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Preface

Welcome to the proceedings of ‘Linguistic Distances’ a workshop held in conjunction with
ACL/COLING 2006 in Sydney. An introductory article explains our motivation for holding the
workshop, which attracted 30 submissions, of which thirteen are included in these proceedings. We
are gratified by this level of interest. In fact we restricted the remit of the workshop to exclude the use of
distance (or its inverse, similarity) in evaluation because it was felt that evaluation was already regularly
the subject of several focused workshops. So the topic of ‘Linguistic Distances’ seems to resonate within
the computational linguistics community.

Perhaps we should add that we also hoped to attract computational interest in (non-applied) linguistic
topics, and that this, too, emerged in the submissions, although it is not strongly reflected in the choice
of articles. We’ll poll participants about interest in a possible follow-up, but we have no plans in that
direction at this writing.

Our thanks are largely given in the acknowledgments section of the introductory article, but let’s add
thanks to Suzanne Stevenson, the workshop chair of the conference, and to her review committee.

John Nerbonne and Erhard Hinrichs
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Abstract

In many theoretical and applied areas of
computational linguistics researchers op-
erate with a notion of linguistic distance
or, conversely, linguistic similarity, which
is the focus of the present workshop.
While many CL areas make frequent use
of such notions, it has received little fo-
cused attention, an honorable exception
being Lebart & Rajman (2000). This
workshop brings a number of these strands
together, highlighting a number of com-
mon issues.

1 Introduction

In many theoretical and applied areas of compu-
tational linguistics researchers operate with a no-
tion of linguistic distance or, conversely, linguistic
similarity, which is the focus of the present work-
shop. While many CL areas make frequent use of
such notions, it has received little focused atten-
tion, an honorable exception being Lebart & Raj-
man (2000).

In information retrieval (IR), also the focus of
Lebart & Rajman’s work, similarity is at heart
of most techniques seeking an optimal match be-
tween query and document. Techniques in vector
space models operationalize this via (weighted)
cosine measures, but older tf/idf models were also
arguably aiming at a notion of similarity.

Word sense disambiguation models often work
with a notion of similarity among the contexts
within which word (senses) appear, and MT iden-
tifies candidate lexical translation equivalents via
a comparable measure of similarity. Many learn-
ing algorithms currently popular in CL, including
not only supervised techniques such as memory-

based learning (k-nn) and support-vector ma-
chines, but also unsupervised techniques such as
Kohonen maps and clustering, rely essentially on
measures of similarity for their processing.

Notions of similarity are often invoked in lin-
guistic areas such as dialectology, historical lin-
guistics, stylometry, second-language learning (as
a measure of learners’ proficiency), psycholin-
guistics (accounting for lexical “neighborhood”
effects, where neighborhoods are defined by simi-
larity) and even in theoretical linguistics (novel ac-
counts of the phonological constraints on semitic
roots).

This volume reports on a workshop aimed at
bringing together researchers employing various
measures of linguistic distance or similarity, in-
cluding novel proposals, especially to demonstrate
the importance of the abstract properties of such
measures (consistency, validity, stability over cor-
pus size, computability, fidelity to the mathemati-
cal distance axioms), but also to exchange infor-
mation on how to analyze distance information
further.

We assume that there is always a “hidden vari-
able” in the similarity relation, so that we should
always speak of similarity with respect to some
property, and we suspect that there is such a
plethora of measures in part because researchers
are often inexplicit on this point. It is useful to
tease the different notions apart. Finally, it is most
intriguing to try to make a start on understanding
how some of the different notions might construed
as alternative realizations of a single abstract no-
tion.

2 Pronunciation

John Laver, the author of the most widely used
textbook in phonetics, claimed that “one of the
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most basic concepts in phonetics, and one of the
least discussed, is that ofphonetic similarity
[boldface in original, JN & EH]” (Laver, 1994,
p. 391), justifying the attention the workshop pays
to it. Laver goes on to sketch the work that has
been done on phonetic similarity, or, more ex-
actly, phonetic distance, in particular, the empir-
ical derivation of confusion matrices, which indi-
cate the likelihood with which people or speech
recognition systems confusion one sound for an-
other. Miller & Nicely (1955) founded this ap-
proach with studies of how humans confused some
sounds more readily than others. Although “con-
fusability” is a reasonable reflection of phonetic
similarity, it is perhaps worth noting that confu-
sion matrices are often asymmetric, suggesting
that something more complex is at play. Clark
& Yallop (1995, p. 319ff) discuss this line of
work further, suggesting more sophisticated anal-
yses which aggregate confusion matrices based on
segments.

In addition to the phonetic interest (above), pho-
nologists have likewise shown interest in the ques-
tion of similarity, especially in recent work. Al-
bright and Hayes (2003) have proposed a model
of phonological learning which relies on “mini-
mal generalization”. The idea is that children learn
e.g. rules of allomorphy on the basis not merely
of rules and individual lexical exceptions (the ear-
lier standard wisdom), but rather on the basis of
slight but reliable generalizations. An example is
the formation of the past tense of verbs ending in
[IN], ‘ing’ (fling, sing, sting, spring, string) that
build past tenses as ‘ung’ [2N]. We omit details
but note that the “minimal generalization” is min-
imally DISTANT in pronunciation.

Frisch, Pierrehumbert & Broe (2004) have also
kindled an interest in segmental similarity among
phonologists with their claim that syllables in
Semitic languages are constrained to have unlike
consonants in syllable onset and coda. Their work
has not gone unchallenged (Bailey and Hahn,
2005; Hahn and Bailey, 2005), but it has certainly
created further theoretical interest in phonological
similarity.

There has been a great deal of attention in
psycholinguistics to the the problem of word
recognition, and several models appeal explic-
itly to the “degree of phonetic similarity among
the words” (Luce and Pisoni, 1998, p. 1), but
most of these models employ relatively simple no-

tions of sequence similarity and/or, e.g., the idea
that distance may be operationalized by the num-
ber or replacements needed to derive one word
from another—ignoring the problem of similarity
among words of different lengths (Vitevitch and
Luce, 1999). Perhaps more sophisticated com-
putational models of pronunciation distance could
play a role in these models in the future.

Kessler (1995) showed how to employ edit dis-
tance to operationalize pronunciation difference in
order to investigate dialectology more precisely,
an idea which, particular, Heeringa (2004) pursued
at great length. Kondrak (2002) created a vari-
ant of the dynamic programming algorithm used
to compute edit distance which he used to iden-
tify cognates in historical linguistics. McMahon
& McMahon (2005) include investigations of pro-
nunciation similarity in their recent book on phy-
logenetic techniques in historical linguistics. Sev-
eral of the contributions to this volume build on
these earlier efforts or are relevant to them.

Kondrak and Sherif (this volume) continue the
investigation into techniques for identifying cog-
nates, now comparing several techniques which
rely solely on parameters set by the researcher to
machine learning techniques which automatically
optimize those parameters. They show the the ma-
chine learning techniques to be superior, in partic-
ular, techniques basic on hidden Markov models
and dynamic Bayesian nets.

Heeringa et al. (this volume) investigate several
extensions of the fundamental edit distance algo-
rithm for use in dialectology, including sensitivity
to order and context as well syllabicity constraints,
which they argue to be preferable, and length nor-
malization and graded weighting schemes, which
they argue against.

Dinu & Dinu (this volume) investigate metrics
on string distances which attach more importance
to the initial parts of the string. They embed this
insight into a scheme in whichn-grams are ranked
(sorted) by frequency, and the difference in the
rankings is used to assay language differences.
Their paper proves that difference in rankings is
a proper mathematical metric.

Singh (this volume) investigates the technical
question of identifying languages and character
encoding systems from limited amounts of text.
He collects about1, 000 or so of the most fre-
quentn-grams of various sizes and then classifies
next texts based on the similarity between the fre-
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quency distributions of the known texts with those
of texts to be classified. His empirical results show
“mutual cross entropy” to identify similarity most
reliably, but there are several close competitors.

3 Syntax

Although there is less interest in similarity at the
syntactic level among linguistic theorists, there is
still one important areas of theoretical research in
which it could play an important role and several
interdisciplinary studies in which similarity and/or
distant is absolutely crucial. SyntacticTYPOLOGY

is an area of linguistic theory which seeks to iden-
tify syntactic features which tend to be associated
with one another in all languages (Comrie, 1989;
Croft, 2001). The fundamental vision is that some
sorts of languages may be more similar to one
another—typologically—than would first appear.

Further, there are two interdisciplinary linguis-
tic studies in which similarity and/or distance
plays a great role, including similarity at the syn-
tactic level (without, however, exclusively focus-
ing on syntax). LANGUAGE CONTACT studies
seek to identify the elements of one language
which have been adopted in a second in a situa-
tion in which two or more languages are used in
the same community (Thomason and Kaufmann,
1988; van Coetsem, 1988). Naturally, these may
be non-syntactic, but syntacticCONTAMINATION

is a central concept which is recognized in con-
taminated varieties which have become more sim-
ilar to the languages which are the source of con-
tamination.

Essentially the same phenomena is studied in
SECOND-LANGUAGE LEARNING, in which syn-
tactic patterns from a dominant, usually first, lan-
guage are imposed on a second. Here the focus is
on the psychology of the individual language user
as opposed to the collective habits of the language
community.

Nerbonne and Wiersma (this volume) collect
frequency distributions of part-of-speech (POS)
trigrams and explore simple measures of distance
between these. They approach issues of statisti-
cal significance using permutation tests, which re-
quires attention to tricky issues of normalization
between the frequency distributions.

Homola & Kubǒn (this volume) join Nerbonne
and Wiersma in advocating a surface-oriented
measure of syntactic difference, but base their
measure on dependency trees rather than POS

tags, a more abstract level of analysis. From there
they propose an analogue to edit distance to gauge
the degree of difference. The difference between
two tree is the sum of the costs of the tree-editing
operations needed to obtain one tree from another
(Noetzel and Selkow, 1999).

Emms (this volume) concentrates on applica-
tions of the notion ‘tree similarity’ in particular in
order to identify text which is syntactically sim-
ilar to questions and which may therefore be ex-
pected to constitute an answer to the question. He
is able to show that the tree-distance measure out-
performs sequence distance measures, at least if
lexical information is also emphasized.

Kübler (this volume) uses the similarity mea-
sure in memory-based learning to parse. This is
a surprising approach, since memory-based tech-
niques are normally used in classification tasks
where the target is one of a small number of po-
tential classifications. In parsing, the targets may
be arbitrarily complex, so a key step is select an
initial structure in a memory-based way, and then
to adapt it further. In this paper K̈ubler first applies
chunking to the sentence to be parsed and selects
an initial parse based on chunk similarity.

4 Semantics

While similarity as such has not been a prominent
term in theoretical and computational research on
natural language semantics, the study ofLEXICAL

SEMANTICS, which attempts to identify regulari-
ties of and systematic relations among word mean-
ings, is more often than not predicated on an im-
plicit notion of ’semantic similarity’. Research
on the lexical semantics of verbs tries to identify
verb classes whose members exhibit similar syn-
tactic and semantic behavior. In logic-based the-
ories of word meaning (e.g., Vendler (1967) and
Dowty (1979)), verb classes are identified by sim-
ilarity patterns of inference, while Levin’s (1993)
study of English verb classes demonstrates that
similarities of word meanings for verbs can be
gleaned from their syntactic behavior, in particu-
lar from their ability or inability to participate in
diatheses, i.e. patterns of argument alternations.

With the increasing availability of large elec-
tronic corpora, recent computational research on
word meaning has focused on capturing the notion
of ‘context similarity’ of words. Such studies fol-
low the empiricist approach to word meaning sum-
marized best in the famous dictum of the British
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linguist J.R. Firth: “You shall know a word by the
company it keeps.” (Firth, 1957, p. 11) Context
similarity has been used as a means of extract-
ing collocations from corpora, e.g. by Church &
Hanks (1990) and by Dunning (1993), of identify-
ing word senses, e.g. by Yarowski (1995) and by
Scḧutze (1998), of clustering verb classes, e.g. by
Schulte im Walde (2003), and of inducing selec-
tional restrictions of verbs, e.g. by Resnik (1993),
by Abe & Li (1996), by Rooth et al. (1999) and by
Wagner (2004).

A third approach to lexical semantics, devel-
oped by linguists and by cognitive psychologists,
primarily relies on the intuition of lexicographers
for capturing word meanings, but is also informed
by corpus evidence for determining word usage
and word senses. This type of approach has led to
two highly valued semantic resources: the Prince-
ton WordNet (Fellbaum, 1998) and the Berkeley
Framenet (Baker et al., 1998). While originally
developed for English, both approaches have been
successfully generalized to other languages.

The three approaches to word meaning dis-
cussed above try to capture different aspects of
the notion of semantic similarity, all of which are
highly relevant for current and future research in
computational linguistics. In fact, the five pa-
pers that discuss issues of semantic similarity in
the present volume build on insights from these
three frameworks or address open research ques-
tions posed by these frameworks. Zesch and
Gurevych (this volume) discuss how measures
of semantic similarity—and more generally: se-
mantic relatedness—can be obtained by similarity
judgments of informants who are presented with
word pairs and who, for each pair, are asked to
rate the degree of semantic relatedness on a pre-
defined scale. Such similarity judgments can pro-
vide important empirical evidence for taxonomic
models of word meanings such as wordnets, which
thus far rely mostly on expert knowledge of lexi-
cographers. To this end, Zesch and Gurevych pro-
pose a corpus-based system that supports fast de-
velopment of relevant data sets for large subject
domains.

St-Jacques and Barrière (this volume) review
and contrast different philosophical and psycho-
logical models for capturing the notion of seman-
tic similarity and different mathematical models
for measuring semantic distance. They draw at-
tention to the fact that, depending on which un-

derlying models are in use, different notions of se-
mantic similarity emerge and conjecture that dif-
ferent similarity metrics may be needed for differ-
ent NLP tasks. Dagan (this volume) also explores
the idea that different notions of semantic similar-
ity are needed when dealing with semantic disam-
biguation and language modeling tasks on the one
hand and with applications such as information ex-
traction, summarization, and information retrieval
on the other hand.

Dridan and Bond (this volume) and Hachey
(this volume) both consider semantic similarity
from an application-oriented perspective. Dri-
dan and Bond employ the framework of robust
minimal recursion semantics in order to obtain
a more adequate measure of sentence similar-
ity than can be obtained by word-overlap met-
rics for bag-of-words representations of sentences.
They show that such a more fine-grained mea-
sure, which is based on compact representations
of predicate-logic, yields better performance for
paraphrase detection as well as for sentence se-
lection in question-answering tasks than simple
word-overlap metrics. Hachey considers an au-
tomatic content extraction (ACE) task, a particu-
lar subtask of information extraction. He demon-
strates that representations based on term co-
occurrence outperform representations based on
term-by-document matrices for the task of iden-
tifying relationships between named objects in
texts.
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Abstract

Linguistic similarity has been a promi-
nent notion and tool in computational lin-
guistics and related areas, as elaborated
nicely in the announcement of this work-
shop. Yet, what exactly counts as “sim-
ilarity”, or when two linguistic concepts
should be regarded as similar, often re-
mains rather vague and ill posed, which is
in fact quite typical for unsupervised no-
tions. This talk will focus on similarity
at the semantic level, and will explore the
perspective that different notions of simi-
larity may be defined relative to concrete
modeling goals. In particular, I will refer
to the two major goals in semantic mod-
eling: predicting likelihood of occurrence,
which is the typical goal in disambigua-
tion and language modeling, and recogniz-
ing target meanings, which is the typical
semantic goal in text understanding appli-
cations such as question answering, infor-
mation extraction, summarization and in-
formation retrieval. We will discuss each
goal and present corresponding semantic
similarity approaches.
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Abstract 

This study investigates similarity judg-
ments from two angles.  First, we look at 
models suggested in the psychology and 
philosophy literature which capture the 
essence of concept similarity evaluation 
for humans.  Second, we analyze the 
properties of many metrics which simu-
late such evaluation capabilities. The first 
angle reveals that non-experts can judge 
similarity and that their judgments need 
not be based on predefined traits.  We use 
such conclusions to inform us on how 
gold standards for word sense disam-
biguation tasks could be established.  
From the second angle, we conclude that 
more attention should be paid to metric 
properties before assigning them to per-
form a particular task. 

1 I ntroduction 

The task of word sense disambiguation has 
been at the heart of Natural Language Processing 
(NLP) for many years.  Recent Senseval compe-
titions (Mihalcea and Edmonds, 2004; Preiss and 
Yarowsky, 2001) have stimulated the develop-
ment of algorithms to tackle different lexical dis-
ambiguation tasks. Such tasks require at their 
core a judgment of similarity as a word’s multi-
ple definitions and its contexts of occurrences are 
compared.  Similarity judgment algorithms come 
in many different forms.  One angle of this arti-
cle is to analyze the assumptions behind such 
similarity metrics by looking at different shared 
or non-shared properties. Among the interesting 
properties we note symmetry and transitivity, 
which are fundamental to the understanding of 
similarity. This angle is investigated in Section 4 

and 5, looking respectively at two broad classes 
of mathematical models of similarity and then 
more closely at different similarity metrics. 

As Senseval and other similar competitions 
need a gold standard for evaluating the compet-
ing systems, the second angle of our research 
looks into literature in philosophy and psychol-
ogy to gain insight on the human capability in 
performing a similarity judgment. From the first 
discipline explored in Section 2, we discover that 
philosophers have divergent views on concept 
identification, ranging from scientific definitions 
to human perception of concepts.  From the sec-
ond discipline, explored in Section 3, we dis-
cover different psychological models for concept 
identification and implicitly concept comparison, 
this time ranging from continuous concepts being 
positioned in multi-dimensional spaces to con-
crete concepts being grasped as entities. 

The two angles (metrics and humans) con-
verge in the conclusion of Section 6 with general 
observations and future work. 

2 Philosophical evidence 

Children have a natural eagerness to recognize 
regularities in the world and to mimic the behav-
ior of competent members of their linguistic 
community. It is in these words that Wittgenstein 
(1980) simply expresses how infants acquire the 
community’s language. What underlies the ac-
tivities surrounding a common use of language is 
similar to our usage of words to express some-
thing: “Consider for example the proceedings 
that we call games. I mean board-games, card-
games, ball-games, Olympic games, and so on. 
What is common to them all?”  (Wittgenstein, 
1968: 66). Wittgenstein answers that these ex-
pressions are characterized by similarities he 
calls family resemblances. 
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Given that a dictionary’s purpose is to define 
concepts, we could hope to see such family re-
semblances among its definitions.  Contrarily to 
this intuition, Table 1 shows definitions and ex-
amples for a few senses of game in Wordnet1, 
from which resemblance cannot be found in 
terms of common words in the definitions or ex-
amples.  Nevertheless, humans are able to give 
different judgments of similarity between differ-
ent senses of the word game.  For example, simi-
larity between sense 1 and sense 3 is intuitively 
larger than between sense 1 and sense 4.   

 
Table 1: Some senses of game in Wordnet 

 Definition + Example 
1 A single play of a sport or other contest. The 

game lasted two hours. 
2 A contest with rules to determine a winner. You 

need four people to play this game. 
3 The game equipment needed in order to play a 

particular game. The child received several 
games for his birthday. 

4 Your occupation or line of work He's in the 
plumbing game. 

5 A secret scheme to do something (especially 
something underhand or illegal). […] I saw 
through his little game from the start. 

 
Before being tempted to call up gigabytes of 

corpus evidence data and computational strength 
to help us identify the family of resemblance 
emerging here, let us further look at the nature of 
that notion from a philosophical point of view. 
Possible senses of individual things could be 
traced back to Aristotle’s work and identified 
“without qualification” as the primary substance 
of a thing (Cassam, 1986). What accounts for the 
substance of an object, for Aristotle, was the 
thing itself, namely its essence. Taking a slightly 
different view on the notion of family of objects, 
Putnam (1977) instead pursues a quest for natu-
ral kinds and according to him, the distinguish-
ing characteristics that “hold together”  natural 
kinds are the “core facts […] conveying the use 
of words of that kind” (Putnam, 1977: 118). Put-
nam disagrees with any analytical approaches 
sustaining that the meaning of a word X is given 
by a conjunction of properties P = { P1, P2,… Pn}  
in such a way that P is the essence of X. The 
problem is that a “natural kind may have abnor-
mal members”  (Putnam, 1977: 103). For instance, 
normal lemons have a yellow peel but let’s sup-
pose in accordance with Putnam, that a new en-
vironmental condition makes lemon peel become 

                                                 
1 See http://wordnet.princeton.edu/ 

blue. An analytical view will be unable to state 
which one amongst the yellow or the blue ones is 
now the normal member of the natural class of 
lemons. Putnam rather relies on a “scientific the-
ory construction” to define what an object of 
natural kind is, and therefore, does not see that 
dictionaries “are cluttered up […] with pieces of 
empirical information” (Putnam, 1977: 118) as a 
defect to convey core facts about a natural class.  

In contrast to Putnam, Fodor (1998) is a viru-
lent opponent to a mind-independent similarity 
semantics subject to scientific discoveries. With 
his ostentatious doorknob example, Fodor shows 
that there is not any natural kind, hidden essence 
or peculiar structure that makes a doorknob a 
doorknob. “No doubt, some engineer might con-
struct a counter-example–a mindless doorknob 
detector; and we might even come to rely on 
such a thing when groping for a doorknob in the 
dark”  (Fodor, 1998: 147). However, the con-
struct will have to be done on what strikes us as  
doorknobhood or satisfying the doorknob stereo-
type, i.e. “ the gadget would have to be calibrated 
to us since there is nothing else in nature that 
responds selectively to doorknobs” (Fodor, 1998: 
147). According to Fodor, our capacity to ac-
quire the concept of doorknob involves a similar-
ity metric, and it is the human innate capacity to 
determine the concepts similar to doorknob that 
allow the characterization of doorknobhood. 
Therefore, Fodor states that the meaning of con-
cepts is mind-dependent and that individuation is 
not intractable since members of a language 
community, although experiencing diverse forms 
of a concept will tend to acquire similar stereo-
types of such a concept.  

This brief exploration into philosophical ap-
proaches for concept representation and delimita-
tion can inform us on the establishment of a gold 
standard by humans for the word sense disam-
biguation (WSD) task.  In fact, the adherence to 
one model rather than another has an impact on 
who should be performing the evaluation2.  Sen-
seval-2 was in line with Putnam’s view of ‘divi-
sion of linguistic labour’  by relying on lexicog-
raphers’  judgments to build a gold standard (Kil-
garrif, 1998). On the other hand, Senseval-3 col-
lected data via Open-Mind Initiative3, which was 
much more in line with Fodor’s view that any 
common people can use their own similarity 

                                                 
2 The evaluation consists in performing sense tagging of 
word occurrences in context.  
3 See http://www.openmind.org/, a web site where anyone 
can perform the sense tagging “games” . 
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metric to disambiguate polysemous terms. Inter-
estingly, a recent empirical study (Murray and 
Green 2004) showed how judgments by ordinary 
people were consistent among themselves but 
different from the one of lexicographers. It is 
important to decide who the best judges are; a 
decision which can certainly be based on the 
foreseen application, but also, as we suggest here, 
on some theoretical grounds. 

3 Psychological Evidence 

We pursue our quest for insights in the 
establishment of gold standards by humans for 
the WSD task, now trying to answer the “how”  
question rather then the “who” question. Indeed, 
Fodor’s view might influence us in deciding that 
non-experts can perform similarity judgments, 
but this does not tell us how these judgments 
should be performed.  Different psychological 
models will give possible answers.  In fact, 
similarity judgments have been largely studied 
by experimental psychologists and distinctive 
theories give some evidence about the existence 
of a human internal cognitive mechanism for 
such judgments. In this section, we present three 
approaches: subjective scaling and objective 
scaling (Voinov, 2002), and semantic differential 
(Osgood et al. 1957).  

3.1 Subjective Scaling 

In subjective scaling (Voinov, 2002), the 
subjective human judgment is considered as a 
convenient raw material to make comparison 
between empirical studies of similarity. Subjects 
are asked to point out the “similarities among n 
objects of interest – whether concepts, persons, 
traits, symptoms, cultures or species”  (Shepard, 
1974: 373). Then the similarity judgments are 
represented in an n × n matrix of objects by a 
multidimensional scaling (MDS) of the distance 
between each object.  Equation 1 shows the 
evaluation of similarity, where ),( jkik xxd stands 

for the distance between objects ix and jx   on 

stimulus (dimension) k and kw  is the 

psychological salience of that stimulus k: 

( ) )),((,
1

�
=

=
m

k
jkikkji xxdwxxD .                      (1) 

Shepard’s MDS theory assumes that a 
monotonic transformation should be done from a 
nonmetric psychological salience of a stimulus to 
a metric space model. By definition, the resulting 

metric function over a set X should fullfill the 
following conditions: 

Xzyx ∈∀ ,, : 

1. 0),(),( =≥ xxdyxd  (minimality), 

2. ),(),( xydyxd =  (symmetry), 

3. ),(),(),( yzdzxdyxd +≥  (triangle ineq.). 

Accordingly to Shepard (1974), the distance in 
equation (1) can be computed with different 
metrics. Some of these metrics are given in 
Lebart and Rajman (2000). The Euclidean metric 
is the best known: 
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Another yet is the Minkowski metric: 
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There is a main concern with the MDS model. 
Tversky (1977) criticized the adequacy of the 
metric distance functions as he showed that the 
three conditions of minimality, symmetry and 
triangle inequality are sometimes empirically 
violated. For instance, Tversky and Gati showed 
empirically that assessment of the similarity 
between pairs of countries was asymetric when 
they asked  for “ the degree to which Red China 
is similar to North Korea” (1978: 87) and in the 
reverse order, i.e. similarity between North 
Korea and Red China. 

3.2 Objective Scaling 

The second approach is called objective scaling 
by Voinov “ though this term is not widely ac-
cepted”  (Voinov, 2002). According to him, the 
objectivity of the method comes from the fact 
that similarity measures are calculated from the 
ratio of objective features that describe objects 
under analysis. So, subjects are asked to make 
qualitative judgments on common or distinctive 
features of objects and the comparison is then 
made by any distance axioms. Tversky’s (1977) 
contrast model (CM) is the best known formal-
ization of this approach. In his model, the meas-
ure of similarity is computed by: 

 
)()(),( BAfBAfBAS −−= βα 
  

)( ABf −− χ                     (5) 
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where )( BAf � represents a function of the 
common features of both entities A and B,  

)( BAf − is the function of the features belong-

ing to A but not B, )( ABf − is the function of 
the features belonging to B but not A and 

χβα ,, are their respective weighting parame-
ters. Equation (5) is the matching axiom of the 
CM. A second fundamental property of that 
model is given by the axiom of monotonicity: 

 
),(),( CASBAS ≥                      (6) 

If BACA �� ⊂ , ,CABA −⊂−  and 

ACAB −⊂− ,  then (6) is satisfied. With these 
two axioms (5-6), Tversky (1977) defined the 
basis of what he called the matching function 
using the theoretical notion of feature sets rather 
then the geometric concept of similarity distance. 
Interesting empirical studies followed this re-
search on CM and aimed at finding the correla-
tion between human judgments of similarity and 
difference. Although some results show a corre-
lation between these judgments, there is limita-
tion to their complementarity: “ the relative 
weights of the common and distinctive features 
vary with the nature of the task and support the 
focusing hypothesis that people attend more to 
the common features in judgments of similarity 
than in judgments of the difference” (Tverski and 
Gati, 1978: 84). Later on, Medin et al. (1990) 
also reported cases when judgments of similarity 
and difference are not inverses: first, when enti-
ties differ in their number of features, and second 
when similarity/difference judgments involve 
distinction of both attributes and relations. “Al-
though sameness judgments are typically de-
scribed as more global or non-analytic than dif-
ference judgments, an alternative possibility is 
that they focus on relations rather than attributes”  
(Medin et al., 1990: 68). 

3.3 Semantic Differential 

One standard psycholinguistic method to 
measure the similarity of meaning combines the 
use of subjective scaling transposed in a 
semantic space. One well-known method is 
Semantic Differential (SD) developed by Osgood 
et al. (1957). 

The SD methodology measures the meanings 
that individual subjects grant to words and 
concepts according to a series of factor analyses. 
These factor analyses are bipolar adjectives put 
at each end of a Likert scale (Likert, 1932) 
devised to rate the individual reaction to the 

contrasted stimulus. For instance, the SD of a 
concept can be rated with two stimuli of 
goodness and temperature: 

BadGood
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:
0

:
1

:
2
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3
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HotCold
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2
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1

:
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:
1

:
2
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3

×
 

If the subject feels that the observed concept is 
neutral with regards to the polar terms, his 
check-mark should be at the position 0. In our 
example, the mark on the good-bad scale being 
at the 1 on the left side of the neutral point 0, the 
judgment means slighthy good. Positions 2 and 3 
on that same side would be respectively quite 
good and extremely good. A similar analysis 
applies for the cold-hot scale shown. 

The theoretical background of that 
methodology, which tries to standardize across 
subjects the meaning of the same linguistic 
stimulus, relies on psychological research on 
synestesia. Simply explained, synestesia is 
similar to a double reaction to a stimulus. For 
example, when presented with images of 
concepts, subjects do not only have a 
spontaneous reaction to the images, but they are 
also able to characterize the associated concept 
in terms of almost any bipolar adjective pairs 
(hot-cold, pleasant-unpleasant, simple-complex, 
vague-precise, dull-sharp, static-dynamic, sweet-
bitter, emotional-rational, etc.). According to 
Osgood et al. “ the imagery found in synesthesia 
is intimately tied up with language metaphor, and 
both represent semantic relations” (1957: 23). 

In SD, bipolar adjectives used in succession 
can mediate a generalization to the meaning of a 
sign, as uncertainty on each scale is reduced with 
the successive process of elicitation. By 
postulating representation in a semantic space, 
each orthogonal axis of selection produces a 
semantic differentiation when the subjects rate 
the semantic alternatives on a bipolar scale. 
Although that space could be multidimensional, 
empirical studies (Osgood et al., 1957) on factor 
analysis showed stability and relative importance 
of three particular dimensions labeled as 
Evaluation, Potency, and Activity (EPA). We 
refer the reader to Osgood et al. (1957) for 
further explanation on these EPA dimensions. 

3.4 WSD and human judgments 

Table 2 emphasizes commonalities and differ-
ences between the three psychological models 
explored.   
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Table 2 – Psychological Models 
 Continuous Prede-

fined traits 
Similarity/ 
Difference 

MDS Yes Yes No 
CM No Yes Yes 
SD No No Possible 

 
In Table 2, we show that both MDS (Shepard, 

1974) and CM (Tversky, 1977) rely on a set of 
predefined traits.  This is a major problem, as it 
leads to the necessity of defining in advance such 
a set of traits on which to judge similarity be-
tween objects.  On the other hand, SD (Osgood 
et al. 1957), although using a few bipolar scales 
for positioning concepts, argues that these scales 
are not concept-dependent, but rather they can be 
used for grasping the meaning of all concepts.  A 
second major difference highlighted in Table 2 is 
that MDS is the only approach looking at con-
tinuous perceptual dimensions of stimulus, con-
trarily to CM in which the scaling procedes with 
discrete conceptual traits, and even more in op-
position to SD which considers entities as primi-
tives. Finally, Table 2 shows the interesting ob-
servation brought forth by Tversky and later em-
pirical studies of Medin et al. (1980) of the non-
equivalence between the notion of similarity and 
difference. 

Coming back to the question of “how”  human 
evaluation could be performed to provide a gold 
standard for the WSD task, considering the pros 
and cons of the different models lead us to sug-
gest a particular strategy of sense attribution.  
Combining the similarity/difference of Tversky 
with the successive elucidation of Osgood et al., 
two bipolar Likert scales could be used to delimit 
a similarity concept: a resembling axis and a con-
trasting axis. In this approach, the similarity con-
cept still stays general, avoiding the problems of 
finding specific traits for each instance on which 
to have a judgment. 

Already in the empirical studies of Murray and 
Green (2004), a Likert scale is used, but on an 
“applying” axis.  Subjects are asked for each 
definition of a word to decide whether it “applies 
perfectly”  or rather “barely applies”  to a context 
containing the word.  The choice of such an axis 
has limitations in its applicability for mapping 
senses on examples.  More general resembling 
and contrasting axis would allow for similarity 
judgments on any statements whether they are 
two sense definitions, two examples or a sense 
definition with an example. 

4 Mathematical Models of Similar ity 

Logic and mathematics are extremely prolific 
in similarity measurement models. According to 
Dubois et al (1997), they are used for cognitive 
tasks like classification, case-based reasoning 
and interpolation. In the present study, we re-
strict our investigation to the classification task 
as representative on the unsupervised WSD task.  
The other approaches are inferential strategies, 
using already solved problems to extrapolate or 
interpolate solutions to new problems. Those 
would be appropriate for WSD in a supervised 
context (provided training data), but due to space 
constraints, we postpone discussion of those 
models to a later study. Our present analysis di-
vides classification models into two criteria: the 
cardinality of sets and the proximity-based simi-
larity measures. 

4.1 Cardinality of sets 

In line with De Baets et al. (2001), similarity 
measures can be investigated under a rational 
cardinality-based criterion of sets. In an exten-
sive study of 28 similarity measures for ordinary 
sets, this research showed that measures can be 
classified on the basis of only a few properties. 
They proposed at first to build the class of cardi-
nality-based similarity measures from one ge-
neric formula: 
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 where { })(#),(#min, XYYXYX −−=α , 

{ })(#),(#max, XYYXYX −−=β , 

)(#, YXYX �=χ  and c
YX YX )(#, �=δ , and 

all w , x , y , z , 'w , 'x , 'y , 'z  { }1,0∈ . It 

follows that )(# YX �  is the number of couples 

(1,1) and YX −  denotes the sets difference 

)()( cYXYX �=− . 
The classification of these 28 similarity meas-

ures (which can all be linked to the general for-
mula) becomes possible by borrowing from the 
framework of fuzzy sets the concepts of T for t-
norm (fuzzy intersection) operators and T-
equivalence for the property of T-
indistinguishability (De Baets et al., 2001). So, a 
typical measure M of T-equivalence under the 
universe U  must satisfy the following condi-
tions for any (x, y, z) U∈ : (i) 1),( =xxM  (re-

flexivity); (ii) ),(),( xyMyxM =  (Symmetry); 
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(iii) ),()),(),,(( zxMzyMyxMT ≤  (T-
transitivity). 

All 28 measures show reflexivity and symme-
try but they vary on the type of transitivity they 
achieve. In fact, studying boundary and 
monotonicity behavior of the different measures, 
De Baets et al. (2001) group them under four 
types corresponding to four different formulas of 
fuzzy intersections (t-norms): the standard inter-
section ),min(),( babaZ = ,  the Lukasiewicz t-

norm )1,0max(),( −+= babaL , the algebraic 

product abbaP =),(  and the drastic intersec-

tion abaD (),( =  when 1=b , b  when 1=a  

and 0  otherwise). We refer the reader to De 
Baets et al. (2001) to get the full scope of their 
results. Accordingly, Jaccard’s coefficient J 
(equation 9) and Russel-Rao’s coefficient R 
(equation 10) are both, for example, L-transivive 
(Lukasiewicz’ type): 

( )
( )YX
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On the other hand, the overlapping coefficient O 
(equation 11) is not even D-transitive, knowing 
that D is the lower transitive condition 

)( ZPLD ≤≤≤ in the framework: 
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#
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4.2 Proximity-based 

Following our second criterion of classifica-
tion, mathematics also uses diverse proximity-
based similarity measures. We subdivide these 
mathematical measures into three groups: the 
distance model, the probabilistic model, and the 
angular coefficients. The first one, the distance 
model, overlaps in part with the subjective scal-
ing of similarity as presented in the psychologi-
cal approaches (section 3.1). The mathematical 
model is the same with a metric of distance 

),( yxd computed between the objects in a space. 
Algorithms like formulae (2), (3) and (4) of sec-
tion 3.1 are amongst the proximity-based similar-
ity measures. 

Second, the probabilistic model is based on 
the statistical analysis of objects and their attrib-
utes in a data space. Lebart & Rajman (2000) 
gave many examples of that kind of proximity 
measures, such as the Kullback-Leiber distance 

KD  between two documents A and B, given the 

probability distribution { }npppP ,...,, 21= : �
≠×

−−=
0

)log)(log(),(
bkak pp

bkakbkakK ppppBAD

 (12) 
The third mathematical model is also a metric 

space model but it uses angular measures be-
tween vectors of features to determine the simi-
larity between objects. A well-known measure 
from that group is the cosine-correlation: 
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Although conditions applying on proximity-
based measures are shortly described in Cross 
and Sudkamp (2002) and Miyamoto (1990) for 
fuzzy sets, we are not aware of an extensive re-
search such as the one by De Baets et al. (2001), 
presented in section 4.1, for classifying cardinal-
ity of sets types. We make such an attempt in the 
following section. 

5 Analysis of similar ity metr ics 

In this section, we perform a classification and 
analysis exercise for similarity measure4, possi-
bly used for WSD, but more generally used in 
any task where similarity between words is re-
quired. Table 3 shows the measures classified in 
the four categories of the mathematical model 
presented in section 4: measures of cardinality 
(Card), of distance (Dist), of probability (Prob) 
and of angle (Ang).   

We sustain that these groupings can be further 
justified based on two criteria: the psychological 
model of meaning (Table 2) and the typical 
properties of the classes (Table 4). The first crite-
rion refers to the representation of concepts dis-
tinguishing between the dense-state and the dis-
crete-state5 of concept (meaning) attributes. That 
psychological distinction is helpful to categorize 
some metrics, like Gotoh, which seems hybrid 
(Card and Dist). In such a metric, the penalty for 
the gap between two concepts applies on the de-
fect of the dense-state, such as for a blurred im-

                                                 
4 We use  the list of the following web page: http:// 
www.dcs.shef.ac.uk/~sam/stringmetrics.html#sellers  
5 This differentiation is based on Tenenbaum’s (1996) idea 
that MDS better suits continuous perceptual domains and 
set-theoretic accommodate discrete features like in the CM. 
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age rather then the absence of the discrete-state, 
i.e. of a feature; it is therefore classified in the 
Dist category. 

 
Table 3: Classification of Similarity Metrics 

Metr ic Card Dist Prob Ang 
Hamming distance  X   

Levenshtein distance  X   
Needleman-Wunch  X   
Smith-Waterman  X   
Gotoh distance  X   
Block distance  X   

Monge Elkan dist.  X   
Jaro distance   X  
Jaro Winkler   X  

SoundEx distance   X  
Matching coefficient X    

Dice’s coefficient X    
Jaccard similarity X    

Overlap coefficient X    
Euclidean distance  X   
Cosine similarity    X 

Variational distance   X  
Hellinger distance   X  
Information radius   X  
Harmonic mean   X  
Skew divergence   X  

Confusion probability   X  
Tau   X  

Fellegi & Sunters   X  
TFIDF     X 
FastA   X  
BlastP   X  

Maximal matches   X  
q-gram   X  

Ukkonen algorithms   X  
 
The second criterion is a study on shared 

properties for each category of the mathematical 
model. Table 4 summarizes the properties using 
the following schema: (m) minimality, (r) reflex-
ivity, (s) symmetry, (ti) triangle inequality, (tr) 
transitivity. 

 
Table 4 – Typical Properties of Metrics 

 (m) (r) (s) (ti) (tr) 
Card  Yes Yes  Yes 
Dist Yes  Yes Yes Possible 
Prob  No Possible  Yes 
Ang Yes  Yes  Yes 
 

From Table 4, we see for instance that reflex-
ivity is a basic property for cardinality measures 
because we wish to regularly count discrete ob-
jects in a set. On the opposite side, the minimal-
ity property is a characteristic of a distance 
measure, since it is noticeable by the displace-
ment or the change, for example, in distinctive 
images. According to Fodor (1998), we say that 
statistical or probabilistic approaches exhibit 

several necessary and sufficient conditions for 
the inclusion of elements in the extension of a 
concept, but the dominant element, such as the 
pattern of comparison (in Maximal matches for 
instance) is anti-reflexive and asymmetric with 
the resulting elements. However, there is symme-
try in the resultant, but there is still anti-
reflexivity. 

We also single out the angular metrics from 
distance measures even though they use a similar 
analysis of the qualitative variation of entities. 
According to Ekman & Sjöberg (1965), a method 
using similarity converted into cosine representa-
tion has the advantage to reveal two components 
of percepts, i.e. the two-dimensional vector is a 
modeling in magnitude and direction. Thus, an-
gular metrics can be a means used to contrast 
two semantic features of entities. 

5.1 A closer  look at properties 

Finding out that different sets of properties can 
serve as dividing lines between groups of metrics 
is interesting in itself, but does not answer the 
question as to which set is more appropriate than 
others.  We do not wish to answer this question 
here as we believe it is application-dependent, 
but we do wish to emphasize that a questioning 
should take place before choosing a particular 
measure. In fact, for each property, there is an 
appropriate question that can be asked, as is 
summarized in Table 5. 
 
Table 5 – Questioning for Measure Selection 
Property Question 
Minimality Is the minimal distance between objects the 

distance of an object with itself? 
Symmetry Is it true that the distance between x and y is 

always the same as the distance between y 
and x? 

Triangle 
Inequality 

Is it appropriate that a direct distance be-
tween x and z is always smaller than a com-
posed distance from x to y and y to z? 

Reflexivity  Is it true that the relation that it holds be-
tween an object and itself is always the 
same? 

Transitivity Is it necessarily the case that when x is 
similar to y and y is similar to z, that x be 
similar to z? 

 
For the task of WSD investigated in this paper, 

we hope to open the debate as to which proper-
ties are to be taken into consideration. 

6 Conclusion and future work 

This paper presented some ideas from two angles 
of study (human and metrics) into the intricate 
problem of similarity judgments.  A larger study 
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is under way on both angles.  First, we suggested, 
based on some psychological and philosophical 
model analysis, a two-axis Osgood-like bench-
marking approach for “ordinary human” word-
sense judgments.  We intend to perform an em-
pirical experiment to validate this idea by look-
ing at inter-judge agreement.  

On the algorithm side, although the ap-
proaches based on the cardinality of sets are not 
central to WSD, we presented them first as we 
find it inspiring to see an effort of classification 
on those measures.  We then attempted a some-
what more broad classification by emphasizing 
properties of different groups of similarity meas-
ures: cardinality of sets, distance, probabilistic 
measures and angular metrics.  Although each 
group has a particular subset of properties, we 
noted that all of them share a property of transi-
tivity.  This is interestingly different from the 
psychological contrast model of Tversky where 
differences and similarities are measured differ-
ently on different criteria.  We think investiga-
tions into similarity measures which reproduce 
such a non-transitive differentiation approach 
should be performed.  We are on that path in our 
larger study.  We also suggest that any proposal 
of a measure for a task should be preceded by a 
study of which properties seem adequate for such 
a task.  We conclude by opening up the debate 
for the WSD task. 
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Abstract

Semantic relatedness is a special form of
linguistic distance between words. Eval-
uating semantic relatedness measures is
usually performed by comparison with hu-
man judgments. Previous test datasets had
been created analytically and were limited
in size. We propose a corpus-based system
for automatically creating test datasets.1

Experiments with human subjects show
that the resulting datasets cover all de-
grees of relatedness. As a result of the
corpus-based approach, test datasets cover
all types of lexical-semantic relations and
contain domain-specific words naturally
occurring in texts.

1 Introduction

Linguistic distance plays an important role in
many applications like information retrieval, word
sense disambiguation, text summarization or
spelling correction. It is defined on different kinds
of textual units, e.g. documents, parts of a docu-
ment (e.g. words and their surrounding context),
words or concepts (Lebart and Rajman, 2000).2

Linguistic distance between words is inverse to
their semantic similarity or relatedness.

Semantic similarity is typically defined via the
lexical relations of synonymy (automobile – car)
and hypernymy (vehicle – car), while semantic
relatedness (SR) is defined to cover any kind of
lexical or functional association that may exist be-

1In the near future, we are planning to make the software
available to interested researchers.

2In this paper, word denotes the graphemic form of a to-
ken and concept refers to a particular sense of a word.

tween two words (Gurevych, 2005).3 Dissimilar
words can be semantically related, e.g. via func-
tional relationships (night – dark) or when they
are antonyms (high – low). Many NLP applica-
tions require knowledge about semantic related-
ness rather than just similarity (Budanitsky and
Hirst, 2006).

A number of competing approaches for comput-
ing semantic relatedness of words have been de-
veloped (see Section 2). A commonly accepted
method for evaluating these approaches is to com-
pare their results with a gold standard based on
human judgments on word pairs. For that pur-
pose, relatedness scores for each word pair have
to be determined experimentally. Creating test
datasets for such experiments has so far been a
labor-intensive manual process.

We propose a corpus-based system to automat-
ically create test datasets for semantic relatedness
experiments. Previous datasets were created ana-
lytically, preventing their use to gain insights into
the nature of SR and also not necessarily reflecting
the reality found in a corpus. They were also lim-
ited in size. We provide a larger annotated test set
that is used to better analyze the connections and
differences between the approaches for computing
semantic relatedness.

The remainder of this paper is organized as fol-
lows: we first focus on the notion of semantic re-
latedness and how it can be evaluated. Section 3
reviews related work. Section 4 describes our sys-
tem for automatically extracting word pairs from a
corpus. Furthermore, the experimental setup lead-
ing to human judgments of semantic relatedness

3Nevertheless the two terms are often (mis)used inter-
changeably. We will use semantic relatedness in the remain-
der of this paper, as it is the more general term that subsumes
semantic similarity.
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is presented. Section 5 discusses the results, and
finally we draw some conclusions in Section 6.

2 Evaluating SR measures

Various approaches for computing semantic re-
latedness of words or concepts have been pro-
posed, e.g. dictionary-based (Lesk, 1986),
ontology-based (Wu and Palmer, 1994; Leacock
and Chodorow, 1998), information-based (Resnik,
1995; Jiang and Conrath, 1997) or distributional
(Weeds and Weir, 2005). The knowledge sources
used for computing relatedness can be as different
as dictionaries, ontologies or large corpora.

According to Budanitsky and Hirst (2006),
there are three prevalent approaches for evaluating
SR measures: mathematical analysis, application-
specific evaluation and comparison with human
judgments.

Mathematical analysis can assess a measure
with respect to some formal properties, e.g.
whether a measure is a metric (Lin, 1998).4 How-
ever, mathematical analysis cannot tell us whether
a measure closely resembles human judgments or
whether it performs best when used in a certain
application.

The latter question is tackled by application-
specific evaluation, where a measure is tested
within the framework of a certain application,
e.g. word sense disambiguation (Patwardhan et
al., 2003) or malapropism detection (Budanitsky
and Hirst, 2006). Lebart and Rajman (2000) ar-
gue for application-specific evaluation of similar-
ity measures, because measures are always used
for some task. But they also note that evaluating
a measure as part of a usually complex applica-
tion only indirectly assesses its quality. A certain
measure may work well in one application, but not
in another. Application-based evaluation can only
state the fact, but give little explanation about the
reasons.

The remaining approach - comparison with hu-
man judgments - is best suited for application
independent evaluation of relatedness measures.
Human annotators are asked to judge the related-
ness of presented word pairs. Results from these
experiments are used as a gold standard for eval-
uation. A further advantage of comparison with
human judgments is the possibility to gain deeper

4That means, whether it fulfills some mathematical crite-
ria: d(x, y) ≥ 0; d(x, y) = 0 ⇔ x = y; d(x, y) = d(y, x);
d(x, z) ≤ d(x, y) + d(y, z).

insights into the nature of semantic relatedness.
However, creating datasets for evaluation has so

far been limited in a number of respects. Only
a small number of word pairs was manually se-
lected, with semantic similarity instead of related-
ness in mind. Word pairs consisted only of noun-
noun combinations and only general terms were
included. Polysemous and homonymous words
were not disambiguated to concepts, i.e. humans
annotated semantic relatedness of words rather
than concepts.

3 Related work

In the seminal work by Rubenstein and Goode-
nough (1965), similarity judgments were obtained
from 51 test subjects on 65 noun pairs written on
paper cards. Test subjects were instructed to order
the cards according to the “similarity of meaning”
and then assign a continuous similarity value (0.0 -
4.0) to each card. Miller and Charles (1991) repli-
cated the experiment with 38 test subjects judg-
ing on a subset of 30 pairs taken from the original
65 pairs. This experiment was again replicated by
Resnik (1995) with 10 subjects. Table 1 summa-
rizes previous experiments.

A comprehensive evaluation of SR measures re-
quires a higher number of word pairs. However,
the original experimental setup is not scalable as
ordering several hundred paper cards is a cum-
bersome task. Furthermore, semantic relatedness
is an intuitive concept and being forced to assign
fine-grained continuous values is felt to overstrain
the test subjects. Gurevych (2005) replicated the
experiment of Rubenstein and Goodenough with
the original 65 word pairs translated into German.
She used an adapted experimental setup where test
subjects had to assign discrete values {0,1,2,3,4}
and word pairs were presented in isolation. This
setup is also scalable to a higher number of word
pairs (350) as was shown in Gurevych (2006).
Finkelstein et al. (2002) annotated a larger set of
word pairs (353), too. They used a 0-10 range of
relatedness scores, but did not give further details
about their experimental setup. In psycholinguis-
tics, relatedness of words can also be determined
through association tests (Schulte im Walde and
Melinger, 2005). Results of such experiments are
hard to quantify and cannot easily serve as the ba-
sis for evaluating SR measures.

Rubenstein and Goodenough selected word
pairs analytically to cover the whole spectrum of
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CORRELATION
PAPER LANGUAGE PAIRS POS REL-TYPE SCORES # SUBJECTS INTER INTRA

R/G (1965) English 65 N sim continuous 0–4 51 - .850
M/C (1991) English 30 N sim continuous 0–4 38 - -
Res (1995) English 30 N sim continuous 0–4 10 .903 -
Fin (2002) English 353 N, V, A relat continuous 0–10 16 - -
Gur (2005) German 65 N sim discrete {0,1,2,3,4} 24 .810 -
Gur (2006) German 350 N, V, A relat discrete {0,1,2,3,4} 8 .690 -
Z/G (2006) German 328 N, V, A relat discrete {0,1,2,3,4} 21 .478 .647

Table 1: Comparison of previous experiments. R/G=Rubenstein and Goodenough, M/C=Miller and
Charles, Res=Resnik, Fin=Finkelstein, Gur=Gurevych, Z/G=Zesch and Gurevych

similarity from “not similar” to “synonymous”.
This elaborate process is not feasible for a larger
dataset or if domain-specific test sets should be
compiled quickly. Therefore, we automatically
create word pairs using a corpus-based approach.
We assume that due to lexical-semantic cohesion,
texts contain a sufficient number of words re-
lated by means of different lexical and semantic
relations. Resulting from our corpus-based ap-
proach, test sets will also contain domain-specific
terms. Previous studies only included general
terms as opposed to domain-specific vocabularies
and therefore failed to produce datasets that can
be used to evaluate the ability of a measure to cope
with domain-specific or technical terms. This is an
important property if semantic relatedness is used
in information retrieval where users tend to use
specific search terms (Porsche) rather than general
ones (car).

Furthermore, manually selected word pairs
are often biased towards highly related pairs
(Gurevych, 2006), because human annotators tend
to select only highly related pairs connected by re-
lations they are aware of. Automatic corpus-based
selection of word pairs is more objective, leading
to a balanced dataset with pairs connected by all
kinds of lexical-semantic relations. Morris and
Hirst (2004) pointed out that many relations be-
tween words in a text are non-classical (i.e. other
than typical taxonomic relations like synonymy or
hypernymy) and therefore not covered by seman-
tic similarity.

Previous studies only considered semantic re-
latedness (or similarity) of words rather than con-
cepts. However, polysemous or homonymous
words should be annotated on the level of con-
cepts. If we assume that bank has two meanings
(“financial institution” vs. “river bank”)5 and it is
paired with money, the result is two sense quali-

5WordNet lists 10 meanings.

fied pairs (bankfinancial – money) and (bankriver

– money). It is obvious that the judgments on the
two concept pairs should differ considerably. Con-
cept annotated datasets can be used to test the abil-
ity of a measure to differentiate between senses
when determining the relatedness of polysemous
words. To our knowledge, this study is the first to
include concept pairs and to automatically gener-
ate the test dataset.

In our experiment, we annotated a high number
of pairs similar in size to the test sets by Finkel-
stein (2002) and Gurevych (2006). We used the re-
vised experimental setup (Gurevych, 2005), based
on discrete relatedness scores and presentation of
word pairs in isolation, that is scalable to the
higher number of pairs. We annotated semantic
relatedness instead of similarity and included also
non noun-noun pairs. Additionally, our corpus-
based approach includes domain-specific techni-
cal terms and enables evaluation of the robustness
of a measure.

4 Experiment

4.1 System architecture

Figure 1 gives an overview of our automatic
corpus-based system for creating test datasets for
evaluating SR measures.

In the first step, a source corpus is preprocessed
using tokenization, POS-tagging and lemmatiza-
tion resulting in a list of POS-tagged lemmas.
Randomly generating word pairs from this list
would result in too many unrelated pairs, yielding
an unbalanced dataset. Thus, we assign weights to
each word (e.g. using tf.idf-weighting). The most
important document-specific words get the high-
est weights and due to lexical cohesion of the doc-
uments many related words can be found among
the top rated. Therefore, we randomly generate
a user-defined number of word pairs from the r
words with the highest weights for each document.
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Figure 1: System architecture for extraction of
concept pairs.

In the next step, user defined filters are applied
to the initial list of word pairs. For example, a fil-
ter can remove all pairs containing only uppercase
letters (mostly acronyms). Another filter can en-
force a certain fraction of POS combinations to be
present in the result set.

As we want to obtain judgment scores for se-
mantic relatedness of concepts instead of words,
we have to include all word sense combinations of
a pair in the list. An external dictionary of word
senses is necessary for this step. It is also used to
add a gloss for each word sense that enables test
subjects to distinguish between senses.

If differences in meaning between senses are
very fine-grained, distinguishing between them is
hard even for humans (Mihalcea and Moldovan,
2001).6 Pairs containing such words are not suit-
able for evaluation. To limit their impact on the
experiment, a threshold for the maximal number
of senses can be defined. Words with a number of
senses above the threshold are removed from the
list.

The result of the extraction process is a list of
sense disambiguated, POS-tagged pairs of con-
cepts.

6E.g. the German verb “halten” that can be translated as
hold, maintain, present, sustain, etc. has 26 senses in Ger-
maNet.

4.2 Experimental setup

4.2.1 Extraction of concept pairs
We extracted word pairs from three different

domain-specific corpora (see Table 2). This is
motivated by the aim to enable research in infor-
mation retrieval incorporating SR measures. In
particular, the “Semantic Information Retrieval”
project (SIR Project, 2006) systematically investi-
gates the use of lexical-semantic relations between
words or concepts for improving the performance
of information retrieval systems.

The BERUFEnet (BN) corpus7 consists of de-
scriptions of 5,800 professions in Germany and
therefore contains many terms specific to profes-
sional training. Evaluating semantic relatedness
on a test set based on this corpus may reveal the
ability of a measure to adapt to a very special do-
main. The GIRT (German Indexing and Retrieval
Testdatabase) corpus (Kluck, 2004) is a collec-
tion of abstracts of social science papers. It is a
standard corpus for evaluating German informa-
tion retrieval systems. The third corpus is com-
piled from 106 arbitrarily selected scientific Pow-
erPoint presentations (SPP). They cover a wide
range of topics from bio genetics to computer sci-
ence and contain many technical terms. Due to
the special structure of presentations, this corpus
will be particularly demanding with respect to the
required preprocessing components of an informa-
tion retrieval system.

The three preprocessing steps (tokenization,
POS-tagging, lemmatization) are performed us-
ing TreeTagger (Schmid, 1995). The resulting
list of POS-tagged lemmas is weighted using the
SMART ‘ltc’8 tf.idf-weighting scheme (Salton,
1989).

We implemented a set of filters for word pairs.
One group of filters removed unwanted word
pairs. Word pairs are filtered if they contain at
least one word that a) has less than three letters b)
contains only uppercase letters (mostly acronyms)
or c) can be found in a stoplist. Another fil-
ter enforced a specified fraction of combinations
of nouns (N), verbs (V) and adjectives (A) to be
present in the result set. We used the following pa-
rameters: NN = 0.5, NV = 0.15, NA = 0.15,
V V = 0.1, V A = 0.05, AA = 0.05. That means
50% of the resulting word pairs for each corpus

7http://berufenet.arbeitsagentur.de
8l=logarithmic term frequency, t=logarithmic inverse doc-

ument frequency, c=cosine normalization.
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CORPUS # DOCS # TOKENS DOMAIN

BN 9,022 7,728,501 descriptions
of professions

GIRT 151,319 19,645,417 abstracts of social
science papers

SPP 106 144,074 scientific .ppt
presentations

Table 2: Corpus statistics.

were noun-noun pairs, 15% noun-verb pairs and
so on.

Word pairs containing polysemous words
are expanded to concept pairs using Ger-
maNet (Kunze, 2004), the German equivalent to
WordNet, as a sense inventory for each word. It
is the most complete resource of this type for Ger-
man.

GermaNet contains only a few conceptual
glosses. As they are required to enable test sub-
jects to distinguish between senses, we use artifi-
cial glosses composed from synonyms and hyper-
nyms as a surrogate, e.g. for brother: “brother,
male sibling” vs. “brother, comrade, friend”
(Gurevych, 2005). We removed words which had
more than three senses.

Marginal manual post-processing was neces-
sary, since the lemmatization process introduced
some errors. Foreign words were translated into
German, unless they are common technical termi-
nology. We initially selected 100 word pairs from
each corpus. 11 word pairs were removed be-
cause they comprised non-words. Expanding the
word list to a concept list increased the size of the
list. Thus, the final dataset contained 328 automat-
ically created concept pairs.

4.2.2 Graphical User Interface
We developed a web-based interface to obtain

human judgments of semantic relatedness for each
automatically generated concept pair. Test sub-
jects were invited via email to participate in the
experiment. Thus, they were not supervised dur-
ing the experiment.

Gurevych (2006) observed that some annotators
were not familiar with the exact definition of se-
mantic relatedness. Their results differed particu-
larly in cases of antonymy or distributionally re-
lated pairs. We created a manual with a detailed
introduction to SR stressing the crucial points.
The manual was presented to the subjects before
the experiment and could be re-accessed at any
time.

Figure 2: Screenshot of the GUI. Polysemous
words are defined by means of synonyms and re-
lated words.

During the experiment, one concept pair at a
time was presented to the test subjects in random
ordering. Subjects had to assign a discrete related-
ness value {0,1,2,3,4} to each pair. Figure 2 shows
the system’s GUI.

In case of a polysemous word, synonyms or
related words were presented to enable test sub-
jects to understand the sense of a presented con-
cept. Because this additional information can lead
to undesirable priming effects, test subjects were
instructed to deliberately decide only about the re-
latedness of a concept pair and use the gloss solely
to understand the sense of the presented concept.

Since our corpus-based approach includes
domain-specific vocabulary, we could not assume
that the subjects were familiar with all words.
Thus, they were instructed to look up unknown
words in the German Wikipedia.9

Several test subjects were asked to repeat the
experiment with a minimum break of one day. Re-
sults from the repetition can be used to measure
intra-subject correlation. They can also be used
to obtain some hints on varying difficulty of judg-
ment for special concept pairs or parts-of-speech.

5 Results and discussion

21 test subjects (13 males, 8 females) participated
in the experiment, two of them repeated it. The
average age of the subjects was 26 years. Most
subjects had an IT background. The experiment
took 39 minutes on average, leaving about 7 sec-
onds for rating each concept pair.

The summarized inter-subject correlation be-
tween 21 subjects was r=.478 (cf. Table 3), which

9http://www.wikipedia.de
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CONCEPTS WORDS
INTER INTRA INTER INTRA

all .478 .647 .490 .675
BN .469 .695 .501 .718

GIRT .451 .598 .463 .625
SPP .535 .649 .523 .679
AA .556 .890 .597 .887
NA .547 .773 .511 .758
NV .510 .658 .540 .647
NN .463 .620 .476 .661
VA .317 .318 .391 .212
VV .278 .494 .301 .476

Table 3: Summarized correlation coefficients for
all pairs, grouped by corpus and grouped by POS
combinations.

is statistically significant at p < .05. This correla-
tion coefficient is an upper bound of performance
for automatic SR measures applied on the same
dataset.

Resnik (1995) reported a correlation of
r=.9026.10 The results are not directly compara-
ble, because he only used noun-noun pairs, words
instead of concepts, a much smaller dataset, and
measured semantic similarity instead of semantic
relatedness. Finkelstein et al. (2002) did not
report inter-subject correlation for their larger
dataset. Gurevych (2006) reported a correlation
of r=.69. Test subjects were trained students of
computational linguistics, and word pairs were
selected analytically.

Evaluating the influence of using concept pairs
instead of word pairs is complicated because word
level judgments are not directly available. There-
fore, we computed a lower and an upper bound
for correlation coefficients. For the lower bound,
we always selected the concept pair with highest
standard deviation from each set of corresponding
concept pairs. The upper bound is computed by
selecting the concept pair with the lowest standard
deviation. The differences between correlation co-
efficient for concepts and words are not signifi-
cant. Table 3 shows only the lower bounds.

Correlation coefficients for experiments mea-
suring semantic relatedness are expected to be
lower than results for semantic similarity, since the
former also includes additional relations (like co-
occurrence of words) and is thus a more compli-
cated task. Judgments for such relations strongly
depend on experience and cultural background of
the test subjects. While most people may agree

10Note that Resnik used the averaged correlation coeffi-
cient. We computed the summarized correlation coefficient
using a Fisher Z-value transformation.
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Figure 3: Distribution of averaged human judg-
ments.
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Figure 4: Distribution of averaged human judg-
ments with standard deviation < 0.8.

that (car – vehicle) are highly related, a strong
connection between (parts – speech) may only be
established by a certain group. Due to the corpus-
based approach, many domain-specific concept
pairs are introduced into the test set. Therefore,
inter-subject correlation is lower than the results
obtained by Gurevych (2006).

In our experiment, intra-subject correlation was
r=.670 for the first and r=.623 for the second in-
dividual who repeated the experiment, yielding
a summarized intra-subject correlation of r=.647.
Rubenstein and Goodenough (1965) reported an
intra-subject correlation of r=.85 for 15 subjects
judging the similarity of a subset (36) of the orig-
inal 65 word pairs. The values may again not be
compared directly. Furthermore, we cannot gen-
eralize from these results, because the number of
participants which repeated our experiment was
too low.

The distribution of averaged human judgments
on the whole test set (see Figure 3) is almost bal-
anced with a slight underrepresentation of highly
related concepts. To create more highly re-
lated concept pairs, more sophisticated weighting
schemes or selection on the basis of lexical chain-
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Figure 5: Averaged judgments and standard devia-
tion for all concept pairs. Low deviations are only
observed for low or high judgments.

ing could be used. However, even with the present
setup, automatic extraction of concept pairs per-
forms remarkably well and can be used to quickly
create balanced test datasets.

Budanitsky and Hirst (2006) pointed out that
distribution plots of judgments for the word pairs
used by Rubenstein and Goodenough display an
empty horizontal band that could be used to sepa-
rate related and unrelated pairs. This empty band
is not observed here. However, Figure 4 shows the
distribution of averaged judgments with the high-
est agreement between annotators (standard devi-
ation < 0.8). The plot clearly shows an empty hor-
izontal band with no judgments. The connection
between averaged judgments and standard devia-
tion is plotted in Figure 5.

When analyzing the concept pairs with lowest
deviation there is a clear tendency for particularly
highly related pairs, e.g. hypernymy: Universität
– Bildungseinrichtung (university – educational
institution); functional relation: Tätigkeit – aus-
führen (task – perform); or pairs that are obviously
not connected, e.g. logisch – Juni (logical – June).
Table 4 lists some example concept pairs along
with averaged judgments and standard deviation.

Concept pairs with high deviations between
judgments often contain polysemous words. For
example, Quelle (source) was disambiguated to
Wasserquelle (spring) and paired with Text
(text). The data shows a clear distinction be-
tween one group that rated the pair low (0) and
another group that rated the pair high (3 or 4). The
latter group obviously missed the point that tex-
tual source was not an option here. High devia-
tions were also common among special technical
terms like (Mips – Core), proper names (Georg –
August – two common first names in German) or

functionally related pairs (agieren – mobil). Hu-
man experience and cultural background clearly
influence the judgment of such pairs.

The effect observed here and the effect noted
by Budanitsky and Hirst is probably caused by the
same underlying principle. Human agreement on
semantic relatedness is only reliable if two words
or concepts are highly related or almost unrelated.
Intuitively, this means that classifying word pairs
as related or unrelated is much easier than numeri-
cally rating semantic relatedness. For an informa-
tion retrieval task, such a classification might be
sufficient.

Differences in correlation coefficients for the
three corpora are not significant indicating that the
phenomenon is not domain-specific. Differences
in correlation coefficients for different parts-of-
speech are significant (see Table 3). Verb-verb and
verb-adjective pairs have the lowest correlation.
A high fraction of these pairs is in the problem-
atic medium relatedness area. Adjective-adjective
pairs have the highest correlation. Most of these
pairs are either highly related or not related at all.

6 Conclusion

We proposed a system for automatically creating
datasets for evaluating semantic relatedness mea-
sures. We have shown that our corpus-based ap-
proach enables fast development of large domain-
specific datasets that cover all types of lexical and
semantic relations. We conducted an experiment
to obtain human judgments of semantic related-
ness on concept pairs. Results show that averaged
human judgments cover all degrees of relatedness
with a slight underrepresentation of highly related
concept pairs. More highly related concept pairs
could be generated by using more sophisticated
weighting schemes or selecting concept pairs on
the basis of lexical chaining.

Inter-subject correlation in this experiment is
lower than the results from previous studies due
to several reasons. We measured semantic relat-
edness instead of semantic similarity. The for-
mer is a more complicated task for annotators be-
cause its definition includes all kinds of lexical-
semantic relations not just synonymy. In addition,
concept pairs were automatically selected elimi-
nating the bias towards strong classical relations
with high agreement that is introduced into the
dataset by a manual selection process. Further-
more, our dataset contains many domain-specific
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PAIR
GERMAN ENGLISH CORPUS AVG ST-DEV

Universität – Bildungseinrichtung university – educational institution GIRT 3.90 0.30
Tätigkeit – ausführen task – to perform BN 3.67 0.58
strafen – Paragraph to punish – paragraph GIRT 3.00 1.18

Quelle – Text spring – text GIRT 2.43 1.57
Mips – Core mips – core SPP 2.10 1.55

elektronisch – neu electronic – new GIRT 1.71 1.15
verarbeiten – dichten to manipulate – to caulk BN 1.29 1.42

Leopold – Institut Leopold – institute SPP 0.81 1.25
Outfit – Strom outfit – electricity GIRT 0.24 0.44
logisch – Juni logical – June SPP 0.14 0.48

Table 4: Example concept pairs with averaged judgments and standard deviation. Only one sense is
listed for polysemous words. Conceptual glosses are omitted due to space limitations.

concept pairs which have been rated very differ-
ently by test subjects depending on their expe-
rience. Future experiments should ensure that
domain-specific pairs are judged by domain ex-
perts to reduce disagreement between annotators
caused by varying degrees of familiarity with the
domain.

An analysis of the data shows that test sub-
jects more often agreed on highly related or unre-
lated concept pairs, while they often disagreed on
pairs with a medium relatedness value. This result
raises the question whether human judgments of
semantic relatedness with medium scores are re-
liable and should be used for evaluating seman-
tic relatedness measures. We plan to investigate
the impact of this outcome on the evaluation of
semantic relatedness measures. Additionally, for
some applications like information retrieval it may
be sufficient to detect highly related pairs rather
than accurately rating word pairs with medium
values.

There is also a significant difference between
the correlation coefficient for different POS com-
binations. Further investigations are needed to elu-
cidate whether these differences are caused by the
new procedure for corpus-based selection of word
pairs proposed in this paper or are due to inherent
properties of semantic relations existing between
word classes.
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Abstract

We present results on the relation discov-
ery task, which addresses some of the
shortcomings of supervised relation ex-
traction by applying minimally supervised
methods. We describe a detailed experi-
mental design that compares various con-
figurations of conceptual representations
and similarity measures across six differ-
ent subsets of the ACE relation extraction
data. Previous work on relation discovery
used a semantic space based on a term-by-
document matrix. We find that represen-
tations based on term co-occurrence per-
form significantly better. We also observe
further improvements when reducing the
dimensionality of the term co-occurrence
matrix using probabilistic topic models,
though these are not significant.

1 Introduction

This paper describes work that aims to improve
upon previous approaches to identifying relation-
ships between named objects in text (e.g., people,
organisations, locations). Figure 1 contains sev-
eral example sentences from the ACE 2005 cor-
pus that contain relations and Figure 2 summarises
the relations occurring in these sentences. So, for
example, sentence 1 contains anemploymentrela-
tion between Lebron James and Nike, sentence 2
contains asports-affiliationrelation between Stig
Toefting and Bolton and sentence 4 contains a
businessrelation between Martha Stewart (she)
and the board of directors (of Martha Stewart Liv-
ing Omnimedia).

Possible applications include identifying com-
panies taking part in mergers/acquisitions from

1 As for that $90 million shoe contract with Nike,
it may be a good deal for James.

2 Toefting transferred to Bolton in February 2002
from German club Hamburg.

3 Toyoda founded the automaker in 1937 ... .
4 In a statement, she says she’s stepping aside in

the best interest of the company, but she will
stay on the board of directors.

Figure 1: Example sentences from ACE 2005.

Sent Entity1 Entity2 Relation
1 Lebron James Nike Employ
2 Stig Toefting Bolton Sports-Aff
2 Stig Toefting Hamburg Sports-Aff
3 Kiichiro Toyoda Toyota Corp Founder
4 Martha Stewart board Business

Figure 2: Example entity pairs and relation types.

business newswire, which could be inserted into a
corporate intelligence database. In the biomedical
domain, we may want to identify relationships be-
tween genes and proteins from biomedical publi-
cations, e.g. Hirschman et al. (2004), to help scien-
tists keep up-to-date on the literature. Or, we may
want to identify disease and treatment relations in
publications and textbooks, which can be used to
help formalise medical knowledge and assist gen-
eral practitioners in diagnosis, treatment and prog-
nosis (Rosario and Hearst, 2004).

Another application scenario involves building
networks of relationships from text collections that
indicate the important entities in a domain and
can be used to visualise interactions. The net-
works could provide an alternative to searching
when interacting with a document collection. This
could prove beneficial, for example, in investiga-
tive journalism. It might also be used for social
science research using techniques from social net-
work analysis (Marsden and Lin, 1982). In previ-
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ous work, relations have been used for automatic
text summarisation as a conceptual representation
of sentence content in a sentence extraction frame-
work (Filatova and Hatzivassiloglou, 2004).

In the next section, we motivate and introduce
the relation discovery task, which addresses some
of the shortcomings of conventional approaches to
relation extraction (i.e. supervised learning or rule
engineering) by applying minimally supervised
methods.1 A critical part of the relation discov-
ery task is grouping entity pairs by their relation
type. This is a clustering task and requires a ro-
bust conceptual representation of relation seman-
tics and a measure of similarity between relations.
In previous work (Hasegawa et al., 2004; Chen et
al., 2005), the conceptual representation has been
limited to term-by-document (TxD) models of re-
lation semantics. The current work introduces a
term co-occurrence (TxT) representation for the
relation discovery task and shows that it performs
significantly better than the TxD representation.
We also explore dimensionality reduction tech-
niques, which show a further improvement.

Section 3 presents a parameterisation of similar-
ity models for relation discovery. For the purposes
of the current work, this consists of the semantic
representation for terms (i.e. how a term’s context
is modelled), dimensionality reduction technique
(e.g. singular value decomposition, latent Dirich-
let allocation), and the measure used to compute
similarity.

We also build on the evaluation paradigm for
relation discovery with a detailed, controlled ex-
perimental setup. Section 4 describes the experi-
ment design, which compares the various system
configurations across six different subsets of the
relation extraction data from the automatic con-
tent extraction (ACE) evaluation. Finally, Section
5 presents results and statistical analysis.

2 The Relation Discovery Task

Conventionally, relation extraction is considered
to be part of information extraction and has been
approached through supervised learning or rule
engineering (e.g., Blaschke and Valencia (2002),
Bunescu and Mooney (2005)). However, tradi-
tional approaches have several shortcomings. First

1The relation discovery task is minimally supervised in
the sense that it relies on having certain resources such as
named entity recognition. The focus of the current paper is
the unsupervised task of clustering relations.

and foremost, they are generally based on pre-
defined templates of what types of relations ex-
ist in the data and thus only capture information
whose importance was anticipated by the template
designers. This poses reliability problems when
predicting new data in the same domain as the
training data will be from a certain epoch in the
past. Due to language change and topical varia-
tion, as time passes, it is likely that the new data
will deviate more and more from the trained mod-
els. Additionally, there are cost problems asso-
ciated with the conventional supervised approach
when updating templates or transferring to a new
domain, both of which require substantial effort in
re-engineering rules or re-annotating training data.

The goal of the relation discovery task is to
identify the existence of associations between en-
tities, to identify the kinds of relations that oc-
cur in a corpus and to annotate particular associ-
ations with relation types. These goals correspond
to the three main steps in a generalised algorithm
(Hasegawa et al., 2004):

1. Identify co-occurring pairs of named entities

2. Group entity pairs using the textual context

3. Label each cluster of entity pairs

The first step is the relation identification task.
In the current work, this is assumed to have been
done already. We use the gold standard relations
in the ACE data in order to isolate the performance
of the second step. The second step is a clustering
task and as such it is necessary to compute simi-
larity between the co-occurring pairs of named en-
tities (relations). In order to do this, a model of re-
lation similarity is required, which is the focus of
the current work.

We also assume that it is possible to perform the
third step.2 The evaluation we present here looks
just at the quality of the clustering and does not
attempt to assess the labelling task.

3 Modelling Relation Similarity

The possible space of models for relation similar-
ity can be explored in a principled manner by pa-
rameterisation. In this section, we discuss several

2Previous approaches select labels from the collection of
context words for a relation cluster (Hasegawa et al., 2004;
Zhang et al., 2005). Chen et al. (2005) use discriminative
category matching to make sure that selected labels are also
able to differentiate between clusters.
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parameters including the term context representa-
tion, whether or not we apply dimensionality re-
duction, and what similarity measure we use.

3.1 Term Context

Representing texts in such a way that they can be
compared is a familiar problem from the fields
of information retrieval (IR), text mining (TM),
textual data analysis (TDA) and natural language
processing (NLP) (Lebart and Rajman, 2000).
The traditional model for IR and TM is based
on a term-by-document (TxD) vector representa-
tion. Previous approaches to relation discovery
(Hasegawa et al., 2004; Chen et al., 2005) have
been limited to TxD representations, usingtf*idf
weighting and the cosine similarity measure. In
information retrieval, the weighted term represen-
tation works well as the comparison is generally
between pieces of text with large context vectors.
In the relation discovery task, though, the term
contexts (as we will define them in Section 4) can
be very small, often consisting of only one or two
words. This means that a term-based similarity
matrix between entity pairs is very sparse, which
may pose problems for performing reliable clus-
tering.

An alternative method widely used in NLP
and cognitive science is to represent a term con-
text by its neighbouring words as opposed to the
documents in which it occurs. This term co-
occurrence (TxT) model is based on the intu-
ition that two words are semantically similar if
they appear in a similar set of contexts (see e.g.
Pado and Lapata (2003)). The current work ex-
plores such a term co-occurrence (TxT) represen-
tation based on the hypothesis that it will provide
a more robust representation of relation contexts
and help overcome the sparsity problems asso-
ciated with weighted term representations in the
relation discovery task. This is compared to a
baseline term-by-document (TxD) representation
which is a re-implementation of the approach used
by Hasegawa et al. (2004) and Chen et al. (2005).

3.2 Dimensionality Reduction

Dimensionality reduction techniques for docu-
ment and corpus modelling aim to reduce descrip-
tion length and model a type of semantic similar-
ity that is more linguistic in nature (e.g., see Lan-
dauer et al.’s (1998) discussion of LSA and syn-
onym tests). In the current work, we explore sin-
gular value decomposition (Berry et al., 1994), a

technique from linear algebra that has been ap-
plied to a number of tasks from NLP and cogni-
tive modelling. We also explore latent Dirichlet
allocation, a probabilistic technique analogous to
singular value decomposition whose contribution
to NLP has not been as thoroughly explored.

Singular value decomposition (SVD) has been
used extensively for the analysis of lexical seman-
tics under the name of latent semantic analysis
(Landauer et al., 1998). Here, a rectangular matrix
is decomposed into the product of three matrices
(Xw×p = Ww×nSn×n(Pp×n)T ) with n ’latent se-
mantic’ dimensions. The resulting decomposition
can be viewed as a rotation of then-dimensional
axes such that the first axis runs along the direction
of largest variation among the documents (Man-
ning and Scḧutze, 1999). W and P represent
terms and documents in the new space. AndS is
a diagonal matrix of singular values in decreasing
order.

Taking the productWw×kSk×k(Pp×k)T over
the firstD columns gives the best least square ap-
proximation of the original matrixX by a matrix
of rankD, i.e. a reduction of the original matrix to
D dimensions. SVD can equally be applied to the
word co-occurrence matrices obtained in the TxT
representation presented in Section 2, in which
case we can think of the original matrix as being a
term× co-occurring term feature matrix.

While SVD has proved successful and has been
adapted for tasks such as word sense discrimi-
nation (Scḧutze, 1998), its behaviour is not easy
to interpret. Probabilistic LSA (pLSA) is a gen-
erative probabilistic version of LSA (Hofmann,
2001). This models each word in a document as
a sample from a mixture model, but does not pro-
vide a probabilistic model at the document level.
Latent Dirichlet Allocation (LDA) addresses this
by representing documents as random mixtures
over latent topics (Blei et al., 2003). Besides hav-
ing a clear probabilistic interpretation, an addi-
tional advantage of these models is that they have
intuitive graphical representations.

Figure 3 contains a graphical representation
of the LDA model as applied to TxT word
co-occurrence matrices in standard plate nota-
tion. This models the word featuresf in the
co-occurrence context (sizeN ) of each wordw
(wherew ∈ W and|W| = W ) with a mixture of
topicsz. In its generative mode, the LDA model
samples a topic from the word-specific multino-
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Figure 3: Graphical representation of LDA.

mial distributionθ. Then, each context feature is
generated by sampling from a topic-specific multi-
nomial distributionφz.3 In a manner analogous to
the SVD model, we use the distribution over top-
ics for a wordw to represent its semantics and we
use the average topic distribution over all context
words to represent the conceptual content of an en-
tity pair context.

3.3 Measuring Similarity

Cosine (Cos) is commonly used in the literature to
compute similarities betweentf*idf vectors:

Cos(p, q) =
∑

i piqi√∑
p2

√∑
q2

In the current work, we use cosine over term
and SVD representations of entity pair context.
However, it is not clear which similarity measure
should be used for the probabilistic topic models.
Dagan et al. (1997) find that the symmetric infor-
mation radius measure performs best on a pseudo-
word sense disambiguation task, while Lee (1999)
find that the asymmetric skew divergence – a gen-
eralisation of Kullback-Leibler divergence – per-
forms best for improving probability estimates for
unseen word co-occurrences.

In the current work, we compare KL divergence
with two methods for deriving a symmetric mea-

3The hyperparametersα andβ are Dirichlet priors on the
multinomial distributions for word features (φ ∼ Dir(β))
and topics (θ ∼ Dir(α)). The choice of the Dirichlet is
explained by its conjugacy to the multinomial distribution,
meaning that if the parameter (e.g.φ, θ) for a multinomial
distribution is endowed with a Dirichlet prior then the poste-
rior will also be a Dirichlet. Intuitively, it is a distribution over
distributions used to encode prior knowledge about the pa-
rameters (φ andθ) of the multinomial distributions for word
features and topics. Practically, it allows efficient estimation
of the joint distribution over word features and topicsP (~f, ~z)
by integrating outφ andθ.

sure. The KL divergence of two probability dis-
tributions (p andq) over the same event space is
defined as:

KL(p||q) =
∑

i

pi log
pi

qi

In information-theoretic terms, KL divergence is
the average number of bits wasted by encoding
events from a distributionp with a code based on
distribution q. The symmetric measures are de-
fined as:

Sym(p, q) =
1
2

[KL(p||q) + KL(q||p)]

JS(p, q) =
1
2

[
KL

(
p||p + q

2

)
+ KL

(
q||p + q

2

)]
The first is termed symmetrised KL divergence
(Sym) and the second is termed Jensen-Shannon
(JS) divergence. We explore KL divergence as
well as the symmetric measures as it is not known
in advance whether a domain is symmetric or not.

Technically, the divergence measures are dis-
similarity measures as they calculate the differ-
ence between two distributions. However, they
can be converted to increasing measures of simi-
larity through various transformations. We treated
this as a parameter to be tuned during develop-
ment and considered two approaches. The first is
from Dagan et al. (1997). For KL divergence, this
function is defined asSim(p, q) = 10−βKL(p||q),
whereβ is a free parameter, which is tuned on the
development set (as described in Section 4.2). The
same procedure is applied for symmetric KL di-
vergence and JS divergence. The second approach
is from Lee (1999). Here similarity for KL is de-
fined asSim(p, q) = C −KL(p||q), whereC is
a free parameter to be tuned.

4 Experimental Setup

4.1 Materials

Following Chen et al. (2005), we derive our rela-
tion discovery data from the automatic content ex-
traction (ACE) 2004 and 2005 materials for eval-
uation of information extraction.4 This is prefer-
able to using the New York Times data used by
Hasegawa et al. (2004) as it has gold standard an-
notation, which can be used for unbiased evalua-
tion.

The relation clustering data is based on the gold
standard relations in the information extraction

4http://www.nist.gov/speech/tests/ace/
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data. We only consider data from newswire or
broadcast news sources. We constructed six data
subsets from the ACE corpus based on four of the
ACE entities: persons (PER), organisations (ORG),
geographical/social/political entities (GPE) and fa-
cilities (FAC). The six data subsets were chosen
during development based on a lower limit of 50
for the data subset size (i.e. the number of entity
pairs in the domain), ensuring that there is a rea-
sonable amount of data. We also set a lower limit
of 3 for the number of classes (relation types) in a
data subset, ensuring that the clustering task is not
too simple.

The entity pair instances for clustering were
chosen based on several criteria. First, we do not
use ACE’sdiscourserelations, which are relations
in which the entity referred to is not an official en-
tity according to world knowledge. Second, we
only use pairs with one or more non-stop words
in the intervening context, that is the context be-
tween the two entity heads.5 Finally, we only keep
relation classes with 3 or more members. Table
4.1 contains the full list of relation types from the
subsets of ACE that we used. (Refer to Table 4.2
for definition of the relation type abbreviations.)

We use the Infomap tool6 for singular value
decomposition of TxT matrices and compute the
conceptual content of an entity pair context as the
average over the reducedD-dimensional represen-
tation of the co-occurrence vector of the terms in
the relation context. For LDA, we use Steyvers
and Griffiths’ Topic Modeling Toolbox7). The in-
put is produced by a version of Infomap which
was modified to output the TxT matrix. Again, we
compute the conceptual content of an entity pair
as the average over the topic vectors for the con-
text words. As documents are explicitly modelled
in the LDA model, we input a matrix with raw fre-
quencies. In the TxD, unreduced TxT and SVD
models we usetf*idf term weighting.

We use the same preprocessing when prepar-
ing the text for building the SVD and probabilistic
topic models as we use for processing the interven-
ing context of entity pairs. This consisted of Mx-
Terminator (Reynar and Ratnaparkhi., 1997) for
sentence boundary detection, the Penn Treebank

5Following results reported by Chen et al. (2005), who
tried unsuccessfully to incorporate words from the surround-
ing context to represent a relation’s semantics, we use only
intervening words.

6http://infomap.stanford.edu/
7http://psiexp.ss.uci.edu/research/

programs_data/toolbox.htm

sed script8 for tokenisation, and the Infomap stop
word list. We also use an implementation of the
Porter algorithm (Porter, 1980) for stemming.9

4.2 Model Selection

We used the ACE 2004 relation data to perform
model selection. Firstly, dimensionality (D) needs
to be optimised for SVD and LDA. SVD was
found to perform best with the number of dimen-
sions set to10. For LDA, dimensionality inter-
acts with the divergence-to-similarity conversion
so they were tuned jointly. The optimal con-
figuration varies by the divergence measure with
D = 50 andC = 14 for KL divergence,D = 200
andC = 4 for symmetrised KL, andD = 150
andC = 2 for JS divergence. For all divergence
measures, Lee’s (1999) method outperformed Da-
gan et al.’s (1997) method. Also for all divergence
measures, the model hyper-parameterβ was found
to be optimal at0.0001. The α hyper-parameter
was always set to50/T following Griffiths and
Steyvers (2004).

Clustering is performed with the CLUTO soft-
ware10 and the technique used is identical across
models. Agglomerative clustering is used for
comparability with the original relation discovery
work of Hasegawa et al. (2004). This choice was
motivated because as it is not known in advance
how many clusters there should be in a new do-
main.

One way to view the clustering problem is as
an optimisation process where an optimal cluster-
ing is chosen with respect to a criterion function
over the entire solution. The criterion function
used here was chosen based on performance on
the development data. We compared a number of
criterion functions including single link, complete
link, group average,I1, I2, E1 andH1. I1 is a
criterion function that maximises sum of pairwise
similarities between relation instances assigned to
each cluster,I2 is an internal criterion function
that maximises the similarity between each rela-
tion instance and the centroid of the cluster it is as-
signed to,E1 is an external criterion function that
minimises the similarity between the centroid vec-
tor of each cluster and the centroid vector of the

8http://www.cis.upenn.edu/˜treebank/
tokenizer.sed

9http://www.ldc.usb.ve/˜vdaniel/
porter.pm

10http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/overview
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ORG-GPE ORG-ORG PER-FAC PER-GPE PER-ORG PER-PER

basedin 54 subsidiary 36 located 127 located 222 staff 121 business 81
subsidiary 27 emporgothr 14 owner 14 resident 79 executive 100 family 20
located 15 partner 8 near 4 executive 42 member 44 persocothr 16
gpeaffothr 3 member 6 staff 30 emporgothr 27 perorgothr 9

employgen 7 employgen 9 near 7
located 4 ethnic 5

executive 3
ideology 3
member 3

Total 99 Total 64 Total 145 Total 380 Total 305 Total 147

Table 1: Relation distributions for entity pair domains.

Type Subtype Abbr
AGENT-ARTIFACT User-or-Owner owner
EMPLOY/MEMBER Employ-Executive executive

Employ-Staff staff
Employ-Undet’d employgen
Member-of-Group member
Other artothr
Partner partner
Subsidiary subsidiary

GPE AFFILIATION Based-In basedin
Citizen-or-Resdent resident
Other gpeaffothr

PER/ORG AFFIL’ N Ethnic ethnic
Ideology ideology
Other perorgothr

PERSONAL-SOC’ L Business business
Family family
Other persocothr

PHYSICAL Located located
Near near

Table 2: Overview of ACE relations with abbrevi-
ations used here.

entire collection, andH1 is a combined criterion
function that consists of the ration ofI1 overE1.

TheI2, H1 andH2 criterion functions outper-
formed single link, complete link and group aver-
age on the development data. We useI2, which
performed as well asH1 andH2 and is superior
in terms of computational complexity (Zhao and
Karypis, 2004).

5 Experiment

5.1 Method

This section describes experimental setup, which
uses relation extraction data from ACE 2005 to an-
swer four questions concerning the effectiveness
of similarity models based on term co-occurrence
and dimensionality reduction for the relation dis-
covery task:

1. Do term co-occurrence models provide a bet-
ter representation of relation semantics than
standard term-by-document vector space?

2. Do textual dimensionality reduction tech-
niques provide any further improvements?

3. How do probabilistic topic models perform
with respect to SVD on the relation discovery
task?

4. Does one similarity measure (for probability
distributions) outperform the others on the re-
lation discovery task?

System configurations are compared across
six different data subsets (entity type pairs, i.e.,
organisation-geopolitical entity, organisation-
organisation, person-facility, person-geopolitical
entity, person-organisation, person-person)
and evaluated following suggestions by
Dem̌sar (2006) for statistical comparison of
classifiers over multiple data sets.

The dependent variable is the clustering perfor-
mance as measured by the F-score. F-score ac-
counts for both the amount of predictions made
that are true (Precision) and the amount of true
classes that are predicted (Recall). We use the
CLUTO implementation of this measure for eval-
uating hierarchical clustering. Based on (Larsen
and Aone, 1999), this is a balanced F-score
(F = 2RP

R+P ) that computes the maximum per-class
score over all possible alignments of gold stan-
dard classes with nodes in the hierarchical tree.
The average F-score for the entire hierarchical tree
is a micro-average over the class-specific scores
weighted according to the relative size of the class.

5.2 Results

Table 3 contains F-score performance on the test
set (ACE 2005). The columns contain results from
the different system configurations. The column
labels in the top row indicate the different repre-
sentations of relation similarity. The column la-
bels in the second row indicate the dimensional-
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Sem Space TxD TxT TxT TxT TxT TxT
Dim Red’n None None SVD LDA LDA LDA
Similarity Cos Cos Cos KL Sym JS

ORG-GPE 0.644 0.673 0.645 0.680 0.670 0.673
ORG-ORG 0.879 0.922 0.879 0.904 0.900 0.904
PER-FAC 0.811 0.827 0.831 0.832 0.826 0.820
PER-GPE 0.595 0.637 0.627 0.664 0.642 0.670
PER-ORG 0.520 0.551 0.532 0.569 0.552 0.569
PER-PER 0.534 0.572 0.593 0.633 0.553 0.618
Micro Ave 0.627 0.661 0.652 0.683 0.658 0.681
Macro Ave 0.664 0.697 0.684 0.714 0.689 0.709
RankAve 5.917 3.083 4.250 1.500 4.000 2.250

Table 3: F-score performance on the test data (ACE 2005) using agglomerative clustering with theI2

criterion function.

ity reduction technique used. The column labels
in the third row indicated the similarity measure
used, i.e. cosine (Cos) and KL (KL), symmetrised
KL (Sym) and JS (JS) divergence. The rows con-
tain results for the different data subsets. While
we do not use them for analysis of statistical sig-
nificance, we include micro and macro averages
over the data subsets.11 We also include the aver-
age ranks, which show that the LDA system using
KL divergence performed best.

Initial inspection of the table shows that all sys-
tems that use the term co-occurrence semantic
space outperform the baseline system that uses the
term-by-document semantic space. To test for sta-
tistical significance, we use non-parametric tests
proposed by Dem̌sar (2006) for comparing clas-
sifiers across multiple data sets. The use of non-
parametric tests is safer here as they do not as-
sume normality and outliers have less effect. The
first test we perform is a Friedman test (Friedman,
1940), a multiple comparisons technique which
is the non-parametric equivalent of the repeated-
measures ANOVA. The null hypothesis is that all
models perform the same and observed differences
are random. With a Friedman statistic (χ2

F ) of
21.238, we reject the null hypothesis atp < 0.01.

The first question we wanted to address is
whether term co-occurrence models outperform
the term-by-document representation of relation
semantics. To address this question, we continue
with post-hoc analysis. The objective here is to

11Averages over data sets are unreliable where it is not
clear whether the domains are commensurable (Webb, 2000).
We present averages in our results but avoid drawing conclu-
sions based on them.

compare several conditions to a control (i.e., com-
pare the term co-occurrence systems to the term-
by-document baseline) so we use a Bonferroni-
Dunn test. At a significance level ofp < 0.05,
the critical difference for the Bonferroni-Dunn test
for comparing 6 systems across 6 data sets is
2.782. We conclude that the unreduced term co-
occurrence system and the LDA systems with KL
and JS divergence all perform significantly better
than baseline, while the SVD system and the LDA
system with symmetrised KL divergence do not.

The second question asks whether SVD and
LDA dimensionality reduction techniques provide
any further improvement. We observe that the sys-
tems using KL and JS divergence both outperform
the unreduced term co-occurrence system, though
the difference is not significant.

The third question asks how the probabilistic
topic models perform with respect to the SVD
models. Here, Holm-correct Wilcoxon signed-
ranks tests show that the KL divergence system
performs significantly better than SVD while the
symmetrised KL divergence and JS divergence
systems do not.

The final question is whether one of the diver-
gence measures (KL, symmetrised KL or JS) out-
performs the others. With a statistic ofχ2

F =
9.336, we reject the null hypothesis that all sys-
tems are the same atp < 0.01. Post-hoc analysis
with Holm-corrected Wilcoxon signed-ranks tests
show that the KL divergence system and the JS
divergence system both perform significantly bet-
ter than the symmetrised KL system atp < 0.05,
while there is no significant difference between the
KL and JS systems.
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6 Discussion

An interesting aspect of using the ACE corpus is
the wealth of linguistic knowledge encoded. With
respect to named entities, this includes class infor-
mation describing the kind of reference the entity
makes to something in the world (i.e.,specific ref-
erential, generic referential, under-specified ref-
erential) and it includes mention type informa-
tion (i.e., names, quantified nominal construc-
tions, pronouns). It also includes information de-
scribing the lexical condition of a relation (i.e.,
possessive, preposition, pre-modifier, formulaic, ,
verbal). Based on a mapping between gold stan-
dard and predicted clusters, we assigned each case
a value of 1 or 0 to indicate whether it is a correct
or incorrect classification. We then carried out de-
tailed statistical analysis12 to test for effects of the
entity and relation information described above on
each system in each domain.

Overall, the effects were fairly small and do not
generalise across domains or systems very well.
However, there were some observable tendencies.
With respect to entity class, relations withspecific
referentialentities tend to correlate positively with
correct classifications whileunder-specified refer-
entialentities tend to correlate negatively with cor-
rect classifications. With respect to entity men-
tion type, relations entities that consist ofnames
tend to correlate positively with correct classifica-
tions whilepronounstend to correlate negatively
with correct classifications. Though, this is only
reliably observed in thePER-GPE domain. Fi-
nally, with respect to lexical condition, we observe
that possessiveconditioned relations tend to cor-
relate negatively, especially in thePER-GPE and
PER-ORG domains with thePER-PERdomain also
showing some effect.Pre-modifierconditioned re-
lations also tend to correlate negatively in thePER-
GPEdomain. The effect withverballyconditioned
relations is mixed. This is probably due to the
fact that verbal relations tend to have more words
occurring between the entity pair, which provides
more context but can also be misleading when the
key terms describing the relation do not occur be-
tween the entity pair (e.g., the first sentence in Fig-
ure 1).

It is also informative to look at overall proper-
ties of the entity pair domains and compare this

12For this analysis, we used the Phi coefficient, which is
a measure of relatedness for binomial variables that is inter-
preted like correlation.

Domain Score TTR Entrpy

ORG-GPE 0.680 0.893 1.554
ORG-ORG 0.904 0.720 1.642
PER-FAC 0.832 0.933 0.636
PER-GPE 0.664 0.933 1.671
PER-ORG 0.569 0.973 2.001
PER-PER 0.633 0.867 2.179

Table 4: System score, type-to-token ratio (TTR)
and relation type entropy (Entrpy) for entity pair
domains.

to the system performance. Table 6 contains, for
each domain, the F-score of the LDA+KL system,
the type-to-token ratio, and the entropy of the re-
lation type distribution for each domain. Type-to-
token ratio (TTR) is the number of words divided
by the number of word instances and indicates
how much repetition there is in word use. Since
TTR can vary depending on the size of the text,
we compute it on a random sample of 75 tokens
from each domain. Entropy can be interpreted as
a measure of the uniformity of a distribution. Low
entropy indicates a more spiked distribution while
high entropy indicates a more uniform distribu-
tion. Though there is not enough data to make a
reliable conclusion, it seems that the system does
poorly on domains that have both a high type-to-
token ratio and a high entropy (uniform relation
type distribution), while it performs very well on
domains that have low TTR or low entropy.

7 Conclusions and Future Work

This paper presented work on the relation dis-
covery task. We tested several systems for the
clustering subtask that use different models of the
conceptual/semantic similarity of relations. These
models included a baseline system based on a
term-by-document representation of term context,
which is equivalent to the representation used in
previous work by Hasegawa et al. (Hasegawa et
al., 2004) and Chen et al. (Chen et al., 2005). We
hypothesised that this representation suffers from
a sparsity problem and showed that models that
use a term co-occurrence representation perform
significantly better.

Furthermore, we investigated the use of singular
value decomposition and latent Dirichlet alloca-
tion for dimensionality reduction. It has been sug-
gested that representations using these techniques
are able to model a similarity that is less reliant on
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specific word forms and therefore more semantic
in nature. Our experiments showed an improve-
ment over a term co-occurrence baseline when us-
ing LDA with KL and JS divergence, though it
was not significant. We also found that LDA with
KL divergence performs significantly better than
SVD.

Comparing the different divergence measures
for LDA, we found that KL and JS perform sig-
nificantly better than symmetrised KL divergence.
Interestingly, the performance of the asymmetric
KL divergence and the symmetric JS divergence
is very close, which makes it difficult to con-
clude whether the relation discovery domain is a
symmetric domain or an asymmetric domain like
Lee’s (1999) task of improving probability esti-
mates for unseen word co-occurrences.

A shortcoming of all the models we will de-
scribe here is that they are derived from the basic
bag-of-words models and as such do not account
for word order or other notions of syntax. Related
work on relation discovery by Zhang et al. (2005)
addresses this shortcoming by using tree kernels to
compute similarity between entity pairs. In future
work we will extend our experiment to explore the
use of syntactic and semantic features following
the frame work of Pado and Lapata (2003). We
are also planning to look at non-parametric ver-
sions of LDA that address the model order selec-
tion problem and perform an extrinsic evaluation
of the relation discovery task.
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Abstract

We design and test a sentence com-

parison method using the framework

of Robust Minimal Recursion Seman-

tics which allows us to utilise the deep

parse information produced by Jacy, a

Japanese HPSG based parser and the

lexical information available in our on-

tology. Our method was used for both

paraphrase detection and also for an-

swer sentence selection for question an-

swering. In both tasks, results showed

an improvement over Bag-of-Words, as

well as providing extra information use-

ful to the applications.

1 Introduction

Comparison between sentences is required for

many NLP applications, including question

answering, paraphrasing, text summarization

and entailment tasks. In this paper we show

an RMRS (Robust Minimal Recursion Seman-

tics, see Section 1.1) comparison algorithm

that can be used to compare sentences in

any language that has RMRS generating tools

available. Lexical resources of any language

can be plugged in to give a more accurate and

informative comparison.

The simplest and most commonly used

methods of judging sentence similarity use

word overlap { either looking for matching

word sequences, or comparing a Bag-of-Words

representation of each sentence. Bag-of-Words

discards word order, and any structure desig-

nated by such, so that the cat snored and the

dog slept is equivalent to the dog snored and

the cat slept. Sequence matching on the other

hand requires exact word order matching and

hence the game began quietly and the game qui-

etly began are not considered a match. Neither

method allows for synonym matching.

Hirao et al. (2004) showed that they could

get a much more robust comparison using

dependency information rather than Bag-of-

Words, since they could abstract away from

word order but still compare the important

elements of a sentence. Using deep parsing

information, such as dependencies, but also

deep lexical resources where available, enables

a much more informative and robust compar-

ison, which goes beyond lexical similarity. We

use the RMRS framework as our comparison

format because it has the descriptive power to

encode the full semantics, including argument

structure. It also enables easy combination of

deep and shallow information and, due to its


at structure, is easy to manage computation-

ally.

1.1 Robust Minimal Recursion

Semantics

Robust Minimal Recursion Semantics

(RMRS) is a form of 
at semantics which is

designed to allow deep and shallow processing

to use a compatible semantic representation,

while being rich enough to support gener-

alized quanti�ers (Frank, 2004). The main

component of an RMRS representation is

a bag of elementary predicates and their

arguments.

An elementary predicate always has a

unique label, a relation type, a relation name

and an ARG0 feature. The example in Fig-

ure 1 has a label of h5 which uniquely identi-

�es this predicate. Relation types can either

be realpred for a predicate that relates di-

rectly to a content word from the input text, or

gpred for grammatical predicates which may

not have a direct referent in the text. For ex-

amples in this paper, a realpred is distin-

guished by an underscore ( ) before the rela-

tion name.

The gpred relation names come from a

35



"

unten s

lbl h5

arg0 e6

#

Figure 1: Elementary predicate for-2 unten

\drive"

closed-set which specify common grammatical

relations, but the realpred names are formed

from the word in the text they relate to and

this is one way in which RMRS allows under-

speci�cation. A full relation name is of the

form lemma pos sense, where the pos (part

of speech) is drawn from a small set of general

types including noun, verb and sahen (verbal

noun). The sense is a number that identi�es

the sense of the word within a particular gram-

mar being used. The POS and sense informa-

tion are only used when available and hence

the unten s 1 is more speci�c but compati-

ble with unten s or even unten.

The arg0 feature (e6 in Figure 1) is the

referential index of the predicate. Predicates

with the same arg0 are said to be referen-

tially co-indexed and therefore have the same

referent in the text.

A shallow parse might provide only the fea-

tures shown in Figure 1, but a deep parse can

also give information about other arguments

as well as scoping constraints. The features

arg1..arg4 specify the indices of the semantic

arguments of the relevant predicate, similar to

PropBank's argument annotation (Kingsbury

et al., 2002). While the RMRS speci�cation

does not de�ne semantic roles for the argn

features, in practice arg1 is generally used for

the agent and arg2 for the patient. Fea-

tures arg3 and arg4 have less consistency in

their roles.

We will use (1) and (2) as examples of sim-

ilar sentences. They are de�nition sentences

for one sense of ),'* doraiba- \driver",

taken from two di�erent lexicons.

(1) .30 & -2 !% 1

jid�osha wo unten suru hito

car acc drive do person

\a person who drives a car"

(2) .30 #" $ -2 /

jid�osha nado no unten sha

car etc. adn drive -er

\a driver of cars etc."

Examples of deep and shallow RMRS results

for (1) are given in Figure 2. Deep results for

(2) are given in Figure 3.

2 Algorithm

The matching algorithm is loosely based on

RMRS comparison code included in the LKB

(Copestake, 2002: hhttp://www.delph-in.

net/lkb/i), which was used in Ritchie (2004),

however that code used no outside lexical re-

sources and we have substantially changed the

matching algorithm.

The comparison algorithm is language inde-

pendent and can be used for any RMRS struc-

tures. It �rst compares all elementary predi-

cates from the RMRSs to construct a list of

match records and then examines, and poten-

tially alters, the list of match records accord-

ing to constraints encoded in the argn vari-

ables. Using the list of scored matches, the

lowest scoring possible match set is found and,

after further processing on that set, a similar-

ity score is returned. The threshold for de-

ciding whether a pair of sentences should be

considered similar or not can be determined

separately for di�erent applications.

2.1 Matching Predicates

The elementary predicates (EPs) of our RMRS

structures are divided into two groups - those

that have a referent in the text, hereafter

known as content EPs, and those that don't.

There are three kinds of content EP: real-

preds, which correspond to content bearing

words that the grammar knows; gpreds with

a carg (constant argument) feature, which

are used to represent proper names and num-

bers; and gpreds with a predicate name start-

ing with generic such as generic verb which

are used for unknown words that have only

been identi�ed by their part of speech. All

other EPs have no referent and are used to

provide information about the content EPs or

about the structure of the sentence as a whole.

These non-content EPs can provide some use-

ful information, but generally only in relation

to other content EPs.

Each content EP of the �rst RMRS is com-

pared to all content EPs in the second RMRS,

as shown in Figure 4.

Matches are categorised as exact, syn-

onym, hypernym, hyponym or no match

and a numerical score is assigned. The nu-
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Figure 3: RMRS representation for .30 #" $ -2 /

foreach ep1 in contentEPs1

foreach ep2 in contentEPs2

(score, match) = match_EPs(ep1, ep2)

if match != NO_MATCH

add_to_matches(ep1, ep2, score, match)

endif

done

done

Figure 4: Predicate match pseudo-code

merical score represents the distance between

the two EPs, and hence an exact match is

assigned a score of zero.

The level of matching possible depends on

the lexical resources available. With no extra

resources, or only a dictionary to pick up or-

thographic variants, the only match types pos-

sible are exact and no match. By adding

a thesaurus, an ontology or a gazetteer, it is

then possible to return synonym, hypernym

and hyponym match relations. In our ex-

periments we used the ontology described in

Section 3.2.2, which provides all three extra

match types. Adding a thesaurus only would

enable synonym matching, while a gazetteer

could be added to give, for example, Tokyo is

a hyponym of city.

Matches:

hito_n - sha_n : HYPERNYM (2)

jidosha_n - jidosha_n: EXACT (0)

unten_s_2 - unten_s_2: EXACT (0)

Figure 5: First pass match list for (1) and (2)

At the end of the �rst pass, a list of match

records shows all EP matches with their match

type and score. Each EP can have multiple

possible matches. The output of comparing

(1) and (2), with the RMRSes in Figures 2

and 3, is shown in Figure 5. This shows hito n

(1 hito \person") tagged as a hypernym of
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foreach match in matches

gpreds1 = get_gpreds_arg0(ep1{arg0})

gpreds2 = get_gpreds_arg0(ep2{arg0})

totalgpreds = len gpreds1 + len gpreds2

foreach ep1 in gpreds1

foreach ep2 in gpreds2

if(match_gram_eps(ep1, ep2)

remove(ep1, gpreds1)

remove(ep2, gpreds2)

endif

done

done

gpreds_left = len gpreds1 + len gpreds2

left = gpreds_left/totalgpreds

match{score}+= left*gpredWeight

done

Figure 6: Matching ARG0s

sha n (/ sha \-er" is a su�x indicating a per-

son, normally the agent of a verb: it is more re-

strictive than English -er , in that it only refers

to people).

2.2 Constraints Pass

For each possible match, all the non-content

EPs that have the same arg0 value as the

content EPs in the match are examined, since

these have the same referent. If each non-

content EP related to the content EP on one

side of the match can be matched to the non-

content EPs related to the other content EP,

no change is made. If not, however, a penalty

is added to the match score, as shown in Fig-

ure 6. In our example, unten s 2 from the �rst

sentence has a proposition m rel referen-

tially co-indexed, while the second unten s 2

has a proposition m rel, a noun-relation

and a udef rel, and so a small penalty is

added as shown in Figure 7.

The second check in the constraint match

pass examines the arguments (arg1, arg2,

arg3, arg4) of each of the matches. It looks

for possible matches found between the EPs

listed as argn for each match. This check can

result in three separate results: both EPs have

an argn but there is no potential match found

between the respective argn EPs, a potential

match has been found between the argn EPs,

or only one of the EPs in the match has an

argn feature.

Where both EPs have an argn feature, the

score (distance) of the match is decreased or

increased depending on whether a match be-

tween the argn variables was found. Given

that the RMRS de�nition does not specify a

Matches:

hito_n - sha_n : HYPERNYM (2.1)

jidosha_n - jidosha_n: EXACT (0)

unten_s_2 - unten_s_2: EXACT (0.05)

Figure 7: Match list

Slight penalty added to unten s 2 and hito n

for non-matching non-content EPs

`meaning' for the argn variables, comparing,

for example, arg1 variables from two di�er-

ent predicates may not necessarily be compar-

ing the same semantic roles. However, be-

cause of the consistency found in arg1 and

arg2 meaning this is still a useful check. Of

course, if we are comparing the same relation,

the args will all have the same meaning. The

comparison method allows for di�erent penal-

ties for each of arg1 to arg4, and also in-

cludes a scaling factor so that mismatches in

args when comparing exact EP matches will

have more e�ect on the score than in non

exact matches. If one EP does not have

the argn feature, no change is made to the

score. This allows for the use of underspeci-

�ed RMRSs, in the case where the parse fails.

At the end of this pass, the scores of the

matches in the match list may have changed

but the number of matches is still the same.

2.3 Constructing the Sets

Match sets are constructed by using a branch-

and-bound decision tree. Each match is con-

sidered in order, and the tree is branched if

the next match is possible, given the proceed-

ing decisions. Any branch which is more than

two decisions away from the best score so far

is pruned. At the end of this stage, the lowest

scoring match set is returned and then this is

further processed.

If no matches were found, processing stops

and a sentinel value is returned. Otherwise,

the non matching predicates are grouped to-

gether by their arg0 value. Scoping con-

straints are checked and if any non matching

predicate outscopes a content predicate it is

added to that grouping. Hence if it outscopes

a matching EP it becomes part of the match,

otherwise it becomes part of a non-matching

EP group.

Any group of grammatical EPs that shares

an arg0 but does not contain a content pred-

icate is matched against any similar groupings
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Best score is 0.799 for the match set:

MATCHES:

hito_n-sha_n: HYPERNYM:2.1

jidousha_n-jidousha_n:EXACT:0

unten_s_2-unten_s_2:EXACT:0.05

proposition_m_rel-proposition_m_rel:EXACT:0

UNMATCHED1:

UNMATCHED2:

u11: h10001:nado_n

Figure 8: Verbose comparison output

in the other RMRS. This type of match can

only be exact or no match and will make

only a small di�erence in the �nal score.

Content predicates that have not been

matched by this stage are not processed any

further, although this is an area for further

investigation. Potentially negation and other

modi�ers could be processed at this point.

2.4 Output

The output of the comparison algorithm is a

numeric score and also a representation of the

�nal best match found.

The numerical score, using the default scor-

ing parameters, ranges between 0 (perfect

match) and 3. As well as the no match score

(-5), sentinel values are used to indicate miss-

ing input data so it is possible to fall back to

a shallow parse if the deep parse failed.

Details of the match set are also returned for

further processing or examination if the appli-

cation requires. This shows which predicates

were deemed to match, and with what score,

and also shows the unmatched predicates. Fig-

ure 8 shows the output of our example com-

parison.

3 Resources

While the comparison method is language in-

dependent, the resources required are lan-

guage speci�c. The resources fall in to two

di�erent categories: parsing and morpholog-

ical analysis tools that produce the RMRSs,

and lexical resources such as ontologies, dictio-

naries and gazetteers for evaluating matches.

3.1 Parsing

Japanese language processing tools are freely

available. We used the Japanese grammar

Jacy (Siegel and Bender, 2002), a deep parsing

HPSG grammar that produces RMRSs for our

primary input source.

When parsing with Jacy failed, compar-

isons could still be made with RMRS produced

from shallow tools such as ChaSen (Mat-

sumoto et al., 2000), a morphological analyser

or CaboCha (Kudo and Matsumoto, 2002), a

Japanese dependency parser. Tools have been

built to produced RMRS from the standard

output of both those tools.

The CaboCha output supplies similar de-

pendency information to that of the Basic El-

ements (BE) tool used by Hovy et al. (2005b)

for multi-document summarization. Even this

intermediate level of parsing gives better com-

parisons than either word or sequence overlap,

since it is easier to compare meaningful ele-

ments (Hovy et al., 2005a).

3.2 Lexical Resources

Whilst deep lexical resources are not available

for every language, where they are available,

they should be used to make comparisons more

informative. The comparison framework al-

lows for di�erent lexical resources to be added

to a pipeline. The pipeline starts with a sim-

ple relation name match, but this could be fol-

lowed by a dictionary to extract orthographic

variants and then by ontologies such as Word-

Net (Fellbaum, 1998) or GoiTaikei (Ikehara

et al., 1997), gazetteers or named entity recog-

nisers to recognise names of people and places.

The sections below detail the lexical resources

we used within our experiments.

3.2.1 The Lexeed Semantic Database

The Lexeed Semantic Database of Japanese

is a machine readable dictionary that covers

the most familiar words in Japanese, based

on a series of psycholinguistic tests (Kasahara

et al., 2004). Lexeed has 28,000 words divided

into 46,000 senses and de�ned with 75,000 def-

inition sentences. Each entry includes a list of

orthographic variants, and the pronunciation,

in addition to the de�nitions.

3.2.2 Ontology

The lexicon has been sense-tagged and

parsed to give an ontology linking senses with

various relations, principally hypernym and

synonym (Nichols et al., 2005). For example,

hhypernym, ),'* doraib�a \driver", (

,+ kurabu \club"i. The ontology entries for

nouns have been hand checked and corrected,

including adding hypernyms for words where
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the genus term in the de�nition was very gen-

eral, e.g \a word used to refer insultingly to

men" where man is a more useful hypernym

than word for the de�ned term yarou.

4 Evaluation

We evaluated the performance of the RMRS

comparison method in two tasks. First it was

used to indicate whether two sentences were

possible paraphrases. In the second task, we

used the comparison scores to select the most

likely sentence to contain the answer to a ques-

tion.

4.1 Paraphrasing

In this task we compared de�nitions sen-

tences for the same head word from two di�er-

ent Japanese dictionaries - the Lexeed dictio-

nary (x3.2.1) and the Iwanami Kokugo Jiten

(Iwanami: Nishio et al., 1994), the Japanese

dictionary used in the SENSEVAL-2 Japanese

lexical task (Shirai, 2002).

There are 60,321 headwords and 85,870

word senses in Iwanami. Each sense in the

dictionary consists of a sense ID and morpho-

logical information (word segmentation, POS

tag, base form and reading, all manually post-

edited).

The de�nitions in Lexeed and Iwanami were

linked by headword and three Japanese native

speakers assessed each potential pair of sense

de�nitions for the same head word to judge

which de�nitions were describing the same

sense. This annotation not only described

which sense from each dictionary matched, but

also whether the de�nitions were equal, equiv-

alent, or subsuming.

The examples (1) and (2) are the de�nitions

of sense 2 of ),'* doraib�a \driver" from

Lexeed and Iwanami respectively. They were

judged to be equivalent de�nitions by all three

annotators.

4.1.1 Method

Test sets were built consisting of the Lexeed

and Iwanami de�nition pairs that had been an-

notated in the gold standard to be either non-

matching, equal or equivalent. Leaving out

those pairs annotated as having a subsump-

tion relation made it a clearer task judging

between paraphrase or not, rather than ex-

amining partial meaning overlap. Ten sets of

5,845 de�nition pairs were created, with each

set being equally split between matching and

non-matching pairs. This gives data that is to

some extent semantically equivalent (the same

word sense is being de�ned), but with no guar-

antee of syntactic equivalence.

Comparisons were made between the �rst

sentence of each de�nition with both a Bag-

of-Words comparison method and our RMRS

based method. If RMRS output was not avail-

able from Jacy (due to a failed parse), RMRS

from CaboCha was used as a fall back shallow

parse result.

Scores were output and then the best

threshold score for each method was calculated

on one of the 10 sets. Using the calculated

threshold score, pairs were classi�ed as either

matching or non-matching. Pairs classi�ed as

matching were evaluated as correct if the gold

standard annotation was either equal or equiv-

alent.

4.1.2 Results

The Bag-of-Words comparison got an av-

erage accuracy over all sets of 73.9% with

100% coverage. A break down of the results

shows that this method was more accurate

(78%) in correctly classifying non-matches

than matches (70%). This is to be expected

since it won't pick up equivalences where a

word has been changed for its synonym.

The RMRS comparison had an accuracy

was 78.4% with almost 100% coverage, an im-

provement over the Bag-of-Words. The RMRS

based method was also more accurate over

non matches (79.9%) than matches (76.6%),

although the di�erence is not as large. Con-

sidering only those sentences with a parse from

JACY gave an accuracy of 81.1% but with a

coverage of only 46.1%. This shows that deep

parsing improves precision, but must be used

in conjunction with a shallower fallback.

To explore what e�ect the ontology was hav-

ing on the results, another evaluation was per-

formed without the ontology matching. This

had an accuracy of 77.3% (78.1% using Jacy,

46.1% coverage). This shows that the infor-

mation available in the ontology de�nitely im-

proves scores, but that even without that sort

of deep lexical resource, the RMRS matching

can still improve on Bag-of-Words using just

surface form abstraction and argument match-

ing.
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4.2 Answer Sentence Selection

To emulate a part of the question answering

pipeline, we used a freely available set of 2000

Japanese questions, annotated with, among

other things, answer and answer document ID

(Sekine et al., 2002). The document IDs for

the answer containing documents refer to the

Mainichi Newspaper 1995 corpus which has

been used as part of the document collection

for NTCIR's Question Answering Challenges.

The documents range in length from 2 to 83

sentences.

4.2.1 Method

For every question, we compared it to each

sentence in the answer document. The sen-

tence that has the best similarity to the ques-

tion is returned as the most likely to con-

tain the answer. For this sort of compari-

son, an entails option was added that changes

the similarity scoring method slightly so that

only non-matches in the �rst sentence increase

the score. The rationale being that in Ques-

tion Answering (and also in entailment), ev-

erything present in the question (or hypoth-

esis) should be matched by something in the

answer, but having extra, unmatched informa-

tion in the answer should not be penalised.

The task is evaluated by checking if the an-

swer does exist in the sentence selected. This

means that more than one sentence can be the

correct answer for any question (if the answer

is mentioned multiple times in the article).

4.2.2 Results

The Bag-of-Words comparison correctly

found a sentence containing the answer for

62.5% of the 2000 questions. The RMRS com-

parison method gave a small improvement,

with a result of 64.3%. Examining the data

showed this to be much harder than the para-

phrase task because of the language level in-

volved. In the paraphrasing task, the sen-

tences averaged around 10 predicates each,

while the questions and sentences in this task

averaged over 3 times longer, with about 34

predicates. The words used were also less

likely to be in the lexical resources both be-

cause more formal, less familiar words were

used, and also because of the preponderance

of named entities. Adding name lists of peo-

ple, places and organisations would greatly im-

prove the matching in this instance.

5 Future Directions

5.1 Applications

Since the comparison method was written

to be language independent, the next stage

of evaluation would be to use it in a non-

Japanese task. The PASCAL Recognising

Textual Entailment (RTE) Challenge (Dagan

et al., 2005) is one recent English task where

participants used sentence comparison exten-

sively. While the task appears to call for in-

ference and reasoning, the top 5 participat-

ing groups used statistical methods and word

overlap only. Vanderwende et al. (2005) did a

manual evaluation of the test data and found

that 37% could be decided on syntactic infor-

mation alone, while adding a thesaurus could

increase that coverage to 49%. This means

that RMRS comparison has the potential to

perform well. Not only does it improve on

basic word overlap, but it allows for easy ad-

dition of a thesaurus or dictionary. Further,

because of the detailed match output avail-

able, the method could be extended in post

processing to encompass some basic inference

methods.

Aside from comparing sentences, the RMRS

comparison can be used to compare the RMRS

output of di�erent tools for the same sentence

so that the compatibility of the outputs can

be evaluated and improved.

5.2 Extensions

One immediate future improvement planned

is to add named entity lists to the lexical re-

sources so that names of people and places

could be looked up. This would allow partial

matches between, e.g., Clinton is a hyponym

of person, which would be particularly useful

for Question Answering.

Another idea is to add a bilingual dictio-

nary and try cross-lingual comparisons. As

the RMRS abstracts away much of the surface

speci�c details, this might be useful for sen-

tence alignment.

To go beyond sentence by sentence compar-

ison, we have plans to implement a method

for multi-sentence comparisons by either com-

bining the RMRS structures before compari-

son, or post-processing the sentence compari-

son outputs. This could be particularly inter-

esting for text summarization.
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6 Conclusions

Deep parsing information is useful for com-

paring sentences and RMRS gives us a use-

ful framework for utilising this information

when it is available. Our RMRS compari-

son was more accurate then basic word over-

lap similarity measurement particularly in the

paraphrase task where synonyms were of-

ten used. Even when the ontology was not

used, abstracting away from surface form, and

matching arguments did give an improvement.

Falling back to shallow parse methods in-

creases the robustness which is often an issue

for tools that use deep processing, while still

allowing the use of the most accurate informa-

tion available.

The comparison method is language agnos-

tic and can be used for any language that has

RMRS generating tools. The output is much

more informative than Bag-of-Words, mak-

ing it useful in many applications that need

to know exactly how a sentence matched or

aligned.
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Abstract

We investigate the problem of measuring
phonetic similarity, focusing on the iden-
tification of cognates, words of the same
origin in different languages. We com-
pare representatives of two principal ap-
proaches to computing phonetic similar-
ity: manually-designed metrics, and learn-
ing algorithms. In particular, we consider
a stochastic transducer, a Pair HMM, sev-
eral DBN models, and two constructed
schemes. We test those approaches on
the task of identifying cognates among
Indoeuropean languages, both in the su-
pervised and unsupervised context. Our
results suggest that the averaged context
DBN model and the Pair HMM achieve
the highest accuracy given a large training
set of positive examples.

1 Introduction

The problem of measuring phonetic similarity be-
tween words arises in various contexts, including
speech processing, spelling correction, commercial
trademarks, dialectometry, and cross-language in-
formation retrieval (Kessler, 2005). A number of
different schemes for computing word similarity
have been proposed. Most of those methods are de-
rived from the notion of edit distance. In its simplest
form, edit distance is the minimum number of edit
operations required to transform one word into the
other. The set of edit operations typically includes

substitutions, insertions, and deletions, and may in-
corporate more complex transformations.

By assigning variable weights to various edit op-
erations depending on the characters involved in
the operations, one can design similarity schemes
that are more sensitive to a given task. Such vari-
able weight schemes can be divided into two main
groups. One approach is to manually design edit op-
eration weights on the basis of linguistic intuition
and/or physical measurements. Another approach
is to use machine learning techniques to derive the
weights automatically from training data composed
of a set of word pairs that are considered similar.
The manually-designed schemes tend to be some-
what arbitrary, but can be readily applied to diverse
tasks. The learning approaches are also easily adapt-
able to various tasks, but they crucially require train-
ing data sets of reasonable size. In general, the more
complex the underlying model, the larger the data
sets needed for parameter estimation.

In this paper, we focus on a few representatives
of both approaches, and compare their performance
on the specific task of cognate identification. Cog-
nate identification is a problem of finding, in distinct
languages, words that can be traced back to a com-
mon word in a proto-language. Beyond historical
linguistics, cognate identification has applications
in other areas of computational linguistics (Mackay
and Kondrak, 2005). Because the likelihood that
two words across different languages are cognates is
highly correlated with their phonetic similarity, cog-
nate identification provides an objective test of the
quality of phonetic similarity schemes.

The remainder of this paper is organized as fol-
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lows. Section 2 discusses the two manually designed
schemes: the ALINE algorithm and a linguistically-
motivated metric. Section 3 discusses various learn-
ing approaches. In Section 4, we describe Dynamic
Bayesian Nets. Finally, in Section 5, we discuss the
results of our experiments.

2 Two manually constructed schemes

In this section, we first describe two different con-
structed schemes and then compare their properties.

2.1 ALINE

The ALINE algorithm (Kondrak, 2000) assigns a
similarity score to pairs of phonetically-transcribed
words on the basis of the decomposition of phone-
mes into elementary phonetic features. The algo-
rithm was originally designed to identify and align
cognates in vocabularies of related languages. Nev-
ertheless, thanks to its grounding in universal pho-
netic principles, the algorithm can be used for esti-
mating the similarity of any pair of words.

The principal component of ALINE is a function
that calculates the similarity of two phonemes that
are expressed in terms of about a dozen multi-valued
phonetic features (Place, Manner, Voice, etc.). The
phonetic features are assigned salience weights that
express their relative importance. Feature values
are encoded as floating-point numbers in the range
[0,1]. For example, the feature Manner can take any
of the following seven values: stop = 1.0, affricate
= 0.9, fricative = 0.8, approximant = 0.6, high vowel
= 0.4, mid vowel = 0.2, and low vowel = 0.0. The
numerical values reflect the distances between vocal
organs during speech production.

The overall similarity score is the sum of individ-
ual similarity scores between pairs of phonemes in
an optimal alignment of two words, which is com-
puted by a dynamic programming algorithm (Wag-
ner and Fischer, 1974). A constant insertion/deletion
penalty is applied for each unaligned phoneme.
Another constant penalty is set to reduce relative
importance of vowel—as opposed to consonant—
phoneme matches. The similarity value is normal-
ized by the length of the longer word.

ALINE’s behavior is controlled by a number of
parameters: the maximum phonemic score, the in-
sertion/deletion penalty, the vowel penalty, and the

feature salience weights. The parameters have de-
fault settings for the cognate matching task, but
these settings can be optimized (tuned) on a devel-
opment set that includes both positive and negative
examples of similar words.

2.2 A linguistically-motivated metric

Phonetically natural classes such as /p b m/ are much
more common among world’s languages than unnat-
ural classes such as /o z g/. In order to show that the
bias towards phonetically natural patterns of phono-
logical classes can be modeled without stipulating
phonological features, Mielke (2005) developed a
phonetic distance metric based on acoustic and ar-
ticulatory measures. Mielke’s metric encompasses
63 phonetic segments that are found in the invento-
ries of multiple languages. Each phonetic segment
is represented by a 7-dimensional vector that con-
tains three acoustic dimensions and four articulatory
dimensions (perceptual dimensions were left out be-
cause of the difficulties involved in comparing al-
most two thousand different sound pairs). The pho-
netic distance between any two phonetic segments
were then computed as the Euclidean distance be-
tween the corresponding vectors.

For determining the acoustic vectors, the record-
ings of 63 sounds were first transformed into wave-
form matrices. Next, distances between pairs of
matrices were calculated using the Dynamic Time
Warping technique. These acoustic distances were
subsequently mapped to three acoustic dimensions
using multidimensional scaling. The three dimen-
sions can be interpreted roughly as (a) sonorous vs.
sibilant, (b) grave vs. acute, and (c) low vs. high
formant density.

The articulatory dimensions were based on ultra-
sound images of the tongue and palate, video im-
ages of the face, and oral and nasal airflow measure-
ments. The four articulatory dimensions were: oral
constriction location, oral constriction size, lip con-
striction size, and nasal/oral airflow ratio.

2.3 Comparison

When ALINE was initially designed, there did not
exist any concrete linguistically-motivated similarity
scheme to which it could be compared. Therefore, it
is interesting to perform such a comparison with the
recently proposed metric.
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The principal difficulty in employing the metric
for computing word similarity is the limited size
of the phonetic segment set, which was dictated by
practical considerations. The underlying database
of phonological inventories representing 610 lan-
guages contains more than 900 distinct phonetic seg-
ments, of which almost half occur in only one lan-
guage. However, because a number of complex
measurements have to be performed for each sound,
only 63 phonetic segments were analyzed, which is
a set large enough to cover only about 20% of lan-
guages in the database. The set does not include
such common phones as dental fricatives (which oc-
cur in English and Spanish), and front rounded vow-
els (which occur in French and German). It is not
at all clear how one to derive pairwise distances in-
volving sounds that are not in the set.

In contrast, ALINE produces a similarity score for
any two phonetic segment so long as they can be ex-
pressed using the program’s set of phonetic features.
The feature set can in turn be easily extended to in-
clude additional phonetic features required for ex-
pressing unusual sounds. In practice, any IPA sym-
bol can be encoded as a vector of universal phonetic
features.

Another criticism that could be raised against
Mielke’s metric is that it has no obvious reference
point. The choice of the particular suite of acous-
tic and articulatory measurements that underlie the
metric is not explicitly justified. It is not obvious
how one would decide between different metrics for
modeling phonetic generalizations if more than one
were available.

On the other hand, ALINE was designed with a
specific reference in mind, namely cognate identi-
fication. The “goodness” of alternative similarity
schemes can be objectively measured on a test set
containing both cognates and unrelated pairs from
various languages.

A perusal of individual distances in Mielke’s met-
ric reveals that some of them seem quite unintuitive.
For example, [t] is closer to [j] than it is to [ � ], [ � ]
is closer to [n] than to [i], [ � ] is closer to [e] than
to [g]. etc. This may be caused either by the omis-
sion of perceptual features from the underlying set
of features, or by the assignment of uniform weights
to different features (Mielke, personal communica-
tion).

It is difficult to objectively measure which pho-
netic similarity scheme produces more “intuitive”
values. In order to approximate a human evalua-
tion, we performed a comparison with the perceptual
judgments of Laver (1994), who assigned numerical
values to pairwise comparisons of 22 English conso-
nantal phonemes on the basis of “subjective auditory
impressions”. We counted the number of perceptual
conflicts with respect to Laver’s judgments for both
Mielke’s metric and ALINE’s similarity values. For
example, the triple ([� ], [j], [k]) is an example of a
conflict because [� ] is considered closer to [j] than to
[k] in Mielke’s matrix but the order is the opposite
in Laver’s matrix. The program identified 1246 con-
flicts with Mielke’s metric, compared to 1058 con-
flicts with ALINE’s scheme, out of 4620 triples. We
conclude that in spite of the fact that ALINE is de-
signed for identifying cognates, rather than directly
for phonetic similarity, it is more in agreement with
human perceptual judgments than Mielke’s metric
which was explicitly designed for quantifying pho-
netic similarity.

3 Learning algorithms

In this section, we briefly describe several ma-
chine learning algorithms that automatically derive
weights or probabilities for different edit operations.

3.1 Stochastic transducer

Ristad and Yianilos (1998) attempt to model edit
distance more robustly by using Expectation Max-
imization to learn probabilities for each of the pos-
sible edit operations. These probabilities are then
used to create a stochastic transducer, which scores
a pair of words based on either the most probable
sequence of operations that could produce the two
words (Viterbi scoring), or the sum of the scores of
all possible paths that could have produced the two
words (stochastic scoring). The score of an individ-
ual path here is simply the product of the probabili-
ties of the edit operations in the path. The algorithm
was evaluated on the task of matching surface pro-
nunciations in the Switchboard data to their canoni-
cal pronunciations in a lexicon, yielding a significant
improvement in accuracy over Levenshtein distance.
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3.2 Levenshtein with learned weights

Mann and Yarowsky (2001) applied the stochastic
transducer of Ristad and Yianilos (1998) for induc-
ing translation lexicons between two languages, but
found that in some cases it offered no improvement
over Levenshtein distance. In order to remedy this
problem, they they proposed to filter the probabili-
ties learned by EM into a few discrete cost classes,
which are then used in the standard edit distance
algorithm. The LLW approach yielded improve-
ment over both regular Levenshtein and the stochas-
tic transducer.

3.3 CORDI

CORDI (Kondrak, 2002) is a program for detect-
ing recurrent sound correspondences in bilingual
wordlists. The idea is to relate recurrent sound cor-
respondences in wordlists to translational equiva-
lences in bitexts. A translation model is induced be-
tween phonemes in two wordlists by combining the
maximum similarity alignment with the competitive
linking algorithm of Melamed (2000). Melamed’s
approach is based on the one-to-one assumption,
which implies that every word in the bitext is aligned
with at most one word on the other side of the bitext.
In the context of the bilingual wordlists, the cor-
respondences determined under the one-to-one as-
sumption are restricted to link single phonemes to
single phonemes. Nevertheless, the method is pow-
erful enough to determine valid correspondences in
wordlists in which the fraction of cognate pairs is
well below 50%.

The discovered phoneme correspondences can be
used to compute a correspondence-based similar-
ity score between two words. Each valid corre-
spondence is counted as a link and contributes a
constant positive score (no crossing links are al-
lowed). Each unlinked segment, with the exception
of the segments beyond the rightmost link, is as-
signed a smaller negative score. The alignment with
the highest score is found using dynamic program-
ming (Wagner and Fischer, 1974). If more than one
best alignment exists, links are assigned the weight
averaged over the entire set of best alignments. Fi-
nally, the score is normalized by dividing it by the
average of the lengths of the two words.

3.4 Pair HMM

Mackay and Kondrak (2005) propose to computing
similarity between pairs of words with a technique
adapted from the field of bioinformatics. A Pair Hid-
den Markov Model differs form a standard HMM by
producing two output streams in parallel, each corre-
sponding to a word that is being aligned. The model
has three states that correspond to the basic edit op-
erations: substitution, insertion, and deletion. The
parameters of the model are automatically learned
from training data that consists of word pairs that
are known to be similar. The model is trained using
the Baum-Welch algorithm (Baum et al., 1970).

4 Dynamic Bayesian Nets

A Bayesian Net is a directed acyclic graph in which
each of the nodes represents a random variable.
The random variable can be either deterministic, in
which case the node can only take on one value for a
given configuration of its parents, or stochastic, in
which case the configuration of the parents deter-
mines the probability distribution of the node. Arcs
in the net represent dependency relationships.

Filali and Bilmes (2005) proposed to use Dy-
namic Bayesian Nets (DBNs) for computing word
similarity. A DBN is a Bayesian Net where a set
of arcs and nodes are maintained for each point in
time in a dynamic process. This involves set of pro-
logue frames denoting the beginning of the process,
chunk frames which are repeated for the middle of
the process, and epilogue frames to end the process.
The conditional probability relationships are time-
independent. DBNs can encode quite complex in-
terdependencies between states.

We tested four different DBN models on the task
of cognate identification. In the following descrip-
tion of the models, Z denotes the current edit opera-
tion, which can be either a substitution, an insertion,
or a deletion.

MCI The memoriless context-independent model
(Figure 1) is the most basic model, which is
meant to be equivalent to the stochastic trans-
ducer of Ristad and Yianilos (1998). Its lack
of memory signifies that the probability of Z
taking on a given value does not depend in any
way on what previous values of Z have been.
The context-independence refers to the fact that
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Figure 1: The MCI model.

the probability of Z taking on a certain value
does not depend on the letters of the source or
target word. The a and b nodes in Figure 1 rep-
resent the current position in the source and tar-
get words, respectively. The s and t nodes rep-
resent the current letter in the source and target
words. The end node is a switching parent of Z
and is triggered when the values of the a and b
nodes move past the end of both the source and
target words. The sc and tc nodes are consis-
tency nodes which ensure that the current edit
operation is consistent with the current letters
in the source and target words. Consistency
here means that the source side of the edit oper-
ation must either match the current source letter
or be ε, and that the same be true for the target
side. Finally, the send and tend nodes appear
only in the last frame of the model, and are only
given a positive probability if both words have
already been completely processed, or if the
final edit operation will conclude both words.
The following models all use the MCI model
as a basic framework, while adding new depen-
dencies to Z.

MEM In the memory model, the probability of the
current operation being performed depends on
what the previous operation was.

CON In the context-dependent model, the probabil-
ity that Z takes on certain values is dependent
on letters in the source word or target word.

The model that we test in Section 5, takes into
account the context of two letters in the source
word: the current one and the immediately
preceding one. We experimented with several
other variations of context sets, but they either
performed poorly on the development set, or re-
quired inordinate amounts of memory.

LEN The length model learns the probability dis-
tribution of the number of edit operations to
be performed, which is the incorporated into
the similarity score. This model represents an
attempt to counterbalance the effect of longer
words being assigned lower probabilities.

The models were implemented with the GMTK
toolkit (Bilmes and Zweig, 2002). A more detailed
description of the models can be found in (Filali and
Bilmes, 2005).

5 Experiments

5.1 Setup

We evaluated various methods for computing word
similarity on the task of the identification of cog-
nates. The input consists of pairs of words that
have the same meaning in distinct languages. For
each pair, the system produces a score represent-
ing the likelihood that the words are cognate. Ide-
ally, the scores for true cognate pairs should always
be higher than scores assigned to unrelated pairs.
For binary classification, a specific score thresh-
old could be applied, but we defer the decision on
the precision-recall trade-off to downstream applica-
tions. Instead, we order the candidate pairs by their
scores, and evaluate the ranking using 11-point in-
terpolated average precision (Manning and Schutze,
2001). Scores are normalized by the length of the
longer word in the pair.

Word similarity is not always a perfect indicator
of cognation because it can also result from lexical
borrowing and random chance. It is also possible
that two words are cognates and yet exhibit little sur-
face similarity. Therefore, the upper bound for aver-
age precision is likely to be substantially lower than
100%.
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Languages Proportion Method
of cognates EDIT MIEL ALINE R&Y LLW PHMM DBN

English German 0.590 0.906 0.909 0.912 0.894 0.918 0.930 0.927
French Latin 0.560 0.828 0.819 0.862 0.889 0.922 0.934 0.923
English Latin 0.290 0.619 0.664 0.732 0.728 0.725 0.803 0.822
German Latin 0.290 0.558 0.623 0.705 0.642 0.645 0.730 0.772
English French 0.275 0.624 0.623 0.623 0.684 0.720 0.812 0.802
French German 0.245 0.501 0.510 0.534 0.475 0.569 0.734 0.645
Albanian Latin 0.195 0.597 0.617 0.630 0.568 0.602 0.680 0.676
Albanian French 0.165 0.643 0.575 0.610 0.446 0.545 0.653 0.658
Albanian German 0.125 0.298 0.340 0.369 0.376 0.345 0.379 0.420
Albanian English 0.100 0.184 0.287 0.302 0.312 0.378 0.382 0.446

AVERAGE 0.2835 0.576 0.597 0.628 0.601 0.637 0.704 0.709

Table 1: 11-point average cognate identification precision for various methods.

5.2 Data

The training data for our cognate identification ex-
periments comes from the Comparative Indoeuro-
pean Data Corpus (Dyen et al., 1992). The data con-
tains word lists of 200 basic meanings representing
95 speech varieties from the Indoeuropean family
of languages. Each word is represented in an or-
thographic form without diacritics using the 26 let-
ters of the Roman alphabet. Approximately 180,000
cognate pairs were extracted from the corpus.

The development set was composed of three lan-
guage pairs: Italian-Croatian, Spanish-Romanian,
and Polish-Russian. We chose these three language
pairs because they represent very different levels of
relatedness: 25.3%, 58.5%, and 73.5% of the word
pairs are cognates, respectively. The percentage of
cognates within the data is important, as it provides
a simple baseline from which to compare the success
of our algorithms. If our cognate identification pro-
cess were random, we would expect to get roughly
these percentages for our recognition precision (on
average).

The test set consisted of five 200-word lists repre-
senting English, German, French, Latin, and Alba-
nian, compiled by Kessler (2001). The lists for these
languages were removed from the training data (ex-
cept Latin, which was not part of the training set), in
order to keep the testing and training data as sepa-
rate as possible. For the supervised experiments, we
converted the test data to have the same orthographic
representation as the training data.

The training process for the DBN models con-
sisted of three iterations of Expectation Maximiza-
tion, which was determined to be optimal on the de-
velopment data. Each pair was used twice, once in
each source-target direction, to enforce the symme-
try of the scoring, One of the models, the context-
dependent model, remained asymmetrical despite to
two-way training. In order to remove the undesir-
able asymmetry, we averaged the scores in both di-
rections for each word pair.

5.3 Results

Table 1 shows the average cognate identification
precision on the test set for a number of meth-
ods. EDIT is a baseline edit distance with uniform
costs. MIEL refers to edit distance with weights
computed using the approach outlined in (Mielke,
2005). ALINE denotes the algorithm for aligning
phonetic sequences (Kondrak, 2000) described in
Section 2.1. R&Y is the stochastic transducer of
Ristad and Yianilos (1998). LLW stands for Lev-
enshtein with learned weights, which is a modifi-
cation of R&Y proposed by Mann and Yarowsky
(2001). The PHMM column provides the results
reported in (Mackay and Kondrak, 2005) for the
best Pair HMM model, which uses log odds scor-
ing. Finally, DBN stands for our best results ob-
tained with a DBN model, in this case the averaged
context model.

Table 2 show the aggregate results for various
DBN models. Two different results are given for
each model: the raw score, and the score normal-
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Model Raw Score Normalized
MCI 0.515 0.601
MEM 0.563 0.595
LEN 0.516 0.587
CON-FOR 0.582 0.599
CON-REV 0.624 0.619
CON-AVE 0.629 0.709

Table 2: Average cognate identification precision for
various DBN models.

ized by the length of the longer word. The mod-
els are the memoriless context-independent model
(MCI), memory model (MEM), length model (LEN)
and context model (CON). The context model re-
sults are split as follows: results in the original di-
rection (FOR), results with all word pairs reversed
(REV), and the results of averaging the scores for
each word pair in the forward and reverse directions
(AVE).

Table 3 shows the aggregate results for the un-
supervised approaches. In the unsupervised tests,
the training set was not used, as the models were
trained directly on the testing data without access
to the cognation information. For the unsupervised
tests, the original, the test set was in its original pho-
netic form. The table compares the results obtained
with various DBN models and with the CORDI al-
gorithm described in Section 3.3.

5.4 Discussion

The results in Table 1 strongly suggest that the
learning approaches are more effective than the
manually-designed schemes for cognate identifica-
tion. However, it has to be remembered that the
learning process was conducted on a relatively large
set of Indoeuropean cognates. Even though there
was no overlap between the training and the test
set, the latter also contained cognate pairs from the
same language family. For each of the removed lan-
guages, there are other closely related languages that
are retained in the training set, which may exhibit
similar or even identical regular correspondences.

The manually-designed schemes have the advan-
tage of not requiring any training sets after they
have been developed. Nevertheless, Mielke’s met-
ric appears to produce only small improvement over

Model Raw Score Normalized
MCI 0.462 0.430
MEM 0.351 0.308
LEN 0.464 0.395
CON-AVE 0.433 0.414
CORDI — 0.629

Table 3: Phonetic test results.

simple edit distance. ALINE outperforms Mielke’s
metric, which is not surprising considering that
ALINE was developed specifically for identifying
cognates, and Mielke’s substitution matrix lacks
several phonemes that occur in the test set.

Among the DBN models, the average context
model performs the best. The averaged context
model is clearly better than either of the unidirec-
tional models on which it is based. It is likely that
the averaging allows the scoring to take contextual
information from both words into account, instead
of just one or the other. The averaged context DBN
model performs about as well as on average as the
Pair HMM approach, but substantially better than
the R&Y approach and its modification, LLW.

In the unsupervised context, all DBN models fail
to perform meaningfully, regardless of whether the
scores are normalized or not. In view of this, it is re-
markable that CORDI achieves a respectable perfor-
mance just by utilizing discovered correspondences,
having no knowledge of phonetics nor identity of
phonemes. The precision of CORDI is at the same
level as the phonetically-based ALINE. In fact, a
method that combines ALINE and CORDI achieves
the average precision of 0.681 on the same test set
(Kondrak, in preparation).

In comparison with the results of Filali and
Bilmes (2005), certain differences are apparent. The
memory and length models, which performed better
than the memoriless context-independent model on
the pronunciation task, perform worse overall here.
This is especially notable in the case of the length
model which was the best overall performer on their
task. The context-dependent model, however, per-
formed well on both tasks.

As mentioned in (Mann and Yarowsky, 2001),
it appears that there are significant differences be-
tween the pronunciation task and the cognate iden-
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tification task. They offer some hypotheses as to
why this may be the case, such as noise in the data
and the size of the training sets, but these issues are
not apparent in the task presented here. The train-
ing set was quite large and consisted only of known
cognates. The two tasks are inherently different, in
that scoring in the pronunciation task involves find-
ing the best match of a surface pronunciation with
pronunciations in a lexicon, while the cognate task
involves the ordering of scores relative to each other.
Certain issues, such as length of words, may become
more prominent in this setup. We countered this by
normalizing all scores, which was not done in (Filali
and Bilmes, 2005). As can be seen in Table 2, the
normalization by length appears to improve the re-
sults on average. It notable that normalization even
helps the length model on this task, despite the fact
that it was designed to take word length into account.

6 Conclusion

We have compared the effectiveness of a number of
different methods, including the DBN models, on
the task of cognate identification. The results sug-
gest that some of the learning methods, namely the
Pair HMMs and the averaged context DBN model,
outperform the manually designed methods, pro-
vided that large training sets are available.

In the future, we would like to apply DBNs
to other tasks involving computing word similarity
and/or alignment. An interesting next step would be
to use them for tasks involving generation, for ex-
ample the task of machine transliteration.
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Abstract

We examine various string distance mea-
sures for suitability in modeling dialect
distance, especially its perception. We find
measures superior which donotnormalize
for word length, but whichare are sensi-
tive to order. We likewise find evidence for
the superiority of measures which incor-
porate a sensitivity to phonological con-
text, realized in the form ofn-grams—
although we cannot identify which form
of context (bigram, trigram, etc.) is best.
However, we find no clear benefit in us-
ing gradual as opposed to binary segmen-
tal difference when calculating sequence
distances.

1 Introduction

We compare string distance measures for their
value in modeling dialect distances. Traditional
dialectology relies on identifying language fea-
tures which are common to one dialect area while
distinguishing it from others. It has difficulty
in dealing with partial matches of linguistic fea-
tures and with non-overlapping language patterns.
Therefore Seguy (1973) and Goebl (1982; 1984)
advocate using aggregates of linguistic features to
analyze dialectal patterns, effectively introducing
the perspective ofDIALECTOMETRY.

Kessler (1995) introduced the use of string edit
distance measure as a means of calculating the dis-
tance between the pronunciations of correspond-
ing words in different dialects. Following Seguy’s
and Goebl’s lead, he calculated this distance for
pairs of pronunciations of many words in many
Irish-speaking towns. String edit distance is sen-
sitive to the degrees of overlap of strings and al-

lows one to process large amounts of pronunci-
ation data, including that which does not follow
other isoglosses neatly. Heeringa (2004) exam-
ines several variants of edit distance applied to
Norwegian and Dutch data, focusing on measures
which involve a length normalization, and which
ignore phonological context, and demonstrating
that measures using binary segment differences
are no worse than those using feature-based mea-
sures of segment difference.

This paper inspects a range of further refine-
ments in measuring pronunciation differences.
First, we inspect the role of normalization by
length, showing that it actually worsens non-
normalized measures. Second, we compare edit
distance measures to simpler measures which ig-
nore linear order, and show that order-sensitivity
is important. Third, we inspect measures which
are sensitive to phonetic context, and show that
these, too, tend to be superior. Fourth, we com-
pare versions of string edit distance which are
constrained to respect syllable structure (always
matching vowels with vowels, etc.), and conclude
that this is mildly advantageous. Finally we com-
pare binary (i.e., same/different) treatments of the
segments in edit distance to gradual treatments of
segment differentiation, and find no indication of
the superiority of the gradual measures.

The quality of the measures is assayed primarily
through their agreement with the judgments of di-
alect speakers about which varieties are perceived
as more similar (or dissimilar) to their own. In
addition we inspect a validation technique which
purports to show how successfully a dialect mea-
sure uncovers the geographic structure in the data
(Nerbonne and Kleiweg, 2006), but this technique
yields unstable results when applied to our data.
We have perception data only for Norwegian, so
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that data figures prominently in our argument, and
we evaluate both Norwegian and German data ge-
ographically.

The results differ, and the perceptual results
(concerning Norwegian) are most easily inter-
pretable. There we find, as noted above, that
non-normalized measures are superior to normal-
ized ones, that both order and context sensitiv-
ity are worthwhile, as is the vowel/consonant dis-
tinction. The (geographic) results for German are
more complicated, but also less stable. We include
them for the sake of completeness.

In addition we note two minor contributions.
First, although some literature ends up evaluat-
ing both distance and similarity measures, because
these are not consistently each others’ inverses un-
der some normalizations (Kondrak, 2005; Inkpen
et al., 2005), we suggest a normalization based on
alignment length which guarantees that similarity
is exactly the inverse of distance, allowing us to
concentrate on distance.

Second, we note that there is no great problem
in applying edit distance to bigrams and trigrams,
even though recent literature has been sceptical
about the feasibility of this step. For example
Kessler (2005) writes:

[...] one major shortcoming [in applying
edit distance to linguistic data, WH et al]
that is rarely discussed is that the pho-
netic environment of the sounds in ques-
tion cannot be taken into account, while
still making use of the efficient dynamic
programming algorithm (p. 253).

Somewhat further Kessler writes: “Currently, the
predominant solution to this problem is to ignore
context entirely.” In fact Kondrak (2005) applies
edit distance straightforwardly usingn-gram as
basic elements. Our findings accord with Kon-
drak’s, who also found no problem in applying edit
distance usingn-grams, but we evaluate the tech-
nique in its application to dialectology.

1.1 Background

Heeringa (2004) demonstrates that edit distance
applied to comparable words (see below for ex-
amples) is a superior measure of dialect distance
when compared to unigram corpus frequency and
also that it is superior to both the frequency of pho-
netic features in corpora (a technique which Hop-
penbrouwers & Hoppenbrouwers (2001) had ad-
vocated) and to the frequency of phonetic features

taken one word at a time. Heeringa compares these
techniques using the results of a perception ex-
periment we also employ below. Heeringa shows
that word-based techniques are superior to corpus-
based techniques, and moreover, that most word-
based techniques perform about the same. We
therefore ignore measures which view corpora as
undifferentiated collections below and study only
word-based techniques.

A further question was whether to compare
words based on a binary difference between seg-
ments or whether to use instead phonetic fea-
tures to derive a more sensitive measure of seg-
ment distance. It turned out that measures us-
ing binary segment distinctions outperform the
feature-based methods (see Heeringa, pp. 184–
186), even though a number of feature systems and
comparisons of feature vectors were experimented
with. We likewise accept these results (at least for
present purposes) and focus exclusively on mea-
sures using the binary segment distinctions below.

Kondrak (2005) and Inkpen et al. (2005) present
several methods for measuring string similarity
and distance which complement Heeringa’s results
nicely. We should note, however, that these pa-
pers focus on other areas of application, viz., the
problems of identifying (i) technical names which
might be confused, (ii) linguistic cognates (words
from the same root), and (iii) translational cog-
nates (words which may be used as translational
equivalences). Inkpen et al. consider 12 different
orthographic similarity measures, including some
in which the order of segments does not play a role
(e.g., DICE), and others which use order in align-
ment (e.g. edit distance). They further consider
comparison on the basis of unigrams, bigrams, tri-
grams and “xbigrams,” which are trigrams without
the middle element. Some methods are similarity
measures, others are distance measures. We return
to this in Section 2.

1.2 This paper

In this paper we apply string distance measures
to Norwegian and German dialect data. As
noted above, we focus on word-based methods
in which segments are compared at a binary
(same/different) level. The methods we consider
will be explained in Section 2. Section 3 de-
scribes the Norwegian and German data to which
the methods are applied. In Section 4 we describe
how we evaluate the methods, namely by com-
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paring the algorithmic results to the distances as
perceived by the dialect speakers themselves. We
likewise aimed to evaluate by calculating the de-
gree to which a measure uncovers geographic co-
hesion in dialect data, but as we shall see, this
means of validation yields rather unstable results.
In Section 5 we present results for the different
methods and finally, in Section 6, we draw some
conclusions.

2 String Comparison Algorithms

In this section we describe a number of string
comparison algorithms largely following Inkpen
et al. (2005). The methods can be classified ac-
cording to different factors: representation (un-
igram, bigram, trigram, xbigram), comparison
of n-grams (binary or gradual), status of order
(with or without alignment), and type of align-
ment (free or forced alignment with respect to
the vowel/consonant distinction). We illustrate
the methods with examples, in which we compare
German and Dutch dialect pronunciations of the
wordmilk.1

2.1 Contextual sensitivity

In the German dialect of Reelkirchenmilk is pro-
nounced as [mElk@]. The bigram notation is [–m
mE El lk k@ @–] and the trigram notation is [––m
–mE mEl Elk lk@ k@– @––]. The same word is pro-
nounced as [mEl@ç] in the German dialect of Tann.
The bigram and trigram representations are [–m
mE El l@ @ç ç–] and [––m –mE mEl El@ l@ç @ç– ç––]
respectively.

In the simplest method we present in this paper,
the distance is found by calculating 1 minus twice
the number of shared segmentn-grams divided by
the total number ofn-grams in both words. Inkpen
et al. mention a bigram-based, a trigram-based
and a xbigram-based procedure, which they call
DICE, TRIGRAM and XDICE respectively. We
also consider an unigram-based procedure which
we call UNIGRAM. The two pronunciations share
four unigrams: [m,E, l] and [@]. There are5 + 5 =
10 unigram tokens in total in the two words, so the
unigram similarity is(2 × 4)/10 = 0.8, and the
distance1 − 0.8 = 0.2. The two pronunciations
share three bigrams: [–m, mE] and [El]. There are
6 + 6 = 12 bigram tokens in the two strings, so
bigram similarity is(2×3)/12 = 0.5, and the dis-
tance1 − 0.5 = 0.5. Finally, the two pronuncia-

1Our transcriptions omit diacritics for simplicity’s sake.

tions have three trigrams in common: [––m, –mE]
and [mEl] among7+7 = 14 in total, yielding a tri-
gram similarity of(2 × 3)/14 = 0.4 and distance
1− 0.4 = 0.6.

Our interest in this issue is linguistic: longer
n-grams allow comparison on the basis of phonic
context, and unigram comparisons have correctly
been criticized for ignoring this (Kessler, 2005).

2.2 Order of segments

When comparing the German dialect pronuncia-
tion of Reelkirchen [mElk@] with the Dutch dialect
pronunciation of Haarlem [mEl@k], the unigram
procedure presented above will detect no differ-
ence. One might argue that we are dealing with
a swap, but this is effectively an appeal to order.
The example is not convincing forn-gram mea-
sures,n ≥ 2, but we should prefer to separate
issues of order from issues of context sensitivity.
We use edit distance (aka Levenshtein distance)
for this purpose, and we assume familiarity with
this (Kruskal, 1999). In our use of edit distance all
operations have a cost of 1.

2.3 Normalization by length

When the edit distance is divided by the length
of the longer string, Inkpen et al. call it normal-
ized edit distance (NED). In our approach we di-
vide “raw edit distance” by alignment length. The
same minimum distance found by the edit distance
algorithm may be obtained on the basis of sev-
eral alignments which may have different lengths.
We found that the longest alignment has the great-
est number of matches. Therefore we normalize
by dividing the edit distance by the length of the
longest alignment.

We have normally employed a length normal-
ization in earlier work (Heeringa, 2004), reason-
ing that words are such fundamental linguistic
units that dialect perception was likely to be word-
based. We shall test this premise in this paper.

Marzal & Vidal (1993) show that the normal-
ized edit distance between two strings cannot be
obtained via “post-normalization”, i.e., by first
computing the (unnormalized) edit distance and
then normalizing this by the length of the cor-
responding editing path. Unnormalized edit dis-
tance satisfies the triangle inequality, which is ax-
iomatic for distances, but the quantities obtained
via post-normalization need not satisfy this ax-
iom. Marzdal & Vidal provide an alternative pro-
cedure which is guaranteed to produce genuine
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distances, satisfying all of the relevant axioms. In
their modified algorithm, one computes one min-
imum weight foreachof the possible lengths of
editing paths at each point in the computational
lattice. Once all these weights are calculated, they
are divided by their corresponding path lengths,
and the minimum quotient represents the normal-
ized edit distance.

The basic idea behind edit distance is to find the
minimum cost of changing one string into another.
Length normalization represents a deviation from
this basic idea. If a higher cost corresponds with a
longer path length so that quotient of the edit costs
divided by the path length is minimal, then Marzal
& Vidal’s procedure opts for the minimal normal-
ized length, while post-normalization seeks what
one might call “the normalized minimal length”
(see Marzal & Vidal’s example 3.1 and Figure 2,
p. 928).

Marzal & Vidal’s examples of normalized mini-
mal distances which are not also minimal normal-
ized distances all involve operation costs we nor-
mally do not employ. In particular they allowIN-
DELS (insertions and deletions) to be associated
with much lower costs than substitutions, so that
the longer paths associated with derivations in-
volving indels is more than compensated by the
length normalization. Our costs are never struc-
tured in this way, so we conjecture that our post-
normalizations do not genuinely run the risk of vi-
olating the distance axioms. We use0 for the cost
of mapping a symbol to itself,1 to map it to a dif-
ferent symbol, including the empty symbol (cov-
ering the costs of indels), and∞ for non-allowed
mappings2 We maintain therefore that (unnormal-
ized) costs higher than the minimum will never
correspond to longer alignment lengths. If this is
so, then the minimal edit cost divided by align-
ment length will also be the minimal normalized
cost. If the unnormalized edit distance is mini-
mal, we claim that the post-normalized edit dis-
tance must therefore be minimal as well.

We inspect an example to illustrate these issues.
We compare the Frisian (Grouw), [mOlk@], with
the Haarlem pronunciation [mEl@k]. The Leven-
shtein algorithm may align the pronunciations as
follows:

2For example, in some versions of edit distance, the value
∞ is assigned to the replacement of a vowel by a consonant
in order to avoid alignments which violate syllabic structure.

1 2 3 4 5 6
m O l k @
m E l @ k

1 1 1

The one pronunciation is transformed into the
other by substituting [E] for [O], by deleting [@]
after [l], and by inserting [@] after [k]. Since
each operation has a cost of 1, and the align-
ment is6 elements long, the normalized distance
is (1 + 1 + 1)/6 = 0.5. The Levenshtein dis-
tance will also find an alignment in which the
[@]’s are matched, while the [k]’s are inserted and
deleted. That alignment gives the same (normal-
ized) distance. Levenshtein distance will not find
an alignment any longer than the one shown here,
since longer alignments will not yield the mini-
mum cost. This also holds for the examples shown
below.

2.4 n-gram weights

In the dialect of the German dialect of Frohn-
hausenmilk is pronounced as [mIlj@], and in the
German of Großwechsungen as [mElIç]. If we
compare these using the techniques of Section 2.2,
using bigrams, we obtain the following:

1 2 3 4 5 6
-m mI Il lj j @ @-
-m mE El l I Ik k-

1 1 1 1 1

Sincen-grams are compared in a binary way, the
normalized distance is equal to(1 + 1 + 1 + 1 +
1)/6 = 0.83. But [mI] and [mE] (second posi-
tion) are clearly more similar to each other than
[j@] and [Ik] (fifth position). Inkpen et al. suggest
weightingn-gram differences using segment over-
lap. They provide a formula for measuring grad-
ual similarity of n-grams to be used in BI-DIST
and TRI-DIST. Since we measure distances rather
than similarity, we calculaten-gram distance as
follows:

s(x1...xn, y1...yn) = 1
n

∑n
i=1 d(xi, yi)

whered(a, b) returns1 if a andb are different, and
0 otherwise. We apply this to our example:

1 2 3 4 5 6
-m mI Il lj j @ @-
-m mE El l I Ik k-

0.5 0.5 0.5 1 0.5

obtaining(0.5+0.5+0.5+1+0.5)/6 = 3.0/6 =
0.5 distance after normalization.
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2.5 Linguistic Alignment

When comparing the Frisian (Grouw) dialect
pronunciation, [mOlk@], with that of German
Großwechsungen, [mElIç], using unigrams, we ob-
tain:

1 2 3 4 5
m O l k @
m E l I ç

1 1 1
The normalized distance is then(1 + 1 + 1)/5 =
0.6. But this is linguistically an implausible align-
ment: syllables do not align when e.g. [k] aligns
with [I], etc. We may remedy this by requir-
ing the Levenshtein algorithm to respect the dis-
tinction between vowels and consonants, requir-
ing that the alignments respect this distinction with
only three exceptions, in particular that semivow-
els [j, w] may match vowels (or consonants), that
the maximally high vowels [i, u] match conso-
nants (or vowels), and that [@] match sonorant con-
sonants (nasals and liquids) in addition to vow-
els. Disallowed matches are weighted so heav-
ily (via the cost of the substitution operation) that
the algorithm always will use alternative align-
ments, effectively preferring insertions and dele-
tions (indels) instead. Applying these restrictions,
we obtain the following, with normalized distance
(1 + 1 + 1 + 1)/6 = 0.67:

1 2 3 4 5 6
m O l k @
m E l I ç

1 1 1 1
In comparisons based on bigrams, we allow

two bigrams to match when at least one seg-
ment pair matches, the first, the second, or both.
Two trigrams match when at least the middle pair
matches. Comparing the same pronunciations as
above using bigrams without linguistic conditions,
we obtain the following alignment:

1 2 3 4 5 6
-m mO Ol lk k@ @-
-m mE El l I Iç ç-

1 1 1 1 1
0.5 0.5 0.5 1 0.5

The normalized distance is(1 + 1 + 1 + 1 +
1)/6 = 0.83 using binary bigram weights (costs),
and(0.5 + 0.5 + 0.5 + 1 + 0.5)/6 = 0.5 using
gradual weights. But the above alignment doesnot
respect the vowel/consonant distinction at the fifth
position, where neither [k] vs. [I] nor [@] vs. [ç] is
allowed. We correct this at once:

1 2 3 4 5 6 7
-m mO Ol lk k@ @-
-m mE El l I Iç ç-

1 1 1 1 1 1
0.33 0.33 0.67 1 1 1

Using binary bigram weights, the normalized dis-
tance is(1 + 1 + 1 + 1 + 1 + 1)/7 = 0.86.

The calculation based on gradual weights is a
bit more complex. Two bigrams may match even
when a non-allowed pair occurs in one of the two
positions, e.g., [k] vs. [I] at the fourth position in
the alignment immediately above. The cost of this
match should be higher (via weights) than that of
an allowed pair with different elements—e.g., the
pair [O] versus [E] at the second or third position—
but not so high that the match cannot occur.

We settle on the following scheme. Twon-
grams[x1...xn] and[y1...yn] can only match if at
least one pair(xi, yi) matches linguistically. We
weight linguistically mismatching pairs(xj , yj)
twice as high as matching (but non-identical)
pairs. Since we have at mostn − 1 matching
pairs, and at least 1 mismatching pair, we set the
most expensive match of twon-grams to1, and we
assign the weight of2/(2n − 1) to a mismatch-
ing pair, and1/(n − 1) to a matching (but non-
identical) one. Indels cost the same as the most
costly (matching)n-grams, in this case1.

In our bigram-based example, we obtain a
weight of 2/(2 × 2 − 1) = 0.67 at position
4, since the pair [k] vs. [I] is a linguistic mis-
match. At positions 2 and 3 we obtain weights
of 1/(2×2−1) = 0.33 since [O] and [E] are (non-
identical) matches. Note that a segment (vowel or
consonant) versus ‘-’ (boundary) is processed as
a mismatch. Therefore the weight at position 6 is
equal to0.33 ([k] vs. [ç]) +0.67 ([@] versus [-]),
summing to1.

2.6 Similarity vs. distance

Theoretically, similarity and distance should be
each others’ inverses. Thus in Section 2.1 we
suggested that similarity should always be(1 −
distance). This is not always straightforward when
we normalize.

Inkpen et al. use both similarity and dis-
tance measures. Similarity measures are LCSR
(Longest Common Subsequence Ratio), BI-SIM
and TRI-SIM (LCSR generalized to bigrams and
trigrams), and the corresponding distance mea-
sures are NED, BI-DIST and TRI-DIST. The mea-
sures are further distinguished in the wayn-gram
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weights are compared: as binary weights in the
similarity measures, and as gradual weights in the
distance measures. When comparing the pronun-
ciations of Frisian Hindelopen [mO@lk@] with Ger-
man Großwechsungen, [mElIç], and respecting the
linguistic alignment conditions (Section 2.5) we
obtain:

m O @ l k @
m E l I ç
0 1 1 0 1 1 1

The non-normalized similarity is equal to 2, and
the non-normalized distance is equal to 5. Inkpen
et al. normalize “by dividing the total edit cost by
the length of the longer string” which is 6 in our
example. Other possibilities are dividing by the
length of the shorter string (5), the average length
of the two strings (5.5) or the length of the align-
ment (7). Summarizing:

shorter longer average align-
string string string ment

sim. 0.4 0.33 0.36 0.29
dist. 1.0 0.83 0.91 0.71
total 1.4 1.17 1.27 1.00

Only the normalization via alignment length re-
spects the wish that we regard similarity and dis-
tance as each others’ inverses.3 We can enforce
this requirement in other approaches by first nor-
malizing and then taking the inverse, but we take
the result above to indicate that normalization via
alignment length is the most natural procedure.

3 Data Sources

The methods presented in Section 2 are applied
to Norwegian and German dialect data described
in this section. We emphasize that we measured
distances only at the level of the segmental base,
ignoring stress and tone marks, suprasegmentals
and diacritics. We in fact examined measurements
which included the effects of segmental diacritics,
which, however resulted in decreased consistency
and no apparent increase in quality.

3.1 Norwegian

The Norwegian data comes from a database com-
prising more than 50 dialect sites, compiled by
Jørn Almberg and Kristian Skarbø of the Depart-
ment of Linguistics of the University of Trond-

3We have no proof that normalization by alignment length
always allows this simple relation to similarity, but we have
examined a large number of calculations in which this always
seems to hold.

heim.4 The database includes recordingsandtran-
scriptions of the fable ‘The North Wind and the
Sun’ in various Norwegian dialects. The Norwe-
gian text consists of 58 different words, some of
which occur more than once, in which case we
seek a least expensive pairing of the different el-
ements (Nerbonne and Kleiweg, 2003, p. 349).

On the basis of the recordings, Gooskens car-
ried out a perception experiment which we de-
scribe in Section 4.1. The experiment is based
on 15 dialects, the total number of dialects avail-
able at that time (spring, 2000). Since we want to
use the results of the experiment for validating our
methods, we used the same set of 15 Norwegian
dialects. It is important to note that Gooskens pre-
sented the recordings holistically, including differ-
ences in syntax, intonation and morphology. Our
methods are restricted to words.

3.2 German

The German data comes from thePhonetischer
Atlas Deutschlandsand includes 186 dialect lo-
cations. For each location 201 words were
recorded and transcribed. The data are available
at theForschungsinstitut f̈ur deutsche Sprache -
Deutscher Sprachatlasin Marburg. The material
is from translations ofWenker-S̈atze, taken from
the famous survey by Georg Wenker in the 1879–
1887 among teachers from≈ 40.000 locations in
Germany. The transcriptions are made on the basis
of recordings made under the direction of Joachim
Göschel in the 1960’s and 1970’s in West Ger-
many (G̈oschel 1992, pp. 64–70). After the Ger-
man reunification similar surveys were conducted
in former East Germany.

The data were transcribed by four transcribers,
and each item was transcribed independently by
at least two phoneticians who subsequently con-
sulted to come to an agreement. In 2002 the data
was digitized at the University of Groningen.

4 Validation Methods

When we apply a measurement technique to a spe-
cific problem we are interested both in the con-
sistency of the measure and in its validity. The
consistency of the measurement reflects the degree
to which the independent elements in the sample
sample tend to provide the same signal. Nun-
nally (1978, p.211) recommends the generalized

4The database is available athttp://www.ling.hf.
ntnu.no/nos/ .
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form of the Spearman-Brown formula for this pur-
pose, which has come to be known as the CRON-
BACH’ Sα value. It is determined by the inter-item
correlation, i.e. the average correlation coefficient
for all of the pairs of items in the test, and the
test size. The Cronbach’sα measure rises with
the sample size, and it is therefore normally used
to determine whether samples are large enough to
provide reliable signals.

The validity of a measure, or more precisely,
the application of a measure to a particular prob-
lem is much more difficult and controversial issue
(Nunnally, 1978, Chap. 3), but the basic issue is
whether the procedures in fact measure what they
purport to measure, in our case the sort of pro-
nunciation similarity which is important in distin-
guishing similar language varieties. In examining
our measures for their validity in identifying the
sort of pronunciation similarity which plays a role
in dialectology we compare the measures to other
indications we have that pronunciations are dialec-
tally similar. We discuss these below in more de-
tail. We consider the correlation with distances as
perceived by the dialect speakers themselves (see
Section 4.1) and the local (geographic) incoher-
ence of dialect distances (see Section 4.2).

4.1 Perception

The best opportunity for examining the quality of
the measurements presents itself in the case of
Norwegian, for which we were able to obtain the
results of a perception experiment (Gooskens and
Heeringa, 2004). For each of 15 varieties a record-
ing of the fable ‘The North Wind and the Sun’ was
presented to 15 groups of Norwegian high school
pupils, one group from each of the 15 dialects sites
represented in the material. All pupils were famil-
iar with their own dialect and had lived most of
their lives in the place in question (on average 16.7
years). Each group consisted of 16 to 27 listeners.
The mean age of the listeners was 17.8 years, 52
percent were female and 48 percent male.

The 15 dialects were presented in a randomized
order, and each session was preceded by a (short)
practice run. While listening to the dialects the
listeners were asked to judge each of the 15 di-
alects on a scale from 1 (similar to native dialect)
to 10 (not similar to native dialect). This means
that each group of listeners judged the linguistic
distances between their own dialect and the 15 di-
alects, including their own dialect. In this way

we get a matrix with 15× 15 perceived linguis-
tic distances. This matrix is not completely sym-
metric. For example, the distance which the lis-
teners from Bergen perceived between their own
dialect and the dialect of Trondheim (8.55) is dif-
ferent from the distance as perceived by the listen-
ers from Trondheim to Bergen (7.84).

In order to use this material to calibrate the dif-
ferent computational measurements, we examine
the correlations between the15×15 computational
matrices with the15×15 perceptual matrix. In cal-
culating correlations we excluded the distances of
dialects with respect to themselves, i.e. the dis-
tance of Bergen to Bergen, of Bjugn to Bjugn,
etc. In computational matrices these values are al-
ways zero, in the perceptual matrix they vary, but
are normally greater than zero. This may be due
to non-geographic (social or individual) variation,
but it distorts results in a non-random way (diago-
nal distances can only be too high, never too low),
we exclude them when calculating the correlation
coefficient.

We calculated the standard Pearson product-
moment correlation coefficient, but we interpret
its significance cautiously, using the Mantel test
(Bonnet and Van de Peer, 2002). In classical tests
the assumption is made that the observations are
independent, which observations in distance ma-
trices emphatically are not. This is certainly true
for calculations of geographic distances, which are
minimally constrained to satisfy the standard dis-
tance axioms (non-negativity, symmetry, and the
triangle inequality). We have argued above (§ 2.2)
that the edit distances we employ are likewise gen-
uine distances, which means that sums of edit
distances are likewise constrained, and therefore
should not be regarded as independent observa-
tions (in the sense need for hypothesis testing).

The Mantel test raises the standards of signif-
icance a good deal— so much that it will turn
out that our small (15 × 15) matrices would need
to differ by more than0.1 in correlation coeffi-
cient in order to demonstrate significance. We will
nonetheless urge that the results should be taken
seriously as the data needed is difficult to obtain,
and the indications are fairly clear (see below).

4.2 Local Incoherence

It is fundamental to dialectology that geographi-
cally closer varieties are, in general, linguistically
more similar. Nerbonne and Kleiweg (2006) use
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this fact to select more probative measurements,
namely those measurements which maximize the
degree to which geographically close elements are
likewise seen to be linguistically similar. Given
our emphasis on distance it is slightly more con-
venient to formulate a measure ofLOCAL INCO-
HERENCEand then to examine the degree to which
various string distance measures minimize it. The
basic idea is that we begin with each measurement
sites, and inspect then linguistically most similar
sites in order of decreasing linguistic similarity to
s. We then measure how far away these linguisti-
cally most similar sites are geographically, for ex-
ample, in kilometers.Good measurements show
that linguistically similar sites are geographically
close better thanpoor measurements do.

The details of the formulation reflect the re-
sults of dialectometry that dialect distances cer-
tainly increase with geographic distance, leveling
off, however, so that geographically more remote
variety-pairs tend to have more nearly the same
linguistic distances to each other. We sort variety
pairs in order of decreasing linguistic similarity
and weight more similar ones exponentially more
than less similar ones. Given this disproportion-
ate weighting of the most similar varieties, it also
quickly becomes uninteresting to incorporate the
effects of more than a small number of geographi-
cally closest varieties. We restrict our attention to
the eight most similar linguistic varieties in calcu-
lating local incoherence.

Il =
1
n

n∑
i=1

DL
i −DG

i

DG
i

DL
i =

k∑
j=1

dLi,j · 2−0.5j

DG
i =

k∑
j=1

dGi,j · 2−0.5j

dLi,j , d
G
i,j : geo. dist. betweeni enj

dLi,1···n−1 : geo. dist. sorted by increasing ling. diff.

dGi,1···n−1 : geo. dist, sorted by increasing geo. dist.

Several remarks may be helpful in understand-
ing the proposed measurement. First, all of thedi,j
concerngeographicdistances.dLi,1···n−1 (summed
in DL

i ) range over the geographic distances, ar-
ranged, however, in increasing order oflinguistic
distance, whiledGi,1···n−1 (summed inDG

i ) ranges

over the geographic distances among the sites in
the sample, arranged in increasing order ofgeo-
graphicdistance. We examine the latter as an ideal
case. If a given measurement technique always
demonstrated that the neighbors of a given site
used the most similar varieties, thenDL

i would be
the sameDG

i , andIl would be0. Second, we have
argued above that it is appropriate to count most
similar varieties much more heavily inIl, and this
is reflected in the exponential decay in the weight-
ing, i.e., 2−0.5j wherej ranges over the increas-
ingly less similar sites. Given this weighting of
most similar varieties, we are also justified in re-
stricting the sum inDL

i =
∑k
j=1[. . .] tok = 8, and

all of the results below use this limitation, which
likewise improves efficiency.

We suppress further discussion of the calcu-
lation in the interest of saving space here, not-
ing, however, that we used two different notions
of geographic distance. When examining mea-
surements of the German data, we measured geo-
graphic distance “as the crow flies”, but since Nor-
way is very mountainous, we used (19th century)
travel distances (Gooskens, ).

5 Experiments and Results

In this section we present results based on the Nor-
wegian and German data sources in 5.1 and Sec-
tions 5.3.

For each data source we consider 40 string com-
parison algorithms. We distinguish between meth-
ods with a binary comparison ofn-grams and
those with a gradual comparison ofn-grams (see
Section 2.4). Within the category of binary meth-
ods, we distinguish between three groups. In the
first group, strings are compared just by counting
the number of commonn-grams, ignoring the or-
der of elements, see Section 2.1). In the second
group then-grams are aligned (see Section 2.2).
We call this ‘free alignment’. In the third group
we insist on the linguistically informed alignment
of n-grams (see Section 2.5), dubbing this ‘forced
alignment’. Within the category of gradual meth-
ods, we distinguish between ‘free alignment’ (see
Section 2.6) and ’forced alignment’. Finally, for
each of these methods, we consider both an un-
normalized version of the measure as well as one
normalized by length (see Section 2.3).

A measure can only be valid when it is con-
sistent, but it may be consistent without being
valid. Since consistency is a necessary condi-
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binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.69 0.66 0.66 0.66 0.66
bi 0.70 0.69 0.69 0.66 0.68
tri 0.71 0.70 0.72 0.66 0.73
xbi 0.70 0.69 0.72 0.67 0.73

Table 1: Correlations between perceptual dis-
tances andunnormalizedstring edit distance mea-
surements among 15 Norwegian dialects. Higher
coefficients indicate better results.

tion for validity, we check the consistency of pho-
netic distance methods. For each of the meth-
ods we calculated Cronbach’sα values, which is
based on the average inter-correlation among the
words (Heeringa, 2004, pp. 170–173). A widely-
accepted threshold in social science for an accept-
ableα is 0.70 (Nunnally, 1978). After the consis-
tency check, we discuss validation results.

5.1 Norwegian Perception

In this section we first discuss results of unnormal-
ized string edit distance measures, and will com-
pare them with their normalized counterparts far-
ther onwards in this section.

The Cronbach’sα values of the unnormalized
measurements vary from 0.84 to 0.87. The Cron-
bach’sα values of the methods with ‘forced align-
ment’ are a bit lower than theα values of the other
methods. An outlier arises when using the ‘forced
alignment’ and gradual bigram distances:α=0.78,
but these all indicate that the measurements are
quite consistent.

We calculated correlations to the perceptual dis-
tances which are described in Section 4.1. Re-
sults are given in Table 1. Let’s note that the
effect size, i.e., ther value itself, is quite high,
0.66 < r < 0.73, meaning that the various dis-
tance measure are accounting for 43.6–53.3% of
the variance in the perception measurements. All
of the correlation coefficients are massively signif-
icant (p < 0.001), but given the stringency of the
Mantel test, they do not differ significantly from
one another.

The correlations are quite similar. The maxi-
mal difference we found was0.07, so that we con-
clude that none of the methods is strikingly better
or worse in operationalizing the level of pronunci-
ation difference that dialect speakers are sensitive

binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.66 0.66 0.66 0.66 0.66
bi 0.67 0.67 0.67 0.66 0.66
tri 0.68 0.68 0.70 0.66 0.70
xbi 0.68 0.68 0.70 0.69 0.70

Table 2: Correlations between perceptual dis-
tances and differentnormalizedstring edit dis-
tance measurements among 15 Norwegian di-
alects. Higher coefficients indicate better results.

to.
The small flood of numbers in Table 1 may

seem confusing. Therefore we calculated averages
per factor which are presented in Table 4. We in-
vite the reader to refer to both Table 1 and Tablee 4
in following the discussion below. Table 4 shows
systematic differences. For example, contextually
sensitive measures (bigrams, trigrams, and xbi-
grams) are usually better (and never worse) than
unigram measures. The differences among the
different means of operationalizing context (bi-
grams, trigrams and xbigrams) seem unremark-
able, however. Third, measures which are sensi-
tive to linear order are slightly worse than those
which are not (variants of DICE) on average5.
But when comparing the first column in Table 1
with the others, we see that the highest correla-
tions (0.73) are found among the order sensitive
methods. Fourth, forcing alignment to respect
vowel/consonant differences yields a modest im-
provement in scores. Fifth, we see no clear ad-
vantage in measurements which weightn-grams
more sensitively to those binary comparison meth-
ods which distinguish only same and different.

Sixth, and most surprisingly, we can compare
Table 1 which provides the correlation of edit dis-
tances which werenotnormalized for length, with
Table 2, which provides the results of the mea-
surements whichwerenormalized. For some nor-
malized measurements the Cronbach’sα value are
minimally higher (0.01). But comparison of the
correlation coefficients shows that normalization
never improves measurements, and often leads to a
deterioration. In Table 4 averages for the normal-
ized measurements are given. Normalized mea-

5When using the unnormalized versions of the ‘DICE’
family, the distance is just equal to the number of non-shared
n-grams.
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binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.41 0.37 0.37 0.37 0.37
bi 0.37 0.35 0.37 0.36 0.35
tri 0.37 0.33 0.35 0.36 0.35
xbi 0.36 0.35 0.35 0.37 0.35

Table 3: Local incoherence values based on travel
distances for theunnormalizedstring edit dis-
tance measurements between 15 Norwegian di-
alects. The lower the local incoherence value, the
better the measurement technique.

surements display the same systematic differences
that unnormalized measurements show, except for
the differences between methods which consider
the order of segments and methods which do not.
Measures which are sensitive to linear order are
slightly better than those which are not (variants
of DICE).

5.2 Norwegian Geographic Sensitivity

As we mentioned in Section 4.2, Norway is very
rugged. Therefore we based our local incoher-
ence values on travel distances rather than on ge-
ographic distances “as the crow flies”. We com-
puted local incoherence values for both unnormal-
ized and normalized string edit distance measure-
ments. The comparison confirms the findings of
Section 5.1: unnormalized methods always per-
form better than normalized ones. The unnormal-
ized results are presented in Table 3.

Recall that lower local incoherence values
should reflect better measurement techniques.
When we examine the table as a whole, we note
again that the various techniques are not hugely
different—they perform with similar degrees of
success.

In Table 4, we find average local incoherence
values for the factors under investigation. We find
first that contextually sensitive measures (bigrams,
trigrams, and xbigrams) are again superior to un-
igram methods, and second, measures which are
sensitive to linear order are superior to the DICE-
like methods (unnormalized versions). Third, lin-
guistically informed alignments, which respect the
vowel/consonant distinction, perform better than
uninformed (“free”) alignment (for the normalized
versions). Fourth, the average values do not sug-

gest any benefit to the gradual weighting ofn-
grams in comparison with the binary weighting.
Most surprisingly, normalization again appears to
have a deleterious effect on the probity of the mea-
surements.

We must stress again that these finer interpreta-
tions results require confirmation with a larger set
of sites.

5.3 German Geographic Sensitivity

When checking the consistency of the German
measurements we find Cronbach’sα values of
0.95 and 0.96 for all methods without alignment
or with ’free alignment’ and for all unigram based
methods. The higher Cronbach’sα levels for this
data set reflect the fact that it is larger. We find
lowerα values of 0.83–0.85 for the methods with
‘forced alignment’. This accords with the consis-
tency results for the Norwegian measurements.

When using bigrams,α is equal to0.80 (binary,
normalized),0.51 (gradual, normalized),0.74 (bi-
nary, unnormalized) and0.45 (gradual, unnormal-
ized). These low values are striking, and we found
no explanation for them, but they suggest that we
should not attach much significance to this combi-
nation of measurement properties. On average, the
unnormalizedα’s are the same as the normalized
α’s.

Since consistency values are higher than0.70
(with one exception), we validated the methods by
calculating the geographic local incoherence val-
ues. We would have preferred to use perceptions,
but we have no such data in the German case.

Since we found unnormalized string edit dis-
tance measurements superior to normalized ones
in the Sections 5.1 and 5.2, we focus in this sec-
tion on the unnormalized methods. Unnormalized
results are shown in Table 5.

Recall that the lower the local incoherence
value, the better the measurement technique. We
include this table for the sake of completeness, but
it is clear that the results do not jibe with the re-
sults obtained from the Norwegian data. Unigram-
based processing appears to be superior, and con-
text inferior; order-sensitive processing is inferior
to order-insensitive processing, and linguistically
informed (“forced”) alignment appears to offer no
advantage.

We leave the contrast between the Norwegian
and German results as a puzzle to be addressed in
future work, but it should be clear that we have
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Factor Correlation with Local Number of
perception incoherence measurements

raw normalized raw normalized
no order 0.70 0.67 0.38 0.45 4
order 0.69 0.68 0.36 0.46 16
unnormalized 0.69 0.36 20
normalized 0.68 0.43 20
binary 0.69 0.68 0.36 0.43 8
gradual 0.68 0.67 0.36 0.43 8
free 0.67 0.67 0.36 0.43 8
forced 0.70 0.68 0.36 0.42 8
unigram 0.67 0.66 0.38 0.45 5
bigram 0.68 0.67 0.36 0.45 5
trigram 0.70 0.68 0.35 0.42 5
xbigram 0.70 0.69 0.36 0.41 5

Table 4: Average correlations between perceptual distances andraw, i.e., unnormalizedstring edit dis-
tance measurements among 15 Norwegian dialects. Higher coefficients and lower local incoherence
values indicate better results.

binary gradual
no free forc. free forc.

align- align- align- align- align-
ment ment ment ment ment

uni 0.94 0.88 0.87 0.88 0.87
bi 1.00 0.98 2.09 0.92 5.71
tri 1.09 1.05 2.45 0.93 2.09
xbi 0.96 0.95 2.45 0.98 2.45

Table 5: Local incoherence values based on geo-
graphic distances for for theunnormalizedstring
edit distance measurements 186 German dialects.
The lower the local incoherence value, the better
the measurement technique.

rather more confidence in the Norwegian than in
the German results. This is due on the one had to
the availability of independently behavioral data
we can use to independently validate our compu-
tations, but also to the more stable set of values we
see in the case of the Norwegian data. Exactlywhy
the German data is so much more variable is also
a question we must postpone to future work.

6 Conclusions and Prospects

In this paper we examined a range of string com-
parison algorithms by applying them to Norwe-
gian and German dialect comparison. The Nor-
wegian results suggest that sensitivity to linguis-
tic context in the form ofn-grams, and to linguis-
tic structure in alignment improves measurement

techniques, but they do not confirm the value of
differential weighting forn-grams. The results
mostly suggest that sensitivity to order of seg-
ments improves the measurements.

The larger German data likewise is unfortu-
nately more recalcitrant (as are other data sets we
have examined, but in which we have less confi-
dence). A disadvantage of the German data may
be that several transcribers were involved, work-
ing over a period of twenty years, and that two
types of surveys were used, having different or-
ders of sentences. There may be subtle differences
in pronunciation as a result of subjects’ becoming
more relaxed or more impatient in the course of a
survey interview.

On the other hand, the Norwegian data set is
small (15 dialect sites). Our conclusions rely on
assumptions of its quality and transcriber consis-
tency, but this warrants further examination. We
also cannot exclude the possibility that optimal
measurements depend on features of the language
and/or data set.

It is tempting to wish to redo this study using a
large, antiseptically clean data set, transcribed reli-
ably by a minimal number of phoneticians, but the
more important practical direction may be to try
to understand which properties of data sets are im-
portant in selecting variants of pronunciation dis-
tance measures. Atlases of material on language
varieties simply are not always clean and reliable,
and if we wish to contribute to their analysis, we
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must keep this in mind.
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Jean Śeguy. 1973. La dialectometrie dans l’atlas lin-
guistique de gascogne.Revue de Linguistique Ro-
mane, 37:1–24.

62



Proceedings of the Workshop on Linguistic Distances, pages 63–72,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Study of Some Distance Measures for Language and Encoding
Identification

Anil Kumar Singh
Language Technologies Research Centre

International Institute of Information Technology
Hyderabad, India

anil@research.iiit.net

Abstract

To determine how close two language
models (e.g., n-grams models) are, we
can use several distance measures. If we
can represent the models as distributions,
then the similarity is basically the simi-
larity of distributions. And a number of
measures are based on information theo-
retic approach. In this paper we present
some experiments on using such similar-
ity measures for an old Natural Language
Processing (NLP) problem. One of the
measures considered is perhaps a novel
one, which we have called mutual cross
entropy. Other measures are either well
known or based on well known measures,
but the results obtained with them vis-a-
vis one-another might help in gaining an
insight into how similarity measures work
in practice.
The first step in processing a text is to
identify the language and encoding of its
contents. This is a practical problem since
for many languages, there are no uni-
versally followed text encoding standards.
The method we have used in this paper
for language and encoding identification
uses pruned character n-grams, alone as
well augmented with word n-grams. This
method seems to give results comparable
to other methods.

1 Introduction
Many kinds of models in NLP can be seen as dis-
tributions of a variable. For various NLP prob-
lems, we need to calculate the similarity of such
models or distributions. One common example of

this is the n-grams model. We might have sev-
eral reference data sets and then we may want to
find out which of those matches most closely with
a test data set. The problem of language and en-
coding identification can be represented in these
terms. One of the most important questions then
is which similarity measure to use. We can expect
that the performance obtained with the similarity
measure will vary with the specific problem and
the kind of model used or some other problem spe-
cific details. Still, it will be useful to explore how
these measures relate to each other.

The measures we are going to focus on in this
paper are all very simple ones and they all try to
find the similarity of two models or distributions in
a (more or less) information theoretic way, except
the out of rank measure proposed by Cavnar and
Trenkle (Cavnar and Trenkle, 1994).

This work had started simply as an effort to
build a language and encoding identification tool
specifically for South Asian languages. During the
course of this work, we experimented with various
similarity measures and some of the results we ob-
tained were at least a bit surprising. One of the
measures we used was something we have called
mutual cross entropy and its performance for the
current problem was better than other measures.

Before the content of a Web page or of any kind
of text can be processed for computation, its lan-
guage and encoding has to be known. In many
cases this language-encoding is not known before-
hand and has to be determined automatically. For
languages like Hindi, there is no standard encod-
ing followed by everyone. There are many well
known web sites using their own proprietary en-
coding. This is one of the biggest problems in ac-
tually using the Web as a multilingual corpus and
for enabling a crawler to search the text in lan-
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guages like Hindi. This means that the content in
these languages, limited as it is, is invisible not
just to people (which could be just due to lack of
display support or unavailability of fonts for a par-
ticular encoding) but even to crawlers.

The problem of language identification is sim-
ilar to some other problems in different fields
and the techniques used for one such problem
have been found to be effective for other prob-
lems too. Some of these problems are text cate-
gorization (Cavnar and Trenkle, 1994), cryptanal-
ysis (Beesley, 1988) and even species identifi-
cation (Dunning, 1994) from genetic sequences.
This means that if something works for one of
these problems, it is likely to work for these other
problems.

It should be noted here that the identifica-
tion problem here is that of identifying both lan-
guage and encoding. This is because (especially
for South Asian languages) the same encoding
can be used for more than one languages (ISCII
for all Indian languages which use Brahmi-origin
scripts) and one language can have many encod-
ings (ISCII, Unicode, ISFOC, typewriter, pho-
netic, and many other proprietary encodings for
Hindi).

In this paper we describe a method based
mainly on character n-grams for identifying the
language-encoding pair of a text. The method
requires some training text for each language-
encoding, but this text need not have the same con-
tent. A few pages (2500-10000 words) of text in a
particular language-encoding is enough. A pruned
character based n-grams model is created for each
language-encoding. A similar model is created for
the test data too and is compared to the training
models. The best match is found using a similar-
ity measure. A few (5-15) words of test data seems
to be enough for identification in most cases.

The method has been evaluated using various
similarity measures and for different test sizes. We
also consider two cases, one in which the pruned
character n-grams model is used alone, and the
other in which it is augmented with a word n-gram
model.

2 Previous Work

Language identification was one of the first natural
language processing (NLP) problems for which a
statistical approach was used.

Ingle (Ingle, 1976) used a list of short words

in various languages and matched the words in the
test data with this list. Such methods based on lists
of words or letters (unique strings) were meant for
human translators and couldn’t be used directly for
automatic language identification. They ignored
the text encoding, since they assumed printed text.
Even if adapted for automatic identification, they
were not very effective or scalable.

However, the earliest approaches used for au-
tomatic language identification were based on the
above idea and could be called ‘translator ap-
proaches’. Newman (Newman, 1987), among oth-
ers, used lists of letters, especially accented letters
for various languages and identification was done
by matching the letters in the test data to these
lists.

Beesley’s (Beesley, 1988) automatic language
identifier for online texts was based on mathemat-
ical language models developed for breaking ci-
phers. These models basically had characteristic
letter sequences and frequencies (‘orthographical
features’) for each language, making them similar
to n-grams models. The insights on which they are
based, as Beesley points out, have been known at
least since the time of Ibn ad-Duraihim who lived
in the 14th century. Beesley’s method needed 6-64
K of training data and 10-12 words of test data. It
treats language and encoding pair as one entity.

Adams and Resnik (Adams and Resnik, 1997)
describe a client-server system using Dunning’s
n-grams based algorithm (Dunning, 1994) for a
variety of tradeoffs available to NLP applications
like between the labelling accuracy and the size
and completeness of language models. Their sys-
tem dynamically adds language models. The sys-
tem uses other tools to identify the text encoding.
They use 5-grams with add-k smoothing. Training
size was 1-50 K and test size above 50 characters.
Some pruning is done, like for frequencies up to 3.

Some methods for language identification use
techniques similar to n-gram based text catego-
rization (Cavnar and Trenkle, 1994) which calcu-
lates and compares profiles of n-gram frequencies.
This is the approach nearest to ours. Such meth-
ods differ in the way they calculate the likelihood
that the test data matches with one of the profiles.
Beesley’s method simply uses word-wise proba-
bilities of ‘digram’ sequences by multiplying the
probabilities of sequences in the test string. Oth-
ers use some distance measure between training
and test profiles to find the best match.
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Cavnar also mentions that top 300 or so n-grams
are almost always highly correlated with the lan-
guage, while the lower ranked n-grams give more
specific indication about the text, namely the topic.
The distance measure used by Cavnar is called
‘out-of-rank’ measure and it sums up the differ-
ences in rankings of the n-grams found in the test
data as compared to the training data. This is
among the measures we have tested.

The language model used by Combrinck and
Botha (Combrinck and Botha, 1994) is also based
on bigram or trigram frequencies (they call them
‘transition vectors’). They select the most dis-
tinctive transition vectors by using as measure the
ratio of the maximum percentage of occurrences
to the total percentage of occurrences of a transi-
tion vector. These distinctive vectors then form the
model.

Dunning (Dunning, 1994) also used an n-grams
based method where the model selected is the one
which is most likely to have generated the test
string. Giguet (Giguet, 1995b; Giguet, 1995a) re-
lied upon grammatically correct words instead of
the most common words. He also used the knowl-
edge about the alphabet and the word morphology
via syllabation. Giguet tried this method for tag-
ging sentences in a document with the language
name, i.e., dealing with multilingual documents.

Another method (Stephen, 1993) was based on
‘common words’ which are characteristic of each
language. This methods assumes unique words
for each language. One major problem with this
method was that the test string might not contain
any unique words.

Cavnar’s method, combined with some heuris-
tics, was used by Kikui (Kikui, 1996) to identify
languages as well as encodings for a multilingual
text. He relied on known mappings between lan-
guages and encodings and treated East Asian lan-
guages differently from West European languages.

Kranig (Muthusamy et al., 1994) and (Simon,
2005) have reviewed and evaluated some of the
well known language identification methods. Mar-
tins and Silva (Martins and Silva, 2005) describe
a method similar to Cavnar’s but which uses a dif-
ferent similarity measure proposed by Jiang and
Conrath (Jiang and Conrath, 1997). Some heuris-
tics are also employed.

Poutsma’s (Poutsma, 2001) method is based on
Monte Carlo sampling of n-grams from the begin-
ning of the document instead of building a com-

plete model of the whole document. Sibun and
Reynar (Sibun and Reynar, 1996) use mutual in-
formation statistics or relative entropy, also called
Kullback-Leibler distance for language identifica-
tion. Souter et al.(Souter et al., 1994) compared
unique character string, common word and ’tri-
graph’ based approaches and found the last to be
the best.

Compression based approaches have also been
used for language identification. One example of
such an approach is called Prediction by Partial
Matching (PPM) proposed by Teahan (Teahan and
Harper, 2001). This approach uses cross entropy
of the test data with a language model and predicts
a character given the context.

3 Pruned Character N-grams
Like in Cavnar’s method, we used pruned n-grams
models of the reference or training as well as
test data. For each language-encoding pair, some
training data is provided. A character based n-
gram model is prepared from this data. N-grams
of all orders are combined and ranked according
to frequency. A certain number of them (say 1000)
with highest frequencies are retained and the rest
are dropped. This gives us the pruned charac-
ter n-grams model, which is used for language-
encoding identification.

As an attempt to increase the performance, we
also tried to augment the pruned character n-grams
model with a word n-gram model.

4 Distance Measures
Some of the measures we have experimented with
have already been mentioned in the section on pre-
vious work. The measures considered in this work
range from something as simple as log probabil-
ity difference to the one based on Jiang and Con-
rath (Jiang and Conrath, 1997) measure.

Assuming that we have two models or distribu-
tions P and Q over a variable X, the measures (sim)
are defined as below (p and q being probabilities
and r and s being ranks in models P and Q:

1. Log probability difference:

sim =
∑

x

(log p(x) − log q(x)) (1)

2. Absolute log probability difference:

sim =
∑

x

(abs(log p(x)) − abs(log q(x)))

(2)
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3. Cross entropy:

sim =
∑

x

(p(x) ∗ log q(x)) (3)

4. RE measure (based on relative entropy or
Kullback-Leibler distance – see note below):

sim =
∑

x

p(x)
log p(x)

log q(x)
(4)

5. JC measure (based on Jiang and Conrath’s
measure) (Jiang and Conrath, 1997):

sim = A −B (5)

where,

A = 2 ∗
∑

x

(log p(x) + log q(x)) (6)

and,

B =
∑

x

log p(x) +
∑

x

log q(x) (7)

6. Out of rank measure (Cavnar and Trenkle,
1994):

sim =
∑

x

abs(r(x) − s(x)) (8)

7. MRE measure (based on mutual or symmet-
ric relative entropy, the original definition of
KL-distance given by Kullback and Leibler):

sim =
∑

x

p(x)
log p(x)

log q(x)
+

∑

x

q(x)
log q(x)

log p(x)
(9)

8. Mutual (or symmetric) cross entropy:

sim =
∑

x

(p(x)∗log q(x)+q(x)∗log p(x))

(10)

As can be noticed, all these measures, in a way,
seem to be information theoretic in nature. How-
ever, our focus in this work is more on the pre-
senting empirical evidence rather than discussing
mathematical foundation of these measures. The
latter will of course be interesting to look into.

NOTE:
We had initiallly experimented with relative en-

tropy or KL-distance as defined below (instead of
the RE measure mentioned above):

sim =
∑

x

p(x) log
p(x)

q(x)
(11)

Another measure we tried was DL measure
(based on Dekang Lin’s measure, on which the JC
measure is based):

sim =
A

B
(12)

where A and B are as given above.
The results for the latter measure were not very

good (below 50% in all cases) and the RE mea-
sure defined above performed better than relative
entropy. These results have not been reported in
this paper.

5 Mutual Cross Entropy
Cross entropy is a well known distance measure
used for various problems. Mutual cross entropy
can be seen as bidirectional or symmetric cross en-
tropy. It is defined simply as the sum of the cross
entropies of two distributions with each other.

Our motivation for using ‘mutual’ cross entropy
was that many similarity measures like cross en-
tropy and relative entropy measure how similar
one distribution is to the other. This will not neces-
sary mean the same thing as measuring how sim-
ilar two distributions are to each other. Mutual
information measures this bidirectional similarity,
but it needs joint probabilities, which means that
it can only be applied to measure similarity of
terms within one distribution. Relative entropy or
Kullback-Leibler measure is applicable, but as the
results show, it doesn’t work as well as expected.

Note that some authors treat relative entropy
and mutual information interchangeably. They are
very similar in nature except that one is applicable
for one variable in two distributions and the other
for two variables in one distribution.

Our guess was that symmetric measures may
give better results as both the models give some in-
formation about each other. This seems to be sup-
ported by the results for cross entropy, but (asym-
metric) cross entropy and RE measures also gave
good results.

6 The Algorithm
The foundation of the algorithm for identifying the
language and encoding of a text or string has al-
ready been explained earlier. Here we give a sum-
mary of the algorithm we have used. The parame-
ters for the algorithm and their values used in our
experiments reported here have also been listed.
These parameters allow the algorithm to be tuned
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Table 1: DESCRIPTION OF DATA SETS
Names Total Count

Languages Afrikaans (1), Assamese (1), Bengali (2), Bulgarian (1), Catalan (1)
Czech (1), Danish (1), Dutch (1), English (1), Esperanto (1)
Finnish (1), French (1), German (1), Gujarati (2), Hindi (8)
Icelandic (1), Iloko (1), Iroquoian (1), Italian (1), Kannada (1)
Khasi (1), Latin (1), Malayalam (1), Marathi (5), Modern Greek (1)
Nahuatl (1), Norwegian (1), Oriya (2), Polish (1), Portugues (1)
Punjabi (1), Romanian (1), Russian (1), Serbian (1), Spanish (1)
Tagalog (1), Tamil (1), Telugu (1), Welsh (1) 39

Encodings UTF8 (7), ISO-8859-1 (16), ISO-8859-2 (1), US-ASCII (4)
Windows-1251 (2), Windows-1250 (1), ISCII (10), ISFOCB (1)
ITrans (1), Shusha (1), Typewriter (1), WX (1), Gopika (1)
Govinda (1), Manjusha (1), Saamanaa (1), Subak (1)
Akruti Sarala (1), Webdunia (1) 19

Counts in parenthesis represent the extra ambiguity for that language or encoding.
For example, Hindi (8) means that 8 different encodings were tested for Hindi.

Language-Encoding Pairs: 53
Minimum training data size: 16035 characters (2495 words)

Maximum training data size: 650292 characters (102377 words)
Average training data size: 166198 characters (22643 words)

Confusable Languages: Assamese/Bengali/Oriya, Dutch/Afrikaans, Norwegian/Danish,
Spanish/Tagalog, Hindi/Marathi, Telugu/Kannada/Malayalam, Latin/Franch

Table 2: NUMBER OF TEST SETS
Size Number
100 22083
200 10819
500 4091

1000 1867
2000 1524

All test data 840

or customized for best performance. Perhaps they
can even be learned by using some approach as the
EM algorithm.

1. Train the system by preparing character
based and word based (optional) n-grams
from the training data.

2. Combine n-grams of all orders (Oc for char-
acters and Ow for words).

3. Sort them by rank.

4. Prune by selecting only the top Nc charac-
ter n-grams and Nw word n-grams for each
language-encoding pair.

5. For the given test data or string, calculate
the character n-gram based score simc with
every model for which the system has been
trained.

6. Select the t most likely language-encoding
pairs (training models) based on this charac-
ter based n-gram score.

7. For each of the t best training models, calcu-
late the score with the test model. The score
is calculated as:

score = simc + a ∗ simw (13)

where c and w represent character based and
word based n-grams, respectively. And a is
the weight given to the word based n-grams.
In our experiment, this weight was 1 for the
case when word n-grams were considered
and 0 when they were not.

8. Select the most likely language-encoding pair
out of the t ambiguous pairs, based on the
combined score obtained from word and
character based models.
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Table 3: PRECISION FOR VARIOUS MEASURES AND TEST SIZES
Precision

Test Size (characters) LPD ALPD CE RE CT JC MRE MCE
100 CN 91.00 90.69 96.13 98.51 78.92 97.71 98.26 97.64

CWN 94.31 94.15 97.50 75.54 81.63 98.35 94.16 98.38
200 CN 94.46 94.37 97.72 99.35 91.24 99.05 99.24 99.05

CWN 96.52 96.52 98.85 90.54 92.79 99.21 91.13 99.39
500 CN 96.24 96.24 98.39 99.68 96.41 99.58 99.63 99.63

CWN 98.19 97.80 99.46 94.65 96.82 99.63 98.78 99.85
1000 CN 97.18 96.81 98.81 99.78 97.73 99.89 99.73 99.95

CWN 98.21 98.21 99.68 96.64 98.05 99.89 99.40 100.00
2000 CN 95.01 94.21 98.20 99.40 95.21 99.33 99.20 99.47

CWN 96.74 97.14 99.47 94.01 95.81 99.40 96.67 99.60
All available CN 82.50 88.57 98.33 99.88 94.76 99.88 99.76 100.00

test data CWN 89.88 94.64 99.88 94.76 96.55 99.88 97.86 100.00
CN: Character n-grams only, CWN: Character n-grams plus word n-grams

To summarize, the parameters in the above
method are:

1. Character based n-gram models Pc and Qc

2. Word based n-gram models Pw and Qw

3. Orders Oc and Ow of n-grams models

4. Number of retained top n-grams Nc and Nw

(pruning ranks for character based and word
based n-grams, respectively)

5. Number t of character based models to be
disambiguated by word based models

6. Weight a of word based models

Parameters 3 to 6 can be used to tune the per-
formace of the identification system. The results
reported in this paper used the following values of
these parameters:

1. Oc = 4

2. Ow = 3

3. Nc = 1000

4. Nw = 500

5. t = 5

6. a = 1

There is, of course, the type of similarity score,
which can also be used to tune the performance.
Since MCE gave the best overall performance in
our experiments, we have selected it as the default
score type.

7 Implementation

The language and encoding tool has been imple-
mented as a small API in Java. This API uses an-
other API to prepare pruned character and word
n-grams which was developed as part of another
project. A graphical user interface (GUI) has also
been implemented for identifying the languages
and encodings of texts, files, or batches of files.
The GUI also allows a user to easily train the tool
for a new language-encoding pair. The tool will be
modified to work in client-server mode for docu-
ments from the Internet.

From implementation point of view, there are
some issues which can significantly affect the per-
formance of the system:

1. Whether the data should be read as text or as
a binary file.

2. The assumed encoding used for reading the
text, both for training and testing. For ex-
ample, if we read UTF8 data as ISO-8859-1,
there will be errors.

3. Whether the tranining models should be read
every time they are needed or be kept in
memory.

4. If training models are stored (even if they are
only read at the beginning and then kept in
memory), as will have to be done for practical
applications, how should they be stored: as
text or in binary files?
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To take care of these issues, we adopted the fol-
lowing policy:

1. For preparing character based models, we
read the data as binary files and the charac-
ters are read as bytes and stored as numbers.
For word based models, the data is read as
text and the encoding is assumed to be UTF8.
This can cause errors, but it seems to be the
best (easy) option as we don’t know the ac-
tual encoding. A slightly more difficult op-
tion to implement would be to use charac-
ter based models to guess the encoding and
then build word based models using that as
the assumed encoding. The problem with this
method will be that no programming environ-
ment supports all possible encodings. Note
that since we are reading the text as bytes
rather than characters for preparing ‘charac-
ter based n-grams’, technically we should say
that we are using byte based n-grams mod-
els, but since we have not tested on multi-byte
encodings, a byte in our experiments was al-
most always a character, except when the en-
coding was UTF8 and the byte represented
some meta-data like the script code. So, for
practical purposes, we can say that we are us-
ing character based n-grams.

2. Since after pruning, the size of the models
(character as well as word) is of the order of
50K, we can afford to keep the training mod-
els in memory rather than reading them every
time we have to identify the language and en-
coding of some data. This option is naturally
faster. However, for some applications where
language and encoding identification is to be
done rarely or where there is a memory con-
straint, the other option can be used.

3. It seems to be better to store the training mod-
els in binary format since we don’t know the
actual encoding and the assumed encoding
for storing may be wrong. We tried both
options and the results were worse when we
stored the models as text.

Our identification tool provides customizability
with respect to all the parameters mentioned in this
and the previous section.

8 Evaluation
Evaluation was performed for all the measures
listed earlier. These are repeated here with a code

for easy reference in table-3.

• LPD: Log probability difference

• ALPD: Absolute log probability difference

• CE: Cross entropy

• RE: RE measure based on relative entropy

• JC: JC measure (based on Jiang and Con-
rath’s measure)

• CT: Cavnar and Trenkle’s out of rank mea-
sure

• MRE: MRE measure based on mutual (sym-
metric) relative entropy

• MCE: Mutual (symmetric) cross entropy

We tested on six different sizes in terms of char-
acters, namely 100, 200, 500, 1000, 2000, and all
the available test data (which was not equal for
various language-encoding pairs). The number of
language-encoding pairs was 53 and the minimum
number of test data sets was 840 when we used
all available test data. In other cases, the number
was naturally larger as the test files were split in
fragments (see table-2).

The languages considered ranged from Es-
peranto and Modern Greek to Hindi and Telugu.
For Indian languages, especially Hindi, several en-
codings were tested. Some of the pairs had UTF8
as the encoding, but the information from UTF8
byte format was not explicitly used for identifi-
cation. The number of languages tested was 39
and number encodings was 19. Total number of
language-encoding pairs was 53 (see table-1).

The test and training data for about half of
the pairs was collected from web pages (such as
Gutenberg). For Indian languages, most (but not
all) data was from what is known as the CIIL cor-
pus.

We didn’t test on various training data sizes.
The size of the training data ranged from 2495 to
102377 words, with more on the lower side than
on the higher.

Note that we have considered the case where
both the language and the encoding are unknown,
not where one of them is known. In the latter case,
the performance can only improve. Another point
worth mentioning is that the training data was not
very clean, i.e., it had noise (such as words or sen-
tences from other languages). Error details have
been given in table-4.
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Table 4: ERROR DETAILS
Language-Encoding Identified As
Afrikaans::ISO-8859-1 Dutch::ISO-8859-1 (9)
Assamese::ISCII Bengali::ISCII (6), Oriya::ISCII (113)
Bengali::ISCII Hindi::ISCII (2), Oriya::ISCII (193)
Bulgarian::Windows-1251 Marathi::ISCII (6)
Catalan::ISO-8859-1 Latin::ISO-8859-1 (4)
Danish::ISO-8859-1 Norwegian::ISO-8859-1 (7)
Dutch::ISO-8859-1 Afrikaans::ISO-8859-1 (4)
English::ASCII Icelandic::UTF8 (36)
Esperanto::UTF8 Danish::ISO-8859-1 (5), Italian::ISO-8859-1 (1)
French::ISO-8859-1 Catalan::ISO-8859-1 (6)
German::ISO-8859-1 Dutch::ISO-8859-1 (4), Latin::ISO-8859-1 (3)
Hindi::ISCII English::ASCII (14), Marathi::ISCII (20)
Hindi::Isfocb Dutch::ISO-8859-1 (4), English::ASCII (6)
Hindi::Phonetic-Shusha English::ASCII (14)
Hindi::Typewriter English::ASCII (12)
Hindi::UTF8 Marathi::UTF8 (82)
Hindi::WX English::ASCII (8)
Hindi::Webdunia French::ISO-8859-1 (2), Gujarati::Gopika (9)
Icelandic::UTF8 Dutch::ISO-8859-1 (3), Latin::ISO-8859-1 (2)
Iloko::ISO-8859-1 Tagalog::ISO-8859-1 (18)
Iroquoian::ISO-8859-1 French::ISO-8859-1 (7)
Italian::ISO-8859-1 Catalan::ISO-8859-1 (2)
Kannada::ISCII Malayalam::ISCII (9)
Latin::ISO-8859-1 Catalan::ISO-8859-1 (3), Dutch::ISO-8859-1 (85)

French::ISO-8859-1 (28)
Malayalam::ISCII Tamil::ISCII (3)
Marathi::ISCII Hindi::ISCII (13)
Marathi::Manjusha English::ASCII (1)
Marathi::UTF8 Hindi::UTF8 (30)
Nahuatl::ISO-8859-1 English::ASCII (2)
Norwegian::ISO-8859-1 Danish::ISO-8859-1 (69)
Oriya::ISCII Assamese::ISCII (5), Bengali::ISCII (70), Hindi::ISCII (7)
Portugues::ISO-8859-1 Catalan::ISO-8859-1 (4)
Punjabi::ISCII Assamese::ISCII (2), Hindi::ISCII (1)
Romanian::US-ASCII Italian::ISO-8859-1 (2)
Russian::Windows-1251 Portugues::ISO-8859-1 (12)
Spanish::ISO-8859-1 Portugues::ISO-8859-1 (2), Tagalog::ISO-8859-1 (44)
Tagalog::ISO-8859-1 English::ASCII (37), Khasi::US-ASCII (15)
Telugu::ISCII Hindi::ISCII (15), Kannada::ISCII (21), Malayalam::ISCII (2)

These error were for MCE, both with and without word models for
all the test data sizes from 200 to all available data. Most of the

errors were for smaller sizes, i.e., 100 and 200 characters.
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9 Results

The results are presented in table-3. As can be
seen almost the measures gave at least moderately
good results. The best results on the whole were
obtained with mutual cross entropy. The JC mea-
sure gave almost equally good results. Even a sim-
ple measure like log probability difference gave
surprisingly good results.

It can also be observed from table-3 that the size
of the test data is an important factor in perfor-
mance. More test data gives better results. But this
does not always happen, which too is surprising.
It means some other factors also come into play.
One of these factors seem to whether the train-
ing data for different models is of equal size or
not. Another factor seems to be noise in the data.
This seems to affect some measures more than the
others. For example, LPD gave the worst perfor-
mance when all the available test data was used.
For smaller data sets, noise is likely to get isolated
in some data sets, and therefore is less likely to
affect the results.

Using word n-grams to augment character n-
grams improved the performance in most of the
cases, but for measures like JC, RE, MRE and
MCE, there wasn’t much scope for improvement.
In fact, for smaller sizes (100 and 200 charac-
ters), word models actually reduced the perfor-
mance for these better measures. This means ei-
ther that word models are not very good for better
measures, or we have not used them in the best
possible way, even though intuitively they seem to
offer scope for improvement when character based
models don’t perform perfectly.

10 Issues and Enhancements

Although the method works very well even on lit-
tle test and training data, there are still some is-
sues and possible enhancements. One major issue
is that Web pages quite often contain text in more
than one language-encoding. An ideal language-
encoding identification tool should be able to mark
which parts of the page are in which language-
encoding.

Another possible enhancement is that in the
case of Web pages, we can also take into account
the language and encoding specified in the Web
page (HTML). Although it may not be correct for
non-standard encodings, it might still be useful for
differentiating between very close encodings like

ASCII and ISO-8859-1 which might seem identi-
cal to our tool.

If the text happens to be in Unicode, then it
might be possible to identify at least the encod-
ing (the same encoding might be used for more
than one languages, e.g., Devanagari for Hindi,
Sanskrit and Marathi) without using a statistical
method. This might be used for validating the re-
sult from the statistical method.

Since every method, even the best one, has
some limitations, it is obvious that for practical
applications we will have to combine several ap-
proaches in such a way that as much of the avail-
able information is used as possible and the var-
ious approaches complement each other. What is
left out by one approach should be taken care of by
some other approach. There will be some issues
in combining various approaches like the order in
which they have to used, their respective priorities
and their interaction (one doesn’t nullify the gains
from another).

It will be interesting to apply the same method
or its variations on text categorization or topic
identification and other related problems. The dis-
tance measures can also be tried for other prob-
lems.

11 Conclusion
We have presented the results about some dis-
tance measures which can be applied to NLP prob-
lems. We also described a method for automati-
cally identifying the language and encoding of a
text using several measures including one called
‘mutual cross entropy’. All these measures are ap-
plied on character based pruned n-grams models
created from the training and the test data. There
is one such model for each of the known language-
encoding pairs. The character based models may
be augmented with word based models, which in-
creases the performance for not so good measures,
but doesn’t seem to have much effect for better
measures. Our method gives good performance on
a few words of test data and a few pages of training
data for each language-encoding pair. Out of the
measures considered, mutual cross entropy gave
the best results, but RE, MRE and JC measures
also performed almost equally well.
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Abstract

This paper presents an approach to the
question whether it is possible to construct
a parser based on ideas from case-based
reasoning. Such a parser would employ
a partial analysis of the input sentence
to select a (nearly) complete syntax tree
and then adapt this tree to the input sen-
tence. The experiments performed on Ger-
man data from the Tüba-D/Z treebank and
the KaRoPars partial parser show that a
wide range of levels of generality can be
reached, depending on which types of in-
formation are used to determine the simi-
larity between input sentence and training
sentences. The results are such that it is
possible to construct a case-based parser.
The optimal setting out of those presented
here need to be determined empirically.

1 Introduction

Linguistic similarity has often been used as a bias
in machine learning approaches to Computational
Linguistics problems. The success of applying
memory-based learning to problems such as POS
tagging, named-entity recognition, partial parsing,
or word sense disambiguation (cf. (Daelemans et
al., 1996; Daelemans et al., 1999; Mooney, 1996;
Tjong Kim Sang, 2002; Veenstra et al., 2000))
shows that the bias of this similarity-based ap-
proach is suitable for processing natural language
problems.

In (Kübler, 2004a; Kübler, 2004b), we extended
the application of memory-based learning to full
scale parsing, a problem which cannot easily be
described as a classification problem. In this ap-
proach, the most similar sentence is found in the

training data, and the respective syntax tree is then
adapted to the input sentence. The parser was de-
veloped for parsing German dialog data, and it is
based on the observation that dialogs tend to be
repetitive in their structure. Thus, there is a higher
than normal probability of finding the same or a
very similar sentence in the training data.

The present paper examines the possibilities of
extending the concepts in (Kübler, 2004a; Kübler,
2004b) to unrestricted newspaper text. Since in
newspaper text, the probability of finding the same
sentence or a very similar one is rather low, the
parser needs to be extended to a more flexible ap-
proach which does not rely as much on identity
between sentences as the original parser.

The paper is structured as follows: Section 2 ex-
plains the original parser in more detail, and sec-
tion 3 describes the treebank used in the investi-
gation. Section 4 investigates whether the chunk
sequences used for selecting the most similar sen-
tence in the training data give a reliable estimate
of the syntax tree, section 5 investigates properties
of tree sets associated with chunk sequences, and
section 6 draws conclusions on the architecture of
an extended case-based parser.

2 A Memory-Based Parser

The parser in (Kübler, 2004a; Kübler, 2004b)
approaches parsing as the task of finding a com-
plete syntax tree rather than incrementally build-
ing the tree by rule applications, as in standard
PCFGs. Despite this holistic approach to selecting
the most similar tree, the parser has a reasonable
performance: the first column of Table 1 shows
the parser’s evaluation on German spontaneous
speech dialog data. This approach profits from the
fact that it has a more global view on parsing than
a PCFG parser. In this respect, the memory-based
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memory-based parser KaRoPars
labeled recall (syntactic categories) 82.45% 90.86%
labeled precision (syntactic categories) 87.25% 90.17%
F� 84.78 90.51
labeled recall (incl. gramm. functions) 71.72%
labeled precision (incl. gramm. functions) 75.79%
F� 73.70

Table 1: Results for the memory-based parser (Kübler, 2004a; Kübler, 2004b) and KaRoPars (Müller
and Ule, 2002; Müller, 2005). The evaluation of KaRoPars isbased on chunk annotations only.

parser employs a similar strategy to the one in
Data-Oriented Parsing(DOP) (Bod, 1998; Scha et
al., 1999). Both parsers use larger tree fragments
than the standard trees. The two approaches differ
mainly in two respects: 1) DOP allows different
tree fragments to be extracted from one tree, thus
making different combinations of fragments avail-
able for the assembly of a specific tree. Our parser,
in contrast, allows only one clearly defined tree
fragment for each tree, in which only the phrase-
internal structure is variable. 2) Our parser does
not use a probabilistic model, but a simple cost
function instead. Both factors in combination re-
sult in a nearly deterministic, and thus highly effi-
cient parsing strategy.

Since the complete tree structure in the
memory-based parser is produced in two steps (re-
trieval of the syntax tree belonging to the most
similar sentence and adaptation of this tree to the
input sentence), the parser must rely on more in-
formation than the local information on which a
PCFG parser suggests the next constituent. For
this reason, we suggested a backing-off architec-
ture, in which each modules used different types of
easily obtainable linguistic information such as the
sequence of words, the sequence of POS tags, and
the sequence of chunks. Chunk parsing is a partial
parsing approach (Abney, 1991), which is gener-
ally implemented as cascade of finite-state trans-
ducers. A chunk parser generally gives an anal-
ysis on the clause level and on the phrase level.
However, it does not make any decisions concern-
ing the attachment of locally ambiguous phrases.
Thus, the German sentence in (1a) receives the
chunk annotation in (1b).

(1) a. In
In

der
the

bewußten
conscious

Wahrnehmung
perception

des
of the

Lebens
life

sieht
discerns

der
the

international
internationally

angesehene
distinguished

Künstler
artist

den
the

Ursprung
origin

aller
of all

Kreativität.
creativity.

’The internationally recognized artist discerns
the origin of all creativity in the conscious
perception of life.’

b. [PC In der bewußten Wahrnehmung des
Lebens] [VCL sieht] [NC der international
angesehene Künstler] [NC den Ursprung]
[NC aller Kreativität].

NCs are noun chunks, PC is a prepositional
chunk, and VCL is the finite verb chunk. While
for the chunks to the right of the verb chunk, no
attachment decision could be made, the genitive
noun phrasedes Lebenscould be grouped with
the PC because of German word order regularities,
which allow exactly one constituent in front of the
finite verb.

It can be hypothesized that the selection of
the most similar sentence based on sequences of
words or POS tags works best for dialog data be-
cause of the repetitive nature of such dialogs. The
strategy with the greatest potential for generaliza-
tion to newspaper texts is thus the usage of chunk
sequences. In the remainder of this paper, we will
therefore concentrate on this approach.

The proposed parser is based on the follow-
ing architecture: The parser needs a syntactically
annotated treebank for training. In the learning
phase, the training data are chunk parsed, the
chunk sequences are extracted from the chunk
parse and fitted to the syntax trees; then the trees
are stored in memory. In the annotation phase, the
new sentence is chunk parsed. Based on the se-
quence of chunks, the group of most similar sen-
tences, which all share the same chunk analysis, is
retrieved from memory. In a second step, the best
sentence from this group needs to be selected, and
the corresponding tree needs to be adapted to the
input sentence.

The complexity of such a parser crucially de-
pends on the question whether these chunk se-
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quences are reliable indicators for the correct syn-
tax trees. Basically, there exist two extreme pos-
sibilities: 1) most chunk sequences are associated
with exactly one sentence, and 2) there is only a
small number of different chunk sequences, which
are each associated with many sentences. In the
first case, the selection of the correct tree based
on a chunk sequence is trivial but the coverage
of the parser would be rather low. The parser
would encounter many sentences with chunk se-
quences which are not present in the training data.
In the second case, in contrast, the coverage of
chunk sequences would be good, but then such
a chunk sequence would correspond to many dif-
ferent trees. As a consequence, the tree selection
process would have to be more elaborate. Both
extremes would be extremely difficult for a parser
to handle, so in the optimal case, we should have
a good coverage of chunk sequences combined
with a reasonable number of trees associated with
a chunk sequence.

The investigation on the usefulness of chunk se-
quences was performed on the data of the German
treebank TüBa-D/Z (Telljohann et al., 2004) and
on output from KaRoPars, a partial parser for Ger-
man (Müller and Ule, 2002). But in principle, the
parsing approach is valid for languages ranging
from a fixed to a more flexible word order. The
German data will be described in more detail in
the following section.

3 The German Data

3.1 The Treebank TüBa-D/Z

The TüBa-D/Z treebank is based on text from the
German newspaper ’die tageszeitung’, the present
release comprises approx. 22 000 sentences. The
treebank uses an annotation framework that is
based on phrase structure grammar enhanced by
a level of predicate-argument structure. The an-
notation scheme uses pure projective tree struc-
tures. In order to treat long-distance relationships,
TüBa-D/Z utilizes a combination of topological
fields (Höhle, 1986) and specific functional labels
(cf. the tree in Figure 5, there the extraposed rel-
ative clause modifies the subject, which is anno-
tated via the labelON-MOD). Topological fields
described the main ordering principles in a Ger-
man sentence: In a declarative sentence, the posi-
tion of the finite verb as the second constituent and
of the remaining verbal elements at the end of the
clause is fixed. The finite verb constitutes theleft

sentence bracket(LK), and the remaining verbal
elements theright sentence bracket(VC). The left
bracket is preceded by theinitial field (VF), be-
tween the two verbal fields, we have the unstruc-
turedmiddle field (MF). Extraposed constituents
are in thefinal field (NF).

The tree for sentence (1a) is shown in Figure
1. The syntactic categories are shown in circular
nodes, the function-argument structure as edge la-
bels in square boxes. Inside a phrase, the function-
argument annotation describes head/non-head re-
lations; on the clause level, directly below the
topological fields, grammatical functions are an-
notated. The prepositional phrase (PX) is marked
as a verbal modifier (V-MOD), the noun phrase
der international angesehene Künstler as subject
(ON), and the complex noun phraseden Ursprung
aller Kreativität as accusative object (OA). The
topological fields are annotated directly below the
clause node (SIMPX): the finite verb is placed in
the left bracket, the prepositional phrase consti-
tutes the initial field, and the two noun phrases the
middle field.

3.2 Partially Parsed Data

KaRoPars (Müller and Ule, 2002) is a partial
parser for German, based on the finite-state tech-
nology of the TTT suite of tools (Grover et al.,
1999). It employs a mixed bottom-up top-down
routine to parse German. Its actual performance is
difficult to determine exactly because it employed
manually written rules. The figures presented in
Table 1 result from an evaluation (Müller, 2005) in
which the parser output was compared with tree-
bank structures. The figures in the Table are based
on an evaluation of chunks only, i.e. the annotation
of topological fields and clause boundaries was not
taken into account.

The output of KaRoPars is a complex XML rep-
resentation with more detailed information than is
needed for the present investigation. For this rea-
son, we show a condensed version of the parser
output for sentence (1a) in Figure 2. The figure
shows only the relevant chunks and POS tags, the
complete output contains more embedded chunks,
the n-best POS tags from different taggers, mor-
phological information, and lemmas. As can be
seen from this example, chunk boundaries often
do not coincide with phrase boundaries. In the
present case, it is clear from the word ordering
constraints in German that the noun phrasedes
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Figure 1: The TüBa-D/Z tree for sentence (1a).

<s broken="no">
<cl c="V2">

<ch fd="VF" c=" PC" prep="in">
<ch c=" PC" prep="in">

<t f=" In "><P t="APPR"></P></t>
<ch nccat="noun" hdnoun="Wahrnehmung" c=" NC">

<t f=" der "><P t="ART"></P></t>
<t f=" bewußten "><P t="ADJA"></P></t>
<t f=" Wahrnehmung"><P t="NN"></P></t></ch></ch>

<ch nccat="noun" hdnoun="Leben" c=" NC">
<t f=" des "><P t="ART"></P></t>
<t f=" Lebens "><P t="NN"></P></t></ch></ch>

<ch finit="fin" c=" VCLVF" mode="akt">
<t f=" sieht "><P t="VVFIN"></P></t></ch>

<ch nccat="noun" hdnoun="K ünstler" c=" NC">
<t f=" der "><P t="ART"></P></t>
<t f=" international "><P t="ADJD"></P></t>
<t f=" angesehene "><P t="ADJA"></P></t>
<t f=" Künstler "><P t="NN"></P></t></ch>

<ch nccat="noun" hdnoun="Ur=Sprung" c=" NC">
<t f=" den "><P t="ART"></P></t>
<t f=" Ursprung "><P t="NN"></P></t></ch>

<ch nccat="noun" hdnoun="Kreativit ät" c=" NC">
<t f=" aller "><P t="PIDAT"></P></t>
<t f=" Kreativit ät "><P t="NN"></P></t></ch></cl></s>

Figure 2: The KaRoPars analysis for sentence (1a). For better readability, the words and the chunk types
are displayed in bold.

Lebensneeds to be attached to the previous phrase.
In the treebank, it is grouped into a complex noun
phrase while in the KaRoPars output, this noun
phrase is the sister of the prepositional chunkIn
der bewußten Wahrnehmung. Such boundary mis-
matches also occur on the clause level.

4 Chunk Sequences as Indicators for
Syntax Trees

The complexity of the proposed parser depends on
the proportion of chunk sequences versus syntax
trees, as explained in section 2. A first indication
of this proportion is given by the ratio of chunk
sequence types and tree types. Out of the 22 091
sentences in the treebank, there are 20 340 differ-
ent trees (types) and 14 894 different chunk se-

quences. This gives an average of 1.37 trees per
chunk sequence. At a first glance, the result indi-
cates that the chunk sequences are very good in-
dicators for selecting the correct syntax tree. The
negative aspect of this ratio is that many of these
chunk sequences will not be part of the training
data. This is corroborated by an experiment in
which one tenth of the complete data set of chunk
sequences (test set) was tested against the remain-
der of the data set (training set) to see how many
of the test sequences could be found in the train-
ing data. In order to reach a slightly more accurate
picture, a ten-fold setting was used, i.e. the exper-
iment was repeated ten times, each time using a
different segment as test set. The results show that
on average only 43.61% of the chunk sequences
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could be found in the training data.

(2) Schon
Already

trifft
meets

sich
REFL

die
the

Mannschaft
team

erst
only

am
on the

Spieltag.
game day.

’So the team only meets on the day of the game.’

In a second experiment, we added more infor-
mation about chunk types, namely the information
from the fieldsnccat and finit in the XML rep-
resentation to the chunk categories. Fieldnccat
contains information about the head of the noun
chunk, whether it is a noun, a reflexive pronoun,
a relative pronoun, etc. Fieldfinit contains in-
formation about the finiteness of a verb chunk.
For this experiment, sentence (2) is represented by
the chunk sequence “NC:noun VCL NC:refl PC
NC:noun PC AVC NC:noun VCR:fin”. When us-
ing such chunk sequences, the ratio of sequences
found in the training set decreases to 36.59%.

In a third experiment, the chunk sequences were
constructed without adverbial phrases, i.e. with-
out the one category that functions as adjunct in
a majority of the cases. Thus sentence (3) is repre-
sented by the chunk sequence “NC VCL NC NC”
instead of by the complete sequence: “NC VCL
NC AVC AVC AVC NC”. In this case, 54.72%
of the chunk sequences can be found. Reducing
the information in the chunk sequence even fur-
ther seems counterproductive because every type
of information that is left out will make the final
decision on the correct syntax tree even more dif-
ficult.

(3) Wer
Who

gibt
gives

uns
us

denn
anyhow

jetzt
now

noch
still

einen
an

Auftrag?
order?

’Who will give us an order anyhow?’

All the experiments reported above are based on
data in which complete sentences were used. One
possibility of gaining more generality in the chunk
sequences without losing more information con-
sists of splitting the sentences on the clause level.

(4) Ganz
Totally

abgesehen
irrespective

davon,
of it,

daß
that

man
one

dann
then

schon
already

mal
once

alle
all

die
the

Geschlechtsgenossinnen
fellow females

kennt,
knows,

mit
with

denen
whom

man
one

nach
after

der
the

Trennung
break-up

über
about

den
the

Kerl
twerp

ablästern
slander

kann,
can,

weil
because

sie
they

ja
already

genau
exactly

wissen,
know,

wie
how

mies
bad

er
he

eigentlich
really

ist.
is.

’Completely irrespective of the fact that one al-
ready knows all the other females with whom one
can slander the twerp after the break-up because
they already know what a loser he is.’

Thus, the complex sentence in (4) translates into
5 different clauses, i.e. into 5 different chunk se-
quences:

1. SubC NC:noun AVC AVC AVC NC:noun
NC:noun VCR:fin

2. PC NC:noun PC PC VCR:fin
3. SubC NC:noun AVC AJVC VCR:fin
4. SubC AJVC NC:noun AVC VCR:fin
5. AVC VCR:fin PC

The last sequence covers the elliptical ma-
trix clause ganz abgesehen davon, the first
four sequences describe the subordinated clauses;
i.e. the first sequence describes the subordi-
nate clausedaß man dann schon mal alle die
Geschlechtsgenossinnen kennt, the second se-
quence covers the relative clausemit denen man
nach der Trennung̈uber den Kerl abl̈astern kann.
The third sequence describes the subordinate
clause introduced by the conjunctionweil, and the
fourth sequence covers the subordinate clause in-
troduced by the interrogative pronounwie.

On the one hand, splitting the chunk sequences
into clause sequences makes the parsing task more
difficult because the clause boundaries annotated
during the partial parsing step do not always coin-
cide with the clause boundaries in the syntax trees.
In those cases where the clause boundaries do not
coincide, a deterministic solution must be found,
which allows a split that does not violate the paral-
lelism constraints between both structures. On the
other hand, the split into clauses allows a higher
coverage of new sentences without extending the
size of the training set. In an experiment, in which
the chunk sequences were represented by the main
chunk types plus subtypes (cf. experiment two)
and were split into clauses, the percentage of un-
seen sequences in a tenfold split was reduced from
66.41% to 44.16%. If only the main chunk type is
taken into account, the percentage of unseen se-
quences decreases from 56.39% to 36.34%.

The experiments presented in this section show
that with varying degrees of information and with
different ways of extracting chunk sequences, a
range of levels of generality can be represented.
If the maximum of information regarded here is
used, only 36.59% of the sequences can be found.
If, in contrast, the sentences are split into chunks
and only the main chunk type is used, the ratio
of found sequences reaches 63.66%. A final deci-
sion on which representation of chunks is optimal,
however, is also dependent on the sets of trees that
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are represented by the chunk sequences and thus
needs to be postponed.

5 Tree Sets

In the previous section, we showed that if we
extract chunk sequences based on complete sen-
tences and on main chunk types, there are on av-
erage 1.37 sentences assigned to one chunk se-
quences. At a first glance, this results means that
for the majority of chunk sequences, there is ex-
actly one sentence which corresponds to the se-
quence, which makes the final selection of the cor-
rect tree trivial. However, 1261 chunk sequences
have more than one corresponding sentence, and
there is one chunk sequence which has 802 sen-
tences assigned. We will call these collectionstree
sets. In these cases, the selection of the correct
tree from a tree set may be far from trivial, de-
pending on the differences in the trees. A minimal
difference constitutes a difference in the words
only. If all corresponding words belong to the
same POS class, there is no difference in the syn-
tax trees. Another type of differences in the trees
which does not overly harm the selection process
are differences in the internal structure of phrases.
In (Kübler, 2004a), we showed that the tree can
be cut at the phrase level, and new phrase-internal
structures can be inserted into the tree. Thus, the
most difficult case occurs when the differences
in the trees are located in the higher regions of
the trees where attachment information between
phrases and grammatical functions are encoded. If
such cases are frequent, the parser needs to employ
a detailed search procedure.

The question how to determine the similarity of
trees in a tree set is an open research question. It
is clear that the similarity measure should abstract
away from unimportant differences in words and
phrase-internal structure. It should rather concen-
trate on differences in the attachment of phrases
and in grammatical functions. As a first approx-
imation for such a similarity measure, we chose
a measure based on precision and recall of these
parts of the tree. In order to ignore the lower levels
of the tree, the comparison is restricted to nodes in
the tree which have grammatical functions.

(5) Der
The

Autokonvoi
car convoy

mit
with

den
the

Probenbesuchern
rehearsal visitors

fährt
travels

eine
a

Straße
street

entlang,
down,

die
which

noch
still

heute
today

Lagerstraße
Lagerstraße

heißt.
is called.

’The convoy of the rehearsal visitors’ cars travels
down a street that is still called Lagerstraße.’

For example, Figure 5 shows the tree for sen-
tence (5). The matrix clause consists of a com-
plex subject noun phrase (GF: ON), a finite verb
phrase, which is the head of the sentence, an
accusative noun phrase (GF: OA), a verb parti-
cle (GF: VPT), and an extraposed relative clause
(GF: ON-MOD). Here the grammatical function
indicates a long-distance relationship, the relative
clause modifies the subject. The relative clause,
in turn, consists of a subject (the relative pro-
noun), an adverbial phrase modifying the verb
(GF: V-MOD), a named entity predicate (EN-
ADD, GF: PRED), and the finite verb phrase. The
comparison of this tree to other trees in its tree
set will then be based on the following nodes:
NX:ON VXFIN:HD NX:OA PTKVC:VPT R-
SIMPX:ON-MOD NX:ON ADVX:V-MOD EN-
ADD:PRED VXFIN:HD. Precision and recall are
generally calculated based on the number of iden-
tical constituents between two trees. Two con-
stituents are considered identical if they have the
same node label and grammatical function and if
they cover the same range of words (i.e. have the
same yield). For our comparison, the concrete
length of constituents is irrelevant, as long as the
sequential order of the constituents is identical.
Thus, in order to abstract from the length of con-
stituents, their yield is normalized: All phrases are
set to length 1, the yield of a clause is determined
by the yields of its daughters. After this step, pre-
cision and recall are calculated on all pairs of trees
in a tree set. Thus, if a set contains 3 trees, tree 1 is
compared to tree 2 and 3, and tree 2 is compared to
tree 3. Since all pairs of trees are compared, there
is no clear separation of precision and recall, pre-
cision being the result of comparing tree A to B in
the pair and recall being the result of comparing B
to A. As a consequence only the F�� �-measure, a
combination of precision and recall, is used.

As mentioned above, the experiment is con-
ducted with chunk sequences based on complete
sentences and the main chunk types. The average
F-measure for the 1261 tree sets is 46.49%, a clear
indication that randomly selecting a tree from a
tree set is not sufficient. Only a very small number
of sets, 62, consists of completely identical trees,
and most of these sets contain only two trees.

The low F-measure can in part be explained
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Figure 3: The TüBa-D/Z tree for sentence (5).

by the relatively free word order of German: In
contrast to English, the grammatical function of
a noun phrase in German cannot be determined by
its position in a sentence. Thus, if the partial parser
returns the chunk sequence “NC VCL NC NC”, it
is impossible to tell which of the noun phrases is
the subject, the accusative object, or the dative ob-
ject. As a consequence, all trees with these three
arguments will appear in the same tree set. Since
German additionally displays case syncretism be-
tween nominative and accusative, a morphological
analysis can also only provide partial disambigua-
tion. As a consequence, it is clear that the selec-
tion of the correct syntax tree for an input sentence
needs to be based on a selection module that uti-
lizes lexical information.

Another source of differences in the trees are er-
rors in the partial analysis. In the tree set for the
chunk sequence “NC VCL AVC PC PC VCR”,
there are sentences with rather similar structure,
one of them being shown in (6). Most of them
only differ in the grammatical functions assigned
to the prepositional phrases, which can serve ei-
ther as complements or adjuncts. However, the
tree set also contains sentence (7).

(6) Die
The

Brüder
brothers

im
in the

wehrfähigen
fit for military service

Alter
age

seien
had

schon
already

vor
before

der
the

Polizeiaktion
police operation

in
into

die
the

Wälder
woods

geflohen.
fled.

’Those brothers who are considered fit for military
service had already fled into the woods before the
police operation.’

(7) Das
This

gilt
holds

auch
also

für
for

den
the

Umfang,
extent,

in
to

dem
which

Montenegro
Montenegro

attakkiert
attacked

wird.
is.

’This is also true for the extent to which Montene-
gro is being attacked.’

In sentence (7), the relative pronoun was erro-
neously POS tagged as a definite determiner, thus
allowing an analysis in which the two phrasesin
dem and Montenegroare grouped as a preposi-
tional chunk. As a consequence, no relative clause
was found. The corresponding trees, however,
are annotated correctly, and the similarity between
those two sentences is consequently low.

The low F-measure should not be taken as a
completely negative result. Admittedly, it necessi-
tates a rather complex tree selection module. The
positive aspect of this one-to-many relation be-
tween chunk sequences and trees is its generality.
If only very similar trees shared a tree set, then we
would need many chunk sequences. In this case,
the problem would be moved towards the question
how to extract a maximal number of different par-
tial parses from a limited number of training sen-
tences.

6 Consequences for a Case-Based Parser

The experiments in the previous two sections show
that the chunk sequences extracted from a par-
tial parse can serve as indicators for syntax trees.
While the best definition of chunk sequences can
only be determined empirically, the results pre-
sented in the previous section allow some conclu-
sions on how the parser must be designed.

6.1 Consequences for Matching Chunk
Sequences and Trees

From the experiments in section 4, it is clear that
a good measure of information needs to be found
for an optimal selection process. There needs to
be a good equilibrium between a high coverage
of different chunk sequences and a low number
of trees per chunk sequence. One possibility to
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reach the first goal would be to ignore certain types
of phrases in the extraction of chunk sequences
from the partial parse. However, the experiments
show that it is impossible to reduce the informa-
tiveness of the chunk sequence to a level where all
possible chunk sequences are present in the train-
ing data. This means that the procedure which
matches the chunk sequence of the input sentence
to the chunk sequences in the training data must be
more flexible than a strict left-to-right comparison.
In (Kübler, 2004a; Kübler, 2004b), we allowed the
deletion of chunks in either the input sentence or
the training sentence. The latter operation is un-
critical because it results in a deletion of some part
of the syntax tree. The former operation, however,
is more critical, it either leads to a partial syntac-
tic analysis in which the deleted chunk is not at-
tached to the tree or to the necessity of guessing
the node to which the additional constituent needs
to be attached and possibly guessing the grammat-
ical function of the new constituent. Instead of
this deletion, which can be applied anywhere in
the sentence, we suggest the use of Levenshtein
distance (Levenshtein, 1966). This distance mea-
sure is, for example, used for spelling correction:
Here the most similar word in the lexicon is found
which can be reached via the smallest number of
deletion, substitution, and insertion operations on
characters. Instead of operating on characters, we
suggest to apply Levenshtein distance to chunk se-
quences. In this case, deletions from the input se-
quence could be given a much higher weight (i.e.
cost) than insertions. We also suggest a modi-
fication of the distance to allow an exchange of
chunks. This modification would allow a princi-
pled treatment of the relative free word order of
German. However, if such an operation is not re-
stricted to adjacent chunks, the algorithm will gain
in complexity but since the resulting parser is still
deterministic, it is rather unlikely that this modifi-
cation will lead to complexity problems.

6.2 Consequences for the Tree Selection

As explained in section 5, there are chunk se-
quences that correspond to more than one syntax
tree. Since differences in the trees also pertain to
grammatical functions, the module that selects the
best tree out of the tree set needs to use more in-
formation than the chunk sequences used for se-
lecting the tree set. Since the holistic approach
to parsing proposed in this paper does not lend it-

self easily to selecting grammatical functions sep-
arately for single constituents, we suggest to use
lexical co-occurrence information instead to se-
lect the best tree out of the tree set for a given
sentence. Such an approach generalizes Streiter’s
(2001) approach of selecting from a set of possi-
ble trees based on word similarity. However, an
approach based on lexical information will suffer
extremely from data sparseness. For this reason,
we suggest a soft clustering approach based on a
partial parse, similar to the approach by Wagner
(2005) for clustering verb arguments for learning
selectional preferences for verbs.

7 Conclusion and Future Work

In this paper, we have approached the question
whether it is possible to construct a parser based
on ideas from case-based reasoning. Such a parser
would employ a partial analysis (chunk analysis)
of the sentence to select a (nearly) complete syntax
tree and then adapt this tree to the input sentence.

In the experiments reported here, we have
shown that it is possible to obtain a wide range
of levels of generality in the chunk sequences,
depending on the types of information extracted
from the partial anaylses and on the decision
whether to use sentences or clauses as basic seg-
ments for the extraction of chunk sequences. Once
a robust method is implemented to split trees into
subtrees based on clauses, chunk sequences can
be extracted on the clause level rather than from
complete sentences. Consequently, the tree sets
will also reach a higher cardinality. However, a
tree selection method based on lexical information
will be indispensable even then. For this tree se-
lection, a method for determining the similarity of
tree structures needs to be developed. The mea-
sure used in the experiments reported here, F�,
is only a very crude approximation, which serves
well for an initial investigation, but which is not
good enough for a parser depending on such a
similarity measure. The optimal combination of
chunk sequences and tree selection methods will
have to be determined empirically.
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of 16th Nov. 2005.

Remko Scha, Rens Bod, and Khalil Sima’an. 1999.
Memory-based syntactic analysis.Journal of Ex-
perimental and Theoretical Artificial Intelligence,
11:409–440. Special Issue on Memory-Based Lan-
guage Processing.

Oliver Streiter. 2001. Recursive top-down fuzzy
match, new perspectives on memory-based pars-
ing. In Proceedings of the 15th Pacific Asia Confer-
ence on Language, Information and Computation,
PACLIC 2001, Hong Kong.

Heike Telljohann, Erhard Hinrichs, and Sandra Kübler.
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Abstract

We compare vectors containing counts of
trigrams of part-of-speech (POS) tags in
order to obtain an aggregate measure of
syntax difference. Since lexical syntactic
categories reflect more abstract syntax as
well, we argue that this procedure reflects
more than just the basic syntactic cate-
gories. We tag the material automatically
and analyze the frequency vectors for POS
trigrams using a permutation test. A test
analysis of a 305,000 word corpus con-
taining the English of Finnish emigrants
to Australia is promising in that the proce-
dure proposed works well in distinguish-
ing two different groups (adult vs. child
emigrants) and also in highlighting syntac-
tic deviations between the two groups.

1 Introduction

Language contact is a common phenomenon
which may even be growing due to the increased
mobility of recent years. It is also linguistically
significant, since contact effects are prominent
in linguistic structure and well-recognized con-
founders in the task of historical reconstruction.
Nonetheless we seem to have no way of assaying
the aggregate affects of contacts, as Weinreich fa-
mously noted:

“No easy way of measuring or charac-
terizing the total impact of one language
on another in the speech of bilinguals
has been, or probably can be devised.
The only possible procedure is to de-
scribe the various forms of interference
and to tabulate their frequency.” (Wein-
reich, 1953, p. 63)

This paper proposes a technique for measuring the
aggregate degree of syntactic difference between
two varieties. We shall thus attempt to measure
the “total impact” in Weinreich’s sense, albeit with
respect to a single linguistic level, syntax.

If such a measure could be developed, it would
be important not only in the study of language con-
tact, but also in the study of second-language ac-
quisition. A numerical measure of syntactic dif-
ference would enable these fields to look afresh at
issues such as the time course of second-language
acquisition, the relative importance of factors in-
fluencing the degree of difference such as the
mother tongue of the speakers, other languages
they know, the length and time of their experience
in the second language, the role of formal instruc-
tion, etc. It would make the data of such studies
amenable to the more powerful statistical analysis
reserved for numerical data.

Naturally we want more than a measure which
simply assigns a numerical value to the difference
between two syntactic varieties: we want to be
able to examine the sources of the difference both
in order to win confidence in the measure, but also
to answer linguistic questions about the relative
stability/volatility of syntactic structures.

1.1 Related Work

Thomason and Kaufmann (1988) and van Coet-
sem (1988) noted, nearly simultaneously, that the
most radical (structural) effects in language con-
tact situations are to be found in the language of
SWITCHERS, i.e., in the language used as a second
or later language. PeopleMAINTAINING their lan-
guage tend to adopt new lexical items from a con-
tact language, but this only has structural conse-
quences as the lexical items accumulate. Thus we
hear radically different English used in immigrant
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communities in the English-speaking world, but
the natives in contact with these groups do not tend
to modify their language a great deal. This sug-
gests that we should concentrate on those switch-
ing as we begin to develop measures of aggregate
difference.

Poplack and Sankoff (1984) introduced tech-
niques for studying lexical borrowing and its
phonological effects, and and Poplack, Sankoff
and Miller (1988) went on to exploit these ad-
vances in order to investigate the social conditions
in which contact effects flourish best.

We follow Aarts and Granger (1998) most
closely, who suggest focusing on tag sequences in
learner corpora, just as we do. We shall add to
their suggest a means of measuring the aggregate
difference between two varieties, and show how
we can test whether that difference is statistically
significant.

2 Syntactic Footprints

In this section we justify using frequency profiles
of trigrams of part-of-speech (POS) categories as
indicators of syntactic differences. We shall first
automatically tag second-language speakers’ cor-
pora with syntactic categories:

Oh that ’s a just a
INT PRON COP ART EXCL ART

fun in a ’ Helsinki
N-COM PREP ART PAUSE N-PROP

We then collect these into overlapping triples (tri-
grams). The tag-trigrams include triples such as
INT-PRON-COP and PRON-COP-ART.

We consider three possible objections to pro-
ceeding this way. First, one might object that un-
igrams, bigrams, also should be compared. We
are in fact sympathetic to the criticism thatn-
grams forn 6= 3 should also be compared, at
least with an eye toward refining the technique,
and we have performed experiments with bigrams
and with combinations ofn-grams for largern, but
we restrict the discussion here to trigrams in or-
der to simplify presentation. Second, our choice
of part-of-speech categories may bias the results,
since other research might use other POS cate-
gories, and third, that POS trigrams do not reflect
syntax completely. We first develop these last two
objections further, and then explain why it is rea-
sonable to proceed this way.

Ideally we should like to have at our disposal
the syntactic equivalent of an international pho-
netic alphabet (IPA, 1949), i.e. an accepted means

of noting (an interesting level of) syntactic struc-
ture for which there was reasonable scientific con-
sensus. But no such system exists. Moreover,
the ideal system would necessarily reflect the hi-
erarchical structure of dependency found in all
contemporary theories of syntax, whether directly
based on dependencies or indirectly reflected in
constituent structure. Since it is unlikely that re-
searchers will take the time to hand-annotate large
amounts of data, meaning we shall need automat-
ically annotated data, this leads to a second prob-
lem, viz., that our parsers, the automatic data an-
notators capable of full annotation, are not yet ro-
bust enough for this task. (Even the best score
only about90% per constituent on edited news-
paper prose.)

We have no solution to the problem of the miss-
ing consensual annotation system, but we wish
to press on, since it will be sufficient if we can
provide a measure which correlates strongly with
syntactic differences. We note that natural lan-
guage processing work on tagging has compared
different tag sets, noting primarily the obvious,
that larger sets result in lower accuracy (Manning
and Scḧutze, 1999, 372ff.). Since we aim here
to contribute to the study of language contact and
second-language learning, we shall choose a lin-
guistically sensitive set, that is, a large set de-
signed by linguists. We have not experimented
with different tagsets.

With regard to the second objection, the fact
that syntax concerns more than POS trigrams, we
wish to deny that this is a genuine problem for
the development of a measure of difference. We
note that our situation in measuring syntactic dif-
ferences is similar to other situations in which ef-
fective measures have been established. For ex-
ample, even though researchers in first language
acquisition are very aware that syntactic devel-
opment is reflected in the number of categories,
and rules and/or constructions used, the degree
to which principles of agreement and government
are respected, the fidelity to adult word order pat-
terns, etc., still they are in large agreement that
the very simpleMEAN LENGTH OF UTTERANCE

(MLU) is an excellent measure of syntactic matu-
rity (Ritchie and Bhatia, 1998). Similarly, life ex-
pectancy and infant mortality rates are considered
reliable indications of health when large popula-
tions are compared. We therefore continue, pos-
tulating that the measure we propose will corre-
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late with syntactic differences as a whole, even if
it does not measure them directly.

In fact we can be rather optimistic about us-
ing POS trigrams given the consensus in syntac-
tic theory that a great deal of hierarchical struc-
ture is predictable given the knowledge of lexical
categories, in particular given the lexicalHEAD.
Sells (1982,§§ 2.2, 5.3, 4.1) demonstrates that
this was common to theories in the 1980’s (Gov-
ernment and Binding theory, Generalized Phrase
Structure Grammar, and Lexical Function Gram-
mar), and the situation has changed little in the
successor theories (Minimalism and Head-Driven
Phrase Structure Grammar). There is, on the other
hand, consensus that the very strict lexicalism
which Sells’s work sketched must be relaxed in
favor of “constructionalism” (Fillmore and Kay,
1999), but even in such theories syntactic heads
have a privileged, albeit less dominant status.1

Let us further note that the focus on POS tri-
grams is poised to identify not only deviant syn-
tactic uses, such as the one given as an exam-
ple above, but also overuse and under-use of lin-
guistic structure, whose importance is empha-
sized by researchers on second-language acquisi-
tion (Coseriu, 1970), (de Bot et al., 2005, A3,B3).
According to these experts it is misleading to
consider only errors, as second language learn-
ers likewise tend to overuse certain possibilities
and tend to avoid (and therefore underuse) oth-
ers. For example, Bot et al. (2005) suggest that
non-transparent constructions are systematically
avoided even by very good second-language learn-
ers).

2.1 Tagging

We tagged the material using Thorsten Brants’s
Trigrams ’n Tags(TnT) tagger, a hidden Markov
model tagger which has performed at state-of-
the-art levels in organized comparisons, achieving
96.7% correct on the material of the Penn Tree-
bank (Brants, 2000).

Since our material is spoken English (see be-
low), we trained the tagger on the spoken part of
the International Corpus of English(ICE) from
Great Britain, which consists of 500k words. This
was suboptimal, as the material we wished to ana-
lyze was the English of Finnish emigrants to Aus-
tralia, but we were unable to acquire sufficient

1One referee suggested that one might test the association
between POS trigram differences and head differences exper-
imentally, and we find this suggestion sensible.

Australian material.
We used the tagset of the TOSCA-ICE consist-

ing of 270 tags (Garside et al., 1997), of which 75
were never instantiated in our material. In a sam-
ple of 1, 000 words we found that the tagger was
correct for87% of words,74% of the bigrams, and
65% of the trigrams. As will be obvious in the
presentation of the material (below), it is free con-
versation with pervasive foreign influence. We at-
tribute the low tagging accuracy to the roughness
of the material. It is clear that our procedure would
improve in accuracy from a more accurate tagger,
which would, in turn, allow application to smaller
corpora.

We collect the material into a frequency vector
containing the counts of13, 784 different POS tri-
grams, one vector for each of the two sub-corpora
which we describe below. We then ask whether
the material in the one sub-corpus differs signifi-
cantly from that in the other. We turn now to that
topic.

3 Permutation Tests

There is no convenient test we can apply to check
whether the differences between vectors contain-
ing 13, 784 elements are statistically significant,
nor how significant the differences are. Fortu-
nately, we may turn to permutation tests in this
situation (Good, 1995), more specifically a per-
mutation test using a Monte Carlo technique.
Kessler (2001) contains an informal introduction
for an application within linguistics.

The fundamental idea in a permutation test is
very simple: we measure the difference between
two sets in some convenient fashion, obtaining
δ(A,B). We then extract two sets at random
from A ∪ B, calling theseA1, B1, and we calcu-
late the difference between these two in the same
fashion,δ(A1, B1), recording the number of times
δ(A1, B1) ≥ δ(A,B), i.e., how often two ran-
domly selected subsets from the entire set of ob-
servations are at least as different as (usually more
different than) the original sets were. If we repeat
this process, say,10, 000 times, thenn, the number
of times we obtain more extreme differences, al-
lows us to calculate how strongly the original two
sets differ from a chance division with respect to
δ. In that case we may conclude that if the two
sets were not genuinely different, then the origi-
nal division intoA andB was likely to the degree
of p = n/10, 000. In more standard hypothesis-
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testing terms, this is thep-value with which we
may reject (or retain) the null hypothesis that there
is no relevant difference in the two sets.

We would like to guard against three dangers in
our calculations. First, given the ease with which
large corpora are obtained, we are uninterested
in obtaining statistical significance through sheer
corpus size. We aim therefore at obtaining a mea-
sure that is sensitive only to relative frequency, and
not at all to absolute frequency (Agresti, 1996).
Permutation tests effectively guard against this
danger, if one takes care to judge samples of the
same size within the permutations.

Second, we are mindful of a potential confound-
ing factor, viz., the syntactical intra-dependence
found within sentences (especially between ad-
joining POS trigrams). If we permutedn-grams,
we might in part measure the internal coherence of
the two initial sub-corpora, i.e., the coherence due
to the fact that both sub-corpora use language con-
forming to the rules of English syntax. If we per-
mutedn-grams, this coherence would be lost, and
the measurement of difference would be affected.
In the terminology of permutation statistics: the
elements that are permuted must be reasonably in-
dependent. So we shall permute notn-grams, but
rather entire sentences.

Third, the decision to permute sentences rather
thann-grams exposes us to a confound due to sys-
tematically different sentence lengths. While the
result of permuting elements in a Monte Carlo
fashion always results in two sub-corpora that
have the same number of elements as in the base-
case, our problem is that the elements we per-
mute are sentences, while what we measure are
n-grams. Now if the original two sub-corpora dif-
fer substantially in average sentence length, then
the result of the Monte Carlo “shuffling” will not
be similar to the original split with respect to the
number ofn-grams involved. The original sub-
corpus with longer sentences will therefore have
many moren-grams in the base-case than in the
random re-drawings from the combining corpora,
at least on average. We address this danger sys-
tematically in the subsection below on within-
permutation normalizations (§ 3.2).

We note a more subtle dependency we do not
attempt to guard against. Some POS sequences
(almost) only occur in relatively long sentences,
e.g. the inversion that occurs in some condition-
als Were I in any doubt, I should not .... Perhaps

English subjunctives in general occur only in rel-
atively long sentences. If this sort of structure
occurs in one variety more frequently than in an-
other, that is a genuine difference, but it might still
be the reflection of the simpler difference in sen-
tence length. One might then think that the second
variety would show the same syntax if only it had
longer sentences. As far as they are to be con-
sidered a problem in the first place, differences in
syntax that are related to sentence length cannot
be removed by (our) normalizations.

Permutation tests are a very suitable tool for
finding significant syntactical differences, and for
finding the POS trigrams that make a significant
contribution to this difference.

3.1 Measuring Vector Differences

The choice of vector difference measure, e.g. co-
sine vs. χ2, does not affect the proposed tech-
nique greatly, and alternative measures can be
used straightforwardly. Accordingly, we have
worked with both cosine and two measures in-
spired by theRECURRENCE(R) metric introduced
by Kessler (Kessler, 2001, 157ff). Following
Kessler, we also call our measuresR andRsq.
The advantage of theR andRsq metrics is that
they are transparently interpretable as simple ag-
gregates, meaning that one may easily see how
much each trigram contributes to the overall cor-
pus difference. We even used them to calculate a
separatep-value per trigram.

Our R is calculated as the sum of the differ-
ences of each cell with respect to the average for
that cell. If we have collected our data into two
vectors (c, c′), and if i is the index of a POS tri-
gram,R for each of these two vector cells is equal,
as it is defined simply asR =

∑
i |ci − ci|, with

ci = (ci + c′i)/2. TheRsq measure attributes
more weight to a few large differences than to
many small ones, and it is calculated:Rsq =∑
i(ci− ci)2, with ci being the same as above (for

R).

3.2 Within-Permutation Normalization

Each measurement of difference—whether the
difference is between the original two samples
or between two samples which arise through
permutations—is taken over the collection of POS
trigram frequencies once these have been normal-
ized. We describe first the normalization that is re-
quired to cope with differences in sentence length
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which we callWITHIN -PERMUTATION NORMAL-
IZATION , as it is applied within each permutation.

In case sub-corpora differ in sentence length,
they will automatically differ in the number ofn-
grams across permutations as well. Our Monte
Carlo choice of alternatives does not change the
relative number of sentences across permutations,
but the number of POS trigrams in the groups will
vary if no normalization is applied. Longer sen-
tences give rise to larger numbers of POS trigrams
per sentence, and therefore per sub-corpora. Ap-
plying the within-permutation normalization one
or more times ensures that this does not infect the
measurement of difference.

Protecting the measurement from sensitivity to
differing numbers of POS trigrams per sentence
is for us sufficient reason to normalize, but we
also normalize in order to facilitate interpretation.
We return to this below, in the definition of the
rescaled vectorssy, so.

We thus collect from the tagger a sequence of
countsci of tag trigrams for each sample. We
treat only the case of comparing two samples here,
which we shall refer to as young (y) and old (o) for
reasons which will become clear in the following
section. We shall keep track of the sum-per-tag tri-
gram as well, summing over the two sub-corpora.

cy = < cy1, c
y
2, ..., c

y
n > Ny =

∑n
i=1 c

y
i

+co = < co1, c
o
2, ..., c

o
n > No =

∑n
i=1 c

o
i

c = < c1, c2, ..., cn > N(= Ny +No)
=
∑n
i=1 ci

As a first step in normalization, we work with
vectors holding the relative frequency fractions
per group:

fy = < ..., fyi (= cyi /N
y), ... >

fo = < ..., foi (= coi /N
o), ... >

We note that
∑n
i=1 f

y
i =

∑n
i=1 f

o
i = 1.

We then compute the relative proportions per
trigram, comparing now across the groups. This
prepares for the step which redistributes the raw
trigram counts to compensate for differences in
sentence length.

py = < ..., pyi (= fyi /(f
y
i + foi )), ... >

po = < ..., poi (= foi /(f
y
i + foi )), ... >

We might also define a sum ofpy + po:

p = < ..., pi(= (poi + pyi ) = 1), ... >

We do not actually usep below, onlypy andpo,
but we mention it for the sake of the check it al-
lows thatpyi + poi = 1,∀i.

We then re-introduce the raw frequencies per
category to obtain the normalized, redistributed
countsCy

n,Co
n. Note that we use the total count

of the trigram in both samples to redistribute (thus
redistributing these counts based on the trigram to-
tals in both samples):

Cy
n = < ..., pyi · ci, ... >

Co
n = < ..., poi · ci, ... >

Up to this point the normalization has corrected
for differences in sentence length, or to be more
precise, for differences in the numbers ofn-grams
which may appear as a result of permuting sen-
tences. For larger numbers of trigrams the situ-
ation will become:Ny =

∑n
i=1 c

y
i ≈

∑n
i=1 Cy

i

so that we have effectively neutralized the in-
crease or decrease in the number ofn-grams which
might have arisen due to sentence length. With-
out this normalization a skew in sentence length
in the base case would cause changed, in the
worst case increased, and perhaps even extreme,
significance. During random permutation, where
longer sentences will tend to be distributed more
evenly between the sub-corpora, a disproportion-
ately larger number ofn-grams would be found in
the sub-corpus corresponding to the base corpus
with shorter sentences. We have now normalized
so that that effect will no longer appear.

We illustrate the normalizations up to this point
in Table 1. We see already that the overall effect
is to shift mass to the smaller sample. Notice also
that if we were to defineC = Cy + Co, then
C = c, sinceCy andCo are a redistribution of
c usingpy andpo, whose sump is 1 under all cir-
cumstances, as was noted above. At the same time
cy 6= Cy andco 6= Co (if there were differences
in sentence lengths). The values obtained at this
point may be measured by the vector comparison
measure (cosine orR(sq)).

We use this redistributing normalization instead
of just the relative frequency because using rel-
ative frequency would cause trigrams occurring
mainly and frequently in the short-sentence group
to become extremely significant. This is especially
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Group y Group o Group y’ Group o’
T1 T2 T1 T2 T1 T2 T1 T2

countsc 15 10 90 10 10 10 17 0
rel. freq.f 0.6 0.4 0.9 0.1 0.5 0.5 1 0

norm. prop.p 0.4 0.8 0.6 0.2 0.33 1 0.67 0
trigramci 105 20 105 20 27 10 27 10

redistrib.C 42 16 63 4 9 10 18 0

Table 1: Two examples of the normalizations applied before each measurement of vector difference.
On the left groupsy ando are compared on the basis of the two trigramsT1 andT2. The counts are
shown in the first row, then relative frequencies (within the group), normalized relative proportions, and
finally redistributed normalized counts. The two numbers in boldface in the ‘count’ line are compared
to calculate the underlined relative frequency (on the left) in the ‘relative frequency’ line (in general
counts are compared within groups to obtain relative frequencies). Next, the two underlined fractions of
the ‘relative frequency’ row are compared to obtain the corresponding fractions (immediately below) of
the ‘normalized proportions’ row. Thus relative frequencies are compared across groups (sub-corpora)
to obtain the relative proportions. The trigram count row shows the counts per trigram type, and the
‘redistributed’ row is simply the product of the last two. The second example (on the right) demonstrates
that missing data finds no compensation in this procedure (although we might experiment with smoothing
in the future).

distorting if one calculates the per trigram typep-
value (R orRsq for a singlei).

The normalization does not eliminate all the ir-
relevant effects of differing sentence lengths. To
obtain further precision we iterate the steps above
a few times, re-applying the normalization to its
own output. We are motivated to iterate the pro-
cedure for the following reason. If a trigram is
relatively more frequent in the smaller sub-corpus,
it must then also be relatively less frequent within
the entire corpus (less frequent within the two sub-
corpora together), so there is less frequency mass
to re-distribute for these trigrams than for trigrams
that are relatively more frequent in the larger sub-
corpus (those will be more frequent within the en-
tire corpus). A special case of this aren-grams
that occur only in one sub-corpus. If they oc-
cur only in the larger sub-corpus then their mass
will never be re-distributed in the direction of the
smaller sub-corpus, since zero-frequencies within
one sub-corpus will always result in zero relative
weight (in the current set-up).2 This means that af-
ter normalization the larger sub-corpus will always
still be a bit larger than the smaller one. After one
normalization the effect of these factors is small,
but we can reduce it yet further by iterating the
normalization. This is worthwhile since we wish

2Alternatively, we might have explored a Good-Turing
estimation of unseen items (Manning and Schütze, 1999,
p. 212).

to be certain. After five iterations the relative size-
difference between our normalized sub-corpora is
less than0.1% for trigrams of the full ICE-tagset
(and even a thousand times smaller for the reduced
tagset). We regard this as small enough to effec-
tively eliminate corpus size differences as poten-
tial problems.

For the purposes of interpretation we also scale
everything down so that the average redistributed
count is1. We do this by dividing eachCyi , C

o
i by

N/2n, whereN is the total count of all trigrams
andn is the number of trigram categories being
counted. Note thatN/2n is the average count of a
given trigram in one of the groups.

sy = cy · 2n/N = < ..., Cyi · 2n/N, ... >
so = co · 2n/N = < ..., Coi · 2n/N, ... >

These values might just as well be submitted to the
vector comparison measure since they are just lin-
ear transformations of the redistributedC values.
The scaling expresses the trigram count as a value
with respect to the total2n of counts involved in
the comparison, and, since

∑n
i=1 c

y
i +

∑n
i=1 c

o
i =

N ,
∑n
i=1 s

y
i +

∑n
i=1 s

o
i = 2n. As there aren sorts

of trigrams being compared in two groups, it is
clear that the average value in these last vectors
will be 1.

Similarly, this normalized value will be higher
than1 for trigrams that are more frequent than av-
erage. Now if we sort the trigrams by frequency—
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or more precisely, by the weight that they have
within the totalR(sq) value, so by their per tri-
gramR(sq) value—we get a listing of the POS
trigrams that distinguish the groups most sharply.
This list can be made even more telling by adding
the raw frequency and a per-trigramp-value. It al-
lows us to directly see significant under and over-
use of POS trigrams, and thereby of syntax.

3.3 Between-Permutations Normalization

The purpose of this normalization is the identifica-
tion of n-gram types which are typical in the two
original sub-corpora. It is applied after comparing
all the results of all the Monte Carlo re-shufflings.

The BETWEEN-PERMUTATIONS NORMALIZA-
TION is similar to the last step of the within-
permutation normalization, except that the linear
transformation is applied across permutations, in-
stead of across groups (sub-corpora): for each
POS trigram typei in each group (sub-corpora)
g ∈ {o, y}, the redistributed countCg

i is divided
by the average redistributed count for that type in
that group (across all permutations)Cg

i . Note that
the average redistributed count isci/2 for large
numbers of permutations. The values thus normal-
ized will be1 on average across permutations.

Trigrams with large average counts between
permutations are those with high frequencies in
the original sub-corpora, and these contribute most
heavily toward statistical significance. The nor-
malization under discussion strips away the role
of frequency, allowing us to see which POS tri-
grams are most (a)typical for a group. We note
additionally that this normalization is useful only
together with information on frequency (or statis-
tical significance). Infrequent trigrams are espe-
cially likely to have high values with respect to
Cg

i . For example a trigram occurring only once,
in one sub-corpus, gets the maximum value of
1/0.5 = 2 (as it is indeed very typical for this
sub-corpus), while with a count of one it clearly
cannot be statistically significant (moving between
equally sized sub-corpora with a chance of 50 %
during permutations). So it’s best to calculate
this normalization together with the per trigramp-
values.

4 A Test Case

We tested this procedure on data transcribed from
free interviews with Finnish emigrants to Aus-
tralia. The emigrants were farmers and skilled or

semi-skilled working class Finns who left Finland
in the 1960’s at the age of 25-40 years old, some
with children. Greg Watson of Joensuu Univer-
sity interviewed these people between 1995 and
1998, publishing about his corpus inICAME 20,
1996 (Watson). He included both interviews with
those who emigrated as adults (at seventeen years
or older) and those who emigrated as children (be-
fore their seventeenth birthday). There are sixty
conversations with adult-age emigrants and thirty
with those who emigrated as children, totaling
305,000 words of relatively free conversation.

It is well established in the literature on second-
language learning that the language of people who
learned the second language as children is supe-
rior to that of adult learners. We will test our idea
about measuring syntactic differences by apply-
ing the measure to the two samples language from
adult vs. child emigrants. The issue is not remark-
able, but it allows us to verify whether the measure
is functioning.

4.1 Results

The two sub-corpora had 221,000 words for the
older group and 84,000 words for the younger
group, respectively. The sentences of the child-
hood immigrants were indeed substantially longer
(27.1 tokens) than those of the older immigrants
(16.3 tokens). So the within-permutation normal-
ization was definitely needed in this case. The
groups clearly differed in the distribution of POS
trigrams they contain (p < 0.001). This means
that the difference between the original two sub-
corpora was in the largest0.1% of the Monte Carlo
permutations.

In addition we find genuinely deviant syntax
patterns if we inspect the trigrams most respon-
sible for the difference between the two sub-
corpora.

it ’s low tax in here
PRO COP ADJ N/COM PREP ADV

and I was professional fisherman
CONJ PRO COP ADJ N/COM

Both COP-ADJ-N/COM and N/COM-PREP-
ADV accounted for a substantial degree of aggre-
gate syntactic difference. The first pattern nor-
mally corresponds to an error, as it does in the
two (!) examples of it above (there is a sepa-
rate tag for plural and mass nouns). These are
cases where English normally requires an article.

88



Since Finnish has no articles, these are clear cases
of transfer, i.e., the (incorrect) imposition of the
first language’s structure on a second language.
The N/COM-PREP-ADV pattern (corresponding
to the use ofin here) is also worth noting, as it
falls into the class of expressions which is not ab-
solutely in error (The material is in here), but it
is clearly being overused in the example above.
Presumably this is a case of hypercorrection from
Finnish, a language without prepositions. We con-
clude from this experiment that the procedure is
promising.

On the other hand there were also problems,
perhaps most seriously with the use of the tags
denoting pauses and hesitations, where we found
that the tag trigrams most responsible for the de-
viant measures in the corpora involved disfluen-
cies of one sort or another. These tended to occur
more frequently in the speech of the older emi-
grants. With the pauses removed (hesitations still
in place) a list of the ten most frequent, significant
trigrams for the older group is shown. Two ran-
dom examples from the corpus are given for each
in Table 2.

We suspect additionally that the low accuracy
rate of the tagger when applied to this material also
stems from the large number of disfluencies.

5 Conclusions and Prospects

Weinreich (1953) regretted that there was no way
to “measure or characterize the total impact one
language on another in the speech of bilinguals,”
(p. 63) and speculated that there could not be. This
paper has proposed a way of going beyond counts
of individual phenomena to a measure of aggre-
gate syntactic difference. The technique may be
implemented effectively, and its results are subject
to statistical analysis using permutation statistics.

The technique proposed follow Aarts and
Granger (1998) in using part-of-speech trigrams.
We argue that such lexical categories are likely
to reflect a great deal of syntactic structure given
the tenets of linguistic theory according to which
more abstract structure is, in general, projected
from lexical categories. We go beyond Aarts and
Granger in Showing how entire histograms of POS
trigrams may be used to characterize aggregate
syntactic distance, in particular by showing how
this can be analyzed.

We fall short of Weinreich’s goal of assaying
“total impact” in that we focus on syntax, but we

1 roadworks and uh
hill and ah
N CONJUNC INTERJEC

2 I reckon it
that take lot
PRON V PRON

3 enjoy to taking
my machine break
INTERJEC PRON V

4 but that ’s
that I clean
CONJUNC PRON V

5 I ’m uh
it ’s uh
PRON V INTERJEC

6 now what what
changing but some
CONJUNC INTERJEC PRON

7 said it ’s
all everybody has
PRON PRON V

8 bought that car
lead glass windows
V PRON N

9 that was different
I was fit
PRON V ADJ

10 Oh lake lake
uh money production
INTERJEC N N

Table 2: The most significant and most frequent
trigrams that were typical for the speech of the
group of older Finnish emigrants to Australia com-
pared to the speech of those who emigrated before
their 17th birthday. The tag trigrams indicating
pauses were removed before comparing the cor-
pora, as these appear to dominate the differences.
The examples illustrating the trigrams were cho-
sen at random, and we note that the examples of
the third sort of trigram involved tagging errors in
the first and second elements of the trigram, and
that other errors are noticeable at the seventh and
eight positions in the list (where ‘said’ and ‘glass’
are marked as pronouns). We reserve the linguistic
interpretation of the error patterns for future work,
but we note that we will also want to filter inter-
jections before drawing definite conclusions.
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take a large step in this direction by showing how
to aggregate and test for significance, using the
sorts of counts he worked with.

The software implementing the permutation
test, including the normalizations, is avail-
able freely athttp://en.logilogi.org/
HomE/WyboWiersma/FiAuImEnRe . It is de-
veloped to allow easy generalization to more than
two sub-corpora and longern-grams.

Several further steps would be useful. We
should like to repeat the analysis here, eliminat-
ing the effect of hesitation tags, etc. Second,
we should like to experiment systematically with
the inclusion ofn-grams forn > 3; to-date we
have experimented with this, but not systemati-
cally enough. Third, we would like to test the
analysis on other cases of putative syntactic dif-
ferences, and in particular in cases where tagging
accuracy might be less an issue.
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Abstract

This paper outlines a measure of lan-
guage similarity based on structural
similarity of surface syntactic depen-
dency trees. Unlike the more tradi-
tional string-based measures, this mea-
sure tries to reflect “deeper” correspon-
dences among languages. The develop-
ment of this measure has been inspired
by the experience from MT of syntac-
tically similar languages. This experi-
ence shows that the lexical similarity is
less important than syntactic similar-
ity. This claim is supported by a num-
ber of examples illustrating the prob-
lems which may arise when a measure
of language similarity relies too much
on a simple similarity of texts in differ-
ent languages.

1 Introduction

Although the similarity of natural languages is
in principal a very vague notion, the linguistic
literature seems to be full of claims classifying
two natural languages as being more or less
similar. These claims are in some cases a result
of a detailed comparative examination of lex-
ical and/or syntactic properties of languages
under question, in some cases they are based
on a very subjective opinion of the author, in
many other cases they reflect the application
of some mathematical formula on textual data
(a very nice example of such mathematical ap-
proach can be found at (Scannell, 2004)).

Especially in the last case the notion of lan-
guage similarity is very often confused with the
notion of text similarity. Even the well known

paper (Lebart and Rajman, 2000) deals more
with the text similarity than language similar-
ity. This general trend is quite understand-
able, the mathematical methods for measur-
ing text similarity are of a prominent impor-
tance especially for information retrieval and
similar fields. On the other hand, they con-
centrate too much on the surface similarity
of word forms and thus may not reflect the
similarity of languages properly. This paper
tries to advocate different approach, based on
the experience gained in MT experiments with
closely related (and similar) languages, where
it is possible to “measure” the similarity indi-
rectly by a complexity of modules we have to
use in order to achieve a reasonable transla-
tion quality. This experience led us to formu-
lating an evaluation measure trying to capture
not only textual, but also syntactic similarities
between natural languages.

2 Imperfections of measures based
on string similarity

There are many application areas in the NLP
in which it is useful to apply the measures ex-
ploiting the similarity of word forms (strings).
They serve very well for example for tasks
like spellchecking (where the choice of the best
candidates for correction of a spelling error is
typically based upon the Levenshtein metrics)
or estimating the similarity of a new source
sentence to those stored in the translation
memory of a Machine Aided Translation sys-
tem. They are a bit controversial in a “proper”
machine translation, where the popular BLEU
score (Papineni et al., 2002), although widely
accepted as a measure of translation accuracy,
seems to favor stochastic approaches based on
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an n-gram model over other MT methods (see
the results in (Nist, 2001)).

The controversies the BLEU score seems to
provoke arise due to the fact that the evalua-
tion of MT systems can be, in general, per-
formed from two different viewpoints. The
first one is that of a developer of such a sys-
tem, who needs to get a reliable feedback in
the process of development and debugging of
the system. The primary interest of such a
person is the grammar or dictionary coverage
and system performance and he needs a cheap,
fast and simple evaluation method in order to
allow frequent routine tests indicating the im-
provements of the system during the develop-
ment of the system.

The second viewpoint is that of a user, who
is primarily concerned with the capability of
the system to provide fast and reliable trans-
lation requiring as few post-editing efforts as
possible. The simplicity, speed and low costs
are not of such importance here. If the eval-
uation is performed only once, in the mo-
ment when the system is considered to be
ready, the evaluation method may even be rel-
atively complicated, expensive and slow. A
good example of such a complex measure is the
FEMTI framework (Framework for the Evalu-
ation of Machine Translation). The most com-
plete description of the FEMTI framework can
be found in (Hovy et al., 2002). Such mea-
sures are much more popular among transla-
tors than among language engineers and MT
systems developers.

If we aim at measuring the similarity of lan-
guages or language distances, our point of view
should be much more similar to that of a hu-
man translator than of a system developer, if
we’ll stick to our MT analogy. When looking
for clues concerning the desirable properties
of a language similarity (or distance) measure,
we can first try to formulate the reasons why
we consider the simple string-based (or word-
form-based) measures inadequate.

If we take into account a number of lan-
guages existing in the world, the number of
word forms existing in each of those languages
and a simple fact that a huge percentage of
those word forms is not longer than five or
six characters, it is quite clear that there is a
huge number of overlapping word forms which

have completely different meaning in all lan-
guages containing that particular word form.
Let us take for illustration some language pairs
of non-related languages.

For example for Czech and English (the lan-
guages very different with regard both to the
lexicon and syntax) we can find several exam-
ples of overlapping word forms. The English
word house means a duckling in Czech, the En-
glish indefinite article a is in Czech also very
frequent, because it represents a coordinating
conjunction and, while an is an archaic form
of a pronoun in Czech. On the other hand, if
we look at the identical (or nearly identical)
word forms in similar languages, we can find
many examples of totally different meaning.
For example, the word form život means life
in Czech and belly in Russian; godina means
year in Serbo-Croatian while hodina is an hour
in Czech (by the way, an hour in Russian is čas
— and the same word means time in Czech).

The overlapping word forms between rela-
tively distant languages are so frequent that it
is even possible to create (more or less) syntac-
tically correct sentences in one language con-
taining only word forms from the other lan-
guage. Again, let us look at the Czech-English
language pair. The English sentences Let my
pal to pile a lumpy paste on a metal pan. or
I had to let a house to a nosy patron. consist
entirely of word forms existing also in Czech,
while the Czech sentence Adept demise metal
hole pod led. — [A resignation candidate was
throwing sticks under the ice.] consists of En-
glish word forms.

Creating such a Czech sentence is more com-
plicated — as a highly inflected language it
uses a wide variety of endings, which make it
more difficult to create a syntactically correct
sentence from word forms of a language which
has incomparably smaller repertoire of end-
ings. This fact directly leads to another argu-
ment against the string similarity based mea-
sures — even though two languages may have
very similar syntactic properties and their ba-
sic word forms may also be very similar, then if
the languages are highly inflective and the only
difference between those languages are differ-
ent endings used for expressing identical mor-
phosyntactic properties, the string similarity
based methods will probably show a substan-
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tial difference between these languages.
This is highly probable especially for shorter

words — the words with a basic form
only four or five characters long may have
endings longer or equal to the length of
the basic form, for example: nová/novata
“new” (Cze/Mac), viděný/vidimyj “seen”
(Cze/Rus), fotografuj́ıćı/fotografuojantysis
“photographing” (Cze/Lit).

The last but not least indirect argument
against the use of string-based metrics can be
found in (Kuboň and Bémová, 1990). The pa-
per describes so called transducing dictionary,
a set of rules designed for a direct transcrip-
tion of a certain category of source language
words into a target language. The system has
been tested on two language pairs (English-
to-Czech and Czech-to-Russian) and although
there was a natural original assumption that
such a system will cover substantially more ex-
pressions when applied to a pair of related lan-
guages (which are not only related, but also
quite similar), this assumption turned to be
wrong. The system covered almost identical
set of words for both language pairs — namely
the words with Greek or Latin origin. The
similarity of coverage even allowed to build an
English-to-Russian transducing dictionary us-
ing Czech as a pivot language with a negligible
loss of the coverage.

3 Experience from MT of similar
languages

The Machine Translation field is a good testing
ground for any theory concerning the similar-
ity of natural languages. The systems dealing
with related languages usually achieve higher
translation quality than the systems aiming at
the translation of more distant language pairs
— the average MT quality for a given system
and a given language pair might therefore also
serve as some kind of a very rough metrics of
similarity of languages concerned.

Let us demonstrate this idea using an ex-
ample of a multilingual MT system described
in several recently published papers (see e.g.
(Hajič et al., 2003) or (Homola and Kuboň,
2004)). The system aims at the translation
from a single source language (Czech) into
multiple more or less similar target languages,
namely into Slovak, Polish, Lithuanian, Lower

Sorbian and Macedonian.
The system is very simple — it doesn’t con-

tain any full-fledged parser, neither rule based,
nor stochastic one. It relies on the syntactic
similarity of the source and target languages.
It is transfer-based with the transfer being per-
formed as soon as possible, depending on the
similarity of both languages. In its simplest
form (Czech to Slovak translation) the system
consists of the following modules:

1. Morphological analysis of the source lan-
guage (Czech)

2. Morphological disambiguation of the
source language text by means of a
stochastic tagger

3. Transfer exploiting the domain-related
bilingual glossaries and a general (domain
independent) bilingual dictionary

4. Morphological synthesis of the target lan-
guage

The lower degree of similarity between Czech
and the remaining target languages led to
an inclusion of a shallow parsing module for
Czech for some of the language pairs. This
module directly follows the morphological dis-
ambiguation of Czech.

The evaluation results presented in (Homola
and Kuboň, 2004) indicate that even though
Czech and Lithuanian are much less similar
at the lexical and morphological level (e.g. at
both levels actually dealing with strings), the
translation quality is very similar due to the
syntactic similarity between all languages con-
cerned.

4 Typology of language similarity

The experience from the field of MT of closely
related languages presented in the previus sec-
tions shows that it is very useful to classify the
language similarity into several categories:

• typological

• morphological

• syntactic

• lexical

Let us now look at these categories from the
point of view of machine translation,
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4.1 Typological similarity

The first type of similarity is probably the
most important one. If both the target and
the source language are of a different language
type, it is more difficult to obtain good MT
quality. The notions like word order, the ex-
istence or non-existence of articles, different
temporal system and several other properties
have direct consequences for the translation
quality. Let us take Czech and Lithuanian as
an example of the language pair, which doesn’t
belong to the same group of languages (Czech
is a Slavic and Lithuanian Baltic language).
Both languages have rich inflection and very
high degree of word order freedom, thus it is
not necessary to change the word order at the
constituent level. On the other hand, both
languages differ a lot in the lexics and mor-
phology.

For example, both (1) and (3) mean approx-
imately “The father read a/the book”. What
these sentences differ in is the information
structure. (1) should be translated as “The
father read a book”, whereas (3) means in
fact “The book has been read by the father”.1

The category of voice differs in both sentences
because of strict word order in English, al-
though in both Czech equivalents, active voice
is used.2 We see that in the Lithuanian trans-
lation, the word order is exactly the same.

(1) Otec
father-nom

četl
read-3sg,past

knihu
book-acc

“The father read a book.” (Cze)

(2) Tėvas
father-nom

skaitė
read-3sg,past

knyg ↪a
book-acc

“The father read a book.” (Lit)

(3) Knihu
book-acc

četl
read-3sg,past

otec
father-nom

“The father read a book.” (Cze)
1Note that in the first sentence, an indefinite article

is used, whereas in the latter one, a definite article
stands in front of “book”. The reason is that in the first
sentence, the noun“book” is not contextually bound (it
belongs to the focus), in the latter one it belongs to the
topic.

2Passive voice (except of the reflexive one) occurs
rarely in Czech (and most other Slavonic languages).
It can be used if one would like to underline the di-
rect object or if there is no subject at all (for example,
Kniha byla čtena “The book has been read”).

(4) Knyg ↪a
book-acc

skaitė
read-3sg,past

tėvas
father-nom

“The father read a book.” (Lit)

4.2 Lexical similarity

The lexical similarity does not mean that the
vocabulary has to have the same origin, i.e.,
that words have to be created from the same
(proto-)stem. What is important for shallow
MT (and for MT in general), is the seman-
tic correspondence (preferably one-to-one re-
lation).

Lexical similarity is the least important one
from the point of view of MT, because the lex-
ical differences are solved in the glossaries and
general dictionaries.

4.3 Syntactic similarity

Syntactic similarity is also very important es-
pecially on higher levels, in particular on the
verbal level. The differences in verbal va-
lences have negative influence on the quality
of translation due to the fact that the trans-
fer thus requires a large scale valence lexicon
for both languages, which is extremely difficult
to build. Syntactic structure of smaller con-
stituents, such as nominal and prepositional
phrases, is not that important, because it is
possible to analyze those constituents syntac-
tically using a shallow syntactic analysis and
thus it is possible to adapt locally the syntactic
structure of a target sentence.

4.4 Morphological similarity

Morphological similarity means similar struc-
ture of morphological hierarchy and paradigms
such as case system, verbal system etc. In
our understanding Baltic and Slavic languages
(except for Bulgarian and Macedonian) have
a similar case system and their verbal system
is quite similar as well. Some problems are
caused by synthetic forms, which have to be
expressed by analytical constructions in other
languages (e.g., future tense or conjunctive in
Czech and Lithuanian). The differences in
morphology can be relatively easily overcomed
by the exploitation of full-fledged morphology
of both languages (source and target).

Similar morphological systems simplify the
transfer. For example, Slavonic languages (ex-
cept of Bulgarian and Macedonian) have 6-7
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cases. The case system of East Baltic lan-
guages is very similar, although it has been re-
duced formally in Latvian (instrumental forms
are equal as dative and accusative and the
function of instrumentral is expressed by the
preposition ar “with”, similarly as in Upper
Sorbian). (Ambrazas, 1996) gives seven cases
for Lithuanian, but there are in fact at least
eight cases in Lithuanian (or ten cases but only
eight of them are productive3). Nevertheless
the case systems of Slavonic and East Baltic
languages are very similar which makes the
languages quite similar even across the border
of different language groups.

Significant differences occur only in the ver-
bal system, East Baltic languages have a huge
amount of participles and half-participles that
have no direct counterpart in Czech. The
Lithuanian translation of an example from
(Gamut, 1991) is given in (5):

(5) Gimė
was-born-3sg

vaikas,
child-nom

valdysiantis
ruling-fut,masc,sg,nom

pasauli↪
world-acc

“A child was born which will rule the
world.” (Lit)

The participle valdysiantis is used instead
of an embedded sentence, because Lithuanian
has future participles. These participles have
to be expresses by an embedded sentence in
Slavonic languages.

5 An outline of a structural
similarity measure

In this section, we propose a comparatively
simple measure of syntactic (structural) sim-
ilarity. There are generally two levels which
may serve as a basis for such a structural mea-
sure, the surface or deep syntactic level. Let us
first explain the reasons supporting our choice
of surface syntactic level.

Compared to deep syntactic representation,
the surface syntactic trees are much more

3Although some Balticists argue that illative forms
are adverbs, it is a fact that this case is productive and
used quite often (Erika Rimkutė, personal communica-
tion), though it has been widely replaced by preposi-
tional phrases. Allative and adessive are used only in
some Lithuanian dialects, except of a few fixed allative
forms (e.g., vakarop(i) “in the evening”, velniop(i) “to
the hell”.)

closely related to the actual surface form of a
sentence. It is quite common that every word
form or punctuation sign is directly related to
a single node of a surface syntactic tree. The
deep syntactic trees, on the other hand, usu-
ally represent autosemantic words only, they
may even actually contain more nodes than
there are words in the input sentence (for ex-
ample, when the input sentence contains ellip-
sis). It is also quite clear that the deep syntac-
tic trees are much more closely related to the
meaning of the sentence than its original sur-
face form, therefore they may hide certain dif-
ferences between the languages concerned, it is
a generally accepted hypothesis that transfer
performed on the deep syntactic level is eas-
ier than the transfer at the surface syntactic
level, especially for syntactically and typolog-
ically less similar languages.

The second important decision we had to
make was to select the best type of surface
syntactic trees between the dependency and
phrase structure trees. For practical reasons
we have decided to use dependency trees. The
main motivation for this decision is the enor-
mous structural ambiguity of phrase structure
trees that represent sentences with identical
surface form. Let us have a look at the follow-
ing Polish sentence:

(6) Pawe l
Pawe l-nom

czyta
read-3sg

ksi ↪ażk ↪e
book-fem,sg,acc

“Pawe l is reading a/the book.”

The syntactic structure of this sentence can
be expressed by two phrase structure trees rep-
resenting different order of attaching nominal
phrases to a verb.4

4The full line denotes the head of the phrase, the
dotted line a dependent.
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There is no linguistically relevant difference
between these two trees. Although generally
useful, the information hidden in both trees
is purely superfluous for our goal of designing
a simple structural metrics. The dependency
tree obtained from the phrase structure ones
by contraction of all head edges seem to be
much more appropriate for our purpose. In our
example, we therefore get the following form
of the dependency tree:

czyta

zzuuuuuuuuu

$$JJJJJJJJJ

Pawe l ksi ↪ażk ↪e

The nodes of the dependency trees repre-
senting surface syntactic level directly corre-
spond to word forms present in the sentence.
For the sake of simplicity, the punctuation
marks are not represented in our trees. They
would probably cause a lot of technical prob-
lems and might distort the whole similarity
measure. The node of a tree are ordered and
reflect the surface word-order of the sentence.
Different labels of nodes in both languages (see
the example below) don’t influence the value
of the measure, however they are important
for the identification of corresponding nodes
(a bilingual dictionary is used here).

The structural measure we are suggesting is
based on the analogy to the Levenshtein mea-
sure. It is therefore pretty simple — the dis-
tance of two trees is the minimal amount of
elementary operations that transform one tree
to the other. We consider the following ele-
mentary operations:

1. adding a node,

2. removing a node,

3. changing the order of a node,

4. changing the father of a node.

The similarity of languages can be obtained
as an average distance of individual sentences
in a parallel corpus.

The following examples show the use of the
measure on individual trees. The correspon-
dence between individual nodes of both trees
can be handled by exploiting the bilingual dic-
tionary wherever necessary:

(7) Vesna
Vesna-nom

je
is-3sg

prǐsla
come-respart,fem,sg

“Vesna has come.” (Slo)

(8) Vesna
Vesna-nom

przysz la
come-respart,fem,sg

“Vesna has come.” (Pol)

The distance between (7) and (8) is equal 1,
since one node has been removed (the dotted
line gives the removed node).

prǐsla/przysz la

ttjjjjjjjjjjjjjjjj

xx
Vesna je

(9) Grem
go-1sg

z
with

avtom
car-masc,sg,ins

“I am going by car.” (Slo)

(10) Jad ↪e
go-1sg

samochodem
car-masc,sg,ins

“I am going by car.” (Pol)
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The distance between (9) and (10) is equal
1, since one node has been removed (the dotted
line gives the removed node).

grem/jad ↪e

**UUUUUUUUUUUUUUUUU

avtom/samochodem

wwz

5.1 Formalization

(11) On
he-nom

rád
with-pleasure

plave
swims-3sg

“He likes swimming.” (Cze)

plave

uujjjjjjjjjjjjjjjjjjj

yy

�
�
�
�
�
�
�
�
�
�

on rád

likes

|| %%
he 11 swimming

The Czech-English example (11) shows two
sentences which have a mutual distance equal
to 3 — if we start changing the Czech tree
into an English one, then the first elemen-
tary operation is the deletion of the node rád,
the second operation adds the new node cor-
responding to the English word likes and the
third and last operation is the change of the
father of the node corresponding to the per-
sonal pronoun on [he] from swimming to likes.
As mentioned above, the node labels are not
taken into account, the fact that the Czech fi-
nite verbal form plave changes into an English
gerund has no effect on the distance.

A similar case are sentences with a dative
agent, for example:

(12) Je
is

mi
me-dat

zima
cold-f,sg,nom

“I am cold” (Cze)

In this sentence, the Czech mi does not
match to I since it is no subject. Similarly,
the substantive zima does not match to cold,
since it is a different part of speech. Hence
two nodes are removed and two new nodes
are added, which gives us a distance of 4.
This example demonstrates that the measure
tends to behave naturally - even short sen-
tences containing syntactically different con-
structions get a relatively high score.

To formalize the process described above, let
us introduce a notion of lexical and analytical
equality of nodes in analytical trees:

• Two nodes equal lexically if and only if
they share the same meaning in the given
context. Nevertheless to simplify auto-
matic processing, we treat two nodes as
lexically equal if they share a particular
meaning (defined e.g. as a non-empty in-
tersection of Wordnet classes).

• Two nodes equal analytically if and only
if they have the same analytical label (e.g.
subject, spacial adverbial etc.).

As for the measure, two nodes match to each
other if they 1) occur at the same position in
the subtree of their parent and 2) equal lexi-
cally and analytically.

If a subtree (greater than 1) is added or re-
moved, the operation contributes to the mea-
sure with the size of the subtree (the amount
of its nodes), for example in the following id-
iomatic phrase:

(13) puścić
leave-inf

z
with

dymem
smoke-masc,sg,ins

“burn down” (Pol)

(14) zapálit
burn-down-inf

“burn down” (Cze)

In the above example, the distance is
equal 2.

The automatic procedure can be described
as follows (given two trees):

1. Align all sons of the root node.

2. Count discrepancies.

3. For all matched nodes, go to step 1 to
process subtrees and sum up distances.
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5.2 Discussion

It is obvious that our measure expresses the ty-
pological similarity of languages. We get com-
paratively high values even for genetically re-
lated languages if their typology is different.
Let us demonstrate this fact on Czech and
Macedonian examples.

(15) Ivan
Ivan-nom

dal
gave-respart,masc,sg

knihu
book-fem.sg,acc

Stojanovi
Stojan-dat

“Ivan gave the book to Stojan.” (Cze)

dal

||yyyyyyyy

##FF
FF

FF
FF

F

**TTTTTTTTTTTTTTTTTT

Ivan knihu Stojanovi

(16) Ivan
Ivan-nom

mu
him

ja
her-fem,sg,acc

ima
has-3sg

dadeno
given-ppart,neut,sg

knigata
book-fem.sg,def

na
on

Stojan
Stojan

“Ivan gave the book to Stojan.” (Mac)

The distance equals 5. The score is rela-
tively high, taken into account that both lan-
guages are related. It indicates again that for
a given purpose the measure seems to provide
consistent results.

The proposed measure takes into account
only the structure of the trees, completely ig-
noring node and edge labels. Let us analyze
the following example:

(17) Ta
this-fem,sg,nom

ksi ↪ażka
book-fem.sg,nom

si ↪e
REFL

cz ↪esto
well

czyta
read-3sg

“This book is read often.”

(18) T↪e
this-fem,sg,acc

ksi ↪ażk ↪e
book-fem.sg,acc

si ↪e
REFL

cz ↪esto
well

czyta
read-3sg

“This book is read often.”

The syntactic trees of both sentences have
the same structure, but (17) is passive and
(18) active (with a general subject). This is
of course a significant difference and as such
it should be captured in the measure, never-
theless our simple measure doesn’t reflect it.
There are several reasons why a current ver-
sion of the measure doesn’t include morpho-
logical and morphosyntactic labels. One of the
reasons is a different nature of the problem —
to design a reliable measure combining struc-
tural information with the information con-
tained in node labels is very difficult. From the
technical point of view, a great obstacle is also
the variety of systems of tags used for this pur-
pose for individual languages, which may not
be compatible. For example, Macedonian has
almost no cases at nouns, therefore it would
make no sense to use cases in the noun anno-
tation, while for other Slavic languages (and
not only for Slavic ones) is this information
very important. To find a good integration of
morphosyntactic features into the structural
measure is definitely a very interesting topic
for future research.

6 Conclusions

This paper contains an outline of a simple lan-
guage similarity measure based upon the sur-
face syntactic dependency trees. According to
our opinion, such a measure expresses more
adequately the similarity of languages than
simple string-based measures used for the text
similarity. The measure is defined on pairs of
trees from a parallel corpus. In its current
form it doesn’t account for differences in mor-
phosyntactic labels of corresponding nodes or
edges, although it is an important parameter
of language similarity. The proper combina-
tion of our basic structural similarity measure
with some measure reflecting the differences of
labels opens a wide range of options for a fu-
ture research. Equally important seems to be
a task of gathering properly syntactically an-
notated parallel corpora of a reasonable size.
The only corpus of such kind which we have
at our disposal, the Prague Czech-English De-
pendency Treebank (Cuř́ın et al., 2004) re-
lies on imperfect automatic annotation which
might distort the results. The human annota-
tion of the PCEDT is just starting, so there’s a
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Figure 1: The dependency tree of (16)

good chance that the measure will bring some
reliable results at least for those two lenguages
soon.
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2003. A simple multilinguale machine transla-
tion system. In Proceedings of the MT Summit
IX, New Orleans.

Petr Homola and Vladislav Kuboň. 2004. A trans-
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Vladislav Kuboň and Alevtina Bémová. 1990.
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Abstract

The results of experiments on the appli-
cation of a variety of distance measures
to a question-answering task are reported.
Variants of tree-distance are considered,
including whole-vs-sub tree, node weight-
ing, wild cards and lexical emphasis. We
derive string-distance as a special case
of tree-distance and show that a particu-
lar parameterisation of tree-distance out-
performs the string-distance measure.

1 Introduction

This paper studies the deployment in a ques-
tion answering task of methods which assess the
similarity of question and answer representations.
Given questions such as
Q1 what does malloc return ?
Q2 What year did poet Emily Dickinson die?

and a collection of sentences (eg. a computer man-
ual, a corpus of newspaper articles), the task is to
retrieve the sentences that answer the question, eg.
A1 the malloc function returns a null pointer
A2 In 1886 , poet Emily Dickinson died in Amherst , Mass

One philosophy for finding answers to ques-
tions would be to convert questions and candidate
answers into logical forms and to compute answer-
hood by apply theorem-proving methods. Another
philosophy is to assume that the answers aresimi-
lar to the questions, where similarity might be de-
fined in many different ways. While not all an-
swers to all questions will be similar, there’s an
intuition that most questions can be answered in
a way which shares quite a bit with the question,
and that accordingly with a large enough corpus, a
similarity-based approach could be fruitful.

2 Distance Measures

In pursuing such a similarity-based approach to
question-answering, the key decisions to be made
are the representations of the questions and an-
swers, and relatedly, distance measures between
them.

We will primarily be concerned with measures
which refer to a linguistic structure assigned to a
word sequence – variants oftree-distance, but we
will also considerstring-distance.

2.1 Tree Measures

Following (Zhang and Shasha, 1989), one can ar-
rive at tree-distancein the following way. Given
source and target ordered, labelled trees,S and
T , consider the setH(S, T ) of all 1-to-1 par-
tial maps,σ, from S into T , which arehomo-
morphisms preserving left-to-right order and an-
cestry1. Let the alignment, σ′, be the enlarg-
ment of the mapσ with pairs (Si, λ) for nodes
Si 6∈ dom(σ) and(λ, Tj) for nodesTj 6∈ ran(σ).
LetD definedeletioncosts for the(Si, λ), I inser-
tion costs for the(λ, Tj), andR replacementcosts
for the (Si, Tj) which represent nodes with non-
identical labels. Then a total cost for the align-
ment, C(σ′) can be defined as the sum of these
components costs, and thetree distance can then
be defined as the cost of the least-cost map:

∆(S, T ) = min({C(σ′) | σ ∈ H(S, T )})

For any 3 trees,T 1, T 2, T 3, the triangle inequal-
ity holds∆(T 1, T 3) ≤ ∆(T 1, T 2) + ∆(T 2, T 3).

1If Tj1 = σ(Si1) andTj2 = σ(Si2) then (i)Si1 is to the
left of Si2 iff Tj1 is to the left ofTj2 and (ii)Si1 is a descen-
dant ofSi2 iff Tj1 is a descendant ofTj2 , with descendency
understood as the transitive closure of the daugher-motherre-
lation.
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Briefly the argument is as follows. Given map-
pingsσ ∈ H(T 1, T 2), andτ ∈ H(T 2, T 3), σ◦τ ∈
H(T 1, T 3)2, so (σ ◦ τ)′ is an alignment between
T 1 andT 3, and∆(T 1, T 3) ≤ C((σ ◦ τ)′). The
cost of the composition is less than the sum of the
costs of the composed maps:σ’s insertions and re-
placements contribute only if they fall indom(τ),
τ ’s deletions and replacements contribute only if
they act onran(σ).

From this basic definition, one can depart in
a number of directions. First of all, there is a
part-vs-whole dimension of variation. Where
∆(S, T ) gives the cost of aligning thewhole
source treeS with the targetT , one can consider
variants where one minimises over a set ofsub-
parts ofS. This is equivalent to letting all but the
nodes belonging to the chosen sub-part to delete
at zero cost3. Let δ(S, T ) be thesub-tree dis-
tance. Let~δ(S, T ), be thesub-traversal distance,
in which sub-traversals of the left-to-right, post-
order traversal ofS are considered. As for∆, the
triangle inequality holds forδ and~δ – one needs
to extend the notion of alignment with a set of free
deletions. Unlike∆, δ and~δ are not symmetric.

All of ∆, δ and~δ are implicitly parametrised by
the cost functions,D, I andR. In the work below
4 other parameters are explored

Node weighting W: this is a function which
assigns a real-number weight to each each
node. The cost function then refers to the
weights. In experiments reported below,
Dw((Si, w), λ) = w, Iw(λ, (Tj , w)) = w,
Rw((Si, ws), (Tj , wt)) = max(ws, wt), if
Si andTj have unequal labels. The experi-
ments reported below use 2 weighting func-
tion ST R, andLEX . ST R assign weights
according to the syntactic structure, via a
classification of nodes as heads vs. comple-
ments vs. adjuncts vs. the rest, with es-
sentially adjuncts given 1/5th the weights of
heads and complements, and other daughters
1/2, via essentially the following top-down
algorithm:

Str(node, rank) :

assign weight1/rank to node

for each daughterd

2∀x ∈ T1∀z ∈ T3((x, z) ∈ σ ◦ τ iff ∃y ∈ T2((x, y) ∈
σ, (y, z) ∈ τ )

3Note that if one minimises also over sub-parts of the tar-
get, you do not get an interesting notion, as the minimum will
inevitably involve at most one node of source and target.

if (d is head or complement){

assign weight =1/rank,

Str(rank, d) }

else if (d is adjunct){

assign weight =1/(5× rank),

Str(5 ∗ rank, d)}

else{

assign weight =1/(2× rank)

Str(2 ∗ rank, d) }

LEX is a function which can be composed
with ST R, and scales up the weights of leaf
nodes by a factor of 3.

Target wild cards T (∗): this is a function which
classifies certain target sub-trees aswild-
card. If sourceSi is mapped to targetTj , and
Tj is the root of a wild-card tree, all nodes
within the Si sub-tree can be deleted for 0
cost, and all those within theTj sub-tree can
be inserted for 0 cost. A wild cardnp tree
might can be put in the position of the gap in
wh-questions, allowing for examplewhat is
memory allocation, to closely match any sen-
tences withmemory allocationas their ob-
ject, no matter what their subject – see Fig-
ure 3.

Source self-effacers S/λ: this is a function
which classifies source sub-trees asself-
effacers. Such trees can be deleted in
their entirety for zero cost. IfS/λ clas-
sifies all source sub-trees as self-effacing,
then ∆(S/λ) will coincide with notion of
’tree-distance with Cut’ given in (Zhang and
Shasha, 1989).

Target self-inserters λ/T : this is a function
which classifies certain target sub-trees as
self-inserters. Such trees can be inserted in
their entirety for zero cost. A candidate might
be optional adjuncts.4

2.2 Sequence Measures

The tree-distance measures work with an elabora-
tion of the original questions and answers. (Lev-
enshtein, 1966) defined the 1 dimensional precur-
sor of tree distance, which works directly on the
2 word sequences for the answer and question.
For two sequences,s, t, and vertical (or hori-
zontal) tree encodingsl tree(s) and l tree(t), if

4Thus a target wild-card is somewhat like a target self-
effacer, but one which also licenses the classification of a
matched source sub-tree as a being self-effacer.
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Figure 1: Sub tree example

we defineΠ(s, t), as∆(l tree(s), l tree(t)), and
π(s, t), as~δ(l tree(s), l tree(t)), then Π and π
coincide with the standardsequence edit distance
andsub-sequence edit distance. As special cases
of ∆ andδ, Π andπ inherit the triangle inequality
property.

To illustrate some of the tree-distance defini-
tions, in the following example, a∆ distance of
3 between 2 trees is obtained, assuming unit costs
for deletions (shown in red and double outline), in-
sertions (shown in green and double outline), and
substitutions (shown in blue and linked with an ar-
row):

a

b

b

a

a

c

b

a

b b a

a

whole tree matching dist=3.0

Note also in this picture that nodes that are mapped
without a relabelling are shown at the same hori-
zontal level, with no linking arrow.

Figure 1 shows a sub-tree example –δ. The
source tree nodes which do not belong to the cho-
sen sub-tree are shown in grey. The lowest vp sub-
tree in the source is selected, and mapped to the
vp in the target. The remaining target nodes must
be inserted, but this costs less than a match which
starts higher and necessitates some deletions and
substitutions.

Figure 2 shows a sub-tree example where the

structural weightingST R has been used: size of
a node reflects the weight. 4 of the nodes in the
source represent the use of an auxiliary verb, and
receive low weight, changing the optimum match
to one covering the whole source tree. There is
some price paid in matching the dissimilar subject
nps.
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sub tree matching dist=3.6

Figure 2: Structurally weighted example

Figure 3 continues the example, but this time
in the subject position there is a sub-tree which is
classified as a wild-cardnp tree, and it matches at
0 cost with the subject np in the source tree.
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np np_wild
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sub tree matching dist=1.6

Figure 3: Wild-card example

The basis of the algorithm used to calculate∆
is theZhangShasha algorithm(Zhang and Shasha,
1989): the Appendix summarises it. The im-
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plementation is based on code implementing∆
(Fontana et al., 2004), adapting it to allowing for
the δ and~δ variants andT (∗), S/λ, andλ/T pa-
rameters, and to generate the human-readable dis-
plays of the alignments (such as seen in figures 1,2
and 3).

2.3 Order invariant measures

Assessing answer/question similarity by variants
of tree distance or sequence edit-distance, means
that distance will not be word-order invariant.
There are also measures which are word-order in-
variant, sometimes calledtoken-basedmeasures.
These measures are usually couched in avector
representation of questions and answers, where
vector dimensions are words from (some cho-
sen enumeration) of words (see (Salton and Lesk,
1968)). In the simplest case the values on each
dimensions are in{0, 1}, denoting presence or ab-
sence of a word. If• is vector product andaw

is the set of words in a sequencea, then~a •~b =
|aw ∩ bw|, for the binary vectors representingaw,
bw. Three well known measures based on this are
given below, both in terms vectors, and for binary
vectors, the equivalent formulation with sets:

Dice 2(~a •~b)/(~a • ~a) + (~b •~b))
= 2(|aw ∩ bw|)/(|aw |+ |bw|)

Jaccard (~a •~b)/(~a • ~a) +~b •~b− ~a •~b)
= (|aw ∩ bw|)/(|aw ∪ bw)

Cosine (~a •~b)/(~a • ~a).5(~b •~b).5

= (|aw ∩ bw|)/((|aw |)0.5(|bw|)0.5)

These measuresimilarity, not difference, ranging
for 1 for identical aw,bw, to 0 for disjoint. In
the binary case, Dice/Jaccard similarity can be
related to the alignment-based, difference count-
ing perspective of the edit-distances. If we de-
fine Πw(a, b) as|aw ∪ bw| − |aw ∩ bw| – the size
of the symmetric differencebetweenaw andbw –
this can be seen as a set-based version of edit dis-
tance5, which (i) considers mappings on the sets of
words,aw, bw, not the sequencesa, b, and (ii) sets
replacement cost to infinity. A difference measure
(ranging from 0 for identicalaw,bw to 1 for dis-
joint) results ifΠw(a, b) is divided by|aw| + |bw|
(resp.|aw ∪ bw|) and this difference measures will
give the reverse of a ranking by Dice (resp. Jac-
card) similarity.

The Cosine is a measure of theangle be-
tween the vectors~a,~b, and is not relatable in the

5Πw(a, b) could be equivalently defined as|(~a−~b)|2

binary-case to the alignment-based, difference-
counting perspective of the edit-distances: di-
viding Πw(a, b), the symmetric difference, by
|aw|.5|bw|.5 does not give a measure with maxi-
mum value 1 for the disjoint case, and does not
give the reverse of a ranking by Cosine similarity.6

Below we shall useθ to denote the Cosine dis-
tance.

3 The Question Answering Tasks

For a given representationr (parse trees, word se-
quences etc.), and distance measured, we shall
generically take a Question Answering by Dis-
tance (QAD) task to be given by a set of queries,
Q, and for each queryq, a corpus of potential an-
swer sentences,CORq. For eacha ∈ CORq, the
system determinesd(r(a), r(q)), the distance be-
tween the representations ofa andq, then uses this
to sortCORq into Aq. This sorting is then evalu-
ated in the following way. Ifac ∈ Aq is thecorrect
answer, then thecorrect-answer-rankis the rank
of ac in Aq:

| {a ∈ Aq : d(r(a), r(q)) ≤ d(r(ac), r(q))} |

whilst thecorrect-answer-cutoffis the proportion
of Aq cut off by the correct answerac:

| {a ∈ Aq : d(r(a), r(q)) ≤ d(r(ac), r(q))} | / | Aq |

Lowervalues for this connote better performance.
Another figure of merit is thereciprocal correct-
answer-rank. Higher values of this connote better
performance.

Note the notion of answerhood is not one requir-
ing answers to be the sub-sentential phrases asso-
ciated with wh-phrases in the question. Also not
all the questions are wh-questions.

Note also that the set of candidate answers
CORq is sorted by the answer-to-query distance,
d(r(a), r(q)), not the query-to-answer distance,
d(r(q), r(a)). The intuition is that the queries are
short and the answers longer, with sub-part that re-
ally contains the answer.

The performance of some of the above men-
tioned distance measures on 2 examples of QAD
tasks has been measured:

GNU Library Manual QAD Task: in
this caseQ is a set of 88 hand-created

6if the vectors are normalised by their length, then you
can show|(~a/|~a| −~b/|~b|)|2 reverses the Cosine ranking
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queries, andCORq, shared by all the
queries, is the sentences of the manual
of the GNU C Library7 (| CORq |≈
31, 000).

The TREC 11 QAD task: In this
caseQ was the 500 questions of the
TREC11 QA track (Voorhees and Buck-
land, 2002), whose answers are drawn
from a large corpus of newspaper arti-
cles. CORq was taken to be the sen-
tences of the top 50 from the top-1000
ranking of articles provided by TREC11
for each question (| CORq |≈ 1000).
Answer correctness was determined us-
ing the TREC11 answer regular expres-
sions.

For the tree-distance measures, 2 parsing sys-
tems have been used. For convenience of refer-
ence, we will call the first parser, thetrinity parser.
This is a home-grown parser combining a disam-
biguating part-of-speech tagger with a bottom-up
chartparser, refering to CFG-like syntax rules and
a subcategorisation system somewhat in a catego-
rial grammar style. Right-branching analyses are
prefered and a final selection of edges from all
available is made using a leftmost/longest selec-
tion strategy – there is always an output regardless
of whether there is a single input-encompassing
edge. Preterminal node labels are a combination
of a main functor with other feature terms, but the
replacement cost functionR is set to ignore the
feature terms. Terminal node labels are base forms
of words, not inflected forms. For the structural
weighting algorithm,ST R, the necessary node
distinctions are furnished directly by the parser for
vp, and by a small set of structure matching rules
for other structures (nps, pps etc). The structures
output for wh-questions are essentially deep struc-
tures, re-ordering an auxiliary inversion, and plac-
ing a tree in the position of a gap.

The Collins parser (Collins, 1999) (Model 3
variant) is a probabilistic parser, using a model of
trees as built top-down with a repertoire of moves,
learnt from the Penn Treebank. The preterminal
node labels are a combination of a Penn Tree-
bank label with other information pertaining to the
head/complement/adjunct distinction, but the re-
placement cost functionR is set to ignore all but
the Penn Treebank part of the label. The termi-

7http://www.gnu.org

nal node labels are inflected forms of words, not
base forms. For the structural weighting algo-
rithm, ST R, the necessary node distinctions are
furnished directly by the parser. For the question
parses, a set of transformations is applied to the
parses directly given by the parser, which compa-
rable to thetrinity parser, re-order auxiliary inver-
sion, and place a tree in the position of a gap.

4 Relating Parse Quality to Retrieval
Performance

As a kind of sanity-check on the idea of the us-
ing syntactic structures in retrieving answers, we
performed some experiments in which we var-
ied the sophistication of the parse trees that the
parsers could produce, the expectation being that
the less sophisticated the parse, the less successful
would be question-answering performance. The
left-hand data in Table 1 refers to various reduc-
tions of the linguistic knowledge bases of thetrin-
ity parser(thin50= random removal of 50% subset,
manual= manual removal of a subset,flat = en-
tirely flat parses,gold = hand-correction of query
parses and their correct answers). The right-hand
data in Table 1 refers to experiments in which the
repertoire of moves available to the Collins parser,
as defined by its grammar file, was reduced to dif-
ferent sized random subsets of itself.

Figure 4 shows the empirical cumulative den-
sity function (ecdf) of thecorrect-answer-cutoff
obtained with the weighted sub-tree with wild
cards measure. For each possible valuec of
correct-answer-cutoff, it plots the percentage of
queries with acorrect-answer-cutoff≤ c.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

gold
full
thin50
manual
flat

Figure 4: Success vs Cut-off for different parse settings:
x = correct-answer-cutoff,y = proportion of queries whose
correct-answer-cutoff≤ x (ranking by weighted sub-tree
with wild cards) (Library task)

What these experiments show is that the ques-
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Table 1:Distribution ofCorrect Cutoffacross query setQ in different parse settings. Left-hand data =
GNU task, trinity parser, right-hand data = TREC11 task, Collins parser

Parsing 1st Qu. Median Mean 3rd Qu.
flat 0.1559 0.2459 0.2612 0.3920
manual 0.0215 0.2103 0.2203 0.3926
thin50 0.01418 0.02627 0.157 0.2930
full 0.00389 0.04216 0.1308 0.2198
gold 0.00067 0.0278 0.1087 0.1669

Parsing 1st Qu. Median Mean 3rd Qu.
55 0.3157 0.6123 0.5345 0.766400
75 0.02946 0.1634 0.2701 0.4495
85 0.0266 0.1227 0.2501 0.4380
100 0.01256 0.08306 0.2097 0.2901

tion answering performance is a function of the so-
phistication of the parses that the parsers are able
to produce.

5 Comparing Distance Measures

Table 2 gives results on the Library task, using the
trinity parser, for some variations of the distance
measure.

Considering the results in 2, the best perform-
ing measure (mrr = 0.27) was the sub-traversal
distance,~δ, assigning weights structurally using
ST R, with lexical emphasisLEX , and treating a
gap position as annp wild card. This slightly out
performs the sub-tree measure,δ (mrr = 0.25).
An alternative approach to discounting parts of
the answer tree, allowing any sub-tree of the an-
swer the option to delete for free (∆(W = Str ◦
Lex, T (∗) = np gap, S/λ = ∀)) performs con-
siderably worse (mrr = 0.16). Presumably this is
because it is too enthusiastic to assemble the query
tree from disparate parts of the answer tree. By
comparison,~δ andδ can only assembly the query
tree from parts of the answer tree that are more
closely connected.

The tree-distance measures (~δ, δ) using struc-
tural weights, lexical emphasis and wild cards
(mrr = 0.27) out-perform the sub-sequence mea-
sure,π (mrr = 0.197). It also out-performs the
cosine measure,θ (mrr = 0.190). But π andθ
either out-perform or perform at about the same
level as the tree-distance measure if the lexical
emphasis is removed (seeδ(W = Str, T (∗) =
np gap), mrr = 0.160).

The tree-distance measureδ works better if
structural weighting is used (mrr = 0.09) than
if it is not (mrr = 0.04).

The tree-distance measureδ works better with
wild-cards (seeδ(W = Str, T (∗) = np gap),
mrr = 0.160, than without (seeδ(W = Str),
mrr = 0.090).

Table 3 gives some results on the TREC11 task,
using the Collins parser. Fewer comparisons have

been made here.
The sub-traversal measure, using structural

weighting, lexical emphasis, and wild-cards per-
forms better (mrr = 0.150) than the sub-sequence
measure (mrr = 0.09), which in turn performs
better than the basic sub-traversal measure, with-
outh structural weighting, lexical emphasis or
wild-cards (mrr = 0.076). The cosine distance,
θ, performed best.

6 Discussion

For the parsers used, you could easily have 2
sentences with completely different words, and
very different meanings, but which would have the
same pre-terminal syntactic structure: the preter-
minal syntactic structure is not a function of the
meaning. Given this, it is perhaps not surpris-
ing that there will be cases that the sequence dis-
tance easily spots as dissimilar, but which the tree
distance measure, without any lexical emphasis,
will regard as quite similar, and this perhaps ex-
plains why, without any lexical emphasis, the tree-
distance measure performs at similar level to, or
worse than, the sub-sequence distance measure.

With some kind of lexical emphasis in place,
the tree-distance measures out-perform the sub-
sequence measures. We can speculate as to the
reason for this. There are two kinds of case
where the tree-distance measures could be ex-
pected to spot a similarity which the sequence-
distance measures will fail to spot. One is when
the question and answer are more or less simi-
lar on their head words, but differ in determiners,
auxiliaries and adjuncts. The sequence distance
measure will pay more of a price for these differ-
ences than the structurally weighted tree-distance.
Another kind of case is when the answer supplies
words which match a wild-card in the middle of
the query tree, as might happen for example in:

Q: what do child processes inherit from their par-
ent processes
A: a child process inherits the owner and permis-
sions from the ancestor process
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Table 2: For different distance measures (Library task, trinity parser), distrution of correct-answer-
cutoff, mean reciprocal rankmrr

cutoff
distance type 1st Qu. Median Mean mrr
~δ(W = Str ◦ Lex, T (∗) = np gap) 8.630-05 8.944-04 2.460-02 0.270
δ(W = Str ◦ Lex, T (∗) = np gap) 9.414e-05 1.428e-03 7.133e-020.255
π bases 1.569e-04 2.087e-03 5.181e-020.197
θ bases 1.569e-04 8.630e-04 1.123e-020.190
∆(W = Str ◦ Lex, T (∗) = np gap, S/λ = ∀) 4.080e-04 9.352-03 5.853-02 0.160
δ(W = Str, T (∗) = np gap) 3.923e-04 1.964e-02 1.162e-010.160
δ(W = Str) 5.060e-03 3.865e-02 1.303e-010.090
δ 1.324e-03 1.046e-01 1.852e-010.040
∆ 8.398e-02 2.633e-01 3.531e-010.003

Table 3:For different distance measures (TREC task, collins parser) the distribution of correct-answer-
cutoff and mean reciprocal rank (mrr)

cutoff
distance type 1st Qu. Median Mean mrr
θ forms 7.847e-03 2.631e-02 1.068e-010.167
~δ(W = Str ◦ Lex, T (∗) = np gap) 8.452e-03 4.898e-02 1.558e-010.150
π forms 2.113e-02 7.309-02 2.051e-010.092
~δ 1.815e-02 1.030e-01 3.269e-010.076

The tree-distance measures will see these as
similar, but the sub-sequence measure will pay a
large price for words in the answer that match the
gap position in the query. Thus one can argue that
the use of structural weighting, and wild-card trees
in the query analysis will tend to equate things
which the sequence distance sees as dissimilar.

Another possible reason that the tree-distance
measure out-performs the sub-sequence measure
is that it may be able to distinguish things which
the sequence distance will tend to treat as equiva-
lent. A question might make the thematic role of
some entity very clear, but use very few significant
words as in:

what does malloc do ?

Using tree distance will favour answer sen-
tences withmalloc as the subject, such asmal-
loc returns a null pointer. The basic problem for
the sequence distance here is that it does not have
much to work with and will only be able to parti-
tion the answer set into a small set of equivalence
classes.

These are speculations as to why tree-distance
would out-perform sequence distance. Whether

these equating and discriminating advantages
which theoretically should accrue toδ, ~δ actually
will do so, will depend on the accuracy of the pars-
ing: if there is too much bad parsing, then we will
be equating that which we should keep apart, and
discriminating that which we should equate.

In the two tasks, the relationship between the
tree-distance measures and the order-invariant co-
sine measure worked out differently. The reasons
for this are not clear at the moment. One pos-
sibility is that our use of the Collins parser has
not yet resulted in good enough parses, especially
question parses – recall that the indication from
4 was that improved parse quality will give better
retrieval performance. Also it is possible that rel-
ative to the queries in the Library task, the amount
of word-order permutation between question and
answer is greater in the TREC task. This is also
indicated by the fact that on the TREC task, the
sub-sequence measure,π, falls considerably be-
hind the cosine measure,θ, whereas for the Li-
brary task they perform at similar levels.

Some other researchers have also looked at
the use of tree-distance measures in semantically-
oriented tasks. Punyakonok(2004) report work
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using tree-distance to do question-answering on
the TREC11 data. Their work differs from that
presented here in several ways. They take the
parse trees which are output by Collins parser and
convert them into dependency trees between the
leaves. They compute the distance from query to
the answer, rather than from answer to query, us-
ing essentially the variant of tree-distance that al-
lows arbitrary sub-trees of the target to insert for
zero-cost. Presumably this directionality differ-
ence is not a significant one, and with distances
calculated from answers to queries, this would cor-
respond to the variant that allows arbitrary source
sub-trees to delete with zero cost. The cost func-
tions are parameterised to refer in the case of wild-
card replacements to (i) information derived from
Named Entity recognisers so different kinds of wh
wild-cards can be given low-cost replacment with
vocabulary categorised as belong to the right kind
by NE recognition and (ii) base-form information.

There is no way to make a numerical compar-
ison because they took a different answer corpus
CORq – the articles containing the answers sug-
gested by TREC11 participants – and a different
criterion of correctness – an answer was correct if
it belonged to an article which the TREC11 adju-
dicators judges to contain a correct answer.

Their adaptation of cost functions to refer to es-
sentially semantic annotations of tree nodes is an
avenue we intend to explore in future work. What
this paper has sought to do is to investigate intrin-
sic syntactic parameters that might influence per-
formance. The hope is that these parameters still
play a role in an enriched system.

7 Conclusion and Future Work

For two different parsers, and two different
question-answering tasks, we have shown that im-
proved parse quality leads to better performance,
and that a tree-distance measure out-performs a
sequence distance measure. We have focussed on
intrinsic, syntactic properties of parse-trees. It is
not realistic to expect that exclusively using tree-
distance measures in this rather pure way will give
state-of-the-art question-answering performance,
but the contribution of this paper is the (start of
an) exporation of the syntactic parameters which
effect the use of tree-distance in question answer-
ing. More work needs to be done in systematically
varying the parsers, question-answering tasks, and
parametrisations of tree-distance over all the pos-

sibilities.
There are many possibilities to be explored in-

volving adapting cost functions to enriched node
descriptions. Already mentioned above, is the pos-
sibility to involve semantic information in the cost
functions. Another avenue is introducing weight-
ings based on corpus-derived statistics, essentially
making the distance comparision refer to extrin-
sic factors. One open question is whether anal-
ogously to idf , cost functions for (non-lexical)
nodes should depend on tree-bank frequencies.

Another question needing further exploration is
the dependency-vs-constituency contrast. Interest-
ingly Punyakonok(2004) themselves speculate:

each node in a tree represents only a
word in the sentence; we believe that ap-
propriately combining nodes into mean-
ingful phrases may allow our approach
to perform better.

We found working with constituency trees that
it was the sub-traversal distance measure that per-
formed best, and it needs to be seen whether this
holds also for dependency trees. Also to be ex-
plored is the role of structural weighting in a sys-
tem using dependency trees.

A final speculation that it would be interesting
to explore is whether one can use feed-back from
performance on a QATD task as a driver in the
machine-learning of probabilities for a parser, in
an approach analogous to the use of the language-
model in parser training.
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Appendix

This appendix briefly summarises the algorithm
to compute the tree-distance, based on (Zhang
and Shasha, 1989) (see Section 2.1 for definition
of tree-distance). The algorithm operates on the
left-to-right post-order traversals of trees. Given
source and target treesS and T , the output is a
tableT , indexed vertically by the traversal ofS
and horizontally by the traversal ofT , and posi-
tion T [i][j] is the tree-distance from theS subtree
rooted ati, to theT subtree rooted atj. Thus the
bottom righthand corner of the table represents the
tree distance betweenS andT .

If k is the index of a node of the tree, theleft-
most leaf, l(k), is the index of the leaf reached
by following the left-branch down. For a given
leaf there is a highest node of which it is the
left-most leaf. Let such a node be called akey-
root. Let KR(T ) be the sequence ofkey-roots
in T . The algorithm is a doubly nested loop as-
cending throught the key-roots ofS and T , in
which for each pair of key-roots(i, j), a routine
tree dist(i, j) updates theT table.

Supposei is any node ofS. Then for anyis
with l(i) ≤ is ≤ i, the subsequence ofS from
l(i) to is can be seen as aforestof subtrees ofS,
denotedF (l(i), is). tree dist(i, j) creates a ta-
bleF , indexed vertically froml(i) to i and hori-
zontally from l(j) to j, such thatF [is][jt] repre-
sents the distance between the forestsF (l(i), is)
andF (l(j), jt). Also theF table should be seen
as having an extra left-most column, representing
for eachis, l(i) ≤ is ≤ i, theF (l(i), is) to ∅map-
ping (pure deletion), and an extra uppermost row
representing for each for eachjt, l(j) ≤ jt ≤ j,
the∅ to F (l(j), jt) mapping (pure insertion).
tree dist(i, j){

initialize:

F [l(i)][∅], . . . ,F [i][∅] = 1, . . . , i − l(i) + 1

F [∅][l(j)], . . . ,F [∅][j] = 1, . . . , j − l(j) + 1

loop: ∀is, l(i) ≤ is ≤ i,∀jt, l(j) ≤ jt ≤ j

{

case 1: l(is) = l(i) andl(jt) = l(j)

T [is][jt] = F [is][jt] = min of swap, delete,

insert, where

swap = F [is − 1][jt − 1] + swap(is, jt)

delete = F [is − 1][jt] + delete(is)

insert = F [is][jt − 1] + insert(jt)

case 2: eitherl(is) 6= l(i) or l(jt) 6= l(j)

F [is][jt] = min of delete, insert, for + tree,

where

swap, delete, insert as before and

for + tree = F [l(is)− 1][l(jt)− 1] + T [is][jt]

}

}

In case 1, the ‘forests’ F (l(i), is) and
F (l(j), jt) are both single trees and the computed
forest distance is transferred to the tree-distance
tableT . In case 2, at least one ofF (l(i), is) or
F (l(j), jt) represents a forest of more than one
tree. This means there is the possibility that the
final trees in the two forests are mapped to each
other. This quantity is found from theT table.

This formulation gives thewhole-treedistance
betweenS andT . For thesub-treedistance, you
take the minimum of the final column ofT . For
thesub-traversalcase, you do the same but on the
final iteration, you set the pure deletion column
of F to all 0s, and take the minimum of the final
column ofF .

To accommodate wild-card target trees,case
1 in the above is extended to allowT [is][jt] =
F [is][jt] = 0 in casejt is the root of a wild-card
tree. To accommodate self-effacing source trees,
case 2 in the above is extended to also consider
for + tree del = F [l(is)− 1, jt].
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Abstract

In this paper we propose two metrics to be
used in various fields of computational lin-
guistics area. Our construction is based on
the supposition that in most of the natural
languages the most important information
is carried by the first part of the unit. We
introduce total rank distance and scaled to-
tal rank distance, we prove that they are
metrics and investigate their max and ex-
pected values. Finally, a short application
is presented: we investigate the similarity
of Romance languages by computing the
scaled total rank distance between the di-
gram rankings of each language.

1 Introduction

Decision taking processes are common and fre-
quent tasks for most of us in our daily life.
The ideal case would be that when the decisions
can be taken deterministically, based on some
clear, quantifiable and unambiguous parameters
and classifiers. However, there are many cases
when we decide based on subjective or sensor-
ial criteria (e.g. perceptions), but which prove to
function well. The domains in which decisions are
taken based on perceptions vary a lot: the quali-
tative evaluation of services, management, finan-
cial predictions, sociology, information/intelligent
systems, etc (Zadeh and Kacprzyk, 1999).

When people are asked to approximate the
height of some individual, they prefer to use terms
like: very tall, rather tall, tall enough, short, etc.
We can expect the same linguistic variable to have
a different metrical correspondence according to
the community to which the individual belongs
(i.e. an individual of 170 cm can be considered

short by the Australian soldiers and tall by the Es-
kimos). Similar situations also arise when people
are asked to hierarchically order a list of objects.

For example, we find it easy to make the top of
the best five novels that we read, since number one
is the novel that we like best and so on, rather than
to say that we liked in the proportion of 40% the
novel on the first position, 20 % the novel on the
second place and so on. The same thing is happen-
ing when we try to talk about the style of a certain
author: it is easier to say that the author x is closer
to y than z, then to quantify the distance between
their styles. In both cases we operate with a ”hid-
den variable” and a ”hidden metric”.

Especially when working with perceptions, but
not only, we face the situation to operate with
strings of objects where the essential information
is not given by the numerical value of some para-
meter of each object, but by the position the object
occupies in the strings (according to a natural hier-
archical order, in which on the first place we find
the most important element, on the second place
the next one and on the last position the least im-
portant element).

As in the case of perceptions calculus, in most
of the natural languages, the most important infor-
mation is also carried by the first part of the unit
(Marcus, 1974). Cf. M. Dinu (1997), it is advis-
able that the essential elements of a message to be
situated in the first part of the utterance, thus hav-
ing the best chances to be memorized1 (see Table
1).

Based on the remark that in most of the natural
1On the contrary, M. Dinu notices that at the other end, we

find the wooden language from the communist period, text
that was not meant to inform, but to confuse the receiver with
an incantation empty of content, and that used the reversed
process: to place the important information at the end of very
long phrases that started with irrelevant information
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The length Memorized words (%)
of the phrase all first half second half

12 100 % 100 % 100 %
13 90 % 95 % 85 %
17 70 % 90% 50%
24 50 % 70 % 30 %
40 30 % 50 % 10 %

Table 1: The percentage of memorized words from
phrases

languages the most important information is car-
ried out by the first part of the unit, in this paper
we introduce two metrics: total rank distance and
scaled total rank distance.

Some preliminary and motivations are given in
Section 2. In Section 3 we introduce total rank dis-
tance; we prove that it is a metric (Section 3.1), we
investigate its max and expected values (Section
3.2) and its behavior regarding the median ranking
problem (Section 3.3). An extension for strings is
proposed in Section 4. Scaled total rank distance
is introduced in Section 4, where we prove that it
is a metric and we investigate its max and expected
values. In Section 6 a short application is pre-
sented: we investigate the similarity of Romance
languages by computing the scaled total rank dis-
tance between the digram rankings of each lan-
guage. Section 7 is reserved to conclusions, while
in Section 8 we give a mathematically addendum
where we present the proofs of the statements.

2 Rank distance

By analogy to computing with words, natural lan-
guage and genomics, we can say that if the differ-
ences between two strings are at the top (i.e., in
essential points), the distance has to have a bigger
value then when the differences are at the bottom
of the strings.

On the other hand, many of the similarity mea-
sures used today (edit distance, Hamming distance
etc.) do not take into account the natural tendency
of the objects to place the most important informa-
tion in the first part of the message.

This was the motivation we had in mind when
we proposed Rank distance (Dinu, 2003) as an al-
ternative similarity measure in computational lin-
guistics. This distance had already been suc-
cessfully used in computational linguistics, in
such problems as the similarity of Romance lan-
guages (Dinu and Dinu, 2005), or in bioinformat-

ics (in DNA sequence comparision problem, Dinu
and Sgarro).

2.1 Preliminaries and definitions

To measure the distance between two strings, we
use the following strategy: we scan (from left to
right) both strings and for each letter from the first
string we count the number of elements between
its position in first string and the position of its
first occurrence in the second string. We sum these
scores for all elements and obtain the rank dis-
tance. Clearly, the rank distance gives a score zero
only to letters which are in the same position in
both strings, as Hamming distance does (we recall
that Hamming distance is the number of positions
where two strings of the same length differ).

On the other hand, the reduced sensitivity of
the rank distance w.r.t. deletions and insertions
is of paramount importance, since it allows us to
make use of ad hoc extensions to arbitrary strings,
such as its low computational complexity is not
affected. This is not the case for the extensions
of the Hamming distance, mathematically optimal
but computationally heavy, which lead to the edit-
distance, or Levenshtein distance, and which are at
the base of the standard alignment principle. So,
rank distance sides with Hamming distance rather
than Levenshtein distance as far as computational
complexity is concerned: the fact that in the Ham-
ming and in the rank case the median string prob-
lem is tractable (Dinu and Manea), while in the
edit case it is is NP-hard (Higuera and Casacu-
berta, 2000), is a very significant indicator.

The rank distance is an ordinal distance tightly
related to the so-called Spearman’s footrule (Di-
aconis and Graham, 1977) 2, which has long been
used in non-parametric statistics. Unlike other or-
dinal distances, the Spearman’s footrule is linear
in n, and so very easy to compute. Its average
value is at two-thirds of the way to the maximum
value (both are quadratics in n); this is because,
in a way, the Spearman footrule becomes rather
”undiscriminating” for highly different orderings.
Rank distance has the same drawbacks and the
same advantages of Spearman’s foootrule. As for
”classical” ordinal distances for integers, with av-
erages values, maximal values, etc., the reader is

2Both Spearman’s footrules and binary Hamming dis-
tances are a special case of a well-known metric distance
called sometimes taxi distance, which is known to be equiv-
alent to the usual Euclidian distance. Computationally, taxi
distance is obviously linear.
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referred to the basic work (Diaconis and Graham,
1977).

Let us go back to strings. Let us choose a fi-
nite alphabet, say {N, V,A, O} (Noun, Verb, Ad-
jective, Object) and two strings on that alphabet,
which for the moment will be constrained to be a
permutation of each other. E.g. take two strings
of length 6: NNV AOO and V OANON ; put
indexes for the occurrences of repeated letters in
increasing order to obtain N1N2V1A1O1O2 and
V1O1A1N1O2N2. Now, proceed as follows: in
the first sequence N1 is in position 1, while it is in
position 4 in the second sequence, and so the dif-
ference is 3; compute the difference in positions
for all letters and sum them. In this case the dif-
ferences are 3, 4, 2, 1, 3, 1 and so the distance is
14. Even if the computation of the rank distance
as based directly on its definition may appear to
be quadratic, in (Dinu and Sgarro) two algorithms
which take it back to linear complexity are exhibit.

In computational linguistics the rank distance
for strings without repetitions had been enough. In
a way, indexing converts a sequence with repeti-
tions into a sequence without repetitions, in which
the k occurrence of a letter a are replaced by sin-
gle occurrences of the k indexed letters a1, a2, . . .,
ak. Let u = x1x2 . . . xn and v = y1y2 . . . ym be
two strings of lengths n and m, respectively. For
an element xi ∈ u we define its order or rank by
ord(xi|u) = n+1−i: we stress that the rank of xi

is its position in the string, counted from the right
to the left, after indexing, so that for example the
second O in the string V OANON has rank 2.

Note that some (indexed) occurrences appear in
both strings, while some other are unmatched, i.e.
they appear only in one of the two strings. In de-
finition (1) the last two summations refer to these
unmatched occurrences. More precisely, the first
summation on x ∈ u ∩ v refers to occurrences x
which are common to both strings u and v, the sec-
ond summation on x ∈ u \ v refers to occurrences
x which appear in u but not in v, while the third
summation on x ∈ v \ u refers to occurrences x
which appear in v but not in u.

Definition 1 The rank distance between two
strings without repetitions u and v is given by:

∆(u, v) =
∑

x∈u∩v
|ord(x|u)− ord(x|v)|+

+
∑

x∈u\v
ord(x|u) +

∑
x∈v\u

ord(x|v) (1)

Example 1 1. Let u = abcde and v = beaf be

two strings without repetitions. ∆(u, v) =
|ord(a|u) − ord(a|v)| + |ord(b|u) −
ord(b|v)| + |ord(e|u) − ord(e|v)| +
ord(c|u) + ord(d|u) + ord(f |v) =
3 + 0 + 2 + 3 + 2 + 1 = 11.

2. Let w1 = abbab and w2 = abbbac be two
strings with repetitions. Their corresponding
indexed strings will be: w1 = a1b1b2a2b3

and w2 = a1b1b2b3a2c1, respectively. So,
∆(w1, w2) = ∆(w1, w2) = 8.

Remark 1 The ad hoc nature of the rank distance
resides in the last two summations in (1), where
one compensates for unmatched letters, i.e. in-
dexed letters which appear only in one of the two
strings.

Deletions and insertions are less worrying in the
rank case rather than in the Hamming case: if one
incorrectly moves a symbol by, say, one position,
the Hamming distance loses any track of it, but
rank distance does not, and the mistake is quite
light. So, generalizations in the spirit of the edit
distance are unavoidable in the Hamming case,
even if they are computationally very demanding,
while in the rank case we may think of ad hoc
ways-out, which are computationally convenient.

3 Total Rank Distance

We remind that one of the goals of introducing
rank distance was to obtain a tool for measuring
the distance between two strings which is more
sensitive to the differences encountered in the be-
ginning of the strings than in the ending.

Rank distance satisfies in a good measure the
upper requirement (for example it penalizes more
heavily unmatched letters in the initial part of
strings), but some black points are yet remaining.
One of them is that rank distance is invariant to the
transpositions on a given length.

The following example is eloquent:
Example 2 1. Let a = (1, 2, 3, 4, 5), b =

(2, 1, 3, 4, 5), c = (1, 2, 4, 3, 5) and d =
(1, 2, 3, 5, 4) be four permutations. Rank dis-
tance between a and each of b, c or d is the
same, 2.

2. The same is happening with
a = (1, 2, 3, 4, 5, 6, 7, 8) and
b = (3, 2, 1, 4, 5, 6, 7, 8), c =
(1, 4, 3, 2, 5, 6, 7, 8), or d =
(1, 2, 3, 4, 5, 8, 7, 6) (here rank distance
is equal to 4).
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In the following we will repair this inconve-
nient, by introducing the Total Rank Distance, a
measure which gives us a more comprehensive in-
formation (compared to rank distance) about the
two strings which we compare.

Since in many situations occurred in computa-
tional linguistics, the similarity for strings with-
out repetitions had been enough, in the following
we introduce first a metric between rankings3 and
then we generalize it to strings.

3.1 Total rank distance on permutations
Let A and B be two rankings over the same uni-
verse U , having the same length, n. Without loss
of generality, we suppose that U = {1, 2, . . . , m}.

For each 1 ≤ i ≤ n we define the function δ by:

δ(i)
def
= ∆(Ai, Bi). (2)

where Ai and Bi are the partial rankings of length
i obtained from the initial rankings by deleting the
elements below position i (i.e. the top i rankings).

Definition 2 Let A and B be two rankings with
the same length over the same universe, U . The
Total Rank Distance between A and B is given by:

D(A,B) =
n∑

i=1

δ(i) =
n∑

i=1

∆(Ai, Bi).

Example 3 1. Let a, b, c and d be the four per-
mutations from Example 2, item 1. The total
rank distance between a and each of b, c, d
is: D(a, b) = 10, D(a, c) = 6, D(a, d) = 4.

2. The visible differences are also in the item 2
of the upper example if we apply total rank
distance: D(a, b) = 30, D(a, c) = 28,
D(a, d) = 10.

3A ranking is an ordered list of objects. Every ranking
can be considered as being produced by applying an order-
ing criterion to a given set of objects. More formally, let U
be a finite set of objects, called the universe of objects. We
assume, without loss of generality, that U = {1, 2, . . . , |U |}
(where by |U | we denote the cardinality of U ). A ranking
over U is an ordered list: τ = (x1 > x2 > . . . > xd),
where {x1, . . . , xd} ⊆ U , and > is a strict ordering rela-
tion on {x1, . . . , xd}, (an ordering criterion. It is important
to point the fact that xi 6= xj if i 6= j. For a given object
i ∈ U present in τ , τ(i) represents the position (or rank) of i
in τ . If the ranking τ contains all the elements of U , than it is
called a full ranking. It is obvious that all full rankings repre-
sent all total orderings of U (the same as the permutations of
U ). However, there are situations when some objects cannot
be ranked by a given criterion: the ranking τ contains only
a subset of elements from the unverse U . Then, τ is called
partial ranking. We denote the set of elements in the list τ
with the same symbol as the list.

The following theorem states that our terminol-
ogy total rank distance is an adequate one:

Theorem 1 Total rank distance is a metric.

Proof:
It is easy to see that D(A,B) = D(B,A).
We prove that D(A,B) = 0 iff A = B. If

D(A, B) = 0, then ∆(Ai, Bi) = 0 for each
1 ≤ i ≤ n (since ∆ is a metric, so a nonnega-
tive number), so ∆(An, Bn) = ∆(A,B) = 0, so
A = B.

For the triangle inequality we have: D(A, B) +

D(B, C) =
n∑

i=1
∆(Ai, Bi) +

n∑
i=1

∆(Bi, Ci)

=
n∑

i=1
(∆(Ai, Bi) + ∆(Bi, Ci))

≥
n∑

i=1
∆(Ai, Ci) = D(A,C). ut

3.2 Expected and max values of the total
rank distance

Let Sn be the group of all permutations of length
n and let A, B be two permutations from Sn. We
investigate the max total rank distance between A
and B and the average total rank distance between
A and B.

Proposition 1 Under the upper hypothesis, the
expected value of the total rank distance between
A and B is:

E(D) =
(n2 − 1)(n + 2)

6
.

Proposition 2 Under the same hypothesis as in
the previous proposition, the max total rank dis-
tance between two permutations from Sn is:

max
A,B∈Sn

D(A,B) =
n2(n + 2)

4

and it is achieved when a permutation is the re-
verse of the other one.

3.3 On the aggregation problem via total
rank distance

Rank aggregation is the problem of combining
several ranked lists of objects in a robust way to
produce a single ranking of objects.

One of the most natural way to solve the aggre-
gation problem is to determine the median (some-
times called geometric median) of ranked lists via
a particular measure.

Given a multiset T of ranked lists, a median of
T is a list L such that
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d(L, T ) = min
X

d(X,T ),

where d is a metric and X is a ranked list over
the universe of T .

Depending on the choice of measure d, the up-
per problem may contain many unpleasant sur-
prises. One of them is that computing the median
set is NP-complete for some usual measure (in-
cluding edit-distance or Kendal distance) even for
binary universe.

We will show in the following that the median
aggregation problem via Total rank distance can
be computed in polynomial time.

Theorem 2 Given a multiset T of full ranked lists
over the same universe, the median of T via total
rank distance can be computed in polynomial time,
namely proportional to the time to find a minimum
cost perfect matching in a bipartite graph.

Proof: Without loss of generality, we suppose
that the universe of lists is U = {1, 2, . . . , n}.
We define a weighted complete bipartite graph
G = (N, P, W ) as follows. The first set of nodes
N = {1, 2, . . . , n} denotes the set of elements to
be ranked in a full list. The second set of nodes
P = {1, 2, . . . , n} denotes the n available posi-
tions. The weight W (i, j) is the contribution, via
total rank distance, of node i to be ranked on place
j in a certain ranking.

We can give a close formula for computing the
weights W (i, j) and this ends the proof, because
we reduced the problem to the solving of the mini-
mum cost maximum matching problem on the up-
per bipartite graph ((Fukuda and Matsui, 1994),
(Fukuda and Matsui, 1992), (Dinu and Manea)).

ut

4 An extension to strings of total rank
distance

We can extend total rank distance to strings.
Similar to the extensions of rank distance to

strings, we index each letter in a word with the
number of its previous occurrences.

First, we extent the total rank distance to rank-
ings with unequal lengths as it follows:

Definition 3 Let u and v be two rankings of length
|u| and |v|, respectively. We can assume that |u| <
|v|. The total rank distance between u and v is

defined by:

D(u, v) =
|u|∑

i=1

∆(vi, ui) +
|v|∑

i=|u|+1

∆(vi, u).

Theorem 3 The total rank distance between two
rankings with unequal lengths is a metric.

To extent the total rank distance to strings,
firstly we index both strings and than we apply
the upper definition to the newly obtained strings
(which are now rankings).

Example 4 Let u = aabca, v = aab and w =
bca be three strings. We obtained the following
results:

1. Rank distance: ∆(u, v) =
∆(a1a2b1c1a3, a1a2b1) = 9 and
∆(u,w) = ∆(a1a2b1c1a3, b1c2a1) = 9;

2. Total rank distance: D(u, v) =
D(a1a2b1c1a3, a1a2b1) = 13 and
D(u,w) = D(a1a2b1c1a3, b1c2a1) = 33.

What happens in item 1 is a consequence of a
general property of rank distance which states that
∆(uv, u) = ∆(uv, v), for any nonempty strings u
and v.

Total rank distance repairs this fact, as we can
see from item 2; we observe that the total rank
distance is more sensitive than rank distance to the
differences from the first part of strings.

5 Scaled Total Rank Distance

We use the same ideas from Total rank distance,
but we normalize each partial distance. To do this,
we divide each rank distance between two partial
rankings of length i by i(i + 1), which is the max-
imal distance between two rankings of length i
(it corresponds to the case when the two rankings
have no common elements).

Definition 4 The Scaled Total Rank distance be-
tween two rankings A and B of length n is:

S(A,B) =
n∑

i=1

∆(Ai, Bi)
i(i + 1)

.

Theorem 4 Scaled total rank distance is a metric.

Proof: The proof is similar to the one from the
total rank distance. ut
Remark 2 It is easy to see that S(A,B) ≤
H(A,B), where H(A,B) is the Hamming dis-
tance.
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Example 5 Let A = (a, b, c, d, e), B =
(b, a, c, d, e) and C = (a, b, d, e, c) be three per-
mutations. We have the following values for ∆, D
and S, respectively:

1. Rank distance: ∆(A,B) = 2, ∆(A,C) = 4, so
∆(A,B) < ∆(A,C).

2. Total Rank Distance: D(A,B) = 2 + 2 + 2 +
2 + 2 = 10, D(A,C) = 0 + 0 + 2 + 4 + 4 = 10,
so D(A,B) = D(A,C).

3. Scaled Total Rank Distance: S(A,B) = 2
2 + 2

6 +
2
12 + 2

20 + 2
30 = 5

3 , S(A,C) = 0
2 + 0

6 + 2
12 + 4

20 +
4
30 = 1

2 , so S(A,B) > S(A,C).

It is not hard to see that S(A,B) ≤ n, so we can
normalize scaled total rank distance by dividing it
to n.

We obtained the following two values for max
and average values of scaled total rank distance:

Proposition 3
1. If n →∞, then max

A,B∈Sn

1
nS(A,B) = 7

2 − 4 ln 2.

2. The average value of scaled total rank distance
is: E(S) = 2(n−1)

3 . When n →∞, E(S)
n → 2

3 .

Remark 3 It is a nice exercise to show that 7
2 −

4 ln 2 ≤ 1.

Proof: 7
2 − 4 ln 2 ≤ 1 iff 1 ≤ 4(ln 4 − 1).

But 4(ln 4 − 1) > 4(ln 4 − ln 3). From La-
grange Theorem, there is 3 < ξ < 4 such that
ln 4 − ln 3 = 1

ξ , so 4(ln 4 − ln 3) = 4
ξ > 1, so

4(ln 4− 1) > 4(ln 4− ln 3) > 1. ut

6 Application

We present here a short experiment regarding the
similarity of Romance languages. The work cor-
pus is formed by the representative vocabularies of
the following six Romance languages: Romanian,
Italian, Spanish, Catalan, French and Portuguese
languages (Sala, 1988). We extracted the digrams
from each vocabularies and then we constructed a
ranking of digrams for each language: on the first
position we put the most frequent digram of the
vocabulary, on the second position the next fre-
quent digram, and so on.

We apply the scaled total rank distance between
all pairs of such classifications and we obtain a se-
ries of results which are presented in Table 2.

Some remarks are immediate:

• If we analyze the Table 2, we observe
that every time Romanian finds itself at the
biggest distance from the other languages.

Table 2: Scaled total rank distances in Romance
languages

Ro It Sp Ca Po Fr
Ro 0 0.36 0.37 0.39 0.41 0.36
It 0.36 0 0.21 0.24 0.26 0.30
Sp 0.37 0.21 0 0.20 0.18 0.27
Ca 0.39 0.24 0.20 0 0.20 0.28
Po 0.41 0.26 0.18 0.20 0 0.30
Fr 0.36 0.30 0.27 0.28 0.30 0

This fact proves that the evolution of Ro-
manian in a distanced space from the Latin
nucleus has lead to bigger differences be-
tween Romanian and the rest of the Romance
languages, then the differences between any
other two Romance languages.

• The closest two languages are Portuguese
and Spanish.

• It is also remarkable that Catalan is equally
distanced from Portuguese and Spanish.

The upper remarks are in concordance with the
conclusions of (Dinu and Dinu, 2005) obtained
from the analise of the syllabic similarity of the
Romance languages, where the rank distance was
used to compare the rankings of syllables, based
on the frequency of syllables for each language.

During the time, different comparing methods
for natural languages were proposed. We mention
here the work of Hoppenbrouwers and Hoppen-
brouwers (2001). Their approach was the follow-
ing: using the letter frequency method for each
language variety the unigram frequencies of let-
ters are found on the basis of a corpus. The dis-
tance between two languages is equal to the sum
of the differences between the corresponding letter
frequencies. They verify that this approach cor-
rectly shows that the distance between Afrikaans
and Dutch is smaller than the distance between
Afrikaans and the Samoan language.

7 Conclusions

In this paper we provided some low-complexity
metrics to be used in various subfields of computa-
tional linguistics: total rank distance and scaled to-
tal rank distance. These metrics are inspired from
the natural tendency of objects to put the main in-
formation in the first part of the units. Our ana-
lyze was especially concentrated on the mathemat-
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ical and computational properties of these metrics:
we showed that total rank distance and scaled to-
tal rank distance are metrics, computed their ex-
pected and max values on the permutations group
and showed that total rank distance can be used in
classification problem via a polynomial algorithm.

8 Mathematical addendum

This addendum may be skipped by readers who
are not interested in mathematical technicalities;
below some statements are sketched and other are
unproved, but then the proofs are quite straightfor-
ward.
Proposition 1:

Proof: It is not hard to see that D(A,Sn) =
D(B, Sn) for any two permutation A,B ∈ Sn.
So, the expected value can be computed by com-
puting first D(A,Sn) for a convenable permuta-
tion and then by dividing the upper sum to n!. If
we choose A = en (i.e. the identical permutation
of the group Sn), then the expected value is:

E(D) =
1
n!

∑

σ∈Sn

D(en, σ).

The upper sum can be easily computed if we take
into account the fact that each number 1, 2, . . . , n
appears the same number of times (i.e. (n-1)!) on
the ranks 1, 2, . . . n. So, we obtain that the ex-
pected value is equal to:

E(D) =
(n2 − 1)(n + 2)

6
.

ut
Proposition 2:

Proof: W.l.g. we can suppose that first permu-
tation is the identical one, i.e. en (otherwise we
will relabelled it). To compute the max value, the
following preliminary results must be proven (we
skipped the proofs).

We say that an integer from σ is low if its posi-
tion is ≤ n

2 and it is high if its position is > n
2 .

Let σ ∈ Sn be a permutation. We construct the
set Θσ as following:

Θσ = {τ ∈ Sn | ∀x ∈ {1 . . . n}, x is low in τ
iff x is high in σ and viceversa}

Result 1 For each σ ∈ Sn and every two permu-
tation τ, π in Θσ we have: D(σ, τ) = D(σ, π).

Result 2 For each σ ∈ Sn and every two permu-
tation τ, π such that π ∈ Θσ and τ /∈ Θσ, we
have: D(σ, τ) < D(σ, π).

To prove Result 2 we use the following Lemma:

Lemma 1 (Dinu, 2003) If a > b, then the func-
tion f(x) = |x − b| − |x − a| is an increasing
one.

Result 3 Let σ ∈ Sn be a permutation. The max-
imum total rank distance is reached by the per-
mutation τ where ord(x|τ) = n + 1 − ord(x|σ),
∀x ∈ V (Pn). Under this conditions the maximum
total rank distance is:

max
A,B∈Sn

D(A,B) =
n2(n + 2)

4
(3)

In other words, we obtained a more general re-
sult:

Theorem 5 For a given permutation σ, the maxi-
mum rank distance is achieved by all permutations
from Θσ and it is equal to (3).

ut
Proposition 3:

Proof:

1. Similar to Proposition 2, given a permutation
σ ∈ Sn, the max value is reached by its in-
vert. So, to give a close formula for the max
value it is enough to compute S(en, e−1

n ). To
make easier our life, we can suppose that
n = 2k.

S(en, e−1
n ) = k +

∑k
i=1

2i2+(k−i)(k−i+1)
(k+i)(k+i+1) =

. . . = 4k − 2k2

2k+1 − 2(4k + 1)(
∑k

i=1
1

k+i −
k

2k+1);

When k → ∞,
∑k

i=1
1

k+i → ln 2, so
S(en,e−1

n )
n = 7

2 − 4 ln 2 ut

2. To compute the expected value we use the
same motivation as in expected total rank dis-
tance. The rest is obvious.
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