Grid view, in which
the query terms are searched for in the captions, and
the resulting figures are shown in a grid, along with
metadata information.7 The Grid view may be espe-
cially useful for seeing commonalities among topics,
such as all the phylogenetic trees that include a given
gene, or seeing all images of embryo development of
some species.

The next section describes the study participants’
reaction to these designs.

4 Pilot Usability Study

The design of search user interfaces is difficult; the
evidence suggests that most searchers are reluctant
to switch away from something that is familiar. A
search interface needs to offer something qualita-
tively better than what is currently available in order
to be acceptable to a large user base (Hearst, 2006).

Because text search requires the display of text,
results listings can quickly obtain an undesirably
cluttered look, and so careful attention to detail is
required in the elements of layout and graphic de-
sign. Small details that users find objectionable can
render an interface objectionable, or too difficult to
use. Thus, when introducing a new search interface
idea, great care must be taken to get the details right.
The practice of user-centered design teaches how to
achieve this goal: first prototype, then test the results
with potential users, then refine the design based on
their responses, and repeat (Hix and Hartson, 1993;
Shneiderman and Plaisant, 2004).

Before embarking on a major usability study to
determine if a new search interface idea is a good
one, it is advantageous to run a series of pilot stud-
ies to determine which aspects of the design work,

6http://lucene.apache.org
7These screenshots represent the system as it was evaluated.

The design has subsequently evolved and changed.
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(a)

(b)

Figure 1: Search results on a query ofzebrafishover the captions within the articles with (a) CF view, and
(b) CFT view. The thumbnail is shown to the left of a blue box containing the bibliographic information
above a yellow box containing the caption text. The full-size view of the figure can be overlaid over the
current page or in a new browser window. In (b) the first few figures are shown as mini-thumbnails in a row
below the caption text with a link to view all the figures and captions.
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(a)

(b)

Figure 2: Grid views of the first sets of figures returned as the result of queries for (a)mutagenesisand for
(b) pathwaysover captions in the Open Access collection.
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ID status sex lit search area(s) of specialization
1 undergrad F monthly organic chemistry
2 graduate F weekly genetics / molecular bio.
3 other F rarely medical diagnostics
4 postdoc M weekly neurobiology, evolution
5 graduate F daily evolutionary bio., entomology
6 undergrad F weekly molecular bio., biochemistry
7 undergrad F monthly cell developmental bio.
8 postdoc M daily molecular / developmental bio.

Table 1: Participant Demographics. Participant 3 is
an unemployed former lab worker.

which do not, make adjustments, and test some
more. Once the design has stabilized and is re-
ceiving nearly uniform positive feedback from pilot
study participants, then a formal study can be run
that compares the novel idea to the state-of-the-art,
and evaluates hypotheses about which features work
well for which kinds of tasks.

The primary goal of this pilot study was to deter-
mine if biological researchers would find the idea of
caption search and figure display to be useful or not.
The secondary goal was to determine, should cap-
tion search and figure display be useful, how best
to support these features in the interface. We want
to retain those aspects of search interfaces that are
both familiar and useful, and to introduce new ele-
ments in such a way as to further enhance the search
experience without degrading it.

4.1 Method

We recruited participants who work in our campus’
main biology buildings to participate in the study.
None of the participants were known to us in ad-
vance. To help avoid positive bias, we told partici-
pants that we were evaluating a search system, but
did not mention that our group was the one who
was designing the system. The participants all had
strong interests in biosciences; their demographics
are shown in Table 1.

Each participant’s session lasted approximately
one hour. First, they were told the purpose of the
study, and then filled out an informed consent form
and a background questionnaire. Next, they used the
search interfaces (the order of presentation was var-
ied). Before the use of each search interface, we
explained the idea behind the design. The partici-
pant then used the interface to search on their own

Figure 3: Likert scores on the CF view. X-axis:
participant ID, y-axis: Likert scores: 1 = strongly
disagree, 7 = strongly agree. (Scale reversed for
questionnaire-posedclutteredandoverwhelming.)

queries for about 10 minutes, and then filled out a
questionnaire describing their reaction to that de-
sign. After viewing all of the designs, they filled
out a post-study questionnaire where they indicated
whether or not they would like to use any of the
designs in their work, and compared the design to
PubMed-type search.

Along with these standardized questions, we had
open discussions with participants about their reac-
tions to each view in terms of design and content.
Throughout the study, we asked participants to as-
sume that the new designs would eventually search
over the entire contents of PubMed and not just the
Open Access collection.

We showed all 8 participants the Caption with
Figure (CF) view (see Figure 1a), and Caption with
Figure and additional Thumbnails (CFT) (see Figure
1b), as we didn’t know if participants would want to
see additional figures from the caption’s paper.8 We
did not show the first few participants the Grid view,
as we did not know how the figure/caption search
would be received, and were worried about over-
whelming participants with new ideas. (Usability
study participants can become frustrated if exposed
to too many options that they find distasteful or con-
fusing.) Because the figure search did receive pos-

8We also experimented with showing full text search to the
first five participants, but as that view was problematic, we dis-
continued it and substituted a title/abstract search for the re-
maining three participants. These are not the focus of this study
and are not discussed further here.
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itive reactions from 3 of the first 4 participants, we
decided to show the Grid view to the next 4.

4.2 Results

The idea of caption search and figure display was
very positively perceived by all but one participant.
7 out of 8 said they would want to use either CF
or CFT in their bioscience journal article searches.
Figure 3 shows Likert scores for CF view.

The one participant (number 2) who did not like
CF nor CFT thought that the captions/figures would
not be useful for their tasks, and preferred seeing
the articles’ abstracts. Many participants noted that
caption search would be better for some tasks than
others, where a more standard title & abstract or full-
text search would be preferable. Some participants
said that different views serve different roles, and
they would use more than one view depending on
the goal of their search. Several suggested combin-
ing abstract and figure captions in the search and/or
the display. (Because this could lead to search re-
sults that require a lot of scrolling, it would probably
be best to use modern Web interface technologies
to dynamically expand long abstracts and captions.)
When asked for their preference versus PubMed, 5
out of 8 rated at least one of the figure searches
above PubMed’s interface. (In some cases this may
be due to a preference for the layout in our design as
opposed to entirely a preference for caption search.)

Two of the participants preferred CFT to CF; the
rest thought CFT was too busy. It became clear
through the course of this study that it would be
best to show all the thumbnails that correspond to a
given article as the result of a full-text or abstract-
text search interface, and to show only the figure
that corresponds to the caption in the caption search
view, with a link to view all figures from this article
in a new page.

All four participants who saw the Grid view liked
it, but noted that the metadata shown was insuffi-
cient; if it were changed to include title and other
bibliographic data, 2 of the 4 who saw Grid said they
would prefer that view over the CF view. Several
participants commented that they have used Google
Images to search for images but they rarely find what
they are looking for. They reacted very positively
to the idea of a Google Image-type system special-
ized to biomedical images. One participant went so

far as to open up Google Image search and compare
the results directly, finding the caption search to be
preferable.

All participants favored the ability to browse all
figures from a paper once they find the abstract or
one of the figures relevant to their query. Two partic-
ipants commented that if they were looking for gen-
eral concepts, abstract search would be more suit-
able but for a specific method, caption view would
be better.

4.3 Suggestions for Redesign

All participants found the design of the new views
to be simple and clear. They told us that they gen-
erally want information displayed in a simple man-
ner, with as few clicks needed as possible, and with
as few distracting links as possible. Only a few ad-
ditional types of information were suggested from
some participants: display, or show links to, related
papers and provide a link to the full text PDF directly
in the search results, as opposed to having to access
the paper via PubMed.

Participants also made clear that they would of-
ten want to start from search results based on title
and abstract, and then move to figures and captions,
and from there to the full article, unless they are do-
ing figure search explicitly. In that case, they want
to start with CF or Grid view, depending on how
much information they want about the figure at first
glance.

They also wished to have the ability to sort the re-
sults along different criteria, including year of pub-
lication, alphabetically by either journal or author
name, and by relevance ranking. This result has
been seen in studies of other kinds of search inter-
faces as well (Reiterer et al., 2005; Dumais et al.,
2003). We have also received several requests for ta-
ble caption search along with figure caption search.

5 Conclusions and Future Work

The results of this pilot study suggest that caption
search and figure display is a very promising direc-
tion for bioscience journal article search, especially
paired with title/abstract search and potentially with
other forms of full-text search. A much larger-scale
study must be performed to firmly establish this re-
sult, but this pilot study provides insight about how
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to design a search interface that will be positively re-
ceived in such a study. Our results also suggest that
web search systems like Google Scholar and Google
Images could be improved by showing images from
the articles along lines of specialization.

The Grid view should be able to show images
grouped by category type that is of interest to biolo-
gists, such as heat maps and phylogenetic trees. One
participant searched onpancreasand was surprised
when the top-ranked figure was an image of a ma-
chine. This idea underscores the need for BioNLP
research in the study of automated caption classifi-
cation. NLP is needed both to classify images and
perhaps also to automatically determine which im-
ages are most “interesting” for a given article.

To this end, we are in the process of building a
classifier for the figure captions, in order to allow
for grouping by type. We have developed an im-
age annotation interface and are soliciting help with
hand-labeling from the research community, to build
a training set for an automated caption classifier.

In future, we plan to integrate table caption
search, to index the text that refers to the cap-
tion, along with the caption, and to provide inter-
face features that allow searchers to organize and
filter search results according to metadata such as
year published, and topical information such as
genes/proteins mentioned. We also plan to conduct
formal interface evaluation studies, including com-
paring to PubMed-style presentations.
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Abstract 

Applications using automatically indexed 
clinical conditions must account for con-
textual features such as whether a condition 
is negated, historical or hypothetical, or 
experienced by someone other than the pa-
tient. We developed and evaluated an algo-
rithm called ConText, an extension of the 
NegEx negation algorithm, which relies on 
trigger terms, pseudo-trigger terms, and 
termination terms for identifying the values 
of three contextual features. In spite of its 
simplicity, ConText performed well at 
identifying negation and hypothetical status. 
ConText performed moderately at identify-
ing whether a condition was experienced 
by someone other than the patient and 
whether the condition occurred historically.  

1 Introduction 

Natural language processing (NLP) techniques can 
extract variables from free-text clinical records 
important for medical informatics applications per-
forming decision support, quality assurance, and 
biosurveillance [1-6]. Many applications have fo-
cused on identifying individual clinical conditions 
in textual records, which is the first step in making 
the conditions available to computerized applica-
tions. However, identifying individual instances of 
clinical conditions is not sufficient for many medi-
cal informatics tasks—the context surrounding the 
condition is crucial for integrating the information 
within the text to determine the clinical state of a 
patient.  

For instance, it is important to understand 
whether a condition is affirmed or negated, acute 
or chronic, or mentioned hypothetically. We refer 

to these as contextual features, because the infor-
mation is not usually contained in the lexical repre-
sentation of the clinical condition itself but in the 
context surrounding the clinical condition. We de-
veloped an algorithm called ConText for identify-
ing three contextual features relevant for biosur-
veillance from emergency department (ED) reports 
and evaluated its performance compared to physi-
cian annotation of the features. 

2 Background 

2.1 Encoding Contextual Information from-
Clinical Texts 

NLP systems designed to encode detailed informa-
tion from clinical reports, such as MedLEE [1], 
MPLUS [7], and MedSyndikate [4], encode con-
textual features such as negation, uncertainty, 
change over time, and severity. Over the last ten 
years, several negation algorithms have been de-
scribed in the literature [8-12]. Recently, research-
ers at Columbia University have categorized tem-
poral expressions in clinical narrative text and 
evaluated a temporal constraint structure designed 
to model the temporal information for discharge 
summaries [13, 14]. 

ConText differs from most other work in this 
area by providing a stand-alone algorithm that can 
be integrated with any application that indexes 
clinical conditions from text.  

2.2 Biosurveillance from ED Data 

Biosurveillance and situational awareness are im-
perative research issues in today’s world. State-of-
the-art surveillance systems rely on chief com-
plaints and ICD-9 codes, which provide limited 
clinical information and have been shown to per-
form with only fair to moderate sensitivity [15-18]. 
ED reports are a timely source of clinical informa-
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tion that may be useful for syndromic surveillance. 
We are developing NLP-based methods for identi-
fying clinical conditions from ED reports. 

2.3 SySTR 

We are developing an NLP application called 
SySTR (Syndromic Surveillance from Textual Re-
cords). It currently uses free-text descriptions of 
clinical conditions in ED reports to determine 
whether the patient has an acute lower respiratory 
syndrome.  We previously identified 55 clinical 
conditions (e.g. cough, pneumonia, oxygen desatu-
ration, wheezing) relevant for determining whether 
a patient has an acute lower respiratory condition 
[19]. SySTR identifies instances of these 55 clini-
cal conditions in ED reports to determine if a pa-
tient has an acute lower respiratory syndrome. 
SySTR has four modules: 

(1) Index each instance of the 55 clinical condi-
tions in an ED report; 

(2) For each indexed instance of a clinical condi-
tion, assign values to three contextual features; 

(3) Integrate the information from indexed in-
stances to determine whether each of the 55 
conditions are acute, chronic, or absent; 

(4) Use the values of the 55 conditions to deter-
mine whether a patient has an acute lower res-
piratory syndrome. 

We built SySTR on top of an application 
called caTIES [20], which comprises a GATE 
pipeline of processing resources (http://gate.ac.uk/). 
Module 1 uses MetaMap [5] to index UMLS con-
cepts in the text and then maps the UMLS concepts 
to the 55 clinical conditions. For instance, Module 
1 would identify the clinical condition Dyspnea in 
the sentence “Patient presents with a 3 day history 
of shortness of breath.” For each instance of the 55 
conditions identified by Module 1, Module 2 as-
signs values to three contextual features: Negation 
(negated, affirmed); Temporality (historical, re-
cent, hypothetical); and Experiencer (patient, 
other). For the sentence above, Module 2 would 
assign Dyspnea the following contextual features 
and their values: Negation—affirmed; Temporal-
ity—recent; Experiencer—patient. Module 3, as 
described in Chu and colleagues [21], resolves 
contradictions among multiple instances of clinical 
conditions, removes conditions not experienced by 
the patient, and assigns a final value of acute, 
chronic, or absent to each of the 55 conditions. 

Module 4 uses machine learning models to deter-
mine whether a patient has acute lower respiratory 
syndrome based on values of the conditions.  

The objective of this study was to evaluate an 
algorithm for identifying the contextual informa-
tion generated by Module 2. 

3 Methods 

We developed an algorithm called ConText for 
determining the values for three contextual features 
of a clinical condition: Negation, Temporality, and 
Experiencer. The same algorithm is applied to all 
three contextual features and is largely based on a 
regular expression algorithm for determining 
whether a condition is negated or not (NegEx [9]). 
ConText relies on trigger terms, pseudo-trigger 
terms, and scope termination terms that are specific 
to the type of contextual feature being identified. 
Below we describe the three contextual features 
addressed by the algorithm, details of how Con-
Text works, and our evaluation of ConText. 

3.1 Three Contextual Features 

Determining whether a patient had an acute epi-
sode of a clinical condition, such as cough, poten-
tially involves information described in the context 
of the clinical condition in the text. We performed 
a pilot study to learn which contextual features af-
fected classification of 55 clinical conditions as 
acute, chronic, or absent [21]. The pilot study 
identified which contextual features were critical 
for our task and reduced the number of values we 
initially used.  

The contextual features for each indexed clinical 
condition are assigned default values. ConText 
changes the values if the condition falls within the 
scope of a relevant trigger term. Below, we de-
scribe the contextual features (default values are in 
parentheses). 

(1) Negation (affirmed): ConText determines 
whether a condition is negated, as in “No fe-
ver.” 

(2) Temporality (recent): ConText can change 
Temporality to historical or hypothetical. In its 
current implementation, historical is defined as 
beginning at least 14 days before the visit to 
the ED, but the algorithm can easily be modi-
fied to change the length of time. ConText 
would mark Fever in “Patient should return if 
she develops fever” as hypothetical.   
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(3) Experiencer (patient): ConText assigns condi-
tions ascribed to someone other than the pa-
tient an Experiencer of other, as in “The pa-
tient’s father has a history of CHF.”  

3.2 Contextual Feature Algorithm 

As we examined how the contextual features were 
manifested in ED reports, we discovered similar 
patterns for all features and hypothesized that an 
existing negation algorithm, NegEx [9], may be 
applicable for all three features.  

NegEx uses two regular expressions (RE) to de-
termine whether an indexed condition is negated: 

RE1: <trigger term> <5w> <indexed term> 
RE2: <indexed term> <5w> <trigger term> 

<5w> represents five words (a word can be a sin-
gle word or a UMLS concept), and the text 
matched by this pattern is called the scope. NegEx 
relies on three types of terms to determine whether 
a condition is negated: trigger terms, pseudo-
trigger terms, and termination terms. Trigger terms 
such as “no” and “denies” indicate that the clinical 
conditions that fall within the scope of the trigger 

term should be negated. Pseudo-trigger terms, such 
as “no increase,” contain a negation trigger term 
but do not indicate negation of a clinical concept.  
A termination term such as “but” can terminate the 
scope of the negation before the end of the win-
dow, as in “She denies headache but complains of 
dizziness.”  

ConText is an expansion of NegEx. It relies on 
the same basic algorithm but applies different term 
lists and different windows of scope depending on 
the contextual feature being annotated.  

3.3 ConText Term Lists  

Each contextual feature has a unique set of trigger 
terms and pseudo-trigger terms, as shown in Table 
1. The complete list of terms can be found at 
http://web.cbmi.pitt.edu/chapman/ConText.html. 
Most of the triggers apply to RE1, but a few 
(marked in table) apply to RE2. ConText assigns a 
default value to each feature, then changes that 
value if a clinical condition falls within the scope 
of a relevant trigger term.  

Although trigger terms are unique to the contex-
tual feature being identified, termination terms 

Table 1. Examples of trigger and pseudo-trigger terms for the three contextual features. If all terms are not 
represented in the table, we indicate the number of terms used by ConText in parentheses. 

Temporality (default = recent) 
Trigger terms for 
hypothetical 

Pseudo-trigger 
terms Trigger terms for historical Pseudo-trigger terms (10) 

if 
return 
should [he|she] 
should there 
should the patient 
as needed 
come back [for|to] 

if negative 
 

General triggers 
history 
previous^ 
History Section title^^ 
Temporal Measurement triggers^^^ 
  <time> of 
  [for|over] the [last|past] <time> 
  since (last) [day-of-week|week|month| 
    season|year] 

history, physical 
history taking 
poor history 
history and examination 
history of present illness 
social history 
family history 
sudden onset of 

Experiencer (default = patient)  Negation (default = affirmed) 
Trigger terms 
for other (12) 

Pseudo-trigger 
terms 

 Trigger terms for negated (125) Pseudo-trigger terms (16) 

father(’s) 
mother(’s) 
aunt(’s) 

  no 
not 
denies 
without 

no increase 
not extend 
gram negative 

^  the scope for “previous” only extends one term forward (e.g., “for previous headache”) 
^^Currently the only history section title we use is PAST MEDICAL HISTORY. 
^^^ <time> includes the following regular expression indicating a temporal quantification: x[-|space]   
[day(s)|hour(s)|week(s)|month(s)|year(s)]. x = any digit; words in brackets are disjunctions; items in parentheses are 
optional. The first two temporal measurement triggers are used with RE1; the third is used with RE2. For our 
current application, a condition lasting 14 days or more is considered historical.  
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may be common to multiple contextual features. 
For instance, a termination term indicating that the 
physician is speaking about the patient can indicate 
termination of scope for the features Temporality 
and Experiencer. In the sentence “History of 
COPD, presenting with shortness of breath,” the 
trigger term “history” indicates that COPD is his-
torical, but the term “presenting” terminates the 
scope of the temporality trigger term, because the 
physician is now describing the current patient 
visit. Therefore, the condition Dyspnea (“shortness 
of breath”) should be classified as recent. Simi-
larly, in the sentence “Mother has CHF and patient 
presents with chest pain,” Experiencer for CHF 
should be other, but Experiencer for Chest Pain 
should be patient.  

We compiled termination terms into conceptual 
groups, as shown in Table 2.  
Table 2. ConText’s termination terms. Column 1 lists 
the type of termination term, the number of terms used 
by Context, and the contextual feature values using that 
type of termination term. Column 2 gives examples of 
the terms. 
Type of Term Examples 

Patient (5) 
Temporal (hypothetical) 
Experiencer (other) 

Patient, who, his, her, pa-
tient’s 

Presentation (12) 
Temporal (historical) 
Experiencer (other) 

Presents, presenting, com-
plains, was found, states, 
reports, currently, today 

Because (2) 
Temporal (hypothetical) Since, because 

Which (1) 
Experiencer (other) Which 

ED (2) 
Temporal (historical) Emergency department, ED 

But (8) 
Negation (negated) 

But, however, yet, though, 
although, aside from 

3.4 ConText Algorithm 

The input to ConText is an ED report with in-
stances of the 55 clinical concepts already indexed. 
For each clinical condition, ConText assigns val-
ues to the three contextual features. ConText’s al-
gorithm is as follows1: 

                                                 
1 This algorithm applies to RE1. The algorithm for RE2 
is the same, except that it works backwards from the 
trigger term and does not look for pseudo-trigger terms. 

Go to first trigger term in sentence 
If term is a pseudo-trigger term, 
   Skip to next trigger term  

Determine scope of trigger term 
If termination term within scope, 
   Terminate scope before termination term 

Assign appropriate contextual feature value to 
all indexed clinical concepts within scope.  

The scope of a trigger term depends on the con-
textual feature being classified. The default scope 
includes all text following the indexed condition 
until the end of the sentence. Thus, in the sentence 
“He should return for fever” the scope of the Tem-
porality (hypothetical) trigger term “return” in-
cludes the segment “for fever,” which includes an 
indexed condition Fever. The default scope is over-
ridden in a few circumstances. First, as described 
above, the scope can be terminated by a relevant 
termination term. Second, if the trigger term is a 
<section title>, the scope extends throughout the 
entire section, which is defined previous to Con-
Text’s processing. Third, a trigger term itself can 
require a different scope. The Temporality (histori-
cal) term “previous” only extends one term for-
ward in the sentence. 

3.5 Evaluation 

We evaluated ConText’s ability to assign correct 
values to the three contextual features by compar-
ing ConText’s annotations with annotations made 
by a physician. 

Setting and Subjects. The study was conducted on 
reports for patients presenting to the University of 
Pittsburgh Medical Center Presbyterian Hospital 
ED during 2002. The study was approved by the 
University of Pittsburgh’s Institutional Review 
Board. We randomly selected 120 reports for pa-
tients with respiratory-related ICD-9 discharge di-
agnoses for manual annotation. For this study, we 
used 30 reports as a development set and 90 re-
ports as a test set. In addition to the annotated de-
velopment set, we used a separate set of 100 unan-
notated ED reports to informally validate our term 
lists. 

Reference Standard. A physician board-certified 
in internal medicine and infectious diseases with 
30 years of experience generated manual annota-
tions for the development and test reports. He used 
GATE (http://gate.ac.uk/) to highlight every indi-
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vidual annotation in the text referring to any of the 
55 clinical conditions. For every annotation, he 
assigned values to the three contextual features, as 
shown in Figure 1.  

Previous experience in annotating the 55 condi-
tions showed that a single physician was inade-
quate for generating a reliable reference standard 
[19]. The main mistake made by a single physician 
was not marking a concept that existed in the text. 
We used NLP-assisted review to improve physi-
cian annotations by comparing the single physi-
cian’s annotations to those made by SySTR. The 
physician reviewed disagreements and made 
changes to his original annotations if he felt his 
original annotation was incorrect. A study by Mey-
stre and Haug [22] used a similar NLP-assisted 
review methodology and showed that compared to 
a reference standard not using NLP-assisted re-
view, their system had higher  recall and the same 
precision. 

Outcome Measures. For each contextual feature 
assigned to an annotation, we compared ConText’s 
value to the value assigned by the reference stan-
dard. We classified the feature as a true positive 
(TP) if ConText correctly changed the condition’s 
default value and a true negative (TN) if ConText 
correctly left the default value. We then calculated 
recall and precision using the following formulas: 

)(
:Recall

FNofnumberTPofnumber
TPofnumber

+
 

)(
:Precision

FPofnumberTPofnumber
TPofnumber

+
 

For the Temporality feature, we calculated recall 
and precision separately for the values historical 
and hypothetical. We calculated the 95% confi-
dence intervals (CI) for all outcome measures. 

4 Results 

Using NLP-assisted review, the reference standard 
physician made several changes to his initial anno-
tations. He indexed an additional 82 clinical condi-
tions and changed the title of the clinical condition 
for 48 conditions, resulting in a total of 1,620 in-
dexed clinical conditions in the 90 test reports. The 
reference standard physician also made 35 changes 
to Temporality values and 4 changes to Negation. 
The majority of Temporality changes were from 
historical to recent (17) and from hypothetical to 
recent (12).   

Table 3 shows ConText’s recall and precision 
values compared to the reference standard annota-
tions. About half of the conditions were negated 
(773/1620). Fewer conditions were historical 
(95/1620), hypothetical (40/1620), or experienced 
by someone other than the patient (8/1620). In 
spite of low frequency for these contextual feature 
values, identifying them is critical to understanding 
a patient’s current state. ConText performed best 
on Negation, with recall and precision above 97%. 
ConText performed well at assigning the Tempo-
rality value hypothetical, but less well on the Tem-
porality value historical. Experiencer had a small 
sample size, making results difficult to interpret. 

 
Table 3. Outcome measures for ConText on test set of 90 ED reports. 

Feature TP TN FP FN Recall 
95% CI 

Precision 
95% CI 

Negation 750 824 23 23 97.0 
96-98 

97.0 
96-98 

Temporality 
(historical) 66 1499 23 32 67.4 

58-76 
74.2 

64-82 
Temporality 
(hypothetical) 33 1578 2 7 82.5 

68-91 
94.3 

81-98 

Experiencer 4 1612 0 4 50.00 
22-78 

100 
51-100 

5 Discussion 

We evaluated an extension of the NegEx algorithm 
for determining the values of two additional con-
textual features—Temporality and Experiencer. 
ConText performed with very high recall and pre-
cision when determining whether a condition was 
negated, and demonstrated moderate to high per-
formance on the other features. 

Figure 1. When the physician highlights text, 
GATE provides a drop-down menu to select the 
Clinical Condition and the values of the Contex-
tual Features. 
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We performed an informal error analysis, which 
not only isolates ConText’s errors but also points 
out future research directions in contextual feature 
identification.  

5.1 Negation 

ConText’s negation identification performed sub-
stantially better than NegEx’s published results [9], 
even though ConText is very similar to NegEx and 
uses the same trigger terms.  Several possible ex-
planations exist for this boost in performance. First, 
our study evaluated negation identification in ED 
reports, whereas the referenced study on NegEx 
applied to discharge summaries. Second, ConText 
only applied to 55 clinical conditions, rather than 
the large set of UMLS concepts in the NegEx 
study. Third, the conditions indexed by SySTR that 
act as input to ConText are sometimes negated or 
affirmed before ConText sees them. For some con-
ditions, SySTR addresses internal negation in a 
word (e.g., “afebrile” is classified as Fever with the 
Negation value negated). Also, SySTR assigns 
Negation values to some conditions with numeric 
values, such as negating Tachycardia from “pulse 
rate 75.” Fourth, ConText does not use NegEx’s 
original scope of five words, but extends the scope 
to the end of the sentence. It would be useful to 
compare ConText’s scope difference directly 
against NegEx to determine which scope assign-
ment works better, but our results suggest the in-
creased scope may work well for ED reports. 

ConText’s errors in assigning the Negation 
value were equally distributed between FN’s and 
FP’s (23 errors each). Some false negatives re-
sulted from missing trigger terms (e.g., “denying”). 
Several false negatives resulted from the interac-
tion between ConText and SySTR’s mapping rules. 
For example, in the sentence “chest wall is without 
tenderness,” SySTR maps the UMLS concepts for 
“chest wall” and “tenderness” to the condition 
Chest Wall Tenderness. In such a case, the nega-
tion trigger term “without” is caught between the 
two UMLS concepts. Therefore, RE1 does not 
match, and ConText does not change the default 
from affirmed. False positive negations resulted 
from our not integrating the rule described in 
NegEx that a concept preceded by a definite article 
should not be negated [23] (e.g., “has not been on 
steroids for his asthma”) and from descriptions in 
the text whose Negation status is even difficult for 
humans to determine, such as “no vomiting with-

out having the cough” and “patient does not know 
if she has a fever.” 

5.2 Temporality 

Historical. ConText identified historical condi-
tions with 67% sensitivity and 74% precision. 
Identifying historical conditions appears simple on 
the surface, but is a complex problem. The single 
trigger term “history” is used for many of the his-
torical conditions, but the word “history” is a rela-
tive term that can indicate a history of years (as in 
“history of COPD”) or of only a few days (as in 
“ENT: No history of nasal congestion”). The error 
analysis showed that ConText is missing trigger 
terms that act equivalently to the word “history” 
such as “in the past” (“has not been on steroids in 
the past for his asthma”) and “pre-existing” (“pre-
existing shortness of breath”).  

Some conditions that the reference standard 
classified as historical had no explicit trigger in the 
text, as in the sentence “When he sits up in bed, he 
develops pain in the chest.” It may be useful to 
implement rules involving verb tense for these 
cases. 

The most difficult cases for ConText were those 
with temporal measurement triggers. The few tem-
poral quantifier patterns we used were fairly suc-
cessful, but the test set contained multiple varia-
tions on those quantifiers, and a new dataset would 
probably introduce even more variations. For in-
stance, ConText falsely classified Non-pleuritic 
Chest Pain as historical in “awoken at approxi-
mately 2:45 with chest pressure,” because Con-
Text’s temporal quantifiers do not account for time 
of the day. Also, even though ConText’s temporal 
quantifiers include the pattern “last x weeks,” x 
represents a digit and thus didn’t match the phrase 
“intermittent cough the last couple of weeks.”  

We were hoping that identifying historical con-
ditions would not require detailed modeling of 
temporal information, but our results suggest oth-
erwise. We will explore the temporal categories 
derived by Hripcsak and Zhou [13] for discharge 
summaries to expand ConText’s ability to identify 
temporal measurement triggers.  
Hypothetical. ConText demonstrated 83% recall 
and 94% precision when classifying a condition as 
hypothetical rather than recent. Again, missing 
trigger terms (e.g., “returning” and “look out for”) 
and termination terms (e.g., “diagnosis”) caused 
errors. The chief cause of false negatives was ter-
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minating the scope of a trigger term too early. For 
instance, in the sentence “She knows to return to 
the ED if she has anginal type chest discomfort 
which was discussed with her, shortness of breath, 
and peripheral edema” the scope of the trigger “re-
turn” was terminated by “her.” The major limita-
tion of regular expressions is evident in this exam-
ple in which “her” is part of a relative clause modi-
fying “chest discomfort,” not “shortness of breath.”  

5.3 Experiencer 

ConText’s ability to identify an experiencer other 
than the patient suffered from low prevalence. In 
the test set of 90 reports, only 8 of the 1620 condi-
tions were experienced by someone other than the 
patient, and ConText missed half of them. Two of 
the false negatives came from not including the 
trigger term “family history.” A more difficult er-
ror to address is recognizing that bronchitis is ex-
perienced by someone other than the patient in 
“…due to the type of bronchitis that is currently 
being seen in the community.” ConText made no 
false positive classifications for Experiencer. 

5.4 Limitations and Future Work 

Some of ConText’s errors can be resolved by refin-
ing the trigger and termination terms. However, 
many of the erroneous classifications are due to 
complex syntax and semantics that cannot be han-
dled by simple regular expressions. Determining 
the scope of trigger terms in sentences with relative 
clauses and coordinated conjunctions is especially 
difficult. We believe ConText’s approach involv-
ing trigger terms, scope, and termination terms is 
still a reasonable model for this problem and hope 
to improve ConText’s ability to identify scope with 
syntactic information.  

A main limitation of our evaluation was the ref-
erence standard, which was comprised of a single 
physician. We used NLP-assisted review to in-
crease the identification of clinical conditions and 
decrease noise in his classifications. It is possible 
that the NLP-assisted review biased the reference 
standard toward ConText’s classifications, but the 
majority of changes made after NLP-assisted re-
view involved indexing the clinical conditions, 
rather than changing the values of the contextual 
features. Moreover, most of the changes to contex-
tual feature values involved a change in our anno-
tation schema after the physician had completed 
his first round of annotations. Specifically, we al-

lowed the physician to use the entire report to de-
termine whether a condition was historical, which 
caused him to mark recent exacerbations of his-
torical conditions as historical. A second physician 
is in the process of annotating the test set. The two 
physicians will come to consensus on their classi-
fications in generating a new reference standard.  

How good contextual feature identification has 
to be depends largely on the intended application. 
We tested SySTR’s ability to determine whether 
the 55 clinical conditions were acute, chronic, or 
absent on a subset of 30 test reports [24]. SySTR 
made 51 classification errors, 22 of which were 
due to ConText’s mistakes. In spite of the errors, 
SySTR demonstrated a kappa of 0.85 when com-
pared to physician classifications, suggesting that 
because of redundancy in clinical reports, Con-
Text’s mistakes may not have a substantial adverse 
effect on SySTR’s final output.  

5.5 Conclusion 

We evaluated a regular-expression-based algorithm 
for determining the status of three contextual fea-
tures in ED reports and found that ConText per-
formed very well at identifying negated conditions, 
fairly well at determining whether conditions were 
hypothetical or historical, and moderately well at 
determining whether a condition was experienced 
by someone other than the patient. ConText’s algo-
rithm is based on the negation algorithm NegEx, 
which is a frequently applied negation algorithm in 
biomedical informatics applications due to its sim-
plicity, availability, and generalizability to various 
NLP applications. Simple algorithms for identify-
ing contextual features of indexed conditions is 
important in medical language processing for im-
proving the accuracy of information retrieval and 
extraction applications and for providing a baseline 
comparison for more sophisticated algorithms. 
ConText accepts any indexed clinical conditions as 
input and thus may be applicable to other NLP ap-
plications. We do not know how well ConText will 
perform on other report types, but see similar con-
textual features in discharge summaries, progress 
notes, and history and physical exams. Currently, 
ConText only identifies three contextual features, 
but we hope to extend the algorithm to other fea-
tures in the future, such as whether a condition is 
mentioned as a radiology finding or as a diagnosis 
(e.g., Pneumonia).  
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Over and above negation identification, which 
can be addressed by NegEx or other algorithms, 
ConText could be useful for a variety of NLP tasks, 
including flagging historical findings and eliminat-
ing indexed conditions that are hypothetical or 
were not experienced by the patient. Ability to 
modify indexed conditions based on their contex-
tual features can potentially improve precision in 
biosurveillance, real-time decision support, and 
information retrieval. 
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Abstract

The vast number of published medical doc-
uments is considered a vital source for rela-
tionship discovery. This paper presents a sta-
tistical unsupervised system, called BioNoc-
ulars, for extracting protein-protein interac-
tions from biomedical text. BioNoculars
uses graph-based mutual reinforcement to
make use of redundancy in data to construct
extraction patterns in a domain independent
fashion. The system was tested using MED-
LINE abstract for which the protein-protein
interactions that they contain are listed in the
database of interacting proteins and protein-
protein interactions (DIPPPI). The system
reports an F-Measure of 0.55 on test MED-
LINE abstracts.

1 Introduction

With the ever-increasing number of published
biomedical research articles and the dependency
of new research and previously published research,
medical researchers and practitioners are faced with
the daunting prospect of reading through hundreds
or possibly thousands of research articles to sur-
vey advances in areas of interest. Much work has
been done to ease access and discovery of articles
that match the interest of researchers via the use
of search engines such as PubMed, which provides
search capabilities over MEDLINE, a collection of
more than 15 million journal paper abstracts main-
tained by the National Library of Medicine (NLM).
However, with the addition of abstracts from more

than 5,000 medical journals to MEDLINE every
year, the number of articles containing information
that is pertinent to users needs has grown consider-
ably. These 5,000 journals constitute only a subset
of the published biomedical research. Further, med-
ical articles often contain redundant information and
only subsections of articles are typically of direct in-
terest to researchers. More advanced information
extraction tools have been developed to effectively
distill medical articles to produce key pieces of in-
formation from articles while attempting to elimi-
nate redundancy. These tools have focused on areas
such as protein-protein interaction, gene-disease re-
lationship, and chemical-protein interaction (Chun
et al., 2006). Many of these tools have been used
to extract key pieces of information from MED-
LINE. Most of the reported information extraction
approaches use sets of handcrafted rules in conjunc-
tion with manually curated dictionaries and ontolo-
gies.

This paper presents a fully unsupervised statisti-
cal technique to discover protein-protein interaction
based on automatically discoverable repeating pat-
terns in text that describe relationships. The paper
is organized as follows: section 2 surveys related
work; section 3 describes BioNoculars; Section 4
describes the employed experimental setup; section
5 reports and comments on experimental results; and
section 6 concludes the paper.

2 Background

The background will focus primarily on the tagging
of Biomedical Named Entities (BNE), such genes,
gene-products, proteins, and chemicals and the Ex-
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traction of protein-protein interactions from text.

2.1 BNE Tagging

Concerning BNE tagging, the most common ap-
proaches are based on hand-crafted rules, statisti-
cal classifiers, or a hybrid of both (usually in con-
junction with dictionaries of BNE). Rule-based sys-
tems (Fukuda et al., 1998; Hanisch et al., 2003; Ya-
mamoto et al., 2003) that use dictionaries tend to
exhibit high precision in tagging named entities but
generally with lower tagging recall. They tend to
lag the latest published research and are sensitive
to the expression of the named entities. Dictionar-
ies of BNE are typically laborious and expensive to
build, and they are dependant on nomenclatures and
specific species. Statistical approaches (Collier et
al., 2000; Kazama et al., 2002; Settles, 2004) typ-
ically improve recall at the expense of precision,
but are more readily retargetable for new nomen-
clatures and organisms. Hybrid systems (Tanabe
and Wilbur, 2002; Mika and Rost, 2004) attempt to
take advantage of both approaches. Although these
approaches tend to generate acceptable recognition,
they are heavily dependent on the type of data on
which they are trained.

(Fukuda et al., 1998) proposed a rule-based pro-
tein name extraction system called PROPER (PRO-
tein Proper-noun phrase Extracting Rules) system,
which utilizes a set of rules based on the surface
form of text in conjunction with a Part-Of-Speech
(POS) tagging to identify what looks like a protein
without referring to any specific BNE dictionary.
They reported a 94.7% precision and a 98.84% re-
call for the identification of BNEs. The results that
they achieved seem to be too specific to their train-
ing and test sets.

(Hanisch et al., 2003) proposed a rule-based
protein and gene name extraction system called
ProMiner, which is based on the construction of a
general-purpose dictionary along with different dic-
tionaries of synonyms and an automatic curation
procedure based on a simple token model of protein
names. Results showed that their system achieved a
0.80 F-measure score in the name extraction task on
the BioCreative test set (BioCreative).

(Yamamoto et al., 2003) proposed the use of mor-
phological analysis to improve protein name tag-
ging. Their approach tags proteins based on mor-

pheme chunking to properly determine protein name
boundary. They used the GENIA corpus for training
and testing and obtained an F-measure score of 0.70
for protein name tagging.

(Collier et al., 2000) used a machine learning ap-
proach to protein name extraction based on a linear
interpolation Hidden Markov Model (HMM) trained
using bi-grams. They focused on finding the most
likely protein sequence classes (C) for a given se-
quence of words (W), by maximizing the probabil-
ity of C given W, P(C—W). Unlike traditional dic-
tionary based methods, the approach uses no manu-
ally crafted patterns. However, their approach may
misidentify term boundaries for phrases containing
potentially ambiguous local structures such as co-
ordination and parenthesis. They reported an F-
measure score of 0.73 for different mixtures of mod-
els tested on 20 abstracts.

(Kazama et al., 2002) proposed a machine learn-
ing approach to BNE tagging based on support vec-
tor machines (SVM), which was trained on the GE-
NIA corpus. Their preliminary results of the system
showed that the SVM with the polynomial kernel
function outperforms techniques of Maximum En-
tropy based systems.

Yet another BNE tagging system is ABNER (Set-
tles, 2005), which utilizes machine learning, namely
conditional random fields, with a variation of or-
thographic and contextual features and no seman-
tic or syntactic features. ABNER achieves an F-
measure score of 0.71 on the NLPA 2004 shared
task dataset corpus and 0.70 on the BioCreative cor-
pus.and scored an F1-measure of 51.8set.

(Tanabe and Wilbur, 2002) used a combination
of statistical and knowledge-based strategies, which
utilized automatically generated rules from transfor-
mation based POS tagging and other generated rules
from morphological clues, low frequency trigrams,
and indicator terms. A key step in their method is
the extraction of multi-word gene and protein names
that are dominant in the corpus but inaccessible to
the POS tagger. The advantage of such an approach
is that it is independent of any biomedical domain.
However, it can miss single word gene names that
do not occur in contextual gene theme terms. It
can also incorrectly tag compound gene names, plas-
mids, and phages.

(Mika and Rost, 2004) developed NLProt, which
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combines the use of dictionaries, rules-based filter-
ing, and machine learning based on an SVM classi-
fier to tag protein names in MEDLINE. The NLProt
system used rules for pre-filtering and the SVM for
classification, and it achieved a precision of 75% and
recall 76%.

2.2 Relationship Extraction

As for the extraction of interactions, most efforts in
extraction of biomedical interactions between enti-
ties from text have focused on using rule-based ap-
proaches due to the familiarity of medical terms that
tend to describe interactions. These approaches have
proven to be successful with notably good results. In
these approaches, most researchers attempted to de-
fine an accurate set of rules to describe relationship
types and patterns and to build ontologies and dic-
tionaries to be consulted in the extraction process.
These rules, ontologies, and dictionaries are typi-
cally domain specific and are often not generalizable
to other problems.

(Blaschke et al., 1999) reported a domain spe-
cific approach for extracting protein-protein interac-
tions from biomedical text based on a set of pre-
defined patterns and words describing interactions.
Later work attempted to automatically extract inter-
actions, which are referenced in the database of in-
teracting proteins (Xenarios et al., 2000), from the
text mentioning the interactions (Blaschke and Va-
lencia, 2001). They achieved surprisingly low recall
(25%), which they attributed to problems in properly
identifying protein names in the text.

(Koike et al., 2005) developed a system called
PRIME, which was used to extract biological func-
tions of genes, proteins, and their families. Their
system used a shallow parser and sentence struc-
ture analyzer. They extracted so-called ACTOR-
OBJECT relationships from the shallow parsed sen-
tences using rule based sentence structure analysis.
The identification of BNEs was done by consulting
the GENA gene name dictionary and family name
dictionary. In extracting the biological functions of
genes and proteins, their system reported a recall of
64% and a precision of 94%.

Saric et al. developed a system to extract gene
expression regulatory information in yeast as well
as other regulatory mechanisms such phosphoryla-
tion (Saric et al., 2004; Saric et al., 2006). They

used a rule based named entity recognition module,
which recognizes named entities via cascading finite
state automata. They reported a precision of 83-90%
and 86-95% for the extraction of gene expression
and phosphorylation regulatory information respec-
tively.

(Leroy and Chen, 2005) used linguistic parsers
and Concept Spaces, which use a generic co-
occurrence based technique that extracts relevant
medical phrases using a noun chunker. Their system
employed UMLS (Humphreys and Lindberg, 1993),
GO (Ashburner et al., 2000), and GENA (Koike and
Takagi, 2004) to further improve extraction. Their
main purpose was entity identification and cross ref-
erence to other databases to obtain more knowledge
about entities involved in the system.

Other extraction approaches such as the one re-
ported on by (Cooper and Kershenbaum, 2005) uti-
lized a large manually curated dictionary of many
possible combinations of gene/protein names and
aliases from different databases and ontologies.
They annotated their corpus using a dictionary-
based longest matching technique. In addition, they
used filtering with a maximum entropy based named
entity recognizer in order to remove the false posi-
tives that were generated from merging databases.
The problem with this approach is the resulting in-
consistencies from merging databases, which could
hurt the effectiveness of the system. They reported
a recall of 87.1 % and a precision of 78.5% in the
relationship extraction task.

Work by (Mack et al., 2004) used the Munich In-
formation Center for Protein Sequences (MIPS) for
entity identification. Their system was integrated in
the IBM Unstructured Information Management Ar-
chitecture (UIMA) framework (Ferrucci and Lally,
2004) for tokenization, identification of entities, and
extraction of relations. Their approach was based on
a combination of computational linguistics, statis-
tics, and domain specific rules to detect protein in-
teractions. They reported a recall of 61% and a pre-
cision of 97%.

(Hao et al., 2005) developed an unsupervised ap-
proach, which also uses patterns that were deduced
using minimum description lengths. They used pat-
tern optimization techniques to enhance the patterns
by introducing most common keywords that tend to
describe interactions.
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(Jörg et. al., 2005) developed Ali Baba which
uses sequence alignments applied to sentences an-
notated with interactions and part of speech tags.It
also uses finite state automata optimized with a ge-
netic algorithm in its approach. It then matches the
generated patterns against arbitrary text to extract in-
teractions and their respective partners. The system
scored an F1-measure of 51.8% on the LLL’05 eval-
uation set.

The aforementioned systems used either rule-
based approaches, which require manual interven-
tion from domain experts, or statistical approaches,
either supervised or semi-supervised, which also re-
quire manually curated training data.

3 BioNoculars

BioNoculars is a relationship extraction system that
based on a fully unsupervised technique suggested
by (Hassan et al., 2006) to automatically extract
protein-protein interaction from medical articles. It
can be retargeted to different domains such as pro-
tein interactions in diseases. The only requirement
is to compile domain specific taggers and dictionar-
ies, which would aid the system in performing the
required task.

The approach uses an unsupervised graph-based
mutual reinforcement, which depends on the con-
struction of generalized extraction patterns that
could match instances of relationships (Hassan et
al., 2006). Graph-based mutual reinforcement is
similar to the idea of hubs and authorities in web
pages depicted by the HITS algorithm (Kleinberg,
1998). The basic idea behind the algorithm is that
the importance of a page increases when more and
more good pages link to it. The duality between pat-
terns and extracted information (tuples) leads to the
fact that patterns could express different tuples, and
tuples in turn could be expressed by different pat-
terns. Tuple in this context contains three elements,
namely two proteins and the type of interaction be-
tween them. The proposed approach is composed of
two main steps, namely initial pattern construction
and then pattern induction.

For pattern construction, the text is POS tagged
and BNE tagged. The tags of Noun Phrases or se-
quences of nouns that constitute a BNE are removed
and replaced with a BNE tag. Then, an n-gram lan-

guage model is built on the tagged text (using tags
only) and is used to construct weighted finite state
machines. Paths with low cost (high language model
probabilities) are chosen to construct the initial set
of patterns; the intuition is that paths with low cost
(high probability) are frequent and could represent
potential candidate patterns. The number of candi-
date initial patterns could be reduced significantly
by specifying the candidate types of entities of in-
terest. In the case of BioNoculars, the focus was
on relationships between BNEs of type PROTEIN.
The candidate patterns are then applied to the tagged
stream to produce in-sentence relationship tuples.

As for pattern induction, due to the duality in the
patterns and tuples relation, patterns and tuples are
represented by a bipartite graph as illustrated in Fig-
ure 1.

Figure 1: A bipartite graph representing patterns and
tuples

Each pattern or tuple is represented by a node in
the graph. Edges represent matching between pat-
terns and tuples. The pattern induction problem can
be formulated as follows: Given a very large set of
data D containing a large set of patterns P, which
match a large set of tuples T, the problem is to iden-
tify , which is the set of patterns that match the set
of the most correct tuplesT. The intuition is that
the tuples matched by many different patterns tend
to be correct and the patterns matching many differ-
ent tuples tend to be good patterns. In other words,
BioNoculars attempts to choose from the large space
of patterns in the data the most informative, high-
est confidence patterns that could identify correct tu-
ples; i.e. choosing the most authoritative patterns in
analogy with the hub-authority problem. The most
authoritative patterns can then be used for extracting
relations from free text. The following pattern-tuple
pairs show how patterns can match tuples in the cor-
pus:

(protein) (verb) (noun) (prep.) (protein)
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Cla4 induces phosphorylation of Cdc24
(protein) (I-protein) (Verb) (prep.) (protein)
NS5A interacts with Cdk1
The proposed approach represents an unsuper-

vised technique for information extraction in general
and particularly for relations extraction that requires
no seed patterns or examples and achieves signifi-
cant performance. Given enough domain text, the
extracted patterns can support many types of sen-
tences with different styles (such passive and active
voice) and orderings (the interaction of X and Y vs.
X interacts with Y).

One of the critical prerequisites of the above-
mentioned approach is the use of a POS tagger,
which is tuned for biomedical text, and a BNE tag-
ger to properly identify BNEs. Both are critical for
determining the types of relationships that are of in-
terest. For POS tagging, a decision tree based tagger
developed by (Schmid, 1994) was used in combi-
nation with a model, which was trained on a cor-
rected/revised GENIA corpus provided by (Saric et
al., 2004) and was reported to achieve 96.4% tagging
accuracy (Saric et al., 2006). This POS tagger will
be referred to as the Schmid tagger. For BNE tag-
ging, ABNER was used. The accuracy of ABNER
is approximately state of the art with precision and
recall of 74.5% and 65.9% respectively with training
done using the BioCreative corpora (BioCreative).
Nonetheless we still face entity identification prob-
lems such as missed identifications in the text which
in turn affects our results considerably. We do be-
lieve if we use a better identification method , we
would yield better results.

4 Experimental Setup

Experiments aimed at extracting protein-protein
interactions for Bakers yeast (Sacharomyces
Cerevesiae) to assess BioNoculars (Cherry et al.,
1998). The experiments were performed using
109,440 MEDLINE abstracts that contained the
varying names of the yeast, namely Sacharomyces
cerevisiae, S. Cerevisiae, Bakers yeast, Brewers
yeast and Budding yeast. MEDLINE abstracts
typically summarize the important aspects of papers
possibly including protein-protein interactions if
they are of relevance to the article. The goal was
to deduce the most appropriate extraction patterns

that can be later used to extract relations from any
document. All the MEDLINE abstracts were used
for pattern extraction except for 70 that were set
aside for testing. There were no test documents in
the training set. To build ground-truth, the test set
was semi-manually POS and BNE tagged. They
were also annotated with the interactions that are
contained in the text. There was a condition that
all the abstracts that are used for testing must have
entries in the Database of Interacting Proteins and
Protein-Protein Interactions (DIPPPI), which is
a subset of the Database of Interacting Proteins
(DIP) (Xenarios et al., 2000) restricted to proteins
from yeast. DIPPPI lists the known protein-protein
interactions in the MEDLINE abstracts. There were
297 protein-protein interactions in the test set of 70
abstracts. One of the disadvantages of DIPPPI is
that the presence of interactions is indicated without
mentioning their types or from which sentences
they were extracted. Although BioNoculars is able
to guess the sentence from which an interaction was
extracted and the type of interaction, this informa-
tion was ignored when evaluating against DIPPPI.
Unfortunately, there is no standard test set for the
proposed task, and most of the evaluation sets are
proprietary. The authors hope that others can benefit
from their test set, which is freely available.

The abstracts used for pattern extraction were
POS tagged using the Schmid tagger and BNE tag-
ging was done using ABNER. The patterns were re-
stricted to only those with protein names. For extrac-
tion of interaction tuples, the test set was POS and
BNE tagged using the Schmid tagger and ABNER
respectively. A varying number of final patterns
were then used to extract tuples from the test set and
the average recall and precision were computed. An-
other setup was used in which the relationships were
filtered using preset keywords for relationships such
as inhibits, interacts, and activates to properly com-
pare BioNoculars to systems in the literature that use
such keywords. The keywords were obtained from
the (Hakenberg et al., 2005) and (Temkin and Gilder,
2003). One of the generated pattern-tuple pairs was
as follows:

(PROTEIN) (Verb) (Conjunction) (PROTEIN)
NS5A interacts with Cdk1
One consequence of tuple extraction is generation

of redundant tuples, which contain the same enti-

93



Pattern Count 30 59 78 103 147 192 205 217
Recall 0.51 0.70 0.76 0.81 0.84 0.89 0.89 0.93

Precision 0.47 0.42 0.43 0.35 0.30 0.26 0.26 0.16
FMeasure 0.49 0.53 0.55 0.49 0.44 0.40 0.40 0.27

Table 1: Recall, Precision, and F-measure for extrac-
tion of tuples using a varying number of top rated
patterns

ties and relations. Consequently, all protein aliases
and full text names were resolved to a unified nam-
ing scheme and the unified scheme was used to re-
place all variations of protein names in patterns. All
potential protein-protein interactions that BioNocu-
lars extracted were compared to those in the DIPPPI
databases.

5 Results and Discussion

For the first set of experiments, the experimental
setup described above was used without modifica-
tion. Table 1 and Figure 2 report on the resulting
recall and precision when taking different number
of highest rated patterns. The highest rated 217 pat-
terns were divided on a linear scale into 8 clusters
based on their relative weights.

Figure 2: Recall, Precision, and F-measure for tuple
extraction using a varying number of top patterns

As expected, Figure 2 clearly shows an inverse
relationship between precision and recall. This is
because using more extraction patterns yields more
tuples thus increasing recall at the expense of pre-
cision. The F-measure (withβ = 1) peeks at 78
patterns, which seems to provide the best score
given that precision and recall are equally important.
However, the technique seems to favor recall, reach-
ing a recall of 93% when using all 217 patterns. The

Pattern Count 30 59 78 103 147 192 205 217
Recall 0.31 0.44 0.46 0.48 0.64 0.73 0.74 0.78

Precision 0.31 0.36 0.35 0.34 0.39 0.35 0.35 0.37
FMeasure 0.31 0.40 0.40 0.40 0.48 0.47 0.48 0.50

Table 2: Recall, Precision, and Recall for extraction
of tuples using a varying number of top rated patters
keyword filtering

low precision levels warrant thorough investigation.
In the second set of experiments, extracted tuples

were filtered using preset keywords indicating inter-
actions. Table 2 and Figure 3 show the results of the
experiments.

Figure 3: Recall, Precision, and F-measure for tu-
ple extraction using a varying number of top patterns
with keyword filtering

The results show that filtering with keywords led
to lower recall, but precision remained fairly steady
as the number of patterns changed. Nonetheless, the
best precision in Figure 3 is lower than the best pre-
cision in Figure 2 and the maximum F-measure for
this set of experiments is lower than the maximum
F-measure when no filtering was used. The BioNoc-
ulars system with no filtering can be advantageous
for recall oriented applications. The use of no filter-
ing suggests that some interaction may be expressed
in more generic forms or patterns. An intermediate
solution would be to increase the size of the list of
most commonly occurring keywords to filter the ex-
tracted tuples further.

Currently, ABNER, which is used by the system,
has a precision of 75.4% and a recall of 65.9%. Per-
haps improved tagging may improve the extraction
effectiveness.

The effectiveness of BioNoculars needs to be
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thoroughly compared to existing systems via the use
of standard test sets, which are not readily available.
Most of previously reported work has been tested
on proprietary test sets or sets that are not publicly
available. The creation of standard publicly avail-
able test set can prompt research in this area.

6 Conclusion and Future Work

This paper presented a system for extracting
protein-protein interaction from biomedical text call
BioNoculars. BioNoculars uses a statistical un-
supervised learning algorithm, which is based on
graph mutual reinforcement and data redundancy
to extract extraction patterns. The system is re-
call oriented and is able to properly extract 93% of
the interaction mentions from test MEDLINE ab-
stracts. Nonetheless, the systems precision remains
low. Precision can be enhanced by using keywords
that describe interactions to filter to the resulting in-
teraction, but this would be at the expense of recall.

As for future work, more attention should be fo-
cused on improving extraction patterns. Currently,
the system focuses on extracting interactions be-
tween exactly two proteins. Some of the issues that
need to be handled include complex relationship (X
and Y interact with A and B), linguistic variabil-
ity (passive vs. active voice; presence of superflu-
ous words such as modifiers, adjectives, and prepo-
sitional phrases), protein lists (W interacts with X,
Y, and Z), nested interactions (W, which interacts
with X, also interacts with Y). Resolving these is-
sues would require an investigation of how patterns
can be generalized in automatic or semi-automatic
ways. Further, the identification of proteins in the
text requires greater attention. Also, the BioNocu-
lars approach can be combined with other rule-based
approaches to produce better results.
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Abstract

This paper reports on a shared task involving
the assignment of ICD-9-CM codes to radi-
ology reports. Two features distinguished
this task from previous shared tasks in the
biomedical domain. One is that it resulted in
the first freely distributable corpus of fully
anonymized clinical text. This resource is
permanently available and will (we hope) fa-
cilitate future research. The other key fea-
ture of the task is that it required catego-
rization with respect to a large and commer-
cially significant set of labels. The number
of participants was larger than in any pre-
vious biomedical challenge task. We de-
scribe the data production process and the
evaluation measures, and give a preliminary
analysis of the results. Many systems per-
formed at levels approaching the inter-coder
agreement, suggesting that human-like per-
formance on this task is within the reach of
currently available technologies.

1 Introduction

Clinical free text (primary data about patients, as op-
posed to journal articles) poses significant technical
challenges for natural language processing (NLP).
In addition, there are ethical and social demands
when working with such data, which is intended for
use by trained medical practitioners who appreciate
the constraints that patient confidentiality imposes.
State-of-the-art NLP systems handle carefully edited
text better than fragmentary notes, and clinical lan-

guage is known to exhibit unique sublanguage char-
acteristics (Hirschman and Sager, 1982; Friedman
et al., 2002; Stetson et al., 2002) (e.g. verbless
sentences, domain-specific punctuation semantics,
and unusual metonomies) that may limit the perfor-
mance of general NLP tools. More importantly, the
confidentiality requirements take time and effort to
address, so it is not surprising that much work in
the biomedical domain has focused on edited jour-
nal articles (and the genomics domain) rather than
clinical free text in medical records. The fact re-
mains, however, that the automation of healthcare
workflows can bring important benefits to treatment
(Hurtado et al., 2001) and reduce administrative bur-
den, and that free text is a critical component of
these workflows. There are economic motivations
for the task, as well. The cost of adding labels like
ICD-9-CM to clinical free text and the cost of re-
pairing associated errors is approximately $25 bil-
lion per year in the US (Lang, 2007). For these
(and many other) reasons, there have been consis-
tent attempts to overcome the obstacles which hin-
der the processing of clinical text (Uzuner et al.,
2006). This paper discusses one such attempt—
The 2007 Computational Medicine Challenge, here-
after referred to as “the Challenge”. There were two
main reasons for conducting the Challenge. One
is to facilitate advances in mining clinical free text;
shared tasks in other biomedical domains have been
shown to drive progress in the field in multiple ways
(see (Hirschman and Blaschke, 2006; Hersh et al.,
2005; Uzuner et al., 2006; Hersh et al., 2006) for a
comprehensive review of biomedical challenge tasks
and their contributions). The other is a ground-
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breaking distribution of useful, reusable, carefully
anonymized clinical data to the research commu-
nity, whose data use agreement is simply to cite the
source. The remaining sections of this paper de-
scribe how the data were prepared, the methods for
scoring, preliminary results [to be updated if sub-
mission is accepted—results are currently still under
analysis], and some lessons learned.

2 Corpus collection and coding process

Supervised methods for machine learning require
training data. Yet, due to confidentiality require-
ments, spotty electronic availability, and variance in
recording standards, the requisite clinical training
data are difficult to obtain. One goal of the chal-
lenge was to create a publicly available ”gold stan-
dard” that could serve as the seed for a larger, open-
source clinical corpus. For this we used the follow-
ing guiding principles: individual identity must be
expunged to meet United States HIPAA standards,
(U.S. Health, 2002) and approved for release by the
local Institutional Review Board (IRB); the sample
must represent problems that medical records coders
actually face; the sample must have enough data for
machine-learning-based systems to do well; and the
sample must include proportionate representations
of very low-frequency classes.
Data for the corpus were collected from the
Cincinnati Children’s Hospital Medical Center’s
(CCHMC) Department of Radiology. CCHMC’s
Institutional Review Board approved release of the
data. Sampling of all outpatient chest x-ray and re-
nal procedures for a one-year period was done us-
ing a bootstrap method (Walters, 2004). These data
are among those most commonly used, and are de-
signed to provide enough codes to cover a substan-
tial proportion of pediatric radiology activity. Ex-
punging patient identity to meet HIPAA standards
included three steps: disambiguation, anonymiza-
tion, and data scrubbing (Pestian et al., 2005).

Ambiguity and Anonymization. Not surprisingly,
some degree of disambiguation is needed to carry
out effective anonymization (Uzuner et al., 2006;
Sibanda and Uzuner, 2006). The reason is that clini-
cal text is dense with medical jargon, abbreviations,
and acronyms, many of which turn out to be ambigu-
ous between a sense that needs anonymization and a

different sense that does not. For example, in a clin-
ical setting,FT can be an abbreviation forfull-term,
fort (as inFort Bragg), feet, foot, field test, full-time
or family therapy. Fort Bragg, being a place name,
and a possible component of an address, could indi-
rectly lead to identification of the patient. Until such
occurrences are disambiguated, it is not possible to
be certain that other steps to anonymize data are ad-
equate. To resolve the relevant ambiguities found in
this free text, we relied on previous efforts that used
expert input to develop clinical disambiguation rules
(Pestian et al., 2004).

Anonymization. To assure patient privacy, clin-
ical text that is used for non-clinical reasons must
be anonymized. However, to be maximally useful
for machine-learning, this must be done in a par-
ticular way. Replacing personal names with some
unspecific value such as ”*” would lose potentially
useful information. Our goal is to replace the sensi-
tive fields with like values that obscure the identity
of the individual (Cho et al., 2002). We found that
the amount of sensitive information routinely found
in unstructured free text data is limited. In our case,
these data included patient and physician names and
sometimes dates or geographic locations, but little or
no other sensitive information turned up in the rele-
vant database fields. Using our internally developed
encryption broker software, we replaced all female
names with “Jane”, all male names with ”John”, and
all surnames with ”Johnson”. Dates were randomly
shifted.

Manual Inspection. Once the data were disam-
biguated and anonymized, they were manually re-
viewed for the presence of any Protected Health In-
formation (PHI). If a specific token was perceived to
potentially violate PHI regulations, the entire record
was deleted from the dataset. In some case, how-
ever, a general geographic area was changed and
not deleted. For example if the data read ”patient
lived near Mr. Roger’s neighborhood” it would be
deleted, because it may be traceable. On the other
hand, if the data read ”patient was from Cincinnati”
it may have been changed to read ”patient was from
the Covington” After this process, a corpus of 2,216
records was obtained (See Table 2 for details).

ICD-9-CM Assignment. A radiology report has
multiple components. Two parts in particular are
essential for the assignment of ICD-9-CM codes:
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clinical history—provided by an ordering physician
before a radiological procedure, andimpression—
reported by a radiologist after the procedure. In the
case of radiology reports, ICD-9-CM codes serve as
justification to have a certain procedure performed.
There are official guidelines for radiology ICD-9-
CM coding (Moisio, 2000). These guidelines note
that every disease code requires a minimum num-
ber of digits before reimbursement will occur; that
a definite diagnosis should always be coded when
possible; that an uncertain diagnosis should never
be coded; and that symptoms must never be coded
when a definite diagnosis is available. Particular
hospitals and insurance companies typically aug-
ment these principles with more specific internal
guidelines and practices for coding. For these rea-
sons of policy, and because of natural variation in
human judgment, it is not uncommon for multiple
annotators to assign different codes to the same text.
Understanding the sources of this variation is impor-
tant; so too is the need to create a definite gold stan-
dard for use in the challenge. To do so, data were
annotated by the coding staff of CCHMC and two
independent coding companies: COMPANY Y and
COMPANY Z.

Majority annotation. A single gold standard was
created from these three sets of annotations. There
was no reason to adopt anya priori preference for
one annotator over another, so the democratic princi-
ple of assigning a majority annotation was used. The
majority annotation consists of those codes assigned
to the document by two or more of the annotators.
There are, however, several possible problems with
this approach. For example, it could be that the ma-
jority annotation will be empty. This will be rare
(126 records out of 2,216 in our case), because it
only happens when the codes assigned by the three
annotators form disjoint sets. In most hospital sys-
tems, including our own, the coders are required to
indicate a primary code. By convention, the primary
code is listed as the record’s first code, and has an
especially strong impact on the billing process. For
simplicity’s sake, the majority annotation process ig-
nores the distinction between primary and secondary
codes. There is space for a better solution here, but
we have not seriously explored it. We have, how-
ever, conducted an analysis of agreement statistics
(not further discussed here) that suggests that the

overall effect of the majority method is to create a
coding that shares many statistical properties with
the originals, except that it reduces the effect of the
annotators’ individual idiosyncrasies. The majority
annotation is illustrated in Table 1.
Our evaluation strategy makes the simplistic as-
sumption that the majority annotation is a true gold
standard and a worthwhile target for emulation. This
is debatable, and is discussed below, but for the sake
of definiteness we simply stipulate that submissions
will be compared against the majority annotation,
and that the best possible performance is to exactly
replicate said majority annotation.

3 Evaluation

Micro- and macro-averaging.Although we rank
systems for purposes of determining the top three
performers on the basis of micro-averaged F1, we
report a variety of performance data, including the
micro-average, macro-average, and a cost-sensitive
measure of loss. Jackson and Moulinier comment
(for general text classification) that: “No agree-
ment has been reached...on whether one should pre-
fer micro- or macro-averages in reporting results.
Macro-averaging may be preferred if a classification
system is required to perform consistently across all
classes regardless of how densely populated these
are. On the other hand, micro-averaging may be
preferred if the density of a class reflects its impor-
tance in the end-user system” (Jackson and Moulin-
ier, 2002):160-161. For the present medical ap-
plication, we are more interested in the number of
patients whose cases are correctly documented and
billed than in ensuring good coverage over the full
range of diagnostic codes. We therefore emphasize
the micro-average.

A cost-sensitive accuracy measure.While F-
measure is well-established as a method for ranking,
there are reasons for wanting to augment this with
a cost-sensitive measure. An approach that allows
penalties for over-coding (a false positive) and
under-coding (a false negative) to be manipulated
has important implications. The penalty for under-
coding is simple—the hospital loses the amount of
revenue that it would have earned if it had assigned
the code. The regulations under which coding is
done enforce an automatic over-coding penalty of
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Table 1: Majority Annotation

Hospital Company Y Company Z Majority

Document 1 AB BC AB AB

Document 2 BC ABD CDE BCD

Document 3 EF EF E EF

Document 4 ABEF ACEF CDEF ACEF

three times what is earned from the erroneous code,
with the additional risk of possible prosecution
for fraud. This motivates a generalized version of
Jaccard’s similarity metric (Gower and Legendre,
1986), which was introduced by Boutell, Shen, Luo
and Brown (Boutell et al., 2003).
Suppose thatYx is the set of correct labels for a test
set andPx is the set of labels predicted by some
participating system. DefineFx = Px − Yx and
Mx = Yx − Px , i.e. Fx is the set of false positives,
andMx is the set of missed labels or false negatives.
The score is given by

score(Px) =
(

1− β|Mx|+ γ|Fx|
|Yx ∪ Px|

)α
(1)

As noted in (Boutell et al., 2003), if β = γ = 1 this
formula reduces to the simpler case of

score(Px) =
(

1− |Yx ∩ Px|
|Yx ∪ Px|

)α
(2)

The discussion in (Boutell et al., 2003) points out
that constraints are necessary onβ andγ to ensure
that the inner term of the expression is non-negative.
We do not understand the way that they formulate
these constraints, but note that non-negativity will be
ensured if0 ≤ β ≤ 1 and0 ≤ γ ≤ 1 . Since over-
coding is three times as bad as undercoding, we use
γ = 1.0 , β = 0.33 . Varying the value ofα would
affect the range of the scores, but does not alter the
rankings of individual systems. We therefore used
α = 1 . This measure does not represent the pos-
sibility of prosecution for fraud, because the costs
involved are incommensurate with the ones that are
represented. With these parameter settings, the cost-
sensitive measure produces rankings that differ con-
siderably from those produced by macro-averaged
balanced F-measure. For example, we shall see that
the system ranked third in the competition by macro-
averaged F-measure assigns a total of 1167 labels,

where the second-ranked assigns 1232, and the cost-
sensitive measure rewards this conservatism in as-
signing labels by reversing the ranking of the two
systems. In either case, the difference between the
systems is small (0.86% difference in F-measure,
0.53% difference in the cost-sensitive measure).

4 The Data

We selected for the challenge a subset of the com-
prehensive data set described above. The subset was
created by stratified sampling, such that it contains
20% of the documents in each category. Thus, the
proportion of categories in the sample is the same as
the proportion of categories in the full data set. We
included in the initial sample only those categories
to which 100 or more documents from the compre-
hensive data set were assigned. After the process
summarized in Table 2, the data were divided into
two partitions: a training set with 978 documents,
and a testing set with 976. Forty-five ICD-9-CM
labels (e.g 780.6) are observed in these data sets.
These labels form 94 distinct combinations (e.g. the
combination 780.6, 786.2). We required that any
combination have at least two exemplars in the data,
and we split each combination between the train-
ing and the test sets. So, there may be labels and
combinations of labels that occur only one time in
the training data, but participants can be sure that
no combination will occur in the test data that has
not previously occurred at least once in the train-
ing data. Our policy here has the unintended con-
sequence that any combination that appears exactly
once in the training data is highly likely to appear
exactly once in the test data. This gives unnecessary
information to the participants. In future challenges
we will drop the requirement for two occurrences in
the data, but ensure that single-occurrence combina-
tions are allocated to the training set rather than the
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test set. This maintains the guarantee that there will
be no unseen combinations in the test data. The full
data set may be downloaded from the official chal-
lenge web-site.

5 Results

Notice of the Challenge was distributed using elec-
tronic mailing lists supplied by the Association of
Computational Linguistics, IEEE Computer Intelli-
gence and Data Mining, and American Medical In-
formatics Association’s Natural Language Process-
ing special interest group. Interested participants
were asked to register at the official challenge web-
site. Registration began February 1, 2007 and ended
February 28, 2007. Approximately 150 individu-
als registered from 22 countries and six continents.
Upon completing registration, an automated e-mail
was sent with the location of the training data. On
March 1, 2007 participants received notice of the
location of the testing data. Participants were en-
couraged to use the data for other purposes as long
as it was non-commercial and the appropriate cita-
tion was made. There were no other data use re-
strictions. Participants had until March 18, 2007
to submit their results and an explanation of their
model. Approximately 33% (50) of the partici-
pants submitted results. During the course of the
Challenge participants asked a range of questions.
These were posted to the official challenge web-site
- www.computationalmedicine.org/challenge.
The figure below is a scatterplot relating micro-
averaged F1 to the cost-sensitive measure described
above. Each point represents a system. The top-
performing systems achieved 0.8908, the minimum
was 0.1541, and the mean was 0.7670, with a SD
of 0.1340. There are 21 systems with a micro-
averaged F1 between 0.81 and 0.90. Another 14
haveF1 > 0.70 . It is noticeable that the systems
are not ranked identically by the cost-sensitive and
the micro-averaged measure, but the differences are
small in each case.
A preliminary screening using a two-factor ANOVA
with system identity and diagnostic code as predic-
tive factors for balanced F-measure revealed a sig-
nificant main effect of both system and code. Pair-
wise t-tests using Holm’s correction for multiple
comparisons revealed no statistically significant dif-

Figure 1: Scatter plot of evaluation measures

ferences between the systems performing at F=0.70
or higher. Differences between the top system and a
system with a microaveraged F-measure of 0.66 do
come out significant on this measure.

We have also calculated (Table 3) the agreement
figures for the three individual annotations that
went into the majority gold standard. We see
that CCHMC outranks COMPANY Y on the cost-
sensitive measure, but the reverse is true for micro-
and macro-averaged F1, with the agreement be-
tween the hospital and the gold standard being espe-
cially low for the macro-averaged version. To under-
stand these figures, it is necessary to recall that the
gold standard is a majority annotation that is formed
from the the three component annotations. It appears
that for rare codes, which have a disproportionate
effect on the macro-averaged F, the majority anno-
tation is dominated by cases where company Y and
company Z assign the same code, one that CCHMC
did not assign.

The agreement figures are comparable to those of
the best automatic systems. If submitted to the
competition, the components of the majority anno-
tation would not have outranked the best systems,
even though the components contributed to the ma-
jority opinion. It is tempting to conclude that the
automated systems are close to human-level perfor-
mance. Recall, however, that while the hospital and
the companies did not have the luxury of exposure
to the majority annotation, the systems did have that
access, which allowed them to explicitly model the
properties of that majority annotation. A more mod-
erate conclusion is that the hospital and the compa-
nies might be able to improve (or at least adjust)
their annotation practices by studying the majority
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Table 2: Characteristics of the data set through the development process.

Step Removed Total documents

One-year collection of documents 20,275

20 percent sample of one-year collection 4,055

Manual inspection for anonymization problems 1,839 2,216

Removal of records with no majority code 126 2,090

Removal of records with a code occurring only once 136 1,954

Table 3: Comparison of human annotators against majority.

Annotator Cost-sensitive Micro-averaged F1 Macro-averaged F1

HOSPITAL 0.9056 0.8264 0.6124

COMPANY Y 0.8997 0.8963 0.8973

COMPANY Z 0.8621 0.8454 0.8829

annotation and adapting as appropriate.

6 Discussion

Compared to other recent text classification shared
tasks in the biomedical domain (Uzuner et al., 2006;
Hersh et al., 2004; Hersh et al., 2005), this task re-
quired categorization with respect to a set of labels
more than an order of magnitude larger than previ-
ous evaluations. This increase in the size of the set
of labels is an important step forward for the field–
systems that perform well on smaller sets of cate-
gories do not necessarily perform well with larger
sets of categories (Jackson and Moulinier, 2002), so
the data set will allow for more thorough text cat-
egorization system evaluations than have been pos-
sible in the past. Another important contribution of
the work reported here may be the distribution of
the data—the first fully distributable, freely usable
data set of clinical text. The high number of partici-
pants and final submissions was a pleasant surprise;
we attribute this, among other things, to the fact that
this was an applied challenge, that real data were
supplied, and that participants were free to use these
data in other venues.
Participants utilized a diverse range of approaches.
These system descriptions are based on brief com-
ments entered into the submission box, and are ob-
viously subject to revision. The three highest scor-
ers all mentioned “negation,” all seemed to be us-
ing the structure of UMLS in a serious way. The

better systems frequently mentioned “hypernyms”
or “synonyms,” and were apparently doing signifi-
cant amounts of symbolic processing. Two of the
top three had machine-learning components, while
one of the top three used purely symbolic methods.
The most common approach seems to be thought-
ful and medically-informed feature engineering fol-
lowed by some variety of machine learning. The
top-performing system used C4.5, suggesting that
use of the latest algorithms is not a pre-requisite for
success. SVMs and related large-margin approaches
to machine learning were strongly represented, but
did not seem to be reliably predictive of high rank-
ing.

6.1 Observations on running the task and the
evaluation

The most frequently viewed question of the FAQ
was related to a script to calculate the evaluation
score. This was supplied both as a downloadable
script and as an interactive web-page with a form for
submission. In retrospect, we realize that we had not
fully thought through what would happen as people
began to use this script. If we run a similar contest
in the future, we will be better prepared for the con-
fusion that this can cause.

A novel aspect of this task was that although we only
scored a single run on the test data, we allowed par-
ticipants to submit their “final” run up to 10 times,
and to see their score each time. Note that although

102



participants could see how their score varied on suc-
cessive submissions, they didnot have access to the
actual test data or to the correct answers, and so there
were no opportunities for special-purpose hacks to
handle special cases in the test data. The average
participant tried 5.27 (SD 3.17) submissions against
the test data. About halfway through the submis-
sion period we began to realize that in a competi-
tive situation, there are risks in providing the type
of feedback given on the submission form. In fu-
ture challenges, we will be judicious in selecting the
number of attempts allowed and the provision of any
type of feedback. As far as we can tell our general
assumption that the scientific integrity of the partic-
ipants was greater than the need to game the system
is true. It is good policy for those administering the
contest, however, to keep temptations to a minimum.
Our current preference would be to provide only the
web-page interface with no more than five attempts,
and to tell participants only whether their submis-
sion had been accepted, and if so, how many items
and how many codes were recognized.

We provided an XML schema as a precise and pub-
licly visible description of the submission format.
Although we should not have been, we were sur-
prised when changes to the schema were required
in order to accommodate small but unexpected vari-
ations in participant submissions. An even simpler
submission format would have been good. The ad-
vantage of the approach that we took was that XML
validation gave us a degree of sanity-checking at lit-
tle cost. The disadvantage was that some of the nec-
essary sanity-checking went beyond what we could
see how to do in a schema.

The fact that numerous participants generated sys-
tems with high performance indicates that the task
was reasonable, and that sufficient information
about the coding task was either provided by us or
inferred by the participants to allow them to do their
work. Since this is a first attempt, it is not yet clear
what the upper limits on performance are for this
task, but preliminary indications are that automated
systems are or will soon be viable as a component of
deployed systems for this kind of application.
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Abstract 

This paper describes the application of an 
ensemble of indexing and classification 
systems, which have been shown to be suc-
cessful in information retrieval and classi-
fication of medical literature, to a new task 
of assigning ICD-9-CM codes to the clini-
cal history and impression sections of radi-
ology reports. The basic methods used are: 
a modification of the NLM Medical Text 
Indexer system, SVM, k-NN and a simple 
pattern-matching method. The basic meth-
ods are combined using a variant of stack-
ing. Evaluated in the context of a Medical 
NLP Challenge, fusion produced an F-
score of 0.85 on the Challenge test set, 
which is considerably above the mean 
Challenge F-score of 0.77 for 44 participat-
ing groups. 

1 Introduction 

Researchers at the National Library of Medicine 
(NLM) have developed the Medical Text Indexer 
(MTI) for the automatic indexing of the biomedical 
literature (Aronson et al., 2004). The unsupervised 
methods within MTI were later successfully com-
bined with machine learning techniques and ap-
plied to the classification tasks in the Genomics 
Track evaluations at the Text Retrieval Conference 
(TREC) (Aronson et al., 2005 and Demner-
Fushman et al., 2006). This fusion approach con-

sists of using several basic classification methods 
with complementary strengths, combining the re-
sults using a modified ensemble method based on 
stacking (Ting and Witten, 1997). 

While these methods have shown reasonable 
performance on indexing and retrieval tasks of 
biomedical articles, it remains to be determined 
how they would perform on a different biomedical 
corpus (e.g., clinical text) and on a different task 
(e.g., coding to a different controlled vocabulary). 
However, except for competitive evaluations such 
as TREC or BioCreAtIvE, corpora and gold stan-
dards for such tasks are generally not available, 
which is a limiting factor for such studies. For a 
survey of currently available corpora and devel-
opments in biomedical language processing, see 
Hunter and Cohen, 2006. 

The Medical NLP Challenge 1  sponsored by a 
number of groups including the Computational 
Medicine Center (CMC) at the Cincinnati Chil-
dren’s Hospital Medical Center gave us the oppor-
tunity to apply our fusion approach to a clinical 
corpus. The Challenge was to assign ICD-9-CM 
codes (International Classification of Diseases, 9th 
Revision, Clinical Modification) 2  to clinical text 
consisting of anonymized clinical history and im-
pression sections of radiology reports. 

The Medical NLP Challenge organizers distrib-
uted a training corpus of almost 1,000 of the ano-
nymized, abbreviated radiology reports along with 

                                                 
1 See www.computationalmedicine.org/challenge/.
2 See www.cdc.gov/nchs/icd9.htm.
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gold standard ICD-9-CM assignments for each 
report obtained via a consensus of three independ-
ent sets of assignments. The primary measure for 
the Challenge was defined as the balanced F-score, 
with a secondary measure being cost-sensitive ac-
curacy. These measures were computed for sub-
missions to the Challenge based on a test corpus 
similar in size to the training corpus but distributed 
without gold standard code assignments. 

The main objective of this study is to determine 
what adaptation of the original methods is required 
to code clinical text with ICD-9-CM, in contrast to 
indexing and retrieving MEDLINE®. Note that an 
earlier study (Gay et al., 2005) showed that only 
minor adaptations were required in extending the 
original model to full-text biomedical articles. A 
secondary objective is to evaluate the performance 
of our methods in this new setting. 

 

2 Methods 

In early experimentation with the training corpus 
provided by the Challenge organizers, we discov-
ered that several of the training cases involved ne-
gated assertions in the text and that deleting these 
improved the performance of all basic methods 
being tested. For example, “no pneumonia” occurs 
many times in the impression section of a report, 
sometimes with additional context. Section 2.1 
describes the process we used to remove these ne-
gated expressions; section 2.2 consists of descrip-
tions of the four basic methods used in this study; 
and section 2.3 defines the fusion of the basic 
methods to form a final result. 

2.1 Document Preparation 

The NegEx program (Chapman et al., 2001a and 
2001b, and Goldin and Chapman, 2003), which 
discovers negated expressions in text, was used to 
find negated expressions in the training and test 
corpora using a dictionary generated from concepts 
from the 2006AD version of the UMLS® Metathe-
saurus® (excluding the AMA vocabularies). A ta-
ble containing the concept unique identifier (CUI) 
and English string (STR with LAT=‘ENG’) was 
extracted from the main concept table, MRCON, 
and was used as input to NegEx to generate a dic-
tionary that was later used as the universe of ex-
pressions which NegEx could find to be negated in 

the target corpora. (See the Appendix for examples 
of the input and output to this process.) 

The XML text of the training and test corpora 
was converted to a tree representation and then 
traversed, operating on one radiology report at a 
time. The clinical history and impression sections 
of each report were tokenized to allow whitespace 
to be separated from the punctuation, numbers and 
alphabetic text. The concepts from the UMLS were 
tokenized in the same way, to allow the concepts 
found by NegEx to be aligned with the text. The 
negation phrases discovered by NegEx were also 
tokenized to find the appropriate negation phrase 
preceding or trailing the target concept. Using the 
location information obtained by matching the set 
of one or more target concepts and the associated 
negation phrase, the overlapping concept spans 
were merged and the span for the negation phrase 
and the outermost negated concept was removed. 
Any intervening concepts associated with the same 
negation phrase were removed, too. The abbrevi-
ated tree representation was then re-serialized back 
into XML. 

As an example of our use of NegEx, consider 
the report with clinical history “13-year 2-month - 
old female evaluate for cough.” and impression 
“No focal pneumonia.” After removal of negated 
text, the clinical history becomes “13-year 2-month 
- old female”, and the discussion is empty. 

2.2 Basic Methods 

The four basic methods used for the Medical NLP 
Challenge are MTI (a modification of NLM’s 
Medical Text Indexer system), SVM (Support 
Vector Machines), k-NN (k Nearest Neighbors) 
and Pattern Matching (a simple, pattern-based clas-
sifier). Each of these methods is described here. 
Note that the MTI method uses a “Restrict to ICD-
9-CM” algorithm that is described in the next sec-
tion. 

 
MTI. The original Medical Text Indexer (MTI) 

system, shown in Figure 1, consists of an infra-
structure for applying alternative methods of dis-
covering MeSH® headings for citation titles and 
abstracts and then combining them into an ordered 
list of recommended indexing terms. The top por-
tion of the diagram consists of two paths, or meth-
ods, for creating a list of recommended indexing 
terms: MetaMap Indexing and PubMed® Related 
Citations. The MetaMap Indexing path actually 
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computes UMLS Metathesaurus concepts, which 
are passed to the Restrict to MeSH process 
(Bodenreider et al., 1998). The results from each 
path are weighted and combined using Post-
Processing, which also refines the results to con-
form to NLM indexing policy. The system is 
highly parameterized not only by path weights but 
also by several parameters specific to the Restrict 
to MeSH and Post-Processing processes. 

 

 
 
Figure 1: Medical Text Indexer (MTI) System 

 
For use in the Challenge, the Medical Text In-

dexer (MTI) program itself required few adapta-
tions.  Most of the changes involved the environ-
ment from which MTI obtains the data it uses 
without changing the normal parameter settings. 
We also added a further post-processing compo-
nent to filter our results. 

For the environment, we replaced MTI’s normal 
“Restrict to MeSH” algorithm with a “Restrict to 
ICD-9-CM” algorithm, described below, in order 
to map UMLS concepts to ICD-9-CM codes in-
stead of MeSH headings. We also trained the Pub-
Med Related Citations component, TexTool (Ta-
nabe and Wilbur, 2002), on the Medical NLP Chal-

lenge training data instead of the entire MED-
LINE/PubMed database as is the case for normal 
MTI use at NLM.  For both of these methods, we 
used the actual ICD-9-CM codes to mimic UMLS 
CUIs used internally by MTI. 

To create the new training data for the TexTool 
(Related Citations), we reformatted the Medical 
NLP Challenge training data into a pseudo-
MEDLINE format using the “doc id” component 
as the PMID, the “CLINICAL_HISTORY” text 
component for the Title, the “IMPRESSION” text 
component for the Abstract, and all of the 
“CMC_MAJORITY” codes as MeSH Headings 
(see Figure 2).  This provided us with direct ICD-
9-CM codes to work with instead of MeSH Head-
ings. 
 
<doc id="97663756" type="RADIOLOGY_REPORT"> 
  <codes> 
    <code origin="CMC_MAJORITY" type="ICD-9-
CM">780.6</code> 
    <code origin="CMC_MAJORITY" type="ICD-9-
CM">786.2</code> 
    <code origin="COMPANY3" type="ICD-9-
CM">786.2</code> 
    <code origin="COMPANY1" type="ICD-9-
CM">780.6</code> 
    <code origin="COMPANY1" type="ICD-9-
CM">786.2</code> 
    <code origin="COMPANY2" type="ICD-9-
CM">780.6</code> 
    <code origin="COMPANY2" type="ICD-9-
CM">786.2</code> 
  </codes> 
  <texts> 
    <text origin="CCHMC_RADIOLOGY" 
type="CLINICAL_HISTORY">Cough and fever.</text> 
    <text origin="CCHMC_RADIOLOGY" 
type="IMPRESSION">Normal radiographic appear-
ance of the chest, no pneumonia.</text> 
  </texts> 
</doc> 
PMID- 97663756 
TI  - Cough and fever. 
AB  - Normal radiographic appearance of the 
chest, no pneumonia. 
MH  - Fever (780.6) 
MH  - Cough (786.2) 

 
Figure 2: XML Medical NLP Training Data modi-

fied to pseudo-ASCII MEDLINE format 
 

Within MTI we also utilized an experimental 
option for MetaMap (Composite Phrases), which 
provides a longer UMLS concept match than usual. 
We did not use the following: (1) UMLS concept-
specific checking and exclusion sections; and (2) 
the MeSH Subheading generation, checking, and 
removal elements, since they were not needed for 
this Challenge. We then had MTI use the new Re-
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strict to ICD-9-CM file and the new TexTool to 
generate its results. 

 
Restrict to ICD-9-CM. The mapping of every 

UMLS concept to ICD-9-CM developed for the 
Medical NLP Challenge is an adaptation of the 
original mapping to MeSH, later generalized to any 
target vocabulary (Fung and Bodenreider, 2005). 
Based on the UMLS Metathesaurus, the mapping 
utilizes four increasingly aggressive techniques: 
synonymy, built-in mappings, hierarchical map-
pings and associative mappings. In order to comply 
with coding rules in ICD-9-CM, mappings to non-
leaf codes are later resolved into leaf codes. 

Mappings to ICD-9-CM are identified through 
synonymy when names from ICD-9-CM are in-
cluded in the UMLS concept identified by 
MetaMap. For example, the ICD-9-CM code 592.0 
Calculus of kidney is associated with the UMLS 
concept C0392525 Nephrolithiasis through synon-
ymy. 

Built-in mappings are mapping relations be-
tween UMLS concepts implied from mappings 
provided by source vocabularies in the UMLS. For 
example, the UMLS concept C0239937 Micro-
scopic hematuria is mapped to the concept 
C0018965 (which contains the ICD-9-CM code 
599.7 Hematuria) through a mapping provided by 
SNOMED CT. 

In the absence of a mapping through synonymy 
or built-in mapping, a hierarchical mapping is 
attempted. Starting from the concept identified by 
MetaMap, a graph of ancestors is built by first us-
ing its parent concepts and broader concepts, then 
adding the parent concepts and broader concepts of 
each concept, recursively. Semantic constraints 
(based on semantic types) are applied in order to 
prevent semantic drift. Ancestor concepts closest 
to the MetaMap source concept are selected from 
the graph. Only concepts that can be resolved into 
ICD-9-CM codes (through synonymy or built-in 
mapping) are selected. For example, starting from 
C0239574 Low grade pyrexia, a mapping is found 
to ICD-9-CM code 780.6 Fever, which is con-
tained in the concept C0015967, one of the ances-
tors of C0239574. 

The last attempt to find a mapping involves not 
only hierarchical, but also associative relations. 
Instead of starting from the concept identified by 
MetaMap, associative mappings explore the con-
cepts in associative relation to this concept. For 

example, the concept C1458136 Renal stone sub-
stance is mapped to ICD-9-CM code 592.0 Calcu-
lus of kidney. 

Finally, when the identified ICD-9-CM code 
was not a leaf code (e.g., 786.5 Chest pain), we 
remapped it to one of the corresponding leaf codes 
in the training set where possible (e.g., 786.50 Un-
specified chest pain). 

Of the 2,331 UMLS concepts identified by 
MetaMap in the test set after freezing the method, 
620 (27%) were mapped to ICD-9-CM. More spe-
cifically, 101 concepts were mapped to one of the 
45 target ICD-9-CM codes present in the training 
set. Of the 101 concepts, 40 were mapped through 
synonymy, 11 through built-in mappings, 40 
through hierarchical mapping and 10 through asso-
ciative mapping. 

 
After the main MTI processing was completed, 

we applied a post-processing filter, restricting our 
results to the list of 94 valid combinations of ICD-
9-CM codes provided in the training set (hence-
forth referred to as allowed combinations) and 
slightly emphasizing MetaMap results. Examples 
of the post-processing rules are: 

• If MTI recommended 079.99 (Unspecified 
viral infection in conditions…) via either 
MetaMap or Related Citations, use 079.99, 
493.90 (Asthma, unspecified type…), and 
780.6 (Fever) for indexing. This is the only 
valid combination for this code based on the 
training corpus. 

• Similarly, if MTI recommended “Enlarge-
ment of lymph nodes” (785.6) via the 
MetaMap path with a score greater then 
zero, use 785.6 and 786.2 (Cough) for in-
dexing. 

The best F-score (F = 0.83) for the MTI method 
was obtained on the training set using the negation-
removed text.  This was a slight improvement over 
using the original text (F = 0.82). 

 
SVM. We utilized Yet Another Learning Envi-

ronment3 (YALE), an open source application de-
veloped for machine learning and data mining, to 
determine the data classification performance of 
support vector machine (SVM) learning on the 

                                                 
3 See http://rapid-i.com. 
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training data. To prepare the Challenge data for 
analysis, we removed all stop words and created 
feature vectors for the free text extracted from the 
“CLINICAL_HISTORY” and “IMPRESSION” 
fields of the records.  Since both the training and 
test Challenge data had a known finite number of 
individual ICD-9-CM labels (45) and distinct com-
binations of ICD-9-CM labels (94), the data was 
prepared both as feature vectors for 45 individual 
labels as well as a model with 94 combination la-
bels.  In addition, the feature vectors were created 
using both simple term frequency as well as in-
verse document frequency (IDF) weighting, where 
the weight is (1+log(term frequency))*(total 
documents/document frequency).  There were thus 
a total of four feature vector datasets: 1) 45 indi-
vidual ICD-9-CM labels and simple term fre-
quency, 2) 45 ICD-9-CM labels and IDF weight-
ing, 3) 94 ICD-9-CM combinations and simple 
term frequency, and 4) 94 ICD-9-CM combina-
tions and IDF weighting. 

The YALE tool encompasses a number of SVM 
learners and kernel types.  For the classification 
problem at hand, we chose the C-SVM learner and 
the radial basis function (rbf) kernel.  The C-SVM 
learner attempts to minimize the error function 
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where w is the vector of coefficients, b is a con-
stant, ϕ  is the kernel function, x are the independ-
ent variables, and ξi are parameters for handling 
the inputs.  C > 0 is the penalty parameter of the 
error function.  The rbf kernel is defined as K(x, 
x’) = exp(−γ |x − x’|2), γ > 0 where γ is a kernel 
parameter that determines the rbf width. We ran 
cross-validation experiments using YALE on all 
training datasets and varying C (10, 100, 1000, 
10000) and γ (0.01, 0.001, 0.0001, 0.00001) to de-
termine the optimal C and γ combination.  The 
cross-validation experiments generated classifica-
tion models that were then applied to the complete 
training datasets to analyze the performance of the 
learner. The 94 ICD-9-CM combination and sim-
ple term frequency dataset with C = 10000 and γ = 
0.01 had the best F-score at 0.86.  The best F-score 
for the 94 ICD-9-CM combination and IDF weight 
dataset was 0.79, where C = 0.001 and γ = 10000.   

Further preprocessing the training dataset by 
removing negated expressions was found to im-
prove the best F-score from 0.86 to 0.87.  The C = 
10000 and γ = 0.01 combination was then applied 
to the test dataset, which was preprocessed to re-
move negation and stop words and transformed to 
a feature vector using 94 ICD-9-CM combinations 
and simple term weighting.  The predicted ICD-9-
CM classifications and confidence of the predic-
tions for each clinical free text report were output 
and later combined with other methods to optimize 
the accuracy and precision of our ICD-9-CM clas-
sifications. 

 
k-NN. The Challenge training set was used to 

build a k-NN classifier. The k-NN classification 
method works by identifying, within a labelled set, 
documents similar to the document being classi-
fied, and inferring a classification for it from the 
labels of the retrieved neighbors. 

The free text in the training data set was proc-
essed to obtain a vector-space representation of the 
patient reports.  

Several methods of obtaining this representation 
were tested: after stop words were removed, simple 
term frequency and inverse document frequency 
(IDF) weighting were applied alternatively. A 
higher weight was also given to words appearing in 
the history portion of the text (vs. impression). 
Eventually, the most efficient representation was 
obtained by using controlled vocabulary terms ex-
tracted from the free text with MetaMap.4 Further 
processing on this representation of the training 
data showed that removing negated portions of the 
free text improved the results, raising the F-score 
from 0.76 to 0.79.   

Other parameters were also assessed on the 
training data, such as the number of neighbors to 
use (2 was found to be the best vs. 5, 10 or 15) and 
the restriction of the ICD-9-CM predictions to the 
set of 94 allowed combinations. When the predic-
tion for a given document was not within the set of 
allowed 94 combinations, an allowed subset of the 
ICD-9-CM codes predicted was selected based on 
the individual scores obtained for each ICD-9-CM 
code.  

The best F-score (F = 0.79) obtained on the 
training set used the MetaMap-based representa-
                                                 
4 Note that this use of MetaMap is independent of its 
inclusion as a component of MTI. 
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tion with simple frequency counts on the text with 
negated expressions removed. ICD-9-CM predic-
tions were obtained from the nearest neighbors and 
restricted to one of the 94 allowed combinations.   

 
Pattern Matching. We developed a pattern-

matching classifier as a baseline for our more so-
phisticated classification methods. A list of all 
UMLS string representations for each of 45 codes 
(including synonyms from source vocabularies 
other than ICD-9-CM) was created as described in 
the MTI section above. The strings were then con-
verted to lower case, punctuation was removed, 
and strings containing terms unlikely to be found 
in a clinical report were pruned. For example, Ab-
domen NOS pain and Abdominal pain (finding) 
were reduced to abdominal pain. For the same rea-
sons, some of the strings were relaxed into pat-
terns. For example, it is unlikely to see PAIN 
CHEST in a chart, but very likely to find pain in 
chest. The string, therefore, was relaxed to the fol-
lowing pattern: pain.*chest. The text of the clinical 
history and the impression fields of the radiology 
reports with negated expressions removed (see 
Section 2.2) was broken up into sentences. Each 
sentence was then searched for all available pat-
terns. A corresponding code was assigned to the 
document for each matched pattern. This pattern 
matching achieved F-score = 0.79 on the training 
set. To reduce the number of codes assigned to a 
document, a check for allowed combinations was 
added as a post-processing step. The combination 
of assigned codes was looked up in the table of 
allowed codes. If not present, the codes were re-
duced to the combination of assigned codes most 
frequently occurring in the training set. This 
brought the F-score up to 0.84 on the training data. 
As the performance of this classifier was compara-
ble to other methods, we decided to include these 
results when combining the predictions of the other 
classifiers.  

2.3 Fusion of  Basic Methods: Stacking 

Experience with ad hoc retrieval tasks in the TREC 
Genomics Track has shown that combining predic-
tions of several classifiers either significantly im-
proves classification results, or at least provides 
more consistent and stable results when the train-
ing data set is small (Aronson et al., 2005). We 
therefore experimented with stacking (Ting and 
Witten, 1997), using a simple majority vote and a 

union of all assigned codes as baselines. The pre-
dictions of base classifiers described in the previ-
ous section were combined using our re-
implementation of the stacked generalization pro-
posed by Ting and Witten.  

3 Results 

Table 1 shows the results obtained for the training 
set. The best stacking results were obtained using 
predictions of all four base classifiers on the text 
with deleted negated expressions and with check-
ing for allowed combinations. We retained all final 
predictions with probability of being a valid code 
greater than 0.3. Checking for the allowed combi-
nations for the ensemble classifiers degraded the F-
score significantly. 

 
Classifier F-score 
MTI 0.83 
SVM 0.87 (x-validation) 
k-NN 0.79 (x-validation) 
Pattern Matching 0.84 
Majority 0.82 
Stacking 0.89 

 
Table 1: Training results for each classifier, the ma-

jority and stacking 
 

Since stacking produced the best F-score on the 
training corpus and is known to be more robust 
than the individual classifiers, the corresponding 
results for the test corpus were submitted to the 
Challenge submission website. The stacking results 
for the test corpus achieved an F-score of 0.85 and 
a secondary, cost-sensitive accuracy score of 0.83. 
For comparison purposes, 44 Challenge submis-
sions had a mean F-score of 0.77 with a maximum 
of 0.89. Our F-score of 0.85 falls between the 70th 
and 75th percentiles. 

4 Discussion 

It is significant that it was fairly straightforward to 
port various methods developed for ad hoc MED-
LINE citation retrieval, indexing and classification 
to the assignment of codes to clinical text. The 
modifications to MTI consisted of replacing Re-
strict to MeSH with Restrict to ICD-9-CM, training 
the Related Citations method on clinical text and 
replacing MTI’s normal post-processing with a 
much simpler version. Preprocessing the text using 
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NegEx to remove negated expressions was a fur-
ther modification of the overall approach. 

It is noteworthy that a simple pattern-matching 
method performed as well as much more sophisti-
cated methods in the effort to fuse results from 
several methods into a final outcome. This unex-
pected success might be explained by the follow-
ing limitations of the Challenge. 

Possible limitations on the extensibility of the 
current research arise from two observations: (1) 
the Challenge cases were limited to two relatively 
narrow topics, cough/fever/pneumonia and uri-
nary/kidney problems; and (2) the clinical text was 
almost error-free, a situation that would not be ex-
pected in the majority of clinical text. It is possible 
that these conditions contributed to the success of 
the pattern-matching method but also caused 
anomalous behavior, such as the fact that simple 
frequency counts provided a better representation 
than IDF for the SVM and k-NN methods. 

Finally, as a result of low confidence in the 
ICD-9-CM code assignment, no codes were as-
signed to 29 records in the test set. It is worthwhile 
to explore the causes for such null assignments. 
One of the reasons for low confidence could be the 
aggressive pruning of the text by the negation algo-
rithm. For example, after removal of negated text 
in the sample report given in section 2.1, the only 
remaining text is “13-year 2-month - old female” 
from the clinical history field; this provided no 
evidence for code assignment. Secondly, in some 
cases the original text was not sufficient for confi-
dent code assignment. For example, for the docu-
ment with clinical history “Bilateral grade 3.” and 
impression “Interval growth of normal appearing 
Kidneys”, no code was assigned by the SVM, k-
NN, or pattern-matching classifiers. Code 593.70 
corresponding to the UMLS concept Vesicouret-
eral reflux with reflux nephropathy, unspecified or 
without reflux nephropathy was assigned by MTI 
with a very low confidence, which was not suffi-
cient for the final assignment of the code. The third 
reason for assigning no code to a document was 
the wide range of assignments provided by the 
base classifiers. For example, for the following 
document: “CLINICAL_HISTORY: 3-year - old 
male with history of left ureteropelvic and uret-
erovesical obstruction. Status post left pyeloplasty 
and left ureteral reimplantation. IMPRESSION: 1. 
Stable appearance and degree of hydronephrosis 
involving the left kidney. Stable urothelial thicken-

ing. 2. Interval growth of kidneys, left greater than 
right. 3. Normal appearance of the right kidney 
with interval resolution of right urothelial thicken-
ing.” MTI assigned codes 593.89 Other specified 
disorders of kidney and ureter and 591 Hy-
dronephrosis. Codes 593.70 Vesicoureteral reflux 
with reflux nephropathy, unspecified or without 
reflux nephropathy and 753.3 Double kidney with 
double pelvis were assigned by the k-NN classifier. 
Pattern matching resulted in assignment of code 
591 with fairly low confidence. No code was as-
signed to this document by the SVM classifier. 
Despite failing to assign codes to these 29 records, 
the conservative approach (using threshold) re-
sulted in better performance, achieving F-score 
0.85 compared to F-score 0.80 when all 1,634 
codes assigned by the base classifiers were used. 

5 Conclusion 

We are left with two conclusions. First, this re-
search confirms that combining several comple-
mentary methods for accomplishing tasks, ranging 
from ad hoc retrieval to categorization, produces 
results that are better and more stable than the re-
sults for the contributing methods. Furthermore, 
we have shown that the basic methods employing 
domain knowledge and advanced statistical algo-
rithms are applicable to clinical text without sig-
nificant modification. Second, although there are 
some limitations of the current Challenge test col-
lection of clinical text, we appreciate the efforts of 
the Challenge organizers in the creation of a test 
collection of clinical text. This collection provides 
a unique opportunity to apply existing methods to a 
new and important domain. 
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Appendix  
A sample of the input to NegEx for dictionary generation:  
 
C0002390 pneumonitis, allergic interstitial 
C0002390 allergic interstitial pneumonitis, nos 
C0002390 extrinsic allergic bronchiolo alveolitis 
C0002390 extrinsic allergic bronchiolo alveolitis, nos 
C0002390 hypersensitivity pneumonia 
C0002390 hypersensitivity pneumonia, nos 
C0002390 eaa  extrinsic allergic alveolitis 
C0002390 allergic extrinsic alveolitis nos (disorder) 
C0002390 extrinsic allergic alveolitis (disorder) 
C0002390 hypersensitivity pneumonitis nos (disorder) 

 
A sample of the dictionary generated by NegEx for later use in detecting negated expressions:  
 
C0002098 hypersensitivity granuloma (morphologic abnormality 
C0151726 hypersensitivity injection site 
C0020517 hypersensitivity nos 
C0429891 hypersensitivity observations 
C0002390 hypersensitivity pneumonia 
C0002390 hypersensitivity pneumonia, nos 
C0002390 hypersensitivity pneumonitides 
C0005592 hypersensitivity pneumonitides, avian 
C0002390 hypersensitivity pneumonitis 
C0182792 hypersensitivity pneumonitis antibody determination re-
agents 
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Abstract 

This paper describes a system capable of 

semi-automatically filling an XML template 

from free texts in the clinical domain (prac-

tice guidelines). The XML template includes 

semantic information not explicitly encoded 

in the text (pairs of conditions and ac-

tions/recommendations). Therefore, there is 

a need to compute the exact scope of condi-

tions over text sequences expressing the re-

quired actions. We present a system devel-

oped for this task. We show that it yields 

good performance when applied to the 

analysis of French practice guidelines.  

1 Introduction  

During the past years, clinical practices have con-

siderably evolved towards standardization and ef-

fectiveness. A major improvement is the develop-

ment of practice guidelines (Brownson et al., 2003). 

However, even if widely distributed to hospitals, 

doctors and other medical staff, clinical practice 

guidelines are not routinely fully exploited
1
. There 

is now a general tendency to transfer these guide-

lines to electronic devices (via an appropriate XML 

format). This transfer is justified by the assumption 

that electronic documents are easier to browse than 

paper documents.  

However, migrating a collection of texts to XML 

requires a lot of re-engineering. More precisely, it 

means analyzing the full set of textual documents 

so that they can fit with strict templates, as required 

either by XML schemas or DTD (document type 

definition). Unfortunately, most of the time, the 

                                                 
1 See (Kolata, 2004). This newspaper article is a good example 

of the huge social impact of this research area. 

semantic blocks of information required by the 

XML model are not explicitly marked in the origi-

nal text. These blocks of information correspond to 

discourse structures. 

This problem has thus renewed the interest for 

the recognition and management of discourse struc-

tures, especially for technical domains. In this 

study, we show how technical documents belong-

ing to a certain domain (namely, clinical practice 

guidelines) can be semi-automatically structured 

using NLP techniques. Practice guidelines describe 

best practices with the aim of guiding decisions and 

criteria in specific areas of healthcare, as defined 

by an authoritative examination of current evidence 

(evidence-based medicine, see Wikipedia or 

Brownson et al., 2003).  

The Guideline Elements Model (GEM) is an 

XML-based guideline document model that can 

store and organize the heterogeneous information 

contained in practice guidelines (Schiffman, 2000). 

It is intended to facilitate translation of natural lan-

guage guideline documents into a format that can 

be processed by computers. The main element of 

GEM, knowledge component, contains the most 

useful information, especially sequences of condi-

tions and recommendations. Our aim is thus to 

format these documents which have been written 

manually without any precise model, according to 

the GEM DTD (see annex A).  

The organization of the paper is as follows: first, 

we present the task and some previous approaches 

(section 2). We then describe the different process-

ing steps (section 3) and the implementation (sec-

tion 4). We finish with the presentation of some 

results (section 5), before the conclusion (section 6). 
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2 Document Restructuring: the Case of 

Practice Guidelines 

As we have previously seen, practice guidelines are 

not routinely fully exploited. One reason is that 

they are not easily accessible to doctors during 

consultation. Moreover, it can be difficult for the 

doctor to find relevant pieces of information from 

these guides, even if they are not very long. To 

overcome these problems, national health agencies 

try to promote the electronic distribution of these 

guidelines (so that a doctor could check recom-

mendations directly from his computer).  

2.1 Previous Work 

Several attempts have already been made to im-

prove the use of practice guidelines: for example 

knowledge-based diagnostic aids can be derived 

from them (e.g. Séroussi et al., 2001).  

GEM is an intermediate document model, be-

tween pure text (paper practice guidelines) and 

knowledge-based models like GLIF (Peleg et al., 

2000) or EON (Tu and Musen, 2001). GEM is thus 

an elegant solution, independent from any theory or 

formalisms, but compliant with other frameworks. 

GEM Cutter (http://gem.med.yale.edu/) is a 

tool aimed at aiding experts to fill the GEM DTD 

from texts. However, this software is only an inter-

face allowing the end-user to perform the task 

through a time-consuming cut-and-paste process. 

The overall process described in Shiffman et al. 

(2004) is also largely manual, even if it is an at-

tempt to automate and regularize the translation 

process.  

The main problem in the automation of the 

translation process is to identify that a list of rec-

ommendations expressed over several sentences is 

under the scope of a specific condition (conditions 

may refer to a specific pathology, a specific kind of 

patients, temporal restrictions, etc.). However, pre-

vious approaches have been based on the analysis 

of isolated sentences. They do not compute the ex-

act scope of conditional sequences (Georg and 

Jaulent, 2005): this part of the work still has to be 

done by hand.  

Our automatic approach relies on work done in 

the field of discourse processing. As we have seen 

in the introduction, the most important sequences 

of text to be tagged correspond to discourse struc-

tures (conditions, actions …). Although most re-

searchers agree that a better understanding of text 

structure and text coherence could help extract 

knowledge, descriptive frameworks like the one 

developed by Halliday and Hasan
2
 are poorly for-

malized and difficult to apply in practice.  

Some recent works have proposed more opera-

tional descriptions of discourse structures (Péry-

Woodley, 1998). Several authors (Halliday and 

Matthiessen, 2004; Charolles, 2005) have investi-

gated the use of non-lexical cues for discourse 

processing (e.g temporal adverbials like “in 1999”). 

These adverbials introduce situation frames in a 

narrative discourse, that is to say a ‘period’ in the 

text which is dependent from the adverbial.  

We show in this study that condition sequences 

play the same role in practice guidelines: their 

scope may run over several dependent clauses 

(more precisely, over a set of several recommenda-

tions). Our plan is to automatically recognize these 

using surface cues and processing rules.  

2.2 Our Approach 

Our aim is to semi-automatically fill a GEM tem-

plate from existing guidelines: the algorithm is 

fully automatic but the result needs to be validated 

by experts to yield adequate accuracy. Our system 

tries to compute the exact scope of conditional se-

quences. In this paper we apply it to the analysis of 

several French practice guidelines.  

The main aim of the approach is to go from a 

textual document to a GEM based document, as 

shown on Figure 1 (see also annex A). We focus on 

conditions (including temporal restrictions) and 

recommendations since these elements are of 

paramount importance for the task. They are espe-

cially difficult to deal with since they require to 

accurately compute the scope of conditions.  

The example on figure 1 is complex since it con-

tains several levels of overlapping conditions. We 

observe a first opposition (Chez le sujet non immu-

nodéprimé / chez le sujet immunodéprimé… Con-

cerning the non-immuno-depressed patient / Con-

cerning the immuno-depressed patient…) but a sec-

ond condition interferes in the scope of this first 

level (En cas d’aspect normal de la muqueuse ilé-

ale… If the ileal mucus seems normal…). The task 

involves recognizing these various levels of condi-

tions in the text and explicitly representing them 

through the GEM DTD.   

                                                 
2 See “the text-forming component in the linguistic system” in 

Halliday and Hasan (1976:23). 
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Figure 1. From the text to GEM  

 

What is obtained in the end is a tree where the 

leaves are recommendations and the branching 

nodes correspond to the constraints on conditions. 

2.3 Data  

We analyzed 18 French practice guidelines pub-

lished by French national health agency (ANAES, 

Agence Nationale d’Accréditation et d’Evaluation 

en Santé and AFSSAPS, Agence Francaise de Sé-

curité Sanitaire des Produits de Santé) between 

2000 and 2005. These practice guidelines focus on 

different pathologies (e.g. diabetes, high blood 

pressure, asthma etc.) as well as with clinical 

examination processes (e.g. digestive endoscopy). 

amination processes (e.g. digestive endoscopy). 

The data are thus homogeneous, and is about 250 

pages long (150,000+ words). Most of these prac-

tice guidelines are publicly available at: 

http://www.anaes.fr or http://affsaps.sante 

.fr. Similar documents have been published in 

English and other languages; the GEM DTD is 

language independent.  

3 Processing Steps 

Segmenting a guideline to fill an XML template is 

a complex process involving several steps. We de-

scribe here in detail the most important steps 

(mainly the way the scope of conditional sequences 

is computed), and will only give a brief overview 

of the pre-processing stages.  

3.1 Overview 

A manual study of several French practice guide-

lines revealed a number of trends in the data. We 

observed that there is a default structure in these 

guidelines that may help segmenting the text accu-

rately. This default segmentation corresponds to a 

highly conventionalized writing style used in the 

document (a norm). For example, the location of 

conditions is especially important: if a condition 

occurs at the opening of a sequence (a paragraph, a 

section…), its scope is by default the entire follow-

ing text sequence. If the condition is included in the 

sequence (inside a sentence), its default scope is 

restricted to the current sentence (Charolles, 2005 

for similar observations on different text types).  

This default segmentation can be revised if some 

linguistic cues suggest another more accurate seg-

mentation (violation of the norm). We make use of 

Halliday’s theory of text cohesion (Halliday and 

Hasan, 1976). According to this theory, some “co-

hesion cues” suggest extending the default segmen-

tation while some others suggest limiting the scope 

of the conditional sequence (see section 3.4).  

3.2 Pre-processing (Cue Identification) 

The pre-processing stage concerns the analysis of 

relevant linguistic cues. These cues vary in nature: 

they can be based either on the material structure or 

the content of texts. We chose to mainly focus on 

task-independent knowledge so that the method is 

portable, as far as possible (we took inspiration 

from Halliday and Matthiessen’s introduction to 

functional grammar, 2004). Some of these cues 

 
<recommandation> 
<decision.variable>Chez le sujet non immunodéprimé 
</decsion.variable> 
<decision.variable>en cas d'aspect macroscopique nor-
mal de la muqueuse colique </decison.variable> 
<action> des biopsies coliques nombreuses et étagées 
sont recommandées (…) </action> 
<action>Les biopsies isolées sont insuffisantes(..)      
</action> 
<action>L’exploration de l’iléon terminal est égale-
ment recommandée</action> 
</recommandation> 

 
<recommandation> 

<decision.variable>Chez le sujet non immunodéprimé 
</decsion.variable> 
<decision.variable>en cas d'aspect macroscopique nor-
mal de la muqueuse colique </decison.variable> 
<decision.variable>En cas d'aspect normal de la mu-
queuse iléale</decision.variable> 
<action>la réalisation de biospsies n'est pas systéma-
tique</action> 
</recommandation> 

 
<recommandation 

<decision.variable>Chez le sujet immunodépri-
mé</decision.variable> 
<action> il est nécessaire de réaliser des biopsies 
systématiques(…)</action> 
</recommandation> 

 

Chez le sujet non immunodéprimé, en cas d'as-
pect macroscopique normal de la muqueuse co-
lique, des biopsies coliques nombreuses et étagées 
sont recommandées (…). Les biopsies isolées sont 
insuffisantes (…). 
L'exploration de l'iléon terminal est également re-
commandée (grade C). En cas d'aspect normal de 
la muqueuse iléale (…), la réalisation de biospsies 
n'est pas systématique (accord professionnel). 
 
Chez le sujet immunodéprimé, il est nécessaire de 
réaliser des biopsies systématiques (…) 
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(especially connectors and lexical cues) can be 

automatically captured by machine learning meth-

ods.  

Material structure cues. These features include the 

recognition of titles, section, enumerations and 

paragraphs. 

Morpho-syntactic cues. Recommendations are not 
expressed in the same way as conditions from a 
morpho-syntactic point of view. We take the fol-
lowing features into account: 

− Part of speech tags. For example recommandé 

should be a verb and not a noun, even if the 

form is ambiguous in French; 

− Tense and mood of the verb. Present and future 

tenses are relevant, as well as imperative and 

conditional moods. Imperative and future al-

ways have an injunctive value in the texts. In-

junctive verbs (see lexical cues) lose their in-

junctive property when used in a past tense. 

Anaphoric cues. A basic and local analysis of ana-

phoric elements is performed. We especially fo-

cused on expressions such as dans ce cas, dans les 

N cas précédents (in this case, in the n preceding 

cases…) which are very frequent in clinical docu-

ments. The recognition of such expressions is 

based on a limited set of possible nouns that oc-

curred in context, together with specific constraints 

(use of demonstrative pronouns, etc).   

Conjunctive cues (discourse connectors). Condi-

tions are mainly expressed through conjunctive 

cues. The following forms are especially interest-

ing: forms prototypically expressing conditions (si, 

en cas de, dans le cas où… if, in case of…); Forms 

expressing the locations of some elements (chez, en 

présence de... in presence of…); Forms expressing 

a temporal frame (lorsque, au moment où, avant 

de… when, before…) 

Lexical cues. Recommendations are mainly ex-

pressed through lexical cues. We have observed 

forms prototypically expressing recommendations 

(recommander, prescrire, … recommend, pre-

scribe), obligations (devoir, … shall) or options 

(pouvoir, …  can). Most of these forms are highly 

ambiguous but can be automatically acquired from 

an annotated corpus. Some expressions from the 

medical domains can be automatically extracted 

using a terminology extractor (we use Yatea, see 

section 4, “Implementation”).  

3.3 Basic Segmentation 

A basic segment corresponds to a text sequence 

expressing either a condition or a recommendation. 

It is most of the time a sentence, or a proposition 

inside a sentence.  

Some of the features described in the previous 

section may be highly ambiguous. For this reason 

basic segmentation is rarely done according to a 

single feature, but most of the time according to a 

bundle of features acquired from a representative 

corpus. For example, if a text sequence contains an 

injunctive verb with an infinitive form at the begin-

ning of a sentence, the whole sequence is typed as 

action. The relevant sets of co-occurring features 

are automatically derived from a set of annotated 

practice guidelines, using the chi-square test to cal-

culate the dissimilarity of distributions.  

After this step, the text is segmented into typed 

basic sequences expressing either a recommenda-

tion or a condition (the rest of the text is left 

untagged).  

3.4 Computing Frames and Scopes 

As for quantifiers, a conditional element may have 
a scope (a frame) that extends over several basic 
segments. It has been shown by several authors 
(Halliday and Matthiessen, 2004; Charolles, 2005) 
working on different types of texts that conditions 
detached from the sentence have most of the time a 
scope beyond the current sentence whereas condi-
tions included in a sentence (but not in the begin-
ning of a sentence) have a scope which is limited to 
the current sentence. Accordingly we propose a 
two-step strategy: 1) the default segmentation is 
done, and 2) a revision process is used to correct 
the main errors caused by the default segmentation 
(corresponding to the norm). 

Default Segmentation  

We propose a strategy which makes use of the no-
tion of default. By default: 

1. Scope of a heading goes up to the next head-

ing; 

2. Scope of an enumeration’s header covers all 

the items of the enumeration ; 

3. If a conditional sequence is detached (in the 

beginning of a paragraph or a sentence), its 

scope is the whole paragraph; 

4. If the conditional sequence is included in a 

sentence, its scope is equal to the current 

sentence.  
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Cases 3 and 4 cover 50-80% of all the cases, de-
pending on the practice guidelines used. However, 
this default segmentation is revised and modified 
when a linguistic cue is a continuation mark within 
the text or when the default segmentation seems to 
contradict some cohesion cue.  

Revising the Default Segmentation 

There are two cases which require revising the de-

fault segmentation: 1) when a cohesion mark indi-

cates that the scope is larger than the default unit; 

2) when a rupture mark indicates that the scope is 

smaller. We only have room for two examples, 

which, we hope, give a broad idea of this process. 
1) Anaphoric relations are strong cues of text 

coherence: they usually indicate the continuation of 
a frame after the end of its default boundaries.  
 

Figure 2. The last sentence introduced by dans les 

deux cas is under the scope of the conditions intro-

duced by lorsque3. 

In Figure 2, the expression dans les deux cas (in 
the two cases…) is an anaphoric mark referring to 
the two previous utterances. The scope of the con-
ditional segment introduced by lorsque (that would 
normally be limited to the sentence it appears in) is 
thus extended accordingly.  

2) Other discourse cues are strong indicators 
that a frame must be closed before its default 
boundaries. These cues may indicate some contras-
tive, corrective or adversative information (cepen-
dant, en revanche… however). Justifications cues 
(en effet, en fait … in effect) also pertain to this 
class since a justification is not part of the action 
element of the GEM DTD.  

Figure 3 is a typical example. The linguistic cue 
en effet (in effect) closes the frame introduced by  
 

                                                 
3 In figures 2 and 3, bold and grey background are used only 

for sake of clarity; actual documents are made of text without 

any formatting. 

Figure 3. The last sentence contains a justification cue 

(en effet) which limits the scope of the condition in the 

preceding sentence.  

Chez les patients ayant initialement...(<1g/l) since 
this sequence should fill the explanation element 
of the GEM DTD and is not an action element. 

4 Implementation 

Accurate discourse processing requires a lot of in-

formation ranging from lexical cues to complex co- 

occurrence of different features. We chose to im-

plement these in a classic blackboard architecture 

(Englemore and Morgan, 1988). The advantages of 

this architecture for our problem are easy to grasp: 

each linguistic phenomenon can be treated as an 

independent agent; inference rules can also be 

coded as specific agents, and a facilitator controls 

the overall process. 

Basic linguistic information is collected by a set 

of modules called “linguistic experts”.  Each mod-

ule is specialized in a specific phenomenon (text 

structure recognition, part-of-speech tagging, term 

spotting, etc.). The text structure and text format-

ting elements are recognized using Perl scripts. 

Linguistic elements are encoded in local grammars, 

mainly implemented as finite-state transducers 

(Unitex
4
). Other linguistic features are obtained 

using publicly available software packages, e.g. a 

part-of-speech tagger (Tree Tagger
5
) and a term 

extractor (Yatea
6
), etc. Each linguist expert is en-

capsulated and produces annotations that are stored 

in the database of facts, expressed in Prolog (we 

thus avoid the problem of overlapping XML tags, 

which are frequent at this stage). These annotations 

are indexed according to the textual clause they 

appear in, but linear ordering of the text is not cru-

                                                 
4 http://www-igm.univ-mlv.fr/~unitex/ 
5 http://www.ims.uni-stuttgart.de/projekte/cor 

plex/TreeTagger/DecisionTreeTagger.html 
6 http://www-lipn.univ-paris13.fr/~hamon/YaTeA 

Chez les patients ayant initialement une concentra-
tion très élevée de LDL-cholestérol, et notamment 
chez les patients à haut risque dont la cible théra-
peutique est basse (<1g/l), le prescripteur doit garder 
à l’esprit que la prescription de statine à fortes doses ou 
en association nécessite une prise en compte au cas par 
cas du rapport bénéfice/risque et ne doit jamais être sys-
tématique. En effet, les fortes doses de statines et les 
bithérapies n’ont pas fait l’objet à ce jour d’une évaluation 
suffisante dans ces situations. 
 
(Prise en charge thérapeutique du patient dyslipidémique, 2005, 

p4) 

L’indication d’une insulinothérapie est recommandée 
lorsque l’HbA1c est > 8%, sur deux contrôles suc-
cessifs sous l’association de sulfamides/metformine 
à posologie optimale. Elle est laissée à l’appréciation par 
le clinicien du rapport bénéfices/inconvénients de 
l’insulinothérapie lorsque l’HbA1c est comprise entre 
6,6% et 8% sous la même association. Dans les deux 
cas, la diététique aura au préalable été réévaluée et un 
facteur intercurrent de décompensation aura été recher-
chée (accord professionnel). 
 

Stratégie de prise en charge du patient diabétique de type 2 à 
l’exclusion de la prise en charge des complications (2000) 
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cial for further processing steps since the system 

mainly looks for co-occurrences of different cues. 

The resulting set of annotations constitutes the 

“working memory” of the system.  

Another set of experts then combine the initial 

disseminated knowledge to recognize basic seg-

ments (section 3.3) and to compute scopes and 

frames (section 3.4). These experts form the “infer-

ence engine” which analyzes information stored in 

the working memory and adds new knowledge to 

the database. Even when linear order is irrelevant 

for the inference process new information is in-

dexed with textual clauses, to enable the system to 

produce the original text along with annotation.  

 A facilitator helps to determine which expert 

has the most information needed to solve the prob-

lem. It is the facilitator that controls, for example, 

the application of default rules and the revision of 

the default segmentation. It controls the chalk, me-

diating among experts competing to write on the 

blackboard. Finally, an XML output is produced 

for the document, corresponding to a candidate 

GEM version of the document (no XML tags over-

lap in the output since we produce an instance of 

the GEM DTD; all potential remaining conflicts 

must have been solved by the supervisor). To 

achieve optimal accuracy this output is validated 

and possibly modified by domain experts.  

5 Evaluation 

The study is based on a corpus of 18 practice 

guidelines in French (several hundreds of frames), 

with the aid of domain experts. We evaluated the 

approach on a subset of the corpus that has not 

been used for training.  

5.1 Evaluation Criteria 

In our evaluation, a sequence is considered correct 

if the semantics of the sequence is preserved. For 

example Chez l’obèse non diabétique (accord 

professionnel) (In the case of an obese person 

without any diabetes (professional approval)), 

recognition is correct even if professional approval 

is not stricto sensu part of the condition. On the 

other hand, Chez l’obèse (In the case of an obese 

person) is incorrect. The same criteria are applied 

for recommendations. 

We evaluate the scope of condition sequences by 

measuring whether each recommendation is linked 

with the appropriate condition sequence or not.  

5.2 Manual Annotation and Inter-annotator 

Agreement 

The data is evaluated against practice guidelines 

manually annotated by two annotators: a domain 

expert (a doctor) and a linguist. In order to evaluate 

inter-annotator agreement, conditions and actions 

are first extracted from the text. The task of the 

human annotators is then to (manually) build a tree, 

where each action has to be linked with a condi-

tion. The output can be represented as a set of cou-

ples (condition – actions). In the end, we calculate 

accuracy by comparing the outputs of the two an-

notators (# of common couples). 

Inter-annotator agreement is high (157 nodes out 

of 162, i.e. above .96 agreement). This degree of 

agreement is encouraging. It differs from previous 

experiments, usually done using more heterogene-

ous data, for example, narrative texts. Temporals 

(like “in 1999”) are known to open a frame but 

most of the time this frame has no clear boundary. 

Practice guidelines should lead to actions by the 

doctor and the scope of conditions needs to be clear 

in the text. 

In our experiment, inter-annotator agreement is 

high, especially considering that we required an 

agreement between an expert and non-expert. We 

thus make the simplified assumption that the scope 

of conditions is expressed through linguistic cues 

which do not require, most of the time, domain-

specific or expert knowledge. Yet the very few 

cases where the annotations were in disagreement 

were clearly due to a lack of domain knowledge by 

the non-expert.  

5.3 Evaluation of the Automatic Recognition 

of Basic Sequences 

The evaluation of basic segmentation gives the fol-

lowing results for the condition and the recommen-

dation sequences. In the table, P is precision; R is 

recall; P&R is the harmonic mean of precision and 

recall
 
 (P&R = (2*P*R) / (P+R), corresponding to a 

F-measure with a β factor equal to 1). 
 

Conditions: 

 

 Without domain 

knowledge 

With domain 

knowledge 

P 1 1 

R .83 .86 

P&R .91 .92 
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Recommendations: 

 

 Without domain 

knowledge 

With domain 

knowledge 

P 1 1 

R .94 .95 

P&R .97 .97 

 

Results are high for both conditions and recom-

mendations.  

The benefit of domain knowledge is not evident 

from overall results. However, this information is 

useful for the tagging of titles corresponding to 

pathologies. For example, the title Hypertension 

artérielle (high arterial blood pressure) is equiva-

lent to a condition introduced by in case of… It is 

thus important to recognize and tag it accurately, 

since further recommendations are under the scope 

of this condition. This cannot be done without do-

main-specific knowledge. 

The number of titles differs significantly from 

one practice guideline to another. When the num-

ber is high, the impact on the performance can be 

strong. Also, when several recommendations are 

dependent on the same condition, the system may 

fail to recognize the whole set of recommendations.  

Finally, we observed that not all conditions and 

recommendations have the same importance from a 

medical point of view – however, it is difficult to 

quantify this in the evaluation.  

5.4 Evaluation of the Automatic Recognition 

of the Scope of Conditions 

The scope of conditions is recognized with accu-

racy above .7 (we calculated this score using the 

same method as for inter-annotator agreement, see 

section 5.2).  

This result is encouraging, especially consider-

ing the large number of parameters involved in dis-

course processing. In most of successful cases the 

scope of a condition is recognized by the default 

rule (default segmentation, see section 3.4). How-

ever, some important cases are solved due to the 

detection of cohesion or boundary cue (especially 

titles).  

The system fails to recognize extended scopes 

(beyond the default boundary) when the cohesion 

marks correspond to lexical items which are related 

(synonyms, hyponyms or hypernyms) or to com-

plex anaphora structures (nominal anaphora; hypo-

nyms and hypernyms can be considered as a spe-

cial case of nominal anaphora). Resolving these 

rarer complex cases would require “deep” domain 

knowledge which is difficult to implement using 

state-of-art techniques.  

6 Conclusion 

We have presented in this paper a system capable 

of performing automatic segmentation of clinical 

practice guidelines. Our aim was to automatically 

fill an XML DTD from textual input. The system is 

able to process complex discourse structures and to 

compute the scope of conditional segments span-

ning several propositions or sentences. We show 

that inter-annotator agreement is high for this task 

and that the system performs well compared to 

previous systems. Moreover, our system is the first 

one capable of resolving the scope of conditions 

over several recommendations.  

As we have seen, discourse processing is diffi-

cult but fundamental for intelligent information 

access. We plan to apply our model to other lan-

guages and other kinds of texts in the future. The 

task requires at least adapting the linguistic com-

ponents of our system (mainly the pre-processing 

stage). More generally, the portability of discourse-

based systems across languages is a challenging 

area for the future. 
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Abstract

This paper describes experiments in classi-
fying sentences of medical abstracts into a
number of semantic classes given by section
headings in structured abstracts. Using con-
ditional random fields, we obtainF -scores
ranging from 0.72 to 0.97. By using a small
set of sentences that appear under thePAR-
TICPANTS heading, we demonstrate that it is
possible to recognize sentences that describe
population characteristics of a study. We
present a detailed study of the structure of
abstracts of randomized clinical trials, and
examine how sentences labeled underPAR-
TICIPANTS could be used to summarize the
population group.

1 Introduction

Medical practitioners are increasingly apply-
ing evidence-based medicine (EBM) to support
decision-making in patient treatments. The aim
of EBM (Sackett, 1998) is to provide improved
care leading to better outcomes through locating
evidence for a clinical problem, evaluating the
quality of the evidence, and then applying to a
current problem at hand. However, the adoption of
EBM is hampered by the overwhelming amount
of information available, and insufficient time and
skills on the clinician’s part to locate and synthesize
the best evidence in the scientific literature.

MEDLINE abstracts about randomized clinical tri-
als (RCTs) play a critical role in providing the best
evidence for the latest interventions for any given

conditions. TheMEDLINE database now has 16 mil-
lion bibliographic entries, many of them include the
abstract and more than 3 million of these were pub-
lished in the last 5 years (Hunter, 2006).

To alleviate the information overload, some
resources such as the Cochrane Collabo-
ration (Cochrane, 2007), Evidence-Based
Medicine (EBM, 2007), the ACP Journal
Club (ACP, 2007) and BMJ Clinical Evi-
dence (BMJCE, 2007), employ human experts
to summarize knowledge within RCTs through
extensive searches and critical assessments.

In (Sim, 2000), RCT information is entered into
electronic knowledge bases or“trial banks” , eas-
ing the task for systematic reviewing and critical
appraisal. This project requires manual entry of
descriptions about the design and execution (sub-
jects, recruitment, treatment assignment, follow-up),
and hence, only small numbers of RCTs have been
archived thus far.

The goal of our research is to use natural language
processing to extract the most important pieces of in-
formation from RCTs for the purpose of automatic
summarization, tailored towards the medical prac-
titioner’s clinical question at hand. Ultimately, it
is our vision that data mined from full text articles
of RCTs not only aid clinicians’ assessments but re-
searchers who are conducting meta-analyses.

In this paper, we examine the use of section head-
ings that are frequently given in abstracts of medical
journal articles. These section headings are topic-
independent. Effectively they define the discourse
structure for the abstract, and provide semantic la-
bels to the sentences that fall under them.
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Other researchers have recognized the potential
utility of these heading (McKnight, 2003; Xu, 2006;
Lin, 2006). It has also been recognized that scien-
tific abstracts with such labels could be of impor-
tance to text summarization, information retrieval
and question answering (Lee, 2006; Zweigenbaum,
2003). We share similar goals to previous research;
the section headings of these structured medical ab-
stracts can be used as training data for building la-
belers that can tag unstructured abstracts with dis-
course structure. But also, there is a large number
of heading names. Sentences that occur under these
heading names form a labeled training set which
could be used to build a classifier that recognizes
similar sentences. Ultimately, we would like to build
finer-grained classifiers that exploit these semantic
labels.

In our work, we seek to demonstrate that infor-
mation about patient characteristics can now be ex-
tracted from structured and unstructured abstracts.
We are motivated by the fact that patient character-
istics is one of the fundamental factors most perti-
nent to evaluation of relevance to a clinical question.
The total number of subjects in a trial reflects on the
quality of the RCT, and additional factors such as
age, gender and other co-existing conditions, will be
crucial for assessing whether an RCT is relevant to
the medical practitioner’s immediate patient.

This paper is organized as follows. In Section 1
we will describe how the RCT abstracts were ob-
tained, and we present a study of the discourse head-
ings that occur in our document corpus. Section 3
will detail our sentence classification experiments.
We first explore classification in which the abstracts
are labeled under five subheadings, one of which de-
scribes the patients or population group. We also
perform classification using a combined two-stage
scheme, bootstrapping from partially labeled data.
Finally in Section 4, we consider how well thePAR-

1. RESULTS 6. METHODS / RESULTS

2. METHODS 7. OBJECTIVE

3. CONCLUSION 8. PATIENTS / METHODS

4. BACKGROUND 9. PURPOSE

5. CONCLUSION 10. DESIGN

Table 1: The most common headings in RCT ab-
stracts.

TICIPANTS labeled sentences capture sentences con-
taining the total number of participants in a trial. In
Section 5, we will give a detailed analysis of the la-
beled sentences.

2 The Data

2.1 Corpus Creation

The current corpus is obtained by aMEDLINE search
for RCTs. We did not constrain publications by
their date. For the purpose of constraining the size
of our corpus in these preliminary experiments, it
was our intention to use RCTs pertaining to a fixed
set of clinical conditions. Hence, we conducted a
MEDLINE search for RCTs with the following key-
words: asthma, diabetes, breast cancer, prostate can-
cer, erectile dysfunction, heart failure, cardiovascu-
lar, angina. The resultant corpus contains 7535 ab-
stracts of which 4268 are structured.

2.2 Structure of Medical Abstracts

Structured abstracts were introduced in 1987 (Ad-
Hoc, 2005) to help clinical readers to quickly se-
lect appropriate articles, and allow more precise in-
formation retrieval. However, currently, the major-
ity of medical abstracts remain unstructured. Previ-
ous studies have concluded that while many scien-
tific abstracts follow consistent patterns (e.g. Intro-
duction, Problem, Method, Evaluation, Conclusion)
many still contain missing sections or have differ-
ing structures (Orasan, 2001; Swales, 1990; Meyer,
1990). Journals vary widely in their requirements
for abstract structures.

We have conducted a study of the structured ab-
stracts in our corpus. Of 4268 structured abstracts,
we have found a total of 238 unique section head-
ings. The most common ones are shown in Table 1.
To investigate the numbers of variations in the ab-
stract structure, we first manually map headings that

Class Example Heading Names
Aim AIM , AIMS , AIM OF THE STUDY..
Setting SETTING, SETTINGS, STUDY SETTING..
Participants PARTICIPANTS, PATIENTS, SUBJECTS..
Setting/ PARTICIPANTS AND SETTINGS,
Subjects SETTING/PATIENTS..

Table 2: Examples of manual mappings for heading
names into equivalence classes.
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Structure of Abstracts % of Corpus
BACKGROUND, METHOD, RESULT, CONCLUSION 16%

AIM , METHOD, RESULT, CONCLUSION 14%
AIM , PATIENT AND METHOD, RESULT, CONCLUSION 8.5%

BACKGROUND, AIM , METHOD, RESULT, CONCLUSION 7.6%
BACKGROUND, METHOD AND RESULTS, CONCLUSION 6.6%

AIM , PARTICIPANTS, DESIGN, MEASUREMENTS, RESULT, CONCLUSION <1%
CONTEXT, DESIGN, SETTING, PARTICIPANTS, OUTCOME MEASURES, RESULT, CONCLUSION <1%

AIM , DESIGN AND SETTING, PARTICIPANTS, INTERVENTION <1%
MEASUREMENTS AND MAIN RESULTS, CONCLUSION

Table 3: Examples of the patterns that occur in the section headings of structured RCT abstracts.

are essentially semantically equivalent to the same
classes, resulting in 106 classes. Examples of these
mappings are shown in Table 2. After the class
mappings are applied, it turns out that there are still
400 different patterns in the combinations of section
headings in these medical abstracts, with over 90%
of these variations occurring less than 10 times. The
most common section heading patterns are shown in
Table 3. Some of the less common ones are also
shown.

In studying the structure of these medical ab-
stracts, we find that the variation in structural or-
dering is large, and many of the heading names are
unique, chosen at the discretion of the paper author.
Some of the most frequent heading names are also
compound headings such as:METHODS/RESULTS,
RESULTS/CONCLUSION, PATIENTS/RESULTS, SUB-
JECTS AND SETTINGS.

3 Sentence Classification Experiments

3.1 Extracting Participant Sentences

In this work, we seek to build a classifier using train-
ing data from the semantic labels already provided
by structured abstracts. It is our intention ultimately
to label both structured and unstructured abstracts
with the semantic labels that are of interest for the
purposes of information extraction and answering
specific questions regarding the trial. In our ap-
proach, we identify in our structured abstracts the
ones with section headings about patient character-
istics. These are collapsed under one semantic class
and used as training data for a classifier.

From our 4268 structured abstracts, all the head-
ing names are examined and are re-mapped by hand
to one of five heading names:AIM , METHOD, PAR-
TICIPANTS, RESULTS, CONCLUSION. Most head-

ing names can be mapped to these general headings
but the subset containing compound headings such
asMETHOD/RESULT are discarded.

All the abstracts are segmented into sentences and
tokenized via Metamap (Aronson, 2001). Some ab-
stracts are discarded due to sentence segmentation
errors. The remainder (3657 abstracts) forms the
corpus that we will work with here. These abstracts
are randomly divided into a training set and an initial
test set, and for purposes of our experiments, they
are further subdivided into abstracts with thePAR-
TICIPANTS label and those without. The exact size
of our data sets are given in Table 4.

Although abstracts in Train Set A are generally
structured as (AIM , METHOD, RESULTS, CONCLU-
SION), they contain sentences pertaining to patient
or population group largely in theMETHOD sec-
tion. In the following, we will explore three ways
for labeling sentences in the abstract including label-
ing for sentences that describe the population group.
The first employs a 5-class classifier, the second uses
a two-stage approach and the third employs an ap-
proach which uses partially labeled data.

3.2 Using Labeled Data Only

Using only abstracts from Train Set B, all sen-
tences are mapped into one of 5 classes:AIM , PAR-
TICIPANTS, METHOD, RESULTS, CONCLUSION.

Data Set Number of Number of
Abstracts Sentences

Total in Corpus 3657 45k
Total Train Set 3439 42k

Train Set A (noPARTICIPANTS) 2643 32k
Train Set B (w/PARTICIPANTS) 796 10k

Test Set (w/PARTICIPANTS) 62 878

Table 4: Sizes of data sets.
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Recall Precision F -score
CRF Accuracy = 84.4%
Aim 0.98 0.91 0.95

Method 0.52 0.73 0.61
Participants 0.79 0.73 0.76

Results 0.95 0.87 0.91
Conclusion 0.91 0.97 0.94

SVM Accuracy = 80.2%
Aim 0.87 0.91 0.90

Method 0.64 0.68 0.67
Participants 0.73 0.70 0.72

Results 0.89 0.84 0.86
Conclusion 0.80 0.88 0.83

Table 5: Classification of sentences in RCT abstracts
into 5 semantic classes using CRFs and SVMs. The
recall, precision andF -score are reported on our un-
seen test set.

The PARTICIPANTS class subsume all headings
that include mention of population characteristics.
These include compound headings such as:SET-
TING/POPULATION, PATIENTS/DESIGN. Sentences
associated with these compound headings often in-
clude long sentences that describe the participant
group as well as a second aspect of the study such
as setting or design.

We build a 5-class classifier using linear-chain
conditional random fields (CRFs).1 CRFs (Sutton,
2006) are undirected graphical models that are dis-
criminatively trained to maximize the conditional
probability of a set of output variables given a set of
input variables. We simply use bag-of-words as fea-
tures because past studies (McKnight, 2003), using
n-gram-based features did not improve accuracies.2

As a baseline comparison, we have performed
classification using a Support Vector Machine
(SVM) classifier (Burges, 1998; Witten, 2005), with
a radial basis functions (RBF) kernel. To help model
the sequential ordering, a normalized integer for the
sentence number in the abstract is included as a fea-
ture.

Experimental results are shown in Table 5. CRFs
clearly outperform SVMs in this classification task.
This may in part be attributable to the explicit
sequential modeling in the CRFs compared with

1We used the SimpleTagger command line interface of the
Mallet software package (McCallum, 2002).

2In other experiments, attempts to use stemming and re-
moval of stop words also did not improve performance.

SVMs. While our training set (796 abstracts in Train
set B) is substantially smaller than that reported in
previous studies (McKnight, 2003; Lin, 2006; Xu,
2006), theF -score forAIM , RESULTS, CONCLU-
SION are comparable to previous results. By far the
largest sources of classification error are the confu-
sions betweenMETHOD and PARTICIPANTS class.
In training we have included into thePARTICIPANTS

class all sentences that come under compound
headings, and therefore thePARTICIPANTS section
can often encompass several sentences that contain
detailed information regarding the intervention,
and the type of study, as exemplified below.

Doppler echocardiography was performed in 21 GH de-
ficient patients after 4 months placebo and 4 months GH
therapy, in a double blind cross-over study. In an open
design study, 13 patients were reinvestigated following
16 months and 9 patients following 38 months of GH
therapy. Twenty-one age and sex-matched normal con-
trol subjects were also investigated.

Nonetheless, information about the patient popula-
tion is embedded within these sentences.

3.3 Using a Two-Stage Method

An alternative approach is to adopt a two-stage hi-
erarchical strategy. First we build a classifier which
performs a 4-way classification based on the labels
AIM , METHOD, RESULTS, CONCLUSION, and a sec-
ond stage binary classifier tags all theMETHOD sen-
tences into eitherMETHOD or PARTICIPANTS. There
are two distinct advantages to this approach. (1) In
our 5-class classifier, it is clear thatMETHOD and
PARTICIPANTS are confusable and a dedicated clas-
sifier to perform this subtask may be more effective.
(2) The corpus of abstracts with only the 4 classes
labeled is much larger (3439 abstracts), and hence
the resultant classifier is likely to be trained more
robustly. Our first stage classifier is a CRF tagger.
It is trained on the combined training sets A and B,
whereby all sentences in the structured abstracts are
mapped to the 4-class labels. The second stage bi-
nary classifier is an SVM classifier. The SVM clas-
sifier has been augmented with additional features of
the semantic labels tagged via Metamap tagger. It is
trained on the subset of Train Set A (3499 sentences)
that is labeled as eitherMETHOD or PARTICIPANTS.

Classification results for the unseen test set are re-
ported in Table 6. The 4-class classifier yieldsF -
scores between 0.92 and 0.96. We report results for
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(1) 4-class Accuracy = 92.7%
Recall Precision F -score

Aim 0.98 0.94 0.96
Method 0.89 0.95 0.92
Results 0.95 0.89 0.92

Conclusion 0.91 0.97 0.94
(2) 2-class Accuracy = 80.1%
Method 0.73 0.83 0.78

Participants 0.87 0.78 0.81
(3) 5-class Accuracy = 86.0%

Aim 0.96 0.92 0.96
Method 0.66 0.79 0.71

Participants 0.77 0.72 0.75
Results 0.94 0.89 0.92

Conclusion 0.91 0.97 0.94

Table 6: (1) Classification using CRFs into 4 ma-
jor semantic classes with combined Train Set A and
B as training data. (2) Binary SVM classification
of a subset of test set sentences. (3) Classification
into 5 classes as described in Section 3.3. All results
(recall, precision andF -score) are reported on the
unseen test set.

the binary SVM classifier on the subset of test set
sentences (253 sentences) that are eitherMETHOD

or PARTICIPANTS in Table 6.
The two stage method here has yielded some

gains in performance for each class except forPAR-
TICIPANTS. The gains are likely to have been due to
increased training data particularly for the classes,
AIM , RESULTSandCONCLUSION.

3.4 Augmenting with Partially Labeled Data

We investigate a second method for leveraging the
data available in Train Set A. We hypothesize that
many sentences within theMETHOD section of Train
Set A do in fact describe patient information and
could be used as training data. We propose a boot-
strapping method whereby some of the sentences in
Train Set A are tagged by a binary SVM classifier
and used as training data in the 5-class CRF classi-
fier. The following describes each step:

1. A binary SVM classifier is trained on the sub-
set of sentences in Train Set B labeled with
METHOD andPARTICIPANTS.

2. The trained SVM classifier is used to label all
the sentences in Train Set A that are originally
labeled with theMETHOD class.

Recall Precision F -score
5-class Accuracy = 87.6%
Aim 0.99 0.95 0.97

Method 0.67 0.77 0.72
Participants 0.90 0.77 0.83

Results 0.91 0.92 0.92
Conclusion 0.90 0.97 0.93

Table 7: Classification into 5 classes as described
in Section 3.4. All results (recall, precision andF -
score) are reported on the unseen test set.

3. All the sentences in Train Set A are now labeled
in terms of the 5 classes, and a score is avail-
able from the SVM output is associated with
those sentences labeled as eitherMETHOD or
PARTICIPANTS. The abstracts that contain sen-
tences scoring above a pre-determined thresh-
old score are then pooled with sentences in
Train Set B into a single training corpus. We
tuned the threshold value by testing on a de-
velopment set held out from Train Set B. As a
result, 1217 sentences from Train Set A is com-
bined with Train Set B.

4. The final training corpus is used to train a CRF
tagger to label sentences into one of 5 classes.

The results of classification on the unseen test set
are reported in Table 7. Overall accuracy for classifi-
cation improves to 87.6% primarily because there is
a marked improvement is observed for theF -scores
of the PARTICIPANTS class. Our best results here
are comparable to those previously reported on sim-
ilar tasks on the class,AIM , RESULTS and CON-
CLUSION (Xu, 2006; Lin, 2006). TheF -score for
METHOD is lower because introducing aPARTICI-
PANTS label has increased confusability.

4 Extraction of Number of Patients

We have demonstrated that for a structured abstract
it is possible to predict sentences that are associ-
ated with population characteristics. However, our
ultimate objective is to extract these kinds of sen-
tences from unstructured abstracts, and even to ex-
tract more fine-grained information. In this section,
we will examine whether labeling sentences into one
of 5 classes can aid us in the extraction of the total
number of patients from an RCT.
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Abstracts w/ % tagged as
Total Subjects PARTICIPANTS

Structured 46 87%
Unstructured 103 72%

Table 8: Extraction of the total number of subjects
in a trial in a human annotated test set, as described
in Section 4.2

4.1 Annotation

In a concurrent annotation effort to label RCT ab-
stracts, human annotators manually tagged a sepa-
rate test set of 204 abstracts with the total number
of participants in each study. Of the 204 abstracts,
148 are unstructured and 56 are structured. None of
these 204 abstracts are part of the training set, de-
scribed in this paper.

4.2 Experiments

The abstracts from this annotated test set are pro-
cessed by the classifier described in Section 3.4. For
all the abstracts which mention the total number of
participants in the RCT, we compute the frequency
for which this is included in the sentences labeled as
PARTICIPANTS. Results are depicted in Table 8.

Upon subsequent examination of the test set, it is
found that only 82% (46/56) of the structured ab-
stracts and 70% (103/148) of unstructured abstracts
contain information about total number of partici-
pants in the trial. As seen in Table 8, in 87% of the
46 structured abstracts, and in 72% of the 103 un-
structured abstracts, the total number of participants
are mentioned in the labeledPARTICIPANTS sen-
tences. The extraction of the total number of partici-
pants is significantly worse in unstructured abstracts
which do not adhere to the strict discourse structures
given by the headings of structured abstracts. In
13% (13/103) of the unstructured abstracts, the total
number of participants appears in the first sentence,
which is usually tagged as theAIM . It is evident that
in the absence of structure, patient information can
occur in any sentence in the abstract, or for that mat-
ter, it may appear only in the body of the paper. Our
method of training first on structured abstracts may
be a strong limitation to extraction of information
from unstructured abstracts.

Even for the structured abstracts in the test set, 9%
(4/46) of the set of abstracts containing population

number actually mention the number in theAIM or
RESULTS section, rather than theMETHOD or PAR-
TICIPANTS. Only 12 abstracts contain explicit head-
ings referring to participants, where the total number
of subjects in the trial is mentioned under the corre-
sponding heading.

In this task, we only consider that total number of
subjects enrolled in a study, and have yet to account
for additional population numbers such as the drop
out rate, the follow-up rate, or the number of sub-
jects in each arm of a study. These are often reported
in an abstract without mentioning the total number
of patients to begin with. The classifier will tag sen-
tences that describe these asPARTICIPANT sentences
nonetheless.

5 Analysis and Discussion

We will further analyze the potential for using sen-
tences tagged asPARTICIPANTS as summaries of
population characteristics for a trial. Table 9 gives
some examples of sentences tagged by the classifier.

Sentences that appear underPARTICIPANTS in
structured abstracts are often concise descriptions of
the population group with details about age, gender,
and conditions, as seen in Example 1. Otherwise,
they can also be extensive descriptions, providing
selection criteria and some detail about method, as
in Example 2.

Examples 3 and 4 show sentences from the test set
of Section 4. Example 3 has been labeled as aPAR-
TICIPANTS sentence by the classifier. It describes
patient characteristics, giving the population num-
ber for each arm of the trial but does not reveal the
total number of subjects. Example 3 appears under
the headingMETHODS AND RESULTSin the original
abstract. Example 4 is from an unstructured abstract,
where information about the intervention and popu-
lation and study design are interleaved in the same
sentences but tagged by the classifier asPARTICI-
PANTS. Many sentences tagged asPARTICIPANTS

also do not give explicit information about popula-
tion numbers but only provide descriptors for patient
characteristics.

It is also plausible that our task has been made
more challenging compared with previous reported
studies because our corpus has not been filtered for
publication date. Hence, the numbers of publica-
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1. Male smokers aged 50–69 years who had angina pectoris in the Rose chest pain questionnaire at baseline (n = 1795).
PMID: 9659191
2. The study included 809 patients under 70 years of age with stable angina pectoris. The mean age of the patients was 59 +/-
7 years and 31% were women. Exclusion criteria were myocardial infarction within the previous 3 years and contraindications
to beta-blockers and calcium antagonists. The patients were followed between 6 and 75 months (median 3.4 years and a total
of 2887 patient years).PMID: 8682134
3. Subjects with Canadian Cardiovascular Society (CCS) class 3/4 angina and reversible perfusion defects were randomized
to SCS (34) or PMR (34).PMID: 16554313
4. Sixty healthy women, half of whom had been using OCs for at least the previous 6 months, participated in the study. Approx-
imately two thirds were smokers and were randomized to be tested after either a 12 hr nicotine deprivation or administration
of nicotine gum. One third were nonsmokers.PMID: 11495215

Table 9: Examples of sentences labeled underPARTICIPANTS class, forming summaries of the population
characteristics of a trial. Examples 1 and 2 are typical sentences under thePARTICIPANTS heading in the
train set. Examples 3 and 4 are from the annotated test set. See Section 5 for more detailed explanation.

tions and structural characteristics of our abstracts
may be broader than previous reports which filter for
abstracts to a narrow time frame (Xu, 2006).

6 Related Work

In recent years, there has been a growth in research
in information extraction and NLP in the medical
domain particularly in the RCT literature. This is
due in part to the emergence of lexical and seman-
tic resources such as the Unified Medical Language
System (UMLS) (Lindberg, 1993), and software
such as MetaMap (Aronson, 2001), which trans-
forms text into UMLS concepts, and SemRep (Rind-
flesch, 2003), which identifies semantic proposi-
tions.

There are a number of previous attempts to per-
form text categorization on sentences inMEDLINE

abstracts into generic discourse level section head-
ings. They all share the goal of assigning structure
to unstructured abstracts for the purpose of sum-
marization or question answering. All previous at-
tempts have mapped the given headings to four or
five generic classes, and performed text categoriza-
tion on large sets of RCTs without any disease or
condition-specific filtering. Studies have shown that
results deteriorate when classifying sentences in un-
structured abstracts (McKnight, 2003; Lin, 2006).
In (McKnight, 2003), McKnight and Srinivisan used
an SVM for tagging sentences into 4 classes. Using
a corpus of 7k abstracts, they obtainF -scores from
0.82 to 0.89. Later papers in (Xu, 2006; Lin, 2006)
have found that Hidden Markov Models (HMMs)
based approaches more effectively model the se-
quential ordering of sentences in abstracts. In (Xu,

2006), several machine learning methods, decision
tree, maximum entropy and naive Bayes, are evalu-
ated with an HMM-based algorithm. 3.8k abstracts
from 2004 and 2005 were used as training data, and
experiments yielded average precision of 0.94 and
recall of 0.93.

One driving model for information extraction in
RCTs is the PICO framework (Richardson, 1995).
This is a task-based model for EBM formulated to
assist EBM practitioners to articulate well-formed
questions in order to find useful answers in clinical
scenarios. PICO elements are Patient/Population,
Intervention, Comparison and Outcome. This model
has been adopted by researchers (Demner-Fushman,
2005; Niu, 2004) as a guideline for elements that can
be automatically extracted from RCTs and patient
records. However, doubts have been raised about
the utility of PICO as a generic knowledge repre-
sentation for computational approaches to answer-
ing clinical questions (Huang, 2006).

In experiments reported in (Demner-Fushman,
2005), the PICO framework was used as a basis
for extracting population, problem, intervention and
comparison for the purpose of evaluating relevance
of an abstract to a particular clinical question. In this
work, the population statements were located via a
set of hand-written rules that were based on extract-
ing an actual numeric value for the population.

7 Conclusions

In this study, we investigated the use of conditional
random fields for classifying sentences in medical
abstracts. Our results particularly in terms ofF -
scores for generic section headings such asAIM , RE-
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SULTS andCONCLUSIONwere comparable to previ-
ous studies, even with smaller training sets. We in-
vestigated the use of text classification by leveraging
the subset of abstracts with explicitly labeledPAR-
TICIPANTS sentences combining the use of CRFs
and SVMs, and exploiting partially labeled data.

One main objective here is to label sentences that
describe population characteristics in structured and
unstructured abstracts. We found that unstructured
abstracts differ substantially from structured ones,
and alternative approaches will be necessary for
extracting information from unstructured abstracts.
Furthermore, critical details that are needed by a
physician when evaluating a study such as exclusion
criteria, drop out rate, follow up rate, etc, may only
be listed in the full text of the study. Future work
will address extracting information beyond the ab-
stract.
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Abstract

Code assignment is important for handling
large amounts of electronic medical data in
the modern hospital. However, only expert
annotators with extensive training can as-
sign codes. We present a system for the
assignment of ICD-9-CM clinical codes to
free text radiology reports. Our system as-
signs a code configuration, predicting one or
more codes for each document. We com-
bine three coding systems into a single learn-
ing system for higher accuracy. We compare
our system on a real world medical dataset
with both human annotators and other auto-
mated systems, achieving nearly the maxi-
mum score on the Computational Medicine
Center’s challenge.

1 Introduction

The modern hospital generates tremendous amounts
of data: medical records, lab reports, doctor notes,
and numerous other sources of information. As hos-
pitals move towards fully electronic record keeping,
the volume of this data only increases. While many
medical systems encourage the use of structured in-
formation, including assigning standardized codes,
most medical data, and often times the most impor-
tant information, is stored as unstructured text.

This daunting amount of medical text creates
exciting opportunities for applications of learning
methods, such as search, document classification,
data mining, information extraction, and relation ex-
traction (Shortliffe and Cimino, 2006). These ap-

plications have the potential for considerable bene-
fit to the medical community as they can leverage
information collected by hospitals and provide in-
centives for electronic record storage. Much of the
data generated by medical personnel is unused past
the clinical visit, often times because there is no way
to simply and quickly apply the wealth of informa-
tion. Medical NLP holds the promise of both greater
care for individual patients and enhanced knowledge
about health care.

In this work we explore the assignment of ICD-9-
CM codes to clinical reports. We focus on this prac-
tical problem since it is representative of the type
of task faced by medical personnel on a daily ba-
sis. Many hospitals organize and code documents
for later retrieval using different coding standards.
Often times, these standards are extremely complex
and only trained expert coders can properly perform
the task, making the process of coding documents
both expensive and unreliable since a coder must se-
lect from thousands of codes a small number for a
given report. An accurate automated system would
reduce costs, simplify the task for coders, and create
a greater consensus and standardization of hospital
data.

This paper addresses some of the challenges asso-
ciated with ICD-9-CM code assignment to clinical
free text, as well as general issues facing applica-
tions of NLP to medical text. We present our auto-
mated system for code assignment developed for the
Computational Medicine Center’s challenge. Our
approach uses several classification systems, each
with the goal of predicting the exact code configu-
ration for a medical report. We then use a learning
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system to combine our predictions for superior per-
formance.

This paper is organized as follows. First, we ex-
plain our task and difficulties in detail. Next we de-
scribe our three automated systems and features. We
combine the three approaches to create a single su-
perior system. We evaluate our system on clinical
reports and show accuracy approaching human per-
formance and the challenge’s best score.

2 Task Overview

The health care system employs a large number of
categorization and classification systems to assist
data management for a variety of tasks, including
patient care, record storage and retrieval, statistical
analysis, insurance, and billing. One of these sys-
tems is the International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM)
which is the official system of assigning codes to di-
agnoses and procedures associated with hospital uti-
lization in the United States. 1 The coding system
is based on World Health Organization guidelines.
An ICD-9-CM code indicates a classification of a
disease, symptom, procedure, injury, or information
from the personal history. Codes are organized hier-
archically, where top level entries are general group-
ings (e.g. “diseases of the respiratory system”) and
bottom level codes indicate specific symptoms or
diseases and their location (e.g. “pneumonia in as-
pergillosis”). Each specific, low-level code consists
of 4 or 5 digits, with a decimal after the third. Higher
level codes typically include only 3 digits. Overall,
there are thousands of codes that cover a broad range
of medical conditions.

Codes are assigned to medical reports by doc-
tors, nurses and other trained experts based on com-
plex coding guidelines (National Center for Health
Statistics, 2006). A particular medical report can be
assigned any number of relevant codes. For exam-
ple, if a patient exhibits a cough, fever and wheez-
ing, all three codes should be assigned. In addi-
tion to finding appropriate codes for each condition,
complex rules guide code assignment. For exam-
ple, a diagnosis code should always be assigned if a
diagnosis is reached, a diagnosis code should never

1http://www.cdc.gov/nchs/about/otheract/
icd9/abticd9.htm

be assigned when the diagnosis is unclear, a symp-
tom should never be assigned when a diagnosis is
present, and the most specific code is preferred. This
means that codes that seem appropriate to a report
should be omitted in specific cases. For example,
a patient with hallucinations should be coded 780.1
(hallucinations) but for visual hallucinations, the
correct code is 368.16. The large number of codes
and complexity of assignment rules make this a diffi-
cult problem for humans (inter-annotator agreement
is low). Therefore, an automated system that sug-
gested or assigned codes could make medical data
more consistent.

These complexities make the problem difficult
for NLP systems. Consider the task as multi-class,
multi-label. For a given document, many codes may
seem appropriate but it may not be clear to the algo-
rithm how many to assign. Furthermore, the codes
are not independent and different labels can inter-
act to either increase or decrease the likelihood of
the other. Consider a report that says, “patient re-
ports cough and fever.” The presence of the words
cough and fever indicate codes 786.2 (cough) and
780.6 (fever). However, if the report continues to
state that “patient has pneumonia” then these codes
are dropped in favor of 486 (pneumonia). Further-
more, if the report then says “verify clinically”, then
the diagnosis is uncertain and only codes 786.2 and
780.6 apply. Clearly, this is a challenging problem,
especially for an automated system.

2.1 Corpus

We built and evaluated our system in accordance
with the Computational Medicine Center’s (CMC)
2007 Medical Natural Language Processing Chal-
lenge.2 Since release of medical data must strictly
follow HIPAA standards, the challenge corpus un-
derwent extensive treatment for disambiguation,
anonymization, and careful scrubbing. A detailed
description of data preparation is found in Compu-
tational Medicine Center (2007). We describe the
corpus here to provide context for our task.

The training corpus is comprised of 978 radiolog-
ical reports taken from real medical records. A test
corpus contains 976 unlabeled documents. Radiol-
ogy reports have two text fields, clinical history and

2www.computationalmedicine.org/challenge
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impression. The physician ordering the x-ray writes
the clinical history, which contains patient informa-
tion for the radiologist, including history and current
symptoms. Sometimes a guess as to the diagnosis
appears (“evaluate for asthma”). The descriptions
are sometimes whole sentences and other times sin-
gle words (“cough”). The radiologist writes the im-
pression to summarize his or her findings. It con-
tains a short analysis and often times a best guess as
to the diagnosis. At times this field is terse, (“pneu-
monia” or “normal kidneys”) and at others it con-
tains an entire paragraph of text. Together, these two
fields are used to assign ICD-9-CM codes, which
justify a certain procedure, possibly for reimburse-
ment by the insurance company.

Only a small percentage of ICD-9-CM codes ap-
pear in the challenge. In total, the reports include 45
different codes arranged in 94 configurations (com-
binations). Some of these codes appear frequently,
while others are rare, appearing only a single time.
The test set is restricted so that each configuration
appears at least once in the training set, although
there is no further guarantee as to the test set’s distri-
bution over codes. Therefore, in addition to a large
number of codes, there is variability in the amount
of data for each code. Four codes have over 100
examples each and 24 codes have 10 or fewer doc-
uments, with 10 of these codes having only a single
document.

Since code annotation is a difficult task, each doc-
ument in the corpus was evaluated by three expert
annotators. A gold annotation was created by tak-
ing the majority of the annotators; if two of the three
annotators provided a code, that code is used in the
gold configuration. This approach means that a doc-
ument’s configuration may be a construction of mul-
tiple annotators and may not match any of the three
annotators exactly. Both the individual and the ma-
jority annotations are included with the training cor-
pus.

While others have attempted ICD-9 code classi-
fication, our task differs in two respects (Section 7
provides an overview of previous work). First, pre-
vious work has used discharge reports, which are
typically longer with more text fields. Second, while
most systems are evaluated as a recommendation
system, offering the top k codes and then scoring
recall at k, our task is to provide the exact configu-

ration. The CMC challenge evaluated systems using
an F1 score, so we are penalized if we suggest any
label that does not appear in the majority annotation.

To estimate task difficulty we measured the inter-
annotator score for the training set using the three
annotations provided. We scored two annotations
with the micro average F1, which weighs each code
assignment equally (see Section 5 for details on
evaluation metrics). If an annotator omitted a code
and included an extra code, he or she is penalized
with a false positive (omitting a code) and a false
negative (adding an extra code). We measured anno-
tators against each other; the average f-measure was
74.85 (standard deviation of .06). These scores were
low since annotators chose from an unrestricted set
of codes, many of which were not included in the fi-
nal majority annotation. However, these scores still
indicate the human accuracy for this task using an
unrestricted label set. 3

3 Code Assignment System

We developed three automated systems guided by
our above analysis. First, we designed a learning
system that used natural language features from the
official code descriptions and the text of each re-
port. It is general purpose and labels all 45 codes
and 94 configurations (labels). Second, we built a
rule based system that assigned codes based on the
overlap between the reports and code descriptions,
similar to how an annotator may search code de-
scriptions for appropriate labels. Finally, a special-
ized system aimed at the most common codes imple-
mented a policy that mimics the guidelines a medical
staffer would use to assign these codes.

3.1 Learning System

We begin with some notational definitions. In what
follows, x denotes the generic input document (ra-
diology report), Y denotes the set of possible label-
ings (code configurations) of x, and y∗(x) the cor-
rect labeling of x. For each pair of document x
and labeling y ∈ Y , we compute a vector-valued
feature representation f(x, y). A linear model is

3We also measured each annotator with the majority codes,
taking the average score (87.48), and the best annotator with
the majority label (92.8). However, these numbers are highly
biased since the annotator influences the majority labeling. We
observe that our final system still exceeds the average score.
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given by a weight vector w. Given this weight vec-
tor w, the score w · f(x, y) ranks possible labelings
of x, and we denote by Yk,w(x) the set of k top
scoring labelings for x. For some structured prob-
lems, a factorization of f(x, y) is required to enable
a dynamic program for inference. For our problem,
we know all the possible configurations in advance
(there are 94 of them) so we can pick the highest
scoring y ∈ Y by trying them all. For each docu-
ment x and possible labeling y, we compute a score
using w and the feature representation f(x, y). The
top scoring y is output as the correct label. Section
3.1.1 describes our feature function f(x, y) while
Section 3.1.2 describes how we find a good weight
vector w.

3.1.1 Features
Problem representation is one of the most impor-

tant aspects of a learning system. In our case, this
is defined by the set of features f(x, y). Ideally we
would like a linear combination of our features to ex-
actly specify the true labeling of all the instances, but
we want to have a small total number of features so
that we can accurately estimate their values. We sep-
arate our features into two classes: label specific fea-
tures and transfer features. For simplicity, we index
features by their name. Label specific features are
only present for a single label. For example, a simple
class of label specific features is the conjunction of a
word in the document with an ICD-9-CM code in the
label. Thus, for each word we create 94 features, i.e.
the word conjoined with every label. These features
tend to be very powerful, since weights for them can
encode very specific information about the way doc-
tors talk about a disease, such as the feature “con-
tains word pneumonia and label contains code 486”.
Unfortunately, the cost of this power is that there are
a large number of these features, making parameter
estimation difficult for rare labels. In contrast, trans-
fer features can be present in multiple labels. An
example of a transfer feature might be “the impres-
sion contains all the words in the code descriptions
of the codes in this label”. Transfer features allow us
to generalize from one label to another by learning
things like “if all the words of the label description
occur in the impression, then this label is likely” but
have the drawback that we cannot learn specific de-
tails about common labels. For example, we cannot

learn that the word “pneumonia” in the impression
is negatively correlated with the code cough. The
inclusion of both label specific and transfer features
allows us to learn specificity where we have a large
number of examples and generality for rare codes.

Before feature extraction we normalized the re-
ports’ text by converting it to lower case and by
replacing all numbers (and digit sequences) with a
single token 〈NUM〉. We also prepared a synonym
dictionary for a subset of the tokens and n-grams
present in the training data. The synonym dictionary
was based on MeSH4, the Medical Subject Headings
vocabulary, in which synonyms are listed as terms
under the same concept. All ngrams and tokens
in the training data which had mappings defined in
the synonym dictionary were then replaced by their
normalized token; e.g. all mentions of “nocturnal
enuresis” or “nighttime urinary incontinence” were
replaced by the token “bedwetting”. Additionally,
we constructed descriptions for each code automati-
cally from the official ICD-9-CM code descriptions
in National Center for Health Statistics (2006). We
also created a mapping between code and code type
(diagnosis or symptom) using the guidelines.

Our system used the following features. The de-
scriptions of particular features are in quotes, while
schemes for constructing features are not.

• “this configuration contains a disease code”,
“this configuration contains a symptom code”,
“this configuration contains an ambiguous
code” and “this configuration contains both dis-
ease and symptom codes”.5

• With the exception of stop-words, all words of
the impression and history conjoined with each
label in the configuration; pairs of words con-
joined with each label; words conjoined with
pairs of labels. For example, “the impression
contains ‘pneumonia’ and the label contains
codes 786.2 and 780.6”.

• A feature indicating when the history or im-
pression contains a complete code description

4www.nlm.nih.gov/mesh
5We included a feature for configurations that had both dis-

ease and symptom codes because they appeared in the training
data, even though coding guidelines prohibit these configura-
tions.
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for the label; one for a word in common with
the code description for one of the codes in the
label; a common word conjoined with the pres-
ence of a negation word nearby (“no”, “not”,
etc.); a word in common with a code descrip-
tion not present in the label. We applied similar
features using negative words associated with
each code.

• A feature indicating when a soft negation word
appears in the text (“probable”, “possible”,
“suspected”, etc.) conjoined with words that
follow; the token length of a text field (“im-
pression length=3”); a conjunction of a feature
indicating a short text field with the words in
the field (“impression length=1 and ‘pneumo-
nia’ ”)

• A feature indicating each n-gram sequence that
appears in both the impression and clinical his-
tory; the conjunction of certain terms where
one appears in the history and the other in the
impression (e.g. “cough in history and pneu-
monia in impression”).

3.1.2 Learning Technique

Using these feature representations, we now learn
a weight vector w that scores the correct labelings
of the data higher than incorrect labelings. We used
a k-best version of the MIRA algorithm (Crammer,
2004; McDonald et al., 2005). MIRA is an online
learning algorithm that for each training document
x updates the weight vector w according to the rule:

wnew = arg min
w

‖w − wold‖

s.t. ∀y ∈ Yk,wold
(x) :

w · f(x, y∗(x)) − w · f(x, y) ≥ L(y∗(x), y)

where L(y∗(x), y) is a measure of the loss of label-
ing y with respect to the correct labeling y∗(x). For
our experiments, we set k to 30 and iterated over the
training data 10 times. Two standard modifications
to this approach also helped. First, rather than using
just the final weight vector, we average all weight
vectors. This has a smoothing effect that improves
performance on most problems. The second modifi-

cation is the introduction of slack variables:

wnew = arg min
w

‖w − wold‖ + γ
∑

i

ξi

s.t. ∀y ∈ Yk,wold
(x) :

w · f(x, y∗(x)) − w · f(x, y) ≥ L(y∗(x), y) − ξi

∀i ∈ {1 . . . k} : ξi ≥ 0.

We used a γ of 10−3 in our experiments.
The most straightforward loss function is the 0/1

loss, which is one if y does not equal y∗(x) and zero
otherwise. Since we are evaluated based on the num-
ber of false negative and false positive ICD-9-CM
codes assigned to all the documents, we used a loss
that is the sum of the number of false positive and the
number of false negative labels that y assigns with
respect to y∗(x).

Finally, we only used features that were possi-
ble for some labeling of the test data by using only
the test data to construct our feature alphabet. This
forced the learner to focus on hypotheses that could
be used at test time and resulted in a 1% increase in
F-measure in our final system on the test data.

3.2 Rule Based System
Since some of the configurations appear a small
number of times in our corpus (some only once),
we built a rule based system that requires no train-
ing. The system uses a description of the ICD-9-CM
codes and their types, similar to the list used by our
learning system (Section 3.1.1). The code descrip-
tions include between one and four short descrip-
tions, such as “reactive airway disease”, “asthma”,
and “chronic obstructive pulmonary disease”. We
treat each of these descriptions as a bag of words.
For a given report, the system parses both the clini-
cal history and impression into sentences, using “.”
as a sentence divider. Each sentence is the checked
to see if all of the words in a code description appear
in the sentence. If a match is found, we set a flag
corresponding to the code. However, if the code is
a disease, we search for a negation word in the sen-
tence, removing the flag if a negation word is found.
Once all code descriptions have been evaluated, we
check if there are any flags set for disease codes. If
so, we remove all symptom code flags. We then emit
a code corresponding to each set flag. This simple
system does not enforce configuration restrictions;
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we may predict a code configuration that does not
appear in our training data. Adding this restriction
improved precision but hurt recall, leading to a slight
decrease in F1 score. We therefore omitted the re-
striction from our system.

3.3 Automatic Coding Policies
As we described in Section 2, enforcing coding
guidelines can be a complex task. While a learning
system may have trouble coding a document, a hu-
man may be able to define a simple policy for cod-
ing. Since some of the most frequent codes in our
dataset have this property, we decided to implement
such an automatic coding policy. We selected two
related sets of codes to target with a rule based sys-
tem, a set of codes found in pneumonia reports and
a set for urinary tract infection/reflux reports.

Reports related to pneumonia are the most com-
mon in our dataset and include codes for pneumo-
nia, asthma, fever, cough and wheezing; we handle
them with a single policy. Our policy is as follows:

• Search for a small set of keywords (e.g.
“cough”, “fever”) to determine if a code should
be applied.

• If “pneumonia” appears unnegated in the im-
pression and the impression is short, or if it oc-
curs in the clinical history and is not preceded
by phrases such as “evaluate for” or “history
of”, apply pneumonia code and stop.

• Use the same rule to code asthma by looking
for “asthma” or “reactive airway disease”.

• If no diagnosis is found, code all non-negated
symptoms (cough, fever, wheezing).

We selected 80% of the training set to evaluate in the
construction of our rules. We then ran the finished
system on both this training set and the held out 20%
of the data. The system achieved F1 scores of 87%
on the training set and 84% on the held out data for
these five codes. The comparable scores indicates
that we did not over-fit the training data.

We designed a similar policy for two other related
codes, urinary tract infection and vesicoureteral re-
flux. We found these codes to be more complex as
they included a wide range of kidney disorders. On
these two codes, our system achieved 78% on the

train set and 76% on the held out data. Overall, au-
tomatically applying our two policies yielded high
confidence predictions for a significant subset of the
corpus.

4 Combined System

Since our three systems take complimentary ap-
proaches to the problem, we combined them to im-
prove performance. First, we took our automatic
policy and rule based systems and cascaded them; if
the automatic policy system does not apply a code,
the rule based system classifies the report. We used
a cascaded approach since the automatic policy sys-
tem was very accurate when it was able to assign
a code. Therefore, the rule based system defers to
the policy system when it is triggered. Next, we in-
cluded the prediction of the cascaded system as a
feature for our learning system. We used two fea-
ture rules: “cascaded-system predicted exactly this
label” and “cascaded-system predicted one of the
codes in this label”. As we show, this yielded our
most accurate system. While we could have used a
meta-classifier to combine the three systems, includ-
ing the rule based systems as features to the learning
system allowed it to learn the appropriate weights
for the rule based predictions.

5 Evaluation Metric

Evaluation metrics for this task are often based on
recommendation systems, where the system returns
a list of the top k codes for selection by the user. As
a result, typical metrics are “recall at k” and aver-
age precision (Larkey and Croft, 1995). Instead, our
goal was to predict the exact configuration, returning
exactly the number of codes predicted to be on the
report. The competition used a micro-averaged F1
score to evaluate predictions. A contingency table
(confusion matrix) is computed by summing over
each predicted code for each document by predic-
tion type (true positive, false positive, false negative)
weighing each code assignment equally. F1 score
is computed based on the resultant table. If specific
codes or under-coding is favored, we can modify our
learning loss function as described in Section 3.1.2.
A detailed treatment of this evaluation metric can be
found in Computational Medicine Center (2007).
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System Precision Recall F1
BL 61.86 72.58 66.79
RULE 81.9 82.0 82.0
CASCADE 86.04 84.56 85.3
LEARN 85.5 83.6 84.6
CASCADE+LEARN 87.1 85.9 86.5

Table 1: Performance of our systems on the provided
labeled training data (F1 score). The learning sys-
tems (CASCADE+LEARN and LEARN ) were eval-
uated on ten random split of the data while RULE
was evaluated on all of the training data. We include
a simple rule based system (BL ) as a baseline.

6 Results

We evaluated our systems on the labeled training
data of 978 radiology reports. For each report, each
system predicted an exact configuration of codes
(i.e. one of 94 possible labels). We score each sys-
tem using a micro-averaged F1 score. Since we only
had labels for the training data, we divided the data
using an 80/20 training test split and averaged results
over 10 runs for our learning systems. We evaluated
the following systems:

• RULE : The rule based system based on ICD-
9-CM code descriptions (Section 3.2).

• CASCADE : The automatic code policy system
(Section 3.3) cascaded with RULE (Section 4).

• LEARN : The learning system with both label
specific and transfer features (Section 3.1).

• CASCADE+LEARN : Our combined system
that incorporates CASCADE predictions as a
feature to LEARN (Section 4).

For a baseline, we built a simple system that ap-
plies the official ICD-9-CM code descriptions to find
the correct labels (BL ). For each code in the train-
ing set, the system generates text-segments related to
it. During testing, for each new document, the sys-
tem checks if any text-segment (as discovered dur-
ing training) appears in the document. If so, the cor-
responding code is predicted. The results from our
four systems and baseline are shown in Table 1.

System Train Test
CASCADE 85.3 84
CASCADE+LEARN 86.5 87.60
Average - 76.6
Best - 89.08

Table 2: Performance of two systems on the train
and test data. Results obtained from the web sub-
mission interface were rounded. Average and Best
are the average and best f-measures of the 44 sub-
mitted systems (standard deviation 13.40).

Each of our systems easily beats the baseline, and
the average inter-annotator score for this task. Ad-
ditionally, we were able to evaluate two of our sys-
tems on the test data using a web interface as pro-
vided by the competition. The test set contains 976
documents (about the same as the training set) and
is drawn the from same distribution as the training
data. Our test results were comparable to perfor-
mance on the training data, showing that we did
not over-fit to the training data (Table 2). Addi-
tionally, our combined system (CASCADE+LEARN
) achieved a score of 87.60%, beating our training
data performance and exceeding the average inter-
annotator score. Out of 44 submitted systems, the
average score on test data was 76.7% (standard devi-
ation of 13.40) and the maximum score was 89.08%.
Our system scored 4th overall and was less than
1.5% behind the best system. Overall, in comparison
with our baselines and over 40 systems, we perform
very well on this task.

7 Related Work

There have been several attempts at ICD-9-CM
code classification and related problems for med-
ical records. The specific problem of ICD-9-CM
code assignment was studied by Lussier et al. (2000)
through an exploratory study. Larkey and Croft
(1995) designed classifiers for the automatic assign-
ment of ICD-9 codes to discharge summaries. Dis-
charge summaries tend to be considerably longer
than our data and contain multiple text fields. Ad-
ditionally, the number of codes per document has
a larger range, varying between 1 and 15 codes.
Larkey and Croft use three classifiers: K-nearest
neighbors, relevance feedback, and bayesian inde-
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pendence. Similar to our approach, they tag items
as negated and try to identify diagnosis and symp-
tom terms. Additionally, their final system combines
all three models. A direct comparison is not possi-
ble due to the difference in data and evaluation met-
rics; they use average precision and recall at k. On
a comparable metric, “principal code is top candi-
date”, their best system achieves 59.9% accuracy. de
Lima et al. (1998) rely on the hierarchical nature of
medical codes to design a hierarchical classification
scheme. This approach is likely to help on our task
as well but we were unable to test this since the lim-
ited number of codes removes any hierarchy. Other
approaches have used a variety of NLP techniques
(Satomura and Amaral, 1992).

Others have used natural language systems for the
analysis of medical records (Zweigenbaum, 1994).
Chapman and Haug (1999) studied radiology re-
ports looking for cases of pneumonia, a goal sim-
ilar to that of our automatic coding policy system.
Meystre and Haug (2005) processed medical records
to harvest potential entries for a medical problem
list, an important part of electronic medical records.
Chuang et al. (2002) studied Charlson comorbidi-
ties derived from processing discharge reports and
chest x-ray reports and compared them with admin-
istrative data. Additionally, Friedman et al. (1994)
applies NLP techniques to radiology reports.

8 Conclusion

We have presented a learning system that processes
radiology reports and assigns ICD-9-CM codes.
Each of our systems achieves results comparable
with an inter-annotator baseline for our training data.
A combined system improves over each individ-
ual system. Finally, we show that on test data un-
available during system development, our final sys-
tem continues to perform well, exceeding the inter-
annotator baseline and achieving the 4th best score
out of 44 systems entered in the CMC challenge.
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Abstract 

We propose a methodology using 
underspecified semantic interpretation to 
process comparative constructions in 
MEDLINE citations, concentrating on two 
structures that are prevalent in the research 
literature reporting on clinical trials for 
drug therapies. The method exploits an 
existing semantic processor, SemRep, 
which constructs predications based on the 
Unified Medical Language System. Results 
of a preliminary evaluation were recall of 
70%, precision of 96%, and F-score of 
81%. We discuss the generalization of the 
methodology to other entities such as 
therapeutic and diagnostic procedures. The 
available structures in computable format 
are potentially useful for interpreting 
outcome statements in MEDLINE 
citations. 

1 Introduction 

As natural language processing (NLP) is 
increasingly able to support advanced information 
management techniques for research in medicine 
and biology, it is being incrementally improved to 
provide extended coverage and more accurate 
results. In this paper, we discuss the extension of 
an existing semantic interpretation system to 
address comparative structures. These structures 
provide a way of explicating the characteristics of 
one entity in terms of a second, thereby enhancing 
the description of the first. This phenomenon is 
important in clinical research literature reporting 
the results of clinical trials.  

In the abstracts of these reports, a treatment for 
some disease is typically discussed using two types 
of comparative structures. The first announces that 
the (primary) therapy focused on in the study will 
be compared to some other (secondary) therapy. A 
typical example is (1). 
(1) Lansoprazole compared with 
ranitidine for the treatment of 
nonerosive gastroesophageal reflux 
disease. 
An outcome statement (2) often appears near the 
end of the abstract, asserting results in terms of the 
relative merits of the primary therapy compared to 
the secondary. 
(2) Lansoprazole is more 
effective than ranitidine in 
patients with endoscopically 
confirmed non-erosive reflux 
esophagitis. 

The processing of comparative expressions such 
as (1) and (2) was incorporated into an existing 
system, SemRep [Rindflesch and Fiszman, 2003; 
Rindflesch et al., 2005], which constructs semantic 
predications by mapping assertions in biomedical 
text to the Unified Medical Language System® 
(UMLS)® [Humphreys et al., 1998].  

2 Background 

2.1 Comparative structures in English 

The range of comparative expressions in English is 
extensive and complex. Several linguistic studies 
have investigated their characteristics, with 
differing assumptions about syntax and semantics 
(for example [Ryan, 1981; Rayner and Banks, 
1990; Staab and Hahn, 1997; Huddleston and 
Pullum, 2002]). Our study concentrates on  
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structures in which two drugs are compared with 
respect to a shared attribute (e.g. how well they 
treat some disease). An assessment of their relative 
merit in this regard is indicated by their positions 
on a scale. The compared terms are expressed as 
noun phrases, which can be considered to be 
conjoined. The shared characteristic focused on is 
expressed as a predicate outside the comparative 
structure. An adjective or noun is used to denote 
the scale, and words such as than, as, with, and to 
serve as cues to identify the compared terms, the 
scale, and the relative position of the terms on the 
scale.  

The first type of structure we address (called  
comp1 and illustrated in (3)) merely asserts that the 
primary and secondary terms (in bold) are being 
compared. A possible cue for identifying these 
structures is a form of compare. A further 
characteristic is that the compared terms are 
separated by a conjunction, or a preposition, as in 
(3). 
(3) To compare misoprostol with 
dinoprostone for cervical ripening 
and labor induction. 
As shown in (4), a scale may be  mentioned 
(efficacy); however, in this study, we only identify 
the compared terms in structures of this type.  
(4) To compare the efficacy of 
misoprostol with dinoprostone for 
cervical ripening and labor 
induction. 

In the more complex comparative expression we 
accommodate (called comp2), the relative ranking 
of two compared terms is indicated on a scale 
denoted by an adjective (e.g. effective in (5)). The 
relative position of the compared terms in scalar 
comparative structures of this type expresses either 
equality or inequality. Inequality is further divided 
into superiority, where the primary compared term 
is higher on the scale than the secondary, and 
inferiority, where the opposite is true. Cues 
associated with the adjective designating the scale 
signal these phenomena (e.g. as ADJ as in (5) for 
equality, ADJer than in (6) for superiority, and less 
ADJ than in (7) for inferiority).  
(5) Azithromycin is as effective 
as erythromycin estolate for the 
treatment of pertussis in children. 

(6) Naproxen is safer than 
aspirin in the treatment of the 
arthritis of rheumatic fever. 
(7) Sodium valproate was 
significantly less effective than 
prochlorperazine in reducing pain 
or nausea. 
In examples (3) through (7), the characteristic the 
compared drugs have in common is treatment of 
some disorder, for example treatment of pertussis 
in children in (5).  

Few studies describe an implemented automatic 
analysis of comparatives; however, Friedman 
[Friedman, 1989] is a notable exception. Jindal and 
Liu [Jindal and Liu, 2006] use machine learning to 
identify some comparative structures, but do not 
provide a semantic interpretation. We exploit 
SemRep machinery to interpret the aspects of 
comparative structures just described. 

2.2 SemRep 

SemRep [Rindflesch and Fiszman, 2003; 
Rindflesch et al., 2005] recovers underspecified 
semantic propositions in biomedical text based on 
a partial syntactic analysis and structured domain 
knowledge from the UMLS. Several systems that 
extract entities and relations are under 
development in both the clinical and molecular 
biology domains. Examples of systems for clinical 
text are described in [Friedman et al., 1994], 
[Johnson et al., 1993], [Hahn et al., 2002], and 
[Christensen et al., 2002]. In molecular biology, 
examples include [Yen et al., 2006], [Chun et al., 
2006], [Blaschke et al., 1999], [Leroy et al., 2003], 
[Rindflesch et al., 2005], [Friedman et al., 2001], 
and [Lussier et al., 2006].  

During SemRep processing, a partial syntactic 
parse is produced that depends on lexical look-up 
in the SPECIALIST lexicon [McCray et al., 1994] 
and a part-of-speech tagger [Smith et al., 2004]. 
MetaMap [Aronson, 2001] then matches noun 
phrases to concepts in the Metathesaurus® and 
determines the semantic type for each concept. For 
example, the structure in (9), produced for (8), 
allows both syntactic and semantic information to 
be used in further SemRep processing that 
interprets semantic predications.  
(8) Lansoprazole for the 
treatment of gastroesophageal 
reflux disease 
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(9) [[head(noun(Lansoprazole),me
taconc(‘lansoprazole’:[phsu]))],[p
rep(for),det(the),head(noun(treatm
ent))],[prep(of),mod(adj(gastroeso
phageal)),mod(noun(reflux)),head(n
oun(disease),metaconc(‘Gastroesoph
ageal reflux disease’:[dsyn]))]] 

Predicates are derived from indicator rules that 
map syntactic phenomena (such as verbs and 
nominalizations) to relationships in the UMLS 
Semantic Network. Argument identification is 
guided by dependency grammar rules as well as 
constraints imposed by the Semantic Network. In 
processing (8), for example, an indicator rule links 
the nominalization treatment with the Semantic 
Network relation “Pharmacologic Substance 
TREATS Disease or Syndrome.” Since the 
semantic types of the syntactic arguments 
identified for treatment in this sentence 
(‘Pharmacologic Substance’ for “lansoprazole” and 
‘Disease or Syndrome’ for “Gastroesophageal 
reflux disease”) match the corresponding semantic 
types in the relation from the Semantic Network, 
the predication in (10) is constructed, where 
subject and object are Metathesaurus concepts.  
(10) lansoprazole TREATS 
Gastroesophageal reflux disease 

3 Methods 

3.1 Linguistic patterns 

We extracted sentences for developing 
comparative processing from a set of  some 10,000 
MEDLINE citations reporting on the results of 
clinical trials, a rich source of comparative 
structures. In this sample, the most frequent 
patterns for comp1 (only announces that two terms 
are compared) and comp2 (includes a scale and 
positions on that scale) are given in (11) and (12). 
In the patterns, Term1 and Term2 refer to the 
primary and secondary compared terms, 
respectively. “{BE}” means that some form of be 
is optional, and slash indicates disjunction. These 
patterns served as guides for enhancing SemRep 
argument identification machinery but were not 
implemented as such. That is, they indicate 
necessary components but do not preclude 
intervening modifiers and qualifiers.   
(11) comp1: Compared terms 
C1:   Term1 {BE} compare with/to Term2 

C2:   compare Term1 with/to Term2 
C3:   compare Term1 and/versus Term2 
C4a: Term1 comparison with/to Term2 
C4b: comparison of Term1 with/to Term2 
C4c: comparison of Term1 and/versus Term2 
C5   Term1 versus Term2 
(12) comp2: Scalar patterns 
S1:   Term1 BE as ADJ as {BE} Term2 
S2a: Term1 BE more ADJ than {BE} Term2 
S2b: Term1 BE ADJer than {BE}Term2  
S2c: Term1 BE less ADJ than {BE} Term2 
S4:   Term1 BE superior to Term2 
S5:   Term1 BE inferior to Term2 

As with SemRep in general, the interpretation of 
comparative structures exploits underspecified 
syntactic structure enhanced with Metathesaurus 
concepts and semantic types. Semantic groups 
[McCray et al., 2001] from the Semantic Network 
are also available. For this project, we exploit the 
group Chemicals & Drugs, which contains such 
semantic types as ‘Pharmacologic Substance’, 
‘Antibiotic’, and ‘Immunologic Factor’. (The 
principles used here also apply to compared terms 
with semantic types from other semantic groups, 
such as ‘Procedures’.) In the comp1 patterns, a 
form of compare acts as an indicator of a 
comparative predication. In comp2, the adjective 
serves that function. Other words appearing in the 
patterns cue the indicator word (in comp2) and 
help identify the compared terms (in both comp1 
and comp2). The conjunction versus  is special in 
that it cues the secondary compared term (Term2) 
in comp1, but may also indicate a comp1 structure 
in the absence of a form of compare (C5).  

3.2 Interpreting comp1 patterns  

When SemRep encounters a form of compare, it 
assumes a comp1 structure and looks to the right 
for the first noun phrase immediately preceded by 
with, to, and, or versus. If the head of this phrase is 
mapped to a concept having a semantic type in the 
group Chemicals & Drugs, it is marked as the 
secondary compared term. The algorithm then 
looks to the left of that term for a noun phrase 
having a semantic type also in the group Chemicals 
& Drugs, which becomes the primary compared 
term. When this processing is applied to (13), the 
semantic predication (14) is produced, in which the 
predicate is COMPARED_WITH; the first 
argument is the primary compared term and the 
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other is the secondary. As noted earlier, although a 
scale is sometimes asserted in these structures (as 
in (13)), SemRep does not retrieve it. An assertion 
regarding position on the scale never appears in 
comp1 structures.  
(13) To compare the efficacy and 
tolerability of Hypericum 
perforatum with imipramine in 
patients with mild to moderate 
depression. 
(14) Hypericum perforatum 
COMPARED_WITH Imipramine 

SemRep considers noun phrases occurring 
immediately to the right and left of versus as being 
compared terms if their heads have been mapped to 
Metathesaurus concepts having semantic types 
belonging to the group Chemicals & Drugs. Such 
noun phrases are interpreted as part of a comp1 
structure, even if a form of compare has not 
occurred. The predication (16) is derived from 
(15).  
(15) Intravenous lorazepam versus 
dimenhydrinate for treatment of 
vertigo in the emergency 
department: a randomized clinical 
trial. 
(16) Lorazepam COMPARED_WITH 
Dimenhydrinate 

SemRep treats compared terms as being 
coordinated. For example, this identification 
allows both “Lorazepam” and “Dimenhydrinate” 
to function as arguments of TREATS in (15). 
Consequently, in addition to (16), the predications 
in (17) are returned as the semantic interpretation 
of (15). Such processing is done for all comp1 and 
comp2 structures (although these results are not 
given for (13) and are not further discussed in this 
paper). 
(17) Lorazepam TREATS Vertigo  
 Dimenhydrinate TREATS 
Vertigo 

3.3 Interpreting comp2 patterns  

In addition to identifying two compared terms 
when processing comp2 patterns, a scale must be 
named and the relative position of the terms on that 
scale indicated. The algorithm for finding 
compared terms in comp2 structures begins by 
locating one of the cues as, than, or to and then 
examines the next noun phrase to the right. If its 

head has been mapped to a concept with a 
semantic type in the group Chemicals & Drugs, it 
is marked as the secondary compared term. As in 
comp1, the algorithm then looks to the left for the 
first noun phrase having a head in the same 
semantic group, and that phrase is marked as the 
primary compared term.  

To find the scale name, SemRep examines the 
secondary compared term and then locates the first 
adjective to its left. The nominalization of that 
adjective (as found in the SPECIALIST Lexicon) 
is designated as the scale and serves as an 
argument of the predicate SCALE in the 
interpretation. For adjectives superior and inferior 
(patterns S4 and S5 in (12)) the scale name is 
“goodness.” 

In determining relative position on the scale, 
equality is contrasted with inequality. If the 
adjective of the construction is immediately 
preceded by as (pattern S1 in (12) above), the two 
compared terms have the same position on the 
scale (equality), and are construed as arguments of 
a predication with predicate SAME_AS. In all 
other comp2 constructions, the compared terms are 
in a relationship of inequality. The primary 
compared term is considered higher on the scale 
unless the adjective is inferior or is preceded by 
less, in which case the secondary term is higher. 
The predicates HIGHER_THAN and 
LOWER_THAN are used to construct predications 
with the compared terms to interpret position on 
the scale. The equality construction in (18) is 
expressed as the predications in (19).  
(18) Candesartan is as effective 
as lisinopril once daily in 
reducing blood pressure. 
(19) Candesartan COMPARED_WITH 
lisinopril 
 SCALE:Effectiveness  
 Candesartan SAME_AS 
lisinopril 
The superiority construction in (20) is expressed as 
the predications in (21).  
(20) Losartan was more effective 
than atenolol in reducing 
cardiovascular morbidity and 
mortality in patients with 
hypertension, diabetes, and LVH. 
(21) Losartan COMPARED_WITH 
Atenolol 
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 SCALE:Effectiveness 
 Losartan HIGHER_THAN 
Atenolol 
The inferiority construction in (22) is expressed as 
the predications in (23).  
(22) Morphine-6-glucoronide was 
significantly less potent than 
morphine in producing pupil 
constriction. 
(23) morphine-6-glucoronide 
COMPARED_WITH Morphine 
 SCALE:Potency 
 morphine-6-glucoronide 
LOWER_THAN Morphine 

3.4 Accommodating negation  

Negation in comparative structures affects the 
position of the compared terms on the scale, and is 
accommodated differently for equality and for 
inequality. When a scalar comparison of equality 
(pattern S1, as ADJ as) is negated, the primary 
term is lower on the scale than the secondary 
(rather than being at least equal). For example, in 
interpreting the negated equality construction in 
(24), SemRep produces (25). 
(24) Amoxicillin-clavulanate was 
not as effective as ciprofloxacin 
for treating uncomplicated bladder 
infection in women. 
(25) Amoxicillin-clavulanate 
COMPARED_WITH Ciprofloxaci 
 SCALE:Effectiveness 
 Amoxicillin-clavulanate 
LOWER_THAN Ciprofloxacin 

For patterns of inequality, SemRep negates the 
predication indicating position on the scale. For 
example, the predications in (27) represent the 
negated superiority comparison in (26). Negation 
of inferiority comparatives (e.g. “X is not less 
effective than Y”) is extremely rare in our sample.  
(26) These data show that 
celecoxib is not better than 
diclofenac (P = 0.414) in terms of 
ulcer complications. 
(27) celecoxib COMPARED_WITH 
diclofenac 
 SCALE:Goodness  
 celecoxib NEG_HIGHER_THAN 
diclofenac 

3.5 Evaluation 

To evaluate the effectiveness of the developed 
methods we created a test set of 300 sentences 
containing comparative structures. These were 
extracted by the second author (who did not 
participate in the development of the methodology) 
from 3000 MEDLINE citations published later in 
date than the  citations used to develop the 
methodology. The citations were retrieved with a 
PubMed query specifying randomized controlled 
studies and comparative studies on drug therapy.  

Sentences containing direct comparisons of the 
pharmacological actions of two drugs expressed in 
the target structures (comp1 and comp2) were 
extracted starting from the latest retrieved citation 
and continuing until 300 sentences with 
comparative structures had been examined. These 
were annotated with the PubMed ID of the citation, 
names of two drugs (COMPARED_WITH 
predication), the scale on which they are compared 
(SCALE), and the relative position of the primary 
drug with respect to the secondary (SAME_AS, 
HIGHER_THAN, or LOWER_THAN).  

The test sentences were processed using 
SemRep and evaluated against the annotated test 
set. We then computed recall and precision in 
several ways: overall for all comparative 
structures, for comp1 structures only, and for 
comp2 structures only. To understand how the 
overall identification of comparatives is influenced 
by the components of the construction, we also 
computed recall and precision separately for drug 
names, scale, and position on scale (SAME_AS, 
HIGHER_THAN and LOWER_THAN taken 
together). Recall measures the proportion of 
manually annotated categories that have been 
correctly identified automatically. Precision 
measures what proportion of the automatically 
annotated categories is correct.  

In addition, the overall identification of 
comparative structures was evaluated using the F-
measure [Rijsbergen, 1979], which combines recall 
and precision. The F-measure was computed using 
macro-averaging and micro-averaging. Macro-
averaging was computed over each category first 
and then averaged over the three categories (drug 
names, scale, and position on scale). This approach 
gives equal weight to each category. In micro-
averaging (which gives an equal weight to the 
performance on each sentence) recall and precision 
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were obtained by summing over all individual 
sentences. Because it is impossible to enumerate 
all entities and relations which are not drugs, scale, 
or position we did not use the classification error 
rate and other metrics that require computing of 
true negative values. 

4 Results 

Upon inspection of the SemRep processing results 
we noticed that the test set contained nine 
duplicates.  In addition, four sentences were not 
processed for various technical reasons. We report 
the results for the remaining 287 sentences, which 
contain 288 comparative structures occurring in 
168 MEDLINE citations. Seventy four citations 
contain 85 comp2 structures. The remaining 203 
structures are comp1.  

Correct identification of comparative structures 
of both types depends on two factors: 1) 
recognition of both drugs being compared, and 2) 
recognition of the presence of a comparative 
structure itself. In addition, correct identification of 
the comp2 structures depends on recognition of the 
scale on which the drugs are compared and the 
relative position of the drugs on the scale. Table 1 
presents recall, precision, and F-score reflecting 
these factors. 

 
Table 1. SemRep performance 

Task Recall Precision F-score
Overall 0.70 0.96 0.81 
Drug extraction 0.69 0.96 0.81 
Comp1 0.74 0.98 0.84 
Comp2  0.62 0.92 0.74 
Scale  0.62 1.00 0.77 
Position on scale 0.62 0.98 0.76 

 
We considered drug identification to be correct 

only if both drugs participating in the relationship 
were identified correctly. The recall results 
indicate that approximately 30% of the drugs and 
comparative structures of comp1, as well as 40% 
of comp2 structures, remain unrecognized; 
however, all components are identified with high 
precision. Macro-averaging over compared drug 
names, scale, and position on scale categories we 
achieve an F-score = 0.78. The micro-average 
score for 287 comparative sentences is 0.5. 

5 Discussion 

In examining SemRep errors, we determined that 
more than 60% of the false negatives (for both 
comp1 and comp2) were due to “empty heads” 
[Chodorow et al., 1985; Guthrie et al., 1990], in 
which the syntactic head of a noun phrase does not 
reflect semantic thrust. Such heads prevent 
SemRep from accurately determining the semantic 
type and group of the noun phrase. In our sample, 
expressions interpreted as empty heads include 
those referring to drug dosage and formulations, 
such as extended release (the latter often 
abbreviated as XR). Examples of missed 
interpretations are in sentences (28) and (29), 
where the empty heads are in bold. Ahlers et al. 
[Ahlers et al., 2007] discuss enhancements to 
SemRep for accommodating empty heads. These 
mechanisms are being incorporated into the 
processing for comparative structures.  
(28) Oxybutynin 15 mg was more 
effective than propiverine 20 mg 
in reducing symptomatic and 
asymptomatic IDCs in ambulatory 
patients. 
(29) Intravesical atropine was as 
effective as oxybutynin immediate 
release for increasing bladder 
capacity and it was probably 
better with less antimuscarinic 
side effects 

False positives were due exclusively to word 
sense ambiguity. For example, in (30) bid (twice a 
day) was mapped to the concept “BID protein”, 
which belongs to the semantic group Chemicals & 
Drugs. The most recent version of MetaMap, 
which will soon be called by comparative 
processing, exploits word sense disambiguation 
[Humphrey et al., 2006] and will likely resolve 
some of these errors.  
(30) Retapamulin ointment 1% (bid) 
for 5 days was as effective as 
oral cephalexin (bid) for 10 days 
in treatment of patients with SID, 
and was well tolerated. 

Although, in this paper, we tested the method on 
structures in which the compared terms belong to 
the semantic group Chemicals & Drugs, we can 
straightforwardly generalize the method by adding 
other semantic groups to the algorithm. For 
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example, if SemRep recognized the noun phrases 
in bold in (31) and (32) as belonging to the group 
Procedures, comparative processing could proceed 
as for Chemicals & Drugs.  
(31) Comparison of multi-slice 
spiral CT and magnetic resonance 
imaging in evaluation of the un-
resectability of blood vessels in 
pancreatic tumor. 
(32) Dynamic multi-slice spiral 
CT is better than dynamic magnetic 
resonance to some extent in 
evaluating the un-resectability of 
peripancreatic blood vessels in 
pancreatic tumor. 

The semantic predications returned by SemRep 
to represent comparative expressions can be 
considered a type of executable knowledge that 
supports reasoning. Since the arguments in these 
predications have been mapped to the UMLS, a 
structured knowledge source, they can be 
manipulated using that knowledge. It is also 
possible to compute the transitive closure of all 
SemRep output for a collection of texts to 
determine which drug was asserted in that 
collection to be the best with respect to some 
characteristic. This ability could be very useful in 
supporting question-answering applications. 

As noted earlier, it is common in reporting on 
the results of randomized clinical trials and 
systematic reviews that a comp1 structure appears 
early in the discourse to announce the objectives of 
the study and that a comp2 structure often appears 
near the end to give the results. Another example 
of this phenomenon appears in (33) and (34) (from 
PMID 15943841).  
(33) To compare the efficacy of 
famotidine and omeprazole in 
Japanese patients with non-erosive 
gastro-oesophageal reflux disease 
by a prospective randomized 
multicentre trial. 
(34) Omeprazole is more effective 
than famotidine for the control of 
gastro-oesophageal reflux disease 
symptoms in H. pylori-negative 
patients. 

We suggest one example of an application that 
can benefit from the information provided by the 
knowledge inherent in the semantic interpretation 

of comparative structures, and that is the 
interpretation of outcome statements in MEDLINE 
citations, as a method for supporting automatic 
access to the latest results from clinical trials 
research. 

6 Conclusion 

We expanded a symbolic semantic interpreter to 
identify comparative constructions in biomedical 
text. The method relies on underspecified syntactic 
analysis and domain knowledge from the UMLS.  
We identify two compared terms and scalar 
comparative structures in MEDLINE citations. 
Although we restricted the method to comparisons 
of drug therapies, the method can be easily 
generalized to other entities such as diagnostic and 
therapeutic procedures. The availability of this 
information in computable format can support the 
identification of outcome sentences in MEDLINE, 
which in turn supports translation of biomedical 
research into improvements in quality of patient 
care. 
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Abstract

There has been much recent interest in the
extraction of PPIs (protein-protein interac-
tions) from biomedical texts, but in order
to assist with curation efforts, thePPIs must
be enriched with further information of bi-
ological interest. This paper describes the
implementation of a system to extract and
enrich PPIs, developed and tested using an
annotated corpus of biomedical texts, and
employing both machine-learning and rule-
based techniques.

1 Introduction

The huge volume of literature generated in the
biomedical field is such that researchers are unable
to read all the papers that interest them. Instead they
must rely on curated databases, containing informa-
tion extracted from the literature about, for example,
which proteins interact.

These curated databases are expensive to produce
as they rely on qualified biologists to select the pa-
pers, read them to extract the relevant information,
enter this information into the database, and cross-
check the information for quality control, a proce-
dure which can be very time-consuming. If NLP
techniques could be used to aid curators in their task
then the costs of producing curated databases could
be substantially reduced.

In the context of biomedical information extrac-
tion, there has been much recent interest in the
automated extraction ofPPIs (protein-protein in-
teractions) from biomedical literature. The recent
BioCreAtIvE Challenge highlights the desire to uti-
lize these extraction techniques to automatically or

semi-automatically populate curatedPPI databases.
However, just identifying the interactions is not nec-
essarily sufficient, as curators typically require ad-
ditional information about the interactions, such as
the experimental method used to detect the interac-
tion, and the names of any drugs used to influence
the behaviour of the proteins. Furthermore, curators
may only be interested in interactions which are ex-
perimentally proven within the paper, or where the
proteins physically touch during the interaction.

This paper describes the implementation of a
system designed to extract mentions ofPPIs from
biomedical text, and to enrich thosePPIs with ad-
ditional information of biological interest. The en-
riched information consists of properties (name-
value pairs associated with aPPI, for example a di-
rectness property could indicate whether the inter-
action is direct or not direct) and attributes (rela-
tions between thePPI relation or its participating
entities and other entities, such as the experimental
method used to detect thePPI). This system for ex-
tracting and enrichingPPIs was developed as part of
theTXM programme, which aims to develop tools to
help with the curation of biomedical papers.

After reviewing related work in the following sec-
tion, a detailed description of how the annotated cor-
pus was created and its descriptive statistics is pro-
vided in section 3. The methods used to extract the
properties and attributes are explained in section 4,
and then evaluated and discussed in section 5. Some
conclusions and suggestions for further work are of-
fered in section 6.145



2 Related Work

There has been much recent interest in extracting
PPIs from abstracts and full text papers (Bunescu
and Mooney, 2006; Giuliano et al., 2006; Plake et
al., 2005; Blaschke and Valencia, 2002; Donaldson
et al., 2003). In these systems however, the focus has
been on extracting just thePPIs without attempts to
enrich thePPIs with further information. Enriched
PPIs can be seen as a type of biological event ex-
traction (Alphonse et al., 2004; Wattarujeekrit et al.,
2004), a technique for mapping entities found in text
to roles in predefined templates which was made
popular in the MUC tasks (Marsh and Perzanowski,
1998). There has also been work to enrich sentences
with semantic categories (Shah and Bork, 2006) and
qualitative dimensions such as polarity (Wilbur et
al., 2006).

Using NLP to aid in curation was addressed in
the KDD 2002 Cup (Yeh et al., 2002), where par-
ticipants attempted to extract records curatable with
respect to the FlyBase database, and has been further
studied by many groups (Xu et al., 2006; Karamanis
et al., 2007; Ursing et al., 2001).

The Protein-Protein Interaction task of the recent
BioCreAtIvE challenge (Krallinger et al., 2007) was
concerned with selecting papers and extracting in-
formation suitable for curation. ThePPI detection
subtask (IPS) required participants not simply to de-
tect PPI mentions, but to detect curatablePPI men-
tions, in other words to enrich thePPI mentions with
extra information. Furthermore, another of the sub-
tasks (IMS) required participants to add information
about experimental methods to the curatablePPIs.

3 Data Collection and Corpus

3.1 Annotation of the Corpus

A total of 217 papers were selected for annotation
from PubMed and PubMedCentral as having exper-
imentally proven protein-protein interactions (PPIs).
The papers were annotated by a team of nine anno-
tators, all qualified in biology to at least PhD level,
over a period of approximately five months.

The XML versions of the papers were used wher-
ever possible, otherwise theHTML versions were
used and converted toXML using an in-house tool.
The full-text of each paper, including figure cap-
tions, was annotated, although the materials and

methods sections were not included in the annota-
tion.

From the 217 annotated papers, a total of 65
were selected randomly for double annotation and
27 for triple annotation. These multiply-annotated
papers were used to measure inter-annotator agree-
ment (IAA ), by taking each pair of annotations on
the same paper, and scoring one annotation against
the other using the same algorithm as for scoring the
system against the annotated data (see Section 5).
Each doubly annotated paper contributed one pair of
annotations, whilst the triply annotated papers con-
tributed three pairs of annotations. The overallIAA

score is the micro-average of theF1 scores on each
pair of corresponding annotations, where it should
be emphasised that theF1 does not depend on the
order in which the annotated papers were combined.
The multiply annotated papers were not reconciled
to produce a single gold version, rather the multiple
versions were left in the corpus.

The papers were annotated for entities and rela-
tions, and the relations were enriched with proper-
ties and attributes. The entities chosen for anno-
tation were those involved inPPIs (Protein, Com-
plex, Fusion, Mutant and Fragment) and those
which could be attributes ofPPIs (CellLine, Drug-
Compound, ExperimentalMethod and Modification-
Type). A description of the properties and attributes,
as well as counts andIAA scores are shown in Ta-
bles 1 and 2.

Once annotated, the corpus was split randomly
into three sections,TRAIN (66%), DEVTEST (17%)
and TEST (17%). TRAIN andDEVTEST were to be
used during the development of the system, for fea-
ture exploration, parameter tuning etc., whilstTEST

was reserved for scoring the final system. The splits
were organised so that multiply annotated versions
of the same paper were placed into the same section.

3.2 Descriptive Statistics of Corpus

The total number of distinctPPIs annotated in the
336 papers was 11523, and thePPI IAA, measured
usingF1, was 64.77. The following are examples of
enrichedPPIs, with the entities in bold face:

(1) Tat may also increase initiation of HIV-
1 transcription by enhancingphosphoryla-
tion of SP1, a transcription factor involved
in the basal HIV-1 transcription [14].146



Name Explanation Values Counts Pct IAA

IsPositive The polarity of the statement about thePPI.
Positive 10718 93.01 99.57
Negative 836 7.26 90.12

IsDirect Whether thePPI is direct or not.
Direct 7599 65.95 86.59
NotDirect 3977 34.51 61.38

IsProven Whether thePPI is proven in the paper or not.
Proven 7562 65.63 87.75
Referenced 2894 25.11 88.61
Unspecified 1096 9.51 34.38

Table 1: The properties that were attached toPPIs, their possible values, counts and IAA

Name Entity type Explanation Count IAA

InteractionDetectionMethod ExperimentalMethod Method used to detect the
PPI.

2085 59.96

ParticipantIdentificationMethod ExperimentalMethod Method used to detect the
participant.

1250 36.83

ModificationBefore Modification Modification of partici-
pant before interaction.

240 68.13

ModificationAfter Modification Modification of partici-
pant after interaction.

1198 86.47

DrugTreatment DrugCompound Treatment applied to par-
ticipant.

844 49.00

CellLine CellLine Cell-line from which par-
ticipant was drawn.

2000 64.38

Table 2: The attributes that could be attached to thePPIs, with their entity type, counts and IAA

(2) To confirm thatLIS1 and Tat interact in
vivo, we usedyeast two-hybrid system, in
whichTat was expressed as a bait andLIS1
as a prey. Again, we found thatLIS1 and
Tat interacted in this system.

In Example 1, the properties attached to thePPI be-
tween “Tat” and “SP1” are Referenced, Direct and
Positive, and “phosphorylated” is attached as a Mod-
ificationAfter attribute. Example 2 shows aPPI be-
tween “Tat” and “LIS1” (in the second sentence)
which is given the properties Proven, Direct and
Positive, and has the InteractionDetectionMethod at-
tribute “yeast two-hybrid system”. This second ex-
ample indicates that attributes do not have to occur
in the same sentence.

Statistics on the occurrence of properties are
shown in Table 1. For most of the property val-
ues, there are significant numbers ofPPIs, except
for Unspecified and Negative, which are used in less
than 10% of cases. Note that annotators were per-
mitted to mark more than onePPI between a given

pair of entities if, for example, they wished to mark
both Positive and NegativePPIs because the author
is making a statement that proteins interact under
one condition and not under another condition. For
the purposes of data analysis and to make modelling
easier, suchPPIs have been collapsed to give a single
PPI which may have multiple values for each prop-
erty and attribute.

Table 2 shows occurrence statistics for attributes,
where, as for properties, there can be multiple val-
ues for the same attribute. A notable feature of the
attribute attachment counts is that certain attributes
(ModificationBefore and DrugTreatment especially)
are quite rarely attached, making it difficult to use
statistical techniques.

Also shown in Tables 1 and 2 are theIAA figures
for all properties and attributes. TheIAA for proper-
ties is generally high, excepted for the Unspecified
value of the IsProven property. This being some-
thing of a “none of the above” category means that
the annotators probably have different standards re-147



garding the uncertainty required before thePPI is
placed in this class. TheIAA for attributes is, on
the whole, lower, with some attributes showing par-
ticularly low IAA (ParticipantIdentificationMethod).
A closer investigation shows that the bulk of the dis-
agreement is about when to attach, in other words if
both annotators decide to attach an attribute to a par-
ticular PPI, they generally agree about which one,
scoring a micro-averaged overallF1 of 95.10 in this
case.

4 Methods

4.1 Pipeline Processing

The property and attribute assignment modules were
implemented as part of an NLP pipeline based on
the LT-XML 2 architecture1. The pipeline consists of
tokenisation, lemmatisation, part-of-speech tagging,
species word identification, abbreviation detection
and chunking, named entiry recognition (NER) and
relation extraction. The part-of-speech tagging uses
the Curran and Clark POS tagger (Curran and Clark,
2003) trained on MedPost data (Smith et al., 2004),
whilst the other preprocessing stages are all rule
based. Tokenisation, species word identification and
chunking were implemented in-house using theLT-
XML 2 tools (Grover and Tobin, 2006), whilst ab-
breviation extraction used the Schwartz and Hearst
abbreviation extractor (Schwartz and Hearst, 2003)
and lemmatisation used morpha (Minnen et al.,
2000).

The NER module uses the Curran and Clark NER
tagger (Curran and Clark, 2003), augmented with
extra features tailored to the biomedical domain. Fi-
nally, a relation extractor based on a maximum en-
tropy model and a set of shallow linguistic features
is employed, as described in (Nielsen, 2006).

4.2 Properties

To assign properties to eachPPI extracted by the
relation extraction component, a machine learning
based property tagger was trained on a set of features
extracted from the context of thePPI. The property
tagger used a separate classifier for each property,
but with the same feature set, and both Maximum
Entropy (implemented using Zhang Le’s maxent2)
and Support Vector Machines (implemented using

1http://www.ltg.ed.ac.uk/software/xml/
2http://homepages.inf.ed.ac.uk/s0450736/

maxent_toolkit.html

svmlight3) were tested. To choose an optimal fea-
ture set, an iterative greedy optimisation procedure
was employed. A set of potential features were im-
plemented, with options to turn parts of the feature
set on or off. The full feature set was then tested on
the DEVTEST data with each of the feature options
knocked out in turn. After examining the scores on
all possible feature knockouts, the one which offered
the largest gain in performance was selected and re-
moved permanently. The whole procedure was then
repeated until knockouts produced no further gains
in performance. The resulting optimised feature set
contains the following features:
ngram Both unigrams and bigrams were imple-

mented, although, after optimisation, unigrams
were switched off. The ngram feature usesvlw
backoff, which means that words are replaced
by their verb stems, backed off to lemmas and
then to the word itself if not available. Further-
more, all digits in the words are replaced with
“0”. Ngrams are extracted from the sentences
containing the participants in thePPI, and all
sentences in between. Ngrams occurring be-
fore, between and after the participants of the
PPI are treated as separate features.

entity The entity feature includes the text and type
of the entities in thePPI.

headword This feature is essentially constructed in
the same way as the ngram feature, except that
only head verbs of chunks in the context are
included, and the vlw backoff is not used.

entity-context In the entity context feature, the vlw
backoffs of the two words on either side of each
of the entities in thePPIare included, with their
positions marked.

4.3 Attributes

For attribute assignment, experiments were per-
formed with both rule-based and machine-learning
approaches. The following sections summarise the
methods used for each approach.

4.3.1 Rule-based

In the rule-based approach, hand-written rules
were written for each attribute, using part-of-speech
tags, lemmas, chunk tags, head words and the NER
tags. In all, 20 rules were written. Each rule is

3http://svmlight.joachims.org/148



Rule Protein Prec Count

P1 ATT P2 P2 100 13
P1 is ATT by P2 P1 100 1
ATT of P2 P2 86.1 112
ATT of P1 P1 74.5 80
P1 * ATT site P1 72.2 13
P1 * ATT by * P2 P2 70.0 100
P1 * (ATT pass)* P1 P2 64.0 16
P1 * ATT * P2 P2 67.5 187
P2 ATT P2 75.0 100
P2 - any-word ATT P1 73.7 14

Table 3: The rules used to assign ModificationAfter
attributes. The protein column indicates whether the
attribute attaches to the 1st or 2nd protein, the prec
field indicates the precision of the rule on the train-
ing set and the count indicates the number of times
the rule applied correctly in training. In the rules,
P1 refers to the first protein,P2 refers to the sec-
ond protein,ATT refers to the attribute,* refers to
any number of words,any-word refers to any single
word, and pass refers to the passive voice. For exam-
ple, the rule “P2 - any-word ATT” applied to the sen-
tence “protein 1 is regulated by protein 2-dependent
phosphorylation” would result in the attributephos-
phorylation being assigned as the ModificationAfter
attribute toprotein 1.

ranked according to its precision as determined on
the TRAIN set, and the rules are applied in order
of their precision. This is particularly important
with modification attributes which are constrained
so that a given modification entity can only be at-
tached once per interaction. Table 3 lists the rules
used to assign the ModificationAfter attribute.

4.3.2 Machine Learning

For this approach, attributes are modelled as rela-
tions betweenPPIs and other entities. For eachPPI

in a document, a set of candidate relations is cre-
ated between each of the entities in thePPI and each
of the attribute entities contained in the same sen-
tence(s) as thePPI4. If there are no entities of the
appropriate type for a given attribute in the same
sentence as thePPI, the sentences before and af-
ter the PPI are also scanned for candidate entities.
Each of the candidate relations that correspond to

4PPIs spanning more than 2 sentences were ignored

attributes annotated in the gold standard are consid-
ered positive examples, whilst those that were not
annotated are considered negative examples. For ex-
ample, given the following sentence:

Protein A phosphorylates protein B
[Protein] [Modification] [Protein]

If the gold standard indicates aPPI between Pro-
tein A and Protein B with phosphorylates assigned
as a ModificationAfter attribute to Protein B, four
candidate relations will be created as shown in Ta-
ble 4

Type Entity 1 Entity 2 Label

Mod Before Prot A phosphorylates neg
Mod Before Prot B phosphorylates neg
Mod After Prot A phosphorylates neg
Mod After Prot B phosphorylates pos

Table 4: Candidate Attribute Relations for Protein A
phosphorylates Protein B

A set of features is extracted for each of the exam-
ples and a maximum entropy (ME) model is trained
using Zhang Le’s maxent toolkit. The features used
are listed below:
entity The text and part-of-speech of the attribute,

as used for properties.
entity-context The entity context feature used for

properties, except that the context size was in-
creased to 4, and parts-of-speech of the context
words were also included.

ngram This is the same as the ngram feature
used for properties, except that unigrams were
switched on.

entities-between The entities that appear between
the two entities involved in the candidate rela-
tion.

parent-relation-feature Indicates the position of
the attribute entity with respect to parentPPI

(i.e. before, after, or in between). For attributes
that are in between the two entities involved in
the PPI, also indicates if the sentence is active
or passive.

5 Evaluation

5.1 Properties

To score the property tagger, precision, recall and
F1 are calculated for each of the seven possible149



Name Value Baseline Maximum Entropy SVM
Gold Predicted Gold Predicted Gold Predicted

IsPositive Positive 96.87 97.33 97.10 98.22 97.08 98.27
Negative 0.00 0.00 38.46 48.39 45.45 57.53

IsDirect Direct 78.66 81.90 82.05 85.54 81.94 86.87
NotDirect 0.00 0.00 58.92 54.33 60.80 63.44

IsProven Proven 78.21 78.85 87.86 82.73 88.08 88.51
Referenced 0.00 0.00 81.46 69.65 82.83 81.97
Unspecified 0.00 0.00 25.74 29.41 22.77 28.00

Overall 74.20 76.24 83.87 83.33 84.09 86.79

Table 5: The performance of the property tagger, measured bytraining onTRAIN andDEVTEST combined,
then testing onTEST. The two scores given for each system are for testing on goldPPIs, and testing on
predictedPPIs. AnF1 score is shown for each property value, as well as a microaveraged overall score.

property values and then theF1 scores are micro-
averaged to give an overall score. As mentioned in
Section 3.1, all versions of the annotation for each
multiply-annotated document were included in the
training and test sets, taking care that all versions of
the same document were included in the same set.
This has the disadvantage that the system can never
achieve 100% in cases where the annotators differ,
but the advantage of giving partial credit where there
is genuine ambiguity and the system agrees with one
of the options chosen by the annotators.

The scores for all property values, tested onTEST,
are shown in Table 5, both using the model (with
Maximum Entropy and SVM) and using a base-
line where the most popular value is assigned. Two
scores are shown, the performance as measured
when the test set has the goldPPIs, and the per-
formance when the test set has the predictedPPIs,
scored only on thosePPIs where both system and
gold agree. The relation extractor used to predict
the PPIs is trained on the same documents as were
used to train the property tagger.

To see which features were most effective, a
knockout (lesion) test was conducted in which fea-
tures were knocked out one by one and performance
was measured on theDEVTEST set. In each feature
knockout, one of the features from the list in Sec-
tion 4.2 was removed. Table 6 shows how the overall
performance is affected by the different knockouts.
From the knockout experiment it is clear that the
ngram (actually bigram) feature is by far the most
effective, with the other features only contributing
marginally to the results.

Feature Knockout score Difference

vanilla 86.08 0.00
ngram 81.86 -4.22
entity 85.30 -0.77
headword 84.38 -0.50
entity-context 85.54 -0.54

Table 6: The effect of knocking out features on the
property score. Tests are conducted by training on
TRAIN and testing onDEVTEST, on predictedPPIs.
“vanilla” refers to the case where the optimal fea-
tures set is employed.

5.2 Attributes

The attributes are scored in the same manner as the
properties. Table 7 summarises the results for both
the rule-based and machine learning attribute sys-
tems. These are compared to a baseline system that
simply attaches the nearest entity of the appropriate
type for each attribute.

5.3 Discussion

The results for the more common property values are
generally close to human performance (as measured
by IAA ), however performance on both IsNegative
and Unspecified is fairly low. In the case of Un-
specified, theIAA is also low, making it likely that
the training and test data is inconsistent, compound-
ing the problem of the low occurrence rate of this
value. The Negative value also suffers from a low
occurrence rate, leading to an imbalance between
Negative and Positive which makes life hard for the150



Attribute Baseline Rule-based Machine Learning
Gold Predicted Gold Predicted Gold Predicted

InteractionDetectionMethod 36.02 39.71 39.22 41.38 37.02 46.81
ParticipantIdentificationMethod 08.68 09.27 12.32 12.87 03.37 05.97
ModificationBefore 13.10 16.00 42.22 43.84 04.88 08.33
ModificationAfter 43.37 46.00 64.93 73.04 62.32 69.64
DrugTreatment 49.57 51.11 51.29 53.33 13.90 24.52
CellLine 50.19 45.90 54.47 50.47 45.13 42.28
Overall 29.68 30.32 45.26 48.32 32.08 43.11

Table 7: The performance of the attribute tagger, onTEST. The two scores given for each system are for
testing on goldPPIs, and testing on predictedPPIs. Performance on each attribute value is measured using
F1, and then microaveraged to give an overall figure.

machine learners. However it is also possible that
the shallow linguistic features used in these experi-
ments are not sufficient to make the sometimes sub-
tle distinction between a negative statement about
an interaction and a positive one, and that models
based on a deeper linguistic analysis (e.g. parse trees
as in (Moschitti, 2004)) would be more successful.
Note also that the feature set was optimised for max-
imum performance across all property values, with
all given equal weight, but if some values are more
important than others then this could be taken into
account in the optimisation, with possibly different
feature sets used for different property names.

The results for the attributes using the rule-based
system are approximately 75% of human perfor-
mance and are higher than results for the machine
learning system. However, for the Modification-
After, CellLine, and InteractionDetectionMethod at-
tributes, which occur more frequently than the other
attributes and have higherIAA , the machine learning
system is competitive and even slightly outperforms
in the case of the InteractionDetectionMethod. The
scores are directly correlated with theIAA and both
the scores and theIAA are higher for the attributes
that tend to occur in the same sentence as thePPI. On
a practical level, this suggests that those who hope to
create similar systems would be advised to start with
local attributes and pay particular attention toIAA on
non-local attributes.

5.4 Further work

As regards properties, good results were obtained
using shallow linguistic features, but it would be
interesting to learn whether machine learning tech-

niques based on a deeper linguistic analysis would
be more effective. Also, properties were treated as
additional information added on to thePPIs after the
relation extractor had run, but perhaps it would be
more effective to combine relation extraction and
property tagging to, for example, consider positive
and negativePPIs as different types of relations.

For attributes, it would be interesting to combine
the rule-based and machine learning systems. This
has the advantage of having a system that can both
learn from annotated data when it exists, but can
be potentially improved by rules when necessary or
when annotated data is not available. Another issue
may be that some attributes might not be represented
explicitly by a single entity in a document. For ex-
ample, an experimental method may be described
rather than explicitly stated. Attributes that are not
local to thePPI caused difficulty for both the anno-
tators and the system. It would be interesting to see
if it is easier to attach attributes to a singlePPI that
has been derived from the text, rather than attempt-
ing to assign attributes to each specific mention of a
PPI within the text. This could be accomplished by
attempting to merge the information gathered from
each relation along the lines described in (Hobbs,
2002)

Since the main motivation for developing the sys-
tem to extract enrichedPPIs was to develop a tool to
aid curators, it would be useful to know how effec-
tive the system is in this task. Aside from (Karama-
nis et al., 2007), there has been little work published
to date on the effect that NLP could have on the cu-
ration process. In the most recent BioCreAtIvE eval-
uation, the PPI subtasks were concerned with au-151



tomating information extraction tasks typically per-
formed by curators such as distinguishing between
curatable and non-curatablePPI mentions and spec-
ifying the details of how thePPI was detected.

6 Conclusions

A system was implemented for enriching protein-
protein interactions (PPIs) with properties and at-
tributes providing additional information useful to
biologists. It was found that a machine learning
approach to property tagging, using simple contex-
tual features, was very effective in most cases, but
less effective for values that occurred rarely, or for
which annotators found difficulty in assigning val-
ues. For the attributes, sparsity of data meant that
rule-based approaches worked best, using fairly sim-
ple rules that could be quickly developed, although
machine learning approaches could be competitive
when there was sufficient data.
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Abstract

Many approaches for named entity recogni-
tion rely on dictionaries gathered from cu-
rated databases (such as Entrez Gene for
gene names.) Strategies for matching entries
in a dictionary against arbitrary text use ei-
ther inexact string matching that allows for
known deviations, dictionaries enriched ac-
cording to some observed rules, or a com-
bination of both. Such refined dictionar-
ies cover potential structural, lexical, ortho-
graphical, or morphological variations. In
this paper, we present an approach to au-
tomatically analyze dictionaries to discover
how names are composed and which varia-
tions typically occur. This knowledge can
be constructed by looking at single entries
(names and synonyms for one gene), and
then be transferred to entries that show simi-
lar patterns in one or more synonyms. For
instance, knowledge about words that are
frequently missing in (or added to) a name
(“antigen”, “protein”, “human”) could au-
tomatically be extracted from dictionaries.
This paper should be seen as a vision paper,
though we implemented most of the ideas
presented and show results for the task of
gene name recognition. The automatically
extracted name composition rules can eas-
ily be included in existing approaches, and
provide valuable insights into the biomedi-
cal sub-language.

1 Introduction
Recognition of named entities (NER), such as names
referring to genes and proteins, forms a major build-
ing block for text mining systems. Especially in
the life sciences, a large amount of different entity
types and their instances exist. Two basic strategies
for NER are classification- and dictionary-based ap-
proaches. Classifiers learn (or are given) models to
decide whether a sequence of tokens refers to an
entity or not. Such decisions are based on various
forms of input, for instance, tokens and their se-
quence in a sentence, part-of-speech tags, charac-
teristic suffixes, and trigger keywords1 (Hakenberg
et al., 2005). Models can be learned from a given
training sample. Dictionary-based approaches rely
on curated word lists containing (all known) repre-
sentatives of an entity type. Manual or automated
refinement of the dictionary and inexact matching
strategies allow to cover a broad spectrum of name
variations (Hanisch et al., 2005). Classification-
based approaches have proven to be very robust to-
wards unseen tokens and names, because they also
incorporate knowledge on names of the given class
in general1 (Crim et al., 2005). Dictionaries, on
the other hand, reflect the knowledge about an en-
tity class at a given time, and such approaches can-
not find instances unknown to them. However, the
main advantage of dictionary-based NER is that they
bring the explicit possibility to map recognized en-
tities to the source of the entries (most times, a
database.) This alleviates the task of named entity

1For example, a protein name often is/has a proper noun;
many enzymes end with ‘–ase’; ‘domain of’ is often followed
by a protein name.
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identification (NEI) that is needed to annotate texts
properly or link text-mined facts to database entries.

In this paper, we want to concentrate on
dictionary-based approaches and present ideas of
how these could be automatically refined and en-
riched. In such a setting, named entity recognition
functions as a method of ‘spotting’ entities in a text,
after which further identification (disambiguation)
is needed. NER components thus should guarantee
very high recall rates with a reasonable precision.
NEI then refines the predictions of NER, eliminat-
ing false positive annotations and identifying names.
That such a setup would perform quite well is re-
flected, for example, in a study presented by Xu et
al. (2007). They showed that sophisticated disam-
biguation strategies currently yield up to 93.9% pre-
cision (for mouse genes; yeast: 89.5%, fly: 77.8%.)
Participants in the BioCreAtIvE 2 challenge showed
similar values for human genes (up to 84.1% preci-
sion, 87.5% recall, or 81.1% F1), see Morgan and
Hirschman (2007) for a summary.

Hand-coded rules for creating spelling variations
have been proposed before, see section on Related
Work. Such rules are applied to synonyms to gen-
erate morphological and orthographical variations
(“Fas ligand”→ “Fas ligands” and “Ifn gamma”→
“Ifn-γ”, respectively). In the same manner, systems
use known patterns for structural changes of names
and mappings for lexical variations to enrich exist-
ing dictionaries (“CD95R” → “receptor of CD95”
and “gastric alcohol dehydrogenase” → “stomach
alcohol dehydrogenase”). Our research question in
this paper is, how such rules can be learned automat-
ically from dictionaries that contain entries of the
same entity class with multiple, typical synonyms
each. Learning about the composition of names
comes down to an analysis of known names. A
human, given the same task, would look through a
lot of examples to derive term formation patterns.
Questions to ask are:

• What are frequent orthographical and morpho-
logical variations?

• Which parts of a name get abbreviated?
• How are abbreviations formed?
• Which identical abbreviations can be observed

in multiple names?
• In which way can a name structurally and lexi-

cally change?
• Which are the parts of a name that can be ex-

changed with other terms or skipped entirely?
• Which are the important parts of a name, which

are additional descriptive elements?

In this paper, we demonstrate methods to analyze
names in order to find the semantically important
parts. We map these parts to potential syntactic vari-
ations thereof observed within a name and its syn-
onyms. We assess the frequency of such mappings
(exchange of tokens, different ordering of tokens,
etc.) and transfer this knowledge to all other names
in the same dictionary. In this setup, understanding
a name results in a structured decomposition of the
name. Such decompositions provide knowledge on
how to find (and identify) the name in arbitrary text,
as they give insights into its mandatory, unique, and
ambiguous2 parts.

This paper should be seen as a vision paper,
though we implemented most of the ideas presented
herein and show first results. We first explain the
idea behind learning name composition rules, mo-
tivated by manual curation as described in Related
Work. We then explain the basic techniques needed
for our analysis. We show how single entries (a
name and all its synonyms) can be analyzed to find
composition rules, and how these can be transferred
to other entries. Preliminary results using some of
the ideas presented here are also given. We con-
clude this paper with a discussion of the experimen-
tal methodology and an outlook.
1.1 Related Work
Current survey articles cover the spectrum of re-
cent methods and results for biomedical named en-
tity recognition and identification (Cohen and Hersh,
2005; Leser and Hakenberg, 2005). A recent as-
sessment of named entity recognition and identifi-
cation was done during the BioCreAtIvE 2 evalua-
tion3. Official results will be available in April 2007.
Naturally, a number of systems proposed before are
highly related to the method presented in this paper.
Hanisch et al. (2005) proposed the ProMiner system
to recognize and identify protein names in text. They
observed that the ordering of tokens in a name oc-
cur quite frequently, but do not change the seman-

2The latter two as compared to the whole dictionary.
3See http://biocreative.sourceforge.net .
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tics of the overall name. They presented a model for
protein names, partitioning tokens into token classes
according to their semantic significance: modifiers
(“receptor”), specifiers (“alpha”), non-descriptive
tokens (“fragment”), standard tokens (“TNF”), plus
common English words and interpunctuation. To
evaluate the significance of tokens, they count their
respective frequencies in a dictionary. Hanisch et al.
extract a dictionary using various knowledge source
(HGNC etc.) and expand and prune it afterwards.
Expansion and pruning are based on manually de-
fined rules (separating numbers and words, expand-
ing known unambiguous synonyms with known syn-
onyms, applying curation lists maintained by biolog-
ical experts, predefined regular expressions). The fi-
nal matching procedure found names by comparing
(expanded) tokens and their classes to arbitrary text,
where some token classes were mandatory for the
identification and others could be missing. ProMiner
yielded results between 78 and 90% F1-measure on
the BioCreAtIvE 1 (Task 1B), depending on the
organism-specific sub-task. The highest recall was
found to be 84.1% for fly, 81.4% for mouse, and
84.8% for yeast genes.

We used a similar method, relying entirely on
manually defined rules for name variations, for the
BioCreAtIvE 2 GN task (Hakenberg et al., 2007).
We expanded the dictionary applying these rules to
every synonym (treating abbreviations and spelled-
out names slightly different). This yielded a recall of
92.7 and 87.5% on the training and test sets, respec-
tively (F1: 81.1%). In the aftermath of BioCreAtIvE
2, we now try to improve this high recall values fur-
ther, by automatically analyzing the whole dictio-
nary of gene names instead of manually composing
useful rules in a trial–and–error approach.

2 Methods

We first want to present the overall idea of learning
name composition rules, guided by specific exam-
ples. We first show how comparison of synonyms
known for one gene name yields insights into the
‘meaning’ of the gene, and produces rules for struc-
tural and lexical variations of its name(s). After-
wards, we explain how such rules can be exchanged
between different genes and add to the understand-
ing of each genes ‘meaning.’

2.1 Techniques
We apply several techniques to the analysis of
names. To detect abbreviations by pairwise compar-
ison of synonyms, we use the algorithm proposed by
Schwartz and Hearst (2003) as the core component4.
We changed some of the details so that, for instance,
the first letter of the potential abbreviation has to
match the first letter of the proposed long form. We
perform the detection of abbreviations not only on
whole synonyms, but also on parts of each name
(like for “TNF-alpha stimulated ABC protein”), so
that this property of Schwartz and Hearst’s algo-
rithm (S&H) is recovered. A trivial adaptation also
reveals which parts of an abbreviation (one or more
characters) map to which parts of the long form (one
token, one partial token.) As S&H allows for miss-
ing tokens in the long form, we can also add the pos-
sibility for (few) characters in the abbreviation not
being reflected in the long form.

To detect inexact matches (that is, slight vari-
ations in morphology or orthography), we use an
adaptation of the biological sequence alignment al-
gorithm (Needleman and Wunsch, 1970). Using the
computed alignment score, this yields an immediate
quantification of the similarity of two terms.

We compare the sequence of identified name parts
(parts of a name where a mapping from this part to
a part of the other synonym exists) in order to find
parts that can be skipped or exchanged with each
other. In addition, this yields insights into potential
permuations of all parts of a name, and shows where
certain parts typically do or do not occur.

2.2 Representation
Representation of information extracted by parsing
i) a synonym or ii) all synonyms of a gene becomes
a crucial basic part of our approach. Concepts have
to be found in a name, for instance,
• substance: “serotonin”,
• type: “receptor”,
• function: “transcription factor”, or
• family-member: “family-member number 6”.

Also, for these concepts, rules have to be learned
that match them against text (or vice versa): an ‘R’
hints on a receptor, a ’6’ at the end of a name (for in-
stance, a noun phrase) hints on a family-member or

4The original algorithm decides whether a given short form
can be explained by a given long form.
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Type Example token Example name
Descriptor antigen, ligand, inhibitor P-30 antigen
Modifier factor, family member, type BRG1-associated factor
Specifier alpha, IX, A TNF alpha
Source d, HUMAN, p dHNF-4

Table 1: Types of tokens that frequently occur in gene names. Also see Hanisch et al. (2005), though they introduce different
conventions.

type. We rely on semantic types, which are defined
using descriptions automatically identified from the
syntax (lists of variations), rather than pure syntac-
tical ones. This helps during classification of identi-
fied concepts: a syntactical concept would map “s”
to “serotonin”; but additionally, we need to express
that the given gene demands any arbitrary form of
a reference to a substance, which is serotonin, in its
name. Whether this occurs as the substance’s name
itself, an abbreviation, or synonym of the substance,
and at which position in a text5, then becomes less
important concerning the matching strategy. Table 1
sums up some of the known types of tokens and ex-
amples we want to distinguish. Note that the proper
type definition cannot automatically be assigned to
a concept. Concepts can be identified as belong-
ing to the same type only because they share certain
properties (can be skipped, is a numerical entity, is a
mandatory tokens that occurs at the end of a name.)
In Table 1, the descriptors “antigen” and “ligand”,
for instance, appear to be of the same type, but anal-
ysis will reveal that while the mention of “antigen”
in a name is skipped frequently, “ligand” represents
a mandatory concept in many synonyms.

For the remainder of this paper, we subsequently
break down a gene into the basic concepts described
in one or more of its name. First, a gene is iden-
tified by a set of names (synonyms). Second, each
name consists of multiple parts; proper separation
and identification is a crucial step. Third, each part
of a name then represents a certain concept that is
typical for the gene. A gene is defined by all identi-
fied concepts. While a gene name part stores the in-
formation on where and if it occurs in the sequence
of parts that ultimately form the (or rather a) name
of the gene, concepts store information about vari-
ations. Knowledge about name parts and concepts
is then transferred within each respective level only.
Each such potential transfer we call a composition

5Maybe within a somewhat confined neighborhood, for in-
stance, in the current paragraph or in the abstract of the text.

rule. An example, which we will also discuss in
the next section, is the gene FASLG. Is has multiple
synonyms, “FASLG” being one of those. This name
can be separated into the parts “FAS” and “LG”. The
first part has the concept “FAS”, which can appear
in the variations “Fas”, “fas”, or “CD95”, as we will
see later; the second part has the concept “LG”, a
possible variation is “ligand”:

FASLG

FAS

FAS Fas

CD95fas
LG

L

ligand

LG

FAS  LG

(from top to bottom, levels depict the name, parts,
concepts, and variations of each concept.)

2.3 Analysis of intra-gene variations
In this section we explain how we discover concepts
and their appearances (exact tokens) within a set of
synonyms under the assumption that they all belong
to the same gene. Basically, this means that we
can allow for more mismatches, lacking parts, or the
like, as for comparing names of different genes.

Reconsider the example of the aforementioned
FASLG gene (356)6. We show the synonyms known
according to Entrez Gene in Table 2. Pairwise anal-
ysis of the synonyms provides insights as shown in
Table 3.

Recombining the extracted concepts and using
different variations for either, we can achieve some
new potential names, for instance, FasL (capitaliza-
tion) and CD95 ligand (replaced ’L’ with identified

6In the following, we will always show each gene’s official
symbol first and then known synonyms. Numbers in brackets
refer to Entrez Gene IDs.
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Apoptosis antigen ligand APTL apoptosis (APO-1) antigen ligand 1
Apoptosis (APO-1) ligand 1 APT1LG1 FAS antigen ligand
Apoptosis ligand CD178 Fas ligand (TNF superfamily, member 6)
CD95L FASL TNFL6 HUMAN
fas ligand FASLG TNFSF6
FAS ligand TNFL6 Tumor necrosis factor ligand superfamily member 6

Table 2: Synonyms of the FASLG gene that we use in our examples.

Synonyms Composition rule learned No.
FASL + FAS ligand L ≡ ligand 1
FASLG + FAS ligand LG ≡ ligand 2
FAS ligand + fas ligand FAS ≡ fas 3
FASL + CD95L FAS ≡ CD95 4
Tumor necrosis factor ligand superfamily member 6 + T ≡ Tumor, N ≡ necrosis 5a,b

TNFSF6 F ≡ factor, SF ≡ superfamily 5c,d
“member” before a number can be left out 5e

Apoptosis antigen ligand + Apoptosis ligand “antigen” can be left out 6
FAS antigen ligand + FAS ligand “antigen” can be left out 7
Apoptosis (APO-1) ligand 1 + Apoptosis ligand “1” at end can be left out 8
TNFL6 + TNFL6 HUMAN “ HUMAN” can be added to a name 9
Fas ligand (TNF superfamily, member 6) + FAS ligand Fas ≡ FAS 10
Apoptosis ligand + APTL Apoptosis ≡ APT 11
Apoptosis (APO-1) ligand 1 + APT1LG1 ligand 1 ≡ LG1 12

Table 3: Pairwise analysis of some synonyms for FASLG and some insights gained. Conclusions shown in the bottom part can be
drawn using insights from the first part only. Rules like “X can be left out” imply that the opposite can also happen, “X can be
added”, and vice versa. Multiple detections of the same rule (no. 6 & 7) increase its support, so the application of rules could be
weighted accordingly.

long form) for the FASLG gene. In cases where nei-
ther part of a name can be mapped onto parts of an-
other name, then no rule should be generated: com-
paring “CD178 antigen” to “CD95 ligand” should
not result in the variation “CD178 ligand”. On the
other hand, after removal of “antigen” (rules no. 6
& 7 in Table 3), “CD178” represents a variation
of “CD95 ligand” (which in this case was already
known from Entrez Gene.) In the following sections,
we explain the detection of different kinds of varia-
tions in more detail and show examples.

Abbreviations
Detecting abbreviations is a crucial initial step in our
analyses. Many variations are explained only across
abbreviations and their long forms. More important,
comparing abbreviations and long forms identifies
the parts of either name, which can then be com-
pared to parts of other names. Taking HIF1A (3091)
as an example, we find the synonyms “HIF1 al-
pha”, “HIF-1 alpha”, “HIF-1alpha”, and “Hypoxia-
inducible factor 1 alpha”. Schwartz and Hearst’s al-
gorithm easily reveals that “1 alpha”, “1alpha”, and
“1A” all map to each other; “H” can be mapped to
“Hypoxia”, and so on. All in all, we learned that
“Hypoxia-inducible factor 1A” could be a potential

synonym for HIF1A.

We now look at the OR1G1 gene (8390). Con-
sider two of its synonyms, “Olfactory receptor
1G1”, and “olfactory receptor, family 1, subfamily
G, member 1”. Comparing the official symbol with
the first synonym, it becomes clear that “OR” abbre-
viates “Olfactory receptor” using S&H. Comparing
the synonyms, we find direct correspondences be-
tween both “1”s and “G”. AS we are still within one
gene, is is safe to assume that all in all, “1G1” ab-
breviates “family 1, subfamily G, member 1”. This
implies that concepts stating that we are within a
gene family (subfamily, members) can be missing
– whereas the respective values (“1”, “G”, “1”) are
mandatory.

Another abbreviation that commonly occurs in
gene names is the (abbreviated) mention of the or-
ganism (on the species level). For example, the
gene GIMAP4 (55303) has “HIMAP4”, “IMAP4”,
“IAN1”, “hIAN1”, and “human immune associated
nucleotide 1” as known synonyms. From synonyms
1 and 2 we can infer that an “H” can be added to a
name (just like “ HUMAN”, see Table 3.) The same
is true for “h” (synonyms 3 and 4.) Comparing syn-
onyms 1 or 4 to 5 leads to the conclusion that “H”
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and “h” both abbreviate “human.”

Lexical variations
In the set of synonyms for ADHFE1 (137872), we
find “Fe-containing alcohol dehydrogenase 1” and
“alcohol dehydrogenase, iron containing, 1”. Split-
ting these synonyms into their respective parts and
then comparing both sets reveals that all but one part
each can be exactly mapped to a corresponding part
in the other synonym. From this almost exact match,
we can conclude that the parts “Fe” and “iron” are
synonyms of each other, potentially representing the
same concept, and easy to confirm for a human.

In the same manner, we will find that “1B” can be
sometimes expressed as “2”, and that “adaptor” and
“Adapter” are orthographic variations of each other,
by looking at some synonyms for AP1S2 (8905):

- Adapter-related protein complex 1 sigma 1B subunit
- adaptor-related protein complex 1 sigma 2 subunit
- adaptor-related protein complex 1, sigma 1B subunit

To detect these two changes, we first need to map
parts to each other and then compare the names
based on the sequence of the parts.

Structural variations
Changes in the structure of a name can be deduced
when a safe mapping between most parts of a name
exist. For the HMMR gene (3161), we find two ev-
idences for such a variation, which also lead to the
conclusion that “for” is an optional part. However,
in our system, we would retain information concern-
ing the positioning of “for” (at least, tendencies like
“not the first” and “not the last” part.)

- Receptor for hyaluronan-mediated motility
- hyaluronan-mediated motility receptor
- Hyaluronan mediated motility receptor
- intracellular hyaluronic acid binding protein
- hyaluronan-mediated motility receptor (RHAMM)

Analysis of this example also finds that “hyaluro-
nan” can start with an upper case letter (and that
this occurs only when it is the first part of the
name. “RHAMM” is the abbreviation for “Recep-
tor for hyaluronan-mediated motility”, as revealed
by S&H. This leads to the next conclusion, that ab-
breviations can immediately follow a gene name.

Descriptive elements
Comparing the sequence of identified name parts
(parts of a name where a mapping from this part to
a part of the other synonym exists) yields dissimi-
larities that result either from a dropped/added name

part, or from a lexical variation. Consider the fol-
lowing example:

Fas antigen ligand

FASLG
}}
?

Inexact matching immediately identifies the map-
ping from “Fas” to “FAS”; abbreviation detec-
tion and/or alignment yields “ligand” as a long
form/variation of “LG.” The sequence of name parts
if the same in both synonyms, with an added “anti-
gen” in the first synonym. An extracted composition
rule could thus be that “antigen” is of additional, de-
scriptive value only, and can be skipped. Knowing
this, the first synonym should also match the strings
“Fas ligand” and “FAS ligand” (in fact, both should.)

Another example is ZG24P (259291) with its syn-
onym “uncharacterized gastric protein ZG24P”. As
the official symbol clearly is an abbreviation (single
word, upper case letters, numbers) and matches the
last part of the synonym, we can assume that the first
part is either another synonym or a mere descriptive
element that explains the real gene name. Indeed,
patterns like “uncharacterized ... protein” or “hypo-
thetical protein” appear frequently as first parts of
gene names.

2.4 Analysis of inter-gene variations
As we have so far analyzed synonyms of one and the
same gene to extract knowledge on name composi-
tion, we can now apply this knowledge to the whole
set of gene names. This means, that we add knowl-
edge gained by analyzing one gene to other genes,
wherever applicable. Essentially, this comes down
to finding corresponding concepts in two or more
genes’ names, and joining the information contained
in each concept. If within one gene name it became
clear that “L” and “ligand” represent the same con-
cept, and for another gene “L” and “LG” are vari-
ations of the same concept, then a combined con-
cept would have all three variations. The combined
concept then replaces the old concepts. We apply
the same idea to name parts, for which information
about their ordering etc. was extracted.

Inter-gene analysis also reveals the main distinc-
tive features of single gene names or groups of
names (for instance, families.) Some names dif-
fer only in Arabic/Roman numbers or in Greek let-
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ters. Potentially they belong to the same group, as
different members or subtypes. Knowing how to
find one family member implicitly means knowing
how to find the others. Thus, it helps identify cru-
cial parts (for the family name) and distinctive parts
(for the exact member.) A matching strategy could
thus try to find the family name and then look for
any reference to a number. Knowledge about this
kind of relationships has to be encoded in the dictio-
nary, however. Spotting a gene family’s name with-
out any specific number could lead to the assign-
ment of the first member to the match, see Table 3,
rule no. 8 (or dismissing the name, depending on
user-specific demands). Such information can also
be used for disambiguating names. Analyzing the
names “CD95 ligand” and “CD95 receptor” of two
different genes, it can be concluded that “CD95” by
itself contains not enough information to justify the
identification of either gene directly. Finding other
“receptor”s in the dictionary will also mark “recep-
tor” as a concept crucial, but not sufficient, for iden-
tifying a gene’s name in text. For “CD95”, on the
other hand, we have shown before that this token
might be exchanged with others.

Knowledge about (partial) abbreviations, like in
aforementioned “HIF” = “Hypoxia-inducible fac-
tor” and “OR” = “olfactory receptor”, can be trans-
ferred to all synonyms from other entries in the dic-
tionary that have the same long or short forms (but
possibly do not mention the respective other in any
synonym.) Similarly, presumed lexical variations
(“gastric” versus “stomach”) that have been found
for one gene name (one concept) can be included
in all corresponding concepts to spread the informa-
tion that “gastric” can appear as “stomach” in text.
This is necessary to detect the name “stomach alco-
hol dehydrogenase”, where the corresponding En-
trez Gene entry (ADH7, 131) does have the token
“stomach” in any of its synonyms.

Also, synonyms mentioning the species (like
“hIAN1” to depict human) are not contained for
every entry. Learning that “h” can be added to a
gene name helps recognizing such a variation in text
for other names (the dictionary lacks the variation
“hFasL” of FASLG, which is sometimes used.)

3 Evaluation and Conclusions
We evaluated some ideas presented in this paper on
the BioCreAtIvE 2 (BC2) dataset for the gene nor-
malization task. For the purpose of this study, we
were interested in how our method would perform
concerning the recall, as compared to methods based
on hand-curated dictionary refinement. We con-
ducted the following experiment: the BC2 GN gold
standard consists of references to abstracts (PubMed
IDs), genes identified in each abstract (Entrez Gene
IDs) and text snippets that comprise each gene’s
name. For one abstract, there could be multiple, dif-
ferent snippets representing the same gene, ADH7
(131): “stomach alcohol dehydrogenase”, “class IV
alcohol dehydrogenase”, or “sigma-ADH”, all in the
same abstract. For identification, it was sufficient in
BC2 to report the ID, regardless of number of occur-
rences or name variations.

As the method presented in this paper lacks a
matching strategy for spotting of names, we per-
formed our initial evaluation on the text snippets
only. Finding the right ID for each snippet thus
ultimately yielded the recall performance. In the
above example, we would try to identify ID 131
three times, counting every miss as a false nega-
tive. The methods presented above were able to
yield a recall of 73.1%. With the original BC2 eval-
uation scheme, we achieve a recall of 84.2%. Com-
pared to the highest result for our system with a
manually refined dictionary, this figure is more than
8% lower. This shows that still, many name varia-
tions are not recognized. Some errors could be ac-
counted to ranges or enumerations of gene names
(“SMADs 1, 5 and 8”), others to not far enough
reaching analyses: for detecting “SMAD8”, we only
had the synonyms “SMAD8A”, “SMAD8B”, and
“SMAD9” for the correct gene in the dictionary (all
are synonyms for the same gene, according to Entrez
Gene). It should thus have been learned that the let-
ter “A” can be left out (similar to “1”, see rule no. 8
in Table 3.) Another undetected example is “G(olf)
alpha” (GNAL, 2774). Rules to restrict either of the
synonyms

- Guanine nucleotide-binding protein G(olf), alpha subunit
- guanine nucleotide binding protein (G protein),

alpha stimulating activity polypeptide, olfactory type
- Adenylate cyclase-stimulating G alpha protein, olfactory type
- Guanine nucleotide-binding protein, alpha-subunit, olfactory

type
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to this mentioning in text could have been deduced
as follows:

(1) Learn in another gene: description before
“protein” can be left out ⇒ “G(olf), alpha subunit”
could be a name of its own.

(2) Learn in this or another gene: “alpha subunit”
can be expressed as “alpha” (or “subunit” skipped)
⇒ “G(olf) alpha” could be a name.

We see that most orthographical and morpholog-
ical variations (Greek symbols/English words, sin-
gular/plural forms, capitalization) can be integrated
quite easily in matching techniques. The general
knowledge about such variations is far-reaching and
can be applied to most domains. In contrast, struc-
tural and lexical variations are much harder to pin-
point and express in general ways; mostly, such pos-
sible variations are specific to a sub-domain and thus
present the main challenge for our method.

The ideas discussed in this paper originated from
work on the aforementioned BioCreAtIvE 2 task.
In that work, we used manually designed rules to
generate variations of gene names. Hanisch et
al. (Hanisch et al., 2005) and other groups propose
similar methods all based on human observation and
experience leading to refined dictionaries. As many
causes for name variations are easy to spot and ex-
press, we concluded it was entirely possible to gain
such insights in an automated manner. Left undeter-
mined is the potential impact of composition rules
on machine-learning techniques that use dictionar-
ies as input for features.

However, the methodology should work for other
task using the same or similar initial observations
(This remains to be proven.) We are currently ap-
plying the method to the analysis of Gene Ontology
terms (Ashburner et al., 2000). There, many terms
are mere descriptions of concepts than precise la-
bels, and there are less additional synonyms (with
structural and lexical variations.) A good starting
point for assessing possible patterns in name com-
position could also be the MeSH controlled vocabu-
lary. Entries in MeSH typically contain many struc-
tural and lexical variations, a deeper understanding
of which bears more insights than of orthographical
or morphological variations.

Readers of this manuscript should either gain
more insights into name compositions of gene
names –in order to help refining dictionaries based

on manual rule sets–, or be convinced that the idea
of learning composition rules can be tackled in auto-
mated ways, promising examples of and basic tech-
niques for which we discussed herein.
Supplementary information
The extracted set of rules for name variations and an
extended dictionary for human genes, originating from
Entrez Gene, are available at http://www.informatik.hu-
berlin.de/˜hakenber/publ/suppl/ . The dictionary can directly be
used for matching entries against text and covers 32,980 genes.
The main Java classes are available on request from the authors.
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Abstract

This paper describes a preliminary analysis
of issues involved in the production of re-
ports aimed at patients from Electronic Pa-
tient Records. We present a system proto-
type and discuss the problems encountered.

1 Introduction

Allowing patient access to Electronic Patient
Records (EPR) in a comprehensive format is a le-
gal requirement in most European countries. Apart
from this legal aspect, research shows that the provi-
sion of clear information to patients is instrumental
in improving the quality of care (Detmer and Sin-
gleton, 2004). Current work on generating expla-
nations of EPRs to patients suffer from two major
drawbacks. Firstly, existing report generation sys-
tems have taken an intuitive approach to the gener-
ation of explanation: there is no principled way of
selecting the information that requires further expla-
nation. Secondly, most work on medical report gen-
eration systems has concentrated on explaining the
structured part of an EPR; there has been very lit-
tle work on providing automatic explanations of the
narratives (such as letters between health practition-
ers) which represent a considerable part of an EPR.
Attempting to rewrite narratives in a patient-friendly
way is in many ways more difficult than providing
suggestions for natural language generation systems
that take as input data records. In narratives, ambi-
guity can arise from a combination of aspects over
which NLG systems have full control, such as syn-
tax, discourse structure, sentence length, formatting
and readability.

This paper introduces a pilot project that attempts
to address this gap by addressing the following re-
search questions:

1. Given the text-based part of a patient record,
which segments require explanation before being re-
leased to patients?
2. Which types of explanation are appropriate for
various types of segment?
3. Which subparts of a segment require explanation?

The prototype system correctly selects the seg-
ments that require explanation, but we have yet to
solve the problem of accurately identifiying the fea-
tures that contribute to the “expertness” of a doc-
ument. We discuss the underlying issues in more
detail in section 3 below.

2 Feature identification method

To identify a set of features that differentiate med-
ical expert and lay language, we compared a cor-
pus of expert text with a corpus of lay texts. We
then used the selected features on a corpus of nar-
ratives extracted from a repository of Electronic Pa-
tient Records to attempt to answer the three ques-
tions posed above. First, paragraphs that contain
features characteristic to expert documents are high-
lighted using a corpus of patient information leaflets
as a background reference. Second, we prioritise the
explanations required by decomposing the classifi-
cation data. Finally, we identify within those sec-
tions the features that contribute to the classification
of the section as belonging to the expert register, and
provide suggestions for text simplification.

2.1 Features

The feature identification was performed on two cor-
pora of about 200000 words each: (a) an expert
corpus, containing clinical case studies and med-
ical manuals produced for doctors and (b) a lay
corpus, containing patient testimonials and infor-
mational materials for patients. Both corpora were
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sourced from a variety of online sources. In com-
paring the corpora we considered a variety of fea-
tures in the following categories: medical content,
syntactic structure, discourse structure, readability
and layout. The features that proved to be best dis-
criminators were the frequency of medical terms,
readability indices, average NP length and the rela-
tive frequency of loan words against English equiva-
lents1. The medical content analysis is based on the
MeSH terminology (Canese, 2003) and consists of
assessing: (a) the frequency of MeSH primary con-
cepts and alternative descriptions, (b) the frequency
of medical terms types and occurences and (c) the
frequency of MeSH terms in various top-level cate-
gories. The readability features consist of two stan-
dard readability indices (FOG and Flesch-Kincaid).
Although some discourse and layout features also
proved to have a high discriminatory power, they
are strongly dependent on the distribution medium
of the analysed materials, hence not suitable for our
analysis of EPR narratives.

2.2 Analysing EPR narratives

We performed our analysis on a corpus of 11000
narratives extracted from a large repository of Elec-
tronic Patient Records, totalling almost 2 million
words. Each segment of each narrative was then as-
sessed on the basis of the features described above,
such as Fog, sentence length, MeSH primary con-
cepts etc. We then smoothed all of the scores for
all segments for each feature forcing the minimum
to 0.0, the maximum to 1.0 and the reference corpus
score for that feature to 0.5. This made it possible to
compare scores with different gradients and scales
against a common baseline in a consistent way.

3 Evaluation and discussion

We evaluated our segment identification method on
a set of 10 narratives containing 27 paragraphs, ex-
tracted from the same repository of EPRs . The seg-
ment identification method proved succesful, with
26/27 (96.3%) segments marked correctly are re-
quiring/not requiring explanation. However, this
only addresses the first of the three questions set
out above, leaving the following research questions

1An in-depth analysis of unfamiliar terms in medical docu-
ments can be found in (Elhadad, 2006)

open to further analysis.
Quantitative vs qualitative analysis

Many of the measures that discriminate expert from
lay texts are based on indicative features; for exam-
ple complex words are indicative of text that is dif-
ficult to read. However, there is no guarantee that
individual words or phrases that are indicative are
also representative - in other words a given complex
word or long sentence will contribute to the readabil-
ity score of the segment, but may not itself be prob-
lematic. Similarly, frequency based measures, such
as a count of medical terminology, discriminate at a
segment level but do not entail that each occurrence
requires attention.
Terminology
We used the MeSH terminology to analyse med-
ical terms in patient records, however (as with prac-
tically all medical terminologies) it contains many
non-expert medical terms. We are currently investi-
gating the possibility of mining a list of expert terms
from MeSH or of making use of medical-lay aligned
ontologies.
Classification
Narratives in the EPR are written in a completely dif-
ferent style from both our training expert corpus and
the reference patient information leaflets corpus. It
is therefore very difficult to use the reference corpus
as a threshold for feature values which can produce
good results on the corpus of narratives, suggest-
ing that a statistical thresholding technique might be
more effective.
Feature dependencies
Most document features are not independent. There-
fore, the rewriting suggestions the system provides
may themselves have an unwanted impact on the
rewritten text, leading to a circular process for the
end-user.
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Abstract
The names of named entities very often oc-
cur as constituents of larger noun phrases
which denote different types of entity. Un-
derstanding the structure of the embedding
phrase can be an enormously beneficial first
step to enhancing whatever processing is in-
tended to follow the named entity recogni-
tion in the first place. In this paper, we
examine the integration of general purpose
linguistic processors together with domain
specific named entity recognition in order to
carry out the task of baseNP detection. We
report a best F-score of 87.17% on this task.
We also report an inter-annotator agreement
score of 98.8 Kappa on the task of baseNP
annotation of a new data set.

1 Introduction
Base noun phrases (baseNPs), broadly “the initial
portions of non-recursive noun phrases up to the
head” (Ramshaw and Marcus, 1995), are valuable
pieces of linguistic structure which minimally ex-
tend beyond the scope of named entities. In this
paper, we explore the integration of different tech-
niques for detecting baseNPs that contain a named
entity, using a domain-trained named entity recog-
nition (NER) system but in combination with other
linguistic components that are “general purpose”.
The rationale is simply that domain-trained NER is
clearly a necessity for the task; but one might expect
to be able to secure good coverage at the higher syn-
tactic level by intelligent integration of general pur-
pose syntactic processing without having to undergo

a further round of domain specific annotation and
training. We present a number of experiments ex-
ploring different ways of integrating NER into gen-
eral purpose linguistic processing. Of course, good
results can also be used subsequently to help reduce
the effort required in data annotation for use in dedi-
cated domain-specific machine learning systems for
baseNP detection.

First, however, we motivate the task itself. Enor-
mous effort has been directed in recent years to the
automatic tagging of named entities in bio-medical
texts and with considerable success. For example,
iHOP reports gene name precision as being between
87% and 99% (depending on the organism) (Hoff-
man and Valencia, 2004). Named entities are of
course only sometimes identical in scope with noun
phrases. Often they are embedded within highly
complex noun phrases. Nevertheless, the simple de-
tection of a name by itself can be valuable. This
depends in part on the intended application. Thus,
iHOP uses gene and protein names to hyperlink
sentences from Medline and this then supports a
browser over those sentences with additional navi-
gation facilities. Clicking on Dpp whilst viewing a
page of information about hedgehog leads to a page
of information about Dpp in which sentences that
relate both Dpp and hedgehog are prioritized.

One of the application advantages of iHOP is that
the discovered gene names are presented to the user
in their original context and this enables users to
compensate for problems in reliability and/or con-
textual relevance. In many Information Extraction
(IE) systems, relations between entities are detected
and extracted into a table. In this case, since the im-

163



mediate surrounding context of the gene name may
be simply lost, the reliability of the original identifi-
cation becomes much more important. In section 2
below, we explain our own application background
in which our objective is to increase the productiv-
ity of human curators whose task is to read partic-
ular scientific papers and fill in fields of a database
of information about genes. Directing curators’ at-
tention to sentences which contain gene names is
clearly one step. Curators additionally report that
an index into the paper that uses the gene name and
its embedding baseNP is even more valuable (ref-
erence omitted for anonymity). This often enables
them to predict the possible relevance of the name
occurrence to the curation task and thus begin or-
dering their exploration of the paper. Consequently,
our technical goal of baseNP detection is linked di-
rectly to a valuable application task. We also use the
baseNP identification in order to type the occurrence
semantically and use this information in an anaphora
resolution process (Gasperin, 2006).

The detection of baseNPs that contain a named
entity is a super-task of NER, as well as a sub-task
of NP-chunking. Given that NER is clearly a domain
specific task, it is an interesting question what per-
formance levels are achievable using domain trained
NER in combination with general purpose linguistic
processing modules.

There is a further motivation for the task. The dis-
tinction between a named entity and an embedding
noun phrase is one with critical importance even for
the sub-task of NER. Dingare et al (2005) conclude,
from their analysis of a multi-feature maximum en-
tropy NER module, that increases in performance of
biomedical NER systems will depend as much upon
qualitative improvements in annotated data as in the
technology underlying the systems. The claim is that
quality problems are partly due to confusion over
what lies in the scope of a named entity and what
lies at higher syntactic levels. Current biomedical
annotations are often inconsistent partly because an-
notators are left with little guidance on how to han-
dle complexities in noun phrases, especially with re-
spect to premodifiers and conjunctions. For exam-
ple, which premodifiers are part of the named entity
and which are “merely” part of the embedding noun
phrase? Is human part of the named entity in the
regulation of human interleukin-2 gene expression,

Figure 1: Paper Browser showing baseNP index

or not?
By focussing attention instead on the baseNPs

that contain a named entity, one can clearly sidestep
this issue to some extent. After all, increasing the
accuracy of an NER module with respect to premod-
ifier inclusion is unlikely to affect the overall accu-
racy of detection of the embedding noun phrases.

2 FlyBase curation

The intended application for our work is a soft-
ware environment for FlyBase curators that includes
an NLP-enhanced Browser for Scientific Papers.
FlyBase is the world’s leading genomics database
for the fruitfly Drosophila (melanogaster and other
species) (Crosby et al., 2007). FlyBase is largely
updated through a paper-by-paper methodology in
which research articles likely to contain informa-
tion relevant for the FlyBase database are first put
in a priority list. Subsequently, these are read by
skilled geneticists (at post-doctoral level) who dis-
til gene related information into the database itself.
Although this is a paradigm example of IE, our ob-
jective is not to fully automate this task itself, sim-
ply because the expected accuracy rates are unlikely
to be high enough to provide a genuinely useful
tool. Rather, our task is to enable curators to ex-
plore the gene related sections of papers more effi-
ciently. The Browser currently highlights potential
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items of interest for curators and provides novel in-
dexing and navigation possibilities. It is in this con-
text that the identification of baseNPs that contain
gene names is carried out. An individual sentence
that contains a gene name is very often not enough,
considered in isolation, for curators to fill in a re-
quired database field. Information often needs to
be gathered from across a paragraph and even the
whole paper. So extraction of sentences is not an at-
tractive option. Equally, a whole sentence is unfeasi-
bly large to serve simply as an indexing term into the
paper. Noun phrases provide more information than
simply gene names, but post-modification can also
lead to extremely long terms. BaseNPs are there-
fore a useful compromise, these being short enough
to display whole in a window (i.e. no scrolling
is required) and often bearing enough information
for the user to understand much more of the con-
text in which the gene name itself appears. Fur-
thermore, the baseNP is both a natural “unit” of in-
formation (whereas a window of n tokens around a
gene name is not) and it supports further processing.
BaseNPs are typed according to whether they denote
genes or various gene products and linked together
in anaphoric chains.

In our navigation panel for the Browser, the
baseNPs are sorted according to the gene name that
they contain (and then by order in which they appear
within the paper), and hyperlinked to their occur-
rence in the paper. This enables users to explore pa-
pers gene-by-gene but also, when considering a par-
ticular gene, to understand more about the reference
to the gene - for example whether gene products or
promoters are being referenced. Figure 1 contains
an example screenshot.

3 Scope of the Data

Complex nominals have long been held to be a com-
mon feature in scientific text. The corpus of Vlachos
and Gasperin (2006) contains 80 abstracts (600 sen-
tences) annotated with gene names. In this data-set,
noun phrases that contain gene names (excluding
post-modifiers) of 3 words or more comprise more
than 40% of the data and exhibit primarily: strings of
premodifiers tudor mutant females, zygotic Dnop5
expression; genitives: Robo ’s cytoplasmic domain,
the rdgB protein ’s amino terminal 281 residues; co-

ordination the copia and mdg-1 elements and par-
enthetical apposition the female-specific gene Sex
lethal ( Sxl ), and the SuUR (suppressor of under-
replication) gene. Only 41% of the baseNPs con-
taining a gene name consist of one token only. 16%
have two tokens. The two token baseNPs include
large numbers of combinations of gene names with
more general words such as Ras activity, vnd mu-
tants, Xiro expression, IAP localization and vasa
protein. In general, the gene name appears in mod-
ifier position although species modifiers are com-
mon, such as Drosophila Tsg, and there are other
possibilities: truncated p85.

Our intention is to categorize this data using the
concept of “baseNP” and build effective computa-
tional models for recognizing instances. Although
baseNP is a reasonably stable linguistic concept,
its application to a new data-set is not completely
straightforward. Ramshaw and Marcus (1995) state
that a baseNP aims “to identify essentially the ini-
tial portions of nonrecursive noun phrases up to the
head, including determiners but not including post-
modifying prepositional phrases or clauses”. How-
ever, work on baseNPs has essentially always pro-
ceeded via algorithmic extraction from fully parsed
corpora such as the Penn Treebank. BaseNPs have
therefore depended on particular properties of the
annotation framework and this leads to certain as-
pects of the class appearing unnatural.

The clearest case is single element conjunction,
which Penn Treebank policy dictates is annotated
at word-level with a flat structure like this [lpl and
xsl] (brackets indicate baseNP boundaries). As soon
as one of the elements is multi-word however, then
separate structures are to be identified [lpl] and [the
sxl gene]. The dependency on numbers of tokens
becomes clearly problematic in the bio-medical do-
main. Quite different structures will be identified
for lpl and fasciclin, lpl and fasciclin 1 and possibly
lpl and fasciclin-1, depending on how tokenization
treats hyphens. Furthermore, nothing here depends
on the motivating idea of “initial segments up to the
head”. In order to provide a more natural class, our
guidelines are that unless there is a shared modifier
to account for (as in [embryonic lgl and sxg]), all co-
ordinations are split into separate baseNPs. All other
cases of coordination follow the standard guidelines
of the Penn Treebank.
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A second difficult case is possessives. BaseNP ex-
traction algorithms generally split possessives like
this: [fra] [’s ectodomain], corresponding (some-
what) to an intuition that there are two NPs whilst
assigning each word to some baseNP chunk and
not introducing recursiveness. This policy however
causes a sharp division between this case and the fra
ectodomain following the Penn Treebank bracketing
guideline that nominal modifiers are never labelled.
Since our interest is “the smallest larger NP con-
taining a gene name”, we find it much more natu-
ral to treat fra’s as just another modifier of the head
ectodomain. Whether it recursively contains a sin-
gle word NP fra (or just a single word NNP) is again
not something that is motivated by the idea of “ini-
tial segments up to the head”. Similarly, we mark
one baseNP in the rdgB protein’s amino terminal
281 residues, viz. the rdgB protein.

Apposition, as in Sex lethal ( Sxl ) and the gene sex
lethal , is a further interesting case. In the first case,
“Sex lethal” and “Sxl” stand in apposition. Both are
gene names. The former is the head. In the sec-
ond, “gene” is the head and “sex lethal” is a name
that stands in apposition. In each case, we have a
head and post-modifiers which are neither clausal
nor prepositional. It is unclear whether the rubric
“clausal or prepositional” in Ramshaw and Marcus’
statement of intent is merely illustrative or defini-
tive. On the grounds that a sharp division between
the non-parenthetical case the gene sex lethal and the
pre-modifier the sex lethal gene is unnatural, our in-
tuition is that the baseNP does cover all 4 tokens in
this case. All (post-head) parentheticals are however
to be treated more like optional adjuncts and there-
fore not included with the head to which they attach.

In order to verify the reliability of baseNP an-
notation, two computational linguists (re)annotated
the 600 sentences (6300 tokens) of Vlachos and
Gasperin (2006) with baseNPs and heads using the
published guidelines. We added material concern-
ing head annotation. Vlachos and Gasperin did
not quote agreement scores for baseNP annotation.
Their interest was directed at gene name agreement
between a linguist and a biologist. Our 2-person
inter-annotator Kappa scores were 0.953 and 0.988
on head and baseNP annotation respectively repre-

senting substantial agreement.1 .

4 Methodology

A reasonable and simple baseline system for ex-
tracting baseNPs that contain a gene name is to use
an off-the-shelf baseNP extractor and simply filter
the results for those that contain a gene name. To
simplify analysis of results, except where otherwise
noted this filter and subsequent uses of NER are
based on a gold standard gene name annotation. In
this way, the contributions of different components
can be compared without factoring in relative errors
of NER. Naturally, in the live system, an automated
NER process is used (Vlachos and Gasperin, 2006).
For the baseline we chose an implementation of the
Ramshaw and Marcus baseNP detector distributed
with GATE2 pipelined with the Stanford maximum
entropy part of speech tagger 3. The Stanford tag-
ger is a state of the art tagger incorporating a num-
ber of features including use of tag contexts, lexical
features, a sophisticated smoothing technique, and
features for unknown words (including 4-gram pre-
fixes and suffixes). Both components of the base-
line systems utilize the 48 tag Penn Treebank tagset.
Results however showed that poor performance of
the part of speech tagger could have a disastrous ef-
fect on baseNP detection. A simple extension of the
baseline is to insert a module in between POS tag-
ging and NP detection. This module revises the POS
tags from the tagger in the light of NER results, es-
sentially updating the tags of tokens that are part of
named entities. This is essentially a simple version
of the strategy mooted by Toutanova at el (2003) that
the traditional order of NER and tagging be reversed.
It is simpler because, in a maximum entropy frame-
work, NER results can function as one extra fea-
ture amongst many in POS detection; whereas here
it functions merely as an override. Retraining the
tagger did not form part of our current exploration.

1In fact, although the experiment can be considered a classi-
fication of 6300 tokens in IOB format, the counting of classifi-
cations is not completely straightforward. The task was “anno-
tate the baseNP surrounding each gene name” rather than “an-
notate each token”. In principle, each token is examined; in
practice a variable number is examined. If we count all tokens
classified into NPs plus one token of context either side, then
both annotators annotated over 930 tokens.

2http://www.gate.ac.uk
3http://nlp.stanford.edu/software/tagger.shtml
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We adopted a similar strategy with the domain in-
dependent full parsing system RASP (Briscoe et al.,
2006). RASP includes a simple 1st order HMM POS
tagger using 149 of the CLAWS-2 tagset. The tagger
is trained on the manually corrected subsets of the
(general English) Susanne, LOB and BNC corpora.
The output of the tagger is a distribution of possi-
ble tags per token (all tags that are at least 1/50 as
probable as the top tag; but only the top tag if more
than 90% probable). The tagger also includes an un-
known word handling module for guessing the pos-
sible tags of unknown words. The RASP parser is
a probabilistic LALR(1) parser over the CLAWS-2
tags, or, more precisely, a unification grammar for-
malism whose lexical categories are feature based
descriptions of those tags. The parser has no access
to lexical information other than that made available
by the part of speech tags. Although the output of
RASP is a full parse (or a sequence of fragments, if
no connected parse can be found) and baseNPs may
not be constituents of NPs, baseNPs can be extracted
algorithmically from the full parse.

Some more interesting pre-parsing integration
strategies are available with RASP because it does
not demand a deterministic choice of tag for each
word. We experimented with both a deterministic
re-write strategy (as for the baseline system) and
with various degrees of interpolation; for example,
adjusting the probability distribution over tags so
that proper noun tags receive 50% of the probabil-
ity mass if the token is recognized by NER, and
the other tags receive the remaining 50% in direct
proportion to the amount they would receive from
the POS tagger alone. In this set-up, the NER re-
sults need not function simply as an override, but
equally they do not function simply as a feature for
use in part of speech tagging. Rather, the parser may
be able to select a best parse which makes use of
a sequence of tags which is not itself favoured by
the tagger alone. This allows some influence to the
grammatical context surrounding the gene name and
may also permit tags within phrasal names such as
transforming growth factor to propagate.

RASP is also a non-deterministic parser and con-
sequently a further possible integration strategy is
to examine the output n-best list of parses to find
baseNPs, rather than relying on simply the 1-best
output. The n-best parses are already scored accord-

ing to a probabilistic model trained on general text.
Our strategy is to re-score them using the additional
knowledge source of domain specific NER. We ex-
plored a number of re-scoring hypotheses. First, a
cut-off of 20 on n-best lists was found to be optimal.
That is, correct analyses tended to either be in the top
20 or else not in the top 100 or even 1000. Secondly,
differences in score between the incorrect 1-best and
the correct nth hypothesis were not a very reliable
indicator of “almost right”. This is not surprising as
the scores are probabilities calculated over the com-
plete analysis, whereas our focus is one small part
of it. Consequently, the re-scoring system uses the
probabilistic model just to generate the top 20 anal-
yses; and those analyses are then re-scored using 3
features. Analyses that concur with NER in having
a named entity within an NP receive a reward of +1.
Secondly, NP analyses that contain N+1 genes (as
in a co-ordination) receive a score of +N, so long
as the NP is single headed. For example, “gurken
or torpedo females” will receive a preferred analy-
sis in which “gurken” and “torpedo” are both mod-
ifiers of “females”. The “single headedness” con-
straint rules out very unlikely NP analyses that the
parser can return as legal possibilities. Finally, anal-
yses receive a score of -1 if the NP contains a deter-
miner but the head of the NP is a gene name. The
top 20 parses may include analyses in which, for ex-
ample, “the hypothesis that phenylalanine hydroxy-
lase” contains “that phenylalanine hydroxylase” as
an NP constituent.

Finally, we also experimented with using both the
full parsing and shallow baseNP spotter together;
here, the idea is simply that when two analyses over-
lap, then the analysis from full parsing should be
preferred on the grounds that it has more informa-
tion available to it. However, if the shallow spotter
detects an analysis when full parsing detects none
then this is most likely because full parsing has been
led astray rather than it has discovered a more likely
analysis not involving any baseNP.

5 Experimental Results

Table 1 gives the precision, recall and (harmonic) F-
score measures for the baseline NP system with and
without the extra pre-parsing retagging module; and
table 2 gives similar figures for the generic full pars-
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ing system. Scores for the left boundary only, right
boundary only and full extent (‘correct’) are shown.
The extra retagging module (i.e. override tagger re-
sults, given NER results) improves results in both
systems and by similar amounts. This is nearly al-
ways on account of gene names being mis-tagged
as verbal which leads to their exclusion from the set
of baseNP chunks. The override mechanism is of
course a blunt instrument and only affects the tags
of tokens within gene names and not those in its sur-
rounding context.

Table 3 shows the results from interpolating the
POS tag distribution P with the NER distribution
N linearly using different levels of λ. For example,
λ = 1.00 is the simple retagging approach in which
all the probability is assigned to the NER suggested
tag; whereas λ = 0.25 means that only 25% is allo-
cated by NER. The figures shown are for one variant
of the full parsing system which included n-best se-
lection but other variants showed similar behaviour
(data not shown). The results from interpolation
show that the extra information available in the parse
does not prove valuable overall. Decreasing values
of λ lead to decreases in performance. These results
can be interpreted as similar in kind to Charniak et
al (1996) who found that a parser using multiple
POS tag inputs could not improve on the tag accu-
racy of a tagger outputting single POS tags. Our
results differ in that the extra tag possibilities are de-
rived from an alternative knowledge source and our
measurement is baseNP detection. Nevertheless the
conclusion may be that the best way forward here
is a much tighter integration between NER and POS
tagging itself.

POS tagging errors naturally affect the perfor-
mance of both shallow and full parsing systems,
though not necessarily equally. For example, the
tagger in the shallow system tags ectopic as a verb
in vnd-expression leads to ectopic Nk6 expression
and this is not corrected by the retagging module be-
cause ectopic is not part of the gene name. Conse-
quently the baseNP spotter is led into a left bound-
ary error. Nevertheless, the distribution of baseNPs
from the two systems do appear to be complemen-
tary in a rather deeper fashion. Analysis of the re-
sults indicates that parentheticals in pre-modifier po-
sitions appears to throw the shallow parser severely
off course. For example, it generates the analysis

R P F
retag+shallow
(correct) 80.21 75.92 78.01
(left b) 92.40 87.46 89.86
(right b) 90.81 85.95 88.32
shallow only
(correct) 74.03 76.32 75.16
(left b) 84.28 86.89 85.56
(right b) 82.69 85.25 83.95

Table 1: Generic shallow parsing

R P F
retag+full
(correct) 80.92 84.81 82.82
(left b) 85.69 89.81 87.70
(right b) 88.69 92.96 90.78
full only
(correct) 75.44 85.23 80.04
(left b) 80.21 90.62 85.10
(right b) 82.51 93.21 87.54

Table 2: Generic full parsing

[the transforming growth factor-beta] ( [ TGF-beta
] ) superfamily. Also, appositions such as the human
auto antigen La and the homeotic genes abdominal
A and abdominal B cause problems. In these kinds
of case, the full parser detects the correct analysis.
On the other hand, the extraction of baseNPs from
grammatical relations relies in part on the parser
identifying a head correctly (for example, via a non-
clausal subject relation). The shallow parser does
not however rely on this depth of analysis and may
succeed in such cases. There are also cases where
the full parser fails to detect any analysis at all.

System (correct) (left b) (right b)
λ=0.25 83.97 88.34 90.71
λ=0.50 84.16 88.69 91.22
λ=0.80 85.18 89.67 91.28
λ=1.00 85.38 89.87 91.66

Table 3: F-scores for baseNP detection for various λ

Table 4 indicates the advantages to be gained in n-
best selection. The entries for full and retag+full are
repeated from table 2 for convenience. The entries
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System R P F
retag+full 80.92 84.81 82.82
retag+full+sel 83.22 87.22 85.17
retag+full+oracle 85.87 90.17 87.96
full 75.44 85.23 80.04
full+sel 78.80 86.60 82.52
full+oracle 81.63 89.88 85.56

Table 4: Effects of n-best selection

for full+sel and retag+full+sel show the effect of
adding n-best selection. The entries for full+oracle
and retag+full+oracle show the maximum achiev-
able performance by replacing the actual selection
policy with an oracle that always chooses the cor-
rect hypothesis, if it is available. The results are
that, regardless of whether a retagging policy is
adopted, an oracle which selects the best analysis
can achieve an error reduction of well over 25%.
Furthermore, the simple selection policy outlined
before succeeds in achieving almost half the pos-
sible error reduction available. This result is par-
ticularly interesting because it demonstrates that the
extra knowledge source available in this baseNP de-
tection task (namely NER) can profitably be brought
to bear at more than one stage in the overall process-
ing pipeline. Even when NER has been used to im-
prove the sequence of POS tags given to the parser,
it can profitably be exploited again when selecting
between parses.

The complementary nature of the two systems is
revealed in Table 5 which shows the effects of inte-
grating the two parsers. baseNPs from the shallow
parser are accepted whenever it hypothesizes one
and there is no competing overlapping baseNP from
the full parser. Note that this is rather different from
the standard method of simply selecting between an
analysis from the one parser and one from another.
The success of this policy reflects the fact that there
remain several cases where the full parser fails to
deliver “apparently” simple baseNPs either because
the tagger has failed to generate a suitable hypoth-
esis, or because parsing itself fails to find a good
enough analysis in the time available to it.

Overall, the best results (87.17% F-score) are ob-
tained by applying NER results both before parsing
through the update of POS tags and after it in se-

System R P F
1-best 85.69 84.35 85.01
n-best 87.63 86.71 87.17
oracle 90.28 89.49 89.89

Table 5: Combining shallow and full parsing

lection from n-best lists; and by combining the re-
sults of both full parsing in order to improve analy-
sis of more complex structures and shallow parsing
as a back-off strategy. The same strategy applied us-
ing our automated gene name recognizer results in
a F-score of 73.6% F-score, which is considerably
less of course, although the gene name recognizer
itself operates at 82.5% F-Score, with similar preci-
sion and recall figures. This naturally limits the pos-
sible performance of our baseNP recognition task.
Encouragingly, the “lost” performance (just under
11%) is actually less in this scenario than when gene
name recognition is perfect.

6 Previous Work
The lack of clarity between noun phrase extents and
named entity extents and its impact on evaluation
and training data for NER has been noted previ-
ously, e.g. for proteins (Mani et al., 2005). Vla-
chos and Gasperin (2006) claim that their name ver-
sus mention distinction was helpful in understand-
ing disagreements over gene name extents and this
led, through greater clarity of intended coverage, to
improved NER. BaseNP detectors have also been
used more directly in building NER systems. Ya-
mamoto et al (2003) describe an SVM approach to
protein name recognition, one of whose features is
the output of a baseNP recognizer. BaseNP recogni-
tion supplies a top-down constraint for the search for
protein names within a baseNP. A similar approach
albeit in a CRF framework is described in Song et
al. (2005).

The concept of baseNP has undergone a number
of revisions (Ramshaw and Marcus, 1995; Tjong
Kim Sang and Buchholz, 2000) but has previously
always been tied to extraction from a more com-
pletely annotated treebank, whose annotations are
subject to other pressures than just “initial material
up to the head”. To our knowledge, our figures for
inter-annotator agreement on the baseNP task itself
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(i.e. not derived from a larger annotation task) are
the first to be reported. Quality measures can be
indirectly inferred from a treebank complete anno-
tation, but baseNP identification is probably a sim-
pler task. Doddington et al (2004) report an “overall
value score of 86” for inter-annotator agreement in
ACE; but this is a multi-component evaluation using
a complete noun phrase, but much else besides.

Improving results through the combination of dif-
ferent systems has also been a topic of previous
work in baseNP detection. For example, Sang et al
(2000) applied majority voting to the top five ma-
chine learning algorithms from a sample of seven
and achieved a baseNP recognition rate that ex-
ceeded the recognition rates of any of the individual
methods.

7 Conclusion
We have motivated the task of detecting baseNPs
that contain a given named entity as a task both of
interest from the standpoint of use within a particu-
lar application and on more general grounds, as an
intermediate point between the task of general NP
chunking and domain specific NER.

We have explored a variety of methods for under-
taking baseNP detection using only domain specific
NER in addition to otherwise general purpose lin-
guistic processors. In particular, we have explored
both shallow and full parsing general purpose sys-
tems and demonstrated that the domain specific re-
sults of NER can be applied profitably not only at
different stages in the language processing pipeline
but also more than once. The best overall recogni-
tion rates were obtained by a combination of both
shallow and full parsing systems with knowledge
from NER being applied both before parsing, at the
stage of part of speech detection and after parsing,
during parse selection.
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Abstract

At present, most biomedical Information
Retrieval and Extraction tools process ab-
stracts rather than full-text articles. The in-
creasing availability of full text will allow
more knowledge to be extracted with greater
reliability. To investigate the challenges of
full-text processing, we manually annotated
a corpus of cited articles from a Molecular
Interaction Map (Kohn, 1999).

Our analysis demonstrates the necessity of
full-text processing; identifies the article
sections where interactions are most com-
monly stated; and quantifies both the amount
of external knowledge required and the pro-
portion of interactions requiring multiple or
deeper inference steps. Further, it identi-
fies a range of NLP tools required, including:
identifying synonyms, and resolving coref-
erence and negated expressions. This is im-
portant guidance for researchers engineering
biomedical text processing systems.

1 Introduction

It is no longer feasible for biologists to keep abreast
of the vast quantity of biomedical literature. Even
keyword-based Information Retrieval (IR) over ab-
stracts retrieves too many articles to be individually
inspected. There is considerable interest in NLP sys-
tems that overcome this information bottleneck.

Most bioNLP systems have been applied to ab-
stracts only, due to their availability (Hirschman et
al., 2002). Unfortunately, the information in ab-
stracts is dense but limited. Full-text articles have
the advantage of providing more information and

repeating facts in different contexts, increasing the
likelihood of an imperfect system identifying them.

Full text contains explicit structure, e.g. sections
and captions, which can be exploited to improve
Information Extraction (IE) (Regev et al., 2002).
Previous work has investigated the importance of
extracting information from specific sections, e.g.
Schuemie et al. (2004), but there has been little anal-
ysis of when the entire document is needed for accu-
rate knowledge extraction. For instance, extracting
a fact from the Results may require a synonym to be
resolved that is only mentioned in the Introduction.
External domain knowledge may also be required.

We investigated these issues by manually anno-
tating full-text passages that describe the functional
relationships between bio-entities summarised in a
Molecular Interaction Map (MIM). Our corpus
tracks the process Kohn (1999) followed in sum-
marising interactions for the mammalian cell MIM,
by identifying information required to infer facts,
which we call dependencies. We replicate the pro-
cess of manual curation and demonstrate the neces-
sity of full-text processing for fact extraction.

In the same annotation process we have identi-
fied NLP problems in these passages which must be
solved to identify the facts correctly including: syn-
onym and hyponym substitution, coreference reso-
lution, negation handling, and the incorporation of
knowledge from within the full text and the domain.
This allows us to report on the relative importance
of anaphora resolution and other tasks to the prob-
lem of biomedical fact extraction.

As well as serving as a dataset for future tool de-
velopment, our corpus is an excellent case study pro-
viding valuable guidance to developers of biomedi-
cal text mining and retrieval systems.
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Figure 1: Map A of the Molecular Interaction Map compiled by Kohn (1999)

2 Biomedical NLP

Full-text articles are becoming increasingly avail-
able to NLP researchers, who have begun inves-
tigating how specific sections and structures can
be mined in various information extraction tasks.
Regev et al. (2002) developed the first bioIR sys-
tem specifically focusing on limited text sections.
Their performance in the KDD Cup Challenge, pri-
marily using Figure legends, showed the importance
of considering document structure. Yu et al. (2002)
showed that the Introduction defines the majority of
synonyms, while Schuemie et al. (2004) and Shah et
al. (2003) showed that the Results and Methods are
the most and least informative, respectively. In con-
trast, Sinclair and Webber (2004) found the Methods
useful in assigning Gene Ontology codes to articles.

These section specific results highlight the infor-
mation loss resulting from restricting searches to in-
dividual sections, as sections often provide unique
information. Furthermore, facts appearing in dif-
ferent contexts across various sections, will be lost.
This redundancy has been used for passage valida-
tion and ranking (Clarke et al., 2001).

There are limited training resources for biomedi-
cal full-text systems. The majority of corpora con-
sist of abstracts annotated for bio-entity recognition
and Relationship Extraction, such as the GENIA
(Kim et al., 2003) and the BioCreAtIvE corpora.

However, due to the lack of full-text corpora, many
current systems only process abstracts (Ohta et al.,
2006). Few biomedical corpora exist for other tasks,
such as coreference resolution (Castaño et al., 2004;
Vlachos et al., 2006), and these are very small. In
this paper, we estimate the importance of these tasks
in bioNLP systems, which will help determine which
tasks system developers should focus effort on first.

Despite limited full-text training corpora, compe-
titions such as the Genomics track of TREC, require
systems to retrieve and rank passages from full text
that are relevant to question style queries.

3 Molecular Interaction Maps

Kohn (1999) constructed a Molecular Interaction
Map (MIM) based on literature describing 203 dif-
ferent interactions between bio-entities, such as pro-
teins and genes, in mammalian cells (Figure 1). In-
teractions in the MIM are represented as links be-
tween nodes labelled with the bio-entities. Each link
is associated with a description that summarises the
evidence for the interaction from the literature, in-
cluding citations. For example, Table 1 contains
the description passage for interaction M4 (on the
right of the Myc Box at grid reference C10 in Fig-
ure 1). Although MIM interactions may be men-
tioned in other articles, the articles cited by Kohn
(1999) document the main biomedical research lead-
ing to the discovery of these interactions.
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c-Myc and pRb enhance transcription from the E-cadherin promoter in an AP2-dependent manner in epithelial cells (mechanism
unknown) (Batsche et al., 1998). Activation by pRb and c-Myc is not additive, suggesting that they act upon the same site,
thereby perhaps blocking the binding of an unidentified inhibitor. No c-Myc recognition element is required for activation of
the E-cadherin promoter by c-Myc. Max blocks transcriptional activation from the E-cadherin promoter by c-Myc, presumably
because it blocks the binding between c-Myc and AP2.

Table 1: MIM annotation M4

1. M4 Subfact: Activation of E-cadherin by pRb and c-Myc is not additive, suggesting they act on the
same site

a) However, the precise molecular mechanisms by which RB, Myc, and AP-2 cooperate to effect transcriptional activation of
E-cadherin requires further study. . . . the positive effects of RB and c-Myc were not additive. (Discussion)

Synonym: pRb equivalent to RB – undefined
Synonym: c-Myc equivalent to Myc

b) The c-myc proto-oncogene, which encodes two amino-terminally distinct Myc proteins, acts as a transcription factor. (Intro)

Table 2: Example instances depending on synonym facts

In creating our corpus we have attempted to re-
verse engineer and document the MIM creation pro-
cess for many of the interactions in Kohn (1999). We
exhaustively traced and documented the process of
identifying passages from the cited full-text articles
that substantiate the MIM interactions. This allows
us to identify and quantify the amount of informa-
tion that is unavailable when systems are restricted
to abstracts.

4 Corpus Creation

The first stage of corpus creation involved obtaining
the full text of the articles cited in the MIM descrip-
tions. There are 262 articles cited in Kohn (1999),
and we have manually extracted the text from 218 of
them; we have abstracts for the other 44 which have
not been included in the analysis presented here.

Currently, the annotated part of the corpus con-
sists of passages from 101 full-text articles, support-
ing 95 of the 203 MIM descriptions. A biomedi-
cal expert exhaustively identified these passages by
manually reading each article several times. 30% of
these articles support multiple MIM descriptions and
so passages from these articles may appear multiple
times. We restricted the corpus to the cited articles
only. This allows us to quantify the need for external
resources, e.g. synonym lists and ontologies. The
corpus collection involved the following:

1. Each sentence in a MIM description is a called
a main fact.

2. For each main fact we annotated every passage

(instance) that the fact can be derived from.
These include direct statements of the fact and
passages the fact can be implied from.

3. Main facts are often complex sentences, com-
bining numerous facts from the article. Pas-
sages from which part of a fact can be de-
rived are also annotated as instances. A subfact
is then created to represent these partial facts.
This may be repeated for subfacts.

4. Many instances cannot be directly linked to
their corresponding fact, as they depend on ad-
ditional passages within the full text or exter-
nal domain knowledge. New facts are formed
to represent the dependency information – syn-
onym and extra facts. Instances of these are an-
notated, and a link is added between the origi-
nal and dependency facts.

5. Each instance is annotated with its location
within the article. Linguistic phenomena, in-
cluding anaphora, cataphora, and negated ex-
pressions which must be resolved to derive the
fact are identified.

Tables 1 and 2 show an example of this pro-
cess. One of the main facts of interaction M4 (Ta-
ble 1) is Activation by pRb and c-Myc is not additive
. . . blocking the binding of an unidentified inhibitor.
An instance supporting part of this fact, the subfact
in Table 2 Activation of E-cadherin by pRb and c-
Myc is not additive . . . , 1.a), was identified. This in-
stance requires the resolution of two synonymy de-
pendencies, only one of which appears in the article.
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2. E13 Main Fact: HDAC1 binds to the pocket proteins pRb, p107 and p130 and in turn is recruited to
E2F complexes on promoters

a) The experiments described above indicate that p107 and p130 can interact with HDAC1. We thus reasoned that they could
repress E2F activity by recruiting histone deacetylase activity to E2F containing promoters. (Results)

Extra: HDAC1 is a histone deacetylase
b) We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting

the histone deacetylase HDAC1. (Abstract)

Table 3: Example instances depending on extra facts

3. N4 Main fact: RPA2 binds XPA via the C-terminal region of RPA2
Mutant RPA that lacked the p34 C terminus failed to interact with XPA, whereas RPA containing the p70 mutant (Delta RS)
interacted with XPA (Fig. 2). (Results)

4. C9 Subfact: Cyclin D1 degraded rapidly by phosphorylation at threonine-286
Although “free” or CDK4-bound cyclin D1 molecules are intrinsically unstable (t1/2 < 30 min), a cyclin D1 mutant (T286A)
containing an alanine for threonine-286 substitution fails to undergo efficient polyubiquitination in an in vitro system or in
vivo, and it is markedly stabilized (t1/2 approximately 3.5 hr) when inducibly expressed in either quiescent or proliferating
mouse fibroblasts. (Abstract)

Table 4: Example instances with negated expressions

5 Dependencies

In our corpus, an instance of a fact may depend on
additional facts (dependencies) to allow the fact to
be derived from the original instance. Dependencies
may occur elsewhere in the document or may not be
mentioned at all. We consider two types of depen-
dencies: synonym facts and extra facts.

5.1 Synonym Facts

The frequent use of synonyms, abbreviations and
acronyms in biomedical text is a common source
of ambiguity that is often hard to resolve (Sehgal
et al., 2004). Furthermore, synonym lists are dif-
ficult to maintain in rapidly moving fields like bi-
ology (Lussier et al., 2006). There has been recent
interest in developing systems to identify and extract
these (Ao and Takagi, 2005; Okazaki and Anani-
adou, 2006).

In our corpus we group all of these synonyms, ab-
breviations, acronyms and other orthographic varia-
tions as synonym facts. For example, the synonyms
(1) E2F4, (2) E2F-4 and (3) E2F1-4 in our cor-
pus refer to the same entity E2F4, however term (3)
also includes the entities E2F1, E2F2 and E2F3.

In Table 2, an instance supporting subfact 1. is
shown in 1.a). The bio-entity pRb mentioned in the
subfact does not appear in this instance. Thus 1.a)
depends on knowing that pRb is equivalent to RB,
and so we form a new synonym fact. This synonym

is undefined in the article and cannot be assumed as
RB is also a homograph for the gene ruby (rb), ru-
bidium (Rb) and Robertsonian (Rb) translocations.

Instance 1 also depends on a second synonym –
c-Myc and Myc are used interchangeably, where
the protein Myc is referred to by its gene name,
c-Myc. Metonymy is common in biology, and an
instance supporting this synonym fact was found in
the article, 1.b).

5.2 Extra Facts

Extra facts include all assertions (excluding syn-
onym definitions) which are necessary to make a
valid inference from an instance to a fact or subfact.
These extra facts must be found within the same ar-
ticle. Many extra facts are descriptions or classes
of bio-entities and hyponym relationships. Accord-
ing to Nédellec et al. (2006), a clearer distinc-
tion between entities and their classes/descriptions
is needed in bioNLP corpora.

Example 2 in Table 3 is an instance which de-
pends on an extra fact, 2.b), to derive the main fact.
The class of proteins histone deacetylase
in sentence 2 must be linked to the specific pro-
tein HDAC1 in sentence 1, since the sortal anaphor
they in sentence 2 refers to the antecedents p107
and p130, and does not include HDAC1. This extra
fact is identified in the apposition the histone
deacetylase HDAC1 in instance 2.b).
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5. C11b Subfact: p19ARF induces cell cycle arrest in a p53-dependent manner
INK4a/ARF is perhaps the second most commonly disrupted locus in cancer cells. It encodes two distinct tumor
suppressor proteins: p16INK4a, which inhibits the phosphorylation of the retinoblastoma protein by cyclin D-
dependent kinases, and p19ARF, which stabilizes and activates p53 to promote either cell cycle arrest or apoptosis. (Intro)

6. C36 Main fact: Cdc25C is phosphorylated by Cyclin B-cdk1
In this work, we examine the effect of phosphorylation on the human cdc25-C protein (Sadhu et al.,1990). We show that this
protein is phosphorylated during mitosis in human cells and that this requires active cdc2-cyclin B. (Intro)

Table 5: Example instances with cataphora and event anaphora

6 Negated Expressions

To quantify the importance of lexical and logical
negations we have annotated each instance involv-
ing one or more negated expressions that must be
resolved to derive the fact. In biomedical literature,
negated expressions are commonly used to describe
an abnormal condition, such as a mutation, and its
resulting abnormal outcome, such as cancer, from
which the normal condition and outcome can be in-
ferred. This typically requires two or more negated
expressions to be processed simultaneously.

Table 4 shows examples of instances with negated
expressions. In the subject NP of instance 3, the lex-
ical negative form of RPA (Mutant RPA) is fol-
lowed directly by a logical negative detailing the
function it failed to perform. These two negative ex-
pressions support the positive in the main fact. This
implicit reporting of results expressed in terms of
negative experimental outcomes is very common in
molecular biology and genetics.

Example 4 requires external domain knowl-
edge. Firstly, the amino acid alanine cannot
be phosphorylated like threonine. Secondly,
polyubiquitination triggers a signal for a
protein (cyclin D1) to be degraded. Therefore
from this negated pair the positive fact from interac-
tion C9 can be inferred.

The context surrounding potential negative ex-
pressions must be analysed to determine if it is in-
deed a negative. For example, not all mutations re-
sult in negative outcomes – the mutation of p70 in
instance 3 did not have a negative outcome.

7 Coreference Expressions

In biomedical literature, coreference expressions are
used to make abbreviated or indirect references to
bio-entities or events, and to provide additional in-
formation, such as more detailed descriptions.

To quantify the importance of coreference expres-
sions, instances in our corpus are annotated with
pronominal, sortal and event anaphoric, and cat-
aphoric expressions, including those extending be-
yond one sentence. Instances 4–6 in Tables 4–
5, each contain annotated pronominal or sortal
anaphoric expressions. Instance 5 also involves
a cataphoric expression, where suppressor
proteins refers to p16INK4a and p19ARF

Event anaphora refer to processes and are quite
common in biomedical text. We have annotated
these separately to pronominal and sortal anaphora.
Our event anaphora annotations are different to
Humphreys et al. (1997). They associate sequential
events, while we only refer to the same event.

An example is shown in instance 6 (Table 5)
where the additional sortal anaphor complicates re-
solving the event anaphor. The third this refers
to the phosphorylation event, phosphorylated,
and not the protein cdc25-C like the second this.

8 Locating Facts

The key facts and results are generally repeated and
reworded in various contexts within an article. This
redundancy can be used in two ways to improve sys-
tem precision and recall. Firstly, the redundancy in-
creases the chance of an imperfect system identify-
ing at least one instance. Secondly, the redundancy
can be used for fact validation. By annotating every
instance that supports a fact we are able to measure
the degree of factual redundancy in full-text articles.

We have also annotated each instance with its lo-
cation within the article: which section (or structure
such as a title, heading or caption) it was contained
within and the number of the paragraph. Using this
data, we can evaluate the informativeness of each
section and structure for identifying interactions.

Using our detailed dependency annotations we
can also determine how many instances need addi-
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Location Main Fact Subfact Synonym Extra
Title 3.3 ( 0.2) 1.9 ( 0.7) 0.0 ( 0.0) 0.8 ( 0.8)
Abstract 19.1 (10.1) 9.3 ( 5.1) 36.2 (21.7) 25.8 (14.8)
Introduction 11.3 ( 5.2) 8.3 ( 3.4) 30.4 (17.4) 17.2 ( 7.8)
Results 31.0 (13.8) 37.6 (16.1) 20.3 (15.9) 32.0 (12.5)
Discussion 21.8 ( 7.3) 19.5 ( 6.6) 2.9 ( 1.4) 9.4 ( 3.1)
Figure Heading 5.0 ( 0.6) 10.7 ( 3.8) 1.4 ( 1.4) 2.3 ( 0.0)
Figure Legend 3.1 ( 1.3) 4.8 ( 2.0) 0.0 ( 0.0) 7.0 ( 4.7)
Table Data 0.0 ( 0.0) 0.2 ( 0.0) 0.0 ( 0.0) 0.0 ( 0.0)
Methods 0.2 ( 0.0) 0.1 ( 0.1) 0.0 ( 0.0) 4.7 ( 0.8)
Conclusion 0.6 ( 0.4) 0.1 ( 0.0) 0.0 ( 0.0) 0.0 ( 0.0)
Footnotes 0.0 ( 0.0) 0.0 ( 0.0) 5.8 ( 2.9) 0.0 ( 0.0)
Headings 4.8 ( 0.6) 7.5 ( 2.7) 2.9 ( 1.4) 0.8 ( 0.8)
Full-text 100.0 (39.4) 100.0 (40.6) 100.0 (62.3) 100.0 (45.3)

Table 6: Instances found excluding (including) all dependencies

Fact Type # Created # Found # Instances
Main Fact 170 156 523
Subfact 251 251 1196
Synonym 155 62 69
Extra 152 87 128
Total 728 556 1916

Table 7: Distribution of fact types in corpus

tional knowledge outside of the current section to
support a particular fact. This demonstrates how im-
portant full-text processing is.

9 Corpus Analysis

Having described the corpus annotation we can now
investigate various statistical properties of the data.
Table 7 shows the distribution of the various anno-
tated fact types within the corpus. There are a to-
tal of 728 different facts identified, with 556 (76%)
found within the documents. We have annotated
1916 individual passages as instances, totally 2429
sentences. There were 14 main facts that we found
no instances or subfact instances for.

The most redundancy occurs in main facts and
subfacts, with on average 3.35 and 4.76 instances
each respectively, whilst synonym facts have almost
no redundancy. Also, a large proportion of synonym
and extra facts, 60% and 43% respectively, do not
appear anywhere in the articles (Table 7).

This high level of redundancy in facts demon-
strates the significant advantages of processing full
text. However, the proportion of missing synonym

Instances Synonym Extra
Main Fact 46.8 (10.9) 26.2 (18.9)
Subfact 36.9 ( 8.2) 26.7 (15.4)
Synonym 8.7 ( 2.9) 7.2 ( 4.3)
Extra 25.0 ( 0.0) 13.3 (10.9)

Table 8: Instances with (all found) dependencies

and extra facts shows the importance of external re-
sources, such as synonym lists, and tools for recog-
nising orthographic variants.

9.1 Locating Facts

Table 6 shows the percentage of instances identified
in particular locations within the articles. The best
sections for finding instances of facts and subfacts
were the Results and Discussion sections, whereas
synonym and extra facts were best found in the Ab-
stract, Introduction and Results. The later sections
of each article rarely contributed any instances. In-
terestingly, we did not find the Figure headings or
legends to be that informative for main facts. Figure
headings are restricted in length and thus are rarely
able to express main facts as well as subfacts.

The proportion of main facts and subfact in-
stances found in the abstract is quite small, further
demonstrating the value of full-text processing.

If we take into account the additional dependency
information, and restrict the instances to those fully
supported within a given section, the results drop
dramatically (those in parentheses in Table 6). In
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Depth Fact Subfact Synonym Extra
0 35.2 45.1 87.0 64.8
1 53.9 44.2 13.0 26.6
2 9.6 9.5 0.0 7.0
3 1.3 0.9 0.0 1.6
4 0.0 0.3 0.0 0.0

Table 9: Maximum depth of instance dependencies

Breadth Fact Subfact Synonym Extra
0 35.2 45.1 87.0 64.8
1 36.5 35.5 7.2 29.7
2 22.6 15.7 5.8 4.7
3 4.6 2.9 0.0 0.8
4 0.8 0.6 0.0 0.0
5 0.2 0.2 0.0 0.0

Table 10: Breadth of instance dependencies

total, the number of instances drops to 39.4% and
40.6%, for main facts and subfacts, respectively.
This again demonstrates the need for full-text pro-
cessing, including the dependencies between facts
found in different sections of the article.

9.2 Dependencies
Our corpus represents each of the facts and subfacts
as a dependency graph of instances, each which in
turn may require support from other facts, including
synonym and extra facts.

Table 8 shows the percentage of instances which
depend on synonym and extra facts in our corpus.
46.8% of main fact instances depend on at least one
synonym fact, but only 10.9% of main fact instances
which depend on at least one synonym were com-
pletely resolved (i.e. all of the synonyms were found
as well). Interestingly, synonym and extra facts of-
ten required other synonym and extra facts.

Our corpus contains more synonym than extra fact
dependencies, however more extra facts were de-
fined in the articles. The large proportion of main
facts and subfacts depending on synonyms and extra
facts demonstrates the importance of automatically
extracting this information from full text.

Since the inference from an instance to a fact may
depend on other facts, long chains of dependencies
may occur, all of which would need to be resolved
before a main fact could be derived from the text.

Expressions Instances
Negated 4.3
Anaphora 13.2
Event Anaphora 6.6
Cataphora 2.7

Table 11: Distribution of annotated expressions

Table 9 shows the distribution of maximum chain
depth in our dependency graphs. The maximum
depth is predominately less than 3. Table 10 shows
the distribution of the breadth of dependency graphs.
Again, most instances are supported by fewer than 3
dependency chains. Most instances depend on some
other information, but luckily, a large proportion of
those only require information from a small number
of other facts. However, given that these facts could
occur anywhere within the full text, extracting them
is still a very challenging task.

9.3 Negated & Coreference Expressions
Table 11 shows the percentage of instances anno-
tated with negated, anaphoric and cataphoric ex-
pressions in our corpus. We have separated event
anaphora from pronominal and sortal anaphora.
There are fewer cataphoric and negated expressions
than anaphoric expressions. Therefore, we would
expect the greatest improvement when systems in-
corporate anaphora resolution components, and lit-
tle improvement from cataphoric and negated ex-
pression analysis. However, negated expressions
provide valuable information regarding experimen-
tal conditions and outcomes, and thus may be ap-
propriate for specific extraction tasks.

10 Conclusion

This paper describes a corpus documenting the man-
ual identification of facts from full-text articles by
biomedical researchers. The corpus consists of arti-
cles cited in a Molecular Interaction Map developed
by Kohn (1999). Each fact can be derived from one
or more passages from the citations. Each of these
instances was annotated with their location in the
article and whether they contained coreference or
negated expressions. Each instance was also linked
with other information, including synonyms and ex-
tra knowledge, that was required to derive the partic-
ular interaction. The annotation task was quite com-
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plex and as future work we will increase the relia-
bility of our corpus by including the annotations of
other domain experts using our guidelines, and use
this resource for tool development. The guidelines
and corpus will be made publicly available.

Our corpus analysis demonstrates that full-text
analysis is crucial for exploiting biomedical litera-
ture. Less than 20% of fact instances we identified
were contained in the abstract. Analysing sections
in isolation reduced the number of supported facts
by 60%. We also showed that many instances were
dependent on a significant amount of other informa-
tion, both within and outside the article. Finally, we
showed the potential impact of various NLP compo-
nents such as anaphora resolution systems.

This work provides important empirical guidance
for developers of biomedical text mining systems.
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1 Introduction 

Part of Speech (POS) tagging is often a prerequi-
site for tasks such as partial parsing and informa-
tion extraction. However, when a POS tagger is 
simply ported to another domain the tagger’s accu-
racy drops. This problem can be addressed through 
hand annotation of a corpus in the new domain and 
supervised training of a new tagger. In our meth-
odology, we use existing raw text and a generic 
POS annotated corpus to develop taggers for new 
domains without hand annotation or supervised 
training. We focus in particular on out-of-
vocabulary words since they reduce accuracy 
(Lease and Charniak. 2005; Smith et al. 2005).  

There is substantial information in the deriva-
tional suffixes and few inflectional suffixes of 
English.  We look at individual words and their 
suffixes along with the morphologically related 
words to build a domain specific lexicon contain-
ing POS tags and probabilities for each word.  

2 Adaptation Methodology 

Our methodology is described in detail in Miller 
et al (2007) and summarized here: 1) Process ge-
neric POS annotated text to obtain state and lexical 
POS tag probabilities. 2) Obtain a frequency table 
of words from a large corpus of raw sub-domain 
text. 3) Construct a partial sub-domain lexicon 
matching relative frequencies of morphologically 
related words with words from the generic anno-
tated text averaging POS probabilities of the k 
nearest neighbors. 4) Combine common generic 
words and orthographic word categories with the 
partial lexicon making the sub-domain lexicon. 5) 
Train a first order Hidden Markov Model (HMM) 
by Expectation Maximization (EM). 6) Apply the 
Viterbi algorithm with the HMM to tag sub-
domain text. 

3 Adaptation to Multiple Domains 

Molecular Biology Domain: We used the Wall 
Street Journal corpus (WSJ) (Marcus et al, 1993) 
as our generic POS annotated corpus. For our raw 
un-annotated text we used 133,666 abstracts from 
the MEDLINE distribution covering molecular 
biology and biomedicine sub-domains. We split 
the GENIA database  (Tateisi et al, 2003) into 
training and test portions and ignored the POS tags 
for training. We ran a 5-fold cross validation study 
and obtained an average accuracy of 95.77%.  

Medical Domain: Again we used the WSJ as 
our generic POS annotated corpus. For our raw un-
annotated text we used 164,670 abstracts from the 
MEDLINE distribution with selection based on 83 
journals from the medical domain. For our HMM 
EM training we selected 1966 abstracts (same 
journals). For evaluation purposes, we selected 
1932 POS annotated sentences from the MedPost 
(Smith et al, 2004) distribution (same journals). 
The MedPost tag set coding was converted to the 
Penn Treebank tag set using the utilities provided 
with the MedPost tagger distribution. We obtained 
an accuracy of 93.17% on the single medical test 
corpus, a substantial drop from the 95.77% average 
accuracy obtained in the GENIA corpus.  

4 Coding Differences 

We looked at high frequency tagging errors in the 
medical test set and found that many errors 
resulted directly from the differences in the coding 
styles between GENIA and MedPost. Our model 
reflects the coding style of the WSJ, used for our 
generic POS annotated text. GENIA largely fol-
lowed the WSJ coding conventions. Annotation in 
the 1932 sentences taken from MedPost had some 
systematic differences in coding style from this.  
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Identified Differences: Lexical differences: 1) 
Words such as ‘more’ and ‘less’ are JJR or RBR in 
WSJ/GENIA but JJ or RB in MedPost. 2) Tokens 
such as %, =, /, <, > are typically NN or JJ in 
WSJ/GENIA but SYM in MedPost. 3)’be’ is VB in 
WSJ/GENIA but VB or VBP in MedPost. 4) Some 
orthographic categories are JJ in WSJ/GENIA but 
NN in MedPost. Transition discrepancies: 1) Verbs 
are tagged VB following a TO or MD in 
WSJ/GENIA but only following a TO in MedPost. 
2) MedPost prefers NN and NN-NN sequences. 

Ad Hoc Adjustments: We constructed a new 
lexicon accounting for some of the lexical differ-
ences and attained an accuracy of 94.15% versus 
the previous 93.17%. Next we biased a few initial 
state transition probabilities, changing P(VB|MD) 
from very high to a very low and increasing 
P(NN|NN), and attained an accuracy of 94.63%.  

As the coding differences had nothing to do with 
suffixes and suffix distributions, the central part of 
our methodology, we tried some ad hoc fixes to 
determine what our performance might have been. 
We suffered at least a 1.46% drop in accuracy due 
to differences in coding, not language use. 

5 Evaluation 

The table shows the accuracy of our tagger and a 
few well-known taggers in our target biomedical 
sub-domains.  
 

Molecular Biology %Accuracy 
- Our  tagger (5-fold) 95.8% 
- MedPost  94.1% 
- Penn BioIE1 95.1% 
- GENIA supervised 98.3% 
Medical Domain  
- Our  tagger  93.17% 
- Our  tagger (+ lex bias) 94.15% 
- Our tagger (+ lex & trans bias) 94.63% 
- MedPost supervised2 96.9% 
The MedPost and Penn BioIE taggers used an-

notated text and supervised training in other bio-
medical domains, but they were not trained spe-
cifically for the GENIA Molecular Biology sub-
domain. Our tagger seems competitive with these 

                                                 
1 PennBioIE. 2005. Mining The Bibliome Project. 
http://bioie.ldc.upenn.edu/. 
2 Based on Medpost test set of 1000 sentences, not on our test 
set of 1932 sentences.  

taggers.  We cannot claim superior accuracy as 
these taggers may suffer the same coding bias ef-
fects we have noted. The superior performance of 
the GENIA tagger (Tsuruoka et al. 2005) in the 
Molecular Biology/GENIA domain and the Med-
Post tagger (Smith et al. 2004) in its biomedical 
domain owes to their use of supervised training on 
an annotated training set with evaluation on a test 
set from the same domain. The approximate 1.5% 
bias effect due to coding differences is attributable 
to organizational differences in POS.  

6 Conclusions  

To cope with domain specific vocabulary and uses 
of vocabulary, we exploited the suffix information 
of words and related words to build domain spe-
cific lexicons. We trained our HMM using EM and 
un-annotated text from the specialized domains. 
We assessed accuracy versus annotated test sets in 
the specialized domains, noting discrepancies in 
our results across specialized domains, and con-
cluding that our methodology performs competi-
tively versus well-known taggers that used anno-
tated text and supervised training in other biomedi-
cal domains. 
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Abstract

The paper presents two rule-based infor-
mation extraction (IE) from two types of
patients’ documentation in Polish. For
both document types, values of sets of at-
tributes were assigned using specially de-
signed grammars.

1 Method/General Assumptions

Various rule-based, statistical, and machine learn-
ing methods have been developed for the purpose
of information extraction. Unfortunately, they have
rarely been tested on Polish texts, whose rich in-
flectional morphology and relatively free word or-
der is challenging. Here, we present results of two
experiments aimed at extracting information from
mammography reports and hospital records of dia-
betic patients.1 Since there are no annotated corpora
of Polish medical text which can be used in super-
vised statistical methods, and we do not have enough
data for weakly supervised methods, we chose the
rule-based extraction schema. The processing pro-
cedure in both experiments consisted of four stages:
text preprocessing, application of IE rules based on
the morphological information and domain lexicons,
postprocessing (data cleaning and structuring), and
conversion into a relational database.

Preprocessing included format unification, data
anonymization, and (for mammography reports) au-
tomatic spelling correction.

The extraction rules were defined as grammars
of the SProUT system, (Drożdżyński et al., 2004).

1This work was partially financed by the Polish national
project number 3 T11C 007 27.

SProUT consists of a set of processing components
for basic linguistic operations, including tokeniza-
tion, sentence splitting, morphological analysis (for
Polish we use Morfeusz (Woliński, 2006)) and
gazetteer lookup. The SproUT components are com-
bined into a pipeline that generates typed feature
structures (TFS), on which rules in the form of reg-
ular expressions with unification can operate. Small
specialized lexicons containing both morphologi-
cal and semantic (concept names) information have
been created for both document types.

Extracted attribute values are stored in a rela-
tional database.2 Before that, mammography re-
ports results undergo additional postprocessing —
grouping together of extracted data. Specially de-
signed scripts put limits that separate descriptions of
anatomical changes, tissue structure, and diagnosis.
More details about mammography IE system can be
found in (Mykowiecka et al., 2005).

2 Document types

For both document types, partial ontologies were de-
fined on the basis of sample data and expert knowl-
edge. To formalize them, we used OWL-DL stan-
dard and theProtégé ontology editor. The excerpt
from the ontology is presented in Fig. 1.

In both cases, the relevant part of the ontology
was translated into a TFS hierarchy. This resulted in
176 types with 66 attributes for the mammography
domain, and 139 types (including 75 drug names)
with 65 attributes for diabetic patients’ records.

2This last stage is completed for the diabetes reports while
for mammography it is still under development.181



BiochemicalData: BloodData: HB1C
Diet
DiseaseOrSymptom

Disease
AutoimmuneDisease
Cancer
Diabetes: Type1, Type2, TypeOther

Symptom
Angiopathy: Macroangiopathy, Microangiopathy
BoodSymptom: Hypoglicaemia
Neuropathy: Autonomic, PeripheralPolineuropathy
UrineSymptom: Acetonuria, Microalbuminuria

Medicine
DiabeticMedicine: Insulin, OralDiabeticMedicine

AnatomicalLocalization
BodyPart

Breast: Subareola, urq, ulq, lrq, llq
BodySide: Left, Right

HistDiagnosis: Benign, Suspicious, Malignant
TissueSpecification: GlandularTissue, FatTissue

Figure 1: A sample of classes

3 Extraction Grammars

The number of rules is highly related to the number
of attributes and possible ways of formulating their
values. The grammar for mammography reports
contains 190 rules; that for hospital records contains
about 100 rules. For the first task, nearly the entire
text is covered by the rules, while for the second,
only a small part of the text is extracted (e.g., from
many blood tests we are interested only in HBA1C).
Polish inflection is handled by using the morpho-
logical analyzer and by inserting the most frequent
morphological forms into the gazetteer. Free word
order is handled either by rules which describe all
possible orderings, or by extracting small pieces of
information which are merged at the postprocessing
stage. Fig. 2 presents a fragment of one mammog-
raphy note and its output. Thezpandzkmarkers are
inserted during the information structuring stage to
represent borders of an anatomical change descrip-
tion. Similar markers are introduced to structure the
tissue description part.

4 Evaluation

The experiments were evaluated on a set of previ-
ously unseen reports. Extraction of the following
structures was evaluated: 1) simple attributes (e.g.
diabetes balance); 2) structured attributes (e.g. lo-
calization); and 3) complex structures (e.g. descrip-
tion of abnormal findings). Evaluation of three se-
lected attributes from both sets is given in Fig. 3.

W obu sutkach rozsiane pojedyncze mikrozwapnienia o charak-
terze łagodnym. Doły pachowe prawidłowe. Kontrolna mam-
mografia za rok.
(Within both breasts there are singular benign microcalcifica-
tions. Armpits normal. Next control mammography in a year.)

zp LOC|BODY PART:breast||LOC|L R:left-right
ANAT CHANGE:micro||GRAM MULT:plural

zk DIAGNOSISRTG:benign
DIAGNOSIS RTG:nosusp||LOC D|BODY PART:

armpit||LOC D|L R:left-right
RECOMMENDATION|FIRST:mmg||TIME:year

Figure 2: A fragment of an annotated mammogra-
phy report

The worse results for unbalanced diabetes recogni-
tion were due to an unpredicted expression type.

mammography – 705 reports
cases precision recall

findings 343 90.76 97.38
block beginnings 299 81.25 97.07
localizations 2189 98.42 99.59
diabetes – 99 reports
unbalanced diabetes 58 96,67 69,05
diabetic education 39 97,50 97,50
neuropathy 30 100 96,77

Figure 3: Evaluation results for selected attributes

5 Conclusions

Despite the fact that rule based extraction is typi-
cally seen as too time consuming, we claim that in
the case of very detailed information searching, de-
signing rules on the basis of expert knowledge is in
fact a method of a real practical value. In the next
stage, we plan to use our tools for creating anno-
tated corpora of medical texts (manually corrected).
These data can be used to train statistical IE models
and to evaluate other extraction systems.

References
Agnieszka Mykowiecka, Anna Kupść, Małgorzata
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Abstract

The shift from paper to electronic docu-
ments has caused the curation of informa-
tion sources in large electronic databases
to become more generalized. In the bio-
medical domain, continuing efforts aim at 
refining indexing tools to assist with the 
update and maintenance of databases such 
as MEDLINE®. In this paper, we evaluate 
two statistical methods of producing 
MeSH® indexing recommendations for 
the genetics literature, including recom-
mendations involving subheadings, which 
is a novel application for the methods. We 
show that a generic representation of the 
documents yields both better precision 
and recall. We also find that a domain-
specific representation of the documents 
can contribute to enhancing recall. 

1 Introduction

There are two major approaches for the automatic 
indexing of text documents: statistical approaches 
that rely on various word counting techniques [su-
ch as vector space models (Salton, 1989), Latent 
Semantic Indexing (Deerwester et al., 1990) or
probabilistic models (Sparck-Jones et al., 2000)] 
and linguistic approaches that involve syntactical 
and lexical analysis [see for example term extrac-
tion and term variation recognition in systems such 
as MetaMap (Aronson, 2001), FASTR (Jacquemin 
and Tzoukermann, 1999) or IndDoc (Nazarenko 
and Ait El Mekki, 2005)]. In many cases, the com-
bination of these approaches has been shown to 
improve the performance of a single approach both 

for controlled indexing (Aronson et al., 2004) and
free text indexing (Byrne and Klein, 2003).

Recently, Névéol et al. (2007) presented lin-
guistic approaches for the indexing of documents 
in the field of genetics. In this paper, we explore a 
statistical approach of indexing for text documents 
also in the field of genetics. This approach was 
previously used successfully to produce Medical 
Subject Headings (MeSH) main heading recom-
mendations. Our goal in this experiment is two-
fold: first, extending an existing method to the pro-
duction of recommendations involving subhead-
ings and second, assessing the possible benefit of 
using a domain-specific variant of the method. 

2 A k-Nearest-Neighbors approach for 
indexing 

2.1 Principle

The k-Nearest-Neighbors (k-NN) approach views 
indexing as a multi-class classification problem 
where a document may be assigned several
“classes” in the form of indexing terms. It requires 
a large set of labeled data composed of previously 
indexed documents. k-NN relies on the assumption 
that similar documents should be classified in a 
similar way. The algorithm consists of two steps: 
1/documents that are most “similar” to the query 
document must be retrieved from the set of labeled 
documents. They are considered as “neighbors” for 
the query document; 2/an indexing set must be 
produced from these and assigned to the query 
document.

Finding similar documents

All documents are represented using a vector of 
distinctive features within the representation space. 
Based on this representation, labeled documents 
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may be ranked according to their similarity to the 
query document using usual similarity measures 
such as cosine or Dice. The challenge in this step is 
to define an appropriate representation space for 
the documents and to select optimal features for 
each document. Another issue is the number (k) of 
neighbors that should be selected to use in the next 
step.

Producing an indexing set

When applied to a single-class classification prob-
lem, the class that is the most frequent among the k 
neighbors is usually assigned to the query docu-
ment. Indexing is a multi-class problem for which 
the number of classes a document should be as-
signed is not known, as it may vary from one 
document to another. Therefore, indexing terms 
from the neighbor documents are all taken into 
account and ranked according to the number of 
neighbors that were labeled with them. The more 
neighbors labeled with a given indexing term, the 
higher the confidence that it will be a relevant in-
dexing term for the query document. This resulting 
indexing set may then be filtered to select only the 
terms that were obtained from a defined minimum 
number of neighbors.

2.2 Document representation

Generic representation 

A generic representation of documents is obtained 
from the text formed by the title and abstract. This 
text is processed so that punctuation is removed, 
stop-words from a pre-defined list (of 310 words) 
are removed, remaining words are switched to 
lower case and a minimal amount of stemming is 
applied. As described by Salton (1989) words 
should be weighted according to the number of 
times they occur in the query document and the 
number of times they occur in the whole collection
(here, MEDLINE). Moreover, words from the title 
are given an additional weight compared to words 
from the abstract. Further adjustments relative to 
document length and local weighting according to 
the Poisson distribution are detailed in (Aronson et 
al, 2000; Kim et al., 2001) where the PubMed Re-
lated Citations (PRC) algorithm is discussed. Fur-
ther experiments showed that the best results were 
obtained by using the ten nearest neighbors.

Domain-specific representation 

In specialized domains, documents from the litera-
ture may be represented with concepts or objects 
commonly used or studied in the field. For exam-
ple, (Rhodes et al., 2007) meet specific chemistry 
oriented search needs by representing US patents 
and patent applications with molecular information 
in the form of chemical terms and structures. A
similar representation is used for PubChem
(http://pubchem.ncbi.nlm.nih.gov/) records. In the 
genetics domain, genes are among the most com-
monly discussed or manipulated concepts. There-
fore, genes should provide a relevant domain-
specific description of documents from the genet-
ics literature.

The second indexing algorithm that we describe 
in this paper, know as the Gene Reference Into 
Function (GeneRIF) Related Citations (GRC) algo-
rithm, uses “GeneRIF” links (defined in the para-
graph below) to retrieve neighbors for a query 
document.

To form a specific representation of the docu-
ment, gene names are retrieved by ABGene1 (Ta-
nabe and Wilbur, 2002) and mapped to Entrez 
Gene2 unique identifiers. The mapping was per-
formed with a version of SemRep (Rindflesch and
Fiszman, 2003) restricted to human genes. It con-
sists in normalizing the gene name (switch to lower 
case, remove spaces and hyphens) and matching 
the resulting string to one of the gene names or 
aliases listed in Entrez Gene.

For each gene, the GeneRIF links supply a sub-
set of MEDLINE citations manually selected by 
NLM indexers for describing the functions associ-
ated with the gene. These sets were used in two 
ways: 

To complete the document representation. If a 
citation was included in the GeneRIF of a 
given gene, the gene was given an additional 
weight in the document representation. 

To limit the set of possible neighbors. In the 
generic representation, all MEDLINE cita-
tions contain the representation features, 
words. Therefore, they all have to be con-
sidered as potential neighbors. However, 

                                                          
1 Software downloaded January 17, 2007, from
http://www.ncbi.nlm.nih.gov/staff/lsmith/MedPost.html 
2 Retrieved January 17, 2007, from: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
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only a subset of citations actually contains
genes. Therefore, only those citations need 
to be considered as potential neighbors. This 
observation enables us to limit the specific 
processing to relevant citations. Possible 
neighbors for a query document consist of 
the union of the GeneRIF citations corre-
sponding to each gene in the document rep-
resentation. 

Table 1: Gene description of a sample MEDLINE 
document and its two nearest neighbors

PubMed IDs ABGene Entrez Gene IDs
15645653 abcc6 

mrp6
ldl-r
pxe
fh

368
368; 6283
3949
368; 5823
2271

10835643 mrp6
pxe

368; 6283
368; 5823

16392638 abcc6
mrp6
pxe

368
368; 6283
368; 5823

For each query document, the set of possible 
neighbors was processed and ranked according to 
gene similarity using a cosine measure. Table 1 
shows the description of a sample MEDLINE cita-
tion and its two nearest neighbors. 

Based on experiments with the PubMed Related 
Citations algorithm, ten neighbors were retained to 
form a candidate set of indexing terms.

3 Experiment

3.1 Application to MeSH indexing  

In the MEDLINE database, publications of the bio-
medical domain are indexed with Medical Subject 
Headings, or MeSH descriptors. MeSH contains 
about 24,000 main headings denoting medical con-
cepts such as foot, bone neoplasm or appendec-
tomy. MeSH also contains 83 subheadings such as 
genetics, metabolism or surgery that can be associ-
ated with the main headings in order to refer to a 
specific aspect of the concept. Moreover, each de-
scriptor (a main heading alone or associated with 
one or more subheadings) is assigned a “minor” or 
“major” weight depending on how substantially the 

concept it denotes is discussed in the article. “Ma-
jor” descriptors are marked with a star. 

In order to form a candidate indexing set to be 
assigned to a query document, the descriptors as-
signed to each of the neighbors were broken down 
into a set of main headings and pairs (i.e. a main 
heading associated with a single subheading). For 
this experiment, indications of major terms were 
ignored. 

For example, the MeSH descriptor 
*Myocardium/cytology/metabolism would gener-
ate the main heading Myocardium and the two 
pairs Myocardium/cytology and Myocar-
dium/metabolism. 

3.2 Test Corpus

Both methods were tested on a corpus composed of 
a selection of the 49,863 citations entered into 
MEDLINE in January 2005. The 2006 version of 
MeSH was used for the indexing in these citations. 
About one fifth of the citations (10,161) are con-
sidered to be genetics-related, as determined by 
Journal Descriptor Indexing (Humphrey, 1999). 
Our test corpus was composed of genetics-related 
citations from which Entrez Gene IDs could be 
extracted – about 40% of the cases. The final test 
corpus size was 3,962. Appendix A shows a sam-
ple citation from the corpus.

3.3 Protocol

Figure 1 shows the setting of our experiment. 
Documents from the test corpus described above 
were processed to obtain both a generic and spe-
cific representation as described in section 2.2. The 
corresponding ten nearest neighbors were retrieved 
using the PRC and GRC algorithms. All the 
neighbors’ MeSH descriptors were pooled to form 
candidate indexing sets of descriptors that were
evaluated using precision and recall measures. Pre-
cision was the number of candidate descriptors that 
were selected as indexing terms by NLM indexers 
(according to reference MEDLINE indexing) over 
the total number of candidate descriptors. Recall 
was the number of candidate descriptors that were 
selected as indexing terms by NLM indexers over 
the total number of indexing terms expected (ac-
cording to reference MEDLINE indexing). For 
better comparison between the methods, we also 
computed F-measure giving equal weight to preci-
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sion and recall - F1=2*PR/(P+R) and giving a 
higher weight to recall - F3=10*PR/(9P+R).

Four different categories of descriptors were 
considered in the evaluation: 

MH: MeSH main headings (regardless of 
whether subheadings were attached in the 
reference indexing)

SH: stand-alone subheadings (regardless of the 
main heading(s) they were attached to in the 
reference indexing)

MH/SH: main heading/subheading pairs

DESC: MeSH descriptors, i.e. main headings 
and main heading/subheading pairs

Similarly, four different candidate indexing sets 
were considered: the indexing set resulting from 
PRC, the indexing set resulting from GRC, the in-
dexing set resulting from the pooling of PRC and 
GRC sets and finally the indexing set resulting 
from the intersection of PRC and GRC indexing 
sets (common index terms). 

Figure 1: Producing candidate indexing sets with 
generic and domain-specific representations.

4 Results

Appendix B shows the indexing sets obtained from 
the GRC and PRC algorithms for a sample citation 
from the test corpus. Table 2 presents the results of 
our experiments. For each category of descriptors, 
the best performance was bolded. It can be ob-
served that in general, the best precision and F1
scores are obtained with the common indexing set, 
the best recall is obtained with the pooling of in-
dexing sets and the best F3 score is obtained with 
PRC algorithm, the pooling of indexing sets being 
a close second. 

5 Discussion

5.1 Performance of the methods

As can be seen from the bolded figures in table 2, 
the best performance is obtained either from the 
PRC algorithm, or from a combination of PRC and 
GRC. When indexing methods are combined, it is 
usually expected that statistical methods will pro-
vide the best recall whereas linguistic methods will 
provide the best precision. Combining complemen-
tary methods is then expected to provide the best 
overall performance. In this context, it seems that 
the option of pooling the indexing sets should be 
retained for further experiments. The most signifi-
cant result of this study is that the pooling of meth-
ods achieves a recall of 92% for stand-alone 
subheading retrieval. While the precision is only 
19%, the selection of stand-alone subheadings of-
fered by our methods is nearly exhaustive and it 
reduces by 70% the size of the list of allowable 
subheadings that could potentially be used. NLM 
indexers have declared this could prove very useful 
to enhance their indexing practice.

In order to qualify the added value of the spe-
cific description, we looked at the descriptors that 
were correctly recommended by GRC and not rec-
ommended by PRC. Check Tags (descriptors used 
to denote the species, age and gender of the sub-
jects discussed in an article) seemed prominent, but 
only Human was significantly recommended cor-
rectly more often than it was recommended incor-
rectly (~2.2 times more correct than incorrect 
recommendations – 2,712 correct vs. 1,250 incor-
rect). No other descriptor could be identified as 
being consistently recommended either correctly or 
incorrectly.

Generic 
representation 
Text Words

Specific
 representation

Genes

1- Find similar 
documents

MEDLINE document

PubMed
Related Citations

(PRC)

GeneRIFs
Related Citations

(GRC)

2- Use index terms
in similar

 documents as 
indexing candidates

PRC 
indexing set

GRC
indexing set
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For both methods, filtering the indexing sets 
according to the number of neighbors that lead to 
include the indexing terms results in an increase of 
precision and a loss of recall. The best trade-off
(measured by F1) is obtained when indexing terms 
come from at least three neighbors (data not 
shown).

5.2 A scale of indexing performance

The problem with evaluating indexing is that, 
although inter-indexer variability is reduced when 
a controlled vocabulary is used, indexing is an 
open cognitive task for which there is no unique 
“right” solution.

Table 2: performance of the indexing methods on the four categories of descriptors

SH MH SH/MH DESC
P      R       F1     F3 P      R      F1      F3 P      R      F1      F3 P      R      F1      F3

GRC 21     72     32     58 8      49     14      32 3      23     6        14 6      38     10      25
PRC 27     88     41     72 13    61     22      45 8      56     15      36 11    59     18      41
Pool 19     92     32     67 9      82     16      44 5      62     9        29 7      74     13     38
Common 36     68     47     62 22    27     24      27 18    17     17      17 21    23     22      23

In practice, this means that there is no ideal 
unique set of descriptors to use for the indexing 
of a particular document. Therefore, when com-
paring an indexing set obtained automatically 
(e.g. here with the PRC or GRC methods) to a 
“gold standard” indexing set produced by a 
trained indexer (e.g. here, NLM indexers) the 
difference observed can be due to erroneous de-
scriptors produced by the automatic methods. 
But it is also likely that the automatic methods 
will produce terms that are semantically close to 
what the human indexer selected or even rele-
vant terms that the human indexer considered or 
forgot to select. While evaluation methods to 
assess the semantic similarity between indexing 
sets are investigated (Névéol et al. 2006), a con-
sistency study by Funk et al. (1983) can shade 
some light on inter-indexer consistency in 
MEDLINE and what range of performance may 
be expected from automatic systems. In this 
study, Hooper’s consistency (the average pro-
portion of terms in agreement between two in-
dexers) for stand-alone subheadings (SH) was 
48.7%. It was 33.8% for pairs (MH/SH) and 
48.2% for main headings (MH). In light of these 
figures, although no direct comparison with the 
results of our experiment is possible, the preci-
sion obtained from the common recommenda-
tions (especially for stand-alone subheadings, 
36%) seems reasonably useful. Further more, 
when informally presenting the indexers sample 
recommendations obtained with these methods, 
they expressed their interest in the high recall as 
reviewing a larger selection of potentially useful 

terms might help them track important descrip-
tors they may not have thought of using other-
wise.

In comparison with other research, the results 
are also encouraging: the recall resulting from 
either PRC or pooling the indexing sets is sig-
nificantly better than that obtained by Névéol et 
al. (2007) on a larger set of MEDLINE 2005 
citations – 20% at best for main head-
ing/subheading pairs with a dictionary-based 
method which consisted in extracting main head-
ing and subheading separately from the citations 
(using MTI and string matching dictionary en-
tries) before forming all the allowable pairs as 
recommendations.

5.3 Limitations of the experiment

In the specific description, the mapping between 
gene names and Entrez Gene IDs only takes hu-
man genes into account, which potentially limits 
the scope of the method, since many more or-
ganisms and their genes may be discussed in the 
literature. In some cases, this limitation can lead 
to confusion with other organisms. For example, 
the gene EPO “erythropoietin” is listed in Entrez 
Gene for 11 organisms including Homo Sapiens. 
With our current algorithm, this gene will be 
assumed to be a human gene. In the case of 
PMID 15213094 in our test corpus, the organism 
discussed in the paper was in fact Mus Musculus
(common mouse). In this particular case, the 
check tag Humans, which was erroneous, could 
be found in the candidate indexing set. However, 
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correct indexing terms could still be retrieved 
due to the fact that both the human and mouse 
gene share common functions. 

Another limitation is the size of the test cor-
pus, which was limited to less than 4,000 docu-
ments.

5.4 Mining the biomedical literature for 
gene-concept links

Other approaches to gene-keyword mapping ex-
ploit the links between genes and diseases or 
proteins as they are described either in the re-
cords of databases such as OMIM or more for-
mally expressed as in the GeneRIF. Substantial 
work has addressed linking DNA microarray 
data to keywords in controlled vocabulary such 
as MeSH (Masys et al. 2001) or characterizing 
gene clusters with text words from the literature 
(Liu et al. 2004). However, no normalized “se-
mantic fingerprinting” has been yet produced 
between controlled sets such as Entrez Gene and 
MeSH terms.

6 Conclusion and future work

In this paper, we applied a statistical method for 
indexing documents from the genetics literature. 
We presented two different document represen-
tations, one generic and one specific to the ge-
netics domain. The results bear out our 
expectations that such statistical methods can 
also be used successfully to produce recommen-
dations involving subheadings. Furthermore, 
they yield higher recall than other more linguis-
tic-based methods. In terms of recall, the best 
results are obtained when the indexing sets from 
both the specific and generic representations are 
pooled.
In future work, we plan to refine the algorithm 
based on the specific method by expending its
scope to other organisms than Homo Sapiens
and to take the gene frequency in the title and 
abstract of documents into account for the repre-
sentation. Then, we shall conduct further evalua-
tions in order to observe the impact of these 
changes, and to verify that similar results can be 
obtained on a larger corpus.
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Appendix A: Title, abstract and reference indexing set for a sample citation

PubMed ID 15645653
Title Identification of two novel missense mutations (p.R1221C and p.R1357W) in the ABCC6 (MRP6) 

gene in a Japanese patient with pseudoxanthoma elasticum (PXE).
Abstract Pseudoxanthoma elasticum (PXE) is a rare, inherited, systemic disease of elastic tissue that in par-

ticular affects the skin, eyes, and cardiovascular system. Recently, the ABCC6 (MRP6) gene was 
found to cause PXE. A defective type of ABCC6 gene (16pl3.1) was determined in two Japanese 
patients with PXE. In order to determine whether these patients have a defect in ABCC6 gene, we 
examined each of 31 exons and flanking intron sequences by PCR methods (SSCP screening and 
direct sequencing). We found two novel missense variants in exon 26 and 29 in a compound het-
erozygous state in the first patient. One is a missense mutation (c.3661C>T; p.R1221C) in exon 26 
and the other is a missense mutation (c.4069C>T; p.R1357W) in exon 29. These mutations have 
not been detected in our control panel of 200 alleles. To our knowledge, this is the first report of 
mutation identification in the ABCC6 gene in Japanese PXE patients. The second patient was ho-
mozygous for 2542_2543delG in ABCC6 gene and heterozygous for 6 kb deletion of LDL-R gene. 
This case is the first report of a genetically confirmed case of double mutations both in PXE and 
FH loci.

MeSH 
reference 
indexing set

Adult
Aged
Female
Humans
Japan
Multidrug Resistance-Associated Proteins/*genetics
*Mutation, Missense
Pedigree
Pseudoxanthoma Elasticum/*genetics
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Appendix B: Sample indexing sets obtained from the GRC and PRC algorithms for 
a sample citation

PubMed ID 15645653
GRC indexing 
set* (top 15 terms)

Humans (10)
Multidrug Resistance-Associated Proteins (9)
Mutation (8)
Male (7)
Female (7)
Multidrug Resistance-Associated Proteins/genetics (7)
Pseudoxanthoma Elasticum (6)
Pseudoxanthoma Elasticum/genetics (6)
Pedigree (5)
Exons (4)
DNA Mutational Analysis (4)
Mutation/genetics (4)
Adult (4)
Introns (3)
Aged (3)

PRC indexing 
set* (top 15 terms)

Multidrug Resistance-Associated Proteins (10)
Multidrug Resistance-Associated Proteins /genetics (10)
Pseudoxanthoma Elasticum (10)
Pseudoxanthoma Elasticum/genetics (10)
Mutation (7)
DNA Mutational Analysis (6)
Pedigree (5)
Genotype (4)
Polymorphism, Genetic (4)
Alleles (4)
Mutation/genetics (3)
Haplotypes (3)
Models, Genetic (3)
Gene Deletion (3)
Exons (3)

                                                          
* Terms appearing in the reference set are underlined; the number of neighbors – out of the 10 nearest neighbors –
labeled with each term is shown between brackets after the term.
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Abstract

This paper proposes a machine learning ap-
proach to the task of assigning the inter-
national standard on classification of dis-
eases ICD-9-CM codes to clinical records.
By treating the task as a text categorisa-
tion problem, a classification system was
built which explores a variety of features in-
cluding negation, different strategies of mea-
suring gloss overlaps between the content
of clinical records and ICD-9-CM code de-
scriptions together with expansion of the
glosses from the ICD-9-CM hierarchy. The
best classifier achieved an overall F1 value
of 88.2 on a data set of 978 free text clinical
records, and was better than the performance
of two out of three human annotators.

1 Introduction

Despite the rapid progress on text categorisation in
the newswire domain, assigning meaningful labels
to clinical notes has only recently emerged as a topic
for computational linguists although health infor-
matics researchers have been working on the prob-
lem for over 10 years. This paper describes con-
structing classifiers for the Computational Medicine
Center’s 2007 Medical Natural Language Process-
ing Challenge which aims to assign ICD-9-CM
codes to free text radiology reports. (Computational
Medicine Center, 2007) It addresses the difficulties
of medical text categorisation tasks by incorporating
medical negations, term variations, and clues from
hierarchy of medical ontologies as additional fea-
tures.

2 The task of assigning ICD-9-CM codes

The corpus used in this study is a collection of
radiology reports from the Cincinnati Children’s
Hospital Medical Center, Department of Radiol-
ogy. (Computational Medicine Center, 2007) The
data set is divided into a training set and a test set.
The training set consists of 978 records and the test
set consists of 976 records and 45 ICD-9-CM code.
The task was considered as a multi-label text cate-
gorisation problem. For each code found in the cor-
pus, we created a separate classifier which makes
binary ”Yes” or ”No” decisions for the target code
of a clinical record. Maximum Entropy Modeling
(MaxEnt) (Berger et al., 1996) and Support Vector
Machine (SVM) (Vapnik, 1995) were used to build
the classifiers in our solution.

3 Features

A variety of features were developed to represent
what we believed were the important determiners of
the ICD-9-CM codes.

Bag-of-words (BOW) features: include only un-
igrams and bigrams in the text.

Negation features: were used in the classification
system to capture the terms that are negated or un-
certain, for example ”pneumonia” vs ”no evidence
of pneumonia”. We created a negation-finding sys-
tem which uses an algorithm similar to (Chapman
et al., 2001) to identify the negation phrase and the
scope of negations.

Gloss matching feature: The ICD-9-CM pro-
vides detailed text definition for each code. This sec-
tion explores different strategies for measuring gloss
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Name Description P R F1

S0 BOW baseline 83.9 78.4 81.1
S1 S0 + negation 88.5 78.2 83.0
S2 S1 + gloss

matching
89.2 80.6 84.7

S3 feature engi-
neering

89.7 86.0 87.8

S4 S3 + low-freq 89.7 86.9 88.2

Table 1: Experiment results for all ICD-9-CM codes

matchings between the content of a clinical record
and the definition of an ICD-9-CM code.

Feature engineering: In experiments with a uni-
form set of feature types for all ICD-9-CM codes,
we noticed that different codes tend to have a pref-
erence for different combinations of feature types.
Therefore, different combinations of feature types
for each individual code were used. The intuition
is to explore different combination of feature types
quickly instead of doing further feature selection
procedures. The system trained on the best combina-
tion of feature types are reported as the final results
for the target code.

Low frequency codes modeling: A rule-based
system was also used to model low frequency ICD-
9-CM codes which have only one occurrence in the
corpus, or have achieved F1 value of 0.0 by machine
learning. The system assigns a low frequent code to
a clinical record if the content of the record matches
the words of the code definition.

4 Result

Table 1 shows the experiment results. Since the
gold-standard annotation of the test dataset has not
been released so far, the experiment was done on the
978 documents training dataset using 10-fold cross-
validation. 1 The baseline system S0 was created
using only BOW features. Adding negation features
gives S1 an improvement of 1.9% on F1 score. The
gloss matching features gives a further increase of
1.7% on F1 score.

In order to understand more about the ICD-9-
CM code assignment task, this section evaluates the

1The official score of our system on the test dataset is
F1 = 86.76 which was ranked 7th among 44 systems. See
http://www.computationalmedicine.org/challenge/res.php

Name P R F1 N
company1 78.3 89.8 83.7 1397
company2 82.6 95.2 88.5 1404
company3 90.4 75.0 82.0 1011
S4 89.7 86.9 88.2 1180

Table 2: Performances of Annotators

performance of the three annotators. Table 2 com-
pares the performance of each annotator to the gold-
standard codes. The item ”N” in Table 2 stands for
the total number of ICD-9-CM codes which an an-
notator has assigned to the whole corpus.

5 Conclusion

This paper presents an approach to the problem
of assigning ICD-9-CM codes to free text medical
records. We created a classification system which
consists of multiple machine-learned classifiers on
high-frequency codes, and a rule-based modeling
module of low-frequency codes. By incorporating
negations and a variety of gloss matching features,
we successfully outperformed the baseline with only
bag-of-words features by 7.1% on F1 value. The
best reported score is also considered as compara-
ble to the performance of the best human annotator.
We also consider the way our system selected the
best combination of feature types for each individ-
ual ICD-9-CM code has a major contribution to the
classification task of clinical records.
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Abstract

We report on an empirical study that deals
with the quantity of different kinds of refer-
ring expressions in biomedical abstracts.

1 Problem Statement

One of the major challenges in NLP is the resolu-
tion of referring expressions. Those references can
be established by repeating tokens or by pronom-
inal, nominal and bridging anaphora. Experimen-
tal results show that pronominal anaphora are eas-
ier to resolve than nominal ones because the resolu-
tion of nominal anaphora requires anIS-A-taxonomy
as knowledge source. The resolution of bridging
anaphora, however, proves to be awkward because
encyclopedic knowledge is necessary.1 But in prac-
tice, are all of these phenomena equally important?
A look at the publications reveals that a compre-
hensive overview of the quantity and distribution
of referring expressions in biomedical abstracts is
still missing. Nevertheless, some scattered data can
be found: Castãno et al. (2002) state that 60 of
100 anaphora are nominal anaphora. Sanchez et al.
(2006) confirm this proportion (24 pronominal and
50 nominal anaphora in 74 anaphoric expressions).
Kim and Park (2004), however, detect 53 pronomi-
nal and 26 nominal anaphora in 87 anaphoric expres-
sions. But Gawronska and Erlendsson (2005), on the
other hand, claim that pronominal anaphora are rare
and nominal anaphora are predominant. Studies on
bridging anaphora in the biomedical domain are re-

1However, even the resolution of pronouns can benefit from
extra-textual information (Castaño et al., 2002).

ally still missing. Only Cimiano (2003) states that
10% of definite descriptions are bridging anaphora.

This contradictoriness and the lack of statistics on
referring expressions induced us to collect our own
data in order to obtain a consistent and meaningful
overview. This picture helps to decide where to start
if one wants to build a resolution component for the
biomedical domain.

2 Empirical Study

For our study we selected articles from MEDLINE
for stem cell transplantation and gene regulation.
Out of these articles, 11 stem cell abstracts and 9
gene regulation abstracts (∼ 12,000 tokens) were an-
notated by a team of one biologist and one computa-
tional linguist. The boundaries for annotations were
neither limited to nominal phrases (NPs) nor on their
heads because NPs in biomedical abstracts are of-
ten complex and hide relations between nouns (e.g.,
a “p53 protein” is a protein called“p53” , a “p53
gene” is a gene that codes the“p53 protein” and a
“p53 mutation” is a mutation in the“p53 gene”).
Furthermore, we annotated anaphoric expressions
referring to biomedical entities and to processes.

We distinguished the following referring ex-
pressions: As repetitions, we counted string-
identical, string-variants and abbreviated token se-
quences in NPs, identical in their meaning (e.g.
“Mesenchymal stem cells” - “MSCs” - “MSC in-
hibitory effect”). For the time being, modifiers have
not been considered. Anaphora comprise pronom-
inal2, nominal (IS-A relations, e.g.,“B-PLL” IS-

2Without “we” as it always refers to the authors.
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Type of Referring Expression Number
Repetitions 388

Pronominal Anaphora 48 (sent. internal)
6 (sent. external)

Nominal Anaphora 79
Bridging Anaphora 42
Subgrouping Anaphora 91
all 654

Table 1: Number of Referring Expressions

A “B-cell malignancy”) and bridging anaphora (all
other semantic relations, e.g.,“G(1) progression”
PART-OF-PROCESS“M-G(1) transition” ). Further-
more, we detected a high number of subgrouping
anaphora that often occur when a group of enti-
ties (e.g.,“Vascular endothelial growth factor re-
ceptors”) are mentioned first and certain subgroups
(e.g.,“VEGFR1” etc.) are discussed later.

In our abstracts we detected 654 referring expres-
sions (see Table 1). Repetitions are predominant
with 59%. Within the group of 266 anaphora, sub-
grouping anaphora contributed with 34%, nominal
anaphora with 30%, pronominal anaphora with 20%
and bridging anaphora with only 16%. The most
common bridging relations werePART-OF-AMOUNT

(14) andPART-OF (11). The remaining 17 are held
by 8 other semantic relations such asRESULTS-
FROM, MUTATED-FROM, etc.

3 Open Issues and Conclusion

In biomedical abstracts we are confronted with nu-
merous repetitions, mainly containing biomedical
entities. Their reference resolution within an ab-
stract seems to be easy at first glance by just com-
paring strings and detecting acronyms. Some exam-
ples will show that this is tricky, though: In“The
VEGFR3-transfected ECs exhibited high expression
level of LYVE-1.”, this statement on ECs only holds
if the modifier“VEGFR3-transfected”is taken into
account. Furthermore, transfected ECs are not iden-
tical with non-transfected ECs which would be the
result if considering NP heads only. But not ev-
ery modifier influences an identity relation. For ex-
ample, the purification in“. . . when priming with
purified CD34(+) cells” has no influence on the
CD34(+) cells and statements about these cells keep
their generality. A classification of such modifiers
adding information with or without influencing the
semantics of the modified expression must be made.

Hence, we have to be careful with assumed repeti-
tions and we have to handle all kinds of modifiers.

In this study we present the first comprehensive
overview of various kinds of referring expressions
that occur in biomedical abstracts. Although our
corpus is still small, we could observe the strong
tendency that repetitions play a major role (20 per
abstract). Anaphora occur less frequently (13 per
abstract). For a sound semantic interpretation, both
types must be handled. For knowledge-intensive
anaphora resolution, the existing biomedical re-
sources must be reviewed for adequacy. To the best
of our knowledge, although dominant in our study,
subgrouping anaphora have not been considered in
any anaphora resolution systems and suitable reso-
lution strategies must be found. The annotation pro-
cess (with more than one annotation team) will be
continued. The main result of this study, however,
is the observation that modifiers play an important
role for referencing. Their treatment for semantic
interpretation requires further investigations.
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1 Introduction 

In biomedical texts, contradictions about protein-
protein interactions (PPIs) occur when an author 
reports observing a given PPI whereas another au-
thor argues that very same interaction does not take 
place: e.g., when author X argues that “protein A 
interacts with protein B” whereas author Y claims 
that “protein A does not interact with B”. Of 
course, merely discovering a potential contradic-
tion does not mean the argument is closed as other 
factors may have caused the proteins to behave in 
different ways. We present preliminary work to-
wards the automatic detection of potential contra-
dictions between PPIs from text and an agreement 
experimental evaluation of our method. 

2 Method 

Our method consists of the following steps: i) ex-
tract positive and negative cases of PPIs and map 
them to a semantic structure; ii) compare the pairs 
of PPIs structures that contain similar canonical 
protein names iii) apply an inference method to the 
selected pair of PPIs.  

We extract positive and negative cases of PPIs 
by applying our system (Sanchez & Poesio, sub-
mitted). Our system considers proteins only as well 
as events where only one protein participates (e.g. 
“PI-3K activity”). The system produces the seman-
tic interpretation shown in Table 1. We manually 
corrected some of the information extracted in or-
der to compare exclusively our inference method 
with human annotators. 

The decision to determine if a C-PPI holds is 
given by the context. This context is formed by the 
combination of semantic components such as PPI 
polarity, verb direction, and manner polarity. 

 
P1 Canonical name of the first participant protein 
P2 Canonical name of the second participant protein. 
Cue-word Word (verbs or their nominalizations) expressing a PPI 

(e.g. interact, interaction, activate, activation, etc.). 
Semantic 
Relation 

Categories in which cue-words are grouped according 
to their similar effect in an interaction. (See Table 2). 

Polarity Whether the PPI is positive or negative 
Direction Direction of a relation according to the effect that a 

protein causes on other molecules in the interaction. 
(See Table 3) 

Manner Modality expressed by adverbs or adjectives (e.g. 
directly, weakly, strong, etc.) 

Manner 
Polarity 

Polarity assigned to manner according to the influence 
they have on the cue-word (see Table 4) 

Table 1. Semantic structure of a PPI 
 

Semantic Rela-
tion 

Verbs/nouns examples 

Activate Activat (e, ed,es,or,ion), transactivat (e,ed,es,ion) 
Inactivate decreas (e,ed,es), down-regulat(e,ed,es,ion) 

Table 2. Example of semantic verb relations 
  

+ - Neutral 
Activate, Attach Inactivate Substitute, React 
Create bond Break bond Modify, Cause 
Generate Release Signal, Associate 

Table 3. Directions of semantic relations 
 
Polarity Word 
(+) 1 strong(ly), direct(ly), potential(y), rapid(ly) 
(-)  0 hardly, indirect(ly), negative(e,ly) 

Table 4. Example of manner polarity 
 

Manner polarity is neutral (2) if the manner word 
is not included in the manner polarity table or if no 
manner word affects the cue-word. 

The method first obtains what we call “PPI 
state” of each PPI. The PPI state is obtained in two 
steps that follow decision tables1: a) the values for 
                                                 
1 Some decision tables are omitted due to space reasons. 
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the combination of the verb direction and the man-
ner polarity (DM) of each PPI; b) then, the DM 
value and the polarity of the corresponding PPI are 
evaluated. 

Second, the method compares the PPI states of 
both PPIs as shown in Table 5.  

 
State1 Sstate2 Result State1 State2 Result 
0 0 NC 3 3 U 
0 1 C 0 4 C 
0 3 U 1 4 C 
1 1 NC 3 4 C 
1 3 U    

Table 5. Decision table for results2 
 

The following example illustrates our method. The 
table below shows two sentences taken from dif-
ferent documents. 

 
Document 1 Document 2 
Cells treated with hyperosmolar stress, 
UV-C, IR, or a cell-permeable form of 
ceramide, C2 ceramide, rapidly down-
regulated PI(3)K activity to 10%-30% of 
the activity found in serum-stimulated 
control cells… 

And fourth, C2-
ceramide did not 
affect the amount of 
PI 3-kinase activity in 
anti-IRS-1 precipi-
tates. 

 
The semantic structures corresponding to these 
sentences are shown in the next table. 

 
 DocA DocB 
P1 C2-ceramide C2-ceramide 
P2 PI-3K PI-3K 
Cue down-regulate affect 
Semantic relation Inactivate Cause 
Polarity positive negative 
Direction negative neutral 
Manner rapidly -- 
Manner polarity positive neutral 

 
The decision tables produced for this example are 
the following3. 

 
PPI Direction Manner DM 
A -  (0) + (1) - (0) 
B N (2) N (2) U (3) 

 
PPI Polarity DM State 
A + (1) - (0) - (0) 
B - (0) U(3) NN (4) 

 

                                                 
2 Result values: contradiction (C), no contradiction (NC) and 
unsure (U). 
3 The values included in the tables are: positive=1, nega-
tive=0, neutral=2, unsure=3, and negative-neutral=4. 

PPIA state PPIB state Result 
-(0) NN (4) Contradiction 

 
The result obtained is “Contradiction”.  

3 Agreement experiment 

As a way of evaluation, we compared agreement 
between our method and human annotators by us-
ing the kappa measure (Siegel and Castellan, 
1998). We elaborated a test containing only of 31 
pairs of sentences (JBC articles) since this task can 
be tiring for human annotators. 

The test consisted on classifying the pairs of 
sentences into three categories: contradiction (C), 
no contradiction (NC) and unsure (U). The values 
of kappa obtained are presented in the following 
table. 

 
Groups Kappa 
Biologists only 0.37 
Biologists and our method 0.37 
Non-biologists only 0.22 
Non-biologists and our method 0.19 

Table 6 Agreement values 
 
Biologists mainly justified their answers based on 
biological knowledge (e.g. methodology, organ-
isms, etc.) while non-biologists based their answers 
on syntax. 

4 Conclusions 

We have presented a simple method to detect po-
tential contradictions of PPIs by using context ex-
pressed by semantics and linguistics constituents 
(e.g. modals, verbs, adverbs, etc). Our method 
showed to perform similarly to biologists and bet-
ter than non-biologists. Interestingly, biologists 
concluded that C-PPIs are rarely found; neverthe-
less, the cases found may be highly significant. 

Continuing with our work, we will try our sys-
tem in a larger set of data. 
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1 Introduction

In developmental biology, to support reasoning
about cause and effect, it is critical to link genetic
pathways with processes at the cellular and tissue
level that take place beforehand, simultaneously or
subsequently. While researchers have worked on re-
solving with respect to absolute time, events men-
tioned in medical texts such as clinical narratives
(e.g. Zhou et al, 2006), events in developmental bi-
ology are primarily resolved relative to other events.

In this regard, I am developing a system to extract
and time-stamp event sentences in articles on devel-
opmental biology, looking beyond the sentence that
describes the event and considering ranges of times
rather than just single timestamps.

I started by creating four gold standard corpora
for documents, event sentences, entities and times-
tamped events (for future public release). These
datasets are being used to develop an automated
pipeline to (1) retrieve relevant documents; (2) iden-
tify sentences within the documents that describe de-
velopmental events; and (3) associate these events
with the developmental stage(s) that the article links
them with or they are known to be linked with
through prior knowledge.

Different types of evidence are used in each step.
For determining the relevant developmental stage(s),
the text surrounding an event-containing sentence is
an efficient source of temporal grounding due of its
immediate accessibility. However, this does not al-
ways yield the correct stage and other sources need
to be used. Information within the sentence, such
as the entities under discussion, can also be used

to help with temporal grounding using mined back-
ground knowledge about the period of existence of
an entity.

2 Creation of Datasets

In creating the four new data sets mentioned above,
I annotated 1200 documents according to relevance
to murine kidney development. From 5 relevant
documents, 1200 sentences were annotated as to
whether they contained an event description. (Two
annotators - one biologist, one computer scientist -
achieved an inter-annotator agreement kappa score
of 95%.) A sentence is considered a positive one if
it contains a description of the following event types:

• molecular expression within tissue/during pro-
cess/at stage X (molecular event)

• tissue process, i.e. what forms from what (tis-
sue event)

• requirement of a molecule for a process
(molecular or tissue event)

• abnormality in a process/tissue/stage (molecu-
lar or tissue event)

• negation of the above e.g. was not expressed,
did not form, formed normally (molecular or
tissue event).

A negative sentence is one that does not fall under at
least one of the above categories.

In addition, 6 entities (tissue, process, species,
stage, molecule and event verb) were annotated in
1800 sentences (1200 described above + 600 from197



relevant documents not yet annotated at sentence
level) and 347 entity-annotated positive event sen-
tences were marked with their associated develop-
mental stage.

Example: At E11, the integrin α8 subunit was ex-
pressed throughout the mesenchyme of the nephro-
genic cord. Entities annotated:E11(stage),integrin
α8 (molecule),expressed (event verb),mesenchyme
of the nephrogenic cord (tissue).

3 Evidence for Temporal Resolution

Developmental biology is not as concerned with the
absolute time of events in a specific embryo as it
is with events that generally happen under the same
circumstances in developmental time. These are re-
ferred to with respect tostages from conception to
birth. The evidence sufficient to resolve the devel-
opmental stage of an event sentence can come from
many places. The two significant areas of evidence
are local context (i.e. surrounding text) andprior
(i.e. background) knowledge.

Local context can further be classified as:

• explicit: evidence of stage is mentioned within
current (event) sentence,

• previous sentence: evidence is found in sen-
tence immediately previous to current sentence,

• following sentence: evidence is found in sen-
tence immediately following current sentence,

• current paragraph : evidence is found in para-
graph containing current sentence but not in ad-
jacent sentences,

• referenced to figure: evidence is found in fig-
ure legend referenced in current sentence.

Evidence Source # Event Sentences
Explicitly Stated 48

Immed Prev Sentence 7
Following Sentence 1
Current Paragraph 19

Referenced Figure Legend 38
Within Figure Legend 43

Time Irrelevant 65
Prior Knowledge 126

Total 347

When local context does not provide evidence,prior
knowledge can be used about when entities men-
tioned within the sentence normally appear within
development. Event sentences can also beirrel-
evant of individual time ranges and apply to the
whole of development. The table above shows the
frequency with which each evidence type is used to
resolve developmental stage.

4 Experiments

Event sentence retrieval experiments (using separate
training and test data) resulted in a F-score of 72.3%
and 86.6% for Naive Bayes and rule-based classifi-
cation approaches respectively (relying upon perfect
entity recognition). A baseline method (classifying
all sentences as positive) achieves 58.4% F-score.

Experiments were also carried out to assign devel-
opmental stage to sentences already known to con-
tain events. The baseline approach is to use the last
mentioned stage in the text and any methods devel-
oped should score higher than this baseline. Rules
were developed to assign developmental stage based
on the knowledge gained from two fifths of the in-
vestigations into temporal evidence described above.
The other three fifths were annotated after the rules
had been defined. Precision scores for all 347 sen-
tences can be seen in the following table with the
Naive method representing the baseline andLocal
representing the use of rules.

Paper Naive Prec. Local Prec.
1 75.7 97.3
2 89.6 90.9
3 89.1 100
4 95.6 92.3
5 95.5 91.3

Average 89.1 94.5

Experiments are currently ongoing into exploiting
the use of background knowledge of the develop-
mental processes and tissues mentioned within event
descriptions in order to assign developmental stage
to events sentences not already assigned by the lo-
cal context rules and to increase confidence in those
stages already assigned.
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Abstract

This paper is concerned with the evaluation
of biomedical named entity recognition sys-
tems. We compare two such systems, one
based on a Hidden Markov Model and one
based on Conditional Random Fields and
syntactic parsing. In our experiments we
used automatically generated data as well
as manually annotated material, including
a new dataset which consists of biomedi-
cal full papers. Through our evaluation, we
assess the strengths and weaknesses of the
systems tested, as well as the datasets them-
selves in terms of the challenges they present
to the systems.

1 Introduction

The domain of biomedical text mining has become
of importance for the natural language processing
(NLP) community. While there is a lot of textual in-
formation available in the domain, either in the form
of publications or in model organism databases,
there is paucity in material annotated explicitly for
the purpose of developing NLP systems. Most of
the existing systems have been developed using data
from the newswire domain. Therefore, the biomedi-
cal domain is an appropriate platform to evaluate ex-
isting systems in terms of their portability and adapt-
ability. Also, it motivates the development of new
systems, as well as methods for developing systems
with these aspects in focus in addition to the perfor-
mance.

The biomedical named entity recognition (NER)
task in particular has attracted a lot of attention

from the community recently. There have been
three shared tasks (BioNLP/NLPBA 2004 (Kim et
al., 2004), BioCreative (Blaschke et al., 2004) and
BioCreative2 (Krallinger and Hirschman, 2007))
which involved some flavour of NER using manu-
ally annotated training material and fully supervised
machine learning methods. In parallel, there have
been successful efforts in bootstrapping NER sys-
tems using automatically generated training material
using domain resources (Morgan et al., 2004; Vla-
chos et al., 2006). These approaches have a signif-
icant appeal, since they don’t require manual anno-
tation of training material which is an expensive and
lengthy process.

Named entity recognition is an important task be-
cause it is a prerequisite to other more complex ones.
Examples include anaphora resolution (Gasperin,
2006) and gene normalization (Hirschman et al.,
2005). An important point is that until now NER
systems have been evaluated on abstracts, or on sen-
tences selected from abstracts. However, NER sys-
tems will be applied to full papers, either on their
own or in order to support more complex tasks.
Full papers though are expected to present additional
challenges to the systems than the abstracts, so it is
important to evaluate on the former as well in or-
der to obtain a clearer picture of the systems and the
task (Ananiadou and McNaught, 2006).

In this paper, we compare two NER systems in
a variety of settings. Most notably, we use auto-
matically generated training data and we evaluate on
abstracts as well as a new dataset consisting of full
papers. To our knowledge, this is the first evalua-
tion of biomedical NER on full paper text instead of
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abstracts. We assess the performance and the porta-
bility of the systems and using this evaluation we
combine them in order to take advantage of their
strengths.

2 Named entity recognition systems

This section presents the two biomedical named en-
tity recognition systems used in the experiments of
Section 4. Both systems have been used success-
fully for this task and are domain-independent, i.e.
they don’t use features or resources that are tailored
to the biomedical domain.

2.1 Hidden Markov Model

The first system used in our experiments was the
HMM-based (Rabiner, 1990) named entity recogni-
tion module of the open-source NLP toolkit Ling-
Pipe1. It is a hybrid first/second order HMM
model using Witten-Bell smoothing (Witten and
Bell, 1991). It estimates the following joint proba-
bility of the current tokenxt and labelyt conditioned
on the previous labelyt−1 and previous two tokens
xt−1 andxt−2:

P (xt, yt|yt−1, xt−1, xt−2) (1)

Tokens unseen in the training data are passed to
a morphological rule-based classifier which assigns
them to predefined classes according to their capital-
ization and whether they contain digits or punctua-
tion. In order to use these classes along with the or-
dinary tokens, during training a second pass over the
training data is performed in which tokens that ap-
pear fewer times than a given threshold are replaced
by their respective classes. In our experiments, this
threshold was set experimentally to 8. Vlachos et
al. (2006) employed this system and achieved good
results on bootstrapping biomedical named entity
recognition. They also note though that due to its re-
liance on seen tokens and the restricted way in which
unseen tokens are handled its performance is not as
good on unseen data.

1http://www.alias-i.com/lingpipe. The version used in the
experiments was 2.1.

2.2 Conditional Random Fields with Syntactic
Parsing

The second NER system we used in our experiments
was the system of Vlachos (2007) that participated
in the BioCreative2 Gene Mention task (Krallinger
and Hirschman, 2007). Its main components are the
Conditional Random Fields toolkit MALLET2 (Mc-
Callum, 2002) and the RASP syntactic parsing
toolkit3 (Briscoe et al., 2006), which are both pub-
licly available.

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) are undirected graphical models trained to
maximize the conditional probability of the output
sequence given the inputs, or, in the case of token-
based natural language processing tasks, the condi-
tional probability of the sequence of labelsy given
a sequence of tokensx. Like HMMs, the number of
previous labels taken into account defines the order
of the CRF model. More formally:

P (y|x) =
1

Z(x)
exp{

T∑

t=1

K∑

k=1

λkfk(y, xt)} (2)

In the equation above,Z(x) is a normalization
factor computed over all possible label sequences,
fk is a feature function andλk its respective weight.
y represents the labels taken into account as context
and it is defined by the order of the CRF. For an-th
order model,y becomesyt, yt−1..., yt−n. It is also
worth noting thatxt is the feature representation of
the token in positiont, which can include features
extracted by taking the whole input sequence into
account, not just the token in question. The main
advantage is that as a conditionally-trained model
CRFs do not need to take into account dependen-
cies in input, which as a consequence, allows the use
of features dependent on each other. Compared to
HMMs, their main disadvantage is that during train-
ing, the computation time required is significantly
longer. The interested reader is referred to the de-
tailed tutorial of Sutton & McCallum (2006).

Vlachos (2007) used a second order CRF model
combined with a variety of features. These can
be divided into simple orthographic features and in

2http://mallet.cs.umass.edu/index.php/MainPage
3http://www.informatics.susx.ac.uk/research/nlp/rasp/
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those extracted from the output of the syntactic pars-
ing toolkit. The former are extracted for every token
and they are rather common in the NER literature.
They include the token itself, whether it contains
digits, letters or punctuation, information about cap-
italization, prefixes and suffixes.

The second type of features are extracted from
the output of RASP for each sentence. The part-of-
speech (POS) tagger was parameterized to generate
multiple POS tags for each token in order to amelio-
rate unseen token errors. The syntactic parser uses
these sequences of POS tags to generate parses for
each sentence. The output is in the form of grammat-
ical relations (GRs), which specify the links between
the tokens in the sentence accoring to the syntactic
parser and they are encoded using the SciXML for-
mat (Copestake et al., 2006). From this output, for
each token the following features are extracted (if
possible):

• the lemma and the POS tag(s) associated with
the token

• the lemmas for the previous two and the fol-
lowing two tokens

• the lemmas of the verbs to which this token is
subject

• the lemmas of the verbs to which this token is
object

• the lemmas of the nouns to which this token
acts as modifier

• the lemmas of the modifiers of this token

Adding the features from the output of the syntac-
tic parser allows the incorporation of features from
a wider context than the two tokens before and after
captured by the lemmas, since GRs can link tokens
within a sentence independently of their proximity.
Also, they result in more specific features, since the
relation between two tokens is determined. The CRF
models in the experiments of Section 4 were trained
until convergence.

It must be mentioned that syntactic parsing is a
complicated task and therefore feature extraction on
its output is likely to introduce some noise. The
RASP syntactic parser is domain independent but

it has been developed using data from general En-
glish corpora mainly, so it is likely not to perform
as well in the biomedical domain. Nevertheless,
the results of the system in the BioCreative2 Gene
Mention task suggest that the use of syntactic pars-
ing features improve performance. Also, despite the
lack of domain-specific features, the system is com-
petitive with other systems, having performance in
the second quartile of the task. Finally, the BIOEW
scheme (Siefkes, 2006) was used to tag the tok-
enized corpora, under which the first token of a mul-
titoken mention is tagged as B, the last token as E,
the inner ones as I, single token mentions as W and
tokens outside an entity as O.

3 Corpora

In our experiments we used two corpora consisting
of abstracts and one consisting of full papers. One
of the abstracts corpora was automatically generated
while the other two were manually annotated. All
three were created using resources from FlyBase4

and they are publicly available5.
The automatically generated corpus was created

in order to bootstrap a gene name recognizer in Vla-
chos & Gasperin (2006). The approach used was
introduced by Morgan et al (2004). In brief, the ab-
stracts of 16,609 articles curated by FlyBase were
retrieved and tokenized by RASP (Briscoe et al.,
2006). For each article, the gene names and their
synonyms that were recorded by the curators were
annotated automatically in its abstract using longest-
extent pattern matching. The pattern matching is
flexible in order to accommodate capitalization and
punctuation variations. This process resulted in a
large but noisy dataset, consisting of 2,923,199 to-
kens and containing 117,279 gene names, 16,944 of
which are unique. The noise is due to two reasons
mainly. First, the lists constructed by the curators
for each paper are incomplete in two ways. They
don’t necessarily contain all the genes mentioned in
an abstract because not all genes are always curated
and also not all synonyms are recorded, thus result-
ing in false negatives. The other cause is the overlap
between gene names and common English words or
biomedical terms, which results in false positives for

4http://www.flybase.net/
5http://www.cl.cam.ac.uk/ nk304/ProjectIndex/#resources
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abstracts with such gene names.
The manually annotated corpus of abstracts was

described in Vlachos & Gasperin (2006). It con-
sists of 82 FlyBase abstracts that were annotated
by a computational linguist and a FlyBase curator.
The full paper corpus was described in Gasperin et
al. (2007). It consists of 5 publicly available full pa-
pers which were annotated by a computational lin-
guist and a FlyBase curator with named entities as
well as anaphoric relations in XML. To use it for
the gene name recognition experiments presented in
this paper, we converted it from XML to IOB format
keeping only the annotated gene names.

noisy golden full
abstracts abstracts papers

abstracts / 16,609 82 5
papers

sentences 111,820 600 1,220
tokens 2,923,199 15,703 34,383

gene names 117,279 629 2,057
unique 16,944 326 336

gene names
unique non- 60,943 3,018 4,113
gene tokens

Table 1: Statistics of the datasets

The gene names in both manually created cor-
pora were annotated using the guidelines presented
in Vlachos & Gasperin (2006). The main idea of
these guidelines is that gene names are annotated
anywhere they are encountered in the text, even
when they are used to refer to biomedical entities
other than the gene itself. The distinction between
the possible types of entities the gene name can re-
fer to is performed at the level of the shortest noun
phrase surrounding the gene name. This resulted in
improved inter-annotator agreement (Vlachos et al.,
2006).

Statistics on all three corpora are presented in Ta-
ble 1. From the comparisons in this table, an in-
teresting observation is that the gene names in full
papers tend to be repeated more frequently than the
gene names in the manually annotated abstracts (6.1
compared to 1.9 times respectively). Also, the lat-
ter contain approximately 2 unique gene names ev-
ery 100 tokens while the full papers contain just 1.

This evidence suggests that annotating abstracts is
more likely to provide us with a greater variety of
gene names. Interestingly, the automatically anno-
tated abstracts contain only 0.6 unique gene names
every 100 tokens which hints at inclusion of false
negatives during the annotation.

Another observation is that, while the manually
annotated abstracts and full papers contain roughly
the same number of unique genes, the full papers
contain 36% more unique tokens that are not part
of a gene name (“unique non-gene tokens” in Ta-
ble 1). This suggests that the full papers contain a
greater variety of contexts, as well as negative ex-
amples, therefore presenting greater difficultiy to a
gene name recognizer.

4 Experiments

We ran experiments using the two NER systems and
the three datasets described in Sections 2 and 3.
In order to evaluate the performance of the sys-
tems, apart from the standard recall, precision and
F-score metrics, we measured the performance on
seen and unseen gene names independently, as sug-
gested by Vlachos & Gasperin (2006). In brief, the
gene names that are in the test set and the output
generated by the system are separated according to
whether they have been encountered in the training
data as gene names. Then, the standard recall, pre-
cision and F-score metrics are calculated for each of
these lists independently.

HMM CRF+RASP
Recall 75.68 63.43

overall Precision 89.14 90.89
F-score 81.86 74.72
Recall 94.48 76.32

seen Precision 93.62 95.4
genes F-score 94.05 84.80

Recall 33.51 34.54
unseen Precision 68.42 73.63
genes F-score 44.98 47.02

seen genes 435
unseen genes 194

Table 2: Results on training on noisy abstracts and
testing on manually annotated abstracts
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HMM CRF+RASP
Recall 58.63 61.40

overall Precision 80.56 89.19
F-score 67.87 72.73
Recall 89.82 72.51

seen Precision 87.83 94.82
genes F-score 88.81 82.18

Recall 35.12 53.03
unseen Precision 69.48 84.05
genes F-score 46.66 65.03

seen genes 884
unseen genes 1173

Table 3: Results on training on noisy abstracts and
testing on full papers

Tables 2 and 3 report in detail the performance of
the two systems when trained on the noisy abstracts
and evaluated on the manually annotated abstracts
and full papers respectively. As it can be seen, the
performance of the HMM-based NER system is bet-
ter than that of CRF+RASP when evaluating on ab-
stracts and worse when evaluating on full papers
(81.86 vs 74.72 and 67.87 vs 72.73 respectively).

Further analysis of the performance of the two
systems on seen and unseen genes reveals that this
result is more likely to be due to the differences be-
tween the two evaluation datasets and in particular
the balance between seen and unseen genes with re-
spect to the training data used. In both evaluations,
the performance of the HMM-based NER system is
superior on seen genes while the CRF+RASP sys-
tem performs better on unseen genes. On the ab-
stracts corpus the performance on seen genes be-
comes more important since there are more seen
than unseen genes in the evaluation, while the op-
posite is the case for the full paper corpus.

The difference in the performance of the two sys-
tems is justified. The CRF+RASP system uses a
complex but more general representation of the con-
text based on the features extracted from the output
of syntactic parser, namely the lemmas, the part-of-
speech tags and the grammatical relationships, while
the HMM-based system uses a simple morphologi-
cal rule-based classifier. Also, the CRF+RASP sys-
tem takes the two previous labels into account, while
the HMM-based only the previous one. Therefore,

it is expected that the former has superior perfor-
mance on unseen genes. This difference between the
CRF+RASP and the HMM-based system is substan-
tially larger when evaluating on full papers (65.03
versus 46.66 respectively) than on abstracts (47.02
versus 44.98 respectively). This can be attributed
to the fact that the training data used is generated
from abstracts and when evaluating on full papers
the domain shift can be handled more efficiently by
the CRF+RASP system due to its more complex fea-
ture set.

However, the increased complexity of the
CRF+RASP system renders it more vulnerable to
noise. This is particularly important in these experi-
ments because we are aware that our training dataset
contains noise since it was automatically generated.
This noise is in addition to that from inaccurate syn-
tactic parsing employed, as explained in Section 2.2.
On the other hand, the simpler HMM-based sys-
tem is likely to perform better on seen genes, whose
recognition doesn’t require complex features.

We also ran experiments using the manually an-
notated corpus of abstracts as training data and eval-
uated on the full papers. The results in Table 4
confirmed the previous assessment, that the perfor-
mance of the CRF+RASP system is better on the un-
seen genes and that the HMM-based one is better on
seen genes. In this particular evaluation, the small
number of unique genes in the manually annotated
corpus of abstracts results in the majority of gene
names being unseen in the training data, which fa-
vors the CRF+RASP system.

It is important to note though that the perfor-
mances for both systems were substantially lower
than the ones achieved using the large and noisy
automatically generated corpus of abstracts. This
can be attributed to the fact that both systems have
better performance in recognizing seen gene names
rather than unseen ones. Given that the automati-
cally generated corpus required no manual annota-
tion and very little effort compared to the manually
annotated one, it is a strong argument for bootstrap-
ping techniques.

A known way of reducing the effect of noise in
sequential models such as CRFs is to reduce their
order. However, this limits the context taken into ac-
count, potentially harming the performance on un-
seen gene names. Keeping the same feature set, we
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HMM CRF+RASP
Recall 52.65 49.88

overall Precision 46.56 72.77
F-score 49.42 59.19
Recall 96.49 47.37

seen Precision 58.51 55.1
genes F-score 72.85 50.94

Recall 51.4 49.95
unseen Precision 46.04 73.4
genes F-score 48.57 59.45

seen genes 57
unseen genes 2000

Table 4: Results on training on manually annotated
abstracts and testing on full papers

trained a first order CRF model on the noisy ab-
stracts corpus and we evaluated on the manually an-
notated abstracts and full papers. As expected, the
performance on the seen gene names improved but
deteriorated on the unseen ones. In particular, when
evaluating on abstracts the F-scores achieved were
93.22 and 38.1 respectively (compared to 84.8 and
47.02) and on full papers 86.64 and 59.86 (compared
to 82.18 and 65.03). The overall performance im-
proved substantially for the abstract where the seen
genes are the majority (74.72 to 80.69), but only
marginally for the more balanced full papers (72.73
to 72.89).

Ideally, we wouldn’t want to sacrifice the perfor-
mance on unseen genes of the CRF+RASP system
in order to deal with noise. While the large noisy
training dataset provides good coverage of the pos-
sible gene names, it is unlikely to contain every gene
name we would encounter, as well as all the possible
common English words which can become precision
errors. Therefore we attempted to combine the two
NER systems based on the evaluation presented ear-
lier. Since the HMM-based system is performing
very well on seen gene names, for each sentence we
check whether it has recognized any gene names un-
seen in the training data (potential unseen precision
errors) or if it considered as ordinary English words
any tokens not seen as such in the training data (po-
tential unseen recall errors). If either of these is true,
then we pass the sentence to the CRF+RASP sys-
tem, which has better performance on unseen gene

names.
Such a strategy is expected to trade some of the

performance of the seen gene names of the HMM-
based system for improved performance on the un-
seen gene names by using the predictions of the
CRF+RASP system. This occurs because in the
same sentence seen and unseen gene names may co-
exist and choosing the predictions of the latter sys-
tem could result in more errors on the seen gene
names. This strategy is likely to improve the per-
formance on datasets where there are more unseen
gene names and the difference in the performance
of the CRF+RASP on them is substantially better
than the HMM-based. Indeed, using this strategy we
achieved 73.95 overall F-score on the full paper cor-
pus which contains slightly more unseen gene names
(57% of the total gene names). For the corpus of
manually annotated abstracts the performance was
reduced to 80.21, which is expected since the major-
ity of gene names (69%) are seen in the training data.
and the performance of the CRF+RASP system on
the unseen data is better only by a small margin than
the HMM-based one (47.02 vs 44.98 in F-score re-
spectively).

5 Discussion - Related work

The experiments of the previous section are to our
knowledge the first to evaluate biomedical named
entity recognition on full papers. Furthermore, we
consider that using abstracts as the training mate-
rial for such evaluation is a very realistic scenario,
since abstracts are generally publicly available and
therefore easy to share and distribute with a trainable
system, while full papers on which they are usually
applied are not always available.

Differences between abstracts and full papers can
be important when deciding what kind of material to
annotate for a certain purpose. For example, if the
annotated material is going to be used as training
data and given that higher coverage of gene names
in the training data is beneficial, then it might be
preferable to annotate abstracts because they con-
tain greater variety of gene names which would re-
sult in higher coverage in the dataset. On the other
hand, full papers contain a greater variety of con-
texts which can be useful for training a system and
as mentioned earlier, they can be more appropriate
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for evaluation.

It would be of interest to train NER systems on
training material generated from full papers. Con-
sidering the effort required in manual annotation
though, it would be difficult to obtain quantities of
such material large enough that would provide ade-
quate coverage of a variety of gene names. An alter-
native would be to generate it automatically. How-
ever, the approach employed to generate the noisy
abstracts corpus used in this paper is unlikely to pro-
vide us with material of adequate quality to train a
gene name recognizer. This is because more noise
is going to be introduced, since full papers are likely
to contain more gene names not recorded by the cu-
rators, as well as more common English words that
happen to overlap with the genes mentioned in the
paper.

The aim of this paper is not about deciding on
which of the two models is better but about how
the datasets used affect the evaluation and how to
combine the strengths of the models based on the
analysis performed. In this spirit, we didn’t attempt
any of the improvements discussed by Vlachos &
Gasperin (2006) because they were based on obser-
vations on the behavior of the HMM-based system.
From the analysis presented earlier, the CRF+RASP
system behaves differently and therefore it’s not cer-
tain that those strategies would be equally beneficial
to it.

As mentioned in the introduction, there has been
a lot of work on biomedical NER, either through
shared tasks or independent efforts. Of particular
interest is the work of Morgan et al (2004) who
bootstrapped an HMM-based gene name recognizer
using FlyBase resources and evaluate on abstracts.
Also of interest is the system presented by Set-
tles (2004) which used CRFs with rich feature sets
and suggested that one could use features from syn-
tactic parsing with this model given their flexibility.
Direct comparisons with these works are not possi-
ble since different datasets were used.

Finaly, combining models has been a successful
way of achieving good results, such as those of Flo-
rian et al. (2003) who had the top performance in
the named entity recognition shared task of CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003).

6 Conclusions- Future work

In this paper we compared two different named en-
tity recognition systems on abstracts and full pa-
per corpora using automatically generated training
data. We demonstrated how the datasets affect the
evaluation and how the two systems can be com-
bined. Also, our experiments showed that bootstrap-
ping using automatically annotated abstracts can be
efficient even when evaluating on full papers.

As future work, it would be of interest to de-
velop an efficient way to generate data automati-
cally from full papers which could improve the re-
sults further. An interesting approach would be to
combine dictionary-based matching with an exist-
ing NER system in order to reduce the noise. Also,
different ways of combining the two systems could
be explored. With constrained conditional random
fields (Kristjansson et al., 2004) the predictions of
the HMM on seen gene names could be added as
constraints to the inference performed by the CRF.

The good performance of bootstrapping gene
name recognizers using automatically created train-
ing data suggests that it is a realistic alternative to
fully supervised systems. The latter have benefited
from a series of shared tasks that, by providing a
testbed for evaluation, helped assessing and improv-
ing their performance. Given the variety of meth-
ods that are available for generating training data
efficiently automatically using extant domain re-
sources (Morgan et al., 2004) or semi-automatically
(active learning approaches like Shen et al. (2004)
or systems using seed rules such as Mikheev et
al. (1999)), it would be of interest to have a shared
task in which the participants would have access to
evaluation data only and they would be invited to use
such methods to develop their systems.
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Abstract 

Morphological analysis as applied to Eng-
lish has generally involved the study of 
rules for inflections and derivations. Recent 
work has attempted to derive such rules 
from automatic analysis of corpora. Here 
we study similar issues, but in the context 
of the biological literature. We introduce a 
new approach which allows us to assign 
probabilities of the semantic relatedness of 
pairs of tokens that occur in text in conse-
quence of their relatedness as character 
strings. Our analysis is based on over 84 
million sentences that compose the MED-
LINE database and over 2.3 million token 
types that occur in MEDLINE and enables 
us to identify over 36 million token type 
pairs which have assigned probabilities of 
semantic relatedness of at least 0.7 based 
on their similarity as strings. 

1 Introduction 

Morphological analysis is an important element 
in natural language processing. Jurafsky and 
Martin (2000) define morphology as the study of 
the way words are built up from smaller meaning 
bearing units, called morphemes.  Robust tools 
for morphological analysis enable one to predict 
the root of a word and its syntactic class or part 
of speech in a sentence. A good deal of work has 
been done toward the automatic acquisition of 
rules, morphemes, and analyses of words from 
large corpora (Freitag, 2005; Jacquemin, 1997; 
Monson, 2004; Schone and Jurafsky, 2000; 

Wicentowski, 2004; Xu and Croft, 1998; 
Yarowsky and Wicentowski, 2000). While this 
work is important it is mostly concerned with 
inflectional and derivational rules that can be 
derived from the study of texts in a language. 
While our interest is related to this work, we are 
concerned with the multitude of tokens that ap-
pear in English texts on the subject of biology.  
We believe it is clear to anyone who has exam-
ined the literature on biology that there are many 
tokens that appear in textual material that are 
related to each other, but not in any standard way 
or by any simple rules that have general applica-
bility even in biology. It is our goal here to 
achieve some understanding of when two tokens 
can be said to be semantically related based on 
their similarity as strings of characters.  

Thus for us morphological relationship will be a 
bit more general in that we wish to infer the re-
latedness of two strings based on the fact that 
they have a certain substring of characters on 
which they match. But we do not require to say 
exactly on what part of the matching substring 
their semantic relationship depends. In other 
words we do not insist on the identification of 
the smaller meaning bearing units or mor-
phemes. Key to our approach is the ability to 
measure the contextual similarity between two 
token types as well as their similarity as strings. 
Neither kind of measurement is unique to our 
application. Contextual similarity has been stud-
ied and applied in morphology (Jacquemin, 
1997; Schone and Jurafsky, 2000; Xu and Croft, 
1998; Yarowsky and Wicentowski, 2000) and 
more generally (Means and others, 2004).  String 
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similarity has also received much attention 
(Adamson and Boreham, 1974; Alberga, 1967; 
Damashek, 1995; Findler and Leeuwen, 1979; 
Hall and Dowling, 1980; Wilbur and Kim, 2001; 
Willett, 1979; Zobel and Dart, 1995).  However, 
the way we use these two measurements is, to 
our knowledge, new. Our approach is based on a 
simple postulate: If two token types are similar 
as strings, but they are not semantically related 
because of their similarity, then their contextual 
similarity is no greater than would be expected 
for two randomly chosen token types. Based on 
this observation we carry out an analysis which 
allows us to assign a probability of relatedness to 
pairs of token types. This proves sufficient to 
generate a large repository of related token type 
pairs among which are the expected inflectional 
and derivationally related pairs and much more 
besides.  

2 Methodology 

We work with a set of 2,341,917 token types 
which are the unique token types that occurred 
throughout MEDLINE in the title and abstract re-
cord fields in November of 2006. These token 
types do not include a set of 313 token types that 
represent stop words and are removed from con-
sideration. Our analysis consists of several steps. 

2.1 Measuring Contextual Similarity 

In considering the context of a token in a MED-
LINE record we do not consider all the text of 
the record. In those cases when there are multi-
ple sentences in the record the text that does not 
occur in the same sentence as the token may be 
too distant to have any direct bearing on the in-
terpretation of the token and will in such cases 
add noise to our considerations. Thus we break 
the whole of MEDLINE into sentences and con-
sider the context of a token to be the additional 
tokens of the sentence in which it occurs. Like-
wise the context of a token type consists of all 
the additional token types that occur in all the 
sentences in which it occurs. We used our own 
software to identify sentence boundaries (unpub-
lished), but suspect that published and freely 
available methods could equally be used for this 
purpose. This produced 84,475,092 sentences 

over all of MEDLINE. While there is an advan-
tage in the specificity that comes from consider-
ing context at the sentence level, this approach 
also gives rise to a problem. It is not uncommon 
for two terms to be related semantically, but to 
never occur in the same sentence. This will hap-
pen, for example, if one term is a misspelling of 
the other or if the two terms are alternate names 
for the same object. Because of this we must es-
timate the context of each term without regard to 
the occurrence of the other term. Then the two 
estimates can be compared to compute a similar-
ity of context. This we accomplish using formu-
las of probability theory applied to our setting. 

Let T  denote the set of 2,341,917 token types 
we consider and let 1t  and 2t  be two token types 
we wish to compare. Then we define 

1 1

2 2

( ) ( | ) ( ) and 

( ) ( | ) ( ) 
c i T

c i T

p t p t i p i

p t p t i p i
∈

∈

=

=

∑
∑

. (1) 

Here we refer to 1( )cp t  and 2( )cp t  as contextual 
probabilities for 1t  and 2t , respectively. The ex-
pressions on the right sides in (1) are given the 
standard interpretations. Thus ( )p i  is the frac-
tion of tokens in MEDLINE that are equal to i  
and 1( | )p t i  is the fraction of sentences in 
MEDLINE that contain i  that also contain 1t . 
We make a similar computation for the pair of 
token types 

1 2 1 2

1 2

( ) ( | ) ( )

( | ) ( | ) ( )
c i T

i T

p t t p t t i p i

p t i p t i p i
∈

∈

∧ = ∧

=

∑
∑

. (2) 

Here we have made use of an additional assump-
tion, that given i , 1t  and 2t  are independent in 
their probability  of occurrence. While inde-
pendence is not true, this seems to be just the 
right assumption for our purposes. It allows our 
estimate of 1 2( )cp t t∧  to be nonzero even 
though 1t  and 2t  may never occur together in a 
sentence. In other words it allows our estimate to 
reflect what context would imply if there were 
no rule that says the same intended word will 
almost never occur twice in a single sentence, 
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etc. Our contextual similarity is then the mutual 
information based on contextual probabilities 

1 2
1 2

1 2

( )( , ) log
( ) ( )
c

c c

p t tconSim t t
p t p t

⎛ ⎞∧
= ⎜ ⎟

⎝ ⎠
 (3) 

There is one minor practical difficulty with this 
definition. There are many cases where 1 2( )cp t t∧  
is zero. In any such case we define 1 2( , )conSim t t  
to be -1000. 

2.2 Measuring Lexical Similarity 

Here we treat the two token types, 1t  and 2t  of 
the previous section, as two ASCII strings and 
ask how similar they are as strings. String simi-
larity has been studied from a number of view-
points (Adamson and Boreham, 1974; Alberga, 
1967; Damashek, 1995; Findler and Leeuwen, 
1979; Hall and Dowling, 1980; Wilbur and Kim, 
2001; Willett, 1979; Zobel and Dart, 1995). We 
avoided approaches based on edit distance or 
other measures designed for spell checking  be-
cause our problem requires the recognition of 
relationships more distant than simple misspell-
ings. Our method is based on letter ngrams as 
features to represent any string (Adamson and 
Boreham, 1974; Damashek, 1995; Wilbur and 
Kim, 2001; Willett, 1979). If " "t abcdefgh=  
represents a token type, then we define ( )F t  to 
be the feature set associated with t  and we take 

( )F t  to be composed of i) all the contiguous 
three character substrings  “abc”, “bcd”, “cde”, 
“def”, “efg”, “fgh”; ii) the specially marked first 
trigram " !"abc ; and iii) the specially marked 
first letter " #"a .  This is the form of ( )F t  for 
any t  at least three characters long. If t  consists 
of only two characters, say " "ab , we take i) 
" "ab ; ii) " !"ab ; and iii) is unchanged. If t  con-
sists of only a single character " "a , we likewise 
take i) “a”; ii) “a!”; and iii) is again unchanged. 
Here ii) and iii) are included to allow the empha-
sis of the beginning of strings as more important 
for their recognition than the remainder. We em-
phasize that ( )F t  is a set of features, not a “bag-
of-words”, and any duplication of features is ig-
nored. While this is a simplification, it does have 
the minor drawback that different strings, e.g., 

" "aaab  and " "aaaaab , can be represented by 
the same set of features.  

Given that each string is represented by a set of 
features, it remains to define how we compute 
the similarity between two such representations. 
Our basic assumption here is that the probability 

2 1( | )p t t , that the semantic implications of 1t  are 
also represented at some level in 2t , should be 
represented by the fraction of the features repre-
senting 1t  that also appear in 2t . Of course there 
is no reason that all features should be consid-
ered of equal value. Let F  denote the set of all 
features coming from all 2.34 million strings we 
are considering. We will make the assumption 
that there exists a set of weights ( )w f  defined 
over all of f F∈  and representing their seman-
tic importance. Then we have 

( ) ( )1 2 1
2 1 ( )

( | ) ( ) / ( )
f F t F t f F t

p t t w f w f
∈ ∩ ∈

=∑ ∑ . (4) 

Based on (4) we define the lexical similarity of 
two token types as 

1 2 2 1 1 2( , ) ( ( | ) ( | )) / 2lexSim t t p t t p t t= +  (5) 

In our initial application of lexSim we take as 
weights the so-called inverse document fre-
quency weights that are commonly used in in-
formation retrieval (Sparck Jones, 1972). If 

2,341,917, N =  the number of token types, and 
for any feature f , fn  represents the number of 
token types with the feature f , the inverse 
document frequency weight is 

( ) log
f

Nw f
n

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. (6) 

This weight is based on the observation that very 
frequent features tend not to be very important, but 
importance increases on the average as frequency 
decreases. 

2.3 Estimating Semantic Relatedness 

The first step is to compute the distribution of 
1 2( , )conSim t t  over a large random sample of 

pairs of token types 1t  and 2t .  For this purpose 
we computed 1 2( , )conSim t t  over a random 
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sample of 302,515 pairs. This resulted in the 
value -1000, 180,845 times (60% of values).  
The remainder of the values, based on nonzero 

1 2( )cp t t∧  are distributed as shown in Figure 1. 

Let τ  denote the probability density for 
1 2( , )conSim t t  over random pairs 1t  and 2t . Let 

1 2( , )Sem t t  denote the predicate that asserts that 1t  
and 2t  are semantically related. Then our main 
assumption which underlies the method is  
Postulate. For any nonnegative real number r  

{ }1 2 1 2 1 2( , ) | ( , ) ( , )Q conSim t t lexSim t t r Sem t t= > ∧ ¬ (7) 
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Figure 1.  Distribution of  conSim values for the 
40% of randomly selected token type pairs 
which gave values above -1000, i.e., for which 

1 2( ) 0cp t t∧ > .  

has probability density function equal to τ . 
 
This postulate says that if you have two token 
types that have some level of similarity as strings 
( 1 2( , )lexSim t t r> ) but which are not semantically 
related, then 1 2( , )lexSim t t r>   is just an accident 
and it provides no information about 

1 2( , )conSim t t .  
 
The next step is to consider a pair of real numbers 

1 20 r r≤ <  and the set 
{ }1 2 1 2 1 1 2 2( , ) ( , ) | ( , )S r r t t r lexSim t t r= ≤ <  (8) 

they define.  We will refer to such a set as a lexSim 
slice. According to our postulate the subset of 

1 2( , )S r r  which are pairs of tokens without a se-
mantic relationship will produce conSim values 
obeying the τ  density. We compute the conSim 
values and assume that all of those pairs that pro-
duce a conSim value of -1000 represent pairs that 
are unrelated semantically. As an example, in one 
of our computations we computed a slice 

(0.7,0.725)S  and found the lexSim value -1000 
produced 931,042 times. In comparing this with 
the random sample which produced 180,845 values 
of -1000, we see that  
931,042 180,845 5.148=  (9) 

So we need to multiply the frequency distribution 
for the random sample (shown in Figure 1) by 
5.148 to represent the part of the slice 

(0.7,0.725)S  that represents pairs not semantically 
related. This situation is illustrated in Figure 2.  
Two observations are important here. First, the two 
curves match almost perfectly along their left 
edges for conSim values below zero. This suggests 
that sematically related pairs do not produce con-
Sim scores below about -1 and adds some credibil-
ity to our assumption that semantically related 
pairs do not produce conSim values of -1000.  The 
second observation is that while the higher graph 
in Figure 2 represents all pairs in the lexSim slice 
and the lower graph all pairs that are not semanti-
cally related, we do not know which pairs are not 
semantically related. We can only estimate the 
probability of any pair at a particular conSim score 
level being semantically related. If we let Ψ  rep-
resent the upper curve coming from the lexSim 
slice and Φ  the lower curve coming from the ran-
dom sample, then (10) represents the probability  

( ) ( )( )
( )

x xp x
x

Ψ −Φ
=

Ψ
 (10) 

that a token type pair with a conSim score of x  is a 
semantically related pair. Curve fitting or regres-
sion methods can be used to estimate p . Since it is 
reasonable to expect p  to be a nondecreasing 
function of its argument, we use isotonic regres-
sion to make our estimates. For a full analysis we 
set 

0.5 0.025ir i= + ×  (11) 
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and consider the set of lexSim slices { }20
1 0

( , )i i i
S r r + =

 
and determine the corresponding set of probability 
functions { }20

0i i
p

=
.  

2.4 Learned Weights  

Our initial step was to use the IDF weights defined 
in equation (6) and compute a database of all non-
identical token type pairs among the 2,341,917 
token types occurring in MEDLINE for which 

1 2( , ) 0.5lexSim t t ≥ .  We focus on the value 0.5 be-
cause the similarity measure lexSim has the  
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lexSim Slice S(0.7,0.725)

Comparison of Histograms

Figure 2. The distribution based on the random sample 
of pairs represents those pairs in the slice that are not 
semantically related, while the portion between the two 
curves represents the number of semantically related 
pairs. 

property that if one of 1t  or 2t  is an initial seg-
ment of the other (e.g., ‘glucuron’ is an initial 
segment of ‘glucuronidase’) then 

1 2( , ) 0.5lexSim t t ≥  will be satisfied regardless of 
the set of weights used. The resulting data in-
cluded the lexSim and the conSim scores and 
consisted of 141,164,755 pairs. We performed a 
complete slice analysis of this data and based on 
the resulting probability estimates 20,681,478 
pairs among the 141,164,755 total had a prob-
ability of being semantically related which was 
greater than or equal to 0.7.  While this seems 
like a very useful result, there is reason to be-
lieve the IDF weights used to compute lexSim 
are far from optimal. In an attempt to improve 
the weighting we divided the 141,164,755 pairs 

into 1C−  consisting of 68,912,915 pairs with a 
conSim score of -1000 and 1C  consisting of the 
remaining 72,251,839 pairs. Letting w  denote 
the vector of weights we defined a cost function 

( )
( )

1 2 1

1 2 1

1 2( , )

1 2( , )

( ) log ( , )

log 1 ( , )
t t C

t t C

w lexSim t t

lexSim t t
−

∈

∈

Λ = −

+ − −

∑
∑

 (12) 

and carried out a minimization of Λ  to obtain a 
set of learned weights which we will denote by 

0w . The minimization was done using the L-
BFGS algorithm (Nash and Nocedal, 1991). 
Since it is important to avoid negative weights 
we associate a potential ( )v f  with each ngram 
feature f  and set  

( ) exp( ( ))w f v f= . (13) 

The optimization is carried out using the poten-
tials.  

The optimization can be understood as an at-
tempt to make lexSim as close to zero as possible 
on the large set 1C−  where 1000conSim = −  and 
we have assumed there are no semantically re-
lated pairs, while at the same time making lex-
Sim large on the remainder. While this seems 
reasonable as a first step it is not conservative as 
many pairs in 1C  will not be semantically re-
lated.  Because of this we would expect that 
there are ngrams for which we have learned 
weights that are not really appropriate outside of 
the set of 141,164,755 pairs on which we 
trained. If there are such, presumably the most 
important cases would be those where we would 
score pairs with inappropriately high lexSim 
scores. Our approach to correct for this possibil-
ity is to add to the initial database of 
141,164,755 pairs all additional pairs which pro-
duced a 1 2( , ) 0.5lexSim t t ≥  based on the new 
weight set 0w . This augmented the data to a new 
set of 223,051,360 pairs with conSim scores. We 
then applied our learning scheme based on 
minimization of the function Λ  to learn a new 
set of weights 1w . There was one difference. 
Here and in all subsequent rounds we chose to 
define 1C−  as all those pairs with 
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1 2( , ) 0conSim t t ≤  and 1C  those pairs with 
1 2( , ) 0conSim t t > . We take this to be a conserva-

tive approach as one would expect semantically 
related pairs to have a similar context and satisfy 

1 2( , ) 0conSim t t > and  graphs such as Figure 2 
support this. In any case we view this as a con-
servative move and calculated to produce fewer 
false positives based on lexSim score recommen-
dations of semantic relatedness.  We actually go 
through repeated rounds of training and adding 
new pairs to the set of pairs. This process is con-
vergent as we reach a point where the weights 
learned on the set of pairs does not result in the 
addition of a significant amount of new material. 
This happened with weight set 4w  and a total 
accumulation of 440.4 million token type pairs.  

Table 1. Number of token pairs and the level of 
their predicted probability of semantic related-
ness found with three different weight sets.  

Weight 
Set 

Prob. Se-
mantically 
Related 

0.7≥  

Prob. Se-
mantically 
Related 

0.8≥  

Prob. Se-
mantically 
Related 

0.9≥  

4w  36,173,520 22,381,318 10,805,085 

Constant 34,667,988 20,282,976 8,607,863 

IDF 31,617,441 18,769,424 8,516,329 

3 Probability Predictions 

Based on the learned weight set 4w  we per-
formed a slice analysis of the 440 million token 
pairs on which the weights were learned and ob-
tained a set of 36,173,520 token pairs with pre-
dicted probabilities of being semantically related 
of 0.7 or greater. We performed the same slice 
analysis on this 440 million token pair set with 
the IDF weights and the set of constant weights 
all equal to 1. The results are given in Table 1. 
Here it is interesting to note that the constant 
weights perform substantially better than the IDF 
weights and come close to the performance of 
the 4w  weights.  While the 4w  predicted about 
1.5 million more relationships at the 0.7 prob-

ability level, it is also interesting to note that the 
difference between the 4w  and constant weights 
actually increases as one goes to higher probabil-
ity levels so that the learned weights allow us to  

Table 2. A table showing 30 out of a total of 379 
tokens predicted to be semantically related to 
‘lacz’ and the estimated probabilities. Ten en-
tries are from the beginning of the list, ten from 
the middle, and ten from the end. Breaks where 
data was omitted are marked with asterisks.  

Probability 
Semantic 
Relation Token 1  Token 2 
0.973028 lacz 'lacz 
0.975617 lacz 010cblacz 
0.963364 lacz 010cmvlacz 
0.935771 lacz 07lacz 
0.847727 lacz 110cmvlacz 
0.851617 lacz 1716lacz 
0.90737 lacz 1acz 
0.9774 lacz 1hsplacz 
0.762373 lacz 27lacz 
0.974001 lacz 2hsplacz 
*** *** *** 
0.95951 lacz laczalone 
0.95951 lacz laczalpha 
0.989079 lacz laczam 
0.920344 lacz laczam15 
0.903068 lacz laczamber 
0.911691 lacz laczatttn7 
0.975162 lacz laczbg 
0.953791 lacz laczbgi 
0.995333 lacz laczbla 
0.991714 lacz laczc141 
*** *** *** 
0.979416 lacz ul42lacz 
0.846753 lacz veroicp6lacz 
0.985656 lacz vglacz1 
0.987626 lacz vm5lacz 
0.856636 lacz vm5neolacz 
0.985475 lacz vtkgpedeltab8rlacz 
0.963028 lacz vttdeltab8rlacz 
0.993296 lacz wlacz 
0.990673 lacz xlacz 
0.946067 lacz zflacz 

predict over 2 million more relationships at the 
0.9 level of reliability. This is more than a 25% 
increase at this high reliability level and justifies 
the extra effort in learning the weights.  
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Table 3. A table showing 30 out of a total of 96 
tokens predicted to be semantically related to 
‘nociception’ and the estimated probabilities. 
Ten entries are from the beginning of the list, 
ten from the middle, and ten from the end. 
Breaks where data was omitted are marked 
with asterisks. 

Probability 
Semantic 
Relation Token 1  Token 2 
0.727885 nociception actinociception 
0.90132 nociception actinociceptive 
0.848615 nociception anticociception 
0.89437 nociception anticociceptive 
0.880249 nociception antincociceptive 
0.82569 nociception antinoceiception 
0.923254 nociception antinociceptic 
0.953812 nociception antinociceptin 
0.920291 nociception antinociceptio 
0.824706 nociception antinociceptions 
*** *** *** 
0.802133 nociception nociceptice 
0.985352 nociception nociceptin 
0.940022 nociception nociceptin's 
0.930218 nociception nociceptine 
0.944004 nociception nociceptinerg 
0.882768 nociception nociceptinergic 
0.975783 nociception nociceptinnh2 
0.921745 nociception nociceptins 
0.927747 nociception nociceptiometric 
0.976135 nociception nociceptions 
*** *** *** 
0.88983 nociception subnociceptive 
0.814733 nociception thermoantinociception 
0.939505 nociception thermonociception 
0.862587 nociception thermonociceptive 
0.810878 nociception thermonociceptor 
0.947374 nociception thermonociceptors 
0.81756 nociception tyr14nociceptin 
0.981115 nociception visceronociception 
0.957359 nociception visceronociceptive 
0.862587 nociception withnociceptin 

A sample of the learned relationships based on 
the 4w  weights is contained in  

Table 2 and Table 3. The symbol ‘lacz’ stands 
for a well known and much studied gene in the 
E. coli bacterium. Due to its many uses it has 
given rise to myriad strings representing differ-
ent aspects of molecules, systems, or method-
ologies derived from or related to it. The results 

are not typical of the inflectional or derivational 
methods generally found useful in studying the 
morphology of English. Some might represent 
misspellings, but this is not readily apparent by 
examining them.  On the other hand ‘nocicep-
tion’ is an English word found in a dictionary 
and meaning “a measurable physiological event 
of a type usually associated with pain and agony 
and suffering” (Wikepedia). The data in Table 3 
shows that ‘nociception’ is related to the 
expected inflectional and derivational forms, 
forms with affixes unique to biology, readily 
apparent misspellings, and foreign analogs. 

4 Discussion & Conclusions 

There are several possible uses for the type of 
data produced by our analysis. Words semanti-
cally related to a query term or terms typed by a 
search engine user can provide a useful query 
expansion in either an automatic mode or with 
the user selecting from a displayed list of options 
for query expansion. Many misspellings occur in 
the literature and are disambiguated in the token 
pairs produced by the analysis. They can be rec-
ognized as closely related low frequency-high 
frequency pairs. They may allow better curation 
of the literature on the one hand or improved 
spelling correction of user queries on the other. 
In the area of more typical language analysis, a 
large repository of semantically related pairs can 
contribute to semantic tagging of text and ulti-
mately to better performance on the semantic 
aspects of parsing. Also the material we have 
produced can serve as a rich source of morpho-
logical information. For example, inflectional 
and derivational transformations applicable to 
the technical language of biology are well repre-
sented in the data.   

There is the possibility of improving on the 
methods we have used, while still applying the 
general approach. Either a more sensitive con-
Sim or lexSim measure or both could lead to su-
perior results. While it is unclear to us how con-
Sim might be improved, it seems there is more 
potential with lexSim. lexSim treats features as 
basically independent contributors to the similar-
ity of token types and this is not ideal. For ex-
ample the feature ‘hiv’ usually refers to the hu-
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man immunodeficiency virus. However, if ‘ive’ 
is also a feature of the token we may well be 
dealing with the word ‘hive’ which has no rela-
tion to a human immunodeficiency virus. Thus a 
more complicated model of the lexical similarity 
of strings could result in improved recognition of 
semantically related strings.  
In future work we hope to investigate the applica-
tion of the approach we have developed to multi-
token terms. We also hope to investigate the possi-
bility of more sensitive lexSim measures for im-
proved performance. 
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Abstract

This paper investigates improvement of au-
tomatic biomedical named-entity recogni-
tion by applying a reranking method to the
COLING 2004 JNLPBA shared task of bio-
entity recognition. Our system has a com-
mon reranking architecture that consists of a
pipeline of two statistical classifiers which
are based on log-linear models. The ar-
chitecture enables the reranker to take ad-
vantage of features which are globally de-
pendent on the label sequences, and fea-
tures from the labels of other sentences than
the target sentence. The experimental re-
sults show that our system achieves the la-
beling accuracies that are comparable to the
best performance reported for the same task,
thanks to the 1.55 points of F-score improve-
ment by the reranker.

1 Introduction

Difficulty and potential application of biomedical
named-entity recognition has attracted many re-
searchers of both natural language processing and
bioinformatics. The difficulty of the task largely
stems from a wide variety of named entity expres-
sions used in the domain. It is common for practi-
cal protein or gene databases to contain hundreds of
thousands of items. Such a large variety of vocab-
ulary naturally leads to long names with productive
use of general words, making the task difficult to be
solved by systems with naive Markov assumption of
label sequences, because such systems must perform

their prediction without seeing the entire string of
the entities.

Importance of the treatment of long names might
be implicitly indicated in the performance com-
parison of the participants of JNLPBA shared
task (Kim et al., 2004), where the best perform-
ing system (Zhou and Su, 2004) attains their scores
by extensive post-processing, which enabled the
system to make use of global information of the
entity labels. After the shared task, many re-
searchers tackled the task by using conditional ran-
dom fields (CRFs) (Lafferty et al., 2001), which
seemed to promise improvement over locally opti-
mized models like maximum entropy Markov mod-
els (MEMMs) (McCallum et al., 2000). However,
many of the CRF systems developed after the shared
task failed to reach the best performance achieved
by Zhou et al. One of the reasons may be the defi-
ciency of the dynamic programming-based systems,
that the global information of sequences cannot be
incorporated as features of the models. Another rea-
son may be that the computational complexity of
the models prevented the developers to invent ef-
fective features for the task. We had to wait until
Tsai et al. (2006), who combine pattern-based post-
processing with CRFs, for CRF-based systems to
achieve the same level of performance as Zhou et al.
As such, a key to further improvement of the perfor-
mance of bio-entity recognition has been to employ
global features, which are effective to capture the
features of long names appearing in the bio domain.

In this paper, we use reranking architecture,
which was successfully applied to the task of nat-
ural language parsing (Collins, 2000; Charniak and

215



Johnson, 2005), to address the problem. Reranking
enables us to incorporate truly global features to the
model of named entity tagging, and we aim to real-
ize the state-of-the-art performance without depend-
ing on rule-based post-processes.

Use of global features in named-entity recogni-
tion systems is widely studied for sequence labeling
including general named-entity tasks like CoNLL
2003 shared task. Such systems may be classified
into two kinds, one of them uses a single classifier
which is optimized incorporating non-local features,
and the other consists of pipeline of more than one
classifiers. The former includes Relational Markov
Networks by Bunescu et al. (2004) and skip-edge
CRFs by Sutton et al. (2004). A major drawback
of this kind of systems may be heavy computational
cost of inference both for training and running the
systems, because non-local dependency forces such
models to use expensive approximate inference in-
stead of dynamic-programming-based exact infer-
ence. The latter, pipelined systems include a re-
cent study by Krishnan et al. (2006), as well as
our reranking system. Their method is a two stage
model of CRFs, where the second CRF uses the
global information of the output of the first CRF.
Though their method is effective in capturing var-
ious non-local dependencies of named entities like
consistency of labels, we may be allowed to claim
that reranking is likely to be more effective in bio-
entity tagging, where the treatment of long entity
names is also a problem.

This paper is organized as follows. First, we
briefly overview the JNLPBA shared task of bio-
entity recognition and its related work. Then we ex-
plain the components of our system, one of which is
an MEMM n-best tagger, and the other is a reranker
based on log-linear models. Then we show the ex-
periments to tune the performance of the system us-
ing the development set. Finally, we compare our
results with the existing systems, and conclude the
paper with the discussion for further improvement
of the system.

2 JNLPBA shared task and related work

This section overviews the task of biomedical named
entity recognition as presented in JNLPBA shared
task held at COLING 2004, and the systems that

were successfully applied to the task. The train-
ing data provided by the shared task consisted of
2000 abstracts of biomedical articles taken from the
GENIA corpus version 3 (Ohta et al., 2002), which
consists of the MEDLINE abstracts with publication
years from 1990 to 1999. The articles are annotated
with named-entity BIO tags as an example shown in
Table 1. As usual, ‘B’ and ‘I’ tags are for beginning
and internal words of named entities, and ‘O’ tags
are for general English words that are not named en-
tities. ‘B’ and ‘I’ tags are split into 5 sub-labels,
each of which are used to represent proteins, genes,
cell lines, DNAs, cell types, and RNAs. The test
set of the shared task consists of 404 MEDLINE ab-
stracts whose publication years range from 1978 to
2001. The difference of publication years between
the training and test sets reflects the organizer’s in-
tention to see the entity recognizers’ portability with
regard to the differences of the articles’ publication
years.

Kim et al. (Kim et al., 2004) compare the 8 sys-
tems participated in the shared task. The systems
use various classification models including CRFs,
hidden Markov models (HMMs), support vector ma-
chines (SVMs), and MEMMs, with various features
and external resources. Though it is impossible to
observe clear correlation between the performance
and classification models or resources used, an im-
portant characteristic of the best system by Zhou et
al. (2004) seems to be extensive use of rule-based
post processing they apply to the output of their clas-
sifier.

After the shared task, several researchers tack-
led the problem using the CRFs and their ex-
tensions. Okanohara et al. (2006) applied semi-
CRFs (Sarawagi and Cohen, 2004), which can treat
multiple words as corresponding to a single state.
Friedrich et al. (2006) used CRFs with features from
the external gazetteer. Current state-of-the-art for
the shared-task is achieved by Tsai et al. (2006),
whose improvement depends on careful design of
features including the normalization of numeric ex-
pressions, and use of post-processing by automati-
cally extracted patterns.

216



IL-2 gene expression requires reactive oxygen production by 5-lipoxygenase .
B-DNA I-DNA O O O O O O B-protein O

Figure 1: Example sentence from the training data.

State name Possible next state

BOS B-* or O
B-protein I-protein, B-* or O
B-cell type I-cell type, B-* or O
B-DNA I-DNA, B-* or O
B-cell line I-cell line, B-* or O
B-RNA I-RNA, B-* or O
I-protein I-protein, B-* or O
I-cell type I-cell type, B-* or O
I-DNA I-DNA, B-* or O
I-cell line I-cell line, B-* or O
I-RNA I-RNA, B-* or O
O B-* or O

Table 1: State transition of MEMM.

3 N-best MEMM tagger

As our n-best tagger, we use a first order MEMM
model (McCallum et al., 2000). Though CRFs (Laf-
ferty et al., 2001) can be regarded as improved ver-
sion of MEMMs, we have chosen MEMMs because
MEMMs are usually much faster to train compared
to CRFs, which enables extensive feature selection.
Training a CRF tagger with features selected us-
ing an MEMM may result in yet another perfor-
mance boost, but in this paper we concentrate on the
MEMM as our n-best tagger, and consider CRFs as
one of our future extensions.

Table 1 shows the state transition table of our
MEMM model. Though existing studies suggest
that changing the tag set of the original corpus, such
as splitting of O tags, can contribute to the perfor-
mances of named entity recognizers (Peshkin and
Pfefer, 2003), our system uses the original tagset
of the training data, except that the ‘BOS’ label is
added to represent the state before the beginning of
sentences.

Probability of state transition to thei-th label of a
sentence is calculated by the following formula:

P (li|li−1, S) =
exp(

∑
j λjfj(li, li−1, S))

∑
l exp(

∑
j λjfj(l, li−1, S))

. (1)

Features used Forward tagging Backward tagging
unigrams, bi-
grams and pre-
vious labels

(62.43/71.77/66.78) (66.02/74.73/70.10)

unigrams and
bigrams (61.64/71.73/66.30) (65.38/74.87/69.80)

unigrams and
previous labels (62.17/71.67/66.58) (65.59/74.77/69.88)

unigrams (61.31/71.81/66.15) (65.61/75.25/70.10)

Table 2: (Recall/Precision/F-score) of forward and
backward tagging.

where li is the next BIO tag,li−1 is the previous
BIO tag, S is the target sentence, andfj and lj
are feature functions and parameters of a log-linear
model (Berger et al., 1996). As a first order MEMM,
the probability of a labelli is dependent on the pre-
vious labelli−1, and when we calculate the normal-
ization constant in the right hand side (i.e. the de-
nominator of the fraction), we limit the range ofl to
the possible successors of the previous label. This
probability is multiplied to obtain the probability of
a label sequence for a sentence:

P (l1...n|S) =
∏

i

P (li|li−1). (2)

The probability in Eq. 1. is estimated as a single
log-linear model, regardless to the types of the target
labels.

N-best tag sequences of input sentences are ob-
tained by well-known combination of the Viterbi al-
gorithm and A* algorithm. We implemented two
methods for thresholding the best sequences:N -
besttakes the sequences whose ranks are higher than
N , andθ-besttakes the sequences that have proba-
bility higher than that of the best sequences with a
factorθ, whereθ is a real value between 0 and 1. The
θ-best method is used in combination withN -best to
limit the maximum number of selected sequences.

3.1 Backward tagging

There remains one significant choice when we de-
velop an MEMM tagger, that is, the direction of tag-
ging. The results of the preliminary experiment with
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forward and backward MEMMs with word unigram
and bigram features are shown in Table 2. (The eval-
uation is done using the same training and develop-
ment set as used in Section 5.) As can be seen, the
backward tagging outperformed forward tagging by
a margin larger than 3 points, in all the cases.

One of the reasons of these striking differences
may be long names which appear in biomedical
texts. In order to recognize long entity names, for-
ward tagging is preferable if we have strong clues of
entities which appear around their left boundaries,
and backward tagging is preferable if clues appear
at right boundaries. A common example of this ef-
fect is a gene expression like ‘XXX YYY gene.’ The
right boundary of this expression is easy to detect
because of the word ‘gene.’ For a backward tagger,
the remaining decision is only ‘where to stop’ the
entity. But a forward tagger must decide not only
‘where to start,’ but also ‘whether to start’ the en-
tity, before the tagger encounter the word ‘gene.’ In
biomedical named-entity tagging, right boundaries
are usually easier to detect, and it may be the reason
of the superiority of the backward tagging.

We could have partially alleviated this effect by
employing head-word triggers as done in Zhou et
al. (2004), but we decided to use backward tag-
ging because the results of a number of preliminary
experiments, including the ones shown in Table 2
above, seemed to be showing that the backward tag-
ging is preferable in this task setting.

3.2 Feature set

In our system, features of log-linear models are gen-
erated by concatenating (or combining) the ‘atomic’
features, which belong to their corresponding atomic
feature classes. Feature selection is done by de-
ciding whether to include combination of feature
classes into the model. We ensure that features in the
same atomic feature class do not co-occur, so that a
single feature-class combination generates only one
feature for each event. The following is a list of
atomic feature classes implemented in our system.

Label features The target and previous labels. We
also include the coarse-grained label distinction to
distinguish five ‘I’ labels of each entity classes from
the other labels, expecting smoothing effect.

Word-based features Surface strings, base forms,
parts-of-speech (POSs), word shapes1, suffixes and
prefixes of words in input sentence. These features
are extracted from five words around the word to be
tagged, and also from the words around NP-chunk
boundaries as explained bellow.

Chunk-based features Features dependent on the
output of shallow parser. Word-based features of
the beginning and end of noun phrases, and the dis-
tances of the target word from the beginning and end
of noun phrases are used.

4 Reranker

Our reranker is based on a log-linear classifier.
Given n-best tag sequencesLi(1 ≤ i ≤ n), a log-
linear model is used to estimate the probability

P (Li|S) =
exp(

∑
j λjfj(Li, S))

∑
k exp(

∑
j λjfj(Lk, S))

. (3)

From the n-best sequences, reranker selects a se-
quence which maximize this probability.

The features used by the reranker are explained in
the following sections. Though most of the features
are binary-valued (i.e. the value offj in Eq. 3. is
exclusively 1 or 0), the logarithm of the probability
of the sequence output by the n-best tagger is also
used as a real-valued feature, to ensure the reranker’s
improvement over the n-best tagger.

4.1 Basic features

Basic features of the reranker are straightforward ex-
tension of the features used in the MEMM tagger.
The difference is that we do not have to care the lo-
cality of the features with regard to the labels.

Characteristics of words that are listed as word-
based features in the previous section is also used
for the reranker. Such features are chiefly extracted
from around the left and right boundaries of entities.
In our experiments, we used five words around the
leftmost and rightmost words of the entities. We also
use the entire string, affixes, word shape, concatena-
tion of POSs, and length of entities. Some of our

1The shape of a word is defined as a sequence of character
types contained in the word. Character types include uppercase
letters, lowercase letters, numerics, space characters, and the
other symbols.
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features depend on two adjacent entities. Such fea-
tures include the word-based features of the words
between the entities, and the verbs between the en-
tities. Most of the features are used in combination
with entity types.

4.2 N-best distribution features

N-best tags of sentences other than the target sen-
tence is available to the rerankers. This information
is sometimes useful for recognizing the names in
the target sentence. For example, proteins are often
written as ‘XXX protein’ where XXX is a protein
name, especially when they are first introduced in an
article, and thereafter referred to simply as ‘XXX.’
In such cases, the first appearance is easily identified
as proteins only by local features, but the subsequent
ones might not, and the information of the first ap-
pearance can be effectively used to identify the other
appearances.

Our system uses the distribution of the tags of
the 20 neighboring sentences of the target sentence
to help the tagging of the target sentence. Tag
distributions are obtained by marginalizing the n-
best tag sequences. Example of an effective feature
is a binary-valued feature which becomes 1 when
the candidate entity names in the target sentence is
contained in the marginal distribution of the neigh-
boring sentences with a probability which is above
some threshold.

We also use the information of overlapping
named-entity candidates which appear in the target
sentence. When there is an overlap between the en-
tities in the target sequence and any of the named-
entity candidates in the marginal distribution of the
target sentence, the corresponding features are used
to indicate the existence of the overlapping entity
and its entity type.

5 Experiments

We evaluated the performance of the system on the
data set provided by the COLING 2004 JNLPBA
shared-task. which consists of 2000 abstracts from
the MEDLINE articles. GENIA tagger2, a biomed-
ical text processing tool which automatically anno-

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/. The
tagger is trained on the GENIA corpus, so it is likely to show
very good performance on both training and development sets,
but not on the test set.

Features used (Recall/Precision/F-score)
full set (73.90/77.58/75.69)
w/o shallow parser (72.63/76.35/74.44)
w/o previous labels (72.06/75.38/73.68)

Table 3: Performance of MEMM tagger.

tates POS tags, shallow parses and named-entity tags
is used to preprocess the corpus, and POS and shal-
low parse information is used in our experiments.

We divided the data into 20 contiguous and
equally-sized sections, and used the first 18 sec-
tions for training, and the last 2 sections for testing
while development (henceforth the training and de-
velopment sets, respectively). The training data of
the reranker is created by the n-best tagger, and ev-
ery set of 17 sections from the training set is used
to train the n-best tagger for the remaining section
(The same technique is used by previous studies
to avoid the n-best tagger’s ‘unrealistically good’
performance on the training set (Collins, 2000)).
Among the n-best sequences output by the MEMM
tagger, the sequence with the highest F-score is used
as the ‘correct’ sequence for training the reranker.

The two log-linear models for the MEMM tagger
and reranker are estimated using a limited-memory
BFGS algorithm implemented in an open-source
software Amis3. In both models, Gaussian prior dis-
tributions are used to avoid overfitting (Chen and
Rosenfeld, 1999), and the standard deviations of the
Gaussian distributions are optimized to maximize
the performance on the development set. We also
used a thresholding technique which discards fea-
tures with low frequency. This is also optimized us-
ing the development set, and the best threshold was
4 for the MEMM tagger, and 50 for the reranker4.
For both of the MEMM tagger and reranker, com-
binations of feature classes are manually selected to
improve the accuracies on the development set. Our
final models include 49 and 148 feature class combi-
nations for the MEMM tagger and reranker, respec-
tively.

Table 3 shows the performance of the MEMM
tagger on the development set. As reported in many

3http://www-tsujii.is.s.u-tokyo.ac.jp/amis/.
4We treated feature occurrences both in positive and nega-

tive examples as one occurrence.
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Features used (Recall/Precision/F-score)
oracle (94.62/96.07/95.34)
full set (75.46/78.85/77.12)
w/o features that
depend on two
entities

(74.67/77.99/76.29)

w/o n-best distribu-
tion features

(74.99/78.38/76.65)

baseline (73.90/77.58/75.69)

Table 4: Performance of the reranker.

of the previous studies (Kim et al., 2004; Okanohara
et al., 2006; Tzong-Han Tsai et al., 2006), features of
shallow parsers had a large contribution to the per-
formance. The information of the previous labels
was also quite effective, which indicates that label
unigram models (i.e. 0th order Markov models, so
to speak) would have been insufficient for good per-
formance.

Then we developed the reranker, using the results
of 50-best taggers as training data. Table 4 shows the
performance of the reranker pipelined with the 50-
best MEMM tagger, where the ‘oracle’ row shows
the upper bound of reranker performance. Here, we
can observe that the reranker successfully improved
the performance by 1.43 points from the baseline
(i.e. the one-best of the MEMM tagger). It is also
shown that the global features that depend on two
adjacent entities, and the n-best distribution features
from the outside of the target sentences, are both
contributing to this performance improvement.

We also conducted experimental comparison of
two thresholding methods which are described in
Section 3. Since we can train and test the reranker
with MEMM taggers that use different thresholding
methods, we could make a table of the performance
of the reranker, changing the MEMM tagger used
for both training and evaluation5.

Tables 5 and 6 show the F-scores obtained by
various MEMM taggers, where the ‘oracle’ column
again shows the performance upper bound. (All
of the θ-best methods are combined with 200-best
thresholding.) Though we can roughly state that the
reranker can work better with n-best taggers which

5These results might not be a fair comparison, because the
feature selection and hyper-parameter tuning are done using a
reranker which is trained and tested with a 50-best tagger.

are more ambiguous than those used for their train-
ing, the differences are so slight to see clear ten-
dencies (For example, the columns for the reranker
trained using the 10-best MEMM tagger seems to be
a counter example against the statement).

We may also be able to say that theθ-best meth-
ods are generally performing slightly better, and it
could be explained by the fact that we have bet-
ter oracle performance with less ambiguity inθ-best
methods.

However, the scores in the column corresponding
to the 50-best training seems to be as high as any of
the scores of theθ-best methods, and the best score
is also achieved in that column. The reason may be
because our performance tuning is done exclusively
using the 50-best-trained reranker. Though we could
have achieved better performance by doing feature
selection and hyper-parameter tuning again usingθ-
best MEMMs, we use the reranker trained on 50-
best tags run with 70-best MEMM tagger as the best
performing system in the following.

5.1 Comparison with existing systems

Table 7 shows the performance of our n-best tag-
ger and reranker on the official test set, and the best
reported results on the same task. As naturally ex-
pected, our system outperformed the systems that
cannot accommodate truly global features (Note that
one point of F-score improvement is valuable in this
task, because inter-annotator agreement rate of hu-
man experts in bio-entity recognition is likely to be
about 80%. For example, Krauthammer et al. (2004)
report the inter-annotater agreement rate of 77.6%
for the three way bio-entity classification task.) and
the performance can be said to be at the same level as
the best systems. However, in spite of our effort, our
system could not outperform the best result achieved
by Tsai et al. What makes Tsai et al.’s system per-
form better than ours might be the careful treatment
of numeric expressions.

It is also notable that our MEMM tagger scored
71.10, which is comparable to the results of the sys-
tems that use CRFs. Considering the fact that the
tagger’s architecture is a simple first-order MEMM
which is far from state-of-the-art, and it uses only
POS taggers and shallow parsers as external re-
sources, we can say that simple machine-learning-
based method with carefully selected features could
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Thresholding method for training
Thresholding
method for
testing

oracle avg. # of an-
swers

10-best 20-best 30-best 40-best 50-best 70-best 100-best

10-best 91.00 10 76.51 76.53 76.85 76.73 77.01 76.68 76.86
20-best 93.31 20 76.40 76.55 76.83 76.62 76.95 76.68 76.85
30-best 94.40 30 76.34 76.52 76.91 76.63 77.06 76.75 76.90
40-best 94.94 40 76.39 76.58 76.91 76.71 77.14 76.75 76.92
50-best 95.34 50 76.37 76.58 76.90 76.65 77.12 76.78 76.92
70-best 95.87 60 76.38 76.57 76.91 76.71 77.16 76.81 76.97
100-best 96.26 70 76.38 76.59 76.95 76.74 77.10 76.82 76.98

Table 5: Comparison of the F-scores of rerankers trained andevaluated with variousN -best taggers.

Thresholding method for training
Thresholding
method for
testing

oracle
avg. #
of an-
swers

0.05-best 0.02-best 0.008-best 0.004-best 0.002-best 0.0005-best 0.0002-best

0.05-best 91.65 10.7 76.70 76.80 76.93 76.64 77.02 76.78 76.52
0.02-best 93.45 17.7 76.79 76.91 77.07 76.79 77.09 76.89 76.70
0.008-best 94.81 27.7 76.79 77.01 77.05 76.80 77.14 76.88 76.73
0.004-best 95.55 37.5 76.79 76.98 76.97 76.74 77.12 76.86 76.71
0.002-best 96.09 49.3 76.79 76.98 76.96 76.73 77.13 76.85 76.72
0.0005-best 96.82 77.7 76.79 76.98 76.96 76.73 77.13 76.85 76.70
0.0002-best 97.04 99.2 76.83 77.01 76.96 76.71 77.13 76.88 76.70

Table 6: Comparison of the F-scores of rerankers trained andevaluated with variousθ-best taggers.

F-score Method

71.10 MEMMThis paper
72.65 reranking

Tsai et al. (2006) 72.98
CRF, post-
processing

Zhou et al. (2004) 72.55

HMM,
SVM, post-
processing,
gazetteer

Friedrich et al. (2006) 71.5
CRF,
gazetteer

Okanohara et al. (2006) 71.48 semi-CRF

Table 7: Performance comparison on the test set.

be sufficient practical solutions for this kind of tasks.

6 Conclusion

This paper showed that the named-entity recogni-
tion, which have usually been solved by dynamic-
programming-based sequence-labeling techniques
with local features, can have innegligible perfor-
mance improvement from reranking methods. Our
system showed clear improvement over many of the

machine-learning-based systems reported to date,
and also proved comparable to the existing state-of-
the-art systems that use rule-based post-processing.

Our future plans include further sophistication of
features, such as the use of external gazetteers which
is reported to improve the F-score by 1.0 and 2.7
points in (Zhou and Su, 2004) and (Friedrich et
al., 2006), respectively. We expect that reranking
architecture can readily accommodate dictionary-
based features, because we can apply elaborated
string-matching algorithms to the qualified candi-
date strings available at reranking phase.

We also plan to apply self-training of n-best tag-
ger which successfully boosted the performance
of one of the best existing English syntactic
parser (McClosky et al., 2006). Since the test data of
the shared-task consists of articles that represent the
different publication years, the effects of the publi-
cation years of the texts used for self-training would
be interesting to study.
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