Linguistic Distances

Proceedings of the Workshop

Chairs:
John Nerbonne and Erhard Hinrichs

23 July 2006
Sydney, Australia




Production and Manufacturing by
BPA Digital

11 Evans &

Burwood VIC 3125

AUSTRALIA

N0

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

(©2006 The Association for Computational Linguistics

Order copies of thisand other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl @cl web. org

ISBN 1-932432-83-3



Table of Contents

1= = Vo] v
(@ 0 =Y 4= = Vii
WOTKSNOP Program . ...t e e e e e e e e e e iX
Linguistic Distances

John Nerbonne and Erhard Hinrichs . ... .. 1....
Semantic Similarity: What for?

o o N =T - o I T....
Similarity Judgments: Philosophical, Psychological and Mathematical Investigations

Claude St-Jacques and Caroline Barriere .. ..........uu i iiiiiiiiiiinnns 8.....
Automatically Creating Datasets for Measures of Semantic Relatedness

Torsten Zesch and Iryna GUIeVYCh. . ... ... e 16....
Comparison of Similarity Models for the Relation Discovery Task

BenN HAChEY . ... e 25...
Sentence Comparison Using Robust Minimal Recursion Semantics and an Ontology

Rebecca Dridan and FranciS BoNd . .. ... 35....
Evaluation of Several Phonetic Similarity Algorithms on the Task of Cognate Identification

Grzegorz Kondrak and Tarek Sherif . ... 43. ..
Evaluation of String Distance Algorithms for Dialectology

Wilbert Heeringa, Peter Kleiweg, Charlotte Gooskens and John Nerbonne............. 51.....
Study of Some Distance Measures for Language and Encoding Identification

AniLKumar Singh . ..o 63..
Towards Case-Based Parsing: Are Chunks Reliable Indicators for Syntax Trees?

Sandra KUbler. ... .. 73...
A Measure of Aggregate Syntactic Distance

John Nerbonne and Wybo Wiersma. . ... e e 82....
A Structural Similarity Measure

Petr Homola and Viadislav Kuliio . . . ... e al.
Variants of Tree Similarity in a Question Answering Task

Martin EMmMS ..o 1Q0.
Total Rank Distance and Scaled Total Rank Distance: Two Alternative Metrics in
Computational Linguistics

AncaDinuand LiVIU P. DiNU . .. ... ..o o 1009.
AULNOT INAEX . . e e 117






Preface

Welcome to the proceedings of ‘Linguistic Distances’ a workshop held in conjunction with
ACL/COLING 2006 in Sydney. An introductory article explains our motivation for holding the
workshop, which attracted 30 submissions, of which thirteen are included in these proceedings. We
are gratified by this level of interest. In fact we restricted the remit of the workshop to exclude the use of
distance (or its inverse, similarity) in evaluation because it was felt that evaluation was already regularly
the subject of several focused workshops. So the topic of ‘Linguistic Distances’ seems to resonate within
the computational linguistics community.

Perhaps we should add that we also hoped to attract computational interest in (non-applied) linguistic
topics, and that this, too, emerged in the submissions, although it is not strongly reflected in the choice
of articles. We’'ll poll participants about interest in a possible follow-up, but we have no plans in that
direction at this writing.

Our thanks are largely given in the acknowledgments section of the introductory article, but let's add
thanks to Suzanne Stevenson, the workshop chair of the conference, and to her review committee.

John Nerbonne and Erhard Hinrichs






Organizers

Chairs:

John Nerbonne, Groningen
Erhard Hinrichs, Tibingen

Program Committee:

Harald Baayen, Nijmegen
Walter Daelemans, Antwerp
Ido Dagan, Technion, Haifa
Wilbert Heeringa, Groningen
Ed Hovy, ISI, Los Angeles
Grzegorz Kondrak, Alberta
Sandra Kibler, Tubingen
Rada Mihalcea, North Texas
Ted Pedersen, Minnesota
Dan Roth, Illinois

Hinrich Schutze, Stuttgart
Junichi Tsujii, Tokyo

Menno van Zaanen, Macquarie, Sydney

Additional Reviewers:

Gosse Bouma, Groningen
Gertjan van Noord, Groningen
and anonymous reviewers

Invited Speaker:

Ido Dagan, Bar Illan University
Sponsor:

Netherlands Organisation for Scientific Research (NWO), Grant 200-02100,
for cooperation with th&eminar fir Sprachwissenschaftibingen.

vii






Workshop Program

Sunday, 23 July 2006

8:45-9:00

9:00-10:00

10:00-10:30

10:30-11:00

11:00-11:30

11:30-12:00

12:00-12:30

12:30-14:00

Opening Remarks:
Linguistic Distances
John Nerbonne and Erhard Hinrichs
Session 1: Semantics |
Invited Talk:
Semantic Similarity: What for?
Ido Dagan
Similarity Judgments: Philosophical, Psychological and Mathematical Investiga-
tions
Claude St-Jacques and Caroline Barriere
Break

Session 2: Semantics I

Automatically Creating Datasets for Measures of Semantic Relatedness
Torsten Zesch and Iryna Gurevych

Comparison of Similarity Models for the Relation Discovery Task
Ben Hachey

Sentence Comparison Using Robust Minimal Recursion Semantics and an Ontology
Rebecca Dridan and Francis Bond

Lunch



Sunday, 23 July 2006 (continued)

14:00-14:30

14:30-15:00

15:00-15:30

15:30-16:00

16:00-16:30

16:30-17:00

17:00-17:30

17:30-18:00

Session 3: Pronunciation and Language Variation

Evaluation of Several Phonetic Similarity Algorithms on the Task of Cognate Identification
Grzegorz Kondrak and Tarek Sherif

Evaluation of String Distance Algorithms for Dialectology
Wilbert Heeringa, Peter Kleiweg, Charlotte Gooskens and John Nerbonne

Study of Some Distance Measures for Language and Encoding Identification
Anil Kumar Singh

Break
Session 4: Syntax

Towards Case-Based Parsing: Are Chunks Reliable Indicators for Syntax Trees?
Sandra Kubler

A Measure of Aggregate Syntactic Distance
John Nerbonne and Wybo Wiersma

A Structural Similarity Measure
Petr Homola and Vladislav Kuliio

Variants of Tree Similarity in a Question Answering Task
Martin Emms

Reserve Paper
Total Rank Distance and Scaled Total Rank Distance: Two Alternative Metrics in Compu-

tational Linguistics
Anca Dinu and Liviu P. Dinu



1

Linguistic Distances

John Nerbonne
Alfa-informatica
University of Groningen

j.nerbonne@rug.nl

Abstract

In many theoretical and applied areas of
computational linguistics researchers op-
erate with a notion of linguistic distance
or, conversely, linguistic similarity, which
is the focus of the present workshop.
While many CL areas make frequent use
of such notions, it has received little fo-
cused attention, an honorable exception
being Lebart & Rajman (2000). This
workshop brings a number of these strands
together, highlighting a number of com-
mon issues.

Introduction

Erhard Hinrichs
Seminar @r Sprachwissenschaft
Universitat Tubingen
eh@sfs.uni-tuebingen.de

based learning (k-nn) and support-vector ma-
chines, but also unsupervised techniques such as
Kohonen maps and clustering, rely essentially on
measures of similarity for their processing.

Notions of similarity are often invoked in lin-
guistic areas such as dialectology, historical lin-
guistics, stylometry, second-language learning (as
a measure of learners’ proficiency), psycholin-
guistics (accounting for lexical “neighborhood”
effects, where neighborhoods are defined by simi-
larity) and even in theoretical linguistics (novel ac-
counts of the phonological constraints on semitic
roots).

This volume reports on a workshop aimed at
bringing together researchers employing various
measures of linguistic distance or similarity, in-

In many theoretical and applied areas of compugluding novel proposals, especially to demonstrate
tational linguistics researchers operate with a nothe importance of the abstract properties of such
tion of linguistic distance or, conversely, linguistic Measures (consistency, validity, stability over cor-
similarity, which is the focus of the present work- PUS size, computability, fidelity to the mathemati-

shop. While many CL areas make frequent use ofal distance axioms), but also to exchange infor-
such notions, it has received little focused attenMation on how to analyze distance information

tion, an honorable exception being Lebart & Raj-further.

man (2000). _ - Hldt :

Lebart & Rajman’s work, similarity is at heart always speak of similarity with respect to some
of most techniques seeking an optimal match beProperty, and we suspect that there is such a
tween query and document. Techniques in vectoplethora of measures in part because researchers
space models operationalize this via (weightedfiré often inexplicit on this point. It is useful to
cosine measures, but older tf/idf models were alsé@se the different notions apart. Finally, it is most
arguably aiming at a notion of similarity.

Word sense disambiguation models often work'ow some of the different notions might construed
with a notion of similarity among the contexts @S alternative realizations of a single abstract no-

within which word (senses) appear, and MT iden-tion.

tifies candidate lexical trans_lat_lon_ equivalents Vidy  bronunciation

a comparable measure of similarity. Many learn-

ing algorithms currently popular in CL, including John Laver, the author of the most widely used
not only supervised technigques such as memorytextbook in phonetics, claimed that “one of the

We assume that there is always a “hidden vari-

intriguing to try to make a start on understanding
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most basic concepts in phonetics, and one of théons of sequence similarity and/or, e.g., the idea
least discussed, is that afhonetic similarity  that distance may be operationalized by the num-
[boldface in original, JN & EH]” (Laver, 1994, ber or replacements needed to derive one word
p. 391), justifying the attention the workshop paysfrom another—ignoring the problem of similarity
to it. Laver goes on to sketch the work that hasamong words of different lengths (Vitevitch and
been done on phonetic similarity, or, more ex-Luce, 1999). Perhaps more sophisticated com-
actly, phonetic distance, in particular, the empir-putational models of pronunciation distance could
ical derivation of confusion matrices, which indi- play a role in these models in the future.

cate the likelihood with which people or speech Kessler (1995) showed how to employ edit dis-
recognition systems confusion one sound for antance to operationalize pronunciation difference in
other. Miller & Nicely (1955) founded this ap- order to investigate dialectology more precisely,
proach with studies of how humans confused somgn idea which, particular, Heeringa (2004) pursued
sounds more readily than others. Although “con-at great length. Kondrak (2002) created a vari-
fusability” is a reasonable reflection of phonetiCant of the dynamic programming a|gorithm used
similarity, it is perhaps worth noting that confu- to compute edit distance which he used to iden-
sion matrices are often asymmetric, suggestingify cognates in historical linguistics. McMahon
that something more complex is at play. Clarkg McMahon (2005) include investigations of pro-
& Yallop (1995, p. 319ff) discuss this line of nunciation similarity in their recent book on phy-
work further, suggesting more sophisticated analtogenetic techniques in historical linguistics. Sev-
yses which aggregate confusion matrices based astal of the contributions to this volume build on
segments. these earlier efforts or are relevant to them.

In addition to the phonetic interest (above), pho- Kondrak and Sherif (this volume) continue the
nologists have likewise shown interest in the quesinvestigation into techniques for identifying cog-
tion of similarity, especially in recent work. Al- nates, now comparing several techniques which
bright and Hayes (2003) have proposed a modekly solely on parameters set by the researcher to
of phonological learning which relies on “mini- machine learning techniques which automatically
mal generalization”. The idea is that children learnoptimize those parameters. They show the the ma-
e.g. rules of allomorphy on the basis not merelychine learning techniques to be superior, in partic-
of rules and individual lexical exceptions (the ear-ular, techniques basic on hidden Markov models
lier standard wisdom), but rather on the basis otnd dynamic Bayesian nets.
slight but reliable generalizations. An example is  Heeringa et al. (this volume) investigate several
the formation of the past tense of verbs ending inbxtensjons of the fundamental edit distance algo-
[m], ‘ing’ (fling, sing, sting, spring, string) that rjthm for use in dialectology, including sensitivity
build past tenses as ‘ungiij]. We omit details g order and context as well syllabicity constraints,
but note that the “minimal generalization” is min- \yhich they argue to be preferable, and length nor-
imally DISTANT in pronunciation. malization and graded weighting schemes, which

Frisch, Pierrehumbert & Broe (2004) have alsothey argue against.
kindled an interest in segmental similarity among Dinu & Dinu (this volume) investigate metrics
phonologists with their claim that syllables in on string distances which attach more importance
Semitic languages are constrained to have unliké the initial parts of the string. They embed this
consonants in syllable onset and coda. Their worknsight into a scheme in whicl-grams are ranked
has not gone unchallenged (Bailey and Hahn(sorted) by frequency, and the difference in the
2005; Hahn and Bailey, 2005), but it has certainlyrankings is used to assay language differences.
created further theoretical interest in phonologicalTheir paper proves that difference in rankings is
similarity. a proper mathematical metric.

There has been a great deal of attention in Singh (this volume) investigates the technical
psycholinguistics to the the problem of word question of identifying languages and character
recognition, and several models appeal explicencoding systems from limited amounts of text.
itly to the “degree of phonetic similarity among He collects about,000 or so of the most fre-
the words” (Luce and Pisoni, 1998, p. 1), butquentn-grams of various sizes and then classifies
most of these models employ relatively simple no-next texts based on the similarity between the fre-



guency distributions of the known texts with thosetags, a more abstract level of analysis. From there
of texts to be classified. His empirical results showthey propose an analogue to edit distance to gauge
“mutual cross entropy” to identify similarity most the degree of difference. The difference between
reliably, but there are several close competitors. two tree is the sum of the costs of the tree-editing

operations needed to obtain one tree from another
3 Syntax (Noetzel and Selkow, 1999).

Althouah there is | it tin similarity at th Emms (this volume) concentrates on applica-
ough Ihere 1S 1ess Interest in simrartty at € ,n5 of the notion ‘tree similarity’ in particular in

syntactlc_ level among linguistic the_onsts, there 'Sorder to identify text which is syntactically sim-
still one important areas of theoretical research i

hich it id ol ) cant rol g lr?lar to questions and which may therefore be ex-
Wt \c d'l F:ol_u P aty g_n '”.‘pOrh‘f’“;] ro e‘l ar_1t se\gira pected to constitute an answer to the question. He
interdisciplinary studies in which simifarity andior ;o o 16 o show that the tree-distance measure out-

distantis absolutely crucial. SyntacligPOLOGY performs sequence distance measures, at least if

is an area of linguistic theory which seeks to 'den'lexical information is also emphasized.

tify syntactic features which tend to be associated Kilbler (this volume) uses the similarity mea-

with one another in all languages (Comrie, 1989; : . .
L sure in memory-based learning to parse. This is

Croft, 2001). The fundamental vision is that some - )
. a surprising approach, since memory-based tech-

sorts of languages may be more similar to one

. : niques are normally used in classification tasks
another—typologically—than would first appear. .
. L " where the target is one of a small number of po-
Further, there are two interdisciplinary linguis-

fic studies i hich similarit dor dist tential classifications. In parsing, the targets may
'f studies T V:/ Ic ISIS.“ anty .Tm 'torttlhs ance he arbitrarily complex, so a key step is select an
plays a great role, Including simrianty at the Syn=; o) strycture in a memory-based way, and then
tactic level (without, however, exclusively focus-

. . to adapt it further. In this paperitbler first applies
ing on syntax). |ANGUAGE CONTACT studies P Pap Pb

. . chunking to the sentence to be parsed and selects
seek to identify the elements of one language

which have been adopted in a second in a situaa—In initial parse based on chunk similarity.
tion in which two or more languages are used in4 Semantics
the same community (Thomason and Kaufmann,
1988; van Coetsem, 1988). Naturally, these mayvhile similarity as such has not been a prominent
be non-syntactic, but syntac@ONTAMINATION  term in theoretical and computational research on
is a central concept which is recognized in con-natural language semantics, the study®fICAL
taminated varieties which have become more simsemaNTICS, which attempts to identify regulari-
ilar to the languages which are the source of conties of and systematic relations among word mean-
tamination. ings, is more often than not predicated on an im-
Essentially the same phenomena is studied iplicit notion of 'semantic similarity’. Research
SECOND-LANGUAGE LEARNING, in which syn- on the lexical semantics of verbs tries to identify
tactic patterns from a dominant, usually first, lan-verb classes whose members exhibit similar syn-
guage are imposed on a second. Here the focus iactic and semantic behavior. In logic-based the-
on the psychology of the individual language userries of word meaning (e.g., Vendler (1967) and
as opposed to the collective habits of the languagBowty (1979)), verb classes are identified by sim-
community. ilarity patterns of inference, while Levin's (1993)
Nerbonne and Wiersma (this volume) collectstudy of English verb classes demonstrates that
frequency distributions of part-of-speech (POS)similarities of word meanings for verbs can be
trigrams and explore simple measures of distancgleaned from their syntactic behavior, in particu-
between these. They approach issues of statistiar from their ability or inability to participate in
cal significance using permutation tests, which rediatheses, i.e. patterns of argument alternations.
quires attention to tricky issues of normalization With the increasing availability of large elec-
between the frequency distributions. tronic corpora, recent computational research on
Homola & Kubai (this volume) join Nerbonne word meaning has focused on capturing the notion
and Wiersma in advocating a surface-orientef ‘context similarity’ of words. Such studies fol-
measure of syntactic difference, but base theitow the empiricist approach to word meaning sum-
measure on dependency trees rather than PQSarized best in the famous dictum of the British



linguist J.R. Firth: “You shall know a word by the derlying models are in use, different notions of se-
company it keeps.” (Firth, 1957, p. 11) Contextmantic similarity emerge and conjecture that dif-
similarity has been used as a means of extracferent similarity metrics may be needed for differ-
ing collocations from corpora, e.g. by Church & ent NLP tasks. Dagan (this volume) also explores
Hanks (1990) and by Dunning (1993), of identify- the idea that different notions of semantic similar-
ing word senses, e.g. by Yarowski (1995) and byity are needed when dealing with semantic disam-
ScHitze (1998), of clustering verb classes, e.g. byiguation and language modeling tasks on the one
Schulte im Walde (2003), and of inducing selec-hand and with applications such as information ex-
tional restrictions of verbs, e.g. by Resnik (1993) traction, summarization, and information retrieval
by Abe & Li (1996), by Rooth et al. (1999) and by on the other hand.

Wagner (2004). Dridan and Bond (this volume) and Hachey

A third approach to lexical semantics, devel-(this volume) both consider semantic similarity

oped by linguists and by cognitive psychologists,from an application-oriented perspective. Dri-
primarily relies on the intuition of lexicographers dan and Bond employ the framework of robust
for capturing word meanings, but is also informedMinimal recursion semantics in order to obtain
by corpus evidence for determining word usage® More adequate measure of sentence similar-
and word senses. This type of approach has led #¥ than can be obtained by word-overlap met-
two highly valued semantic resources: the PrinceliCS for bag-of-words representations of sentences.

ton WordNet (Fellbaum, 1998) and the Berkeley €y show that such a more fine-grained mea-
Framenet (Baker et al., 1998). While originally SUre; which is based on compact representations

developed for English, both approaches have bee?f Predicate-logic, _yields better performance for
successfully generalized to other languages. paraphrase detection as well as for sentence se-

. __lection in question-answering tasks than simple
The three approaches to word meaning dis- a g P

d ab v t i i i ¢ word-overlap metrics. Hachey considers an au-
cussec above 1ry 1o capiure difierent aspects 0tfomatic content extraction (ACE) task, a particu-
the notion of semantic similarity, all of which are

highlv rel e t and fut hi lar subtask of information extraction. He demon-
\ghly retevant for current and TUtUre research Mgy ares that representations based on term co-
computational linguistics. In fact, the five pa-

. . ..~ "7 occurrence outperform representations based on
pers that discuss issues of semantic similarity 'r{erm-by-document matrices for the task of iden-

the present volume build on insights from thesetifying relationships between named objects in
three frameworks or address open research quege-x,[S

tions posed by these frameworks. Zesch an
Gurevych (this volume) discuss how measureg\cknowledgments

of semantic similarity—and more generally: S€-\we are indebted to our program committee and
mantic relatedness—can be obtained by similaritxo the incidental reviewers named in the organi-
judgmeqts of informants who are.presented Wiﬂhiational section of the book, and to others who
word pairs and who, for each pair, are asked Qgmain anonymous. We thank Peter Kleiweg for
rate the degree of semantic relatedness on a pri;anaging the production of the book and Therese
defined scale. Such similarity judgments can proy gingnen for discussions about phonetic similar-
vide important empirical evidence for taxonomlcity_ We are indebted to the Netherlands Organi-
models of word meanings such as wordnets, whicl) i, o scientific Research (NWO), grant 200-
thus far rely mostly on expert knowledge of lexi- 55109 for cooperation between the Center for
cographers. To this end, Zesch and Gurevych pro[anguage and Cognition, Groningen, and$een-
pose a corpus-based system that supports fast di?]hr fur Sprachwissenschaffiubingen, for sup-
velopment of relevant data sets for large SUbjeCf)ort of the work which is reported on here. We are

domains. also indebted to the Volkswagen Stiftung for their

St-Jacques and Bagre (this volume) review support of a joint project “Measuring Linguistic
and contrast different philosophical and psycho-Unity and Diversity in Europe” that is carried out
logical models for capturing the notion of seman-in cooperation with the Bulgarian Academy of
tic similarity and different mathematical models Science, Sofia. The work reported here is directly
for measuring semantic distance. They draw atrelated to the research objectives of this project.
tention to the fact that, depending on which un-
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Semantic Similarity: What for?

Ido Dagan
Bar llan University
dagan@macs.biu.ac.il

Abstract

Linguistic similarity has been a promi-
nent notion and tool in computational lin-
guistics and related areas, as elaborated
nicely in the announcement of this work-
shop. Yet, what exactly counts as “sim-
ilarity”, or when two linguistic concepts
should be regarded as similar, often re-
mains rather vague and ill posed, which is
in fact quite typical for unsupervised no-
tions. This talk will focus on similarity
at the semantic level, and will explore the
perspective that different notions of simi-
larity may be defined relative to concrete
modeling goals. In particular, | will refer
to the two major goals in semantic mod-
eling: predicting likelihood of occurrence,
which is the typical goal in disambigua-
tion and language modeling, and recogniz-
ing target meanings, which is the typical
semantic goal in text understanding appli-
cations such as question answering, infor-
mation extraction, summarization and in-
formation retrieval. We will discuss each
goal and present corresponding semantic
similarity approaches.
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Similarity judgments:. philosophical, psychological and mathematical
investigations

Claude St-Jacques
Institute for Information Technology
National Research Council of Canada
Gatineau, QC, Canada

Cl aude. St - Jacques@ir c. gc. ca

Abstract

This study investigates similarity judg-
ments from two angles. First, we look at
models suggested in the psychology and
philosophy literature which capture the
essence of concept similarity evaluation
for humans. Second, we analyze the
properties of many metrics which simu-
late such evaluation capabilities. The first
angle reveals that non-experts can judge
similarity and that their judgments need
not be based on predefined traits. We use
such conclusions to inform us on how
gold standards for word sense disam-
biguation tasks could be established.
From the second angle, we conclude that
more attention should be paid to metric
properties before assigning them to per-
form a particular task.

1 Introduction

The task of word sense disambiguation has
been at the heart of Natural Language Processing
(NLP) for many years. Recent Senseval compe-
titions (Mihal cea and Edmonds, 2004; Preiss and
Yarowsky, 2001) have stimulated the develop-
ment of algorithms to tackle different lexical dis-
ambiguation tasks. Such tasks require at their
core a judgment of similarity as a word’s multi-
ple definitions and its contexts of occurrences are
compared. Similarity judgment algorithms come
in many different forms. One angle of this arti-
cle is to analyze the assumptions behind such
similarity metrics by looking at different shared
or non-shared properties. Among the interesting
properties we note symmetry and transitivity,
which are fundamental to the understanding of
similarity. This angle isinvestigated in Section 4
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and 5, looking respectively at two broad classes
of mathematical models of similarity and then
more closely at different similarity metrics.

As Senseval and other similar competitions
need a gold standard for evaluating the compet-
ing systems, the second angle of our research
looks into literature in philosophy and psychol-
ogy to gain insight on the human capability in
performing a similarity judgment. From the first
discipline explored in Section 2, we discover that
philosophers have divergent views on concept
identification, ranging from scientific definitions
to human perception of concepts. From the sec-
ond discipline, explored in Section 3, we dis-
cover different psychological models for concept
identification and implicitly concept comparison,
this time ranging from continuous concepts being
positioned in multi-dimensional spaces to con-
crete concepts being grasped as entities.

The two angles (metrics and humans) con-
verge in the conclusion of Section 6 with general
observations and future work.

2 Philosophical evidence

Children have a natural eagerness to recognize
regularities in the world and to mimic the behav-
ior of competent members of their linguistic
community. It is in these words that Wittgenstein
(1980) simply expresses how infants acquire the
community’s language. What underlies the ac-
tivities surrounding a common use of language is
similar to our usage of words to express some-
thing: “Consider for example the proceedings
that we call games. | mean board-games, card-
games, ball-games, Olympic games, and so on.
What is common to them al?’" (Wittgenstein,
1968: 66). Wittgenstein answers that these ex-
pressions are characterized by similarities he
callsfamily resemblances.

Proceedings of the Workshop on Linguistic Distanpeges 8-15,
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Given that a dictionary’s purpose is to define
concepts, we could hope to see such family re-
semblances among its definitions. Contrarily to
this intuition, Table 1 shows definitions and ex-
amples for a few senses of game in Wordnet®,
from which resemblance cannot be found in
terms of common words in the definitions or ex-
amples. Nevertheless, humans are able to give
different judgments of similarity between differ-
ent senses of the word game. For example, simi-
larity between sense 1 and sense 3 is intuitively
larger than between sense 1 and sense 4.

Table 1: Some senses of game in Wordnet

Definition + Example

1| A single play of a sport or other contest. The
game lasted two hours.

2 | A contest with rules to determine a winner. You
need four people to play this game.

3 | The game equipment needed in order to play a
particular game. The child received several
games for his birthday.

4 | Your occupation or line of work He's in the
plumbing game.

5] A secret scheme to do something (especialy
something underhand or illegal). [...] | saw
through hislittle game from the start.

Before being tempted to call up gigabytes of
corpus evidence data and computational strength
to help us identify the family of resemblance
emerging here, let us further look at the nature of
that notion from a philosophical point of view.
Possible senses of individual things could be
traced back to Aristotle’'s work and identified
“without qualification” as the primary substance
of athing (Cassam, 1986). What accounts for the
substance of an object, for Aristotle, was the
thing itself, namely its essence. Taking a dightly
different view on the notion of family of objects,
Putnam (1977) instead pursues a quest for natu-
ral kinds and according to him, the distinguish-
ing characteristics that “hold together” natural
kinds are the “core facts [...] conveying the use
of words of that kind” (Putnam, 1977: 118). Put-
nam disagrees with any analytical approaches
sustaining that the meaning of a word X is given
by a conjunction of properties P = { Py, P,,... Py}
in such a way that P is the essence of X. The
problem is that a “natural kind may have abnor-
mal members’ (Putnam, 1977: 103). For instance,
normal lemons have a yellow peel but let’s sup-
pose in accordance with Putnam, that a new en-
vironmental condition makes lemon peel become

! See nttp://wordnet.princeton.edu/

blue. An analytical view will be unable to state
which one amongst the yellow or the blue onesis
now the normal member of the natural class of
lemons. Putnam rather relies on a“scientific the-
ory congruction” to define what an object of
natural kind is, and therefore, does not see that
dictionaries “are cluttered up [...] with pieces of
empirical information” (Putnam, 1977: 118) as a
defect to convey core facts about a natural class.

In contrast to Putnam, Fodor (1998) is a viru-
lent opponent to a mind-independent similarity
semantics subject to scientific discoveries. With
his ostentatious doorknob example, Fodor shows
that there is not any natural kind, hidden essence
or peculiar structure that makes a doorknob a
doorknob. “No doubt, some engineer might con-
struct a counter-example—a mindless doorknob
detector; and we might even come to rely on
such a thing when groping for a doorknob in the
dark” (Fodor, 1998: 147). However, the con-
struct will have to be done on what strikes us as
doorknabhood or satisfying the doorknob stereo-
type, i.e. “the gadget would have to be calibrated
to us since there is nothing else in nature that
responds selectively to doorknobs’ (Fodor, 1998:
147). According to Fodor, our capacity to ac-
quire the concept of doorknob involves a similar-
ity metric, and it is the human innate capacity to
determine the concepts similar to doorknob that
allow the characterization of doorknobhood.
Therefore, Fodor states that the meaning of con-
cepts is mind-dependent and that individuation is
not intractable since members of a language
community, although experiencing diverse forms
of a concept will tend to acquire similar stereo-
types of such aconcept.

This brief exploration into philosophical ap-
proaches for concept representation and delimita-
tion can inform us on the establishment of a gold
standard by humans for the word sense disam-
biguation (WSD) task. In fact, the adherence to
one model rather than another has an impact on
who should be performing the evaluation®. Sen-
seval-2 was in line with Putnam’s view of ‘divi-
sion of linguigtic labour’ by relying on lexicog-
raphers’ judgments to build a gold standard (Kil-
garrif, 1998). On the other hand, Senseval-3 col-
lected data via Open-Mind Initiative®, which was
much more in line with Fodor’'s view that any
common people can use their own similarity

2 The evaluation consists in performing sense tagging of
word occurrences in context.

3 See http:/Avww.openmind.org/, aweb site where anyone
can perform the sense tagging “games”.




metric to disambiguate polysemous terms. Inter-
egtingly, a recent empirical study (Murray and
Green 2004) showed how judgments by ordinary
people were consisent among themselves but
different from the one of lexicographers. It is
important to decide who the best judges are; a
decision which can certainly be based on the
foreseen application, but also, as we suggest here,
on some theoretical grounds.

3 Psychological Evidence

We pursue our quest for insights in the
egtablishment of gold standards by humans for
the WSD task, now trying to answer the “how”
guestion rather then the “who” question. Indeed,
Fodor’s view might influence us in deciding that
non-experts can perform similarity judgments,
but this does not tell us how these judgments
should be performed. Different psychological
models will give possible answers. In fact,
similarity judgments have been largely studied
by experimental psychologists and distinctive
theories give some evidence about the existence
of a human internal cognitive mechanism for
such judgments. In this section, we present three
approaches: subjective scaling and objective
scaling (Voinov, 2002), and semantic differential
(Osgood et al. 1957).

3.1 Subjective Scaling

In subjective scaling (Voinov, 2002), the
subjective human judgment is considered as a
convenient raw material to make comparison
between empirical studies of similarity. Subjects
are asked to point out the “similarities among n
objects of interest — whether concepts, persons,
traits, symptoms, cultures or species’ (Shepard,
1974: 373). Then the similarity judgments are
represented in an n x n matrix of objects by a
multidimensional scaling (MDS) of the distance
between each object. Equation 1 shows the

evaluation of similarity, where d(X,, X; ) tands

for the distance between objects x and x; on

stimulus (dimension) k and W, is the

psychological salience of that stimulusk:

D%, %)= > W, (A% %) - e
k=1

Shepard's MDS theory assumes that a
monotonic transformation should be done from a
nonmetric psychological salience of a stimulus to
ametric space model. By definition, the resulting
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metric function over a set X should fullfill the
following conditions:
Ox,y,zOX:

1. d(xy)=d(x,x) =0 (minimality),
2. d(x,y)=d(y,x) (symmetry),
3. d(x,y¥) 2d(x,2) +d(zy) (triangleineq.).

Accordingly to Shepard (1974), the distance in
equation (1) can be computed with different
metrics. Some of these metrics are given in
Lebart and Rajman (2000). The Euclidean metric
isthe best known:

m %
dE(Xi’Xj):(ZWk(Xik_Xjk)zj : @)

The city block metric is another one:

dC(Xi’X')zzwk‘Xik_Xjk . 3
pe=i
Another yet isthe Minkowski metric:
1
dN(XivXj)zzwk((Xik_Xjk)n)n- 4
k=1

There isa main concern with the MDS model.
Tversky (1977) criticized the adequacy of the
metric distance functions as he showed that the
three conditions of minimality, symmetry and
triangle inequality are sometimes empirically
violated. For instance, Tversky and Gati showed
empirically that assessment of the similarity
between pairs of countries was asymetric when
they asked for “the degree to which Red China
is similar to North Korea” (1978: 87) and in the
reverse order, i.e. similarity between North
Korea and Red China.

3.2

The second approach is called objective scaling
by Voinov “though this term is not widely ac-
cepted” (Voinov, 2002). According to him, the
objectivity of the method comes from the fact
that similarity measures are calculated from the
ratio of objective features that describe objects
under analysis. So, subjects are asked to make
qualitative judgments on common or digtinctive
features of objects and the comparison is then
made by any distance axioms. Tversky’'s (1977)
contrast model (CM) is the best known formal-
ization of this approach. In his model, the meas-
ure of similarity is computed by:

Objective Scaling

S(A,B)=af (ANB) - A& (A-B)

-X(B-A ©)



where f (A[)B) represents a function of the
common features of both entities A and B,
f (A—B)is the function of the features belong-
ing to A but not B, f(B— A)is the function of
the features belonging to B but not A and
a, B, x are their respective weighting parame-
ters. Equation (5) is the matching axiom of the

CM. A second fundamental property of that
model is given by the axiom of monotonicity:

S(A B) 2 S(AC)
If ANC O ANB, A-BO A-C, and
B-AOC-A, then(6) issatisfied. With these
two axioms (5-6), Tversky (1977) defined the
basis of what he called the matching function
using the theoretical notion of feature sets rather
then the geometric concept of similarity distance.
Interesting empirical studies followed this re-
search on CM and aimed at finding the correla-
tion between human judgments of similarity and
difference. Although some results show a corre-
lation between these judgments, there is limita-
tion to their complementarity: “the relative
weights of the common and distinctive features
vary with the nature of the task and support the
focusing hypothesis that people attend more to
the common features in judgments of similarity
than in judgments of the difference” (Tverski and
Gati, 1978: 84). Later on, Medin et a. (1990)
also reported cases when judgments of similarity
and difference are not inverses: first, when enti-
tiesdiffer in their number of features, and second
when similarity/difference judgments involve
digtinction of both attributes and relations. “Al-
though sameness judgments are typically de-
scribed as more global or non-analytic than dif-
ference judgments, an aternative possibility is
that they focus on relations rather than attributes’
(Medin et al., 1990: 68).

3.3 Semantic Differential

One sandard psycholinguigic method to
measure the similarity of meaning combines the
use of subjective scaling transposed in a
semantic space. One well-known method is
Semantic Differential (SD) developed by Osgood
et al. (1957).

The SD methodology measures the meanings
that individual subjects grant to words and
concepts according to a series of factor analyses.
These factor analyses are bipolar adjectives put
at each end of a Likert scale (Likert, 1932)
devised to rate the individual reaction to the

(6)
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contrasted stimulus. For instance, the SD of a
concept can be rated with two stimuli of

goodness and temperature:
Good —:—:f:—:—:—:— Bad
321012
Cold —:— ——f.—— Hot

If the subject feels that the observed concept is
neutral with regards to the polar terms, his
check-mark should be at the position 0. In our
example, the mark on the good-bad scale being
at the 1 on the left side of the neutral point O, the
judgment means dighthy good. Positions 2 and 3
on that same side would be respectively quite
good and extremely good. A similar analysis
applies for the cold-hot scale shown.

The theoretical background of that
methodology, which tries to standardize across
subjects the meaning of the same linguistic
stimulus, relies on psychological research on
synestesia.  Simply explained, synestesia is
similar to a double reaction to a stimulus. For
example, when presented with images of
concepts, subjects do not only have a
spontaneous reaction to the images, but they are
also able to characterize the associated concept
in terms of almost any bipolar adjective pairs
(hot-cold, pleasant-unpleasant, simple-complex,
vague-precise, dull-sharp, gatic-dynamic, sweet-
bitter, emotional-rational, etc.). According to
Osgood et al. “the imagery found in synesthesia
isintimately tied up with language metaphor, and
both represent semantic relations’ (1957: 23).

In SD, bipolar adjectives used in succession
can mediate a generalization to the meaning of a
sign, as uncertainty on each scale is reduced with
the successive process of elicitation. By
postulating representation in a semantic space,
each orthogonal axis of selection produces a
semantic differentiation when the subjects rate
the semantic alternatives on a bipolar scale.
Although that space could be multidimensional,
empirical studies (Osgood et al., 1957) on factor
analysis showed stability and relative importance
of three particular dimensions labeled as
Evaluation, Potency, and Activity (EPA). We
refer the reader to Osgood et al. (1957) for
further explanation on these EPA dimensions.

34 WSD and human judgments

Table 2 emphasizes commonalities and differ-
ences between the three psychological models
explored.



Table 2 — Psychological Models

Continuous | Prede- Similarity/
fined traits | Difference
MDS Yes Yes No
CM No Yes Yes
SD No No Possible

In Table 2, we show that both MDS (Shepard,
1974) and CM (Tversky, 1977) rely on a set of
predefined traits. This is a major problem, as it
leads to the necessity of defining in advance such
a set of traits on which to judge similarity be-
tween objects. On the other hand, SD (Osgood
et a. 1957), dthough using a few bipolar scales
for positioning concepts, argues that these scales
are not concept-dependent, but rather they can be
used for grasping the meaning of all concepts. A
second major difference highlighted in Table 2 is
that MDS is the only approach looking at con-
tinuous perceptual dimensions of stimulus, con-
trarily to CM in which the scaling procedes with
discrete conceptual traits, and even more in op-
position to SD which considers entities as primi-
tives. Finally, Table 2 shows the interesting ob-
servation brought forth by Tversky and later em-
pirical studies of Medin et al. (1980) of the non-
equivalence between the notion of similarity and
difference.

Coming back to the question of “how” human
evaluation could be performed to provide a gold
standard for the WSD task, considering the pros
and cons of the different models lead us to sug-
gest a particular strategy of sense attribution.
Combining the similarity/difference of Tversky
with the successive elucidation of Osgood et al.,
two bipolar Likert scales could be used to delimit
asimilarity concept: aresembling axis and acon-
trasting axis. In this approach, the similarity con-
cept till stays general, avoiding the problems of
finding specific traits for each instance on which
to have ajudgment.

Already in the empirical studies of Murray and
Green (2004), a Likert scale is used, but on an
“applying” axis. Subjects are asked for each
definition of a word to decide whether it “applies
perfectly” or rather “barely applies’ to a context
containing the word. The choice of such an axis
has limitations in its applicability for mapping
senses on examples. More general resembling
and contrasting axis would allow for similarity
judgments on any statements whether they are
two sense definitions, two examples or a sense
definition with an example.
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4 Mathematical M odels of Similarity

Logic and mathematics are extremely prolific
in similarity measurement models. According to
Dubois et a (1997), they are used for cognitive
tasks like classification, case-based reasoning
and interpolation. In the present study, we re-
strict our investigation to the classification task
as representative on the unsupervised WSD task.
The other approaches are inferential strategies,
using already solved problems to extrapolate or
interpolate solutions to new problems. Those
would be appropriate for WSD in a supervised
context (provided training data), but due to space
congtraints, we postpone discussion of those
models to a later study. Our present analysis di-
vides classification models into two criteria: the
cardinality of sets and the proximity-based smi-
larity measures.

41 Cardinality of sets

In line with De Baets et al. (2001), similarity
measures can be investigated under a rational
cardinality-based criterion of sets. In an exten-
sive study of 28 similarity measures for ordinary
sets, this research showed that measures can be
classified on the basis of only a few properties.
They proposed at firgt to build the class of cardi-
nality-based similarity measures from one ge-
neric formula:

S(X,Y): WaX,Y+XﬂX,Y+y/\/X,Y+26X,Y

Vvla,X,Y + XIIBX,Y + y'XX,Y + Z'5X,Y ’

(8)

where @, , = min{#(X =Y),#(Y - X)},

By = max{#(X =Y),#(Y - X)},

Xxy =H(XNY) and J, , =#(X UY)*, and
dlw, x,y,z,w,x,y,z0{03.1t
followsthat #(X (1Y) isthe number of couples
(1,1) and X =Y denotesthe setsdifference
(X=Y)=(XNY®).

The classification of these 28 similarity meas-
ures (which can all be linked to the general for-
mula) becomes possible by borrowing from the
framework of fuzzy sets the concepts of T for t-
norm (fuzzy intersection) operators and T-
equivalence for the property of T-
indistinguishability (De Baets et al., 2001). So, a
typical measure M of T-equivalence under the
universe U mugt satisfy the following condi-
tions for any (x, y, 2 OU : (i) M(x,X) =1 (re-

flexivity); (i) M (X, y) =M (y,X) (Symmetry);



(i) T(M(xy),M(y,2)<M(x2)
trangitivity).

All 28 measures show reflexivity and symme-
try but they vary on the type of transitivity they
achieve. In fact, studying boundary and
monotonicity behavior of the different measures,
De Baets et al. (2001) group them under four
types corresponding to four different formulas of
fuzzy intersections (t-norms): the standard inter-
section Z(a,b) =min(a,b), the Lukasiewicz t-
norm L(a,b) =max(0,a+b-1), the algebraic
product P(a,b) =ab and the drastic intersec-
tion D(a,b) =(a when b=1, b when a=1
and O otherwise). We refer the reader to De
Baets et al. (2001) to get the full scope of their
results. Accordingly, Jaccard’s coefficient J
(equation 9) and Russel-Rao’s coefficient R
(equation 10) are both, for example, L-transivive
(Lukasiewicz’ type):

(T-

_#(XNY)
S,(X.Y) ) 9
SR(X’Y) :M (10)

On the other hand, the overlapping coefficient O
(equation 11) is not even D-transitive, knowing

thaa D is the lower transitive condition
(D £ L <P < Z)inthe framework:
#(XNY)
XY)=——— . 11
H(XY) min(# X, #Y) ()
4.2  Proximity-based

Following our second criterion of classifica-
tion, mathematics also uses diverse proximity-
based similarity measures. We subdivide these
mathematical measures into three groups. the
distance model, the probabilistic model, and the
angular coefficients. The first one, the distance
model, overlaps in part with the subjective scal-
ing of similarity as presented in the psychologi-
cal approaches (section 3.1). The mathematical
model is the same with a metric of distance

d(%, y) computed between the objects in a space.

Algorithms like formulae (2), (3) and (4) of sec-
tion 3.1 are amongst the proximity-based similar-
ity measures.

Second, the probabilistic model is based on
the statistical analysis of objects and their attrib-
utes in a data space. Lebart & Rajman (2000)
gave many examples of that kind of proximity
measures, such as the Kullback-Leiber distance
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D, between two documents A and B, given the
probability distribution P ={p,, p,...., p,}:

D« (AB)= Z(pak = Pu)(10g P —10g Py, )
Pak* Pk #0

(12)
The third mathematical model is also a metric
space model but it uses angular measures be-
tween vectors of features to determine the simi-
larity between objects. A well-known measure

from that group is the cosine-correlation:

n
PRA

k=1

(2<]E]

Although conditions applying on proximity-
based measures are shortly described in Cross
and Sudkamp (2002) and Miyamoto (1990) for
fuzzy sets, we are not aware of an extensive re-
search such as the one by De Bagts et al. (2001),
presented in section 4.1, for classifying cardinal-
ity of setstypes. We make such an attempt in the
following section.

S(xy) = (13)

5 Analysisof similarity metrics

In this section, we perform a classification and
analysis exercise for similarity measure”, possi-
bly used for WSD, but more generally used in
any task where similarity between words is re-
quired. Table 3 shows the measures classified in
the four categories of the mathematical model
presented in section 4: measures of cardinality
(Card), of distance (Dist), of probability (Prob)
and of angle (Ang).

We sugtain that these groupings can be further
justified based on two criteria: the psychological
model of meaning (Table 2) and the typica
properties of the classes (Table 4). The first crite-
rion refers to the representation of concepts dis-
tinguishing between the dense-state and the dis-
crete-state® of concept (meaning) attributes. That
psychological ditinction is helpful to categorize
some metrics, like Gotoh, which seems hybrid
(Card and Digt). In such a metric, the penalty for
the gap between two concepts applies on the de-
fect of the dense-state, such as for a blurred im-

4 We use the list of the followi ng web page: http:/
www.dcs.shef.ac.uk/~sam/stringmetri cs.html#sellers

® This differentiation is based on Tenenbaum's (1996) idea
that MDS better suits continuous perceptual domains and
set-theoretic accommodate discrete features like in the CM.




age rather then the absence of the discrete-state,
i.e. of afeature; it is therefore classified in the
Digt category.

Table 3: Classification of Similarity Metrics

Metric Card | Dist | Prob | Ang

Hamming distance

Levenshtein distance

Needleman-Wunch

Smith-Waterman

Gotoh distance

Block distance

XX XXX |[X | X

Monge Elkan dist.

Jaro distance

Jaro Winkler

XXX

SoundEx distance

Matching coefficient

Dice s coefficient

Jaccard similarity

XXX | X

Overlap coefficient

Euclidean distance

Cosine similarity

Variational distance

Hellinger distance

Information radius

Harmonic mean

Skew divergence

Confusion probability

Tau

XX XX XXX | X

Fellegi & Sunters

TFIDF

FastA

BlastP

Maximal matches

g-gram

XXX |[X|X

Ukkonen algorithms

several necessary and sufficient conditions for
the inclusion of elements in the extension of a
concept, but the dominant element, such as the
pattern of comparison (in Maximal matches for
instance) is anti-reflexive and asymmetric with
the resulting elements. However, there is symme-
try in the resultant, but there is ill anti-
reflexivity.

We also single out the angular metrics from
distance measures even though they use asimilar
analysis of the qualitative variation of entities.
According to Ekman & Sjoberg (1965), a method
using similarity converted into cosine representa-
tion has the advantage to reveal two components
of percepts, i.e. the two-dimensional vector is a
modeling in magnitude and direction. Thus, an-
gular metrics can be a means used to contrast
two semantic features of entities.
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Finding out that different sets of properties can
serve as dividing lines between groups of metrics
is interesting in itself, but does not answer the
guestion as to which set is more appropriate than
others. We do not wish to answer this question
here as we believe it is application-dependent,
but we do wish to emphasize that a questioning
should take place before choosing a particular
measure. In fact, for each property, there is an
appropriate question that can be asked, as is
summarized in Table5.

A closer look at properties

Table 5 — Questioning for Measure Selection

The 'second criterion is a study on shgred Property Question
properties for each category of the mathematical  "\inimality | Is the minimal distance between objects the
model. Table 4 summarizes the properties using distance of an object with itself?
the following schema: (m) minimality, (r) reflex- | Symmetry Isit true that the distance between x and y is
ivity, (S) symmetry, (ti) triangle inequality, (tr) dways the same &s the distance between y
trangitivity and x?
’ Triangle Is it gppropriate that a direct distance be-
Inequality tween x and z is always smaller than a com-
Table 4 — Typical Properties of Metrics posed distance from x to y and y to z?
(m) | () (9 (ti) | (tr) Reflexivity Is it true that the relation that it holds be-
Card Yes | Yes Yes tween an object and itself is always the
Dist Yes Yes Yes | Posshle same?
Prob No | Possible Yes Transitivity Is it necessarily the case that when x is
Ang Yes Yes Yes similar to 'y and y is similar to z, that x be
similar to z?

From Table 4, we see for instance that reflex-
ivity is a basic property for cardinality measures
because we wish to regularly count discrete ob-
jects in a set. On the opposite side, the minimal -
ity property is a characteristic of a distance
measure, since it is noticeable by the displace-
ment or the change, for example, in digtinctive
images. According to Fodor (1998), we say that
statistical or probabilistic approaches exhibit
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For the task of WSD investigated in this paper,
we hope to open the debate as to which proper-
ties are to be taken into consideration.

6 Conclusion and futurework

This paper presented some ideas from two angles
of study (human and metrics) into the intricate
problem of similarity judgments. A larger study




is under way on both angles. First, we suggested,
based on some psychological and philosophical
model analysis, a two-axis Osgood-like bench-
marking approach for “ordinary human” word-
sense judgments. We intend to perform an em-
pirical experiment to validate this idea by look-
ing at inter-judge agreement.

On the agorithm side, although the ap-
proaches based on the cardinality of sets are not
central to WSD, we presented them first as we
find it inspiring to see an effort of classification
on those measures. We then attempted a some-
what more broad classification by emphasizing
properties of different groups of similarity meas-
ures. cardinality of sets, distance, probahilistic
measures and angular metrics. Although each
group has a particular subset of properties, we
noted that all of them share a property of transi-
tivity. This is interestingly different from the
psychological contrast model of Tversky where
differences and similarities are measured differ-
ently on different criteria.  We think investiga-
tions into similarity measures which reproduce
such a non-transitive differentiation approach
should be performed. We are on that path in our
larger sudy. We also suggest that any proposal
of a measure for a task should be preceded by a
study of which properties seem adequate for such
atask. We conclude by opening up the debate
for the WSD task.
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Abstract

Semantic relatedness is a special form of
linguistic distance between words. Eval-
uating semantic relatedness measures is
usually performed by comparison with hu-
man judgments. Previous test datasets had
been created analytically and were limited
in size. We propose a corpus-based system
for automatically creating test datasets.'
Experiments with human subjects show
that the resulting datasets cover all de-
grees of relatedness. As a result of the
corpus-based approach, test datasets cover
all types of lexical-semantic relations and
contain domain-specific words naturally
occurring in texts.

1 Introduction

Linguistic distance plays an important role in
many applications like information retrieval, word
sense disambiguation, text summarization or
spelling correction. It is defined on different kinds
of textual units, e.g. documents, parts of a docu-
ment (e.g. words and their surrounding context),
words or concepts (Lebart and Rajman, 2000).2
Linguistic distance between words is inverse to
their semantic similarity or relatedness.

Semantic similarity is typically defined via the
lexical relations of synonymy (automobile — car)
and hypernymy (vehicle — car), while semantic
relatedness (SR) is defined to cover any kind of
lexical or functional association that may exist be-

'In the near future, we are planning to make the software
available to interested researchers.

*In this paper, word denotes the graphemic form of a to-
ken and concept refers to a particular sense of a word.
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tween two words (Gurevych, 2005).> Dissimilar
words can be semantically related, e.g. via func-
tional relationships (night — dark) or when they
are antonyms (high — low). Many NLP applica-
tions require knowledge about semantic related-
ness rather than just similarity (Budanitsky and
Hirst, 2006).

A number of competing approaches for comput-
ing semantic relatedness of words have been de-
veloped (see Section 2). A commonly accepted
method for evaluating these approaches is to com-
pare their results with a gold standard based on
human judgments on word pairs. For that pur-
pose, relatedness scores for each word pair have
to be determined experimentally. Creating test
datasets for such experiments has so far been a
labor-intensive manual process.

We propose a corpus-based system to automat-
ically create test datasets for semantic relatedness
experiments. Previous datasets were created ana-
Iytically, preventing their use to gain insights into
the nature of SR and also not necessarily reflecting
the reality found in a corpus. They were also lim-
ited in size. We provide a larger annotated test set
that is used to better analyze the connections and
differences between the approaches for computing
semantic relatedness.

The remainder of this paper is organized as fol-
lows: we first focus on the notion of semantic re-
latedness and how it can be evaluated. Section 3
reviews related work. Section 4 describes our sys-
tem for automatically extracting word pairs from a
corpus. Furthermore, the experimental setup lead-
ing to human judgments of semantic relatedness

3Nevertheless the two terms are often (mis)used inter-
changeably. We will use semantic relatedness in the remain-
der of this paper, as it is the more general term that subsumes
semantic similarity.
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is presented. Section 5 discusses the results, and
finally we draw some conclusions in Section 6.

2 Evaluating SR measures

Various approaches for computing semantic re-
latedness of words or concepts have been pro-
posed, e.g. dictionary-based (Lesk, 1986),
ontology-based (Wu and Palmer, 1994; Leacock
and Chodorow, 1998), information-based (Resnik,
1995; Jiang and Conrath, 1997) or distributional
(Weeds and Weir, 2005). The knowledge sources
used for computing relatedness can be as different
as dictionaries, ontologies or large corpora.

According to Budanitsky and Hirst (2006),
there are three prevalent approaches for evaluating
SR measures: mathematical analysis, application-
specific evaluation and comparison with human
judgments.

Mathematical analysis can assess a measure
with respect to some formal properties, e.g.
whether a measure is a metric (Lin, 1998).* How-
ever, mathematical analysis cannot tell us whether
a measure closely resembles human judgments or
whether it performs best when used in a certain
application.

The latter question is tackled by application-
specific evaluation, where a measure is tested
within the framework of a certain application,
e.g. word sense disambiguation (Patwardhan et
al., 2003) or malapropism detection (Budanitsky
and Hirst, 2006). Lebart and Rajman (2000) ar-
gue for application-specific evaluation of similar-
ity measures, because measures are always used
for some task. But they also note that evaluating
a measure as part of a usually complex applica-
tion only indirectly assesses its quality. A certain
measure may work well in one application, but not
in another. Application-based evaluation can only
state the fact, but give little explanation about the
reasons.

The remaining approach - comparison with hu-
man judgments - is best suited for application
independent evaluation of relatedness measures.
Human annotators are asked to judge the related-
ness of presented word pairs. Results from these
experiments are used as a gold standard for eval-
uation. A further advantage of comparison with
human judgments is the possibility to gain deeper

“That means, whether it fulfills some mathematical crite-
ria: d(z,y) > 0;d(z,y) =0 & = = y; d(z,y) = d(y, );
d(z,z) < d(z,y) +d(y, 2).
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insights into the nature of semantic relatedness.

However, creating datasets for evaluation has so
far been limited in a number of respects. Only
a small number of word pairs was manually se-
lected, with semantic similarity instead of related-
ness in mind. Word pairs consisted only of noun-
noun combinations and only general terms were
included. Polysemous and homonymous words
were not disambiguated to concepts, i.e. humans
annotated semantic relatedness of words rather
than concepts.

3 Related work

In the seminal work by Rubenstein and Goode-
nough (1965), similarity judgments were obtained
from 51 test subjects on 65 noun pairs written on
paper cards. Test subjects were instructed to order
the cards according to the “similarity of meaning”
and then assign a continuous similarity value (0.0 -
4.0) to each card. Miller and Charles (1991) repli-
cated the experiment with 38 test subjects judg-
ing on a subset of 30 pairs taken from the original
65 pairs. This experiment was again replicated by
Resnik (1995) with 10 subjects. Table 1 summa-
rizes previous experiments.

A comprehensive evaluation of SR measures re-
quires a higher number of word pairs. However,
the original experimental setup is not scalable as
ordering several hundred paper cards is a cum-
bersome task. Furthermore, semantic relatedness
is an intuitive concept and being forced to assign
fine-grained continuous values is felt to overstrain
the test subjects. Gurevych (2005) replicated the
experiment of Rubenstein and Goodenough with
the original 65 word pairs translated into German.
She used an adapted experimental setup where test
subjects had to assign discrete values {0,1,2,3,4}
and word pairs were presented in isolation. This
setup is also scalable to a higher number of word
pairs (350) as was shown in Gurevych (2006).
Finkelstein et al. (2002) annotated a larger set of
word pairs (353), too. They used a 0-10 range of
relatedness scores, but did not give further details
about their experimental setup. In psycholinguis-
tics, relatedness of words can also be determined
through association tests (Schulte im Walde and
Melinger, 2005). Results of such experiments are
hard to quantify and cannot easily serve as the ba-
sis for evaluating SR measures.

Rubenstein and Goodenough selected word
pairs analytically to cover the whole spectrum of



CORRELATION
PAPER LANGUAGE PAIRS POS REL-TYPE SCORES # SUBJECTS INTER INTRA
R/G (1965) English 65 N sim continuous 0—4 51 - .850
M/C (1991) English 30 N sim continuous 0—4 38 - -
Res (1995) English 30 N sim continuous 0—4 10 903 -
Fin (2002) English 353 V, A relat continuous 0-10 16 - -
Gur (2005) German 65 N sim discrete {0,1,2,3,4} 24 .810 -
Gur (2006) German 350 N,V, A relat discrete {0,1,2,3,4} 8 .690 -
Z/G (2006) German 328 N, V,A relat discrete {0,1,2,3,4} 21 478 .647

Table 1: Comparison of previous experiments. R/G=Rubenstein and Goodenough, M/C=Miller and
Charles, Res=Resnik, Fin=Finkelstein, Gur=Gurevych, Z/G=Zesch and Gurevych

similarity from “not similar” to “synonymous’.
This elaborate process is not feasible for a larger
dataset or if domain-specific test sets should be
compiled quickly. Therefore, we automatically
create word pairs using a corpus-based approach.
We assume that due to lexical-semantic cohesion,
texts contain a sufficient number of words re-
lated by means of different lexical and semantic
relations. Resulting from our corpus-based ap-
proach, test sets will also contain domain-specific
terms. Previous studies only included general
terms as opposed to domain-specific vocabularies
and therefore failed to produce datasets that can
be used to evaluate the ability of a measure to cope
with domain-specific or technical terms. This is an
important property if semantic relatedness is used
in information retrieval where users tend to use
specific search terms (Porsche) rather than general
ones (car).

Furthermore, manually selected word pairs
are often biased towards highly related pairs
(Gurevych, 2006), because human annotators tend
to select only highly related pairs connected by re-
lations they are aware of. Automatic corpus-based
selection of word pairs is more objective, leading
to a balanced dataset with pairs connected by all
kinds of lexical-semantic relations. Morris and
Hirst (2004) pointed out that many relations be-
tween words in a text are non-classical (i.e. other
than typical taxonomic relations like synonymy or
hypernymy) and therefore not covered by seman-
tic similarity.

Previous studies only considered semantic re-
latedness (or similarity) of words rather than con-
cepts. However, polysemous or homonymous
words should be annotated on the level of con-
cepts. If we assume that bank has two meanings
(“financial institution” vs. “river bank”)’ and it is
paired with money, the result is two sense quali-

>WordNet lists 10 meanings.
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fied pairs (bank financial — money) and (bank,iyer
— money). It is obvious that the judgments on the
two concept pairs should differ considerably. Con-
cept annotated datasets can be used to test the abil-
ity of a measure to differentiate between senses
when determining the relatedness of polysemous
words. To our knowledge, this study is the first to
include concept pairs and to automatically gener-
ate the test dataset.

In our experiment, we annotated a high number
of pairs similar in size to the test sets by Finkel-
stein (2002) and Gurevych (2006). We used the re-
vised experimental setup (Gurevych, 2005), based
on discrete relatedness scores and presentation of
word pairs in isolation, that is scalable to the
higher number of pairs. We annotated semantic
relatedness instead of similarity and included also
non noun-noun pairs. Additionally, our corpus-
based approach includes domain-specific techni-
cal terms and enables evaluation of the robustness
of a measure.

4 Experiment

4.1 System architecture

Figure 1 gives an overview of our automatic
corpus-based system for creating test datasets for
evaluating SR measures.

In the first step, a source corpus is preprocessed
using tokenization, POS-tagging and lemmatiza-
tion resulting in a list of POS-tagged lemmas.
Randomly generating word pairs from this list
would result in too many unrelated pairs, yielding
an unbalanced dataset. Thus, we assign weights to
each word (e.g. using tf.idf-weighting). The most
important document-specific words get the high-
est weights and due to lexical cohesion of the doc-
uments many related words can be found among
the top rated. Therefore, we randomly generate
a user-defined number of word pairs from the r
words with the highest weights for each document.
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Figure 1: System architecture for extraction of
concept pairs.

In the next step, user defined filters are applied
to the initial list of word pairs. For example, a fil-
ter can remove all pairs containing only uppercase
letters (mostly acronyms). Another filter can en-
force a certain fraction of POS combinations to be
present in the result set.

As we want to obtain judgment scores for se-
mantic relatedness of concepts instead of words,
we have to include all word sense combinations of
a pair in the list. An external dictionary of word
senses is necessary for this step. It is also used to
add a gloss for each word sense that enables test
subjects to distinguish between senses.

If differences in meaning between senses are
very fine-grained, distinguishing between them is
hard even for humans (Mihalcea and Moldovan,
2001).% Pairs containing such words are not suit-
able for evaluation. To limit their impact on the
experiment, a threshold for the maximal number
of senses can be defined. Words with a number of
senses above the threshold are removed from the
list.

The result of the extraction process is a list of
sense disambiguated, POS-tagged pairs of con-
cepts.

SE.g. the German verb “halten” that can be translated as
hold, maintain, present, sustain, etc. has 26 senses in Ger-
maNet.
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4.2 Experimental setup
4.2.1 Extraction of concept pairs

We extracted word pairs from three different
domain-specific corpora (see Table 2). This is
motivated by the aim to enable research in infor-
mation retrieval incorporating SR measures. In
particular, the “Semantic Information Retrieval”
project (SIR Project, 2006) systematically investi-
gates the use of lexical-semantic relations between
words or concepts for improving the performance
of information retrieval systems.

The BERUFEnet (BN) corpus7 consists of de-
scriptions of 5,800 professions in Germany and
therefore contains many terms specific to profes-
sional training. Evaluating semantic relatedness
on a test set based on this corpus may reveal the
ability of a measure to adapt to a very special do-
main. The GIRT (German Indexing and Retrieval
Testdatabase) corpus (Kluck, 2004) is a collec-
tion of abstracts of social science papers. It is a
standard corpus for evaluating German informa-
tion retrieval systems. The third corpus is com-
piled from 106 arbitrarily selected scientific Pow-
erPoint presentations (SPP). They cover a wide
range of topics from bio genetics to computer sci-
ence and contain many technical terms. Due to
the special structure of presentations, this corpus
will be particularly demanding with respect to the
required preprocessing components of an informa-
tion retrieval system.

The three preprocessing steps (tokenization,
POS-tagging, lemmatization) are performed us-
ing TreeTagger (Schmid, 1995). The resulting
list of POS-tagged lemmas is weighted using the
SMART ‘Itc’® tf.idf-weighting scheme (Salton,
1989).

We implemented a set of filters for word pairs.
One group of filters removed unwanted word
pairs. Word pairs are filtered if they contain at
least one word that a) has less than three letters b)
contains only uppercase letters (mostly acronyms)
or c) can be found in a stoplist. Another fil-
ter enforced a specified fraction of combinations
of nouns (N), verbs (V) and adjectives (A) to be
present in the result set. We used the following pa-
rameters: NN = 0.5, NV = 0.15, NA = (.15,
VV =0.1,VA =0.05, AA = 0.05. That means
50% of the resulting word pairs for each corpus

"Thttp://berufenet.arbeitsagentur.de

81=logarithmic term frequency, t=logarithmic inverse doc-
ument frequency, c=cosine normalization.



[ CorpUS #DoCs #TOKENS DOMAIN ]
BN 9022 7728501 descriptions
of professions
GIRT 151319 19645417 2bstracts of social
science papers
SPP 106 144,074  Scientific .ppt
presentations

Table 2: Corpus statistics.

were noun-noun pairs, 15% noun-verb pairs and
SO on.

Word pairs containing polysemous words
are expanded to concept pairs using Ger-
maNet (Kunze, 2004), the German equivalent to
WordNet, as a sense inventory for each word. It
is the most complete resource of this type for Ger-
man.

GermaNet contains only a few conceptual
glosses. As they are required to enable test sub-
jects to distinguish between senses, we use artifi-
cial glosses composed from synonyms and hyper-
nyms as a surrogate, e.g. for brother: ‘“brother,
male sibling” vs.  “brother, comrade, friend”
(Gurevych, 2005). We removed words which had
more than three senses.

Marginal manual post-processing was neces-
sary, since the lemmatization process introduced
some errors. Foreign words were translated into
German, unless they are common technical termi-
nology. We initially selected 100 word pairs from
each corpus. 11 word pairs were removed be-
cause they comprised non-words. Expanding the
word list to a concept list increased the size of the
list. Thus, the final dataset contained 328 automat-
ically created concept pairs.

4.2.2 Graphical User Interface

We developed a web-based interface to obtain
human judgments of semantic relatedness for each
automatically generated concept pair. Test sub-
jects were invited via email to participate in the
experiment. Thus, they were not supervised dur-
ing the experiment.

Gurevych (2006) observed that some annotators
were not familiar with the exact definition of se-
mantic relatedness. Their results differed particu-
larly in cases of antonymy or distributionally re-
lated pairs. We created a manual with a detailed
introduction to SR stressing the crucial points.
The manual was presented to the subjects before
the experiment and could be re-accessed at any
time.
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3 /328

(nicht verwandt) 0 1 2 3 4 (stark verwandt)
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verstopfen
dichten
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verandern
andern

verwandte Wirter verwandte Wirter

Wikipedia | (Schlagen Sie hier nach, wenn Sie ein Work nicht kennen.}

(Den Einfuhrungstext nochmals lesen.)

Figure 2: Screenshot of the GUI. Polysemous
words are defined by means of synonyms and re-
lated words.

During the experiment, one concept pair at a
time was presented to the test subjects in random
ordering. Subjects had to assign a discrete related-
ness value {0,1,2,3,4} to each pair. Figure 2 shows
the system’s GUI.

In case of a polysemous word, synonyms or
related words were presented to enable test sub-
jects to understand the sense of a presented con-
cept. Because this additional information can lead
to undesirable priming effects, test subjects were
instructed to deliberately decide only about the re-
latedness of a concept pair and use the gloss solely
to understand the sense of the presented concept.

Since our corpus-based approach includes
domain-specific vocabulary, we could not assume
that the subjects were familiar with all words.
Thus, they were instructed to look up unknown
words in the German Wikipedia.’

Several test subjects were asked to repeat the
experiment with a minimum break of one day. Re-
sults from the repetition can be used to measure
intra-subject correlation. They can also be used
to obtain some hints on varying difficulty of judg-
ment for special concept pairs or parts-of-speech.

5 Results and discussion

21 test subjects (13 males, 8 females) participated
in the experiment, two of them repeated it. The
average age of the subjects was 26 years. Most
subjects had an IT background. The experiment
took 39 minutes on average, leaving about 7 sec-
onds for rating each concept pair.

The summarized inter-subject correlation be-
tween 21 subjects was r=.478 (cf. Table 3), which

‘http://www.wikipedia.de



CONCEPTS WORDS
INTER INTRA INTER INTRA
all 478 .647 490 .675
BN 469 .695 501 718
GIRT 451 .598 463 .625
SPP 535 .649 523 .679
AA 556 .890 .597 .887
NA 547 173 511 758
NV 510 .658 .540 .647
NN 463 .620 476 .661
VA 317 318 391 212
\'AY 278 494 .301 476

Table 3: Summarized correlation coefficients for
all pairs, grouped by corpus and grouped by POS
combinations.

is statistically significant at p < .05. This correla-
tion coefficient is an upper bound of performance
for automatic SR measures applied on the same
dataset.

Resnik (1995) reported a correlation of
r=.9026.'" The results are not directly compara-
ble, because he only used noun-noun pairs, words
instead of concepts, a much smaller dataset, and
measured semantic similarity instead of semantic
relatedness.  Finkelstein et al. (2002) did not
report inter-subject correlation for their larger
dataset. Gurevych (2006) reported a correlation
of r=.69. Test subjects were trained students of
computational linguistics, and word pairs were
selected analytically.

Evaluating the influence of using concept pairs
instead of word pairs is complicated because word
level judgments are not directly available. There-
fore, we computed a lower and an upper bound
for correlation coefficients. For the lower bound,
we always selected the concept pair with highest
standard deviation from each set of corresponding
concept pairs. The upper bound is computed by
selecting the concept pair with the lowest standard
deviation. The differences between correlation co-
efficient for concepts and words are not signifi-
cant. Table 3 shows only the lower bounds.

Correlation coefficients for experiments mea-
suring semantic relatedness are expected to be
lower than results for semantic similarity, since the
former also includes additional relations (like co-
occurrence of words) and is thus a more compli-
cated task. Judgments for such relations strongly
depend on experience and cultural background of
the test subjects. While most people may agree

"Note that Resnik used the averaged correlation coeffi-

cient. We computed the summarized correlation coefficient
using a Fisher Z-value transformation.
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Figure 3: Distribution of averaged human judg-
ments.
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Figure 4: Distribution of averaged human judg-
ments with standard deviation < 0.8.

that (car — vehicle) are highly related, a strong
connection between (parts — speech) may only be
established by a certain group. Due to the corpus-
based approach, many domain-specific concept
pairs are introduced into the test set. Therefore,
inter-subject correlation is lower than the results
obtained by Gurevych (2006).

In our experiment, intra-subject correlation was
r=.670 for the first and r=.623 for the second in-
dividual who repeated the experiment, yielding
a summarized intra-subject correlation of r=.647.
Rubenstein and Goodenough (1965) reported an
intra-subject correlation of r=.85 for 15 subjects
judging the similarity of a subset (36) of the orig-
inal 65 word pairs. The values may again not be
compared directly. Furthermore, we cannot gen-
eralize from these results, because the number of
participants which repeated our experiment was
too low.

The distribution of averaged human judgments
on the whole test set (see Figure 3) is almost bal-
anced with a slight underrepresentation of highly
related concepts. To create more highly re-
lated concept pairs, more sophisticated weighting
schemes or selection on the basis of lexical chain-



Standard deviation

2
Averaged judgment

Figure 5: Averaged judgments and standard devia-
tion for all concept pairs. Low deviations are only
observed for low or high judgments.

ing could be used. However, even with the present
setup, automatic extraction of concept pairs per-
forms remarkably well and can be used to quickly
create balanced test datasets.

Budanitsky and Hirst (2006) pointed out that
distribution plots of judgments for the word pairs
used by Rubenstein and Goodenough display an
empty horizontal band that could be used to sepa-
rate related and unrelated pairs. This empty band
is not observed here. However, Figure 4 shows the
distribution of averaged judgments with the high-
est agreement between annotators (standard devi-
ation < 0.8). The plot clearly shows an empty hor-
izontal band with no judgments. The connection
between averaged judgments and standard devia-
tion is plotted in Figure 5.

When analyzing the concept pairs with lowest
deviation there is a clear tendency for particularly
highly related pairs, e.g. hypernymy: Universitdt
— Bildungseinrichtung (university — educational
institution); functional relation: Tdtigkeit — aus-
fiihren (task — perform); or pairs that are obviously
not connected, e.g. logisch — Juni (logical — June).
Table 4 lists some example concept pairs along
with averaged judgments and standard deviation.

Concept pairs with high deviations between
judgments often contain polysemous words. For
example, Quelle (source) was disambiguated to
Wasserquelle (spring) and paired with Text
(text). The data shows a clear distinction be-
tween one group that rated the pair low (0) and
another group that rated the pair high (3 or 4). The
latter group obviously missed the point that tex-
tual source was not an option here. High devia-
tions were also common among special technical
terms like (M ips — C'ore), proper names (Georg —
August — two common first names in German) or

22

functionally related pairs (agieren — mobil). Hu-
man experience and cultural background clearly
influence the judgment of such pairs.

The effect observed here and the effect noted
by Budanitsky and Hirst is probably caused by the
same underlying principle. Human agreement on
semantic relatedness is only reliable if two words
or concepts are highly related or almost unrelated.
Intuitively, this means that classifying word pairs
as related or unrelated is much easier than numeri-
cally rating semantic relatedness. For an informa-
tion retrieval task, such a classification might be
sufficient.

Differences in correlation coefficients for the
three corpora are not significant indicating that the
phenomenon is not domain-specific. Differences
in correlation coefficients for different parts-of-
speech are significant (see Table 3). Verb-verb and
verb-adjective pairs have the lowest correlation.
A high fraction of these pairs is in the problem-
atic medium relatedness area. Adjective-adjective
pairs have the highest correlation. Most of these
pairs are either highly related or not related at all.

6 Conclusion

We proposed a system for automatically creating
datasets for evaluating semantic relatedness mea-
sures. We have shown that our corpus-based ap-
proach enables fast development of large domain-
specific datasets that cover all types of lexical and
semantic relations. We conducted an experiment
to obtain human judgments of semantic related-
ness on concept pairs. Results show that averaged
human judgments cover all degrees of relatedness
with a slight underrepresentation of highly related
concept pairs. More highly related concept pairs
could be generated by using more sophisticated
weighting schemes or selecting concept pairs on
the basis of lexical chaining.

Inter-subject correlation in this experiment is
lower than the results from previous studies due
to several reasons. We measured semantic relat-
edness instead of semantic similarity. The for-
mer is a more complicated task for annotators be-
cause its definition includes all kinds of lexical-
semantic relations not just synonymy. In addition,
concept pairs were automatically selected elimi-
nating the bias towards strong classical relations
with high agreement that is introduced into the
dataset by a manual selection process. Further-
more, our dataset contains many domain-specific



PAIR

GERMAN ENGLISH CORPUS AVG ST-DEV
Universitit — Bildungseinrichtung  university — educational institution GIRT 3.90 0.30
Tatigkeit — ausfithren task — to perform BN 3.67 0.58
strafen — Paragraph to punish — paragraph GIRT 3.00 1.18
Quelle — Text spring — text GIRT 243 1.57
Mips — Core mips — core SPP 2.10 1.55
elektronisch — neu electronic — new GIRT 1.71 1.15
verarbeiten — dichten to manipulate — to caulk BN 1.29 1.42
Leopold — Institut Leopold — institute SPP 0.81 1.25
Outfit — Strom outfit — electricity GIRT 0.24 0.44
logisch — Juni logical — June SPP 0.14 0.48

Table 4:

Example concept pairs with averaged judgments and standard deviation. Only one sense is

listed for polysemous words. Conceptual glosses are omitted due to space limitations.

concept pairs which have been rated very differ-
ently by test subjects depending on their expe-
rience. Future experiments should ensure that
domain-specific pairs are judged by domain ex-
perts to reduce disagreement between annotators
caused by varying degrees of familiarity with the
domain.

An analysis of the data shows that test sub-
jects more often agreed on highly related or unre-
lated concept pairs, while they often disagreed on
pairs with a medium relatedness value. This result
raises the question whether human judgments of
semantic relatedness with medium scores are re-
liable and should be used for evaluating seman-
tic relatedness measures. We plan to investigate
the impact of this outcome on the evaluation of
semantic relatedness measures. Additionally, for
some applications like information retrieval it may
be sufficient to detect highly related pairs rather
than accurately rating word pairs with medium
values.

There is also a significant difference between
the correlation coefficient for different POS com-
binations. Further investigations are needed to elu-
cidate whether these differences are caused by the
new procedure for corpus-based selection of word
pairs proposed in this paper or are due to inherent
properties of semantic relations existing between
word classes.
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Abstract 1  Asfor that $90 million shoe contract with Nike,
it may be a good deal for James.

. . 2 Toefting transferred to Bolton in February 2002
We present results on the relation discov- from German club Hamburg.

ery task, which addresses some of the 3 Toyoda founded the automak’erin 1937....
shortcomings of supervised refation ex- 4 n 8 Satement e says e seppig ssie
traction by applying minimally supervised stay on the board of directors.
methods. We describe a detailed experi-
mental design that compares various con-
figurations of conceptual representations
and similarity measures across six differ- Sent _ Entity Entity, Relation
ent subsets of the ACE relation extraction Lebron James  Nike Employ
data. Previous work on relation discovery 2:!9 Toefting Bolton Sponts-Af
ig Toefting Hamburg Sports-Aff
used a semantic space based on a term-by- Kiichiro Toyoda Toyota Corp  Founder
document matrix. We find that represen- Martha Stewart _ board Business
tations based on term co-occurrence per-
form significantly better. We also observe
further improvements when reducing the
dimensionality of the term co-occurrence
matrix using probabilistic topic models,
though these are not significant.

Figure 1: Example sentences from ACE 2005.

A WNDN B

Figure 2: Example entity pairs and relation types.

business newswire, which could be inserted into a
corporate intelligence database. In the biomedical
domain, we may want to identify relationships be-
tween genes and proteins from biomedical publi-
cations, e.g. Hirschman et al. (2004), to help scien-
This paper describes work that aims to improveists keep up-to-date on the literature. Or, we may
upon previous approaches to identifying relation-want to identify disease and treatment relations in
ships between named objects in text (e.g., peopl@ublications and textbooks, which can be used to
organisations, locations). Figure 1 contains sevhelp formalise medical knowledge and assist gen-
eral example sentences from the ACE 2005 coreral practitioners in diagnosis, treatment and prog-
pus that contain relations and Figure 2 summarise®0sis (Rosario and Hearst, 2004).
the relations occurring in these sentences. So, for Another application scenario involves building
example, sentence 1 containseanploymentela-  networks of relationships from text collections that
tion between Lebron James and Nike, sentence iddicate the important entities in a domain and
contains asports-affiliationrelation between Stig can be used to visualise interactions. The net-
Toefting and Bolton and sentence 4 contains avorks could provide an alternative to searching
businessrelation between Martha Stewart (she)when interacting with a document collection. This
and the board of directors (of Martha Stewart Liv-could prove beneficial, for example, in investiga-
ing Omnimedia). tive journalism. It might also be used for social
Possible applications include identifying com- science research using techniques from social net-
panies taking part in mergers/acquisitions fromwork analysis (Marsden and Lin, 1982). In previ-

1 Introduction
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ous work, relations have been used for automatiand foremost, they are generally based on pre-
text summarisation as a conceptual representatictefined templates of what types of relations ex-
of sentence content in a sentence extraction framest in the data and thus only capture information
work (Filatova and Hatzivassiloglou, 2004). whose importance was anticipated by the template
In the next section, we motivate and introducedesigners. This poses reliability problems when
the relation discovery task, which addresses someredicting new data in the same domain as the
of the shortcomings of conventional approaches téraining data will be from a certain epoch in the
relation extraction (i.e. supervised learning or rulepast. Due to language change and topical varia-
engineering) by applying minimally supervisedtion, as time passes, it is likely that the new data
methodst A critical part of the relation discov- Wwill deviate more and more from the trained mod-
ery task is grouping entity pairs by their relationels. Additionally, there are cost problems asso-
type. This is a clustering task and requires a ro<iated with the conventional supervised approach
bust conceptual representation of relation semarwhen updating templates or transferring to a new
tics and a measure of similarity between relationsdomain, both of which require substantial effort in
In previous work (Hasegawa et al., 2004; Chen ete-engineering rules or re-annotating training data.
al., 2005), the conceptual representation has been The goal of the relation discovery task is to
limited to term-by-document (TxD) models of re- identify the existence of associations between en-
lation semantics. The current work introduces dities, to identify the kinds of relations that oc-
term co-occurrence (TXT) representation for thecur in a corpus and to annotate particular associ-
relation discovery task and shows that it performsations with relation types. These goals correspond
significantly better than the TxD representation.to the three main steps in a generalised algorithm
We also explore dimensionality reduction tech-(Hasegawa et al., 2004):
nigues, which show a further improvement.
Section 3 presents a parameterisation of similar-
ity models for relation discovery. For the purposes
of the current work, this consists of the semantic
representation for terms (i.e. how a term’s context 3. Label each cluster of entity pairs
is modelled), dimensionality reduction technique
(e.g. singular value decomposition, latent Dirich- The first step is the relation identification task.
let allocation), and the measure used to computén the current work, this is assumed to have been
similarity. done already. We use the gold standard relations
We also build on the evaluation paradigm forin the ACE datain order to isolate the performance
relation discovery with a detailed, controlled ex-of the second step. The second step is a clustering
perimental setup. Section 4 describes the expertask and as such it is necessary to compute simi-
ment design, which compares the various systert@rity between the co-occurring pairs of named en-
configurations across six different subsets of thdities (relations). In order to do this, a model of re-
relation extraction data from the automatic con-lation similarity is required, which is the focus of
tent extraction (ACE) evaluation. Finally, Sectionthe current work.

1. Identify co-occurring pairs of named entities

2. Group entity pairs using the textual context

5 presents results and statistical analysis. We also assume that it is possible to perform the
third step? The evaluation we present here looks
2 The Relation Discovery Task just at the quality of the clustering and does not

attempt to assess the labelling task.
Conventionally, relation extraction is considered

to be part of information extraction and has beer3 Modelling Relation Similarity
approached through supervised learning or rul . . o
engineering (e.g., Blaschke and Valencia (Zoozﬁ'he possible space of models for relation similar-

Bunescu and Mooney (2005)). However tradi-rty can be explored in a principled manner by pa-

. : . rameterisation. In this section, we discuss several
tional approaches have several shortcomings. Firdf '

B 2Previous approaches select labels from the collection of

1The relation discovery task is minimally supervised in context words for a relation cluster (Hasegawa et al., 2004;
the sense that it relies on having certain resources such &hang et al., 2005). Chen et al. (2005) use discriminative
named entity recognition. The focus of the current paper iscategory matching to make sure that selected labels are also
the unsupervised task of clustering relations. able to differentiate between clusters.
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parameters including the term context representaechnique from linear algebra that has been ap-
tion, whether or not we apply dimensionality re- plied to a number of tasks from NLP and cogni-
duction, and what similarity measure we use.  tive modelling. We also explore latent Dirichlet
allocation, a probabilistic technique analogous to
3.1 Term Context singular value decomposition whose contribution
Representing texts in such a way that they can bt NLP has not been as thoroughly explored.

compared is a familiar problem from the fields  gjngular value decomposition (SVD) has been
of information retrieval (IR), text mining (TM), ysed extensively for the analysis of lexical seman-
textual data analysis (TDA) and natural languaggjcs under the name of latent semantic analysis
processing (NLP) (Lebart and Rajman, 2000),| andauer et al., 1998). Here, a rectangular matrix
The traditional model for IR and TM is based js decomposed into the product of three matrices
on a term—py—document (TxD) vecto_r representa(wap = WasscnSnxcn(Ppxn)T) With . latent se-
tion. Previous approaches to relation discovenmanic’ dimensions. The resulting decomposition
(Hasegawa et al., 2004; Chen et al., 2005) havgan pe viewed as a rotation of thedimensional
been limited to TxD representations, usitijdf  4yes such that the first axis runs along the direction
weighting and the cosine similarity measure. Ings largest variation among the documents (Man-
information retrieval, the weighted term represenying and Schtze, 1999). W and P represent
tation works well as the comparison is generallyiarms and documents in the new space. Ahid
between pieces of text with large context vectorsy giagonal matrix of singular values in decreasing
In the relation discovery task, though, the termg,qer.

contexts (as we will define them in Section 4) can Taking the producthkakxk(prk)T over

be very small, often consisting of only one or two . )
) .. “the firstD columns gives the best least square ap-
words. This means that a term-based similarity. ~ .~ - ) .
roximation of the original matrixX’ by a matrix

matrix between entity pairs is very sparse, whichp

mav pose problems for performing reliable Clus_of rank D, i.e. a reduction of the original matrix to
terizgp P P g D dimensions. SVD can equally be applied to the

An alternative method Widely used in NLP word co-occurrence matrices obtained in the TxT

- . . representation presented in Section 2, in which
and cognitive science is to represent a term con-

text by its neighbouring words as opposed to th case we can think of the original matrix as being a

. . ) : E%ermx co-occurring term feature matrix.
documents in which it occurs. This term co- 9

occurrence (TxT) model is based on the intu- WWhile SVD has proved successful and has been
ition that two words are semantically similar if 2@dapted for tasks such as word sense discrimi-
they appear in a similar set of contexts (see e.glation (Sclitze, 1998), its behaviour is not easy
Pado and Lapata (2003)). The current work ex{0 interpret. Probabilistic LSA (pLSA) is a gen-
plores such a term co-occurrence (TxT) represerf/ative prqbablllstlc version of !—SA (Hofmann,
tation based on the hypothesis that it will provide2001). This models each word in a document as
a more robust representation of relation context§ Sample from a mixture model, but does not pro-
and help overcome the sparsity problems assode @ probabilistic model at the document level.
ciated with weighted term representations in the-atent Dirichlet Allocation (LDA) addresses this
relation discovery task. This is compared to aPy reépresenting documents as random mixtures
baseline term-by-document (TxD) representatiorPVer latent topics (3I_ei et _al., 2003)-_ Besides hay-
which is a re-implementation of the approach usedd @ clear probabilistic interpretation, an addi-
by Hasegawa et al. (2004) and Chen et al. (2005)';ional advantage of these models is that they have
intuitive graphical representations.
3.2 Dimensionality Reduction Figure 3 contains a graphical representation
Dimensionality reduction techniques for docu-of the LDA model as applied to TxT word
ment and corpus modelling aim to reduce descripeo-occurrence matrices in standard plate nota-
tion length and model a type of semantic similar-tion. This models the word featuref in the
ity that is more linguistic in nature (e.g., see Lan-co-occurrence context (siz&) of each wordw
dauer et al’s (1998) discussion of LSA and syn{wherew € W and|WW| = W) with a mixture of
onym tests). In the current work, we explore sin-topicsz. In its generative mode, the LDA model
gular value decomposition (Berry et al., 1994), asamples a topic from the word-specific multino-
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sure. The KL divergence of two probability dis-
tributions {p andg) over the same event space is
defined as:

KL(pllg) =>_pi log%

admC,

In information-theoretic terms, KL divergence is
the average number of bits wasted by encoding

@—-@ f events from a distributiop with a code based on
T N distribution¢q. The symmetric measures are de-
Wi fined as:
Figure 3: Graphical representation of LDA. 1 KL KL
Sym(p, ) = 5 [K'L(plla) + KL(q][p)]

mial distributiond. Then, each context feature is JS(p, q) = % {KL (p||pJ2rq) + KL (qu;rqﬂ

generated by sampling from a topic-specific multi- o _ _
nomial distributiong,.3 In a manner analogous to The first is termed symmetrised KL divergence

the SVD model, we use the distribution over top-(Sym) and the second is termed Jensen-Shannon
ics for a wordw to represent its semantics and we(JS) divergence. We explore KL divergence as
use the average topic distribution over all contextVell as the symmetric measures as it is not known
words to represent the conceptual content of an el @dvance whether a domain is symmetric or not.

tity pair context. Technically, the divergence measures are dis-
similarity measures as they calculate the differ-

3.3 Measuring Similarity ence between two distributions. However, they
Cosine (Cos) is commonly used in the literature tocan be converted to increasing measures of simi-
compute similarities betwesdftidf vectors: larity through various transformations. We treated
this as a parameter to be tuned during develop-

Cos(p,q) = _ 2Pt ment and considered two approaches. The first is

VIV ¢ from Dagan et al. (1997). For KL divergence, this

In the current work, we use cosine over termfunction is defined asim(p, q) = 10-FKL{llo),
and SVD representations of entity pair contextWhereg is a free parameter, which is tuned on the
However, it is not clear which similarity measure development set (as described in Section 4.2). The
should be used for the probabilistic topic modelsSame procedure is applied for symmetric KL di-
Dagan et al. (1997) find that the symmetric infor-vergence and JS divergence. The second approach
mation radius measure performs best on a pseudés from Lee (1999). Here similarity for KL is de-
word sense disambiguation task, while Lee (1999fined asSim(p, q) = C'— K L(p||q), whereC'is
find that the asymmetric skew divergence — a gen@ free parameter to be tuned.
eralisation of Kullback-Leibler divergence — per-
forms best for improving probability estimates for
unseen word co-occurrences. 4.1 Materials
Inthe current work, we compare KL divergence - ioing Chen et al. (2005), we derive our rela-

with two methods for deriving a symmetric mea- o, giscovery data from the automatic content ex-

3The hyperparametersand are Dirichlet priors on the  traction (ACE) 2004 and 2005 materials for eval-
multinomial distributions for word featuress(~ Dir(8))  yation of information extractiofi. This is prefer-

and topics § ~ Dir(a)). The choice of the Dirichlet is . .
explained by its conjugacy to the multinomial distribution, @0€ to using the New York Times data used by

meaning that if the parameter (eq,. ¢) for a multinomial ~Hasegawa et al. (2004) as it has gold standard an-
distribution is endowed with a Dirichlet prior then the poste- natation, which can be used for unbiased evalua-
rior will also be a Dirichlet. Intuitively, it is a distribution over .

distributions used to encode prior knowledge about the pa“on-

rameters ¢ andd) of the multinomial distributions for word The relation clustering data is based on the gold
featurgg anq tO.pICS.. Practically, it allows efficient esynjatlonstandard relations in the information extraction
of the joint distribution over word features and topieéf, z) - -

by integrating out) andé. “http://www.nist.gov/speech/tests/ace/

4 Experimental Setup
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data. We only consider data from newswire orsed script for tokenisation, and the Infomap stop
broadcast news sources. We constructed six dataord list. We also use an implementation of the
subsets from the ACE corpus based on four of th@orter algorithm (Porter, 1980) for stemmifg.
ACE entities: person®€ER), organisationsgdra),

geographical/social/political entities ¥E) and fa- 4.2 Model Selection

cilities (FAC). The six data subsets were chosenye ,sed the ACE 2004 relation data to perform
during development based on a lower limit of 50y, qe| selection. Firstly, dimensionalitpj needs
for the data subset size (i.e. the number of entity, pe optimised for SVD and LDA. SVD was
pairs in the domain), ensuring that there is a reag, n tg perform best with the number of dimen-
sonable amount of data. We also set a lower ”mitsions set tol0. For LDA, dimensionality inter-

of 3 for the number of classes (relation types) in &,qt5 with the divergence-to-similarity conversion
data subset, ensuring that the clustering task is nQ, they were tuned jointly. The optimal con-

too simple. o _ figuration varies by the divergence measure with
The entity pair instances for clustering were ' _ =4 240 — 14 for KL divergence,D = 200
chosen based on several criteria. First, we do naf,q~ — 4 for symmetrised KL, and) = 150

use ACE'sdiscourseelations, which are relations 4~ — 9 for 35 divergence. For all divergence

in which the entity referred to is not an official en- . casures. Lee’s (1999) method outperformed Da-
tity according to world knowledge. Second, we gap, ot 515 (1997) method. Also for all divergence
only use pairs with one or more non-stop words,a 45 yres. the model hyper-paramgteras found

in the intervening context, that is the context be-,[O be optimal an.0001. The o hyper-parameter
tween the two entity headsFinally, we only keep ¢ always set t60/7 following Griffiths and
relation classes with 3 or more members. Tabl%teyvers (2004).

4.1 contains the full list of relation types from the Clustering is performed with the CLUTO soft-

subsets of ACE that we used. (Refer to Table 4., 40 5 the technique used is identical across
for definition of the relation type abbreviations.) models. Agglomerative clustering is used for

q We use _tt_he Ir;f(;mTap tc:@lfor smc?ular va![ueth comparability with the original relation discovery
€composition of 1X! matrices and compute ork of Hasegawa et al. (2004). This choice was

conceptual content of an entity pair context as th?notivated because as it is not known in advance

average over the reducétdimensional represen- how many clusters there should be in a new do-
tation of the co-occurrence vector of the terms inmain

the relation context. For LDA, we use Steyvers ' . . .
One way to view the clustering problem is as

and Griffiths’ Topic Modeling ToolboX). The in- LT .
. . ., an optimisation process where an optimal cluster-
put is produced by a version of Infomap which. : o .
e . . ing is chosen with respect to a criterion function
was modified to output the TXT matrix. Again, we . . o )
. .over the entire solution. The criterion function
compute the conceptual content of an entity pair

: used here was chosen based on performance on
as the average over the topic vectors for the con

- the development data. We compared a number of
text words. As documents are explicitly mOdeIIedcriterion functions including single link, complete
in the LDA model, we input a matrix with raw fre- g sing ' P

quencies. In the TxD, unreduced TxT and SVD"n.k’ group average, Ip, &1 and,y. I is a
models we usé*idf term weighting. criterion function that maximises sum of pairwise

. similarities between relation instances assigned to
We use the same preprocessing when prepar-

ing the text for building the SVD and probabilistic each clusterf, is an internal criterion function

. . . that maximises the similarity between each rela-
topic models as we use for processing the mterven{—. . . .
. . . : - ion instance and the centroid of the cluster itis as-
ing context of entity pairs. This consisted of Mx-

Terminator (Reynar and Ratnaparkhi., 1997) f0r5|gned to,£; is an external criterion function that

) r[ginimises the similarity between the centroid vec-
sentence boundary detection, the Penn Treebaq .
- or of each cluster and the centroid vector of the
SFollowing results reported by Chen et al. (2005), who—
tried unsuccessfully to incorporate words from the surround-  ®http://iwww.cis.upenn.edu/ treebank/
ing context to represent a relation’s semantics, we use onlyokenizer.sed

intervening words. ®http:/iwww.ldc.ush.ve/vdaniel/
Shttp://infomap.stanford.edu/ porter.pm
"http://psiexp.ss.uci.edu/research/ http://glaros.dtc.umn.edu/gkhome/

programs_data/toolbox.htm cluto/cluto/overview
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[ ORG-GPE | ORG-ORG | PERFAC | PERGPE | PERORG | PERPER ]

basedin 54| subsidiary 36| located 127| located 222| staff 121 | business 81
subsidiary 27| emporgothr 14| owner 14| resident 79| executive 100| family 20
located 15| partner 8| near 4| executive 42| member 44| persocothr 16
gpeaffothr 3| member 6 staff 30 | emporgothr 27| perorgothr 9
employgen 7| employgen 9| near 7

located 4| ethnic 5

executive 3

ideology 3

member 3

[ Total 99 [ Total 64 [ Total 145 [ Total 380 [ Total 305 [ Total 147]

Table 1: Relation distributions for entity pair domains.

Type Subtype Abbr 2. Do textual dimensionality reduction tech-
AGENT-ARTIFACT  User-or-Owner  owner niques provide any further improvements?
EMPLOY/MEMBER Employ-Executive  executive
Employ-Staff staff e .
Emgmz_Undetyd employgen 3. How do probabilistic topic models perform
Member-of-Group  member with respect to SVD on the relation discovery
Other artothr task?
Partner partner '
Subsidiar subsidiar L -
GPE AFFILIATION Based_my basedin y 4. Does one similarity measure (for probability
Citizen-or-Resdent  resident distributions) outperform the others on the re-
Other gpeaffothr ; ; )
PER/ORG AFFILN  Ethnic ethnic lation discovery task?
Ideology ideology . .
Other perorgothr System configurations are compared across
PERSONAL-SOC L BusiTess fbusliness six different data subsets (entity type pairs, i.e.,
Family amily At " ; TN
Other persocothr organ!sat!on geopolltlca-l_ entity organlsat.u.)n
PHYSICAL Located located organisation person-facility person-geopolitical
Near near entity,  person-organisation person-person

and evaluated following suggestions by
DemBar (2006) for statistical comparison of
classifiers over multiple data sets.

The dependent variable is the clustering perfor-
entire collection, and<; is a combined criterion mance as measured by the F-score. F-score ac-
function that consists of the ration &f over¢;. counts for both the amount of predictions made

TheZ,, H, and’H, criterion functions outper- that are true Rrecision) and the amount of true
formed single link, complete link and group aver-classes that are predicteRegcall). We use the
age on the development data. We dsewhich  CLUTO implementation of this measure for eval-
performed as well a%(; and’* and is superior uating hierarchical clustering. Based on (Larsen
in terms of computational complexity (Zhao andand Aone, 1999), this is a balanced F-score

Table 2: Overview of ACE relations with abbrevi-
ations used here.

Karypis, 2004). (F = %) that computes the maximum per-class
i score over all possible alignments of gold stan-

> Experiment dard classes with nodes in the hierarchical tree.

5.1 Method The average F-score for the entire hierarchical tree

whi cli15 a micro-average over the class-specific scores

This section describes experimental setup, iahted dind to the relative si fthe ¢l
uses relation extraction data from ACE 2005 to anyvelg edaccording fo the relative size of the class.

swer four questions concerning the effectivenesg 2 Results

of similarity models based on term co-occurrence, :
and dimensionality reduction for the relation dis- able 3 contains F-score performance on the test
. set (ACE 2005). The columns contain results from
covery task: . . .
the different system configurations. The column
1. Do term co-occurrence models provide a betlabels in the top row indicate the different repre-
ter representation of relation semantics tharsentations of relation similarity. The column la-
standard term-by-document vector space? bels in the second row indicate the dimensional-
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SemSpace TxD TxT TxT TxT TIxT  TxT
DimRed'n None None SVD LDA LDA LDA
Similarity Cos Cos Cos KL  Sym JS

ORG-GPE 0.644 0.673 0.645 0.680 0.670 0.673
ORG-ORG 0.879 0.922 0.879 0.904 0.900 0.904
PERFAC 0.811 0.827 0.831 0.832 0.826 0.820
PERGPE 0.595 0.637 0.627 0.664 0.642 0.670
PERORG 0.520 0.551 0.532 0.569 0.552 0.569
PERPER 0.534 0.572 0.593 0.633 0.553 0.618
Micro Ave 0.627 0.661 0.652 0.683 0.658 0.681
Macro Ave 0.664 0.697 0.684 0.714 0.689 0.709
RankAve 5,917 3.083 4.250 1.500 4.000 2.250

Table 3: F-score performance on the test data (ACE 2005) using agglomerative clustering With the
criterion function.

ity reduction technique used. The column labelscompare several conditions to a control (i.e., com-
in the third row indicated the similarity measure pare the term co-occurrence systems to the term-
used, i.e. cosine (Cos) and KL (KL), symmetrisedby-document baseline) so we use a Bonferroni-
KL (Sym) and JS (JS) divergence. The rows conDunn test. At a significance level gf < 0.05,
tain results for the different data subsets. Whilethe critical difference for the Bonferroni-Dunn test
we do not use them for analysis of statistical sigfor comparing 6 systems across 6 data sets is
nificance, we include micro and macro average®.782. We conclude that the unreduced term co-
over the data subset$.We also include the aver- occurrence system and the LDA systems with KL
age ranks, which show that the LDA system usingand JS divergence all perform significantly better
KL divergence performed best. than baseline, while the SVD system and the LDA
Initial inspection of the table shows that all sys-system with symmetrised KL divergence do not.
tems that use the term co-occurrence semantic The second question asks whether SVD and
space outperform the baseline system that uses thé®A dimensionality reduction techniques provide
term-by-document semantic space. To test for staany further improvement. We observe that the sys-
tistical significance, we use non-parametric testéems using KL and JS divergence both outperform
proposed by Desar (2006) for comparing clas- the unreduced term co-occurrence system, though
sifiers across multiple data sets. The use of northe difference is not significant.
parametric tests is safer here as they do not as- The third question asks how the probabilistic
sume normality and outliers have less effect. Theopic models perform with respect to the SVD
first test we perform is a Friedman test (Friedmanmodels. Here, Holm-correct Wilcoxon signed-
1940), a multiple comparisons technique whichranks tests show that the KL divergence system
is the non-parametric equivalent of the repeatedperforms significantly better than SVD while the
measures ANOVA. The null hypothesis is that allsymmetrised KL divergence and JS divergence
models perform the same and observed differences/stems do not.
are random. With a Friedman statistigi( ) of The final question is whether one of the diver-
21.238, we reject the null hypothesis at< 0.01.  gence measures (KL, symmetrised KL or JS) out-
The first question we wanted to address isperforms the others. With a statistic gB. =
whether term co-occurrence models outperforny.336, we reject the null hypothesis that all sys-
the term-by-document representation of relatiortems are the same at< 0.01. Post-hoc analysis
semantics. To address this question, we continugith Holm-corrected Wilcoxon signed-ranks tests
with post-hoc analysis. The objective here is toshow that the KL divergence system and the JS
divergence system both perform significantly bet-
"Averages over data sets are unreliable where it is nofer than the symmetrised KL systemzat 0.05,

clear whether the domains are commensurable (Webb, 2000

We present averages in our results but avoid drawing conclu&-vhIIe there is no significant difference between the

sions based on them. KL and JS systems.
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6 Discussion Domain  Score TTR Entrpy

ORGGPE 0.680 0.893 1554
ORG-ORG 0.904 0.720 1.642
PERFAC 0.832 0.933 0.636
PERGPE 0.664 0.933 1.671
PERORG 0569 0.973 2.001
PERPER 0.633 0.867 2.179

An interesting aspect of using the ACE corpus is
the wealth of linguistic knowledge encoded. With
respect to named entities, this includes class infor-
mation describing the kind of reference the entity
makes to something in the world (i.epecific ref-
erential generic referential under-specified ref-
erentia) and it includes mention type informa- Table 4: System score, type-to-token ratio (TTR)
tion (i.e., names quantified nominal construc- and relation type entropy (Entrpy) for entity pair
tions, pronouny. It also includes information de- domains.

scribing the lexical condition of a relation (i.e.,

possessivereposition pre-modifier formulaig,

verba). Based on a mapping between gold stanio the system performance. Table 6 contains, for
dard and predicted clusters, we assigned each cag&ch domain, the F-score of the LDA+KL system,
a value of 1 or 0 to indicate whether it is a correctthe type-to-token ratio, and the entropy of the re-
or incorrect classification. We then carried out deJation type distribution for each domain. Type-to-
tailed statistical analyst& to test for effects of the token ratio (TTR) is the number of words divided
entity and relation information described above oy the number of word instances and indicates
each system in each domain. how much repetition there is in word use. Since

Overall, the effects were fairly small and do not T TR can vary depending on the size of the text,
generalise across domains or systems very wellvé compute it on a random sample of 75 tokens
However, there were some observable tendencieffom each domain. Entropy can be interpreted as
With respect to entity class, relations witpecific & measure of the uniformity of a distribution. Low
referentialentities tend to correlate positively with €ntropy indicates a more spiked distribution while
correct classifications whilender-specified refer- high entropy indicates a more uniform distribu-
ential entities tend to correlate negatively with cor-tion. Though there is not enough data to make a
rect classifications. With respect to entity men-r€liable conclusion, it seems that the system does
tion type, relations entities that consistrmimes PoOrly on domains that have both a high type-to-
tend to correlate positively with correct classifica-0ken ratio and a high entropy (uniform relation
tions while pronounstend to correlate negatively type distribution), while it performs very well on
with correct classifications. Though, this is only domains that have low TTR or low entropy.
reliably observed in theeErR-GPE domain. Fi-
nally, with respect to lexical condition, we observe
that possessiveonditioned relations tend to cor- This paper presented work on the relation dis-
relate negatively, especially in tleEER-GPE and  covery task. We tested several systems for the
PER-ORG domains with theeER-PERdOmain also  clustering subtask that use different models of the
showing some effecPre-modifierconditioned re-  conceptual/semantic similarity of relations. These
lations also tend to correlate negatively in HER-  models included a baseline system based on a
GPedomain. The effect witlverballyconditioned  term-by-document representation of term context,
relations is mixed. This is probably due to thewhich is equivalent to the representation used in
fact that verbal relations tend to have more wordsgrevious work by Hasegawa et al. (Hasegawa et
occurring between the entity pair, which providesal., 2004) and Chen et al. (Chen et al., 2005). We
more context but can also be misleading when th@ypothesised that this representation suffers from
key terms describing the relation do not occur beq sparsity problem and showed that models that
tween the entity pair (e.g., the first sentence in Figuse a term co-occurrence representation perform
ure 1). significantly better.

It is also informative to look at overall proper-  Furthermore, we investigated the use of singular
ties of the entity pair domains and compare thisjalue decomposition and latent Dirichlet alloca-
. . _ - .. tion for dimensionality reduction. It has been sug-

For this analysis, we used the Phi coefficient, which is . . .
a measure of relatedness for binomial variables that is intergeSted that representations using these techniques
preted like correlation. are able to model a similarity that is less reliant on

7 Conclusions and Future Work
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specific word forms and therefore more semantic 2003. Latent dirichlet allocationJournal of Ma-
in nature. Our experiments showed an improve- chine Learning ResearcB.

ment over a term co-occurrence baseline when USs -van C. Bunescu and Raymond J. Mooney. 2005

ing LDA with KL and JS divergence, though it
was not significant. We also found that LDA with
KL divergence performs significantly better than

Subsequence kernels for relation extractionPio-
ceedings of the 19th Conference on Neural Informa-
tion Processing Systemgancouver, BC, Canada.

SVD. . . ) Jinxiu Chen, Donghong Ji, Chew Lim Tan, and
Comparing the different divergence measures zhengyu Niu. 2005. Automatic relation extraction

for LDA, we found that KL and JS perform sig-  with model order selection and discriminative label

nificantly better than symmetrised KL divergence. identification. InProceedings of the 2nd Interna-

Interestingly, the performance of the asymmetric tional Joint Conference on Natural Language Pro-
. : . cessing

KL divergence and the symmetric JS divergence

is very close, which makes it difficult to con- Ido Dagan, Lillian Lee, and Fernando Pereira. 1997.

clude whether the relation discovery domain is a Similarity-based methods for word sense disam-

symmetric domain or an asymmetric domain like Piguation. InProceedings of the 35th Annual Meet-

Lee's (1999) task of improving probability esti- ing of the_ Association for Computational Linguis-

P gp y tics, Madrid, Spain.

mates for unseen word co-occurrences.

A shortcoming of all the models we will de- Janez Dersar. 2006. Statistical comparisons of clas-
scribe here is that they are derived from the basic ﬁ'f'ers_ e multlplrg i'a;%sgtgouma' of Machine
bag-of-words models and as such do not account earning Researcty: =54, Jan.
for word order or other notions of syntax. Relatedg|ena Filatova and Vasileios Hatzivassiloglou. 2004.
work on relation discovery by Zhang et al. (2005) Event-based extractive summarization. Aroceed-
addresses this shortcoming by using tree kernels to I(ggfv?/f ﬂlle hAC'é'ZOOT‘ TextSSummanzatmn Branches
compute similarity between entity pairs. In future utWorkshopbarcelona, Spain.
work we will extend our experiment to explore the milton Friedman. 1940. A comparison of alternative
use of syntactic and semantic features following tests of significance for the problem of m rankings.
the frame work of Pado and Lapata (2003). We The Annals of Mathematical Statistidsl:86-92.
are also planning to look at non-parametric Ver-ry,, ¢ | ~Gyiffiths and Mark Steyvers. 2004. Find-
sions of LDA that address the model order selec- ing scientific topics. Proceedings of the National
tion problem and perform an extrinsic evaluation Academy of Sciences01:5228-5235.

of the relation discovery task. ) . ) )

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grish-
man. 2004. Discovering relations among named
entities from large corpora. IRroceedings of the
42nd Annual Meeting of Association of Computa-
tional Linguistics
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Abstract

We design and test a sentence com-
parison method using the framework
of Robust Minimal Recursion Seman-
tics which allows us to utilise the deep
parse information produced by Jacy, a
Japanese HPSG based parser and the
lexical information available in our on-
tology. Our method was used for both
paraphrase detection and also for an-
swer sentence selection for question an-
swering. In both tasks, results showed
an improvement over Bag-of-Words, as
well as providing extra information use-
ful to the applications.

1 Introduction

Comparison between sentences is required for
many NLP applications, including question
answering, paraphrasing, text summarization
and entailment tasks. In this paper we show
an RMRS (Robust Minimal Recursion Seman-
tics, see Section 1.1) comparison algorithm
that can be used to compare sentences in
any language that has RMRS generating tools
available. Lexical resources of any language
can be plugged in to give a more accurate and
informative comparison.

The simplest and most commonly used
methods of judging sentence similarity use
word overlap — either looking for matching
word sequences, or comparing a Bag-of-Words
representation of each sentence. Bag-of-Words
discards word order, and any structure desig-
nated by such, so that the cat snored and the
dog slept is equivalent to the dog snored and
the cat slept. Sequence matching on the other
hand requires exact word order matching and
hence the game began quietly and the game qui-
etly began are not considered a match. Neither
method allows for synonym matching.
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Hirao et al. (2004) showed that they could
get a much more robust comparison using
dependency information rather than Bag-of-
Words, since they could abstract away from
word order but still compare the important
elements of a sentence. Using deep parsing
information, such as dependencies, but also
deep lexical resources where available, enables
a much more informative and robust compar-
ison, which goes beyond lexical similarity. We
use the RMRS framework as our comparison
format because it has the descriptive power to
encode the full semantics, including argument
structure. It also enables easy combination of
deep and shallow information and, due to its
flat structure, is easy to manage computation-
ally.

1.1 Robust Minimal Recursion
Semantics

Robust  Minimal Recursion Semantics
(RMRS) is a form of flat semantics which is
designed to allow deep and shallow processing
to use a compatible semantic representation,
while being rich enough to support gener-
alized quantifiers (Frank, 2004). The main
component of an RMRS representation is
a bag of elementary predicates and their
arguments.

An elementary predicate always has a
unique label, a relation type, a relation name
and an ARGO feature. The example in Fig-
ure 1 has a label of A5 which uniquely identi-
fies this predicate. Relation types can either
be REALPRED for a predicate that relates di-
rectly to a content word from the input text, or
GPRED for grammatical predicates which may
not have a direct referent in the text. For ex-
amples in this paper, a REALPRED is distin-
guished by an underscore (_) before the rela-
tion name.

The GPRED relation names come from a

Proceedings of the Workshop on Linguistic Distangages 35-42,
Sydney, July 200602006 Association for Computational Linguistics



_unten_s
LBL hd
ARGO eb

Figure 1: Elementary predicate for 1#H5 unten
“drive”

closed-set which specify common grammatical
relations, but the REALPRED names are formed
from the word in the text they relate to and
this is one way in which RMRS allows under-
specification. A full relation name is of the
form lemma pos_sense, where the pos (part
of speech) is drawn from a small set of general
types including noun, verb and sahen (verbal
noun). The sense is a number that identifies
the sense of the word within a particular gram-
mar being used. The POS and sense informa-
tion are only used when available and hence
the _unten_s_1 is more specific but compati-
ble with _unten_s or even _unten.

The ARGO feature (e6 in Figure 1) is the
referential index of the predicate. Predicates
with the same ARGO are said to be referen-
tially co-indexed and therefore have the same
referent in the text.

A shallow parse might provide only the fea-
tures shown in Figure 1, but a deep parse can
also give information about other arguments
as well as scoping constraints. The features
ARG1..ARG4 specify the indices of the semantic
arguments of the relevant predicate, similar to
PropBank’s argument annotation (Kingsbury
et al., 2002). While the RMRS specification
does not define semantic roles for the ARGn
features, in practice ARG1 is generally used for
the AGENT and ARG2 for the PATIENT. Fea-
tures ARG3 and ARG4 have less consistency in
their roles.

We will use (1) and (2) as examples of sim-
ilar sentences. They are definition sentences
for one sense of N7 A /N— doraiba- “driver”,
taken from two different lexicons.

(1) HE#E %= iz 925 A
jidosha wo  unten suru hito
car Acc drive do person
“a person who drives a car”

(2) HEEE L& o E; FH
jidosha mnado no unten  sha
car etc. ADN drive -er

“a driver of cars etc.”

Examples of deep and shallow RMRS results
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for (1) are given in Figure 2. Deep results for
(2) are given in Figure 3.

2 Algorithm

The matching algorithm is loosely based on
RMRS comparison code included in the LKB
(Copestake, 2002: (http://www.delph-in.
net/1kb/)), which was used in Ritchie (2004),
however that code used no outside lexical re-
sources and we have substantially changed the
matching algorithm.

The comparison algorithm is language inde-
pendent and can be used for any RMRS struc-
tures. It first compares all elementary predi-
cates from the RMRSs to construct a list of
match records and then examines, and poten-
tially alters, the list of match records accord-
ing to constraints encoded in the ARGn vari-
ables. Using the list of scored matches, the
lowest scoring possible match set is found and,
after further processing on that set, a similar-
ity score is returned. The threshold for de-
ciding whether a pair of sentences should be
considered similar or not can be determined
separately for different applications.

2.1 Matching Predicates

The elementary predicates (EPs) of our RMRS
structures are divided into two groups - those
that have a referent in the text, hereafter
known as content EPs, and those that don’t.
There are three kinds of content EP: REAL-
PREDs, which correspond to content bearing
words that the grammar knows; GPREDs with
a CARG (Constant ARGument) feature, which
are used to represent proper names and num-
bers; and GPREDs with a predicate name start-
ing with generic such as generic_verb which
are used for unknown words that have only
been identified by their part of speech. All
other EPs have no referent and are used to
provide information about the content EPs or
about the structure of the sentence as a whole.
These non-content EPs can provide some use-
ful information, but generally only in relation
to other content EPs.

Each content EP of the first RMRS is com-
pared to all content EPs in the second RMRS,
as shown in Figure 4.

Matches are categorised as EXACT, SYN-
ONYM, HYPERNYM, HYPONYM or NO MATCH
and a numerical score is assigned. The nu-



[ Text H#HEZEET 25 A 8
TOP hl
( - 1 x 1 udef _rel _unten_s )
pr°p051tlh°1njn’re un nownlhe _jidoushan LBL h8 LBL hit
iiLGo e iiﬁ;o e’é [ LBL hé6 } ARGO  z7 ARGO 13
MARG he ARG 25 ARGO z7 RSTR h9 ARG1 ul2
BODY h10 ARG2 z7
RELS udef _rel .. 1 topic_rel
hiton LBL hi15 f:?l’”l“h";‘;(‘;gf LBL h10002
{ LBL h1j ] ARGO z5 AR&O 13 ARGO el9
ARGO z5 RSTR h16 MARG hi8 ARG1 eld
L BODY h17 ) ARG?2 z5 )
HCONS {h3 qeq h4,h9 qeq h6,h16 qeq h14,h18 qeq h11}
|l we  {h11 ing h10002,h1} ing h10001} 1

TEXT H#HE T2 A
TOP  h9
_jidoushan wo_rel _unten_s suru_rel ‘hitomn
RELS LBL hi1 LBL h3 LBL h& LBL h7 LBL h9
ARGO z2 ARGO u4 ARGO eb ARGO e8 ARGO z10
[ HCOONS {} J
NG {}

Figure 2: Deep (top) and shallow (bottom) RMRS results for H#fjHi % i#li; 24 A

Figure 3: RMRS representation for

foreach epl in contentEPs1
foreach ep2 in contentEPs2
(score, match) = match_EPs(epl, ep2)
if match !'= NO_MATCH
add_to_matches(epl, ep2, score, match)
endif
done
done

Figure 4: Predicate match pseudo-code

merical score represents the distance between
the two EPs, and hence an EXACT match is
assigned a score of zero.

The level of matching possible depends on
the lexical resources available. With no extra
resources, or only a dictionary to pick up or-
thographic variants, the only match types pos-
sible are EXACT and NO MATCH. By adding
a thesaurus, an ontology or a gazetteer, it is
then possible to return SYNONYM, HYPERNYM

and HYPONYM match relations. In our ex-

M TEXT HEHE e & o JHilin H 7
TOP hl
( udef _rel W
[ propositionm rel unknown_rel . nadon
_jidoushan LBL h8
LBL hi LBL hj LBL h10001
LBL h6 ARGO z7
ARGO e2 ARGO e2 ARGO ull
ARGO z7 RSTR h9
L MARG h3 ARG z5 ARG1 z7
BODY h10
RELS -
udef.rel -unten.s noun-relation propositionm_rel sha n
LBL hiz LBL his LBL h17 LBL h18 LBL h10002
ARGO z5 ARGO 5
ARGO z5 ARGO z5 ARGO u20
RSTR h13 ARG1 ul6
ARG1 h18 MARG h19 ARG1 z5
L | Booy A1y ARG2 7 )
HCONS {h3 qeq h4,h9 qeq h6,h13 qeq h17,h19 qeq h15}
L ING {h6 ing h10001,h17 ing h10002} i
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HENH 22 & o 1Hii; &

periments we used the ontology described in
Section 3.2.2, which provides all three extra,
match types. Adding a thesaurus only would
enable SYNONYM matching, while a gazetteer
could be added to give, for example, Tokyo is
a HYPONYM of city.

Matches:
hito_n - sha_n : HYPERNYM (2)
jidosha_n - jidosha_n: EXACT (0)
unten_s_2 - unten_s_2: EXACT (0)

Figure 5: First pass match list for (1) and (2)

At the end of the first pass, a list of match
records shows all EP matches with their match
type and score. Each EP can have multiple
possible matches. The output of comparing
(1) and (2), with the RMRSes in Figures 2
and 3, is shown in Figure 5. This shows hito.n
(N hito “person”) tagged as a HYPERNYM of



foreach match in matches
gpredsl = get_gpreds_argO(epl{arg0})
gpreds2 = get_gpreds_arg0(ep2{arg0})
totalgpreds = len gpredsl + len gpreds2
foreach epl in gpredsil
foreach ep2 in gpreds2

if (match_gram_eps(epl, ep2)

remove (epl, gpredsl)

remove (ep2, gpreds2)

endif
done
done
gpreds_left = len gpredsl + len gpreds2
left = gpreds_left/totalgpreds

match{score}+= left*gpredWeight
done

Figure 6: Matching ARGOs

sha n (% sha “-er” is a suffix indicating a per-
son, normally the agent of a verb: it is more re-
strictive than English -er, in that it only refers
to people).

2.2 Constraints Pass

For each possible match, all the non-content
EPs that have the same ARG0 value as the
content EPs in the match are examined, since
these have the same referent. If each non-
content EP related to the content EP on one
side of the match can be matched to the non-
content KPs related to the other content EP,
no change is made. If not, however, a penalty
is added to the match score, as shown in Fig-
ure 6. In our example, unten_s_2 from the first
sentence has a proposition.m rel referen-
tially co-indexed, while the second unten_s_2
has a propositionm rel, a noun-relation
and a udef rel, and so a small penalty is
added as shown in Figure 7.

The second check in the constraint match
pass examines the arguments (ARG1, ARG2,
ARG3, ARG4) of each of the matches. It looks
for possible matches found between the EPs
listed as ARGn for each match. This check can
result in three separate results: both EPs have
an ARGn but there is no potential match found
between the respective ARGn EPs, a potential
match has been found between the ARGn EPs,
or only one of the EPs in the match has an
ARG feature.

Where both EPs have an ARGn feature, the
score (distance) of the match is decreased or
increased depending on whether a match be-
tween the ARGn variables was found. Given
that the RMRS definition does not specify a
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Matches:
hito_n - sha_n : HYPERNYM (2.1)
jidosha_n - jidosha_n: EXACT (0)
unten_s_2 - unten_s_2: EXACT (0.05)

Figure 7: Match list
Slight penalty added to unten_s 2 and hiton
for non-matching non-content EPs

‘meaning’ for the ARGn variables, comparing,
for example, ARG1 variables from two differ-
ent predicates may not necessarily be compar-
ing the same semantic roles. However, be-
cause of the consistency found in ARG1 and
ARG2 meaning this is still a useful check. Of
course, if we are comparing the same relation,
the ArRGs will all have the same meaning. The
comparison method allows for different penal-
ties for each of ARGl to ARG4, and also in-
cludes a scaling factor so that mismatches in
ARGs when comparing EXACT EP matches will
have more effect on the score than in non
EXACT matches. If one EP does not have
the ARGn feature, no change is made to the
score. This allows for the use of underspeci-
fied RMRSs, in the case where the parse fails.
At the end of this pass, the scores of the
matches in the match list may have changed
but the number of matches is still the same.

2.3 Constructing the Sets

Match sets are constructed by using a branch-
and-bound decision tree. Each match is con-
sidered in order, and the tree is branched if
the next match is possible, given the proceed-
ing decisions. Any branch which is more than
two decisions away from the best score so far
is pruned. At the end of this stage, the lowest
scoring match set is returned and then this is
further processed.

If no matches were found, processing stops
and a sentinel value is returned. Otherwise,
the non matching predicates are grouped to-
gether by their ARGO value. Scoping con-
straints are checked and if any non matching
predicate outscopes a content predicate it is
added to that grouping. Hence if it outscopes
a matching EP it becomes part of the match,
otherwise it becomes part of a non-matching
EP group.

Any group of grammatical EPs that shares
an ARG(0 but does not contain a content pred-
icate is matched against any similar groupings



Best score is 0.799 for the match set:
MATCHES:

hito_n-sha_n: HYPERNYM:2.1
jidousha_n-jidousha_n:EXACT:0
unten_s_2-unten_s_2:EXACT:0.05
proposition_m_rel-proposition_m_rel:EXACT:0
UNMATCHED1 :
UNMATCHED2:

ull: h10001:nado_n

Figure 8: Verbose comparison output

in the other RMRS. This type of match can
only be EXACT or NO MATCH and will make
only a small difference in the final score.
Content predicates that have not been
matched by this stage are not processed any
further, although this is an area for further
investigation. Potentially negation and other
modifiers could be processed at this point.

2.4 Output

The output of the comparison algorithm is a
numeric score and also a representation of the
final best match found.

The numerical score, using the default scor-
ing parameters, ranges between (0 (perfect
match) and 3. As well as the no match score
(-5), sentinel values are used to indicate miss-
ing input data so it is possible to fall back to
a shallow parse if the deep parse failed.

Details of the match set are also returned for
further processing or examination if the appli-
cation requires. This shows which predicates
were deemed to match, and with what score,
and also shows the unmatched predicates. Fig-
ure 8 shows the output of our example com-
parison.

3 Resources

While the comparison method is language in-
dependent, the resources required are lan-
guage specific. The resources fall in to two
different categories: parsing and morpholog-
ical analysis tools that produce the RMRSs,
and lexical resources such as ontologies, dictio-
naries and gazetteers for evaluating matches.

3.1 Parsing

Japanese language processing tools are freely
available. We used the Japanese grammar
Jacy (Siegel and Bender, 2002), a deep parsing
HPSG grammar that produces RMRSs for our
primary input source.
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When parsing with Jacy failed, compar-
isons could still be made with RMRS produced
from shallow tools such as ChaSen (Mat-
sumoto et al., 2000), a morphological analyser
or CaboCha (Kudo and Matsumoto, 2002), a
Japanese dependency parser. Tools have been
built to produced RMRS from the standard
output of both those tools.

The CaboCha output supplies similar de-
pendency information to that of the Basic El-
ements (BE) tool used by Hovy et al. (2005b)
for multi-document summarization. Even this
intermediate level of parsing gives better com-
parisons than either word or sequence overlap,
since it is easier to compare meaningful ele-
ments (Hovy et al., 2005a).

3.2 Lexical Resources

Whilst deep lexical resources are not available
for every language, where they are available,
they should be used to make comparisons more
informative. The comparison framework al-
lows for different lexical resources to be added
to a pipeline. The pipeline starts with a sim-
ple relation name match, but this could be fol-
lowed by a dictionary to extract orthographic
variants and then by ontologies such as Word-
Net (Fellbaum, 1998) or GoiTaikei (Ikehara
et al., 1997), gazetteers or named entity recog-
nisers to recognise names of people and places.
The sections below detail the lexical resources
we used within our experiments.

3.2.1

The Lexeed Semantic Database of Japanese
is a machine readable dictionary that covers
the most familiar words in Japanese, based
on a series of psycholinguistic tests (Kasahara
et al., 2004). Lexeed has 28,000 words divided
into 46,000 senses and defined with 75,000 def-
inition sentences. Each entry includes a list of
orthographic variants, and the pronunciation,
in addition to the definitions.

The Lexeed Semantic Database

3.2.2 Ontology

The lexicon has been sense-tagged and
parsed to give an ontology linking senses with
various relations, principally hypernym and
synonym (Nichols et al., 2005). For example,
(HYPERNYM, RN A /N— doraiba “driver”, 7
Z 7 kurabu “club”). The ontology entries for
nouns have been hand checked and corrected,
including adding hypernyms for words where



the genus term in the definition was very gen-
eral, e.g “a word used to refer insultingly to
men” where man is a more useful hypernym
than word for the defined term yarou.

4 Evaluation

We evaluated the performance of the RMRS
comparison method in two tasks. First it was
used to indicate whether two sentences were
possible paraphrases. In the second task, we
used the comparison scores to select the most
likely sentence to contain the answer to a ques-
tion.

4.1 Paraphrasing

In this task we compared definitions sen-
tences for the same head word from two differ-
ent Japanese dictionaries - the Lexeed dictio-
nary (§3.2.1) and the Iwanami Kokugo Jiten
(Iwanami: Nishio et al., 1994), the Japanese
dictionary used in the SENSEVAL-2 Japanese
lexical task (Shirai, 2002).

There are 60,321 headwords and 85,870
word senses in Iwanami. KEach sense in the
dictionary consists of a sense ID and morpho-
logical information (word segmentation, POS
tag, base form and reading, all manually post-
edited).

The definitions in Lexeed and Iwanami were
linked by headword and three Japanese native
speakers assessed each potential pair of sense
definitions for the same head word to judge
which definitions were describing the same
sense. This annotation not only described
which sense from each dictionary matched, but
also whether the definitions were equal, equiv-
alent, or subsuming.

The examples (1) and (2) are the definitions
of sense 2 of K A /3— doraiba “driver” from
Lexeed and Iwanami respectively. They were
judged to be equivalent definitions by all three
annotators.

4.1.1 Method

Test sets were built consisting of the Lexeed
and Iwanami definition pairs that had been an-
notated in the gold standard to be either non-
matching, equal or equivalent. Leaving out
those pairs annotated as having a subsump-
tion relation made it a clearer task judging
between paraphrase or not, rather than ex-
amining partial meaning overlap. Ten sets of
5,845 definition pairs were created, with each
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set being equally split between matching and
non-matching pairs. This gives data that is to
some extent semantically equivalent (the same
word sense is being defined), but with no guar-
antee of syntactic equivalence.

Comparisons were made between the first
sentence of each definition with both a Bag-
of-Words comparison method and our RMRS
based method. If RMRS output was not avail-
able from Jacy (due to a failed parse), RMRS
from CaboCha was used as a fall back shallow
parse result.

Scores were output and then the best
threshold score for each method was calculated
on one of the 10 sets. Using the calculated
threshold score, pairs were classified as either
matching or non-matching. Pairs classified as
matching were evaluated as correct if the gold
standard annotation was either equal or equiv-
alent.

4.1.2 Results

The Bag-of-Words comparison got an av-
erage accuracy over all sets of 73.9% with
100% coverage. A break down of the results
shows that this method was more accurate
(78%) in correctly classifying non-matches
than matches (70%). This is to be expected
since it won’t pick up equivalences where a
word has been changed for its synonym.

The RMRS comparison had an accuracy
was 78.4% with almost 100% coverage, an im-
provement over the Bag-of-Words. The RMRS
based method was also more accurate over
non matches (79.9%) than matches (76.6%),
although the difference is not as large. Con-
sidering only those sentences with a parse from
JACY gave an accuracy of 81.1% but with a
coverage of only 46.1%. This shows that deep
parsing improves precision, but must be used
in conjunction with a shallower fallback.

To explore what effect the ontology was hav-
ing on the results, another evaluation was per-
formed without the ontology matching. This
had an accuracy of 77.3% (78.1% using Jacy,
46.1% coverage). This shows that the infor-
mation available in the ontology definitely im-
proves scores, but that even without that sort
of deep lexical resource, the RMRS matching
can still improve on Bag-of-Words using just
surface form abstraction and argument match-
ing.



4.2 Answer Sentence Selection

To emulate a part of the question answering
pipeline, we used a freely available set of 2000
Japanese questions, annotated with, among
other things, answer and answer document 1D
(Sekine et al., 2002). The document IDs for
the answer containing documents refer to the
Mainichi Newspaper 1995 corpus which has
been used as part of the document collection
for NTCIR’s Question Answering Challenges.
The documents range in length from 2 to 83
sentences.

4.2.1 Method

For every question, we compared it to each
sentence in the answer document. The sen-
tence that has the best similarity to the ques-
tion is returned as the most likely to con-
tain the answer. For this sort of compari-
son, an entails option was added that changes
the similarity scoring method slightly so that
only non-matches in the first sentence increase
the score. The rationale being that in Ques-
tion Answering (and also in entailment), ev-
erything present in the question (or hypoth-
esis) should be matched by something in the
answer, but having extra, unmatched informa-
tion in the answer should not be penalised.

The task is evaluated by checking if the an-
swer does exist in the sentence selected. This
means that more than one sentence can be the
correct answer for any question (if the answer
is mentioned multiple times in the article).

4.2.2 Results

The Bag-of-Words comparison correctly
found a sentence containing the answer for
62.5% of the 2000 questions. The RMRS com-
parison method gave a small improvement,
with a result of 64.3%. Examining the data
showed this to be much harder than the para-
phrase task because of the language level in-
volved. In the paraphrasing task, the sen-
tences averaged around 10 predicates each,
while the questions and sentences in this task
averaged over 3 times longer, with about 34
predicates. The words used were also less
likely to be in the lexical resources both be-
cause more formal, less familiar words were
used, and also because of the preponderance
of named entities. Adding name lists of peo-
ple, places and organisations would greatly im-
prove the matching in this instance.
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5 Future Directions

5.1 Applications

Since the comparison method was written
to be language independent, the next stage
of evaluation would be to use it in a non-
Japanese task. The PASCAL Recognising
Textual Entailment (RTE) Challenge (Dagan
et al., 2005) is one recent English task where
participants used sentence comparison exten-
sively. While the task appears to call for in-
ference and reasoning, the top 5 participat-
ing groups used statistical methods and word
overlap only. Vanderwende et al. (2005) did a
manual evaluation of the test data and found
that 37% could be decided on syntactic infor-
mation alone, while adding a thesaurus could
increase that coverage to 49%. This means
that RMRS comparison has the potential to
perform well. Not only does it improve on
basic word overlap, but it allows for easy ad-
dition of a thesaurus or dictionary. Further,
because of the detailed match output avail-
able, the method could be extended in post
processing to encompass some basic inference
methods.

Aside from comparing sentences, the RMRS
comparison can be used to compare the RMRS
output of different tools for the same sentence
so that the compatibility of the outputs can
be evaluated and improved.

5.2 Extensions

One immediate future improvement planned
is to add named entity lists to the lexical re-
sources so that names of people and places
could be looked up. This would allow partial
matches between, e.g., Clinton is a HYPONYM
of person, which would be particularly useful
for Question Answering.

Another idea is to add a bilingual dictio-
nary and try cross-lingual comparisons. As
the RMRS abstracts away much of the surface
specific details, this might be useful for sen-
tence alignment.

To go beyond sentence by sentence compar-
ison, we have plans to implement a method
for multi-sentence comparisons by either com-
bining the RMRS structures before compari-
son, or post-processing the sentence compari-
son outputs. This could be particularly inter-
esting for text summarization.



6 Conclusions

Deep parsing information is useful for com-
paring sentences and RMRS gives us a use-
ful framework for utilising this information
when it is available. Our RMRS compari-
son was more accurate then basic word over-
lap similarity measurement particularly in the
paraphrase task where synonyms were of-
ten used. Even when the ontology was not
used, abstracting away from surface form, and
matching arguments did give an improvement.
Falling back to shallow parse methods in-
creases the robustness which is often an issue
for tools that use deep processing, while still
allowing the use of the most accurate informa-
tion available.

The comparison method is language agnos-
tic and can be used for any language that has
RMRS generating tools. The output is much
more informative than Bag-of-Words, mak-
ing it useful in many applications that need
to know exactly how a sentence matched or
aligned.
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Abstract

We investigate the problem of measuring
phonetic similarity, focusing on the iden-
tification of cognates, words of the same
origin in different languages. We com-
pare representatives of two principal ap-
proaches to computing phonetic similar-
ity: manually-designed metrics, and learn-
ing algorithms. In particular, we consider
a stochastic transducer, a Pair HMM, sev-
eral DBN models, and two constructed
schemes. We test those approaches on
the task of identifying cognates among
Indoeuropean languages, both in the su-
pervised and unsupervised context. Our
results suggest that the averaged context
DBN model and the Pair HMM achieve
the highest accuracy given a large training
set of positive examples.

1 Introduction

The problem of measuring phonetic similarity be-
tween words arises in various contexts, including
speech processing, spelling correction, commercial
trademarks, dialectometry, and cross-language in-
formation retrieval (Kessler, 2005). A number of
different schemes for computing word similarity
have been proposed. Most of those methods are de-
rived from the notion of edit distance. In its simplest
form, edit distance is the minimum number of edit
operations required to transform one word into the
other. The set of edit operations typically includes
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substitutions, insertions, and deletions, and may in-
corporate more complex transformations.

By assigning variable weights to various edit op-
erations depending on the characters involved in
the operations, one can design similarity schemes
that are more sensitive to a given task. Such vari-
able weight schemes can be divided into two main
groups. One approach is to manually design edit op-
eration weights on the basis of linguistic intuition
and/or physical measurements. Another approach
is to use machine learning techniques to derive the
weights automatically from training data composed
of a set of word pairs that are considered similar.
The manually-designed schemes tend to be some-
what arbitrary, but can be readily applied to diverse
tasks. The learning approaches are also easily adapt-
able to various tasks, but they crucially require train-
ing data sets of reasonable size. In general, the more
complex the underlying model, the larger the data
sets needed for parameter estimation.

In this paper, we focus on a few representatives
of both approaches, and compare their performance
on the specific task of cognate identification. Cog-
nate identification is a problem of finding, in distinct
languages, words that can be traced back to a com-
mon word in a proto-language. Beyond historical
linguistics, cognate identification has applications
in other areas of computational linguistics (Mackay
and Kondrak, 2005). Because the likelihood that
two words across different languages are cognates is
highly correlated with their phonetic similarity, cog-
nate identification provides an objective test of the
quality of phonetic similarity schemes.

The remainder of this paper is organized as fol-

Proceedings of the Workshop on Linguistic Distangages 43-50,
Sydney, July 200602006 Association for Computational Linguistics



lows. Section 2 discusses the two manually designed
schemes: the ALINE algorithm and a linguistically-
motivated metric. Section 3 discusses various learn-
ing approaches. In Section 4, we describe Dynamic
Bayesian Nets. Finally, in Section 5, we discuss the
results of our experiments.

2 Two manually constructed schemes

In this section, we first describe two different con-
structed schemes and then compare their properties.

21 ALINE

The ALINE algorithm (Kondrak, 2000) assigns a
similarity score to pairs of phonetically-transcribed
words on the basis of the decomposition of phone-
mes into elementary phonetic features. The algo-
rithm was originally designed to identify and align
cognates in vocabularies of related languages. Nev-
ertheless, thanks to its grounding in universal pho-
netic principles, the algorithm can be used for esti-
mating the similarity of any pair of words.

The principal component of ALINE is a function
that calculates the similarity of two phonemes that
are expressed in terms of about a dozen multi-valued
phonetic features (Place, Manner, Voice, etc.). The
phonetic features are assigned salience weights that
express their relative importance. Feature values
are encoded as floating-point numbers in the range
[0, 1]. For example, the feature Manner can take any
of the following seven values: stop = 1.0, affricate
=0.9, fricative = 0.8, approximant = 0.6, high vowel
= 0.4, mid vowel = 0.2, and low vowel = 0.0. The
numerical values reflect the distances between vocal
organs during speech production.

The overall similarity score is the sum of individ-
ual similarity scores between pairs of phonemes in
an optimal alignment of two words, which is com-
puted by a dynamic programming algorithm (Wag-
ner and Fischer, 1974). A constant insertion/deletion
penalty is applied for each unaligned phoneme.
Another constant penalty is set to reduce relative
importance of vowel—as opposed to consonant—
phoneme matches. The similarity value is normal-
ized by the length of the longer word.

ALINE’s behavior is controlled by a number of
parameters: the maximum phonemic score, the in-
sertion/deletion penalty, the vowel penalty, and the

44

feature salience weights. The parameters have de-
fault settings for the cognate matching task, but
these settings can be optimized (tuned) on a devel-
opment set that includes both positive and negative
examples of similar words.

2.2 A linguistically-motivated metric

Phonetically natural classes such as /p b m/ are much
more common among world’s languages than unnat-
ural classes such as /o z g/. In order to show that the
bias towards phonetically natural patterns of phono-
logical classes can be modeled without stipulating
phonological features, Mielke (2005) developed a
phonetic distance metric based on acoustic and ar-
ticulatory measures. Mielke’s metric encompasses
63 phonetic segments that are found in the invento-
ries of multiple languages. Each phonetic segment
is represented by a 7-dimensional vector that con-
tains three acoustic dimensions and four articulatory
dimensions (perceptual dimensions were left out be-
cause of the difficulties involved in comparing al-
most two thousand different sound pairs). The pho-
netic distance between any two phonetic segments
were then computed as the Euclidean distance be-
tween the corresponding vectors.

For determining the acoustic vectors, the record-
ings of 63 sounds were first transformed into wave-
form matrices. Next, distances between pairs of
matrices were calculated using the Dynamic Time
Warping technique. These acoustic distances were
subsequently mapped to three acoustic dimensions
using multidimensional scaling. The three dimen-
sions can be interpreted roughly as (a) sonorous vs.
sibilant, (b) grave vs. acute, and (c) low vs. high
formant density.

The articulatory dimensions were based on ultra-
sound images of the tongue and palate, video im-
ages of the face, and oral and nasal airflow measure-
ments. The four articulatory dimensions were: oral
constriction location, oral constriction size, lip con-
striction size, and nasal/oral airflow ratio.

2.3 Comparison

When ALINE was initially designed, there did not
exist any concrete linguistically-motivated similarity
scheme to which it could be compared. Therefore, it
is interesting to perform such a comparison with the
recently proposed metric.



The principal difficulty in employing the metric
for computing word similarity is the limited size
of the phonetic segment set, which was dictated by
practical considerations. The underlying database
of phonological inventories representing 610 lan-
guages contains more than 900 distinct phonetic seg-
ments, of which almost half occur in only one lan-
guage. However, because a number of complex
measurements have to be performed for each sound,
only 63 phonetic segments were analyzed, which is
a set large enough to cover only about 20% of lan-
guages in the database. The set does not include
such common phones as dental fricatives (which oc-
cur in English and Spanish), and front rounded vow-
els (which occur in French and German). It is not
at all clear how one to derive pairwise distances in-
volving sounds that are not in the set.

In contrast, ALINE produces a similarity score for
any two phonetic segment so long as they can be ex-
pressed using the program’s set of phonetic features.
The feature set can in turn be easily extended to in-
clude additional phonetic features required for ex-
pressing unusual sounds. In practice, any IPA sym-
bol can be encoded as a vector of universal phonetic
features.

Another criticism that could be raised against
Mielke’s metric is that it has no obvious reference
point. The choice of the particular suite of acous-
tic and articulatory measurements that underlie the
metric is not explicitly justified. It is not obvious
how one would decide between different metrics for
modeling phonetic generalizations if more than one
were available.

On the other hand, ALINE was designed with a
specific reference in mind, namely cognate identi-
fication. The “goodness” of alternative similarity
schemes can be objectively measured on a test set
containing both cognates and unrelated pairs from
various languages.

A perusal of individual distances in Mielke’s met-
ric reveals that some of them seem quite unintuitive.
For example, [t] is closer to [j] than it is to [ts], [9]
is closer to [n] than to [i], [3] is closer to [e] than
to [g]. etc. This may be caused either by the omis-
sion of perceptual features from the underlying set
of features, or by the assignment of uniform weights
to different features (Mielke, personal communica-
tion).
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It is difficult to objectively measure which pho-
netic similarity scheme produces more “intuitive”
values. In order to approximate a human evalua-
tion, we performed a comparison with the perceptual
judgments of Laver (1994), who assigned numerical
values to pairwise comparisons of 22 English conso-
nantal phonemes on the basis of “subjective auditory
impressions”. We counted the number of perceptual
conflicts with respect to Laver’s judgments for both
Mielke’s metric and ALINE’s similarity values. For
example, the triple ([[], [j], [k]) is an example of a
conflict because [[] is considered closer to [j] than to
[k] in Mielke’s matrix but the order is the opposite
in Laver’s matrix. The program identified 1246 con-
flicts with Mielke’s metric, compared to 1058 con-
flicts with ALINE’s scheme, out of 4620 triples. We
conclude that in spite of the fact that ALINE is de-
signed for identifying cognates, rather than directly
for phonetic similarity, it is more in agreement with
human perceptual judgments than Mielke’s metric
which was explicitly designed for quantifying pho-
netic similarity.

3 Learning algorithms

In this section, we briefly describe several ma-
chine learning algorithms that automatically derive
weights or probabilities for different edit operations.

3.1 Stochastic transducer

Ristad and Yianilos (1998) attempt to model edit
distance more robustly by using Expectation Max-
imization to learn probabilities for each of the pos-
sible edit operations. These probabilities are then
used to create a stochastic transducer, which scores
a pair of words based on either the most probable
sequence of operations that could produce the two
words (Viterbi scoring), or the sum of the scores of
all possible paths that could have produced the two
words (stochastic scoring). The score of an individ-
ual path here is simply the product of the probabili-
ties of the edit operations in the path. The algorithm
was evaluated on the task of matching surface pro-
nunciations in the Switchboard data to their canoni-
cal pronunciations in a lexicon, yielding a significant
improvement in accuracy over Levenshtein distance.



3.2 Levenshtein with learned weights

Mann and Yarowsky (2001) applied the stochastic
transducer of Ristad and Yianilos (1998) for induc-
ing translation lexicons between two languages, but
found that in some cases it offered no improvement
over Levenshtein distance. In order to remedy this
problem, they they proposed to filter the probabili-
ties learned by EM into a few discrete cost classes,
which are then used in the standard edit distance
algorithm. The LLW approach yielded improve-
ment over both regular Levenshtein and the stochas-
tic transducer.

3.3 CORDI

CORDI (Kondrak, 2002) is a program for detect-
ing recurrent sound correspondences in bilingual
wordlists. The idea is to relate recurrent sound cor-
respondences in wordlists to translational equiva-
lences in bitexts. A transation mode is induced be-
tween phonemes in two wordlists by combining the
maximum similarity alignment with the competitive
linking algorithm of Melamed (2000). Melamed’s
approach is based on the one-to-one assumption,
which implies that every word in the bitext is aligned
with at most one word on the other side of the bitext.
In the context of the bilingual wordlists, the cor-
respondences determined under the one-to-one as-
sumption are restricted to link single phonemes to
single phonemes. Nevertheless, the method is pow-
erful enough to determine valid correspondences in
wordlists in which the fraction of cognate pairs is
well below 50%.

The discovered phoneme correspondences can be
used to compute a correspondence-based similar-
ity score between two words. Each valid corre-
spondence is counted as a link and contributes a
constant positive score (no crossing links are al-
lowed). Each unlinked segment, with the exception
of the segments beyond the rightmost link, is as-
signed a smaller negative score. The alignment with
the highest score is found using dynamic program-
ming (Wagner and Fischer, 1974). If more than one
best alignment exists, links are assigned the weight
averaged over the entire set of best alignments. Fi-
nally, the score is normalized by dividing it by the
average of the lengths of the two words.
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34 Pair HMM

Mackay and Kondrak (2005) propose to computing
similarity between pairs of words with a technique
adapted from the field of bioinformatics. A Pair Hid-
den Markov Model differs form a standard HMM by
producing two output streams in parallel, each corre-
sponding to a word that is being aligned. The model
has three states that correspond to the basic edit op-
erations: substitution, insertion, and deletion. The
parameters of the model are automatically learned
from training data that consists of word pairs that
are known to be similar. The model is trained using
the Baum-Welch algorithm (Baum et al., 1970).

4 Dynamic Bayesian Nets

A Bayesian Net is a directed acyclic graph in which
each of the nodes represents a random variable.
The random variable can be either deterministic, in
which case the node can only take on one value for a
given configuration of its parents, or stochastic, in
which case the configuration of the parents deter-
mines the probability distribution of the node. Arcs
in the net represent dependency relationships.

Filali and Bilmes (2005) proposed to use Dy-
namic Bayesian Nets (DBNs) for computing word
similarity. A DBN is a Bayesian Net where a set
of arcs and nodes are maintained for each point in
time in a dynamic process. This involves set of pro-
logue frames denoting the beginning of the process,
chunk frames which are repeated for the middle of
the process, and epilogue frames to end the process.
The conditional probability relationships are time-
independent. DBNs can encode quite complex in-
terdependencies between states.

We tested four different DBN models on the task
of cognate identification. In the following descrip-
tion of the models, Z denotes the current edit opera-
tion, which can be either a substitution, an insertion,
or a deletion.

MCI The memoriless context-independent model
(Figure 1) is the most basic model, which is
meant to be equivalent to the stochastic trans-
ducer of Ristad and Yianilos (1998). Its lack
of memory signifies that the probability of Z
taking on a given value does not depend in any
way on what previous values of Z have been.
The context-independence refers to the fact that



Figure 1: The MCI model.

the probability of Z taking on a certain value
does not depend on the letters of the source or
target word. The a and b nodes in Figure 1 rep-
resent the current position in the source and tar-
get words, respectively. The s and t nodes rep-
resent the current letter in the source and target
words. The end node is a switching parent of Z
and is triggered when the values of the a and b
nodes move past the end of both the source and
target words. The sC and tC nodes are consis-
tency nodes which ensure that the current edit
operation is consistent with the current letters
in the source and target words. Consistency
here means that the source side of the edit oper-
ation must either match the current source letter
or be €, and that the same be true for the target
side. Finally, the send and tend nodes appear
only in the last frame of the model, and are only
given a positive probability if both words have
already been completely processed, or if the
final edit operation will conclude both words.
The following models all use the MCI model
as a basic framework, while adding new depen-
dencies to Z.

MEM 1In the memory model, the probability of the
current operation being performed depends on
what the previous operation was.

CON In the context-dependent model, the probabil-
ity that Z takes on certain values is dependent
on letters in the source word or target word.
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The model that we test in Section 5, takes into
account the context of two letters in the source
word: the current one and the immediately
preceding one. We experimented with several
other variations of context sets, but they either
performed poorly on the development set, or re-
quired inordinate amounts of memory.

LEN The length model learns the probability dis-
tribution of the number of edit operations to
be performed, which is the incorporated into
the similarity score. This model represents an
attempt to counterbalance the effect of longer
words being assigned lower probabilities.

The models were implemented with the GMTK
toolkit (Bilmes and Zweig, 2002). A more detailed
description of the models can be found in (Filali and
Bilmes, 2005).

5 Experiments

51 Setup

We evaluated various methods for computing word
similarity on the task of the identification of cog-
nates. The input consists of pairs of words that
have the same meaning in distinct languages. For
each pair, the system produces a score represent-
ing the likelihood that the words are cognate. Ide-
ally, the scores for true cognate pairs should always
be higher than scores assigned to unrelated pairs.
For binary classification, a specific score thresh-
old could be applied, but we defer the decision on
the precision-recall trade-off to downstream applica-
tions. Instead, we order the candidate pairs by their
scores, and evaluate the ranking using 11-point in-
terpolated average precision (Manning and Schutze,
2001). Scores are normalized by the length of the
longer word in the pair.

Word similarity is not always a perfect indicator
of cognation because it can also result from lexical
borrowing and random chance. It is also possible
that two words are cognates and yet exhibit little sur-
face similarity. Therefore, the upper bound for aver-
age precision is likely to be substantially lower than
100%.



Languages Proportion Method
of cognates | EDIT MIEL ALINE R&Y LLW PHMM DBN
English | German 0.590 0.906 | 0.909 | 0912 | 0.894 | 0918 | 0.930 | 0.927
French Latin 0.560 0.828 | 0.819 | 0.862 | 0.889 | 0.922 | 0.934 | 0.923
English | Latin 0.290 0.619 | 0.664 | 0.732 | 0.728 | 0.725 | 0.803 | 0.822
German | Latin 0.290 0.558 | 0.623 | 0.705 | 0.642 | 0.645 | 0.730 | 0.772
English | French 0.275 0.624 | 0.623 | 0.623 | 0.684 | 0.720 | 0.812 | 0.802
French German 0.245 0.501 | 0.510 | 0.534 | 0.475 | 0.569 | 0.734 | 0.645
Albanian | Latin 0.195 0.597 | 0.617 | 0.630 | 0.568 | 0.602 | 0.680 | 0.676
Albanian | French 0.165 0.643 | 0.575 | 0.610 | 0.446 | 0.545 | 0.653 | 0.658
Albanian | German 0.125 0.298 | 0.340 | 0.369 | 0.376 | 0.345 | 0.379 | 0.420
Albanian | English 0.100 0.184 | 0.287 | 0.302 | 0.312 | 0.378 | 0.382 | 0.446
AVERAGE 0.2835 0576 | 0.597 | 0.628 | 0.601 | 0.637 | 0.704 | 0.709

Table 1: 11-point average cognate identification precision for various methods.

5.2 Data

The training data for our cognate identification ex-
periments comes from the Comparative Indoeuro-
pean Data Corpus (Dyen et al., 1992). The data con-
tains word lists of 200 basic meanings representing
95 speech varieties from the Indoeuropean family
of languages. Each word is represented in an or-
thographic form without diacritics using the 26 let-
ters of the Roman alphabet. Approximately 180,000
cognate pairs were extracted from the corpus.

The development set was composed of three lan-
guage pairs: Italian-Croatian, Spanish-Romanian,
and Polish-Russian. We chose these three language
pairs because they represent very different levels of
relatedness: 25.3%, 58.5%, and 73.5% of the word
pairs are cognates, respectively. The percentage of
cognates within the data is important, as it provides
a simple baseline from which to compare the success
of our algorithms. If our cognate identification pro-
cess were random, we would expect to get roughly
these percentages for our recognition precision (on
average).

The test set consisted of five 200-word lists repre-
senting English, German, French, Latin, and Alba-
nian, compiled by Kessler (2001). The lists for these
languages were removed from the training data (ex-
cept Latin, which was not part of the training set), in
order to keep the testing and training data as sepa-
rate as possible. For the supervised experiments, we
converted the test data to have the same orthographic
representation as the training data.
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The training process for the DBN models con-
sisted of three iterations of Expectation Maximiza-
tion, which was determined to be optimal on the de-
velopment data. Each pair was used twice, once in
each source-target direction, to enforce the symme-
try of the scoring, One of the models, the context-
dependent model, remained asymmetrical despite to
two-way training. In order to remove the undesir-
able asymmetry, we averaged the scores in both di-
rections for each word pair.

5.3 Reaults

Table 1 shows the average cognate identification
precision on the test set for a number of meth-
ods. EDIT is a baseline edit distance with uniform
costs. MIEL refers to edit distance with weights
computed using the approach outlined in (Mielke,
2005). ALINE denotes the algorithm for aligning
phonetic sequences (Kondrak, 2000) described in
Section 2.1. R&Y is the stochastic transducer of
Ristad and Yianilos (1998). LLW stands for Lev-
enshtein with learned weights, which is a modifi-
cation of R&Y proposed by Mann and Yarowsky
(2001). The PHMM column provides the results
reported in (Mackay and Kondrak, 2005) for the
best Pair HMM model, which uses log odds scor-
ing. Finally, DBN stands for our best results ob-
tained with a DBN model, in this case the averaged
context model.

Table 2 show the aggregate results for various
DBN models. Two different results are given for
each model: the raw score, and the score normal-



Model Raw Score | Normalized
MCI 0.515 0.601
MEM 0.563 0.595
LEN 0.516 0.587
CON-FOR 0.582 0.599
CON-REV 0.624 0.619
CON-AVE 0.629 0.709

Table 2: Average cognate identification precision for
various DBN models.

ized by the length of the longer word. The mod-
els are the memoriless context-independent model
(MCI), memory model (MEM), length model (LEN)
and context model (CON). The context model re-
sults are split as follows: results in the original di-
rection (FOR), results with all word pairs reversed
(REV), and the results of averaging the scores for
each word pair in the forward and reverse directions
(AVE).

Table 3 shows the aggregate results for the un-
supervised approaches. In the unsupervised tests,
the training set was not used, as the models were
trained directly on the testing data without access
to the cognation information. For the unsupervised
tests, the original, the test set was in its original pho-
netic form. The table compares the results obtained
with various DBN models and with the CORDI al-
gorithm described in Section 3.3.

5.4 Discussion

The results in Table 1 strongly suggest that the
learning approaches are more effective than the
manually-designed schemes for cognate identifica-
tion. However, it has to be remembered that the
learning process was conducted on a relatively large
set of Indoeuropean cognates. Even though there
was no overlap between the training and the test
set, the latter also contained cognate pairs from the
same language family. For each of the removed lan-
guages, there are other closely related languages that
are retained in the training set, which may exhibit
similar or even identical regular correspondences.
The manually-designed schemes have the advan-
tage of not requiring any training sets after they
have been developed. Nevertheless, Mielke’s met-
ric appears to produce only small improvement over
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Model Raw Score | Normalized
MCI 0.462 0.430
MEM 0.351 0.308
LEN 0.464 0.395
CON-AVE 0.433 0.414
CORDI — 0.629

Table 3: Phonetic test results.

simple edit distance. ALINE outperforms Mielke’s
metric, which is not surprising considering that
ALINE was developed specifically for identifying
cognates, and Mielke’s substitution matrix lacks
several phonemes that occur in the test set.

Among the DBN models, the average context
model performs the best. The averaged context
model is clearly better than either of the unidirec-
tional models on which it is based. It is likely that
the averaging allows the scoring to take contextual
information from both words into account, instead
of just one or the other. The averaged context DBN
model performs about as well as on average as the
Pair HMM approach, but substantially better than
the R&Y approach and its modification, LLW.

In the unsupervised context, all DBN models fail
to perform meaningfully, regardless of whether the
scores are normalized or not. In view of this, it is re-
markable that CORDI achieves a respectable perfor-
mance just by utilizing discovered correspondences,
having no knowledge of phonetics nor identity of
phonemes. The precision of CORDI is at the same
level as the phonetically-based ALINE. In fact, a
method that combines ALINE and CORDI achieves
the average precision of 0.681 on the same test set
(Kondrak, in preparation).

In comparison with the results of Filali and
Bilmes (2005), certain differences are apparent. The
memory and length models, which performed better
than the memoriless context-independent model on
the pronunciation task, perform worse overall here.
This is especially notable in the case of the length
model which was the best overall performer on their
task. The context-dependent model, however, per-
formed well on both tasks.

As mentioned in (Mann and Yarowsky, 2001),
it appears that there are significant differences be-
tween the pronunciation task and the cognate iden-



tification task. They offer some hypotheses as to
why this may be the case, such as noise in the data
and the size of the training sets, but these issues are
not apparent in the task presented here. The train-
ing set was quite large and consisted only of known
cognates. The two tasks are inherently different, in
that scoring in the pronunciation task involves find-
ing the best match of a surface pronunciation with
pronunciations in a lexicon, while the cognate task
involves the ordering of scores relative to each other.
Certain issues, such as length of words, may become
more prominent in this setup. We countered this by
normalizing all scores, which was not done in (Filali
and Bilmes, 2005). As can be seen in Table 2, the
normalization by length appears to improve the re-
sults on average. It notable that normalization even
helps the length model on this task, despite the fact
that it was designed to take word length into account.

6 Conclusion

We have compared the effectiveness of a number of
different methods, including the DBN models, on
the task of cognate identification. The results sug-
gest that some of the learning methods, namely the
Pair HMMs and the averaged context DBN model,
outperform the manually designed methods, pro-
vided that large training sets are available.

In the future, we would like to apply DBNs
to other tasks involving computing word similarity
and/or alignment. An interesting next step would be
to use them for tasks involving generation, for ex-
ample the task of machine transliteration.
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Abstract lows one to process large amounts of pronunci-
' _ ' ' ation data, including that which does not follow
We examine various string distance mea-  other isoglosses neatly. Heeringa (2004) exam-

sures for suitability in modeling dialect  jnes several variants of edit distance applied to
distance, especially its perception. We find  Norwegian and Dutch data, focusing on measures
measures superior which dotnormalize which involve a length normalization, and which

for word length, but whictare are sensi- ignore phonological context, and demonstrating

tive to order. We likewise find evidence for  that measures using binary segment differences
the superiority of measures which incor-  are no worse than those using feature-based mea-
porate a sensitivity to phonological con- sures of segment difference.

text, realized in the form ofi-grams— This paper inspects a range of further refine-
although we cannot identify which form  nentg in measuring pronunciation differences.
of context (bigram, trigram, etc.) is best. gt e inspect the role of normalization by
However, we find no clear benefit in us- angth, showing that it actually worsens non-
ing gradual as opposed to binary segmen-  ,malized measures. Second, we compare edit
tal difference when calculating sequence  gistance measures to simpler measures which ig-
distances. nore linear order, and show that order-sensitivity
is important. Third, we inspect measures which
are sensitive to phonetic context, and show that
We compare string distance measures for theithese, too, tend to be superior. Fourth, we com-
value in modeling dialect distances. Traditionalpare versions of string edit distance which are
dialectology relies on identifying language fea-constrained to respect syllable structure (always
tures which are common to one dialect area whilgnatching vowels with vowels, etc.), and conclude
distinguishing it from others. It has difficulty that this is mildly advantageous. Finally we com-
in dealing with partial matches of linguistic fea- pare binary (i.e., same/different) treatments of the
tures and with non-overlapping language patternssegments in edit distance to gradual treatments of
Therefore Seguy (1973) and Goebl (1982; 1984pegment differentiation, and find no indication of
advocate using aggregates of linguistic features téhe superiority of the gradual measures.
analyze dialectal patterns, effectively introducing The quality of the measures is assayed primarily
the perspective abIALECTOMETRY. through their agreement with the judgments of di-
Kessler (1995) introduced the use of string editalect speakers about which varieties are perceived
distance measure as a means of calculating the dias more similar (or dissimilar) to their own. In
tance between the pronunciations of correspondaddition we inspect a validation technique which
ing words in different dialects. Following Seguy’s purports to show how successfully a dialect mea-
and Goebl’s lead, he calculated this distance fosure uncovers the geographic structure in the data
pairs of pronunciations of many words in many(Nerbonne and Kleiweg, 2006), but this technique
Irish-speaking towns. String edit distance is senyields unstable results when applied to our data.
sitive to the degrees of overlap of strings and al\We have perception data only for Norwegian, so

1 Introduction
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that data figures prominently in our argument, andaken one word at a time. Heeringa compares these
we evaluate both Norwegian and German data gdechniques using the results of a perception ex-
ographically. periment we also employ below. Heeringa shows
The results differ, and the perceptual resultghat word-based techniques are superior to corpus-
(concerning Norwegian) are most easily inter-based techniques, and moreover, that most word-
pretable. There we find, as noted above, thabased techniques perform about the same. We
non-normalized measures are superior to normatherefore ignore measures which view corpora as
ized ones, that both order and context sensitivundifferentiated collections below and study only
ity are worthwhile, as is the vowel/consonant dis-word-based techniques.
tinction. The (geographic) results for German are A further question was whether to compare
more complicated, but also less stable. We includgyords based on a binary difference between seg-
them for the sake of completeness. ments or whether to use instead phonetic fea-
In addition we note two minor contributions. tures to derive a more sensitive measure of seg-
First, although some literature ends up evaluatment distance. It turned out that measures us-
ing both distance and similarity measures, becaus@g binary segment distinctions outperform the
these are not consistently each others’ inverses Ueature-based methods (see Heeringa, pp. 184—
der some normalizations (Kondrak, 2005; Inkpeni86), even though a number of feature systems and
et al., 2005), we suggest a normalization based osomparisons of feature vectors were experimented
alignment length which guarantees that similaritywith. We likewise accept these results (at least for
is exactly the inverse of distance, allowing us topresent purposes) and focus exclusively on mea-
concentrate on distance. sures using the binary segment distinctions below.
Second, we note that there is no great problem kondrak (2005) and Inkpen et al. (2005) present
in applying edit distance to bigrams and trigramsgeyeral methods for measuring string similarity
even though recent literature has been scepticalng distance which complement Heeringa’s results
about the feasibility of this step. For examplenice|y_ We should note, however, that these pa-

Kessler (2005) writes: pers focus on other areas of application, viz., the
[...] one major shortcoming [in applying problems of identifying (i) technical names which
edit distance to linguistic data, WH et al] might be confused, (ii) linguistic cognates (words
that is rarely discussed is that the pho- from the same root), and (iii) translational cog-
netic environment of the sounds in ques- nates (words which may be used as translational
tion cannot be taken into account, while equivalences). Inkpen et al. consider 12 different
still making use of the efficient dynamic orthographic similarity measures, including some
programming algorithm (p. 253). in which the order of segments does not play a role

(e.g., DICE), and others which use order in align-
Somewhat further Kessler writes: “Currently, the j,ant (e.g. edit distance). They further consider
predominant solution to this problem is to ignorecomparison on the basis of unigrams, bigrams, tri-
context entirely.” In fact Kondrak (2005) applies grams and “xbigrams,” which are trigrams without
edit distance straightforwardly using-gram as e middle element. Some methods are similarity

basic elements. Our findings accord with Kon-peasyres, others are distance measures. We return
drak’s, who also found no problem in applying edit; this in Section 2.

distance using.-grams, but we evaluate the tech-
nique in its application to dialectology. 1.2 This paper
1.1 Background In this paper we apply string distance measures
Heeringa (2004) demonstrates that edit distance®d Norwegian and German dialect data. As

applied to comparable words (see below for exnoted above, we focus on word-based methods
amples) is a superior measure of dialect distance which segments are compared at a binary
when compared to unigram corpus frequency an@same/different) level. The methods we consider
also that it is superior to both the frequency of pho-will be explained in Section 2. Section 3 de-

netic features in corpora (a technique which Hop-scribes the Norwegian and German data to which
penbrouwers & Hoppenbrouwers (2001) had adthe methods are applied. In Section 4 we describe
vocated) and to the frequency of phonetic featureBow we evaluate the methods, namely by com-
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paring the algorithmic results to the distances asions have three trigrams in common: [—m, &jm
perceived by the dialect speakers themselves. Wend [nEl] among7+7 = 14 in total, yielding a tri-
likewise aimed to evaluate by calculating the de-gram similarity of(2 x 3)/14 = 0.4 and distance
gree to which a measure uncovers geographic cd-— 0.4 = 0.6.
hesion in dialect data, but as we shall see, this Our interest in this issue is linguistic: longer
means of validation yields rather unstable resultsn-grams allow comparison on the basis of phonic
In Section 5 we present results for the differentcontext, and unigram comparisons have correctly
methods and finally, in Section 6, we draw somebeen criticized for ignoring this (Kessler, 2005).
conclusions.

2.2 Order of segments
2 String Comparison Algorithms When comparing the German dialect pronuncia-
tion of Reelkirchen [ralks] with the Dutch dialect
pronunciation of Haarlem [ntok], the unigram
Cgrocedure presented above will detect no differ-
ence. One might argue that we are dealing with
a swap, but this is effectively an appeal to order.
The example is not convincing for-gram mea-
sures,n > 2, but we should prefer to separate
issues of order from issues of context sensitivity.
We use edit distance (aka Levenshtein distance)

In this section we describe a number of string
comparison algorithms largely following Inkpen
et al. (2005). The methods can be classified a
cording to different factors: representation (un-
igram, bigram, trigram, xbigram), comparison
of n-grams (binary or gradual), status of order
(with or without alignment), and type of align-
ment (free or forced alignment with respect to

the vowel/consonant distinction). We illustrate : S .
for this purpose, and we assume familiarity with

the methods with examples, in which we compargis (Kruskal, 1999). In our use of edit distance all

German and Dutch dialect pronunciations of the .
- operations have a cost of 1.
word milk.

2.3 Normalization by length

When the edit distance is divided by the length
of the longer string, Inkpen et al. call it normal-
ized edit distance (NED). In our approach we di-
X vide “raw edit distance” by alignment length. The
—me mel elk ko ko—o—]. The same word is pro- s, me minimum distance found by the edit distance
nounced as [mioc] in the German dialect of Tann. 0rithm may be obtained on the basis of sev-
The bigram and trigram representations are [-My 5| 5jignments which may have different lengths.
me el 1o o¢ ¢-J and [—m —mmel elo10¢ 96~ ¢—]  \yje found that the longest alignment has the great-
respectively. est number of matches. Therefore we normalize

In the simplest method we present in this papery, qiyiding the edit distance by the length of the
the distance is found by calculating 1 minus t\Nlcelongest alignment.

the number of shared segmengrams divided by
the total number ofi-grams in both words. Inkpen

2.1 Contextual sensitivity

In the German dialect of Reelkirchenilk is pro-
nounced as [rlko]. The bigram notation is [-m
me el Ik ko o—] and the trigram notation is [—m

We have normally employed a length normal-
) 3 - ization in earlier work (Heeringa, 2004), reason-
et al. mention a bigram-based, a trigram-baseg,; that words are such fundamental linguistic

and a xbigram-based procedure, which they callyis that dialect perception was likely to be word-
DICE, TRIGRAM and XDICE respectively. We aseq we shall test this premise in this paper.

also consider an unigram-based procedure which ;o4 & vidal (1993) show that the normal-
we call UNIGRAM. The two pronunciations share j,¢ eit distance between two strings cannot be
four unigrams: [mg, [Jand p]. There ares +5 = gpained via “post-normalization”, i.e., by first
10 unigram tokens in total in the two words, so the o iting the (unnormalized) edit distance and
unigram similarity is(2 x 4)/10 = 0.8, and the e normalizing this by the length of the cor-
distancel — 0.8 = 0.2. The two pronunciations  eqnonding editing path. Unnormalized edit dis-
share three bigrams: [-m.efand [el]. There are 506 satisfies the triangle inequality, which is ax-
6 + 6 = 12 bigram tokens in the two strings, SO jomaic for distances, but the quantities obtained
bigram similarity is(2 x 3)/12 = 0.5, and the dis- i3 nost-normalization need not satisfy this ax-
tancel — 0.5 = 0.5. Finally, the two pronuncia- jom Marzdal & Vidal provide an alternative pro-
our transcriptions omit diacritics for simplicity’'s sake. cedure which is guaranteed to produce genuine
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distances, satisfying all of the relevant axioms. In 1 2 3 4 5 6
their modified algorithm, one computes one min- m o | k o
imum weight foreachof the possible lengths of m e | o K

editing paths at each point in the computational 1 1 1

lattice. Once all these weights are calculated, theThe one pronunciation is transformed into the
are divided by their corresponding path lengthspther by substitutinge] for [o], by deleting p]
and the minimum quotient represents the normalafter [I], and by inserting d] after [k]. Since
ized edit distance. each operation has a cost of 1, and the align-

The basic idea behind edit distance is to find thénent is6 elements long, the normalized distance
minimum cost of changing one string into anotheris (1 +1 4+ 1)/6 = 0.5. The Levenshtein dis-
Length normalization represents a deviation fronf@nce will also find an alignment in which the
this basic idea. If a higher cost corresponds with 4°'s are matched, while the [k]'s are inserted and
longer path length so that quotient of the edit cost§léleted. That alignment gives the same (normal-
divided by the path length is minimal, then Marzal ized) distance. Levenshtein distance will not find
& Vidal's procedure opts for the minimal normal- @n alignment any longer than the one shown here,
ized length, while post-normalization seeks whagince longer alignments will not yield the mini-
one might call “the normalized minimal length” Mum cost. This also holds for the examples shown
(see Marzal & Vidal's example 3.1 and Figure 2, below.

p. 928).

Marzal & Vidal's examples of normalized mini- 2.4 n-gram weights
mal distances which are not also minimal normal-

ized distances all involve operation costs we norl the dialect of the German dialect of Frohn-

mally do not employ. In particular they allow- hausermilk is pronounced as [rljo], and in the

DELS (insertions and deletions) to be associated®e'Man of Grofwechsungen asefng]. If we
with much lower costs than substitutions, so thaf®MPare these using the techniques of Section 2.2,

the longer paths associated with derivations inYUSing Pigrams, we obtain the following:

volving indels is more than compensated bythe 1 2 3 4 5 6

length normalization. Our costs are never struc- -m M 1 i jo o-

tured in this way, so we conjecture that our post- -m me el 1 1k k-

normalizations do not genuinely run the risk of vi- 1 111 1

olating the distance axioms. We uséor the cost Sincen-grams are compared in a binary way, the
of mapping a symbol to itself, to map it to a dif- normalized distance is equal b+ 1+ 1 + 1 +
ferent symbol, including the empty symbol (cov-1)/6 = 0.83. But [mi] and [me] (second posi-
ering the costs of indels), ang for non-allowed tion) are clearly more similar to each other than
mappingd We maintain therefore that (unnormal- [jo] and [ik] (fifth position). Inkpen et al. suggest
ized) costs higher than the minimum will never weightingn-gram differences using segment over-
correspond to longer alignment lengths. If this islap. They provide a formula for measuring grad-
so, then the minimal edit cost divided by align- ual similarity of n-grams to be used in BI-DIST
ment length will also be the minimal normalized and TRI-DIST. Since we measure distances rather
cost. If the unnormalized edit distance is mini-than similarity, we calculate:-gram distance as
mal, we claim that the post-normalized edit dis-follows:

tance must therefore be minimal as well. S(T1 T Y1Yn) = = 2oy A, yi)

We inspect an example to illustrate these issues. . .
We compare the Frisian (Grouw), Hifko], with ghfgef\fv?’b) (lt\e/turnsll 'ftf]iarldb are dlfferelnt., and
the Haarlem pronunciation [gtek]. The Leven- otherwise. We apply this o our exampre-

shtein algorithm may align the pronunciations as 1 2 3 4 ) > 6
follows: -m o m ol jo o
-m me el It 1k k-

— 05 05 05 1 05

For example, in some versions of edit distance, the value .
oo is assigned to the replacement of a vowel by a consonan@bta'_nmg(o‘5 +0.5+0.5 + 1 + 0.5)/6 =3.0/6 =
in order to avoid alignments which violate syllabic structure. 0.5 distance after normalization.
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2.5 Linguistic Alignment 1 2 3 4 5 6 7
: . ) -m no ol Ik ko o-
When gomparlng the Fr_|5|an (Grouw) dialect m  me el ¢ ¢
pronunciation, [mlks], with that of German 1 1 1 1 1 1
Gronechsungen, [¢h¢], using unigrams, we ob- 033 033 067 1 1 1
tain: Using binary bigram weights, the normalized dis-
1 23 45 tanceis(1 + 1+ 1+1+1+1)/7 = 0.86.
m oo koo The calculation based on gradual weights is a
m ; | i (:;L bit more complex. Two bigrams may match even

) ) ) when a non-allowed pair occurs in one of the two
The normalized distance is théh+ 1 +1)/5 = qitions, e.g., [k] vs.1] at the fourth position in

0.6. But this is linguistically an implausible align-  {he alignment immediately above. The cost of this
ment: syllables do not align when e.g. [k] aligns yatch should be higher (via weights) than that of
with [1], etc. We may remedy this by requir- 4 ajiowed pair with different elements—e.g., the

ing the Levenshtein algorithm to respect the dis'pair b] versus f] at the second or third position—

tinction between vowels and consonants, requirbut not so high that the match cannot occur.

ing that the alignments respect this distinction with  \va settle on the following scheme. Twe
only three exceptions, in particular that SemiVOW‘grams[xl 2,,] and[y;...y,] can only match if at
els [j, w] may match vowels (or consonants), thaligast one pairz;, ;) matches linguistically. We
the maximally high vowels [i, u] match conso- weight linguistically mismatching pairéz;, y;)
nants (or vowels), and that][match sonorant con- ica as high as matching (but non-identical)

sonant_s (nasals and liquids) in addltlon to VOW-hairs.  Since we have at most— 1 matching
els. Disallowed matches are weighted so heav

) ) e ] pairs, and at least 1 mismatching pair, we set the
ily (via th(_—:t cost of the su_bstltutlon operz_altlon) _thatmost expensive match of twegrams tol, and we
the algorithm always will use alternative align-

) e g assign the weight o2/(2n — 1) to a mismatch-
ments, effectively preferring insertions and dele-

, _ _ , ~ ~=*7ng pair, andl/(n — 1) to a matching (but non-
tions (indels) instead. Applying these restrictions

) ; - i i identical) one. Indels cost the same as the most
we obtain the following, with normalized distance costly (matching)-grams, in this casé.

(1+1+1+1)/6=0.6T: In our bigram-based example, we obtain a
1 23 456 weight of 2/(2 x 2 — 1) = 0.67 at position
m o | k 9 4, since the pair [K] vs. 1] is a linguistic mis-
me | 1 ¢ match. At positions 2 and 3 we obtain weights
1 111 of 1/(2x2—1) = 0.33 since p] and [] are (non-

In comparisons based on bigrams, we allowigentical) matches. Note that a segment (vowel or
two bigrams to match when at least one segronsonant) versus ‘-’ (boundary) is processed as
ment pair matches, the first, the second, or bothy mismatch. Therefore the weight at position 6 is

Two trigrams match when at least the middle paifequal t00.33 ([k] vs. [c]) +0.67 ([] versus [-]),
matches. Comparing the same pronunciations agmming tol.

above using bigrams without linguistic conditions,

we obtain the following alignment: 2.6 Similarity vs. distance
1 2 3 4 5 6 Theoretically, similarity and distance should be
-m mo ol |k ko o each others’ inverses. Thus in Section 2.1 we
-m me e It ¢ ¢ suggested that similarity should always e—
1 1 1 1 1 distance. This is not always straightforward when
05 05 05 1 05 we normalize.
The normalized distance il + 1 + 1 + 1 + Inkpen et al. use both similarity and dis-

1)/6 = 0.83 using binary bigram weights (costs), tance measures. Similarity measures are LCSR
and(0.54+ 0.5+ 0.5+ 1+ 0.5)/6 = 0.5 using (Longest Common Subsequence Ratio), BI-SIM
gradual weights. But the above alignmentdoes and TRI-SIM (LCSR generalized to bigrams and
respect the vowel/consonant distinction at the fifthtrigrams), and the corresponding distance mea-
position, where neither [k] vsi][nor [s] vs. [¢] is  sures are NED, BI-DIST and TRI-DIST. The mea-
allowed. We correct this at once: sures are further distinguished in the waygram
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weights are compared: as binary weights in théneim? The database includes recordiragsitran-
similarity measures, and as gradual weights in thacriptions of the fable ‘The North Wind and the
distance measures. When comparing the pronurgun’ in various Norwegian dialects. The Norwe-
ciations of Frisian Hindelopen [palko] with Ger-  gian text consists of 58 different words, some of
man Gro3wechsungen, finc], and respecting the which occur more than once, in which case we
linguistic alignment conditions (Section 2.5) we seek a least expensive pairing of the different el-

obtain: ements (Nerbonne and Kleiweg, 2003, p. 349).
m o o | k o On the basis of the recordings, Gooskens car-
m ¢ 1 ¢ ried out a perception experiment which we de-
6110111 scribe in Section 4.1. The experiment is based

The non-normalized similarity is equal to 2, andgp 15 dialects, the total number of dialects avail-
the non-normalized distance is equal to 5. Inkpemyple at that time (spring, 2000). Since we want to
et al. normalize "y dividing the total edit cost by se the results of the experiment for validating our
the length of the longer string” which is 6 in our methods, we used the same set of 15 Norwegian
example. Other possibilities are dividing by the gjglects. It is important to note that Gooskens pre-
length of the shorter string (5), the average lengthsented the recordings holistically, including differ-
of the two strings (5.5) or the length of the align- ences in syntax, intonation and morphology. Our
ment (7). Summarizing: methods are restricted to words.

shorter longer average align-

string string  string  ment
sim. 0.4 0.33 0.36 0.29 The German data comes from tiéhonetischer
dist. 1.0 0.83 0.91 0.71 Atlas Deutschlandsind includes 186 dialect lo-
total 14 1.17 1.27 1.00 cations. For each location 201 words were
recorded and transcribed. The data are available

Only the normalization via alignment length re- o
y . gnment 'eng ._at the Forschungsinstitutifr deutsche Sprache -
spects the wish that we regard similarity and dis-

tance as each others’ inversés\We can enforce Deutscher Sprachatlais Marburg. The material

. . . , is from translations ofMenker-&tze taken from
this requirement in other approaches by first nor-

malizing and then taking the inverse, but we takethe famous survey by Georg Wenker in the 1879~

the result above to indicate that normalization via1887 among teachers from 40.000 locations in

. . Germany. The transcriptions are made on the basis
alignment length is the most natural procedure. . o .
of recordings made under the direction of Joachim

3  Data Sources Goschel in the 1960’s and 1970's in West Ger-
many (Gschel 1992, pp. 64-70). After the Ger-
The methods presented in Section 2 are appliethan reunification similar surveys were conducted
to Norwegian and German dialect data describeth former East Germany.
in this section. We emphasize that we measured The data were transcribed by four transcribers,
distances only at the level of the segmental baseand each item was transcribed independently by
ignoring stress and tone marks, suprasegmentaig least two phoneticians who subsequently con-
and diacritics. We in fact examined measurementsulted to come to an agreement. In 2002 the data
which included the effects of segmental diacritics,was digitized at the University of Groningen.
which, however resulted in decreased consistency
and no apparent increase in quality. 4 Validation Methods

3.2 German

3.1 Norwegian When we apply a measurement technique to a spe-

. cific problem we are interested both in the con-
The Norwegian data comes from a database com P

o : : ) sistency of the measure and in its validity. The
prising more than 50 dialect sites, compiled by .
- consistency of the measurement reflects the degree
Jorn Almberg and Kristian Skarbg of the Depart- . . .
N . . to which the independent elements in the sample
ment of Linguistics of the University of Trond- . .
sample tend to provide the same signal. Nun-

*We have no proof that normalization by alignment lengthnally (1978, p.211) recommends the generalized
always allows this simple relation to similarity, butwe have
examined a large number of calculations in which this always “The database is availablehtp://www.ling.hf.
seems to hold. ntnu.no/nos/
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form of the Spearman-Brown formula for this pur- we get a matrix with 15< 15 perceived linguis-
pose, which has come to be known as theo@-  tic distances. This matrix is not completely sym-
BACH’S « value. Itis determined by the inter-item metric. For example, the distance which the lis-
correlation, i.e. the average correlation coefficienteners from Bergen perceived between their own
for all of the pairs of items in the test, and thedialect and the dialect of Trondheim (8.55) is dif-
test size. The Cronbach& measure rises with ferent from the distance as perceived by the listen-
the sample size, and it is therefore normally useers from Trondheim to Bergen (7.84).
to determine whether samples are large enough to In order to use this material to calibrate the dif-
provide reliable signals. ferent computational measurements, we examine
The validity of a measure, or more precisely,the correlations between théx 15 computational
the application of a measure to a particular probmatrices with thd 5 x 15 perceptual matrix. In cal-
lem is much more difficult and controversial issueculating correlations we excluded the distances of
(Nunnally, 1978, Chap. 3), but the basic issue idialects with respect to themselves, i.e. the dis-
whether the procedures in fact measure what thetance of Bergen to Bergen, of Bjugn to Bjugn,
purport to measure, in our case the sort of proetc. In computational matrices these values are al-
nunciation similarity which is important in distin- ways zero, in the perceptual matrix they vary, but
guishing similar language varieties. In examiningare normally greater than zero. This may be due
our measures for their validity in identifying the to non-geographic (social or individual) variation,
sort of pronunciation similarity which plays a role but it distorts results in a non-random way (diago-
in dialectology we compare the measures to othenal distances can only be too high, never too low),
indications we have that pronunciations are dialecwe exclude them when calculating the correlation
tally similar. We discuss these below in more de-coefficient.
tail. We consider the correlation with distances as We calculated the standard Pearson product-
perceived by the dialect speakers themselves (segoment correlation coefficient, but we interpret
Section 4.1) and the local (geographic) incoherits significance cautiously, using the Mantel test

ence of dialect distances (see Section 4.2). (Bonnet and Van de Peer, 2002). In classical tests
the assumption is made that the observations are
4.1 Perception independent, which observations in distance ma-

trices emphatically are not. This is certainly true
é?r calculations of geographic distances, which are
minimally constrained to satisfy the standard dis-

) . tance axioms (non-negativity, symmetry, and the
results of a perception experiment (Gooskens anfir’jl ( g Y, SY y

Heeringa, 2004). For each of 15 varieties a recordt-r:z,?g]lg |en d??gg,{'gg&::ivzagg alrogu:?ealliizgvi(? en-
ing of the fable ‘The North Wind and the Sun’ was Pioy g

. . ine distances, which means that sums of edit

presented to 15 groups of Norwegian high school.. : : .
. ) .__distances are likewise constrained, and therefore
pupils, one group from each of the 15 dialects sites

) : . .~ Should not be regarded as independent observa-
represented in the material. All pupils were famll—,[ions (in the sense need for hypothesis testing)
iar with their own dialect and had lived most of yp 9)-

their lives in the place in question (on average 16.7 The Manteldtedst rlalses the s'[r]ar:rc:a{q? ofuslgnlf-
years). Each group consisted of 16 to 27 listenerd©aNce @ good deal— So muc at it will turn

The mean age of the listeners was 17.8 years, S?Utdt_zat (:)ur smallKﬂS} Xrﬂli) _matrlceis ¥YOUId n(;:-cr(_ad
percent were female and 48 percent male. O difter by more tharl.1 in correlation coetil-
. . . 8|ent in order to demonstrate significance. We will
The 15 dialects were presented in a randomize

: r} netheless urge that the results should be taken
order, and each session was preceded by a (short) . . .
; . . . seriously as the data needed is difficult to obtain,
practice run. While listening to the dialects the

listeners were asked to judge each of the 15 dignd the indications are fairly clear (see below).

alects on a scale from 1 (similar to native dialect)
to 10 (not similar to native dialect). This means
that each group of listeners judged the linguistidt is fundamental to dialectology that geographi-
distances between their own dialect and the 15 dieally closer varieties are, in general, linguistically
alects, including their own dialect. In this way more similar. Nerbonne and Kleiweg (2006) use

The best opportunity for examining the quality of
the measurements presents itself in the case
Norwegian, for which we were able to obtain the

4.2 Local Incoherence
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this fact to select more probative measurementsyver the geographic distances among the sites in
namely those measurements which maximize théhe sample, arranged in increasing ordeigeb-
degree to which geographically close elements argraphicdistance. We examine the latter as an ideal
likewise seen to be linguistically similar. Given case. If a given measurement technique always
our emphasis on distance it is slightly more con-demonstrated that the neighbors of a given site
venient to formulate a measure obCAL INCO-  used the most similar varieties, th@;\L would be
HERENCEand then to examine the degree to whichthe sameD{*, andI; would be0. Second, we have
various string distance measures minimize it. Thergued above that it is appropriate to count most
basic idea is that we begin with each measuremersimilar varieties much more heavily i, and this
site s, and inspect the linguistically most similar  is reflected in the exponential decay in the weight-
sites in order of decreasing linguistic similarity to ing, i.e., 2795 wherej ranges over the increas-
s. We then measure how far away these linguistiingly less similar sites. Given this weighting of
cally most similar sites are geographically, for ex-most similar varieties, we are also justified in re-
ample, in kilometers.Good measurements show stricting the sum irD¥ = Ej?:l[. ..Jtok =8, and
that linguistically similar sites are geographically all of the results below use this limitation, which
close better thapoor measurements do. likewise improves efficiency.

The details of the formulation reflect the re- We suppress further discussion of the calcu-
sults of dialectometry that dialect distances cerdation in the interest of saving space here, not-
tainly increase with geographic distance, levelingng, however, that we used two different notions
off, however, so that geographically more remoteof geographic distance. When examining mea-
variety-pairs tend to have more nearly the samgurements of the German data, we measured geo-
linguistic distances to each other. We sort varietygraphic distance “as the crow flies”, but since Nor-
pairs in order of decreasing linguistic similarity way is very mountainous, we used (19th century)
and weight more similar ones exponentially moretravel distances (Gooskens, ).
than less similar ones. Given this disproportion-
ate weighting of the most similar varieties, it also5 Experiments and Results
quickly becomes uninteresting to incorporate the
effects of more than a small number of geographi—'n this section we present results based on the Nor-
cally closest varieties. We restrict our attention toV€gian and German data sources in 5.1 and Sec-

the eight most similar linguistic varieties in calcu- tions 5.3.
lating local incoherence. For each data source we consider 40 string com-

parison algorithms. We distinguish between meth-
ods with a binary comparison at-grams and
L\~ Df - Df those with a gradual ison of
I, = 72 " ose with a gradual comparison efgrams (see
n— D Section 2.4). Within the category of binary meth-

k ods, we distinguish between three groups. In the
Dl = > df;-270% first group, strings are compared just by counting
j=1 the number of common-grams, ignoring the or-
o o osi der of elements, see Section 2.1). In the second
Dy = Y di; 270 group then-grams are aligned (see Section 2.2).
=t We call this ‘free alignment’. In the third group
we insist on the linguistically informed alignment
df;, dZ; @ geo. dist. betweenen of n-grams (see Section 2.5), dubbing this ‘forced

dF, ., :geo. dist. sorted by increasing ling. diff.alignment’. Within the category of gradual meth-
i ods, we distinguish between ‘free alignment’ (see

dfh...,—1 : geo. dist, sorted by increasing geo. distgcion 2.6) and 'forced alignment. Finally, for
Several remarks may be helpful in understandeach of these methods, we consider both an un-

ing the proposed measurement. First, all ofdhg  normalized version of the measure as well as one

concerngeographiodistancesdifl,,,n_1 (summed normalized by length (see Section 2.3).

in D) range over the geographic distances, ar- A measure can only be valid when it is con-

ranged, however, in increasing orderlioiguistic ~ sistent, but it may be consistent without being

distance, Whilenlflmn_1 (summed inD¥) ranges valid. Since consistency is a necessary condi-
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binary gradual binary gradual
no free  forc.| free  forc. no free  forc.| free  forc.
align- align- align-| align- align- align- align- align-| align- align-
ment ment ment ment ment ment ment ment ment ment
uni| 0.69 0.66 0.66| 0.66 0.66 uni| 0.66 0.66 0.66| 0.66 0.66
bi 0.70 0.69 0.69| 0.66 0.68 bi 0.67 0.67 0.67| 0.66 0.66
tri 0.71 0.70 0.72| 066 0.73 tri 0.68 0.68 0.70| 0.66 0.70
xbi | 0.70 0.69 0.72| 0.67 0.73 xbi | 0.68 0.68 0.70| 0.69 0.70

Table 1: Correlations between perceptual disTable 2: Correlations between perceptual dis-
tances andinnormalizedstring edit distance mea- tances and differenhormalizedstring edit dis-
surements among 15 Norwegian dialects. Highetance measurements among 15 Norwegian di-
coefficients indicate better results. alects. Higher coefficients indicate better results.

tion for validity, we check the consistency of pho- g,
netic distance methods. For each of the meth- The small flood of numbers in Table 1 may

ods we calculated Cronbachisvalues, which is  seem confusing. Therefore we calculated averages
based on the average inter-correlation among thger factor which are presented in Table 4. We in-
words (Heeringa, 2004, pp. 170-173). A widely-yjte the reader to refer to both Table 1 and Tablee 4
accepted threshold in social science for an accepin following the discussion below. Table 4 shows
ablea is 0.70 (Nunnally, 1978). After the consis- systematic differences. For example, contextually
tency check, we discuss validation results. sensitive measures (bigrams, trigrams, and xbi-
grams) are usually better (and never worse) than
unigram measures. The differences among the
In this section we first discuss results of unnormalifferent means of operationalizing context (bi-
ized string edit distance measures, and will COMyrams, trigrams and xbigrams) seem unremark-
pare them with their normalized counterparts far-gpje  however. Third, measures which are sensi-
ther onwards in this section. tive to linear order are slightly worse than those
The Cronbach’sy values of the unnormalized \yhich are not (variants of DICE) on averdge
measurements vary from 0.84 to 0.87. The Crongt when comparing the first column in Table 1
bach’sa values of the methods with ‘forced align- ith the others, we see that the highest correla-
ment’ are a bit lower than the values of the other tjgns (0.73) are found among the order sensitive
methods. An outlier arises when using the forcedmethods. Fourth, forcing alignment to respect
alignment’ and gradual bigram distances:0.78,  yowel/consonant differences yields a modest im-
but these all indicate that the measurements al§rovement in scores. Fifth, we see no clear ad-
quite consistent. vantage in measurements which weighgrams
We calculated correlations to the perceptual disgre sensitively to those binary comparison meth-
tances which are described in Section 4.1. Repgs which distinguish only same and different.
sults are given in Table 1. Let's note that the Sixth, and most surprisingly, we can compare
effect size, i.e., the- value itself, is quite high, Taple 1 which provides the correlation of edit dis-
0.66 < r < 0.73, meaning that the various dis- tances which weraotnormalized for length, with
tance measure are accounting for 43.6-53.3% Ofgple 2, which provides the results of the mea-
the variance in the perception measurements. Alfrements whiciwerenormalized. For some nor-
of the correlation coefficients are massively signif-malized measurements the Cronbaehiglue are
icant (p < 0.001), but given the stringency of the mjnimally higher (0.01). But comparison of the
Mantel test, they do not differ significantly from cqyrelation coefficients shows that normalization
one another. never improves measurements, and often leads to a

The correlations are quite similar. The maxi-geterioration. In Table 4 averages for the normal-
mal difference we found wa07, so that we con- jzed measurements are given. Normalized mea-

clude that none of the methods is strikingly better————— _ _
When using the unnormalized versions of the ‘DICE’

Or_WorS_e In operatlona_llzmg the level of pronun?'_' family, the distance is just equal to the number of non-shared
ation difference that dialect speakers are sensitive-grams.

5.1 Norwegian Perception
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binary gradual gest any benefit to the gradual weighting rof
no free  forc.| free forc. grams in comparison with the binary weighting.

align- align- align-| align- align- Most surprisingly, normalization again appears to

ment ment ment ment ment have a deleterious effect on the probity of the mea-
uni| 041 037 0.37| 037 0.37 surements.
bi | 037 035 037 036 0.35 We must stress again that these finer interpreta-
ti | 0.37 033 035 0.36 0.35 tions results require confirmation with a larger set
xbi | 0.36 0.35 0.35| 0.37 0.35 of sites.

Tgble 3: Local incoherencg valueg baseq on traved.3 German Geographic Sensitivity

distances for theunnormalizedstring edit dis-

tance measurements between 15 Norwegian dWhen checking the consistency of the German

alects. The lower the local incoherence value, th&neasurements we find Cronbachisvalues of

better the measurement technique. 0.95 and 0.96 for all methods without alignment
or with free alignment’ and for all unigram based
methods. The higher Cronbachislevels for this

surements display the same systematic differencegta set reflect the fact that it is larger. We find

that unnormalized measurements show, except fQgwer o values of 0.83-0.85 for the methods with
the differences between methods which consideforced alignment’. This accords with the consis-

the order of segments and methods which do notency results for the Norwegian measurements.
Measures which are sensitive to linear order are When using bigramsy is equal td).80 (binary.

slightly better than those which are not (Variamsnormalized),o.m (gradual, normalized)).74 (bi-

of DICE). nary, unnormalized) an@ 45 (gradual, unnormal-
ized). These low values are striking, and we found
no explanation for them, but they suggest that we
As we mentioned in Section 4.2, Norway is veryshould not attach much significance to this combi-
rugged. Therefore we based our local incoherhation of measurement properties. On average, the
ence values on travel distances rather than on géinnormalizedx's are the same as the normalized
ographic distances “as the crow flies”. We com-&’s.
puted local incoherence values for both unnormal- Since consistency values are higher ttaf0
ized and normalized string edit distance measurgiwith one exception), we validated the methods by
ments. The comparison confirms the findings ofcalculating the geographic local incoherence val-
Section 5.1: unnormalized methods always perues. We would have preferred to use perceptions,
form better than normalized ones. The unnormalbut we have no such data in the German case.
ized results are presented in Table 3. Since we found unnormalized string edit dis-
Recall that lower local incoherence valuestance measurements superior to normalized ones
should reflect better measurement techniquedn the Sections 5.1 and 5.2, we focus in this sec-
When we examine the table as a whole, we notéion on the unnormalized methods. Unnormalized
again that the various techniques are not hugelyesults are shown in Table 5.
different—they perform with similar degrees of Recall that the lower the local incoherence
success. value, the better the measurement technique. We
In Table 4, we find average local incoherencenclude this table for the sake of completeness, but
values for the factors under investigation. We findit is clear that the results do not jibe with the re-
first that contextually sensitive measures (bigramssults obtained from the Norwegian data. Unigram-
trigrams, and xbigrams) are again superior to unbased processing appears to be superior, and con-
igram methods, and second, measures which atext inferior; order-sensitive processing is inferior
sensitive to linear order are superior to the DICE40 order-insensitive processing, and linguistically
like methods (unnormalized versions). Third, lin-informed (“forced”) alignment appears to offer no
guistically informed alignments, which respect theadvantage.
vowel/consonant distinction, perform better than We leave the contrast between the Norwegian
uninformed (“free”) alignment (for the normalized and German results as a puzzle to be addressed in
versions). Fourth, the average values do not suduture work, but it should be clear that we have

5.2 Norwegian Geographic Sensitivity
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Factor Correlation with Local Number of
perception incoherence | measurements
raw normalized raw normalized
no order 0.70 0.67 0.38 0.45 4
order 0.69 0.68 0.36 0.46 16
unnormalized| 0.69 0.36 20
normalized 0.68 0.43 20
binary 0.69 0.68 0.36 0.43 8
gradual 0.68 0.67 0.36 0.43 8
free 0.67 0.67 0.36 0.43 8
forced 0.70 0.68 0.36 0.42 8
unigram 0.67 0.66 0.38 0.45 5
bigram 0.68 0.67 0.36 0.45 5
trigram 0.70 0.68 0.35 0.42 5
xbigram 0.70 0.69 0.36 0.41 5

Table 4: Average correlations between perceptual distancesmande., unnormalizedstring edit dis-
tance measurements among 15 Norwegian dialects. Higher coefficients and lower local incoherence
values indicate better results.

binary gradual techniques, but they do not confirm the value of
no free  forc.| free  forc. differential weighting forn-grams. The results
align- align- align-| align- align- mostly suggest that sensitivity to order of seg-
ment ment ment ment ment ments improves the measurements.
uni| 094 088 0.87 083 0.87 The larger German data likewise is unfortu-
bi | 1.00 098 2.09| 092 571 nately more recalcitrant (as are other data sets we
ti | 1.09 105 245 093 209 have examined, but in which we have less confi-
xbi | 096 095 245 0.98 245 dence). A disadvantage of the German data may

) . be that several transcribers were involved, work-
Table 5: Local incoherence values based on geq-

graphic distances for for thennormalizedstring l[ng over a period of twenty years, and that two

edit distance measurements 186 German dialectﬁ/.pres ]?f srl]Jtrvneys w_?rr]e rusr(;d, ann%tld'f;?]{fe?tr?r'
The lower the local incoherence value, the bette ers orsentences. There maybe subtie dilterences

. In pronunciation as a result of subjects’ becoming
the measurement technique. . o
more relaxed or more impatient in the course of a
survey interview.
rather more confidence in the Norwegian than in  on the other hand, the Norwegian data set is
the German results. This is due on the one had tgmal (15 dialect sites). Our conclusions rely on
the availability of independently behavioral dataassuymptions of its quality and transcriber consis-
we can use to independently validate our computency, but this warrants further examination. We
tations, but also to the more stable set of values Wg|so cannot exclude the possibility that optimal

see inthe case of the Norwegian data. Exastly  measurements depend on features of the language
the German data is so much more variable is alsgng/or data set.

a question we must postpone to future work. It is tempting to wish to redo this study using a

large, antiseptically clean data set, transcribed reli-
ably by a minimal number of phoneticians, but the
In this paper we examined a range of string comimore important practical direction may be to try
parison algorithms by applying them to Norwe-to understand which properties of data sets are im-
gian and German dialect comparison. The Norportant in selecting variants of pronunciation dis-
wegian results suggest that sensitivity to linguistance measures. Atlases of material on language
tic context in the form of-grams, and to linguis- varieties simply are not always clean and reliable,
tic structure in alignment improves measuremenand if we wish to contribute to their analysis, we

6 Conclusions and Prospects
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Abstract

To determine how close two language
models (e.g., n-grams models) are, we
can use several distance measures. If we
can represent the models as distributions,
then the similarity is basically the simi-
larity of distributions. And a number of
measures are based on information theo-
retic approach. In this paper we present
some experiments on using such similar-
ity measures for an old Natural Language
Processing (NLP) problem. One of the
measures considered is perhaps a novel
one, which we have called mutual cross
entropy. Other measures are either well
known or based on well known measures,
but the results obtained with them vis-a-
vis one-another might help in gaining an
insight into how similarity measures work
in practice.

The first step in processing a text is to
identify the language and encoding of its
contents. This is a practical problem since
for many languages, there are no uni-
versally followed text encoding standards.
The method we have used in this paper
for language and encoding identification
uses pruned character n-grams, alone as
well augmented with word n-grams. This
method seems to give results comparable
to other methods.

1 Introduction

Many kinds of models in NLP can be seen as dis-
tributions of a variable. For various NLP prob-
lems, we need to calculate the similarity of such
models or distributions. One common example of
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this is the n-grams model. We might have sev-
eral reference data sets and then we may want to
find out which of those matches most closely with
a test data set. The problem of language and en-
coding identification can be represented in these
terms. One of the most important questions then
is which similarity measure to use. We can expect
that the performance obtained with the similarity
measure will vary with the specific problem and
the kind of model used or some other problem spe-
cific details. Still, it will be useful to explore how
these measures relate to each other.

The measures we are going to focus on in this
paper are all very simple ones and they all try to
find the similarity of two models or distributions in
a (more or less) information theoretic way, except
the out of rank measure proposed by Cavnar and
Trenkle (Cavnar and Trenkle, 1994).

This work had started simply as an effort to
build a language and encoding identification tool
specifically for South Asian languages. During the
course of this work, we experimented with various
similarity measures and some of the results we ob-
tained were at least a bit surprising. One of the
measures we used was something we have called
mutual cross entropy and its performance for the
current problem was better than other measures.

Before the content of a Web page or of any kind
of text can be processed for computation, its lan-
guage and encoding has to be known. In many
cases this language-encoding is not known before-
hand and has to be determined automatically. For
languages like Hindi, there is no standard encod-
ing followed by everyone. There are many well
known web sites using their own proprietary en-
coding. This is one of the biggest problems in ac-
tually using the Web as a multilingual corpus and
for enabling a crawler to search the text in lan-
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guages like Hindi. This means that the content in
these languages, limited as it is, is invisible not
just to people (which could be just due to lack of
display support or unavailability of fonts for a par-
ticular encoding) but even to crawlers.

The problem of language identification is sim-
ilar to some other problems in different fields
and the techniques used for one such problem
have been found to be effective for other prob-
lems too. Some of these problems are text cate-
gorization (Cavnar and Trenkle, 1994), cryptanal-
ysis (Beesley, 1988) and even species identifi-
cation (Dunning, 1994) from genetic sequences.
This means that if something works for one of
these problems, it is likely to work for these other
problems.

It should be noted here that the identifica-
tion problem here is that of identifying both lan-
guage and encoding. This is because (especially
for South Asian languages) the same encoding
can be used for more than one languages (ISCII
for all Indian languages which use Brahmi-origin
scripts) and one language can have many encod-
ings (ISCII, Unicode, ISFOC, typewriter, pho-
netic, and many other proprietary encodings for
Hindi).

In this paper we describe a method based
mainly on character n-grams for identifying the
language-encoding pair of a text. The method
requires some training text for each language-
encoding, but this text need not have the same con-
tent. A few pages (2500-10000 words) of text in a
particular language-encoding is enough. A pruned
character based n-grams model is created for each
language-encoding. A similar model is created for
the test data too and is compared to the training
models. The best match is found using a similar-
ity measure. A few (5-15) words of test data seems
to be enough for identification in most cases.

The method has been evaluated using various
similarity measures and for different test sizes. We
also consider two cases, one in which the pruned
character n-grams model is used alone, and the
other in which it is augmented with a word n-gram
model.

2 Previous Work

Language identification was one of the first natural
language processing (NLP) problems for which a
statistical approach was used.

Ingle (Ingle, 1976) used a list of short words
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in various languages and matched the words in the
test data with this list. Such methods based on lists
of words or letters (unique strings) were meant for
human translators and couldn’t be used directly for
automatic language identification. They ignored
the text encoding, since they assumed printed text.
Even if adapted for automatic identification, they
were not very effective or scalable.

However, the earliest approaches used for au-
tomatic language identification were based on the
above idea and could be called ‘translator ap-
proaches’. Newman (Newman, 1987), among oth-
ers, used lists of letters, especially accented letters
for various languages and identification was done
by matching the letters in the test data to these
lists.

Beesley’s (Beesley, 1988) automatic language
identifier for online texts was based on mathemat-
ical language models developed for breaking ci-
phers. These models basically had characteristic
letter sequences and frequencies (‘orthographical
features’) for each language, making them similar
to n-grams models. The insights on which they are
based, as Beesley points out, have been known at
least since the time of Ibn ad-Duraihim who lived
in the 14th century. Beesley’s method needed 6-64
K of training data and 10-12 words of test data. It
treats language and encoding pair as one entity.

Adams and Resnik (Adams and Resnik, 1997)
describe a client-server system using Dunning’s
n-grams based algorithm (Dunning, 1994) for a
variety of tradeoffs available to NLP applications
like between the labelling accuracy and the size
and completeness of language models. Their sys-
tem dynamically adds language models. The sys-
tem uses other tools to identify the text encoding.
They use 5-grams with add-k smoothing. Training
size was 1-50 K and test size above 50 characters.
Some pruning is done, like for frequencies up to 3.

Some methods for language identification use
techniques similar to n-gram based text catego-
rization (Cavnar and Trenkle, 1994) which calcu-
lates and compares profiles of n-gram frequencies.
This is the approach nearest to ours. Such meth-
ods differ in the way they calculate the likelihood
that the test data matches with one of the profiles.
Beesley’s method simply uses word-wise proba-
bilities of ‘digram’ sequences by multiplying the
probabilities of sequences in the test string. Oth-
ers use some distance measure between training
and test profiles to find the best match.



Cavnar also mentions that top 300 or so n-grams
are almost always highly correlated with the lan-
guage, while the lower ranked n-grams give more
specific indication about the text, namely the topic.
The distance measure used by Cavnar is called
‘out-of-rank’ measure and it sums up the differ-
ences in rankings of the n-grams found in the test
data as compared to the training data. This is
among the measures we have tested.

The language model used by Combrinck and
Botha (Combrinck and Botha, 1994) is also based
on bigram or trigram frequencies (they call them
‘transition vectors’). They select the most dis-
tinctive transition vectors by using as measure the
ratio of the maximum percentage of occurrences
to the total percentage of occurrences of a transi-
tion vector. These distinctive vectors then form the
model.

Dunning (Dunning, 1994) also used an n-grams
based method where the model selected is the one
which is most likely to have generated the test
string. Giguet (Giguet, 1995b; Giguet, 1995a) re-
lied upon grammatically correct words instead of
the most common words. He also used the knowl-
edge about the alphabet and the word morphology
via syllabation. Giguet tried this method for tag-
ging sentences in a document with the language
name, i.e., dealing with multilingual documents.

Another method (Stephen, 1993) was based on
‘common words’ which are characteristic of each
language. This methods assumes unique words
for each language. One major problem with this
method was that the test string might not contain
any unique words.

Cavnar’s method, combined with some heuris-
tics, was used by Kikui (Kikui, 1996) to identify
languages as well as encodings for a multilingual
text. He relied on known mappings between lan-
guages and encodings and treated East Asian lan-
guages differently from West European languages.

Kranig (Muthusamy et al., 1994) and (Simon,
2005) have reviewed and evaluated some of the
well known language identification methods. Mar-
tins and Silva (Martins and Silva, 2005) describe
a method similar to Cavnar’s but which uses a dif-
ferent similarity measure proposed by Jiang and
Conrath (Jiang and Conrath, 1997). Some heuris-
tics are also employed.

Poutsma’s (Poutsma, 2001) method is based on
Monte Carlo sampling of n-grams from the begin-
ning of the document instead of building a com-

plete model of the whole document. Sibun and
Reynar (Sibun and Reynar, 1996) use mutual in-
formation statistics or relative entropy, also called
Kullback-Leibler distance for language identifica-
tion. Souter et al.(Souter et al., 1994) compared
unique character string, common word and ’tri-
graph’ based approaches and found the last to be
the best.

Compression based approaches have also been
used for language identification. One example of
such an approach is called Prediction by Partial
Matching (PPM) proposed by Teahan (Teahan and
Harper, 2001). This approach uses cross entropy
of the test data with a language model and predicts
a character given the context.

3 Pruned Character N-grams

Like in Cavnar’s method, we used pruned n-grams
models of the reference or training as well as
test data. For each language-encoding pair, some
training data is provided. A character based n-
gram model is prepared from this data. N-grams
of all orders are combined and ranked according
to frequency. A certain number of them (say 1000)
with highest frequencies are retained and the rest
are dropped. This gives us the pruned charac-
ter n-grams model, which is used for language-
encoding identification.

As an attempt to increase the performance, we
also tried to augment the pruned character n-grams
model with a word n-gram model.

4 Distance Measures

Some of the measures we have experimented with
have already been mentioned in the section on pre-
vious work. The measures considered in this work
range from something as simple as log probabil-
ity difference to the one based on Jiang and Con-
rath (Jiang and Conrath, 1997) measure.

Assuming that we have two models or distribu-
tions P and Q over a variable X, the measures (sin)
are defined as below (p and ¢ being probabilities
and r and s being ranks in models P and Q:

1. Log probability difference:
sim =y (log p(x) —log q(x)) (1)

2. Absolute log probability difference:
sim = Z (abs(log p(x)) — abs(log q(x)))
(2)



3. Cross entropy:

sim = Z x) * log q(x)) 3)

4. RE measure (based on relative entropy or
Kullback-Leibler distance — see note below):

log p(x)
sim = Z )

. JC measure (based on Jiang and Conrath’s
measure) (Jiang and Conrath, 1997):

log p(x

) “)
og q(x

sim=A—-B )

where,

A=2x)" (log p(x) + log q(x))

xT

Q)

and,

B = Zlogp +Zlogq

Out of rank measure (Cavnar and Trenkle,
1994):

(7

s(x))  (®)

sim = Z abs(r(z) —

MRE measure (based on mutual or symmet-
ric relative entropy, the original definition of
KL-distance given by Kullback and Leibler):

sim = Z i—l—z q(z)

log p(

log q(x log p(x)

€)

Mutual (or symmetric) cross entropy:

stm = Z

z)+q(z)*log p(z))
(10)

x)*log q(

As can be noticed, all these measures, in a way,
seem to be information theoretic in nature. How-
ever, our focus in this work is more on the pre-
senting empirical evidence rather than discussing
mathematical foundation of these measures. The
latter will of course be interesting to look into.

NOTE:

We had initiallly experimented with relative en-
tropy or KL-distance as defined below (instead of
the RE measure mentioned above):

sim:Zp(x)lgM

11
@ P

log q(x)
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Another measure we tried was DL measure
(based on Dekang Lin’s measure, on which the JC
measure is based):

(12)

sim = —
where A and B are as given above.
The results for the latter measure were not very
good (below 50% in all cases) and the RE mea-
sure defined above performed better than relative
entropy. These results have not been reported in
this paper.

5 Mutual Cross Entropy

Cross entropy is a well known distance measure
used for various problems. Mutual cross entropy
can be seen as bidirectional or symmetric cross en-
tropy. It is defined simply as the sum of the cross
entropies of two distributions with each other.

Our motivation for using ‘mutual’ cross entropy
was that many similarity measures like cross en-
tropy and relative entropy measure how similar
one distribution is to the other. This will not neces-
sary mean the same thing as measuring how sim-
ilar two distributions are to each other. Mutual
information measures this bidirectional similarity,
but it needs joint probabilities, which means that
it can only be applied to measure similarity of
terms within one distribution. Relative entropy or
Kullback-Leibler measure is applicable, but as the
results show, it doesn’t work as well as expected.

Note that some authors treat relative entropy
and mutual information interchangeably. They are
very similar in nature except that one is applicable
for one variable in two distributions and the other
for two variables in one distribution.

Our guess was that symmetric measures may
give better results as both the models give some in-
formation about each other. This seems to be sup-
ported by the results for cross entropy, but (asym-
metric) cross entropy and RE measures also gave
good results.

6 The Algorithm

The foundation of the algorithm for identifying the
language and encoding of a text or string has al-
ready been explained earlier. Here we give a sum-
mary of the algorithm we have used. The parame-
ters for the algorithm and their values used in our
experiments reported here have also been listed.
These parameters allow the algorithm to be tuned



Table 1: DESCRIPTION OF DATA SETS
Names

Afrikaans (1), Assamese (1), Bengali (2), Bulgarian (1), Catalan (1)
Czech (1), Danish (1), Dutch (1), English (1), Esperanto (1)
Finnish (1), French (1), German (1), Gujarati (2), Hindi (8)
Icelandic (1), Iloko (1), Iroquoian (1), Italian (1), Kannada (1)
Khasi (1), Latin (1), Malayalam (1), Marathi (5), Modern Greek (1)
Nahuatl (1), Norwegian (1), Oriya (2), Polish (1), Portugues (1)
Punjabi (1), Romanian (1), Russian (1), Serbian (1), Spanish (1)
Tagalog (1), Tamil (1), Telugu (1), Welsh (1) 39
UTES (7), ISO-8859-1 (16), ISO-8859-2 (1), US-ASCII (4)
Windows-1251 (2), Windows-1250 (1), ISCII (10), ISFOCB (1)
ITrans (1), Shusha (1), Typewriter (1), WX (1), Gopika (1)
Govinda (1), Manjusha (1), Saamanaa (1), Subak (1)

Akruti Sarala (1), Webdunia (1) 19

Counts in parenthesis represent the extra ambiguity for that language or encoding.
For example, Hindi (8) means that 8 different encodings were tested for Hindi.

Total Count

Languages

Encodings

Language-Encoding Pairs: 53 \

Minimum training data size: 16035 characters (2495 words)
Maximum training data size: 650292 characters (102377 words)
Average training data size: 166198 characters (22643 words)

Confusable Languages: Assamese/Bengali/Oriya, Dutch/Afrikaans, Norwegian/Danish,
Spanish/Tagalog, Hindi/Marathi, Telugu/Kannada/Malayalam, Latin/Franch

5. For the given test data or string, calculate
Table 2: NUMBER OF TEST SETS & &

Size Number the character n-gram based score sim,. with
100 22083 every model for which the system has been
200 10819 trained.
>00 4091 6. Select the ¢ most likely language-encoding
1000 1867
pairs (training models) based on this charac-

2000 1524 ter based n-gram score.

All test data 840

7. For each of the ¢ best training models, calcu-
late the score with the test model. The score

or customized for best performance. Perhaps they is calculated as:

can even be learned by using some approach as the
EM algorithm.
(13)

score = SiM, + @ * S1My,

1. Train the system by preparing character

based and word based (optional) n-grams
from the training data.

where ¢ and w represent character based and
word based n-grams, respectively. And a is
the weight given to the word based n-grams.

2. Combine n-grams of all orders (O, for char- In our experiment, this weight was 1 for the
acters and O,, for words). case when word n-grams were considered
and 0 when they were not.
3. Sort them by rank.
. Select the most likely language-encoding pair
4. Prune by selecting only the top N, charac- out of the £ ambiguous pairs, based on the

ter n-grams and N, word n-grams for each
language-encoding pair.
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combined score obtained from word and
character based models.



Table 3: PRECISION FOR VARIOUS MEASURES AND TEST SIZES

Precision

Test Size (characters) | LPD [ ALPD | CE | RE | CT | JC | MRE | MCE
100 CN 91.00 | 90.69 |96.13 | 98.51 | 78.92 [ 97.71 | 98.26 | 97.64
CWN || 9431 | 94.15 | 97.50 | 75.54 | 81.63 | 98.35 | 94.16 | 98.38

200 CN 94.46 | 94.37 |97.72 1 99.35 | 91.24 | 99.05 | 99.24 | 99.05
CWN || 96.52 | 96.52 | 98.85 | 90.54 | 92.79 | 99.21 | 91.13 | 99.39

500 CN 96.24 | 96.24 | 98.39 [ 99.68 | 96.41 | 99.58 [ 99.63 | 99.63
CWN || 98.19 | 97.80 | 99.46 | 94.65 | 96.82 | 99.63 | 98.78 | 99.85

1000 CN 97.18 | 96.81 | 98.81 | 99.78 [ 97.73 | 99.89 | 99.73 | 99.95
CWN || 9821 | 98.21 | 99.68 | 96.64 | 98.05 | 99.89 | 99.40 | 100.00

2000 CN 95.01 [ 9421 |98.20 [ 99.40 | 95.21 | 99.33 [ 99.20 | 99.47
CWN || 96.74 | 97.14 | 99.47 | 94.01 | 95.81 | 99.40 | 96.67 | 99.60

All available | CN 82.50 | 88.57 |98.33 | 99.88 | 94.76 | 99.88 | 99.76 | 100.00
testdata | CWN || 89.88 | 94.64 | 99.88 | 94.76 | 96.55 | 99.88 | 97.86 | 100.00

CN: Character n-grams only, CWN: Character n-grams plus word n-grams ‘

To summarize, the parameters in the above
method are:

1. Character based n-gram models P. and Q).

. Word based n-gram models P,, and @,

2

3. Orders O, and O,, of n-grams models

4. Number of retained top n-grams N, and N,
(pruning ranks for character based and word

based n-grams, respectively)

. Number t of character based models to be
disambiguated by word based models

6. Weight a of word based models

Parameters 3 to 6 can be used to tune the per-
formace of the identification system. The results
reported in this paper used the following values of
these parameters:

1. O, =4
2.0y =3
3. N. = 1000
4. Ny =500
5.t=5

6. a=1

There is, of course, the type of similarity score,
which can also be used to tune the performance.
Since MCE gave the best overall performance in
our experiments, we have selected it as the default
score type.
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7 Implementation

The language and encoding tool has been imple-
mented as a small API in Java. This API uses an-
other API to prepare pruned character and word
n-grams which was developed as part of another
project. A graphical user interface (GUI) has also
been implemented for identifying the languages
and encodings of texts, files, or batches of files.
The GUI also allows a user to easily train the tool
for a new language-encoding pair. The tool will be
modified to work in client-server mode for docu-
ments from the Internet.

From implementation point of view, there are
some issues which can significantly affect the per-
formance of the system:

1. Whether the data should be read as text or as
a binary file.

The assumed encoding used for reading the
text, both for training and testing. For ex-
ample, if we read UTFS data as [ISO-8859-1,
there will be errors.

. Whether the tranining models should be read
every time they are needed or be kept in
memory.

If training models are stored (even if they are
only read at the beginning and then kept in
memory), as will have to be done for practical
applications, how should they be stored: as
text or in binary files?



To take care of these issues, we adopted the fol-
lowing policy:

1. For preparing character based models, we
read the data as binary files and the charac-
ters are read as bytes and stored as numbers.
For word based models, the data is read as
text and the encoding is assumed to be UTFS.
This can cause errors, but it seems to be the
best (easy) option as we don’t know the ac-
tual encoding. A slightly more difficult op-
tion to implement would be to use charac-
ter based models to guess the encoding and
then build word based models using that as
the assumed encoding. The problem with this
method will be that no programming environ-
ment supports all possible encodings. Note
that since we are reading the text as bytes
rather than characters for preparing ‘charac-
ter based n-grams’, technically we should say
that we are using byte based n-grams mod-
els, but since we have not tested on multi-byte
encodings, a byte in our experiments was al-
most always a character, except when the en-
coding was UTF8 and the byte represented
some meta-data like the script code. So, for
practical purposes, we can say that we are us-
ing character based n-grams.

. Since after pruning, the size of the models
(character as well as word) is of the order of
50K, we can afford to keep the training mod-
els in memory rather than reading them every
time we have to identify the language and en-
coding of some data. This option is naturally
faster. However, for some applications where
language and encoding identification is to be
done rarely or where there is a memory con-
straint, the other option can be used.

. It seems to be better to store the training mod-
els in binary format since we don’t know the
actual encoding and the assumed encoding
for storing may be wrong. We tried both
options and the results were worse when we
stored the models as text.

Our identification tool provides customizability
with respect to all the parameters mentioned in this
and the previous section.

8 Evaluation

Evaluation was performed for all the measures
listed earlier. These are repeated here with a code
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for easy reference in table-3.

LPD: Log probability difference

ALPD: Absolute log probability difference
CE: Cross entropy
RE: RE measure based on relative entropy

JC: JC measure (based on Jiang and Con-
rath’s measure)

CT: Cavnar and Trenkle’s out of rank mea-
sure

MRE: MRE measure based on mutual (sym-
metric) relative entropy

e MCE: Mutual (symmetric) cross entropy

We tested on six different sizes in terms of char-
acters, namely 100, 200, 500, 1000, 2000, and all
the available test data (which was not equal for
various language-encoding pairs). The number of
language-encoding pairs was 53 and the minimum
number of test data sets was 840 when we used
all available test data. In other cases, the number
was naturally larger as the test files were split in
fragments (see table-2).

The languages considered ranged from Es-
peranto and Modern Greek to Hindi and Telugu.
For Indian languages, especially Hindi, several en-
codings were tested. Some of the pairs had UTF8
as the encoding, but the information from UTF8
byte format was not explicitly used for identifi-
cation. The number of languages tested was 39
and number encodings was 19. Total number of
language-encoding pairs was 53 (see table-1).

The test and training data for about half of
the pairs was collected from web pages (such as
Gutenberg). For Indian languages, most (but not
all) data was from what is known as the CIIL cor-
pus.

We didn’t test on various training data sizes.
The size of the training data ranged from 2495 to
102377 words, with more on the lower side than
on the higher.

Note that we have considered the case where
both the language and the encoding are unknown,
not where one of them is known. In the latter case,
the performance can only improve. Another point
worth mentioning is that the training data was not
very clean, i.e., it had noise (such as words or sen-
tences from other languages). Error details have
been given in table-4.



Table 4: ERROR DETAILS

Language-Encoding

‘ Identified As

Afrikaans:: ISO-8859-1

Dutch::ISO-8859-1 (9)

Assamese::ISCII

Bengali::ISCII (6), Oriya::ISCII (113)

Bengali::ISCII

Hindi::ISCII (2), Oriya::ISCII (193)

Bulgarian:: Windows-1251

Marathi::ISCII (6)

Catalan::ISO-8859-1

Latin::ISO-8859-1 (4)

Danish::ISO-8859-1

Norwegian::ISO-8859-1 (7)

Dutch::ISO-8859-1

Afrikaans::ISO-8859-1 (4)

English::ASCII

Icelandic::UTF8 (36)

Esperanto::UTF8

Danish::ISO-8859-1 (5), Italian::ISO-8859-1 (1)

French::ISO-8859-1

Catalan::ISO-8859-1 (6)

German::ISO-8859-1

Dutch::ISO-8859-1 (4), Latin::ISO-8859-1 (3)

Hindi::ISCII

English:: ASCII (14), Marathi::ISCII (20)

Hindi::Isfocb Dutch::ISO-8859-1 (4), English::ASCII (6)
Hindi::Phonetic-Shusha English::ASCII (14)

Hindi:: Typewriter English::ASCII (12)

Hindi::UTF8 Marathi::UTF8 (82)

Hindi::WX English::ASCII (8)

Hindi::Webdunia French::ISO-8859-1 (2), Gujarati::Gopika (9)

Icelandic::UTF8

Dutch::ISO-8859-1 (3), Latin::ISO-8859-1 (2)

Tloko::ISO-8859-1

Tagalog::ISO-8859-1 (18)

Iroquoian:: ISO-8859-1

French::ISO-8859-1 (7)

Ttalian::ISO-8859-1

Catalan::ISO-8859-1 (2)

Kannada::ISCII

Malayalam::ISCII (9)

Latin::ISO-8859-1

Catalan::ISO-8859-1 (3), Dutch::ISO-8859-1 (85)
French::ISO-8859-1 (28)

Malayalam::ISCII

Tamil::ISCII (3)

Marathi::ISCII

Hindi::ISCII (13)

Marathi::Manjusha

English:: ASCII (1)

Marathi::UTF8

Hindi::UTF8 (30)

Nahuatl::ISO-8859-1

English:: ASCII (2)

Norwegian::ISO-8859-1

Danish::ISO-8859-1 (69)

Oriya::ISCII

Assamese::ISCII (5), Bengali::ISCII (70), Hindi::ISCII (7)

Portugues::ISO-8859-1

Catalan::ISO-8859-1 (4)

Punjabi::ISCII

Assamese::ISCII (2), Hindi::ISCII (1)

Romanian::US-ASCII

Italian::ISO-8859-1 (2)

Russian::Windows-1251

Portugues::ISO-8859-1 (12)

Spanish::ISO-8859-1

Portugues::1ISO-8859-1 (2), Tagalog::ISO-8859-1 (44)

Tagalog::1SO-8859-1

English::ASCII (37), Khasi::US-ASCII (15)

Telugu::ISCII

Hindi::ISCII (15), Kannada::ISCII (21), Malayalam::ISCII (2)

These error were for MCE, both with and without word models for
all the test data sizes from 200 to all available data. Most of the
errors were for smaller sizes, i.e., 100 and 200 characters.
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9 Results

The results are presented in table-3. As can be
seen almost the measures gave at least moderately
good results. The best results on the whole were
obtained with mutual cross entropy. The JC mea-
sure gave almost equally good results. Even a sim-
ple measure like log probability difference gave
surprisingly good results.

It can also be observed from table-3 that the size
of the test data is an important factor in perfor-
mance. More test data gives better results. But this
does not always happen, which too is surprising.
It means some other factors also come into play.
One of these factors seem to whether the train-
ing data for different models is of equal size or
not. Another factor seems to be noise in the data.
This seems to affect some measures more than the
others. For example, LPD gave the worst perfor-
mance when all the available test data was used.
For smaller data sets, noise is likely to get isolated
in some data sets, and therefore is less likely to
affect the results.

Using word n-grams to augment character n-
grams improved the performance in most of the
cases, but for measures like JC, RE, MRE and
MCE, there wasn’t much scope for improvement.
In fact, for smaller sizes (100 and 200 charac-
ters), word models actually reduced the perfor-
mance for these better measures. This means ei-
ther that word models are not very good for better
measures, or we have not used them in the best
possible way, even though intuitively they seem to
offer scope for improvement when character based
models don’t perform perfectly.

10 Issues and Enhancements

Although the method works very well even on lit-
tle test and training data, there are still some is-
sues and possible enhancements. One major issue
is that Web pages quite often contain text in more
than one language-encoding. An ideal language-
encoding identification tool should be able to mark
which parts of the page are in which language-
encoding.

Another possible enhancement is that in the
case of Web pages, we can also take into account
the language and encoding specified in the Web
page (HTML). Although it may not be correct for
non-standard encodings, it might still be useful for
differentiating between very close encodings like
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ASCII and ISO-8859-1 which might seem identi-
cal to our tool.

If the text happens to be in Unicode, then it
might be possible to identify at least the encod-
ing (the same encoding might be used for more
than one languages, e.g., Devanagari for Hindi,
Sanskrit and Marathi) without using a statistical
method. This might be used for validating the re-
sult from the statistical method.

Since every method, even the best one, has
some limitations, it is obvious that for practical
applications we will have to combine several ap-
proaches in such a way that as much of the avail-
able information is used as possible and the var-
ious approaches complement each other. What is
left out by one approach should be taken care of by
some other approach. There will be some issues
in combining various approaches like the order in
which they have to used, their respective priorities
and their interaction (one doesn’t nullify the gains
from another).

It will be interesting to apply the same method
or its variations on text categorization or topic
identification and other related problems. The dis-
tance measures can also be tried for other prob-
lems.

11 Conclusion

We have presented the results about some dis-
tance measures which can be applied to NLP prob-
lems. We also described a method for automati-
cally identifying the language and encoding of a
text using several measures including one called
‘mutual cross entropy’. All these measures are ap-
plied on character based pruned n-grams models
created from the training and the test data. There
is one such model for each of the known language-
encoding pairs. The character based models may
be augmented with word based models, which in-
creases the performance for not so good measures,
but doesn’t seem to have much effect for better
measures. Our method gives good performance on
afew words of test data and a few pages of training
data for each language-encoding pair. Out of the
measures considered, mutual cross entropy gave
the best results, but RE, MRE and JC measures
also performed almost equally well.
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Are Chunks Reliable Indicators for Syntax Trees?
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Abstract training data, and the respective syntax tree is then
adapted to the input sentence. The parser was de-
veloped for parsing German dialog data, and it is

based on the observation that dialogs tend to be

repetitive in their structure. Thus, there is a higher

This paper presents an approach to the
question whether it is possible to construct
a parser based on ideas from case-based

reasoning. Such a parser would employ
a partial analysis of the input sentence
to select a (nearly) complete syntax tree
and then adapt this tree to the input sen-
tence. The experiments performed on Ger-
man data from the Tiba-D/Z treebank and
the KaRoPars partial parser show that a
wide range of levels of generality can be
reached, depending on which types of in-
formation are used to determine the simi-
larity between input sentence and training
sentences. The results are such that it is

possible to construct a case-based parser.

The optimal setting out of those presented

than normal probability of finding the same or a
very similar sentence in the training data.

The present paper examines the possibilities of
extending the concepts in (Kubler, 2004a; Kibler,
2004b) to unrestricted newspaper text. Since in
newspaper text, the probability of finding the same
sentence or a very similar one is rather low, the
parser needs to be extended to a more flexible ap-
proach which does not rely as much on identity
between sentences as the original parser.

The paper is structured as follows: Section 2 ex-
plains the original parser in more detail, and sec-
tion 3 describes the treebank used in the investi-
gation. Section 4 investigates whether the chunk

here need to be determined empirically. sequences used for selecting the most similar sen-

tence in the training data give a reliable estimate
of the syntax tree, section 5 investigates properties

Linguistic similarity has often been used as a biaLf tree sets associated with chunk sequences, and
in machine learning approaches to Computationa$eCti0n 6 draws conclusions on the architecture of
Linguistics problems. The success of applying®" extended case-based parser.
memory-based learning to problems such as PO
tagging, named-entity recognition, partial parsing,
or word sense disambiguation (cf. (Daelemans et The parser in (Kiibler, 2004a; Kubler, 2004b)
al., 1996; Daelemans et al., 1999; Mooney, 1996approaches parsing as the task of finding a com-
Tjong Kim Sang, 2002; Veenstra et al., 2000))plete syntax tree rather than incrementally build-
shows that the bias of this similarity-based ap-4ng the tree by rule applications, as in standard
proach is suitable for processing natural languag®CFGs. Despite this holistic approach to selecting
problems. the most similar tree, the parser has a reasonable
In (Kiibler, 20044a; Kubler, 2004b), we extendedperformance: the first column of Table 1 shows
the application of memory-based learning to fullthe parser’'s evaluation on German spontaneous
scale parsing, a problem which cannot easily bepeech dialog data. This approach profits from the
described as a classification problem. In this apfact that it has a more global view on parsing than
proach, the most similar sentence is found in thea PCFG parser. In this respect, the memory-based

1 Introduction

A Memory-Based Parser
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memory-based parser KaRoPars
labeled recall (syntactic categories) 82.45% 90.86%
labeled precision (syntactic categories) 87.25% 90.17%
= 84.78 90.51
labeled recall (incl. gramm. functions) 71.72%
labeled precision (incl. gramm. functiong) 75.79%
= 73.70

Table 1. Results for the memory-based parser (Kibler, 2084ibler, 2004b) and KaRoPars (Muller
and Ule, 2002; Muller, 2005). The evaluation of KaRoPaisdsed on chunk annotations only.

parser employs a similar strategy to the one in Kreativitat.
Data-Oriented ParsingDOP) (Bod, 1998; Scha et creativity.
al., 1999). Both parsers use larger tree fragments "The internationally recognized artist discerns

the origin of all creativity in the conscious

tha_n the_ standard trees. The two approaches differ perception of life.

mainly in two respects: 1) DOP allows different b. [PC In der bewuRten Wahrnehmung des
tree fragments to be extracted from one tree, thus Lebens] [VCL sieht] [NC der international
making different combinations of fragments avail- angesehene Kunstler] [NC den Ursprung]

o NC aller Kreativitat].
able for the assembly of a specific tree. Our parser, ING aller Kreativita]

in contrast, allows only one clearly defined tree  NCs are noun chunks, PC is a prepositional
fragment for each tree, in which only the phrasechunk, and VCL is the finite verb chunk. While
internal structure is variable. 2) Our parser doegor the chunks to the right of the verb chunk, no
not use a probabilistic model, but a simple costgttachment decision could be made, the genitive
function instead. Both factors in combination re-noun phrasedes Lebensould be grouped with
sultin a nearly deterministic, and thus highly effi- the pC because of German word order regularities,
cient parsing strategy. which allow exactly one constituent in front of the
Since the complete tree structure in thefinite verb.
memory-based parser is produced in two steps (re- |t can be hypothesized that the selection of
trieval of the syntax tree belonging to the mostthe most similar sentence based on sequences of
similar sentence and adaptation of this tree to thgyords or POS tags works best for dialog data be-
input sentence), the parser must rely on more incause of the repetitive nature of such dialogs. The
formation than the local information on which a strategy with the greatest potential for generaliza-
PCFG parser suggests the next constituent. F@jon to newspaper texts is thus the usage of chunk
this reason, we suggested a backing-off architecsequences. In the remainder of this paper, we will
ture, in which each modules used different types ofherefore concentrate on this approach.
easily obtainable linguistic information such asthe  The proposed parser is based on the follow-

sequence of words, the sequence of POS tags, afiy architecture: The parser needs a syntactically
the sequence of chunks. Chunk parsing is a partiginnotated treebank for training. In the learning
parsing approach (Abney, 1991), which is generphase, the training data are chunk parsed, the
ally implemented as cascade of finite-state transgpnk sequences are extracted from the chunk
ducers. A chunk parser generally gives an analnarse and fitted to the syntax trees; then the trees
ysis on the clause level and on the phrase IeveEre stored in memory. In the annotation phase, the
However, it does not make any decisions concernpew sentence is chunk parsed. Based on the se-
ing the attachment of locally ambiguous phrasesgyence of chunks, the group of most similar sen-
Thus, the German sentence in (1a) receives thgnces, which all share the same chunk analysis, is
chunk annotation in (1b). retrieved from memory. In a second step, the best
(1) a InderbewuRterwahrehmungles sentence from t'his group needs to be selected, and
In the consciouperception  of the the corresponding tree needs to be adapted to the
Lebenssieht  derinternational input sentence.

life ~discernsthe internationally The complexity of such a parser crucially de-
angeseheneKunstlerdenUrsprungaller

distinguishecartist  the origin of all pends on the question whether these chunk se-
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guences are reliable indicators for the correct synsentence brackdt_K), and the remaining verbal
tax trees. Basically, there exist two extreme poselements theight sentence brack€¥/C). The left
sibilities: 1) most chunk sequences are associateloracket is preceded by thaitial field (VF), be-
with exactly one sentence, and 2) there is only dween the two verbal fields, we have the unstruc-
small number of different chunk sequences, whichiured middle field (MF). Extraposed constituents
are each associated with many sentences. In thee in thefinal field (NF).
first case, the selection of the correct tree based The tree for sentence (1a) is shown in Figure
on a chunk sequence is trivial but the coveragel. The syntactic categories are shown in circular
of the parser would be rather low. The parsemodes, the function-argument structure as edge la-
would encounter many sentences with chunk sebels in square boxes. Inside a phrase, the function-
quences which are not present in the training dataargument annotation describes head/non-head re-
In the second case, in contrast, the coverage dhtions; on the clause level, directly below the
chunk sequences would be good, but then suctbpological fields, grammatical functions are an-
a chunk sequence would correspond to many difnotated. The prepositional phrase (PX) is marked
ferent trees. As a consequence, the tree selectias a verbal modifier (V-MOD), the noun phrase
process would have to be more elaborate. Botlger international angeseheneiiistler as subject
extremes would be extremely difficult for a parser(ON), and the complex noun phragen Ursprung
to handle, so in the optimal case, we should havaller Kreativitat as accusative object (OA). The
a good coverage of chunk sequences combinegpological fields are annotated directly below the
with a reasonable number of trees associated withlause node (SIMPX): the finite verb is placed in
a chunk sequence. the left bracket, the prepositional phrase consti-
The investigation on the usefulness of chunk setutes the initial field, and the two noun phrases the
quences was performed on the data of the Germatmiddle field.
treebank TuBa-D/Z (Telljohann et al., 2004) and
on output from KaRoPars, a partial parser for Ger3.2  Partially Parsed Data
man (Muller and Ule, 2002). But in principle, the ) _ ]
parsing approach is valid for languages ranging KaRoPars (Muller and Ule, 2002) is a partial
from a fixed to a more flexible word order. The Parser for German, based on the finite-state tech-

German data will be described in more detail inn0logy of the TTT suite of tools (Grover et al.,

the following section. 1999). It employs a mixed bottom-up top-down
routine to parse German. Its actual performance is

3 The German Data difficult to determine exactly because it employed
manually written rules. The figures presented in

3.1 The Treebank TuBa-D/Z Table 1 result from an evaluation (Miller, 2005) in

The TiBa-D/Z treebank is based on text from thewhich the parser output was compared with tree-
German newspaper 'die tageszeitung’, the preseﬂﬂank structures. The figures in the Table are based
release comprises approx. 22 000 sentences. T an evaluation of chunks only, i.e. the annotation
treebank uses an annotation framework that i©ftopological fields and clause boundaries was not
based on phrase structure grammar enhanced §§ken into account.

a level of predicate-argument structure. The an- The output of KaRoPars is a complex XML rep-
notation scheme uses pure projective tree strugesentation with more detailed information than is
tures. In order to treat long-distance relationshipsneeded for the present investigation. For this rea-
TuBa-D/Z utilizes a combination of topological son, we show a condensed version of the parser
fields (Hohle, 1986) and specific functional labelsoutput for sentence (1a) in Figure 2. The figure
(cf. the tree in Figure 5, there the extraposed relshows only the relevant chunks and POS tags, the
ative clause modifies the subject, which is anno€omplete output contains more embedded chunks,
tated via the labeDN-MOD). Topological fields the n-best POS tags from different taggers, mor-
described the main ordering principles in a Gerphological information, and lemmas. As can be
man sentence: In a declarative sentence, the poseen from this example, chunk boundaries often
tion of the finite verb as the second constituent andlo not coincide with phrase boundaries. In the
of the remaining verbal elements at the end of thgresent case, it is clear from the word ordering
clause is fixed. The finite verb constitutes th#  constraints in German that the noun phrakes
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In der bewuBten  Wahrnehmung des Lebens  sieht der international  angesehene  Kiinstler den Ursprung  aller  Kreativitat
APPR ART ADJA NN ART NN VVFIN  ART ADJD ADJA NN ART NN PIDAT NN $.

Figure 1: The TuBa-D/Z tree for sentence (1a).

<s broken="no">
<cl c="v2">
<ch fd="VF" c=" PC' prep="in">
<ch c=" PC' prep="in">
<t f=" In "><P t="APPR"></P></t>
<ch nccat="noun" hdnoun="Wahrnehmung" c=" NC>
<t f=" der "><P t="ART"></P></t>
<t f=" bewulten "><P t="ADJA"></P></t>
<t f=" Wahrnehmung"><P t="NN"></P></t></ch></ch>
<ch nccat="noun" hdnoun="Leben" c=" NC'>
<t f=" des"><P t="ART"></P></t>
<t f=" Lebens "><P t="NN"></P></t></ch></ch>
<ch finit="fin" c=" VCLVF mode="akt">
<t f=" sieht "><P t="VVFIN"></P></t></ch>
<ch nccat="noun" hdnoun="K unstler" c=" NC'>
<t f=" der "><P t="ART"></P></t>
<t f=" international "><P t="ADJD"></P></t>
<t f=" angesehene "><P t="ADJA"></P></t>
<t f=" Kunstler "><P t="NN"></P></t></ch>
<ch nccat="noun" hdnoun="Ur=Sprung" c=" NC'>
<t f=" den"><P t="ART"></P></t>
<t f=" Ursprung "><P t="NN"></P></t></ch>
<ch nccat="noun" hdnoun="Kreativit at" c=" NC'>
<t f=" aller "><P t="PIDAT"></P></t>
<t f=" Kreativit at "><P t="NN"></P></t></ch></cl></s>

Figure 2: The KaRoPars analysis for sentence (1a). Forrlvetidability, the words and the chunk types
are displayed in bold.

Lebenseeds to be attached to the previous phraseuences. This gives an average of 1.37 trees per
In the treebank, it is grouped into a complex nounchunk sequence. At a first glance, the result indi-
phrase while in the KaRoPars output, this nourcates that the chunk sequences are very good in-
phrase is the sister of the prepositional chunk dicators for selecting the correct syntax tree. The
der bewul3ten Wahrnehmunguch boundary mis- negative aspect of this ratio is that many of these

matches also occur on the clause level. chunk sequences will not be part of the training

) data. This is corroborated by an experiment in

4 Chunk Sequences as Indicators for which one tenth of the complete data set of chunk
Syntax Trees sequences (test set) was tested against the remain-

The complexity of the proposed parser depends offe" Of the data set (training set) to see how many

the proportion of chunk sequences versus syntaRf the test sequences could be found in the train-
trees, as explained in section 2. A first indicationind data. In order to reach a slightly more accurate

of this proportion is given by the ratio of chunk PICture, a ten-fold setting was used, i.e. the exper-
sequence types and tree types. Out of the 22 oginent was repeated ten times, each time using a

sentences in the treebank, there are 20 340 diffeflifferent segment as test set. The results show that
ent trees (types) and 14 894 different chunk se@" average only 43.61% of the chunk sequences
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could be found in the training data. Thus, the complex sentence in (4) translates into

(2) Schon tifft sich dieMannschaferst am 5 different clauses, i.e. into 5 different chunk se-
AlreadymeetsREFLtheteam onlyon the quences:
ggr'ﬁg%%y 1. SubC NC:noun AVC AVC AVC NC:noun

NC:noun VCR:fin
2. PCNC:noun PC PC VCR:fin

In a second experiment, we added more infor- 3. SubC NC:noun AVC AJVC VCR:fin
4

mation about chunk types, namely the information ~ SubC AJVC NC:noun AVC VCR:fin
from the fieldsnccat and finit in the XML rep- 5. AVC VCR:fin PC

resentation to the chunk categories. Fielctat The last sequence covers the elliptical ma-
contains information about the head of the noun,i, clause ganz abgesehen davorthe first
chunk, whether it is a noun, a reflexive pronoun
a relative pronoun, etc. Fielflnit contains in-

'So the team only meets on the day of the game.’

four sequences describe the subordinated clauses;

) " i.e. the first sequence describes the subordi-
formation about the finiteness of a verb chunk.na,[e clausedaR man dann schon mal alle die

For this experiment, sentence (2) is represented bééeschlechtsgenossinnen kennhe second se-
the chunk sequence "NC:noun VCL NC:refl PC g ence covers the relative clausit denen man
NC:noun PC AVC NC:noun VCR:fin". When us- 50 ger Trennungiber den Kerl astern kann

ing such chunk sequences, the ratio of sequencege thirq sequence describes the subordinate
found in the training set decreases to 36.59%.  |5use introduced by the conjunctiareil, and the

In a third experiment, the chunk sequences werg, i, sequence covers the subordinate clause in-
constructed without adverbial phrases, i.e. Withy,oq,ced by the interrogative pronourie.

out the one category that functions as adjunct in

a majority of the cases. Thus sentence (3) is repre- On the one hand, splitting the chunk sequences
sented by the chunk sequence “NC VCL NC NC”'mO clause sequences makes the parsing task more

instead of by the complete sequence: “NC VCLdIffICU|'[ because the clause boundaries annotated

NC AVC AVC AVC NC”. In this case. 54.72% during the partial parsing step do not always coin-

of the chunk sequences can be found. Reducin ide with the clause boundaries in the syntax trees.
the information in the chunk sequencé even fur those cases where the clause boundaries do not

ther seems counterproductive because every typce?:_n(;:de”' a deterrlmnr:stlcczi solution .mlust b: founoll,
of information that is left out will make the final WHich allows asp It that does not violate the paral-

decision on the correct syntax tree even more giflelism constraints b(_et\_/veen both structures. Qn the
ficult. other hand, the split into clauses allows a higher
coverage of new sentences without extending the
size of the training set. In an experiment, in which
the chunk sequences were represented by the main
chunk types plus subtypes (cf. experiment two)

All'the experiments reported above are based oand were split into clauses, the percentage of un-
data in which complete sentences were used. Ongeen sequences in a tenfold split was reduced from
possibility of gaining more generality in the chunk 66.41% to 44.16%. If only the main chunk type is
sequences without losing more information contaken into account, the percentage of unseen se-
sists of splitting the sentences on the clause levelguences decreases from 56.39% to 36.34%.

(4) Ganz abgesehendavon,damandannschon The experiments presented in this section show
Totallyirrespectiveof it, thatone then already

(3) Wer gibt unsdenn jetztnocheinenAuftrag?
Whogivesus anyhownowstill an order?

'Who will give us an order anyhow?’

. ; ; that with varying degrees of information and with
mal alle die Geschlechtsgenossinnkannt, mit . .
onceall thefellow females knowswith  different ways of extracting chunk sequences, a
denenmannachder Trennungiiber denKerl range of levels of generality can be represented.
whomone after the break-up aboutthe twerp If the maximum of information regarded here is
ablasterrkann,weil  sie ja genau d IV 36.59% of th be f d
slander can, becausdheyalreadyexactly US? » only 36. 00 esequences_c_an € Tounad.
wissenwie mieser eigentlichist. If, in contrast, the sentences are split into chunks
know, howbad hereally is. and only the main chunk type is used, the ratio

‘Completely irrespective of the fact that one al- of found sequences reaches 63.66%. A final deci-
ready knows all the other females with whom one _. . . . .

can slander the twerp after the break-up becaus&ON ON which representation of chunks is optimal,
they already know what a loser he is.’ however, is also dependent on the sets of trees that
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are represented by the chunk sequences and thus LagerstraReneiRt.

needs to be postponed. Lagerstral3ds called.
"The convoy of the rehearsal visitors’ cars travels
down a street that is still called Lagerstral3e.’

5 Tree Sets For example, Figure 5 shows the tree for sen-

_ _ _ tence (5). The matrix clause consists of a com-
In the previous section, we showed that if Weplex subject noun phrase (GF: ON), a finite verb
extract chunk sequences based on complete Seﬁhrase, which is the head of the sentence, an
tences and on main chunk_types, there are on aVy..sative noun phrase (GF: OA), a verb parti-
erage 1.37 sentences assigned to one chunk s (GF: vPT), and an extraposed relative clause

quences. At a first glance, this results means thétbF: ON-MOD). Here the grammatical function

for the majority of chunk sequences, there is exjpgjcates a long-distance relationship, the relative

actly one sentence which corresponds t0 the Sgq5,5e modifies the subject. The relative clause,

quence, which makes the final selection of the cory, turn, consists of a subject (the relative pro-

rect tree trivial. However, 1261 chunk sequence%oun)’ an adverbial phrase modifying the verb
have more than one corresponding sentence, areg;F: V-MOD), a named entity predicate (EN-
there is one chunk sequence which has _802 SeKDD, GF; PRED), and the finite verb phrase. The
tences assigned. We will call these collectione® ., narison of this tree to other trees in its tree
sets In these cases, the selection of the correctat will then be based on the following nodes:
tree from a tree set may be far from trivial, de- \x-ON VXEIN'HD NX:OA PTKVC:VPT R-
pending on the differences in the trees. A minimalSIMPX:ON-MOD NX:ON ADVX:V-MOD EN-
difference constitutes a difference in the wordsypn.prRED VXEIN:HD. Precision and recall are
only. If all correspond|_ng wo_rds belon_g to the generally calculated based on the number of iden-
same POS class, there is no difference in the sy consituents between two trees. Two con-
tax trees. Another type of differences in the treeSyi ents are considered identical if they have the
which does not overly harm the selection procesg,me node label and grammatical function and if
are differences in the internal structure of phrases[.hey cover the same range of words (i.e. have the
In (Kubler, 2004a), we showed that the tree cans,me vield). For our comparison, the concrete
be cut at the phras_e level, qnd new phrase-lntern%ngth of constituents is irrelevant, as long as the
structur_e_s can be inserted into the tree._ Thus, thgequential order of the constituents is identical.
most difficult case occurs when the differencesry g in order to abstract from the length of con-
in the trees are located in the higher regions of iy ents, their yield is normalized: All phrases are

the trees where attachment information betweeget to length 1. the yield of a clause is determined

phrases and grammatical functions are encoded. Hy the yields of its daughters. After this step, pre-

such cases are frequent, the parser needs to emplgiio, and recall are calculated on all pairs of trees
a detailed search procedure. in a tree set. Thus, if a set contains 3 trees, tree 1 is
The question how to determine the similarity of compared to tree 2 and 3, and tree 2 is compared to
trees in a tree set is an open research question. tfee 3. Since all pairs of trees are compared, there
is clear that the similarity measure should abstracis no clear separation of precision and recall, pre-
away from unimportant differences in words andcision being the result of comparing tree A to B in
phrase-internal structure. It should rather concenthe pair and recall being the result of comparing B
trate on differences in the attachment of phraseg A. As a consequence only thg./ -measure, a
and in grammatical functions. As a first approx-combination of precision and recall, is used.
imation for such a similarity measure, we chose As mentioned above, the experiment is con-
a measure based on precision and recall of thesucted with chunk sequences based on complete
parts of the tree. In order to ignore the lower levelssentences and the main chunk types. The average
of the tree, the comparison is restricted to nodes ifF-measure for the 1261 tree sets is 46.49%, a clear

the tree which have grammatical functions. indication that randomly selecting a tree from a
tree set is not sufficient. Only a very small number
(5) DerAutokonvoimit denProbenbesuchern of sets, 62, consists of completely identical trees,
Thecar convoy with the rehearsal visitors and most of these sets contain only two trees.
fahrt eineStralReentlangdie nochheute . .
travelsa street down, whichstill today The low F-measure can in part be explained
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Der Autokonvoi mit den Probenbesuchern fahrt eine  StraBe entlang s die noch heute  Lagerstralle heil3t
ART NN APPR ART NN VVFIN ART NN PTKVZ $, PRELS ADV ADV NN VVFIN $.

Figure 3: The TuBa-D/Z tree for sentence (5).

by the relatively free word order of German: In In sentence (7), the relative pronoun was erro-
contrast to English, the grammatical function ofneously POS tagged as a definite determiner, thus
a noun phrase in German cannot be determined bgllowing an analysis in which the two phrases
its position in a sentence. Thus, if the partial parsedem and Montenegroare grouped as a preposi-
returns the chunk sequence “NC VCL NC NC”, it tional chunk. As a consequence, no relative clause
is impossible to tell which of the noun phrases iswas found. The corresponding trees, however,
the subject, the accusative object, or the dative obare annotated correctly, and the similarity between
ject. As a consequence, all trees with these threthose two sentences is consequently low.
arguments will appear in the same tree set. Since The low F-measure should not be taken as a
German additionally displays case syncretism beeompletely negative result. Admittedly, it necessi-
tween nominative and accusative, a morphologicafates a rather complex tree selection module. The
analysis can also only provide partial disambigua-positive aspect of this one-to-many relation be-
tion. As a consequence, it is clear that the selecaween chunk sequences and trees is its generality.
tion of the correct syntax tree for an input sentencef only very similar trees shared a tree set, then we
needs to be based on a selection module that utivould need many chunk sequences. In this case,
lizes lexical information. the problem would be moved towards the question
Another source of differences in the trees are erhow to extract a maximal number of different par-
rors in the partial analysis. In the tree set for thetial parses from a limited number of training sen-
chunk sequence “NC VCL AVC PC PC VCR”, tences.
there are sentences with rather similar structure,
one of them being shown in (6). Most of them6 Consequences for a Case-Based Parser

only differ in the grammatical functions assigned ) ) ) ]
to the prepositional phrases, which can serve ei'_I'he experiments in the previous two sections show

ther as complements or adjuncts. However, thdhat the chunk sequences extracted from a par-
tree set also contains sentence (7) tial parse can serve as indicators for syntax trees.

®) While the best definition of chunk sequences can
Die Bruder im  wehrfahigen Alter ; i _
Thebrothersin thefit for military serviceage only be_ determme_d emplrl'cally, the results pre

seienschon vor derPolizeiaktion in die sented in the previous section allow some conclu-

had alreadybeforethe police operatiorinto the sions on how the parser must be designed.
Waldergeflohen.
woods fled. 6.1 Consequences for Matching Chunk

'Those brothers who are considered fit for military
service had already fled into the woods before the Sequences and Trees

police operation.’ From the experiments in section 4, it is clear that

(7) Dasgilt auchfur denUmfang,in dem a good measure of information needs to be found
Thisholdsalso for the extent,  to which for an optimal selection process. There needs to
Montenegraattakkiertwird.

Montenegroattacked is. be a good equilibrium between a high coverage
'This is also true for the extent to which Montene- of different chunk sequences and a low _m_meer
gro is being attacked.’ of trees per chunk sequence. One possibility to
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reach the first goal would be to ignore certain typeself easily to selecting grammatical functions sep-
of phrases in the extraction of chunk sequencearately for single constituents, we suggest to use
from the partial parse. However, the experimentdexical co-occurrence information instead to se-
show that it is impossible to reduce the informa-lect the best tree out of the tree set for a given
tiveness of the chunk sequence to a level where aflentence. Such an approach generalizes Streiter’s
possible chunk sequences are present in the traiff2001) approach of selecting from a set of possi-
ing data. This means that the procedure whiclble trees based on word similarity. However, an
matches the chunk sequence of the input senten@pproach based on lexical information will suffer
to the chunk sequences in the training data must bextremely from data sparseness. For this reason,
more flexible than a strict left-to-right comparison. we suggest a soft clustering approach based on a
In (Kuibler, 2004a; Kibler, 2004b), we allowed the partial parse, similar to the approach by Wagner
deletion of chunks in either the input sentence 02005) for clustering verb arguments for learning
the training sentence. The latter operation is unselectional preferences for verbs.

critical because it results in a deletion of some part

of the syntax tree. The former operation, however7 Conclusion and Future Work

is more critical, it either leads to a partial syntac-

tic analysis in which the deleted chunk is not at-In this paper, we have approached the question
tached to the tree or to the necessity of guessing/hether it is possible to construct a parser based
the node to which the additional constituent need®n ideas from case-based reasoning. Such a parser
to be attached and possibly guessing the grammat/ould employ a partial analysis (chunk analysis)
ical function of the new constituent. Instead of of the sentence to select a (nearly) complete syntax
this deletion, which can be applied anywhere intree and then adapt this tree to the input sentence.
the sentence, we suggest the use of Levenshtein In the experiments reported here, we have
distance (Levenshtein, 1966). This distance meashown that it is possible to obtain a wide range
sure is, for example, used for spelling correction:of levels of generality in the chunk sequences,
Here the most similar word in the lexicon is found depending on the types of information extracted
which can be reached via the smallest number offom the partial anaylses and on the decision
deletion, substitution, and insertion operations orwhether to use sentences or clauses as basic seg-
characters. Instead of operating on characters, waents for the extraction of chunk sequences. Once
suggest to apply Levenshtein distance to chunk se& robust method is implemented to split trees into
guences. In this case, deletions from the input sesubtrees based on clauses, chunk sequences can
guence could be given a much higher weight (i.ebe extracted on the clause level rather than from
cost) than insertions. We also suggest a modicomplete sentences. Consequently, the tree sets
fication of the distance to allow an exchange ofwill also reach a higher cardinality. However, a
chunks. This modification would allow a princi- tree selection method based on lexical information
pled treatment of the relative free word order ofwill be indispensable even then. For this tree se-
German. However, if such an operation is not redection, a method for determining the similarity of
stricted to adjacent chunks, the algorithm will gaintree structures needs to be developed. The mea-
in complexity but since the resulting parser is stillsure used in the experiments reported herg, F
deterministic, it is rather unlikely that this modifi- is only a very crude approximation, which serves
cation will lead to complexity problems. well for an initial investigation, but which is not
good enough for a parser depending on such a
similarity measure. The optimal combination of
chunk sequences and tree selection methods will
As explained in section 5, there are chunk sehave to be determined empirically.

quences that correspond to more than one syntax

tree. Since differences in the trees also pertain to

grammatical functions, the module that selects thé&keferences

best tree out of the tree set needs to use more in-

; Steven Abney. 1991. Parsing by chunks. In Robert
formation than the chunk sequences used for se Berwick, Steven Abney. and Caroll Tenney, editors,

lecting the tree set. Since the holistic approach principle-Based Parsingpages 257-278. Kluwer
to parsing proposed in this paper does not lend it- Academic Publishers, Dordrecht.

6.2 Consequences for the Tree Selection
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Abstract

We compare vectors containing counts of
trigrams of part-of-speech (POS) tags in
order to obtain an aggregate measure of
syntax difference. Since lexical syntactic
categories reflect more abstract syntax as
well, we argue that this procedure reflects
more than just the basic syntactic cate-
gories. We tag the material automatically
and analyze the frequency vectors for POS
trigrams using a permutation test. A test
analysis of a 305,000 word corpus con-
taining the English of Finnish emigrants
to Australia is promising in that the proce-
dure proposed works well in distinguish-
ing two different groups (adult vs. child
emigrants) and also in highlighting syntac-
tic deviations between the two groups.

Introduction

& wybo@Ilogilogi.org

This paper proposes a technique for measuring the
aggregate degree of syntactic difference between
two varieties. We shall thus attempt to measure
the “total impact” in Weinreich’s sense, albeit with
respect to a single linguistic level, syntax.

If such a measure could be developed, it would
be important not only in the study of language con-
tact, but also in the study of second-language ac-
quisition. A numerical measure of syntactic dif-
ference would enable these fields to look afresh at
issues such as the time course of second-language
acquisition, the relative importance of factors in-
fluencing the degree of difference such as the
mother tongue of the speakers, other languages
they know, the length and time of their experience
in the second language, the role of formal instruc-
tion, etc. It would make the data of such studies
amenable to the more powerful statistical analysis
reserved for numerical data.

Naturally we want more than a measure which
simply assigns a numerical value to the difference

Lz;r_]g# age contagt IS a_ co(rjnmon Eh?nomenoﬁetween two syntactic varieties: we want to be
which may even be growing due to the mcreaseqible to examine the sources of the difference both

mobility of recent years. It is also linguistically in order to win confidence in the measure, but also

_S|gr_1|f|ca_1nt_, since contact effects are _prommen{o answer linguistic questions about the relative
in linguistic structure and well-recognized con- g, olatility of syntactic structures.
founders in the task of historical reconstruction.

Nonetheless we seem to have no way of assaying1 Related Work

the aggregate affects of contacts, as Weinreich fa-
mously noted: Thomason and Kaufmann (1988) and van Coet-

sem (1988) noted, nearly simultaneously, that the
most radical (structural) effects in language con-
tact situations are to be found in the language of
SWITCHERS i.e., in the language used as a second
or later language. PeopleAINTAINING their lan-
guage tend to adopt new lexical items from a con-
tact language, but this only has structural conse-
quences as the lexical items accumulate. Thus we
hear radically different English used in immigrant

“No easy way of measuring or charac-

terizing the total impact of one language
on another in the speech of bilinguals
has been, or probably can be devised.
The only possible procedure is to de-
scribe the various forms of interference
and to tabulate their frequency.” (Wein-

reich, 1953, p. 63)
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communities in the English-speaking world, butof noting (an interesting level of) syntactic struc-
the natives in contact with these groups do not tenture for which there was reasonable scientific con-
to modify their language a great deal. This sugsensus. But no such system exists. Moreover,
gests that we should concentrate on those switchihe ideal system would necessarily reflect the hi-
ing as we begin to develop measures of aggregatrarchical structure of dependency found in all
difference. contemporary theories of syntax, whether directly
Poplack and Sankoff (1984) introduced tech-based on dependencies or indirectly reflected in
niques for studying lexical borrowing and its constituent structure. Since it is unlikely that re-
phonological effects, and and Poplack, Sankoftearchers will take the time to hand-annotate large
and Miller (1988) went on to exploit these ad- amounts of data, meaning we shall need automat-
vances in order to investigate the social conditiongcally annotated data, this leads to a second prob-
in which contact effects flourish best. lem, viz., that our parsers, the automatic data an-
We follow Aarts and Granger (1998) most notators capable of full annotation, are not yet ro-
closely, who suggest focusing on tag sequences inust enough for this task. (Even the best score
learner corpora, just as we do. We shall add t@nly about90% per constituent on edited news-
their suggest a means of measuring the aggregapaper prose.)
difference between two varieties, and show how
we can test whether that difference is statisticallyI
significant.

We have no solution to the problem of the miss-
ng consensual annotation system, but we wish
to press on, since it will be sufficient if we can
2 Syntactic Footprints provide a measure which correlates strongly with

syntactic differences. We note that natural lan-
In this section we justify using frequency profiles guage processing work on tagging has compared
of trigrams of part-of-speech (POS) categories aglifferent tag sets, noting primarily the obvious,
indicators of syntactic differences. We shall firstthat larger sets result in lower accuracy (Manning
automatically tag second-language speakers’ coand Sclitze, 1999, 372ff.). Since we aim here

pora with syntactic categories: to contribute to the study of language contact and
Oh that s a just a second-language learning, we shall choose a lin-
T PRONCORART - BXCL - ART guistically sensitive set, that is, a large set de-
NCoM  PREP ART  PAUSE  NPROP signed by linguists. We have not experimented

We then collect these into overlapping triples (tri-W'th different tagsets.

grams). The tag-trigrams include triples such as With regard to the second objection, the fact
INT-PRON-COP and PRON-COP-ART. that syntax concerns more than POS trigrams, we
We consider three possible objections to prowish to deny that this is a genuine problem for
ceeding this way. First, one might object that un-the development of a measure of difference. We
igrams, bigrams, also should be compared. Weaote that our situation in measuring syntactic dif-
are in fact sympathetic to the criticism that ferences is similar to other situations in which ef-
grams forn # 3 should also be compared, at fective measures have been established. For ex-
least with an eye toward refining the techniqueample, even though researchers in first language
and we have performed experiments with bigram&cquisition are very aware that syntactic devel-
and with combinations oi-grams for largen, but  opment is reflected in the number of categories,
we restrict the discussion here to trigrams in or-and rules and/or constructions used, the degree
der to simplify presentation. Second, our choiceto which principles of agreement and government
of part-of-speech categories may bias the resultgre respected, the fidelity to adult word order pat-
since other research might use other POS catéerns, etc., still they are in large agreement that
gories, and third, that POS trigrams do not reflecthe very simpleMEAN LENGTH OF UTTERANCE
syntax completely. We first develop these last twgqMLU) is an excellent measure of syntactic matu-
objections further, and then explain why it is rea-rity (Ritchie and Bhatia, 1998). Similarly, life ex-
sonable to proceed this way. pectancy and infant mortality rates are considered
Ideally we should like to have at our disposalreliable indications of health when large popula-
the syntactic equivalent of an international pho-tions are compared. We therefore continue, pos-
netic alphabet (IPA, 1949), i.e. an accepted meantsllating that the measure we propose will corre-
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late with syntactic differences as a whole, even ifAustralian material.
it does not measure them directly. We used the tagset of the TOSCA-ICE consist-
In fact we can be rather optimistic about us-ing of 270 tags (Garside et al., 1997), of which 75
ing POS trigrams given the consensus in syntacwere never instantiated in our material. In a sam-
tic theory that a great deal of hierarchical struc-ple of 1,000 words we found that the tagger was
ture is predictable given the knowledge of lexicalcorrect for87% of words,74% of the bigrams, and
categories, in particular given the lexicakAD.  65% of the trigrams. As will be obvious in the
Sells (1982,55 2.2, 5.3, 4.1) demonstrates thatpresentation of the material (below), it is free con-
this was common to theories in the 1980’s (Gov-versation with pervasive foreign influence. We at-
ernment and Binding theory, Generalized Phraséibute the low tagging accuracy to the roughness
Structure Grammar, and Lexical Function Gram-of the material. Itis clear that our procedure would
mar), and the situation has changed little in theémprove in accuracy from a more accurate tagger,
successor theories (Minimalism and Head-Driverwhich would, in turn, allow application to smaller
Phrase Structure Grammar). There is, on the otherorpora.
hand, consensus that the very strict lexicalism We collect the material into a frequency vector
which Sells’s work sketched must be relaxed incontaining the counts df3, 784 different POS tri-
favor of “constructionalism” (Fillmore and Kay, grams, one vector for each of the two sub-corpora
1999), but even in such theories syntactic head@hich we describe below. We then ask whether
have a privileged, albeit less dominant status.  the material in the one sub-corpus differs signifi-
Let us further note that the focus on POS tri-cantly from that in the other. We turn now to that
grams is poised to identify not only deviant syn-topic.
tactic uses, such as the one given as an exam-
ple above, but also overuse and under-use of lin3 Permutation Tests
guistic structure, whose importance is empha-
sized by researchers on second-language acquidiere is no convenient test we can apply to check
tion (Coseriu, 1970), (de Bot et al., 2005, A3’|33)_whether the differences between vectors contain-
According to these experts it is misleading toing 13,784 elements are statistically significant,
consider only errors, as second language learrflor how significant the differences are. Fortu-
ers likewise tend to overuse certain possibilitiegately, we may turn to permutation tests in this
and tend to avoid (and therefore underuse) othsituation (Good, 1995), more specifically a per-
ers. For example, Bot et al. (2005) suggest thafutation test using a Monte Carlo technique.
non-transparent constructions are systematicalliiessler (2001) contains an informal introduction
avoided even by very good second-language leard0F @an application within linguistics.

ers). The fundamental idea in a permutation test is
very simple: we measure the difference between
2.1 Tagging two sets in some convenient fashion, obtaining

We tagged the material using Thorsten Brants'® (4, B). We then extract two sets at random
Trigrams 'n Tags(TnT) tagger, a hidden Markov from AU B, calling theseA, By, and we calcu-
model tagger which has performed at state-oflate the difference between these two in the same
the-art levels in organized comparisons, achievindg@shioné(Ax, Bi), recording the number of times

96.7% correct on the material of the Penn Tree-0(41, B1) > 6(4, B), i.e., how often two ran-
bank (Brants, 2000). domly selected subsets from the entire set of ob-

Since our material is spoken English (see peservations are at least as different as (usually more

low), we trained the tagger on the spoken part oflifferent than) the original sets were. If we repeat
the International Corpus of EnglisICE) from  this process, sayf, 000 times, them, the number

Great Britain, which consists of 500k words. This©Of times we obtain more extreme differences, al-
was suboptimal, as the material we wished to andoWs us to calculate how strongly the original two
lyze was the English of Finnish emigrants to Aus-Sets differ from a chance division with respect to

tralia, but we were unable to acquire sufficientd- In that case we may conclude that if the two

1 ) __sets were not genuinely different, then the origi-
One referee suggested that one might test the association

between POS trigram differences and head differences expeli@l division intoA and B was likely to the degre_e
imentally, and we find this suggestion sensible. of p = n/10,000. In more standard hypothesis-
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testing terms, this is the-value with which we English subjunctives in general occur only in rel-
may reject (or retain) the null hypothesis that thereatively long sentences. If this sort of structure
is no relevant difference in the two sets. occurs in one variety more frequently than in an-

We would like to guard against three dangers irpther, that is a genuine difference, but it might still
our calculations. First, given the ease with whichbe the reflection of the simpler difference in sen-
large corpora are obtained, we are uninterestet®nce length. One might then think that the second
in obtaining statistical significance through sheeariety would show the same syntax if only it had
corpus size. We aim therefore at obtaining a mealonger sentences. As far as they are to be con-
sure that is sensitive only to relative frequency, angidered a problem in the first place, differences in
not at all to absolute frequency (Agresti, 1996).Syntax that are related to sentence length cannot
Permutation tests effectively guard against thid?e removed by (our) normalizations.
danger, if one takes care to judge samples of the Permutation tests are a very suitable tool for
same size within the permutations. finding significant syntactical differences, and for

Second, we are mindful of a potential confound-ﬁnding the POS trigrams that make a significant

ing factor, viz., the syntactical intra-dependencesOntribution to this difference.
found within sentences (especially between ad- . .
joining POS trigrams). If(weppermited-grams, 3.1 Measuring Vector Differences

we might in part measure the internal coherence of he choice of vector difference measure, e.g. co-
the two initial sub-corpora, i.e., the coherence dueine vs. x?, does not affect the proposed tech-
to the fact that both sub-corpora use language comique greatly, and alternative measures can be
forming to the rules of English syntax. If we per- used straightforwardly. Accordingly, we have
mutedn-grams, this coherence would be lost, andvorked with both cosine and two measures in-
the measurement of difference would be affectedspired by theRECURRENCE(R) metric introduced

In the terminology of permutation statistics: theby Kessler (Kessler, 2001, 157ff). Following
elements that are permuted must be reasonably ifkessler, we also call our measur&sand Rsgq.
dependent. So we shall permute negrams, but The advantage of th& and Rsq metrics is that
rather entire sentences. they are transparently interpretable as simple ag-

Third, the decision to permute sentences rathegregates, meaning that one may easily see how
thann-grams exposes us to a confound due to Sysmuch each trigram contributes to the overall cor-
tematically different sentence lengths. While thePus difference. We even used them to calculate a
result of permuting elements in a Monte CarloSeparatg-value per trigram.
fashion always results in two sub-corpora that Our R is calculated as the sum of the differ-
have the same number of elements as in the bas@nces of each cell with respect to the average for
case, our problem is that the elements we pertha'[ cell. If we have collected our data into two
mute are sentences, while what we measure anectors €, c), and ifi is the index of a POS tri-
n-grams. Now if the original two sub-corpora dif- gram,R for each of these two vector cells is equal,
fer substantially in average sentence length, the@s it is defined simply a& = 3, [¢; — ¢, with
the result of the Monte Carlo “shuffling” will not ¢ = (¢ + ¢;)/2. The Rsq measure attributes
be similar to the original split with respect to the more weight to a few large differences than to
number ofn-grams involved. The original sub- many small ones, and it is calculatedisq =
corpus with longer sentences will therefore have)_; (¢ — )?, with ¢; being the same as above (for
many moren-grams in the base-case than in thel).
random re-drawings from the combining corpora,
at least on average. We address this danger sy3-2 Within-Permutation Normalization

tematically in the subsection below on within- Egch measurement of difference—whether the
permutation normalization§ @.2). difference is between the original two samples
We note a more subtle dependency we do nobr between two samples which arise through
attempt to guard against. Some POS sequenc@&rmutations—is taken over the collection of POS
(almost) only occur in relatively long sentences,trigram frequencies once these have been normal-
e.g. the inversion that occurs in some conditionized. We describe first the normalization that is re-
alsWere | in any doubt, | should not...Perhaps quired to cope with differences in sentence length
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which we callwITHIN-PERMUTATION NORMAL-
IZATION, as it is applied within each permutation.

In case sub-corpora differ in sentence length, p = <..pi(=® +p‘75) =1),..>
they will automatically differ in the number oi-
grams across permutations as well. Our Monté&Ve do not actually use below, onlyp¥ andp®,
Carlo choice of alternatives does not change th&ut we mention it for the sake of the check it al-
relative number of sentences across permutationoWs thatp; + p? = 1, i.
but the number of POS trigrams in the groups will We then re-introduce the raw frequencies per
vary if no normalization is applied. Longer sen- category to obtain the normalized, redistributed
tences give rise to larger numbers of POS trigram§0untsCy, C5. Note that we use the total count
per sentence, and therefore per sub-corpora. Apf the trigram in both samples to redistribute (thus
plying the within-permutation normalization one redistributing these counts based on the trigram to-
or more times ensures that this does not infect th&ls in both samples):
measurement of difference.

Protecting the measurement from sensitivity to
differing numbers of POS trigrams per sentence Co = <..pf-ciy...>
is for us sufficient reason to normalize, but we
also normalize in order to facilitate interpretation. Up to this point the normalization has corrected
We return to this below, in the definition of the for differences in sentence length, or to be more
rescaled vectors? , s°. precise, for differences in the numberse§rams

We thus collect from the tagger a sequence ofvhich may appear as a result of permuting sen-
countse; of tag trigrams for each sample. We tences. For larger numbers of trigrams the situ-
treat only the case of comparing two samples heredtion will become: N¥ = 370, ¢/ ~ it CY
which we shall refer to as young)and old ¢) for ~ SO that we have effectively neutralized the in-
reasons which will become clear in the following crease or decrease in the number-@rams which
section. We shall keep track of the sum-per-tag triinight have arisen due to sentence length. With-

gram as We”’ Summing over the two Sub_corpora_out this normalization a skew in sentence |ength
in the base case would cause changed, in the

> NY=Y", ¢ worst case increased, and perhaps even extreme,
> NO=3Y", 0 significance. During random perm_ute}tion, where
longer sentences will tend to be distributed more

n evenly between the sub-corpora, a disproportion-

= 2a=1G ately larger number af-grams would be found in

the sub-corpus corresponding to the base corpus

with shorter sentences. We have now normalized

so that that effect will no longer appeatr.

We illustrate the normalizations up to this point
Y = <., fl(=c/NY),.. > in Table 1. We see already that the overall effect
f© = <., f(=c¢/N°),..> is to shift mass to the smaller sample. Notice also

that if we were to defindC = CY 4 C°, then
We note thab™7 | f¥ = 7| fo = 1. C=c sinceCY andC® are a redistribution_ of
c usingp? andp®, whose sum is 1 under all cir-
We then compute the relative proportions percumstances, as was noted above. At the same time

trigram, comparing now across the groups. Thig” 7 C¥ andc® # C° (if there were differences
prepares for the step which redistributes the ravin sentence lengths). The values obtained at this
trigram counts to compensate for differences inP0int may be measured by the vector comparison

Ch = <..pl-cy..>

v = <d.d, ...

o J— (] O (o]
+c® = <ci,c5,...,¢p

c = <c,62,.0,> N(=NY+N°

As a first step in normalization, we work with
vectors holding the relative frequency fractions
per group:

sentence length. measure (cosine di(sq)).
We use this redistributing normalization instead
pY = <..p/(=f)+ 1), > of just the relative frequency because using rel-
P° = <..pi(=f2/(f] ) > ative frequency would cause trigrams occurring
mainly and frequently in the short-sentence group
We might also define a sum oF + p°: to become extremely significant. This is especially
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Groupy Group o Group y’ Group o’

T1 T2 T1 T2 T1 T2 T1 T2
countsc | 15 10 90 10 10 10 17 0
rel. freq.f 0.6 0.4 0.9 0.1 0.5 0.5 1 0
norm. prop.p 0.4 0.8 0.6 0.2 033 1 0.67 0
trigramc; | 105 20 105 20 27 10 27 10
redistrib.C | 42 16 63 4 9 10 18 0

Table 1. Two examples of the normalizations applied before each measurement of vector difference.
On the left groupg ando are compared on the basis of the two trigrdfiisand72. The counts are
shown in the first row, then relative frequencies (within the group), normalized relative proportions, and
finally redistributed normalized counts. The two numbers in boldface in the ‘count’ line are compared
to calculate the underlined relative frequency (on the left) in the ‘relative frequency’ line (in general
counts are compared within groups to obtain relative frequencies). Next, the two underlined fractions of
the ‘relative frequency’ row are compared to obtain the corresponding fractions (immediately below) of
the ‘normalized proportions’ row. Thus relative frequencies are compared across groups (sub-corpora)
to obtain the relative proportions. The trigram count row shows the counts per trigram type, and the
‘redistributed’ row is simply the product of the last two. The second example (on the right) demonstrates
that missing data finds no compensation in this procedure (although we might experiment with smoothing
in the future).

distorting if one calculates the per trigram type to be certain. After five iterations the relative size-
value (R or Rsq for a singlei). difference between our normalized sub-corpora is

The normalization does not eliminate all the ir-1ess thar).1% for trigrams of the full ICE-tagset
relevant effects of differing sentence lengths. Td@nd even a thousand times smaller for the reduced
obtain further precision we iterate the steps abovéagset). We regard this as small enough to effec-
a few times, re-applying the normalization to itstively eliminate corpus size differences as poten-
own output. We are motivated to iterate the pro-tial problems.
cedure for the following reason. If a trigram is For the purposes of interpretation we also scale
relatively more frequent in the smaller sub-corpus€verything down so that the average redistributed
it must then also be relatively less frequent withincount is1. We do this by dividing eact!, Cy by
the entire corpus (less frequent within the two sub<V/2n, whereN is the total count of all trigrams
corpora together), so there is less frequency magildn is the number of trigram categories being
to re-distribute for these trigrams than for trigramscounted. Note thal/2n is the average count of a
that are relatively more frequent in the larger subgiven trigram in one of the groups.
corpus (those will be more frequenft within the en- & —o¥.2n/N = <..,CY.2m/N,.. >
tire corpus). A special case of this aregrams ¢
that occur only in one sub-corpus. If they oc- 8° =¢°-2n/N = <...CP-2n/N,..>

cur only in the larger sub-corpus then their massrhege yajues might just as well be submitted to the
will never be re-distributed in the direction of the vector comparison measure since they are just lin-
smaller sub-corpus, since zero-frequencies within 5 yransformations of the redistribut€tivalues.

one sub-corpus will always result in zero relativerq gcajing expresses the trigram count as a value

weight (in the current set-u)This means thataf- iy respect to the totaln of counts involved in

ter normalization the larger sub-corpus will always,[he comparison, and, sinde”_, ¢ + 3
’ ’ 1= i

still be a bit larger than the smaller one. Afteroney, s~n oy | S 52 — 25, As there ares sorts
normalization the effect of these factors is small,of triglr_eimzs beirialcémpared in two groups, it is

but we can reduce it yet further by iterating the or that the average value in these last vectors
normalization. This is worthwhile since we wish will be 1

— _ _ Similarly, this normalized value will be higher
Alternatively, we might have explored a Good-Turing han1 f . h f h

estimation of unseen items (Manning and Sz, 1999, than1 for t”g_ramSt atare more requent than av-

p. 212). erage. Now if we sort the trigrams by frequency—

n o __
i=16¢ —
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or more precisely, by the weight that they havesemi-skilled working class Finns who left Finland
within the total R(sq) value, so by their per tri- in the 1960’s at the age of 25-40 years old, some
gram R(sq) value—we get a listing of the POS with children. Greg Watson of Joensuu Univer-
trigrams that distinguish the groups most sharplysity interviewed these people between 1995 and
This list can be made even more telling by addingl998, publishing about his corpus IGAME 20,

the raw frequency and a per-trigrarvalue. Ital- 1996 (Watson). He included both interviews with
lows us to directly see significant under and overthose who emigrated as adults (at seventeen years

use of POS trigrams, and thereby of syntax. or older) and those who emigrated as children (be-
_ o fore their seventeenth birthday). There are sixty
3.3 Between-Permutations Normalization conversations with adult-age emigrants and thirty

The purpose of this normalization is the identifica-With those who emigrated as children, totaling
tion of n-gram types which are typical in the two 305,000 words of relatively free conversation.
original sub-corpora. It is applied after comparing It is well established in the literature on second-
all the results of all the Monte Carlo re-shufflings. language learning that the language of people who
The BETWEEN-PERMUTATIONS NORMALIzA-  learned the second language as children is supe-
TION is similar to the last step of the within- rior to that of adult learners. We will test our idea
permutation normalization, except that the linea@Pout measuring syntactic differences by apply-
transformation is applied across permutations, inind the measure to the two samples language from
stead of across groups (sub-corpora): for eacpdult vs. child emigrants. The issue is not remark-
POS trigram type in each group (sub-corpora) able, but it allows us to verify whether the measure
g € {o,y}, the redistributed cour®? is divided IS functioning.
by the average redistributed count for that type in
= 4.1 Results
that group (across all permutatio@¥). Note that
the average redistributed countdg/2 for large  The two sub-corpora had 221,000 words for the
numbers of permutations. The values thus normalolder group and 84,000 words for the younger
ized will be1 on average across permutations.  group, respectively. The sentences of the child-
Trigrams with large average counts betweerl0od immigrants were indeed substantially longer
permutations are those with high frequencies i{27.1 tokens) than those of the older immigrants
the original sub-corpora, and these contribute modtl6.3 tokens). So the within-permutation normal-
heavily toward statistical significance. The nor-ization was definitely needed in this case. The
malization under discussion strips away the roledroups clearly differed in the distribution of POS
of frequency, allowing us to see which POS tri-trigrams they containp( < 0.001). This means
grams are most (a)typ|ca| for a group. We notethat the difference between the Original two sub-
additionally that this normalization is useful only corporawas in the largegtl% of the Monte Carlo
together with information on frequency (or statis- Permutations.
tical significance). Infrequent trigrams are espe- In addition we find genuinely deviant syntax
cially likely to have high values with respect to Patterns if we inspect the trigrams most respon-
Clg For example a trigram occurring only Once’Sib|e for the difference between the two sub-
in one sub-corpus, gets the maximum value oforpora.
1/0.5 = 2 (as it is indeed very typical for this
sub-corpus), while with a count of one it clearly
cannot be statistically significant (moving between an | was ofessional  fisherman
equally sized sub-corpora with a chance of 50 % ~ony PrO  coOP FL\DJ N/COM
during permutations). So it's best to calculate
this normalization together with the per trigram
values.

it 's low tax in here
PRO COP ADJ N/COM PREP ADV

Both COP-ADJ-N/COM and N/COM-PREP-
ADV accounted for a substantial degree of aggre-
4 A Test Case gate syntactic difference. The first pattern nor-

mally corresponds to an error, as it does in the
We tested this procedure on data transcribed frortwo () examples of it above (there is a sepa-
free interviews with Finnish emigrants to Aus- rate tag for plural and mass nouns). These are
tralia. The emigrants were farmers and skilled orcases where English normally requires an article.
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Since Finnish has no articles, these are clear cases
of transfer, i.e., the (incorrect) imposition of the
first language’s structure on a second language.
The N/COM-PREP-ADV pattern (corresponding
to the use ofin herg is also worth noting, as it
falls into the class of expressions which is not ab-

. L. . 1 roadworks  and uh
solutely in error The material is in herg but it hill and ah
is clearly being overused in the example above. N CONJUNC  INTERJEC
Presumably this is a case of hypercorrection from 2 tlhat rth('éon Iltot
Finnish, a language without prepositions. We con- PRON v PRON
clude from this experiment that the procedure is 3 enjoy to taking
romisin my machine break
P 9. INTERJEC PRON v
On the other hand there were also problems, 4 but that 'S
perhaps most seriously with the use of the tags that ' clean
. o CONJUNC  PRON v
denoting pauses and hesitations, where we found ——— ™ oh
that the tag trigrams most responsible for the de- it 's uh
viant measures in the corpora involved disfluen- PRON v INTERJEC
i f one sort or another. These tended to occur  ° "W what what
ciesoro s : ’ changing but some
more frequently in the speech of the older emi- CONJUNC INTERJEC PRON
grants. With the pauses removed (hesitations still 7 said It S
in ol list of the t £ t sianifi ¢ all everybody has
in p ace) a list of the ten most frequent, significan PRON PRON v
trigrams for the older group is shown. Two ran- 8  Dbought that car
dom examples from the corpus are given for each '\‘/530' Pgll?aosil NW'”dOWS
in Table 2. 9 that was different
We suspect additionally that the low accuracy I was fit
rate of the tagger when applied to this materialalso %?ON l\;ke ?atl)(i
stems from the large number of disfluencies. uh money production
INTERJEC N N

5 Conclusions and Prospects

o Table 2: The most significant and most frequent
Weinreich (1953) regretted that there was no wayyigrams that were typical for the speech of the

to “measure or characterize the total impact ongyroup of older Finnish emigrants to Australia com-
language on another in the speech of bilinguals,pared to the speech of those who emigrated before
(p. 63) and speculated that there could not be. Thigheir 17th birthday. The tag trigrams indicating
paper has proposed a way of going beyond countsayses were removed before comparing the cor-
of individual phenomena to a measure of aggrepora, as these appear to dominate the differences.
gate syntactic difference. The technique may berhe examples illustrating the trigrams were cho-
implemented effectively, and its results are subjectep, at random, and we note that the examples of
to statistical analysis using permutation statistics.the third sort of trigram involved tagging errors in
The technique proposed follow Aarts andthe first and second elements of the trigram, and
Granger (1998) in using part-of-speech trigramsthat other errors are noticeable at the seventh and
We argue that such lexical categories are likelyeight positions in the list (where ‘said’ and ‘glass’
to reflect a great deal of syntactic structure givergre marked as pronouns). We reserve the linguistic
the tenets of linguistic theory according to whichinterpretation of the error patterns for future work,
more abstract structure is, in general, projecte¢hyt we note that we will also want to filter inter-

from lexical categories. We go beyond Aarts andections before drawing definite conclusions.
Granger in Showing how entire histograms of POS

trigrams may be used to characterize aggregate
syntactic distance, in particular by showing how
this can be analyzed.

We fall short of Weinreich’s goal of assaying
“total impact” in that we focus on syntax, but we
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take a large step in this direction by showing howEugenio Coseriu. 1970Probleme der kontrastiven
to aggregate and test for significance, using the Grammatik Schwann, Dsseldorf.

sorts of counts he. worked Wi_th'  Kees de Bot, Wander Lowie, and Marjolijn Verspoor.
The software implementing the permutation 2005. Second Language Acquisition: An Advanced
test, including the normalizations, is avail- Resource BookRoutledge, London.

able freely athttp://en.logilogi.org/ Charles Fillmore and Paul Kay. 1999. Grammati-

HomE/WyboWiersma/FIAulmEnRe . Itis de- cal constructions and linguistic generalizations: the
veloped to allow easy generalization to more than what's x doing yconstruction. Language 75(1):1—
two sub-corpora and longergrams. 33.

Sever.al further steps would 'be useful: _WeRoger Garside, Geoffrey Leech, and Tony McEmery.
should like to repeat the analysis here, eliminat- 1997. Corpus Annotation: Linguistic Informa-

ing the effect of hesitation tags, etc. Second, tion from Computer Text CorporaLongman, Lon-
we should like to experiment systematically with ~don/New York.

the inclusion ofn-grams forn > 3; to-date we  Pphillip Good. 1995 Permutation TestsSpringer, New
have experimented with this, but not systemati- York. 2nd, corr. ed.

cally e.nOUQh' Third, we would .“ke 10 test. the. 1949.The Principles of the International Phonetic As-
analysis on other cases of putative syntactic dif- gqciation International Phonetics Association, Lon-

ferences, and in particular in cases where tagging don, 1949.

accuracy might be less an issue. N .
ymig Brett Kessler. 2001.The Significance of Word Lists
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Abstract

This paper outlines a measure of lan-
guage similarity based on structural
similarity of surface syntactic depen-
dency trees. Unlike the more tradi-
tional string-based measures, this mea-
sure tries to reflect “deeper” correspon-
dences among languages. The develop-
ment of this measure has been inspired
by the experience from MT of syntac-
tically similar languages. This experi-
ence shows that the lexical similarity is
less important than syntactic similar-
ity. This claim is supported by a num-
ber of examples illustrating the prob-
lems which may arise when a measure
of language similarity relies too much
on a simple similarity of texts in differ-
ent languages.

1 Introduction

Although the similarity of natural languages is
in principal a very vague notion, the linguistic
literature seems to be full of claims classifying
two natural languages as being more or less
similar. These claims are in some cases a result
of a detailed comparative examination of lex-
ical and/or syntactic properties of languages
under question, in some cases they are based
on a very subjective opinion of the author, in
many other cases they reflect the application
of some mathematical formula on textual data
(a very nice example of such mathematical ap-
proach can be found at (Scannell, 2004)).
Especially in the last case the notion of lan-
guage similarity is very often confused with the
notion of text similarity. Even the well known
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paper (Lebart and Rajman, 2000) deals more
with the text similarity than language similar-
ity. This general trend is quite understand-
able, the mathematical methods for measur-
ing text similarity are of a prominent impor-
tance especially for information retrieval and
similar fields. On the other hand, they con-
centrate too much on the surface similarity
of word forms and thus may not reflect the
similarity of languages properly. This paper
tries to advocate different approach, based on
the experience gained in MT experiments with
closely related (and similar) languages, where
it is possible to “measure” the similarity indi-
rectly by a complexity of modules we have to
use in order to achieve a reasonable transla-
tion quality. This experience led us to formu-
lating an evaluation measure trying to capture
not only textual, but also syntactic similarities
between natural languages.

2 Imperfections of measures based
on string similarity

There are many application areas in the NLP
in which it is useful to apply the measures ex-
ploiting the similarity of word forms (strings).
They serve very well for example for tasks
like spellchecking (where the choice of the best
candidates for correction of a spelling error is
typically based upon the Levenshtein metrics)
or estimating the similarity of a new source
sentence to those stored in the translation
memory of a Machine Aided Translation sys-
tem. They are a bit controversial in a “proper”
machine translation, where the popular BLEU
score (Papineni et al., 2002), although widely
accepted as a measure of translation accuracy,
seems to favor stochastic approaches based on

Proceedings of the Workshop on Linguistic Distangages 91-99,
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an n-gram model over other MT methods (see
the results in (Nist, 2001)).

The controversies the BLEU score seems to
provoke arise due to the fact that the evalua-
tion of MT systems can be, in general, per-
formed from two different viewpoints. The
first one is that of a developer of such a sys-
tem, who needs to get a reliable feedback in
the process of development and debugging of
the system. The primary interest of such a
person is the grammar or dictionary coverage
and system performance and he needs a cheap,
fast and simple evaluation method in order to
allow frequent routine tests indicating the im-
provements of the system during the develop-
ment of the system.

The second viewpoint is that of a user, who
is primarily concerned with the capability of
the system to provide fast and reliable trans-
lation requiring as few post-editing efforts as
possible. The simplicity, speed and low costs
are not of such importance here. If the eval-
uation is performed only once, in the mo-
ment when the system is considered to be
ready, the evaluation method may even be rel-
atively complicated, expensive and slow. A
good example of such a complex measure is the
FEMTI framework (Framework for the Evalu-
ation of Machine Translation). The most com-
plete description of the FEMTI framework can
be found in (Hovy et al., 2002). Such mea-
sures are much more popular among transla-
tors than among language engineers and MT
systems developers.

If we aim at measuring the similarity of lan-
guages or language distances, our point of view
should be much more similar to that of a hu-
man translator than of a system developer, if
we’ll stick to our MT analogy. When looking
for clues concerning the desirable properties
of a language similarity (or distance) measure,
we can first try to formulate the reasons why
we consider the simple string-based (or word-
form-based) measures inadequate.

If we take into account a number of lan-
guages existing in the world, the number of
word forms existing in each of those languages
and a simple fact that a huge percentage of
those word forms is not longer than five or
six characters, it is quite clear that there is a
huge number of overlapping word forms which
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have completely different meaning in all lan-
guages containing that particular word form.
Let us take for illustration some language pairs
of non-related languages.

For example for Czech and English (the lan-
guages very different with regard both to the
lexicon and syntax) we can find several exam-
ples of overlapping word forms. The English
word house means a duckling in Czech, the En-
glish indefinite article a is in Czech also very
frequent, because it represents a coordinating
conjunction and, while an is an archaic form
of a pronoun in Czech. On the other hand, if
we look at the identical (or nearly identical)
word forms in similar languages, we can find
many examples of totally different meaning.
For example, the word form Zivot means life
in Czech and belly in Russian; godina means
year in Serbo-Croatian while hodina is an hour
in Czech (by the way, an hour in Russian is cas
— and the same word means time in Czech).

The overlapping word forms between rela-
tively distant languages are so frequent that it
is even possible to create (more or less) syntac-
tically correct sentences in one language con-
taining only word forms from the other lan-
guage. Again, let us look at the Czech-English
language pair. The English sentences Let my
pal to pile a lumpy paste on a metal pan. or
I had to let a house to a nosy patron. consist
entirely of word forms existing also in Czech,
while the Czech sentence Adept demise metal
hole pod led. — [A resignation candidate was
throwing sticks under the ice.| consists of En-
glish word forms.

Creating such a Czech sentence is more com-
plicated — as a highly inflected language it
uses a wide variety of endings, which make it
more difficult to create a syntactically correct
sentence from word forms of a language which
has incomparably smaller repertoire of end-
ings. This fact directly leads to another argu-
ment against the string similarity based mea-
sures — even though two languages may have
very similar syntactic properties and their ba-
sic word forms may also be very similar, then if
the languages are highly inflective and the only
difference between those languages are differ-
ent endings used for expressing identical mor-
phosyntactic properties, the string similarity
based methods will probably show a substan-



tial difference between these languages.

This is highly probable especially for shorter
words the words with a basic form
only four or five characters long may have
endings longer or equal to the length of
the basic form, for example: novd/novata
“new” (Cze/Mac), wvidény/vidimyj “seen”
(Cze/Rus), fotografujici/fotografuojantysis
“photographing” (Cze/Lit).

The last but not least indirect argument
against the use of string-based metrics can be
found in (Kubon and Bémovd, 1990). The pa-
per describes so called transducing dictionary,
a set of rules designed for a direct transcrip-
tion of a certain category of source language
words into a target language. The system has
been tested on two language pairs (English-
to-Czech and Czech-to-Russian) and although
there was a natural original assumption that
such a system will cover substantially more ex-
pressions when applied to a pair of related lan-
guages (which are not only related, but also
quite similar), this assumption turned to be
wrong. The system covered almost identical
set of words for both language pairs — namely
the words with Greek or Latin origin. The
similarity of coverage even allowed to build an
English-to-Russian transducing dictionary us-
ing Czech as a pivot language with a negligible
loss of the coverage.

3 Experience from MT of similar
languages

The Machine Translation field is a good testing
ground for any theory concerning the similar-
ity of natural languages. The systems dealing
with related languages usually achieve higher
translation quality than the systems aiming at
the translation of more distant language pairs
— the average MT quality for a given system
and a given language pair might therefore also
serve as some kind of a very rough metrics of
similarity of languages concerned.

Let us demonstrate this idea using an ex-
ample of a multilingual MT system described
in several recently published papers (see e.g.
(Haji¢ et al., 2003) or (Homola and Kubon,
2004)). The system aims at the translation
from a single source language (Czech) into
multiple more or less similar target languages,
namely into Slovak, Polish, Lithuanian, Lower
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Sorbian and Macedonian.

The system is very simple — it doesn’t con-
tain any full-fledged parser, neither rule based,
nor stochastic one. It relies on the syntactic
similarity of the source and target languages.
It is transfer-based with the transfer being per-
formed as soon as possible, depending on the
similarity of both languages. In its simplest
form (Czech to Slovak translation) the system
consists of the following modules:

1. Morphological analysis of the source lan-

guage (Czech)

. Morphological disambiguation of the
source language text by means of a
stochastic tagger

. Transfer exploiting the domain-related
bilingual glossaries and a general (domain
independent) bilingual dictionary

. Morphological synthesis of the target lan-
guage

The lower degree of similarity between Czech
and the remaining target languages led to
an inclusion of a shallow parsing module for
Czech for some of the language pairs. This
module directly follows the morphological dis-
ambiguation of Czech.

The evaluation results presented in (Homola
and Kubon, 2004) indicate that even though
Czech and Lithuanian are much less similar
at the lexical and morphological level (e.g. at
both levels actually dealing with strings), the
translation quality is very similar due to the
syntactic similarity between all languages con-
cerned.

4 Typology of language similarity

The experience from the field of MT of closely
related languages presented in the previus sec-
tions shows that it is very useful to classify the
language similarity into several categories:

e typological

e morphological
e syntactic

e lexical

Let us now look at these categories from the
point of view of machine translation,



4.1 Typological similarity

The first type of similarity is probably the
most important one. If both the target and
the source language are of a different language
type, it is more difficult to obtain good MT
quality. The notions like word order, the ex-
istence or non-existence of articles, different
temporal system and several other properties
have direct consequences for the translation
quality. Let us take Czech and Lithuanian as
an example of the language pair, which doesn’t
belong to the same group of languages (Czech
is a Slavic and Lithuanian Baltic language).
Both languages have rich inflection and very
high degree of word order freedom, thus it is
not necessary to change the word order at the
constituent level. On the other hand, both
languages differ a lot in the lexics and mor-
phology.

For example, both (1) and (3) mean approx-
imately “The father read a/the book”. What
these sentences differ in is the information
structure. (1) should be translated as “The
father read a book”, whereas (3) means in
fact “The book has been read by the father”.!
The category of voice differs in both sentences
because of strict word order in English, al-
though in both Czech equivalents, active voice
is used.? We see that in the Lithuanian trans-
lation, the word order is exactly the same.

(1) Otec cetl knihu
father-NoM read-3sG,PAST book-AcCC

“The father read a book.” (Cze)

(2)

Tévas skaité knyga
father-NOM read-3sG,PAST book-ACC

“The father read a book.” (Lit)

Knihu cetl otec
book-AcC read-3SG,PAST father-NOM

“The father read a book.” (Cze)

3)

!Note that in the first sentence, an indefinite article
is used, whereas in the latter one, a definite article
stands in front of “book”. The reason is that in the first
sentence, the noun “book” is not contextually bound (it
belongs to the focus), in the latter one it belongs to the
topic.

*Passive voice (except of the reflexive one) occurs
rarely in Czech (and most other Slavonic languages).
It can be used if one would like to underline the di-
rect object or if there is no subject at all (for example,
Kniha byla ¢tena “The book has been read”).
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(4) Knyga skaité tévas
book-AcC read-3sG,PAST father-NOM
“The father read a book.” (Lit)

4.2 Lexical similarity

The lexical similarity does not mean that the
vocabulary has to have the same origin, i.e.,
that words have to be created from the same
(proto-)stem. What is important for shallow
MT (and for MT in general), is the seman-
tic correspondence (preferably one-to-one re-
lation).

Lexical similarity is the least important one
from the point of view of MT, because the lex-
ical differences are solved in the glossaries and
general dictionaries.

4.3 Syntactic similarity

Syntactic similarity is also very important es-
pecially on higher levels, in particular on the
verbal level. The differences in verbal va-
lences have negative influence on the quality
of translation due to the fact that the trans-
fer thus requires a large scale valence lexicon
for both languages, which is extremely difficult
to build. Syntactic structure of smaller con-
stituents, such as nominal and prepositional
phrases, is not that important, because it is
possible to analyze those constituents syntac-
tically using a shallow syntactic analysis and
thus it is possible to adapt locally the syntactic
structure of a target sentence.

4.4 Morphological similarity

Morphological similarity means similar struc-
ture of morphological hierarchy and paradigms
such as case system, verbal system etc.
our understanding Baltic and Slavic languages
(except for Bulgarian and Macedonian) have
a similar case system and their verbal system
is quite similar as well. Some problems are
caused by synthetic forms, which have to be
expressed by analytical constructions in other
languages (e.g., future tense or conjunctive in
Czech and Lithuanian). The differences in
morphology can be relatively easily overcomed
by the exploitation of full-fledged morphology
of both languages (source and target).
Similar morphological systems simplify the
transfer. For example, Slavonic languages (ex-
cept of Bulgarian and Macedonian) have 6-7

In



cases. The case system of East Baltic lan-
guages is very similar, although it has been re-
duced formally in Latvian (instrumental forms
are equal as dative and accusative and the
function of instrumentral is expressed by the
preposition ar “with”, similarly as in Upper
Sorbian). (Ambrazas, 1996) gives seven cases
for Lithuanian, but there are in fact at least
eight cases in Lithuanian (or ten cases but only
eight of them are productive®). Nevertheless
the case systems of Slavonic and East Baltic
languages are very similar which makes the
languages quite similar even across the border
of different language groups.

Significant differences occur only in the ver-
bal system, Fast Baltic languages have a huge
amount of participles and half-participles that
have no direct counterpart in Czech. The
Lithuanian translation of an example from
(Gamut, 1991) is given in (5):

(5) Gimé vaikas,
was-born-3sG child-NoM
valdysiantis pasauly

ruling-FUT,MASC,SG,NOM world-ACC

“A child was born which will rule the
world.” (Lit)

The participle valdysiantis is used instead
of an embedded sentence, because Lithuanian
has future participles. These participles have
to be expresses by an embedded sentence in
Slavonic languages.

5 An outline of a structural
similarity measure

In this section, we propose a comparatively
simple measure of syntactic (structural) sim-
ilarity. There are generally two levels which
may serve as a basis for such a structural mea-
sure, the surface or deep syntactic level. Let us
first explain the reasons supporting our choice
of surface syntactic level.

Compared to deep syntactic representation,
the surface syntactic trees are much more

3 Although some Balticists argue that illative forms
are adverbs, it is a fact that this case is productive and
used quite often (Erika Rimkuté, personal communica-
tion), though it has been widely replaced by preposi-
tional phrases. Allative and adessive are used only in
some Lithuanian dialects, except of a few fixed allative
forms (e.g., vakarop(i) “in the evening”, velniop(i) “to
the hell”.)
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closely related to the actual surface form of a
sentence. It is quite common that every word
form or punctuation sign is directly related to
a single node of a surface syntactic tree. The
deep syntactic trees, on the other hand, usu-
ally represent autosemantic words only, they
may even actually contain more nodes than
there are words in the input sentence (for ex-
ample, when the input sentence contains ellip-
sis). It is also quite clear that the deep syntac-
tic trees are much more closely related to the
meaning of the sentence than its original sur-
face form, therefore they may hide certain dif-
ferences between the languages concerned, it is
a generally accepted hypothesis that transfer
performed on the deep syntactic level is eas-
ier than the transfer at the surface syntactic
level, especially for syntactically and typolog-
ically less similar languages.

The second important decision we had to
make was to select the best type of surface
syntactic trees between the dependency and
phrase structure trees. For practical reasons
we have decided to use dependency trees. The
main motivation for this decision is the enor-
mous structural ambiguity of phrase structure
trees that represent sentences with identical
surface form. Let us have a look at the follow-
ing Polish sentence:

(6) Pawet czyta
Pawel-NOM read-3sG
kstqzke

book-FEM,SG,ACC
“Pawet is reading a/the book.”

The syntactic structure of this sentence can
be expressed by two phrase structure trees rep-
resenting different order of attaching nominal
phrases to a verb.?

4The full line denotes the head of the phrase, the
dotted line a dependent.



Pawet czyta ksigzke
. .
K
o ° s
| | |
| | |
| | |
Pawet czyta ksiqzke

There is no linguistically relevant difference
between these two trees. Although generally
useful, the information hidden in both trees
is purely superfluous for our goal of designing
a simple structural metrics. The dependency
tree obtained from the phrase structure ones
by contraction of all head edges seem to be
much more appropriate for our purpose. In our
example, we therefore get the following form
of the dependency tree:

czyta

N

Pawet ksigzke

The nodes of the dependency trees repre-
senting surface syntactic level directly corre-
spond to word forms present in the sentence.
For the sake of simplicity, the punctuation
marks are not represented in our trees. They
would probably cause a lot of technical prob-
lems and might distort the whole similarity
measure. The node of a tree are ordered and
reflect the surface word-order of the sentence.
Different labels of nodes in both languages (see
the example below) don’t influence the value
of the measure, however they are important
for the identification of corresponding nodes
(a bilingual dictionary is used here).
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The structural measure we are suggesting is
based on the analogy to the Levenshtein mea-
sure. It is therefore pretty simple — the dis-
tance of two trees is the minimal amount of
elementary operations that transform one tree
to the other. We consider the following ele-
mentary operations:

1. adding a node,

2. removing a node,

3. changing the order of a node,
4. changing the father of a node.

The similarity of languages can be obtained
as an average distance of individual sentences
in a parallel corpus.

The following examples show the use of the
measure on individual trees. The correspon-
dence between individual nodes of both trees
can be handled by exploiting the bilingual dic-
tionary wherever necessary:

(7) Vesna je
Vesna-NOM is-3SG
prisla

come-RESPART,FEM,SG

“Vesna has come.” (Slo)

(8)

Vesna przyszta
Vesna-NOM come-RESPART,FEM,SG

“Vesna has come.” (Pol)

The distance between (7) and (8) is equal 1,
since one node has been removed (the dotted
line gives the removed node).

prisla/przyszta
Vesna je”
(9) Grem =z avtom

go-1sG  with car-MASC,SG,INS
“I am going by car.” (Slo)
(10) Jade  samochodem

go-1SG car-MASC,SG,INS
“I am going by car.” (Pol)



The distance between (9) and (10) is equal
1, since one node has been removed (the dotted
line gives the removed node).

grem/jade
avtom/samochodem
-
5.1 Formalization
(11) On rdd plave

he-NOM with-pleasure swims-3sG

“He likes swimming.” (Cze)

on

he—_ swimming

The Czech-English example (11) shows two
sentences which have a mutual distance equal
to 3 — if we start changing the Czech tree
into an English one, then the first elemen-
tary operation is the deletion of the node rdd,
the second operation adds the new node cor-
responding to the English word likes and the
third and last operation is the change of the
father of the node corresponding to the per-
sonal pronoun on [he| from swimming to likes.
As mentioned above, the node labels are not
taken into account, the fact that the Czech fi-
nite verbal form plave changes into an English
gerund has no effect on the distance.

A similar case are sentences with a dative
agent, for example:

(12) Je mi zma
is  me-DAT cold-F,sG,NOM
“I am cold” (Cze)
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In this sentence, the Czech mi does not
match to I since it is no subject. Similarly,
the substantive zima does not match to cold,
since it is a different part of speech. Hence
two nodes are removed and two new nodes
are added, which gives us a distance of 4.
This example demonstrates that the measure
tends to behave naturally - even short sen-
tences containing syntactically different con-
structions get a relatively high score.

To formalize the process described above, let
us introduce a notion of lexical and analytical
equality of nodes in analytical trees:

e Two nodes equal lexically if and only if
they share the same meaning in the given
context. Nevertheless to simplify auto-
matic processing, we treat two nodes as
lexically equal if they share a particular
meaning (defined e.g. as a non-empty in-
tersection of Wordnet classes).

Two nodes equal analytically if and only
if they have the same analytical label (e.g.
subject, spacial adverbial etc.).

As for the measure, two nodes match to each
other if they 1) occur at the same position in
the subtree of their parent and 2) equal lexi-
cally and analytically.

If a subtree (greater than 1) is added or re-
moved, the operation contributes to the mea-
sure with the size of the subtree (the amount
of its nodes), for example in the following id-
iomatic phrase:

(13) puscié¢ z dymem
leave-INF with smoke-MASC,SG,INS
“burn down” (Pol)

(14) zapdlit
burn-down-INF

“burn down” (Cze)

In the above example, the distance is
equal 2.
The automatic procedure can be described

as follows (given two trees):
1. Align all sons of the root node.
2. Count discrepancies.

3. For all matched nodes, go to step 1 to
process subtrees and sum up distances.



5.2 Discussion

It is obvious that our measure expresses the ty-
pological similarity of languages. We get com-
paratively high values even for genetically re-
lated languages if their typology is different.
Let us demonstrate this fact on Czech and
Macedonian examples.

(15) Ivan dal
Ivan-NOM gave-RESPART,MASC,SG
knihu Stojanovi
book-FEM.SG,ACC Stojan-DAT

“Ivan gave the book to Stojan.” (Cze)

dal

N

Ivan knihu Stojanovi

(16) Ivan mu  ja
Ivan-NOM him her-FEM,SG,ACC
ma dadeno
has-3SG given-PPART,NEUT,SG
knigata na Stojan
book-FEM.SG,DEF on Stojan

“Ivan gave the book to Stojan.” (Mac)

The distance equals 5. The score is rela-
tively high, taken into account that both lan-
guages are related. It indicates again that for
a given purpose the measure seems to provide
consistent results.

The proposed measure takes into account
only the structure of the trees, completely ig-
noring node and edge labels. Let us analyze
the following example:

(17) Ta ksiazka
this-FEM,SG,NOM book-FEM.SG,NOM
sie czesto czyta
REFL well read-3sG
“This book is read often.”

(18) Te ksiqzke
this-FEM,SG,ACC book-FEM.SG,ACC
sie czesto czyta
REFL well read-3sG
“This book is read often.”
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The syntactic trees of both sentences have
the same structure, but (17) is passive and
(18) active (with a general subject). This is
of course a significant difference and as such
it should be captured in the measure, never-
theless our simple measure doesn’t reflect it.
There are several reasons why a current ver-
sion of the measure doesn’t include morpho-
logical and morphosyntactic labels. One of the
reasons is a different nature of the problem —
to design a reliable measure combining struc-
tural information with the information con-
tained in node labels is very difficult. From the
technical point of view, a great obstacle is also
the variety of systems of tags used for this pur-
pose for individual languages, which may not
be compatible. For example, Macedonian has
almost no cases at nouns, therefore it would
make no sense to use cases in the noun anno-
tation, while for other Slavic languages (and
not only for Slavic ones) is this information
very important. To find a good integration of
morphosyntactic features into the structural
measure is definitely a very interesting topic
for future research.

6 Conclusions

This paper contains an outline of a simple lan-
guage similarity measure based upon the sur-
face syntactic dependency trees. According to
our opinion, such a measure expresses more
adequately the similarity of languages than
simple string-based measures used for the text
similarity. The measure is defined on pairs of
trees from a parallel corpus. In its current
form it doesn’t account for differences in mor-
phosyntactic labels of corresponding nodes or
edges, although it is an important parameter
of language similarity. The proper combina-
tion of our basic structural similarity measure
with some measure reflecting the differences of
labels opens a wide range of options for a fu-
ture research. Equally important seems to be
a task of gathering properly syntactically an-
notated parallel corpora of a reasonable size.
The only corpus of such kind which we have
at our disposal, the Prague Czech-English De-
pendency Treebank (Cuiin et al., 2004) re-
lies on imperfect automatic annotation which
might distort the results. The human annota-
tion of the PCEDT is just starting, so there’s a
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Figure 1: The dependency tree of (16)

good chance that the measure will bring some
reliable results at least for those two lenguages
soon.
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Variants of tree similarity in a Question Answering task

Martin Emms
Dept of Computer Science
Trinity College
Ireland

Abstract 2 Distance Measures

In pursuing such a similarity-based approach to
guestion-answering, the key decisions to be made
are the representations of the questions and an-
swers, and relatedly, distance measures between
them.

We will primarily be concerned with measures
which refer to a linguistic structure assigned to a
word sequence — variants wée-distancebut we
will also considerstring-distance

The results of experiments on the appli-
cation of a variety of distance measures
to a question-answering task are reported.
Variants of tree-distance are considered,
including whole-vs-sub tree, node weight-
ing, wild cards and lexical emphasis. We
derive string-distance as a special case
of tree-distance and show that a particu-
lar parameterisation of tree-distance out-

performs the string-distance measure. 21 Tree Measures

1 Introduction Following (Zhang and Shasha, 1989), one can ar-
rive attree-distancdn the following way. Given
This paper studies the deployment in a quessource and target ordered, labelled tre§sand
tion answering task of methods which assess th&, consider the se#/(S,T) of all 1-to-1 par-
similarity of question and answer representationstial maps, s, from S into 7', which arehomo-

Given gquestions such as morphisns preserving left-to-right order and an-
Q1 whatdoes mallocreturn ? _ cestry. Let the alignment ¢/, be the enlarg-
Q2 What year did poet Emily Dickinson die? ment of the mapr with pairs (Si7 )\) for nodes

and a collection of sentences (eg. a computer mary: £ 40(0) and(A, T;) for nodesT; ¢ ran(o).
ual, a corpus of newspaper articles), the task is t&etD definedeletioncosts for the S;, A), 7 inser-
retrieve the sentences that answer the question, e pn costs for the(/\f Tj), andR replacemen_tosts

Al the malloc function returns a null pointer . r th.e (Si’Tj) which represent nodes with npn-
A2 In 1886, poet Emily Dickinson died in Amherst , Masddentical labels. Then a total cost for the align-
ment, C(o’) can be defined as the sum of these
components costs, and thee distance can then

e defined as the cost of the least-cost map:

One philosophy for finding answers to ques-
tions would be to convert questions and candidat
answers into logical forms and to compute answer-
hood by apply theorem-proving methods. Another
philosophy is to assume that the answerssara-
lar to the questions, where similarity might be de-
fined in many different ways. While not all an-
swers to all questions will be similar, there’'s an
intuition that most questions can be answered in  if 75, = ¢(S;,) andT}, = o(S.,) then (i) S;, is to the

1

a way which shares quite a bit with the question eft of S iff 7T, is to the left of7;, and (ii) i, is a descen-
dant of S;, iff T}, is a descendant df;,, with descendency

a.nd. th"?‘t accordingly with a large enough COTPUS, @nderstood as the transitive closure of the daugher-magher
similarity-based approach could be fruitful. lation.

A(S,T) = min({C(c") | o € H(S,T)})

Forany 3trees[!, T2, T3, the triangle inequal-
ity holds A(T", T3) < A(T',T?) + A(T?,T3).
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Briefly the argument is as follows. Given map-
pingse € H(T',T?),andr € H(T?,T3), 001 €
H(T',T3)?, so(o o 7)’ is an alignment between
T and T3, and A(TY, T3) < C((o o 7)"). The
cost of the composition is less than the sum of the
costs of the composed mapss insertions and re-
placements contribute only if they fall dom (1),

7's deletions and replacements contribute only if
they act orvan(o).

From this basic definition, one can depart in
a number of directions. First of all, there is a
part-vswhole dimension of variation. Where
A(S,T) gives the cost of aligning thevhole

if (d is head or complement)
assign weight =L /rank,
Str(rank,d)}

else if (d is adjunct}
assign weight =1 /(5 x rank),
Str(5 x rank, d)}

else{
assign weight =1/(2 x rank)
Str(2 x rank,d) }

LEX is a function which can be composed
with S7T'R, and scales up the weights of leaf
nodes by a factor of 3.

source trees with the targetl’, one can consider Target wild cards T'(x): this is a function which

variants where one minimises over a setsab
parts ofS. This is equivalent to letting all but the
nodes belonging to the chosen sub-part to delete
at zero cost Let §(S,T) be thesub-tree dis-
tance. Le® (S, T'), be thesub-traversal distance,
in which sub-traversals of the left-to-right, post-
order traversal ob are considered. As fal\, the
triangle inequality holds fob andd — one needs
to extend the notion of alignment with a set of free
deletions. UnlikeA, § and$ are not symmetric.
Allof A, § andd are implicitly parametrised by
the cost functionsD, Z andR. In the work below
4 other parameters are explored

Nodeweighting W: this is a function which
assigns a real-number weight to each each
node. The cost function then refers to the
weights. In experiments reported below,
Du((Si,w),A) = w, (A, (Tj,w)) = w,
Ru((Siyws), (Tj,wr)) = maz(ws,wy), if
S; andT; have unequal labels. The experi-

Source self-effacers S/\:

classifies certain target sub-trees \agd-
card. If sourcesS; is mapped to targéf;, and
T; is the root of a wild-card tree, all nodes
within the S; sub-tree can be deleted for O
cost, and all those within th€; sub-tree can
be inserted for O cost. A wild cardp tree
might can be put in the position of the gap in
wh-questions, allowing for examplehat is
memory allocationto closely match any sen-
tences withmemory allocationas their ob-
ject, no matter what their subject — see Fig-
ure 3.

this is a function
which classifies source sub-trees sslf-
effacers  Such trees can be deleted in
their entirety for zero cost. IfS/\ clas-
sifies all source sub-trees as self-effacing,
then A(S/X) will coincide with notion of
‘tree-distance with Cut’ given in (Zhang and
Shasha, 1989).

ments reported below use 2 weighting func-Target self-inserters A/7: this is a function

tion STR, andLEX. STR assign weights
according to the syntactic structure, via a
classification of nodes as heads vs. comple-
ments vs. adjuncts vs. the rest, with es-
sentially adjuncts given 1/5th the weights of

which classifies certain target sub-trees as
self-inserters. Such trees can be inserted in
their entirety for zero cost. A candidate might
be optional adjuncts.

heads and complements, and other daughters2 Sequence Measures

r € TiVz € Ts((x,2) € oo iff Iy € To((z,y) €

1/2, via essentially the following top-down The tree-distance measures work with an elabora-
algorithm: tion of the original questions and answers. (Lev-
enshtein, 1966) defined the 1 dimensional precur-
sor of tree distance, which works directly on the
2 word sequences for the answer and question.
For two sequencess, t, and vertical (or hori-
zontal) tree encodingktree(s) andl_tree(t), if

Str(node, rank) :
assign weight /rank to node
for each daughted

o,(y,2) €7)
3Note that if one minimises also over sub-parts of the tar-

“Thus a target wild-card is somewhat like a target self-

get, you do not get an interesting notion, as the minimum willeffacer, but one which also licenses the classification of a

inevitably involve at most one node of source and target.
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s structural weightingS7 R has been used: size of

a node reflects the weight. 4 of the nodes in the
np v source represent the use of an auxiliary verb, and
receive low weight, changing the optimum match
to one covering the whole source tree. There is
some price paid in matching the dissimilar subject

process

nps.

sub tree matching dist=3.6

Figure 1: Sub tree example

we definell(s,t), asA(l_tree(s),l_tree(t)), and
m(s,t), asd(l_tree(s),l tree(t)), thenIl and 7
coincide with the standarsbquence edit distance

andsub-sequence edit distance. As special cases

of A andé, IT and~ inherit the triangle inequality e €mprocan
property. _ _
To illustrate some of the tree-distance defini-  Figure 2: Structurally weighted example

tions, in the following example, & distance of _ _ o

3 between 2 trees is obtained, assuming unit costs F19Ure 3 continues the example, but this time
for deletions (shown in red and double outline), in-IN the subject position there is a sub-tree which is
sertions (shown in green and double outline), ang!2ssified as a wild-cardp tree, and it matches at
substitutions (shown in blue and linked with an ar-O COSt With the subject np in the source tree.

row):
@ whole tree matching dist=3.0

Note also in this picture that nodes that are mapped
without a relabelling are shown at the same hori-
zontal level, with no linking arrow.

Figure 1 shows a sub-tree example)— The
source tree nodes which do not belong to the cho-
sen sub-tree are shown in grey. The lowest vp sub-
tree in the source is selected, and mapped to the
vp in the target. The remaining target nodes must Figure 3: Wild-card example
be inserted, but this costs less than a match which
starts higher and necessitates some deletions andThe basis of the algorithm used to calculdte
substitutions. is thezhangShasha algorithifzhang and Shasha,

Figure 2 shows a sub-tree example where thd989): the Appendix summarises it. The im-
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plementation is based on code implementifig binary-case to the alignment-based, difference-

(Fontana et al., 2004), adapting it to allowing forcounting perspective of the edit-distances: di-

the § and 4 variants andl’(x), S/, andA/T pa-  viding I1*(a,b), the symmetric difference, by

rameters, and to generate the human-readable dig|-°|b*|> does not give a measure with maxi-

plays of the alignments (such as seen in figures 1,&hum value 1 for the disjoint case, and does not

and 3). give the reverse of a ranking by Cosine similaFity.
Below we shall usé to denote the Cosine dis-

tance.

Assessing answer/question similarity by variants

of tree distance or sequence edit-distance, meards T he Question Answering Tasks

Elt]r?t dlstancle will not be \;]vp?-order |crj1varc|jant_. For a given representation(parse trees, word se-
gretare as?imeasurltlasubvl Ic baredvllqor -oraer Incjuences etc.), and distance measdyreve shall
variant, SOmetimes Calletken-Daseneasures. — yqqarically take a Question Answering by Dis-

These measures are usually couched weetor tance (QAD) task to be given by a set of queries,

representation of questions and answers, wher& and for each queny, a corpus of potential an-

vector dimensions are words from (some cho-SWer sentence€OR,,. For each: € COR,, the

sen enumeration) of words (see (Salton and Les‘%ystem determined(r(a), 7(¢)), the distance be-

1_968))', In the §|mplest case the values on eacRNeen the representationséndg, then uses this

dimensions are ifi0, 1}, denoting presence or ab- to sortCOR, into A,. This sorting is then evalu-
1 w

sence of a word. lie is vector product and™ 0 i the following way. Ifi, A, is thecorrect

is the set of words in a sequenaethend e b = jnqver then theorrect-answer-ranks the rank
la® N b*|, for the binary vectors representind, of . in A.:
(& q-

b*. Three well known measures based on this are
given below, both in terms vectors, and for binary
vectors, the equivalent formulation with sets:

2.3 Order invariant measures

| {a € Ay : d(r(a),r(q)) < d(r(ac),r(q))} |

Dice 2Geb)/(Ged)+ (5. D) whilst the correct-answer-cutoffs the proportion
— 2(a® N b))/ (ja®] + [b*]) of A, cut off by the correct answe :
Jaccard @'(b')/fm'b@‘)*/(b‘ o )’b) o€ A, : d(r(a), 7(@)) < d(r(ad), @)} | / | A |
= (|a a
Cosine (Geb)/(G@ead)?(beb)® Lowervalues for this connote better performance.
= (la® 0 b¥])/((|a®])*2(|6¥])°®) Another figure of merit is theeciprocal correct-
These measursimilarity. not difference. ranain answer-rank Higher values of this connote better
Y, ' ging performance.

for 1 for identical a®,b*, to O for disjoint. In

. . Lo Note the notion of answerhood is not one requir-
the binary case, Dice/Jaccard similarity can be .
: : ing answers to be the sub-sentential phrases asso-
related to the alignment-based, difference count-. . . .
. . o ciated with wh-phrases in the question. Also not
ing perspective of the edit-distances. If we de-

) . all the questions are wh-questions.
fine I1¥(a, b) as|a™ U b¥| — |a™ N b™| — the size d d

of the symmetric differencéetweens® andb® — Note also that the set of candidate answers

. . L i r he answer-to- ry distan
this can be seen as a set-based version of edit dlrg-ORq s sorted by the answer-to-query distance,

tance, which (i) considers mappings on the sets o (r(a),r(q)), not the query-to-answer distance,
words,a®, b, not the sequences b, and (ii) sets d(r(q),r(a)). The intuition is that the queries are

e . short and the answers longer, with sub-part that re-
replacement cost to infinity. A difference measure ger, P

(ranging from O for identicak®,b* to 1 for dis- alI}/rEgmzlr?;tr:z,?cnesvgfer'some of the above men-
joint) results ifl1*(a, b) is divided by|a®| + [b*| P

- .. tion istance m res on 2 examples of QAD
(resp.|a™ U b™]|) and this difference measures will tioned distance measures on 2 examples of Q

give the reverse of a ranking by Dice (resp. Jac:%1Sks has been measured:

card) similarity. GNU Library Manual QAD Task: in
The Cosine is a measure of thangle be- this caseQ is a set of 88 hand-created

tween the vectorg, E, and is not relatable in the —M
8if the vectors are normalised by their length, then you

SI1*(a, b) could be equivalently defined &si — b)|? can show|(@/|@| — b/|b|)|? reverses the Cosine ranking
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queries, andCOR,, shared by all the nal node labels are inflected forms of words, not
queries, is the sentences of the manual  base forms. For the structural weighting algo-

of the GNU C Library (| COR, |~ rithm, STR, the necessary node distinctions are
31, 000). furnished directly by the parser. For the question
The TREC 11 QAD task: In this parses, a set of transformations is applied to the

case Q was the 500 questions of the parses direcjtly given by the parser, V\{hiCh compa-
TREC11 QA track (Voorhees and Buck- rqble to therinity parser, re-orde_r .auxnlary inver-
land, 2002), whose answers are drawn sion, and place a tree in the position of a gap.
from a large corpus of newspaper arti-
cles. COR, was taken to be the sen-
tences of the top 50 from the top-1000
ranking of articles provided by TREC11 As a kind of sanity-check on the idea of the us-

4 Relating Parse Quality to Retrieval
Perfor mance

for each question|(COR, |~ 1000). ing syntactic structures in retrieving answers, we
Answer correctness was determined us-  performed some experiments in which we var-
ing the TREC11 answer regular expres- ied the sophistication of the parse trees that the
sions. parsers could produce, the expectation being that

the less sophisticated the parse, the less successful

For the tree-distance measures, 2 parsing sySgould be question-answering performance. The
tems have been used. For convenience of refefaft-hand data in Table 1 refers to various reduc-
ence, we will call the first parser, tiiénity parser.  tjons of the linguistic knowledge bases of thia-
This is a home-grown parser combining a disamity parserhin50= random removal of 56 subset,
biguating part-of-speech tagger with a bottom-Upmanual= manual removal of a subsdtat = en-
chartparser, refering to CFG-like syntax rules andjrely flat parsesgold = hand-correction of query
a subcategorisation system somewhat in a categ@arses and their correct answers). The right-hand
rial grammar style. Right-branching analyses argjata in Table 1 refers to experiments in which the
prefered and a final selection of edges from alkepertoire of moves available to the Collins parser,
available is made using a leftmost/longest selecys defined by its grammar file, was reduced to dif-
tion strategy — there is always an output regardlesgrent sized random subsets of itself.
of whether there is a single input-encompassing Figyre 4 shows the empirical cumulative den-

edge. Preterminal node labels are a combinatiogity function (ecdf) of thecorrect-answer-cutoff
of a main functor with other feature terms, but thegptained with the weighted sub-tree with wild

replacement cost functioR is set to ignore the cards measure. For each possible valuef

feature terms. _Terminal node labels are base formgprrect-answer-cutoffit plots the percentage of
of words, not inflected forms. For the structural gyeries with acorrect-answer-cutofi c.

weighting algorithm,S7R, the necessary node
distinctions are furnished directly by the parser for
vp, and by a small set of structure matching rules
for other structures (nps, pps etc). The structure
output for wh-questions are essentially deep strug-
tures, re-ordering an auxiliary inversion, and plact
ing a tree in the position of a gap.

The Collins parser (Collins, 1999Mpdel 3
variant) is a probabilistic parser, using a model of
trees as built top-down with a repertoire of moves| E
learnt from the Penn Treebank. The pretermina|l (9"
node labels are a combination of a Penn Tree==.
bank label with other I.nforma_tlo_n pgrtalnlng to the Figure 4: Success vs Cut-off for different parse settings:
head/complement/adjunct distinction, but the re-; = correct-answer-cutoffy = proportion of queries whose
placement cost functiof® is set to ignore all but correct-answer-cutofi< = (ranking by weighted sub-tree

the Penn Treebank part of the label. The termjith wild cards) (Library task)

)
0.8

0.4

"http://iwww.gnu.org What these experiments show is that the ques-
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Table 1:Distribution of Correct Cutoffacross query se® in different parse settings. Left-hand data =
GNU task, trinity parser, right-hand data = TREC11 task, ICd parser

Parsing| 1st Qu. Median Mean 3rd Qu. Parsing| 1stQu. Median Mean 3rd Qu.
flat 0.1559 0.2459 0.2612 0.392( 55 0.3157 0.6123 0.5345 0.766400
manual | 0.0215 0.2103 0.2203 0.392¢ 75 0.02946 0.1634 0.2701 0.4495
thin50 | 0.01418 0.02627 0.157 0.2930 85 0.0266 0.1227 0.2501 0.4380
full 0.00389 0.04216 0.1308 0.2198 100 0.01256 0.08306 0.2097 0.2901
gold 0.00067 0.0278 0.1087 0.1669

tion answering performance is a function of the so-been made here.
phistication of the parses that the parsers are able The sub-traversal measure, using structural

to produce. weighting, lexical emphasis, and wild-cards per-
) ) forms betterrr = 0.150) than the sub-sequence
5 Comparing Distance Measures measure rr = 0.09), which in turn performs

Table 2 gives results on the Library task, using thebetter than the basic sub-traversal measure, with-

trinity parser, for some variations of the distanceOL_Jth structural weighting, IeX|cal_emp.haS|s or
measure wild-cards (nrr = 0.076). The cosine distance,

Considering the results in 2, the best perform-e’ performed best.

ing measurerGrr = 0.27) was the sub-traversal 6 Djscussion

distance,d, assigning weights structurally using _

STR, with lexical emphasi€£EX, and treating a FOr the parsers used, you could easily have 2
gap position as anp wild card. This slightly out Sentences with completely different words, and
performs the sub-tree measute(mrr = 0.25).  Very different meanings, but which would have the

An alternative approach to discounting parts ofS&me pre-terminal syntactic structure: the preter-
the answer tree, allowing any sub-tree of the anMinal syntactic structure is not a function of the

swer the option to delete for free\(W = Str o meaning. Give'n this, it is perhaps not surpri;-
Lex,T(x) = np_gap,S/\ = V)) performs con- N9 that th_ere will be cases 'Fhat the sequence dis-
siderably worserfurr = 0.16). Presumably thisis tance easily spots as dissimilar, but which the tree
because it is too enthusiastic to assemble the queffStance measure, without any lexical emphasis,
tree from disparate parts of the answer tree. ByVill regard as quite similar, and this perhaps ex-
comparisong andd can only assembly the query p!alns why, without any lexical empha&s, the tree-
tree from parts of the answer tree that are mordlistance measure performs at similar level to, or
closely connected. worse than, the sub-sequence distance measure.
The tree-distance measures 6) using struc- With some kind of lexical emphasis in place,
tural weights, lexical emphasis and wild cardsthe tree-distance measures out-perform the sub-

(mrr = 0.27) out-perform the sub-sequence mea-S€duence measures. We can speculate as to the
sure,r (mrr = 0.197). It also out-performs the €ason for this. There are two kinds of case

cosine measure) (mrr = 0.190). But7 andd where the tree-distance measures could be ex-

either out-perform or perform at about the samd?€ctéd to spot a similarity which the sequence-
level as the tree-distance measure if the lexicafliStance measures will fail to spot. One is when
emphasis is removed (sééWW = Str, T(x) = the questllon and answer are more or Ies§ simi-
np_gap), mrr = 0.160). lar on their head words, but differ in determiners,
The tree-distance measure works better if uxiliaries and adjuncts. The sequence distance
structural weighting is usedh(rr — 0.09) than Mmeasure will pay more of a pr'ice for these'differ-
if it is not (mrr = 0.04), ences than the structurally weighted tree-distance.

The tree-distance measufevorks better with Another kind of case is when the answer supplies
wild-cards (se@d(W = Str,T(x) = np_gap) words which match a wild-card in the middle of

mrr = 0.160, than without (se@(W = Str), the query tree, as might happen for example in:

mrr = 0.090). Q: what do child processes inherit from their par-
. ent processes
Table 3 glve_s some results on the TRI_EC]']' task, 4 a child process inherits the owner and permis-
using the Collins parser. Fewer comparisons have  sions from the ancestor process
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Table 2: For different distance measures (Library task, trinity gar), distrution of correct-answer-

cutoff, mean reciprocal rankurr

cutoff

distance type 1st Qu. Median Mean | mrr

5(W = Str o Lex, T(%) = np_gap) 8.630-05 8.944-04 2.460-02 0.270
O0(W = Str o Lex, T (%) = np_gap) 9.414e-05 1.428e-03 7.133e-0D.255
m bases 1.569e-04 2.087e-03 5.181e-0D.197
0 bases 1.569e-04 8.630e-04 1.123e-02D.190
AW = Str o Lex,T(x) = np_gap,S/\ =V¥) 4.080e-04 9.352-03 5.853-02 0.160
0(W = Str,T(x) = np_gap) 3.923e-04 1.964e-02 1.162e-0D.160
o(W = Str) 5.060e-03 3.865e-02 1.303e-0D.090
0 1.324e-03 1.046e-01 1.852e-0D.040
A 8.398e-02 2.633e-01 3.531e-0D.003

Table 3:For different distance measures (TREC task, collins parser distribution of correct-answer-
cutoff and mean reciprocal ranki{rr)

cutoff
distance type 1st Qu. Median Mean | mrr
f forms 7.847e-03 2.631le-02 1.068e-p0.167
5(W = Str o Lex, T(%) = np_gap) 8.452e-03 4.898e-02 1.558e-0D1.150
m forms 2.113e-02 7.309-02 2.051e-0D.092
5 1.815e-02 1.030e-01 3.269e-01.076

The tree-distance measures will see these abese equating and discriminating advantages
similar, but the sub-sequence measure will pay avhich theoretically should accrue ﬁogactually
large price for words in the answer that match thewill do so, will depend on the accuracy of the pars-
gap position in the query. Thus one can argue thang: if there is too much bad parsing, then we will
the use of structural weighting, and wild-card treeshe equating that which we should keep apart, and
in the query analysis will tend to equate thingsdiscriminating that which we should equate.
which the sequence distance sees as dissimilar. |5 the two tasks, the relationship between the

Another possible reason that the tree-distanCgee-distance measures and the order-invariant co-
measure out-performs the sub-sequence meastife measure worked out differently. The reasons
is that it may be able to distinguish things whichyq, this are not clear at the moment. One pos-
the sequence distance will tend to treat as equivasipility is that our use of the Collins parser has
lent. A question might make the thematic role of yqt yet resulted in good enough parses, especially
some entity very clear, but use very few significaniyyestion parses — recall that the indication from
words as in: 4 was that improved parse quality will give better
retrieval performance. Also it is possible that rel-
ative to the queries in the Library task, the amount

Using tree distance will favour answer sen-Of word-order permutation between question and
tences withmalloc as the subject, such asal- answer is greater in the TREC task. This is also
loc returns a null pointer The basic problem for indicated by the fact that on the TREC task, the

the sequence distance here is that it does not hay/P-seéquence measure, falls considerably be-

much to work with and will only be able to parti- hind the cosine measuré, whereas for the Li-

tion the answer set into a small set of equivalenc@rary task they perform at similar levels.

classes. Some other researchers have also looked at
These are speculations as to why tree-distancthe use of tree-distance measures in semantically-

would out-perform sequence distance. Whetheoriented tasks. Punyakonok(2004) report work

what does malloc do ?

106



using tree-distance to do question-answering osibilities.
the TREC11 data. Their work differs from that There are many possibilities to be explored in-
presented here in several ways. They take theolving adapting cost functions to enriched node
parse trees which are output by Collins parser andescriptions. Already mentioned above, is the pos-
convert them into dependency trees between thsibility to involve semantic information in the cost
leaves. They compute the distance from query tdunctions. Another avenue is introducing weight-
the answer, rather than from answer to query, usings based on corpus-derived statistics, essentially
ing essentially the variant of tree-distance that alimaking the distance comparision refer to extrin-
lows arbitrary sub-trees of the target to insert forsic factors. One open question is whether anal-
zero-cost. Presumably this directionality differ- ogously toidf, cost functions for (non-lexical)
ence is not a significant one, and with distancesiodes should depend on tree-bank frequencies.
calculated from answers to queries, this would cor- Another question needing further exploration is
respond to the variant that allows arbitrary sourcehe dependency-vs-constituency contrast. Interest-
sub-trees to delete with zero cost. The cost funcingly Punyakonok(2004) themselves speculate:
tions are parameterised to refer in the case of wild-
card replacements to (i) information derived from  each node in a tree represents only a
Named Entity recognisers so different kinds of wh ~ word in the sentence; we believe that ap-
wild-cards can be given low-cost replacment with ~ propriately combining nodes into mean-
vocabulary categorised as belong to the right kind ~ ingful phrases may allow our approach
by NE recognition and (ii) base-form information. to perform better.

There is no way to make a humerical compar- i _ _
ison because they took a different answer corpus We found working Wlth. constituency trees that
COR, — the articles containing the answers Sug_lt was the sub-trav_ersal distance measure that per-
gested by TREC11 participants — and a diﬁerentformed best, and it needs to be seen whether this
criterion of correctness — an answer was correct iPOIdS glso for dependency trees_. A_ISO _to he ex-
it belonged to an article which the TREC11 adju-plored is the role of structural weighting in a sys-

dicators judges to contain a correct answer. terX :;J_S'nlg deperignci/htrteis. id be int i
Their adaptation of cost functions to refer to es- inal spectiiation hat It would be ineresting

. . . . _to explore is whether one can use feed-back from
sentially semantic annotations of tree nodes is aﬁ P

avenue we intend to explore in future work. Whatfnerf%rir:arl]g:mcig ao?A:(-)If)aft?iT’ilt(ieass fsr Z'szs'grtr;ﬁ
this paper has sought to do is to investigate intrin- achine gorp P '
. . L an approach analogous to the use of the language-
sic syntactic parameters that might influence per- odel in parser trainin
formance. The hope is that these parameters stifl" P 9
play a role in an enriched system.
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Eleventh Text REtrieval Conference (TREC 2002) Tlis][j:] = Flis][j:] = min of swap, delete,
Department of Commerce, National Institute of

Standards and Technology. insert, where

swap = Flis — 1][j: — 1] + swap(is, j¢)
K. Zhang and D. Shasha. 1989. Simple fast algorithms delete = Flis — 1][ji] + delete(is)

for the editing distance between trees and related

- insert = Flis][jr — 1] + insert(ji)
problems. SIAM Journal of Computingl8:1245—

1262.
case 2: eitherl(is) # I(z) orl(j:) # 1(5)
Appendix Flis][ge] = min of delete, insert, for + tree,
where
This appendix briefly summarises the algorithm swap, delete, insert as before and
to compute the tree-distance, based on (Zhang for + tree = Fli(is) — U[l(e) — 1] + T[is][je]

and Shasha, 1989) (see Section 2.1 for definition
of tree-distance). The algorithm operates on thq
left-to-right post-order traversals of trees. Given |n case 1, the ‘forests’ F(I(i),is) and

source and target trees and 7', the output is a f(1(4), j,) are both single trees and the computed
table 7, indexed vertically by the traversal &f  forest distance is transferred to the tree-distance
and horizontally by the traversal @f, and pOSi- table7. In case 2, at least one ﬂ(l(l)ﬂs) or
tion T[Z] []] is the tree-distance from the subtree F(l(]),]t) represents a forest of more than one
rooted at, to the’l" subtree rooted at. Thusthe tree. This means there is the possibility that the
bottom rlghthand corner of the table represents thﬂna| trees in the two forests are mapped to each
tree distance betweeiandT". other. This quantity is found from tHE table.

If k& is the index of a node of the tree, thedt- This formulation gives thevhole-treedistance
most leaf I(k), is the index of the leaf reached petweenS andT. For thesub-treedistance, you
by following the left-branch down. For a given take the minimum of the final column &F. For
leaf there is a highest node of which it is thethesub-traversakase, you do the same but on the
left-most leaf. Let such a node be callek@y- final iteration, you set the pure deletion column

root. Let KR(T) be the sequence dfey-roots of F to all Os, and take the minimum of the final
in 7. The algorithm is a doubly nested loop as-column of F.

cending throught the key-roots & and 7', in To accommodate wild-card target treasse
which for each pair of key-root§, j), a routine 1 in the above is extended to allo[i,][j;] =
tree_dist(i, j) updates the table. Flis|[5:] = 0 in casej, is the root of a wild-card

Supposei is any node ofS. Then for anyis  tree. To accommodate self-effacing source trees,

with (i) < i, < 14, the subsequence &f from  case 2 in the above is extended to also consider
I(i) to is can be seen asfarestof subtrees of5,  for + tree_del = Fli(is) — 1,7

denotedF'(1(i),is). tree_dist(i,j) creates a ta-
ble 7, indexed vertically fromi(z) to ¢ and hori-
zontally from!(j) to j, such thatF[is][j;] repre-
sents the distance between the fordsts(i), ;)
and F'(1(j), j¢). Also the F' table should be seen
as having an extra left-most column, representing
for eachis, 1(7) < is <1,theF(i(i),is) to ) map-
ping (pure deletion), and an extra uppermost row
representing for each for eagh I(j) < j: < j,
the() to F(I(5), j:) mapping (pure insertion).
tree_dist(i, 5){
initialize:
FU@0), ..., FEO = 1,...,i —1() + 1
FIORG) - FOG] = 1,5 = 1) + 1

loop: Vis, 1(i) < is < iVje, 1(§) < je < 7

{
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Abstract

In this paper we propose two metrics to be
used in various fields of computational lin-
guistics area. Our construction is based on
the supposition that in most of the natural
languages the most important information
is carried by the first part of the unit. We
introduce total rank distance and scaled to-
tal rank distance, we prove that they are
metrics and investigate their max and ex-
pected values. Finally, a short application
is presented: we investigate the similarity
of Romance languages by computing the
scaled total rank distance between the di-
gram rankings of each language.

1 Introduction

Decision taking processes are common and fre-
quent tasks for most of us in our daily life.
The ideal case would be that when the decisions
can be taken deterministically, based on some
clear, quantifiable and unambiguous parameters
and classifiers. However, there are many cases
when we decide based on subjective or sensor-
ial criteria (e.g. perceptions), but which prove to
function well. The domains in which decisions are
taken based on perceptions vary a lot: the quali-
tative evaluation of services, management, finan-
cial predictions, sociology, information/intelligent
systems, etc (Zadeh and Kacprzyk, 1999).

When people are asked to approximate the
height of some individual, they prefer to use terms
like: very tall, rather tall, tall enough, short, etc.
We can expect the same linguistic variable to have
a different metrical correspondence according to
the community to which the individual belongs
(i.e. an individual of 170 cm can be considered

Liviu P. Dinu
University of Bucharest, Faculty of
Mathematics and Computer Science/
Academiei 14, 010014,
Bucharest, Romania
ldinu@funinf.cs.unibuc.ro

short by the Australian soldiers and tall by the Es-
kimos). Similar situations also arise when people
are asked to hierarchically order a list of objects.

For example, we find it easy to make the top of
the best five novels that we read, since number one
is the novel that we like best and so on, rather than
to say that we liked in the proportion of 40% the
novel on the first position, 20 % the novel on the
second place and so on. The same thing is happen-
ing when we try to talk about the style of a certain
author: it is easier to say that the author x is closer
to y than z, then to quantify the distance between
their styles. In both cases we operate with a hid-
den variable” and a hidden metric”.

Especially when working with perceptions, but
not only, we face the situation to operate with
strings of objects where the essential information
is not given by the numerical value of some para-
meter of each object, but by the position the object
occupies in the strings (according to a natural hier-
archical order, in which on the first place we find
the most important element, on the second place
the next one and on the last position the least im-
portant element).

As in the case of perceptions calculus, in most
of the natural languages, the most important infor-
mation is also carried by the first part of the unit
(Marcus, 1974). Cf. M. Dinu (1997), it is advis-
able that the essential elements of a message to be
situated in the first part of the utterance, thus hav-
ing the best chances to be memorized! (see Table
1).

Based on the remark that in most of the natural

'On the contrary, M. Dinu notices that at the other end, we
find the wooden language from the communist period, text
that was not meant to inform, but to confuse the receiver with
an incantation empty of content, and that used the reversed
process: to place the important information at the end of very
long phrases that started with irrelevant information

109

Proceedings of the Workshop on Linguistic Distanpeges 109-116,
Sydney, July 20062006 Association for Computational Linguistics



The length Memorized words (%)
of the phrase all first half | second half
12 100 % | 100 % 100 %
13 90 % 95 % 85 %
17 70 % 90% 50%
24 50 % 70 % 30 %
40 30 % 50 % 10 %

Table 1: The percentage of memorized words from
phrases

languages the most important information is car-
ried out by the first part of the unit, in this paper
we introduce two metrics: total rank distance and
scaled total rank distance.

Some preliminary and motivations are given in
Section 2. In Section 3 we introduce total rank dis-
tance; we prove that it is a metric (Section 3.1), we
investigate its max and expected values (Section
3.2) and its behavior regarding the median ranking
problem (Section 3.3). An extension for strings is
proposed in Section 4. Scaled total rank distance
is introduced in Section 4, where we prove that it
is a metric and we investigate its max and expected
values. In Section 6 a short application is pre-
sented: we investigate the similarity of Romance
languages by computing the scaled total rank dis-
tance between the digram rankings of each lan-
guage. Section 7 is reserved to conclusions, while
in Section 8 we give a mathematically addendum
where we present the proofs of the statements.

2 Rank distance

By analogy to computing with words, natural lan-
guage and genomics, we can say that if the differ-
ences between two strings are at the top (i.e., in
essential points), the distance has to have a bigger
value then when the differences are at the bottom
of the strings.

On the other hand, many of the similarity mea-
sures used today (edit distance, Hamming distance
etc.) do not take into account the natural tendency
of the objects to place the most important informa-
tion in the first part of the message.

This was the motivation we had in mind when
we proposed Rank distance (Dinu, 2003) as an al-
ternative similarity measure in computational lin-
guistics. This distance had already been suc-
cessfully used in computational linguistics, in
such problems as the similarity of Romance lan-
guages (Dinu and Dinu, 2005), or in bioinformat-

ics (in DNA sequence comparision problem, Dinu
and Sgarro).

2.1 Preliminaries and definitions

To measure the distance between two strings, we
use the following strategy: we scan (from left to
right) both strings and for each letter from the first
string we count the number of elements between
its position in first string and the position of its
first occurrence in the second string. We sum these
scores for all elements and obtain the rank dis-
tance. Clearly, the rank distance gives a score zero
only to letters which are in the same position in
both strings, as Hamming distance does (we recall
that Hamming distance is the number of positions
where two strings of the same length differ).

On the other hand, the reduced sensitivity of
the rank distance w.r.t. deletions and insertions
is of paramount importance, since it allows us to
make use of ad hoc extensions to arbitrary strings,
such as its low computational complexity is not
affected. This is not the case for the extensions
of the Hamming distance, mathematically optimal
but computationally heavy, which lead to the edit-
distance, or Levenshtein distance, and which are at
the base of the standard alignment principle. So,
rank distance sides with Hamming distance rather
than Levenshtein distance as far as computational
complexity is concerned: the fact that in the Ham-
ming and in the rank case the median string prob-
lem is tractable (Dinu and Manea), while in the
edit case it is is NP-hard (Higuera and Casacu-
berta, 2000), is a very significant indicator.

The rank distance is an ordinal distance tightly
related to the so-called Spearman’s footrule (Di-
aconis and Graham, 1977) 2, which has long been
used in non-parametric statistics. Unlike other or-
dinal distances, the Spearman’s footrule is linear
in n, and so very easy to compute. Its average
value is at two-thirds of the way to the maximum
value (both are quadratics in n); this is because,
in a way, the Spearman footrule becomes rather
“undiscriminating” for highly different orderings.
Rank distance has the same drawbacks and the
same advantages of Spearman’s foootrule. As for
“classical” ordinal distances for integers, with av-
erages values, maximal values, etc., the reader is

?Both Spearman’s footrules and binary Hamming dis-
tances are a special case of a well-known metric distance
called sometimes taxi distance, which is known to be equiv-
alent to the usual Euclidian distance. Computationally, taxi
distance is obviously linear.
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referred to the basic work (Diaconis and Graham,
1977).

Let us go back to strings. Let us choose a fi-
nite alphabet, say { N, V, A, O} (Noun, Verb, Ad-
jective, Object) and two strings on that alphabet,
which for the moment will be constrained to be a
permutation of each other. E.g. take two strings
of length 6: NNV AOO and VOANON; put
indexes for the occurrences of repeated letters in
increasing order to obtain N1 NoV; A101042 and
V101 A1 N1OsNo. Now, proceed as follows: in
the first sequence [V; is in position 1, while it is in
position 4 in the second sequence, and so the dif-
ference is 3; compute the difference in positions
for all letters and sum them. In this case the dif-
ferences are 3, 4, 2, 1, 3, 1 and so the distance is
14. Even if the computation of the rank distance
as based directly on its definition may appear to
be quadratic, in (Dinu and Sgarro) two algorithms
which take it back to linear complexity are exhibit.

In computational linguistics the rank distance
for strings without repetitions had been enough. In
a way, indexing converts a sequence with repeti-
tions into a sequence without repetitions, in which
the k occurrence of a letter a are replaced by sin-
gle occurrences of the k indexed letters aq, as, . . .,
ag. Letu = z1x0... 2 and v = y1y2 ... Y, be
two strings of lengths n and m, respectively. For
an element z; € u we define its order or rank by
ord(xz;|u) = n+1—1: we stress that the rank of z;
is its position in the string, counted from the right
to the left, after indexing, so that for example the
second O in the string VOANON has rank 2.

Note that some (indexed) occurrences appear in
both strings, while some other are unmatched, i.e.
they appear only in one of the two strings. In de-
finition (1) the last two summations refer to these
unmatched occurrences. More precisely, the first
summation on x € w N v refers to occurrences x
which are common to both strings « and v, the sec-
ond summation on x € u \ v refers to occurrences
x which appear in u but not in v, while the third
summation on = € v \ u refers to occurrences x
which appear in v but not in .

Definition 1 The rank distance between two
strings without repetitions u and v is given by:

A(u,v) = Y |ord(z|u) — ord(x|v)| +
rcunv
+ > ord(zlu)+ Y ord(zlv) (1)
z€u\v z€v\u
Example1 [. Let u = abede and v = beaf be

two strings without repetitions. A(u,v) =
lord(alu) — ord(alv)] + |ord(blu) —
ord(blv)| + |ord(elu) — ord(elv)] +
ord(clu) + ord(dlu) + ord(flv) =
3+0+2+3+24+1=11.

2. Let w1 = abbab and wy = abbbac be two
strings with repetitions. Their corresponding
indexed strings will be: w1 = a1bibaazbs
and Wy = a1bibsbsascy, respectively. So,
A(wl,wg) = A(Wl, Wg) = 8.

Remark 1 The ad hoc nature of the rank distance
resides in the last two summations in (1), where
one compensates for unmatched letters, i.e. in-
dexed letters which appear only in one of the two
strings.

Deletions and insertions are less worrying in the
rank case rather than in the Hamming case: if one
incorrectly moves a symbol by, say, one position,
the Hamming distance loses any track of it, but
rank distance does not, and the mistake is quite
light. So, generalizations in the spirit of the edit
distance are unavoidable in the Hamming case,
even if they are computationally very demanding,
while in the rank case we may think of ad hoc
ways-out, which are computationally convenient.

3 Total Rank Distance

We remind that one of the goals of introducing

rank distance was to obtain a tool for measuring

the distance between two strings which is more
sensitive to the differences encountered in the be-
ginning of the strings than in the ending.

Rank distance satisfies in a good measure the
upper requirement (for example it penalizes more
heavily unmatched letters in the initial part of
strings), but some black points are yet remaining.
One of them is that rank distance is invariant to the
transpositions on a given length.

The following example is eloquent:

Example2 . Let a = (1,2,3,4,5), b =
(2,1,3,4,5), ¢ = (1,2,4,3,5) and d =
(1,2,3,5,4) be four permutations. Rank dis-
tance between a and each of b, c or d is the

same, 2.

2. The same is happening with
a = (1,2,3,4,5,6,7,8) and
b = (3,2,1,4,5,6,7,8), ¢ =

d =
rank distance

(1,4,3,2,5,6,7,8), or
(1,2,3,4,5,8,7,6) (here
is equal to 4).
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In the following we will repair this inconve-
nient, by introducing the Total Rank Distance, a
measure which gives us a more comprehensive in-
formation (compared to rank distance) about the
two strings which we compare.

Since in many situations occurred in computa-
tional linguistics, the similarity for strings with-
out repetitions had been enough, in the following
we introduce first a metric between rankings® and
then we generalize it to strings.

3.1 Total rank distance on permutations

Let A and B be two rankings over the same uni-
verse U, having the same length, n. Without loss
of generality, we suppose that U = {1,2,...,m}.

For each 1 < i < n we define the function § by:

def

6(i) = A(A;, Bi). 2

where A; and B; are the partial rankings of length
1 obtained from the initial rankings by deleting the
elements below position ¢ (i.e. the top ¢ rankings).

Definition 2 Let A and B be two rankings with
the same length over the same universe, U. The
Total Rank Distance between A and B is given by:

n n

D(A,B) => 6(i) =Y A(A;, By).

=1 =1

Example 3 [. Leta, b, cand d be the four per-
mutations from Example 2, item 1. The total
rank distance between a and each of b, c, d
is: D(a,b) =10, D(a,c) = 6, D(a,d) = 4.

2. The visible differences are also in the item 2
of the upper example if we apply total rank
distance: D(a,b) = 30, D(a,c) = 28,
D(a,d) = 10.

3A ranking is an ordered list of objects. Every ranking
can be considered as being produced by applying an order-
ing criterion to a given set of objects. More formally, let U
be a finite set of objects, called the universe of objects. We
assume, without loss of generality, that U = {1,2,...,|U|}
(where by |U| we denote the cardinality of U). A ranking
over U is an ordered list: 7 = (x1 > xz2 > ... > zq),
where {z1,...,2z4} C U, and > is a strict ordering rela-
tion on {1, ...,xaq}, (an ordering criterion. It is important
to point the fact that z; # x; if i« # j. For a given object
i € U present in 7, 7(7) represents the position (or rank) of
in 7. If the ranking 7 contains all the elements of U, than it is
called a full ranking. It is obvious that all full rankings repre-
sent all total orderings of U (the same as the permutations of
U). However, there are situations when some objects cannot
be ranked by a given criterion: the ranking 7 contains only
a subset of elements from the unverse U. Then, 7 is called
partial ranking. We denote the set of elements in the list 7
with the same symbol as the list.

The following theorem states that our terminol-
ogy total rank distance is an adequate one:

Theorem 1 Total rank distance is a metric.

Proof:

It is easy to see that D(A, B) = D(B, A).

We prove that D(A,B) = 0iff A = B. If
D(A,B) = 0, then A(A4;,B;) = 0 for each
1 < i < n (since A is a metric, so a nonnega-
tive number), so A(A,,, B,) = A(A,B) = 0, so
A= B.

For the triangle inequality we have: D(A, B) +

D(B.C) = 3= AAi. B) + 3= A(Bi.C)

o

I
_

(A(A;, Bi) + A(B;, Cy))

1

>

)

NgE

A(A,,Cz) :D(A, C) a

Il
—

3.2 Expected and max values of the total
rank distance

Let .S, be the group of all permutations of length
n and let A, B be two permutations from .S,,. We
investigate the max total rank distance between A
and B and the average total rank distance between
Aand B.

Proposition 1 Under the upper hypothesis, the
expected value of the total rank distance between
Aand B is:

(n? = 1)(n+2)
St 2)

E(D) =

Proposition 2 Under the same hypothesis as in
the previous proposition, the max total rank dis-
tance between two permutations from Sy, is:

2
n“(n + 2
max D(4,B) = (" 1T2)
A,BESn 4
and it is achieved when a permutation is the re-
verse of the other one.

3.3 On the aggregation problem via total
rank distance

Rank aggregation is the problem of combining
several ranked lists of objects in a robust way to
produce a single ranking of objects.

One of the most natural way to solve the aggre-
gation problem is to determine the median (some-
times called geometric median) of ranked lists via
a particular measure.

Given a multiset T of ranked lists, a median of
T is a list L such that
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d(L,T) = n}}n d(X,T),

where d is a metric and X is a ranked list over
the universe of 7.

Depending on the choice of measure d, the up-
per problem may contain many unpleasant sur-
prises. One of them is that computing the median
set is NP-complete for some usual measure (in-
cluding edit-distance or Kendal distance) even for
binary universe.

We will show in the following that the median
aggregation problem via Total rank distance can
be computed in polynomial time.

Theorem 2 Given a multiset T of full ranked lists
over the same universe, the median of T via total
rank distance can be computed in polynomial time,
namely proportional to the time to find a minimum
cost perfect matching in a bipartite graph.

Proof:  Without loss of generality, we suppose
that the universe of lists is U = {1,2,...,n}.
We define a weighted complete bipartite graph
G = (N, P,W) as follows. The first set of nodes
N = {1,2,...,n} denotes the set of elements to
be ranked in a full list. The second set of nodes
P = {1,2,...,n} denotes the n available posi-
tions. The weight W (3, j) is the contribution, via
total rank distance, of node ¢ to be ranked on place
J in a certain ranking.

We can give a close formula for computing the
weights W (3, j) and this ends the proof, because
we reduced the problem to the solving of the mini-
mum cost maximum matching problem on the up-
per bipartite graph ((Fukuda and Matsui, 1994),
(Fukuda and Matsui, 1992), (Dinu and Manea)).

O

4 An extension to strings of total rank
distance

We can extend total rank distance to strings.
Similar to the extensions of rank distance to
strings, we index each letter in a word with the
number of its previous occurrences.
First, we extent the total rank distance to rank-
ings with unequal lengths as it follows:

Definition 3 Let u and v be two rankings of length
|u| and |v|, respectively. We can assume that |u| <
|v|. The total rank distance between u and v is

defined by:

Jul ]
ZA Vi, ui) + Z A(v, u)
i=|u|+1

Theorem 3 The total rank distance between two
rankings with unequal lengths is a metric.

To extent the total rank distance to strings,
firstly we index both strings and than we apply
the upper definition to the newly obtained strings
(which are now rankings).

Example 4 Let u = aabca, v = aab and w =
bca be three strings. We obtained the following

results:

1. Rank  distance: A(u,v) =
A(a1a2b101a3, alagbl) = 9 and
A(u,w) = A(alagblclag, blcgal) = 9,'

2. Total rank distance: D(u,v) =
D(a1a2b101a3, alagbl) = 13 and
D(u,w) = D(alagblclag, blcgal) = 33.

What happens in item 1 is a consequence of a
general property of rank distance which states that
A(uv,u) = A(uv,v), for any nonempty strings u
and v.

Total rank distance repairs this fact, as we can
see from item 2; we observe that the total rank
distance is more sensitive than rank distance to the
differences from the first part of strings.

5 Scaled Total Rank Distance

We use the same ideas from Total rank distance,
but we normalize each partial distance. To do this,
we divide each rank distance between two partial
rankings of length i by i(i + 1), which is the max-
imal distance between two rankings of length i
(it corresponds to the case when the two rankings
have no common elements).

Definition 4 The Scaled Total Rank distance be-
tween two rankings A and B of length n is:

A(A;, By)

n
Z i(i+1)

i=1

Theorem 4 Scaled total rank distance is a metric.

Proof: The proof is similar to the one from the
total rank distance. O
Remark 2 It is easy to see that S(A,B) <
H(A, B), where H(A, B) is the Hamming dis-
tance.
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Example5 Letr A = (a,b,c,d,e), B =
(b,a,c,d,e) and C = (a,b,d,e,c) be three per-
mutations. We have the following values for A, D
and S, respectively:

1. Rank distance: A(A,B) =2, A(A,C) =4, so
A(A,B) < A(A, Q).

2. Total Rank Distance: D(A,B) =2+ 2+ 2+
24+2=10,D(A,C)=04+0+2+4+4=10,
so D(A,B) = D(A,C).

3. Scaled Total Rank Distance: S(A, B)
Btd+dh=5504,0)= 3
= =3 50 S(4,B) > S(A,C).

It is not hard to see that S(A, B) < n, so we can
normalize scaled total rank distance by dividing it
to n.

We obtained the following two values for max
and average values of scaled total rank distance:

Proposition 3
1 -7 _
1. Ifn — oo, thenA%zé%nnS(A,B) 5 —4In2.

2. The average value of scaled total rank distance
is: E(S) = @ When n — o0, @ — %

Remark 3 It is a nice exercise to show that % —
4In2 < 1.

Proof: 7 —4In2 < 1iff1 < 4(Ind4 — 1).
But 4(In4 — 1) > 4(In4 — In3). From La-
grange Theorem, there is 3 < & < 4 such that
In4 —In3 = %, 50 4(In4 — In3) = % > 1, so
4(In4—1) > 4(In4 —In3) > 1. O

6 Application

We present here a short experiment regarding the
similarity of Romance languages. The work cor-
pus is formed by the representative vocabularies of
the following six Romance languages: Romanian,
Italian, Spanish, Catalan, French and Portuguese
languages (Sala, 1988). We extracted the digrams
from each vocabularies and then we constructed a
ranking of digrams for each language: on the first
position we put the most frequent digram of the
vocabulary, on the second position the next fre-
quent digram, and so on.

We apply the scaled total rank distance between
all pairs of such classifications and we obtain a se-
ries of results which are presented in Table 2.

Some remarks are immediate:

o If we analyze the Table 2, we observe
that every time Romanian finds itself at the
biggest distance from the other languages.

Table 2: Scaled total rank distances in Romance

languages
Ro | It Sp Ca | Po Fr
Ro | 0O 0.36 | 0.37 | 0.39 | 0.41 | 0.36
It 10360 0.21 | 0.24 | 0.26 | 0.30
Sp | 03710210 0.20 | 0.18 | 0.27
Ca | 03910240200 0.20 | 0.28
Po | 041 ] 0.26 | 0.18 | 0.20 | O 0.30
Fr | 0.36 | 0.30 | 0.27 | 0.28 | 0.30 | O

This fact proves that the evolution of Ro-
manian in a distanced space from the Latin
nucleus has lead to bigger differences be-
tween Romanian and the rest of the Romance
languages, then the differences between any
other two Romance languages.

e The closest two languages are Portuguese
and Spanish.

e It is also remarkable that Catalan is equally
distanced from Portuguese and Spanish.

The upper remarks are in concordance with the
conclusions of (Dinu and Dinu, 2005) obtained
from the analise of the syllabic similarity of the
Romance languages, where the rank distance was
used to compare the rankings of syllables, based
on the frequency of syllables for each language.

During the time, different comparing methods
for natural languages were proposed. We mention
here the work of Hoppenbrouwers and Hoppen-
brouwers (2001). Their approach was the follow-
ing: using the letter frequency method for each
language variety the unigram frequencies of let-
ters are found on the basis of a corpus. The dis-
tance between two languages is equal to the sum
of the differences between the corresponding letter
frequencies. They verify that this approach cor-
rectly shows that the distance between Afrikaans
and Dutch is smaller than the distance between
Afrikaans and the Samoan language.

7 Conclusions

In this paper we provided some low-complexity
metrics to be used in various subfields of computa-
tional linguistics: total rank distance and scaled to-
tal rank distance. These metrics are inspired from
the natural tendency of objects to put the main in-
formation in the first part of the units. Our ana-
lyze was especially concentrated on the mathemat-
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ical and computational properties of these metrics:
we showed that total rank distance and scaled to-
tal rank distance are metrics, computed their ex-
pected and max values on the permutations group
and showed that total rank distance can be used in
classification problem via a polynomial algorithm.

8 Mathematical addendum

This addendum may be skipped by readers who
are not interested in mathematical technicalities;
below some statements are sketched and other are
unproved, but then the proofs are quite straightfor-
ward.

Proposition 1:

Proof: It is not hard to see that D(A,S,) =
D(B, S,,) for any two permutation A, B € S,.
So, the expected value can be computed by com-
puting first D(A, S,) for a convenable permuta-
tion and then by dividing the upper sum to n!. If
we choose A = e, (i.e. the identical permutation
of the group S,,), then the expected value is:

E(D) = 3 Dleno).

n:
O'ESn

The upper sum can be easily computed if we take
into account the fact that each number 1,2,...,n
appears the same number of times (i.e. (n-1)!) on
the ranks 1,2,...n. So, we obtain that the ex-
pected value is equal to:

n2— n
p(p) = D2

Proposition 2:

Proof: W.l.g. we can suppose that first permu-
tation is the identical one, i.e. e, (otherwise we
will relabelled it). To compute the max value, the
following preliminary results must be proven (we
skipped the proofs).

We say that an integer from o is low if its posi-
tionis < 5 and it is high if its position is > 5.

Let 0 € S, be a permutation. We construct the
set O, as following:

O, ={reS, |Vre{l...n}, zislowinr
iff x is high in o and viceversa}
Result 1 For each o € S,, and every two permu-
tation T, ™ in ©, we have: D(o,7) = D(o, 7).

Result 2 For each o € S,, and every two permu-
tation T, such that 1 € ©, and 7 ¢ ©,, we
have: D(o,T) < D(o, 7).

To prove Result 2 we use the following Lemma:

Lemma 1 (Dinu, 2003) If a > b, then the func-
tion f(x) = |z — b| — |z — a| is an increasing
one.

Result 3 Let o € S, be a permutation. The max-
imum total rank distance is reached by the per-
mutation T where ord(x|T) = n + 1 — ord(z|o),
Vx € V(Py,). Under this conditions the maximum
total rank distance is:

2
2
max D(A,B) = " +2)
A,BES, 4

3

In other words, we obtained a more general re-
sult:

Theorem 5 For a given permutation o, the maxi-
mum rank distance is achieved by all permutations
from ©, and it is equal to (3).

O
Proposition 3:

Proof:

1. Similar to Proposition 2, given a permutation
o € Sy, the max value is reached by its in-
vert. So, to give a close formula for the max
value it is enough to compute S(e,, e, ). To
make easier our life, we can suppose that

n = 2k.
o= Ak — 2R ok + 1)(DE i -
wir1):
When k& — oo, Zf:lﬁ_i — In2, so
Slentil) = T~ 41n2 -

2. To compute the expected value we use the
same motivation as in expected total rank dis-
tance. The rest is obvious.
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