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Abstract 

Multi-document person name resolution fo-
cuses on the problem of determining if two 
instances with the same name and from dif-
ferent documents refer to the same individ-
ual.  We present a two-step approach in 
which a Maximum Entropy model is 
trained to give the probability that two 
names refer to the same individual.  We 
then apply a modified agglomerative clus-
tering technique to partition the instances 
according to their referents.   

1 Intro 

Artists and philosophers have long noted that mul-
tiple distinct entities are often referred to by one 
and the same name (Cohen and Cohen, 1998; Mar-
tinich, 2000).  Recently, this referential ambiguity 
of names has become of increasing concern to 
computational linguists, as well.  As the Internet 
increases in size and coverage, it becomes less and 
less likely that a single name will refer to the same 
individual on two different web sites.  This poses a 
great challenge to information retrieval (IR) and 
question-answering (QA) applications, which often 
rely on little data when responding to user queries.   

Another area in which referential ambiguity is 
problematic involves the automatic population of 
ontologies with instances.  For such tasks, concept-
instance pairs (such as Paul Simon/pop star) are 
extracted from the web, cleaned of noise, and then 
inserted into an already existing ontology.  The 

process of insertion requires that concept-instance 
pairs that have the same referent be merged to-
gether (e.g. Paul Simon/pop star and Paul Simon 
/singer).  Further, instances of the same name, but 
with different referents, must be distinguished (e.g. 
Paul Simon/pop star and Paul Simon /politician).   

We propose a two-step approach: first, we train a 
maximum entropy model to generate the probabil-
ity that any two concept-instance pairs refer to one 
and the same referent.  Then, a modified agglom-
erative clustering technique is used to merge the 
most likely instances together, forming clusters that 
correspond to individual referents.   

2 Related Work 

While there has been a great deal of work on 
coreference resolution within a single document, 
little work has focused on the challenges associated 
with resolving the reference of identical person 
names across multiple documents.   

Mann and Yarowsky (2003) are amongst the few 
who have examined this problem.  They treat it as a 
clustering task, in which, a combination of features 
(such as, a weighted bag of words and biographic 
information extracted from the text) are given to an 
agglomerative clustering algorithm, which outputs 
two clusters representing the two referents of the 
query name. 

Mann and Yarowsky (2003) report results on two 
types of evaluations: using hand-annotated web-
pages returned from truly ambiguous searches, they 
report precision/recall scores of 0.88/0.73; using 
“psuedonames”1 they report an accuracy of 86.4%. 
                                                           
1 Borrowing from techniques in word sense disambigua-
tion, they create a test set of 28 “pseudonames” by ran-



While Mann and Yarowsky (2003) describe a 
number of useful features for multi-document per-
son name resolution, their technique is limited by 
only allowing a set number of referent clusters.  
Further, as discussed below, their use of artificial 
test data makes it difficult to determine how well it 
generalize to real world problems. 

Bagga and Baldwin (1998) also present an ex-
amination of multi-document person name resolu-
tion.  They first perform within-document 
coreference resolution to form coreference chains 
for each entity in each document.  They then use 
the text surrounding each reference chain to create 
summaries about each entity in each document.  
These summaries are then converted to a bag of 
words feature vector and are clustered using the 
standard vector space model often employed in IR. 

They evaluated their system on 11 entities named 
John Smith taken from a set of 173 New York 
Times articles.  Using an evaluation metric similar 
to a weighted sum of precision and recall they get 
an F-measure of 0.846.   

Although their technique allows for the discovery 
of a variable number of referents, its use of 
simplistic bag of words clustering is an inherently 
limiting aspect of their methodology.  Further, that 
they only evaluate their system, on a single person 
name begs the question of how well such a tech-
nique would fair on a more real-world challenge. 

3 Maximum Entropy Model  

3.1 Data 

Fleischman et al. (2003) describe a dataset of con-
cept-instance pairs extracted automatically from a 
very large corpus of newspaper articles.  The data-
set (referred to here as the ACL dataset) contains 
approximately 2 million pairs (of which 93% are 
legitimate) in which the concept is represented by a 
complex noun phrase (e.g. president of the United 

                                                                                            
domly selecting two names from a hand crafted list of 8 
individuals (e.g., Haifa Al-Faisal and Tom Cruise) and 
treat the pair as one name with two referents.   

States) and the instance by a name (e.g. William 
Jefferson Clinton).2   

A set of 2675 legitimate concept-instance pairs 
was randomly selected from the ACL dataset de-
scribed above; each of these was then matched 
with another concept-instance pair that had an 
identical instance name, but a different concept 
name.  This set of matched pairs was hand tagged 
by a human annotator to reflect whether or not the 
identical instance names actually referred to the 
same individual.  The set was then randomly split 
into a training set of 1875 matched pairs (84% re-
ferring to the same individual), a development set 
of 400 matched pairs (85.5% referring to the same 
individual), and a test set of 400 matched pairs 
(83.5% referring to the same individual). 

3.2 Features 

In designing a binary classifier to determine 
whether two concept-instance pairs refer to the 
same individual, we formulate a number of differ-
ent features used to describe each matched pair.  
These features are summarized in Table 1, and de-
scribed in more detail below. 

Name Features 

We use a number of methods meant to express in-
formation available from the orthography of the 
instance name itself.  The first of these features 
(Name-Common) seeks to estimate the commonal-
ity of the instance name.  With this features we 
hope to capture the intuition that more common 
names (such as John Smith) will be more likely to 
refer to different individuals than more uncommon 
names (such as Yasir Arafat).  We calculate this 
feature by splitting the instance name into first, 
middle (if necessary) and last sub-names.  We then 
use a table of name frequencies downloaded from 
the US census website to give each sub-name a 
score; these scores are then multiplied together for 
a final value.   

The second name statistic feature estimates how 
famous the instance name is.  With this features we 

                                                           
2 Although the dataset includes multiple types of named 
entities, we focus here only on person names. 



hope to capture the intuition that names of very 
famous people (such as Michael Jackson) are less 
likely to refer to different individuals than less fa-
mous, yet equally common, names (such as John 
Smith).  We calculate this feature in two ways: 
first, we use the frequency of the instance name as 
it appears in the ACL dataset to give a representa-
tion of how often the name appears in newspaper 
text (Name-Fame); second, we use the number of 
hits reported on google.com for a query consisting 
of the quoted instance name itself (Web-Fame).  
These fame features are used both as is and scaled 
by the commonality feature described above. 

Web Features 

Aside from the fame features described above, we 
use a number of other features derived from web 
search results.  The first of which, called WebInter-
section, is simply the number of hits returned for a 
query using the instance name and the heads of 
each concept noun phrase in the match pair; i.e., 
(name + head1 +head2).   

The second, called WebDifference, is the abso-
lute value of the difference between the hits re-
turned from a query on the instance name and just 
the head of concept 1 vs. the instance name and 
just the head of concept 2; i.e., abs ((name + head1) 
-(name +head2)).   

The third, called WebRatio, is the ratio between 
the WebIntersection score and the sum of the hits 
returned when querying the instance name and just 
the head of concept 1 and the instance name and 
just the head of concept 2; i.e., (name + head1 
+head2) / ((name + head1) +(name +head2)).   

Overlap Features 

In order to capture some aspects of the contex-
tual cues to referent disambiguation, we include 
features representing the similarity between the 
sentential contexts from which each concept-
instance pair was extracted.  The similarity metric 
that we use is a simple word overlap score based 
on the number of words that are shared amongst 
both sentences.  We include scores in which each 
non-stop-word is treated equally (Sentence-Count), 
as well as, in which each non-stop-word is 

weighted according to its term frequency in a large 
corpus (Sentence-TF).  We further include two 
similar features that only examine the overlap in 
the concepts (Concept-Count and Concept-TF).  
 

Name Features 
Feature Name Description 
Name-Common  frequency of name in census data 
Name-Fame frequency of name in ACL dataset 
Web-Fame # of hits from name query 

Web Features 
Web Intersection query(name + head1 +head2) 

Web Difference 
abs( query(name + head1)  
+ query(name +head2)) 

Web Ratio 
query(name + head1 +head2)  
/ ( qry(name + head1) +qry(name +head2))
Overlap Features 

Sentence-Count
# of words common to  
context of both instances 

Sentence-TF 
as above but weighted  
by term frequency 

Concept-Count 
# of words common to  
concept of both instances 

Concept-TF 
as above but weighted  
by term frequency 
Semantic Features 

JCN sem. dist. of Jiang and Conrath 
HSO sem. dist. of Hirst and St. Onge 
LCH sem. dist. of Leacock and Chodrow 
Lin sem. dist. of Lin 
Res sem. dist. of Resnik 

Estimated Statistics 
F1 p(i1=i2 | i1→A, i2→B) 
F2 p(i1→A, i2→B | i1=i2) 
F3 p(i1→A | i2→B) + p(i2→B | i1→A) 
F4 p(i1→A, i2→B) / (p(i1→A) + p(I2→B)) 
Table 1.  Features used in Max. Ent. model split accord-
ing to feature type. 

Semantic Features 

Another important clue in determining the corefer-
ence of instances is the semantic relatedness of the 
concepts with which they are associated.  In order 
to capture this, we employ five metrics described in 
the literature that use the WordNet ontology to de-
termine a semantic distance between two lexical 
items (Budanitsky and Hirst. 2001).  We use the 
implementation described in Pedersen (2004) to 
create features corresponding to the scores on the 
following metrics shown in Table 1. Due to prob-
lems associated with word sense ambiguity, we 
take the maximum score amongst all possible com-
binations of senses for the heads of the concepts in 



the matched pair.  The final output to the model is 
a single similarity measure for each of the eight 
metrics described in Pedersen (2004). 

Estimated Statistics Features 
In developing features useful for referent disambigua-
tion, it is clear that the concept information to which we 
have access is very useful.  For example, given that we 
see John Edwards /politician and John Edwards 
/lawyer, our knowledge that politicians are often lawyers 
is very useful in judging referential identity.3  In order to 
exploit this information, we leverage the strong correla-
tion between orthographic identity of instance names 
and their referential identity.   

As described above, approximately 84% of those 
matched pairs that had identical instance names 
referred to the same referent.  In a separate exami-
nation, we found, not surprisingly, that nearly 
100% of pairs that were matched to instances with 
different names (such as Bill Clinton vs. George 
Clinton) referred to different referents.   

We take advantage of this strong correlation in 
developing features by first making the (admittedly 
wrong) assumption that orthographic identity is 
equivalent to referential identity, and then using 
that assumption to calculate a number of statistics 
over the large ACL dataset.  We postulate that the 
noise introduced by our assumption will be offset 
by the large size of the dataset, yielding a number 
of highly informative features. 

The statistics we calculate are as follows: 
  
P1:  The probability that instance 1 and in-

stance 2 have the same referent given that in-
stance 1 is paired with concept A and instance 2 
with concept B; i.e., p(i1=i2 | i1→A, i2→B) 

P2:  The probability that instance 1 is paired 
with concept A and instance 2 with concept B 
given that instance 1 and instance 2 have the 
same referent; i.e., p(i1→A, i2→B | i1=i2) 

P3:  The probability that instance 1 is paired 
with concept A given that instance 2 is paired 
with concept B plus the probability that instance 

                                                           
3 It should be noted that this feature is attempting to en-
code knowledge about what concepts occur together in 
the real world, which is different than, what is being 
encoded in the semantic features, described above.   

2 is paired with concept B given that instance 1 
is paired with concept A; i.e., p(i1→A | i2→B) 
+ p(i2→B | i1→A) 

P4:  The probability that instance 1 is paired 
with concept A and instance 2 is paired with 
concept B divided by the probability that in-
stance 1 is paired with concept A plus the prob-
ability that instance 2 is paired with concept B; 
i.e., p(i1→A, i2→B) / (p(i1→A) + p(i2→B)) 

 

 

 

 

 

 
 

Figure 1.  Results of Max. Ent. classifier on held out test 
data compared to baseline (i.e., always same referent). 

Aside from the noise introduced by the assump-
tion described above, another problem with these 
features arises when the derived probabilities are 
based on very low frequency counts.  Thus, when 
adding these features to the model, we bin each 
feature according to the number of counts that the 
score was based on.   

3.3 Model 

Maximum Entropy (Max. Ent.) models implement 
the intuition that the best model will be the one that 
is consistent with the set of constrains imposed by 
the evidence, but otherwise is as uniform as possi-
ble (Berger et al., 1996).  We model the probability 
of two instances having the same referent (r=[1,0]) 
given a vector of features x according to the Max. 
Ent. formulation below: 

∑
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Here Zx is a normalization constant, fi(r,x) is a 
feature function over values of r and vector ele-
ments, n is the total number of feature functions, 
and λi is the weight for a given feature function.  
The final output of the model is the probability 
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given a feature vector that r=1; i.e., the probability 
that the referents are the same. 

We train the Max. Ent. model using the 
YASMET Max. Ent. package (Och, 2002).  Feature 
weights are smoothed using Gaussian priors with 
mean 0.  The standard deviation of this distribution 
is optimized on the development set, as is the num-
ber of training iterations and the probability thresh-
old used to make the hard classifications reported 
in the following experiment. 

3.4 Experimental Results  

Results for the classifier on the held out test set are 
reported in Figure 1.  Baseline here represents al-
ways choosing the most common classification 
(i.e., instance referents are the same).  Figure 2 
represents the learning curve associated with this 
task.  Figure 3 shows the effect on performance of 
incrementally adding the best feature set (as deter-
mined by greedily trying each one) to the model.   

 

 

 

 

 

 

 

Figure 2.  Learning curve of Max. Ent. model.   

3.5 Discussion 

It is clear from the results that this model outper-
forms the baseline for this task (p>0.01) (p<0.01) 
(Mitchell, 1997).  Interestingly, although the num-
ber of labeled examples that were used to train the 
system was by no means extravagant, it appears 
from the learning curve that increasing the size of 
the training set will not have a large effect on clas-
sifier performance.  Also of interest, Figure 3 
shows that the greedy feature selection technique 
found that the most powerful features for this task 
are the estimated statistic features and the web fea-
tures.  While the benefit of such large corpora fea-

tures is not surprising, the relative lack of power 
from the semantic and overlap features (which ex-
ploit ontolological and contextual information) was 
surprising. 4  In future work, we will examine how 
more sophisticated similarity metrics and larger 
windows of context (e.g., the whole document) 
might improve performance. 

4 Clustering 

 

 

 

 

 

 

 

 

Figure 3.  Results of Max. Ent. classifier on held out 
data using different subsets of feature types.  Feature 
types are greedily added one at a time, starting with Es-
timated Statistics and ending with Semantic Features.   

Having generated a model to predict the probability 
that two concept-instance pairs with the same name 
refer to the same individual, we are faced with the 
problem of using such a model to partition all of 
our concept-instance pairs according to the indi-
viduals to which they actually refer.  Although, 
ideally, we should be able to simply apply the 
model to all possible pairs, in reality, such a meth-
odology may lead to a contradiction.   

For example, given that the model predicts in-
stance A is identical to instance B, and in addition, 
that instance B is identical to C, because of the 
transitivity of the identity relation, we must assume 
that A is identical to C.  However, if the model 
predicts that A is not identical to C, (which can and 
does occur) we must assume the model is wrong in 
at least one of its three predictions. 

                                                           
4 Note that for these tests, the model parameters are not 
optimized for each run; thus, the performance is slightly 
worse than in Figure 1. 
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Following Ng and Cardie (2002), we address this 
problem by clustering each set of concept-instance 
pairs with identical names, using a form of group-
average agglomerative clustering, in which the 
similarity score between instances is just the prob-
ability output by the model.  Because standard ag-
glomerative clustering algorithms are O(n3) if 
cosign similarity metrics are not used (Manning 
and Schutze, 2001), we adapt the method to our 
framework.  Our algorithm operates as follows5: 

 
On input D={concept-instance pairs of same name}, 
build a fully connected graph G with vertex set D: 
 

1) Label each edge (d,d’) in G with a score correspond-
ing to the probability of identity predicted by the 
Max. Ent. model 

2) While the edge with max score in G > threshold: 
a. Merge the two nodes connected by the edge with 

the max score.   
b. For each node in the graph  

a. Merge the two edges connecting it to the 
newly merged node  

b. Assign the new edge a score equal to the avg. 
of the two old edge scores. 

 
The final output of this algorithm is a new graph 

in which each node represents a single referent as-
sociated with a set of concept-instance pairs.  This 
algorithm provides an efficient way, O(n2), to com-
pose the pair-wise information given by the model.  
Further, because the only free parameter is a merg-
ing threshold (which can be determined through 
cross-validation) the algorithm is free to choose a 
different number of referents for each instance 
name it is tested on.  This is critical for the task 
because each instance name can have any number 
of referents associated with it. 

4.1 Test Data 

In order to test clustering, we randomly selected a 
set of 31 instance names from the ACL dataset, 11 
of which referred to multiple individuals and 20 of 
which had only a single referent6.  Each concept-
                                                           
5 This algorithm was developed with Hal Daume (tech-
nical report, in prep.). 
6 In an examination of 113 different randomly selected 
instance names from the ACL dataset we found that 32 

instance pair with that instance name was then ex-
tracted and hand annotated such that each individ-
ual referent was given a unique identifying code.   

We chose not to test on artificially generated test 
examples (such as the pseudo-names described in 
Mann and Yarowsky, 2003) because of our reli-
ance on name orthography in feature generation 
(see section 3.2).  Further, such pseudo-names ig-
nore the fact that names often correlate with other 
features (such as occupation or birthplace), and that 
they do not guarantee clean test data (i.e., the two 
names chosen for artificial identity may themselves 
each refer to multiple individuals). 

4.2 Experimental Design 

In examining the results of the clustering, we chose 
to use a simple clustering accuracy as our perform-
ance metric.  According to this technique, we 
match the output of our system to a gold standard 
clustering (defined by the hand annotations de-
scribed above).7   

We compare our algorithm on the 31 sets of con-
cept-instance pairs described above against two 
baseline systems.  The first (baseline1) is simply a 
single clustering of all pairs into one cluster; i.e., 
all instances have the same referent.  The second 
(baseline2) is a simple greedy clustering algorithm 
that sequentially adds elements to the previous 
cluster whose last-added element is most similar 
(and exceeds some threshold set by cross valida-
tion).  

4.3 Results 

In examining performance, we present a weighted 
average over these 31 instance sets, based on the 
number of nodes (i.e., concept-instance pairs) in 
each set of instances (total nodes = 1256).  Cross-
validation is used to set the threshold for both the 
baseline2 and modified agglomerative algorithm.  

                                                                                            
appeared only once in the dataset, 53 appeared more 
than once but always referred to the same referent, and 
28 had multiple referents. 
7 While this is a relatively simple measure, we believe 
that, if anything, it is overly conservative, and thus, 
valid for the comparisons that we are making.   



These results are presented in Table 2.  Figure 4 
examines performance as a function of the number 
of referents within each of the 31 instance sets.   

4.4 Discussion 

 
 
 
 
 
 
 

 
 
 
 

Figure 4.  Plot of performance for modified agglomera-
tive clustering and Baseline system as a function of the 
number of referents in the test set.   
 
While the algorithm we present clearly outper-
forms the baseline2 method over all 31 instance 
sets (p<0.01), we can see that it only marginally 
outperforms our most simple baseline1 method 
(p<0.10) (Mitchell, 1997).  This is due to the fact 
that for each of the 20 instance sets that only have a 
single referent, the baseline achieves a perfect 
score, while the modified agglomerative method 
only achieves a score of 96.4%.  Given this aspect 
of the baseline, and the distribution of the data, the 
fact that our algorithm outperforms the baseline at 
all speaks to its usefulness for this task.   

A better sense of the usefulness of this algorithm, 
however, can be seen by looking at its performance 
only on instance sets with multiple referents.  As 
seen in Table 3, on multiple referent instance sets, 
modified agglomerative clustering outperforms 
both the baseline1 and baseline2 methods by a sta-
tistically significant margin (p<0.01) (Mitchell, 
1997). 

5 Conclusion 

The problem of cross-document person name dis-
ambiguation is of growing concern in many areas 
of natural language processing.  We have presented 
a two-step methodology for the disambiguation of 

automatically extracted concept-instance pairs.  
Our approach first applies a Maximum Entropy 
model to all concept-instance pairs that share the 
same instance name.  The output probabilities of 
this model are then inputted to a modified agglom-
erative clustering algorithm that partitions the pairs 
according to the individuals to which they refer.  
This algorithm not only allows for a dynamically 
set number of referents, but also, outperforms two 
baseline methods. 

A clear example of the success of this algorithm 
can be seen in the output of the system for the in-
stance set for Michael Jackson (Appendix A, Table 
2).  Here, a name that refers to many individuals is 
fairly well partitioned into appropriate clusters.  
With the instance set for Sonny Bono (Appendix A, 
Table 1), however, we can see why this task is so 
challenging.  Here, although, Sonny Bono only re-
fers to one individual, the system finds (like many 
of the rest of us) that the likelihood of a singer also 
being a politician is so low that the name must re-
fer to two different people.  While this assumption 
is often true (as is the case with Paul Simon), we 
would have hoped that information from our web 
and fame features would have overridden the sys-
tem’s bias in this circumstance. 

In future work we will examine how other fea-
tures may be useful in attacking such hard cases.  
Also, we will examine how this technique can be 
applied more generally to problems that exist be-
tween non-identical, but similar names (e.g. Bill 
Clinton vs. William Jefferson Clinton).   
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Appendix A. Sample Cluster Output. 
 
Cluster 1  
time pop star Cluster 1 (cont) 
the singer former rock star 
onetime singer Cluster 2 
former singer Lawmaker 
pop singer crooning lawmaker 
former entertainer mayoral candidate 
former pop star republican politician 
former pop singer congressman 
entertainer Cluster 3 
onetime beau A freshman republican 
Singer  
Table 1.  Output clusters for the name Sonny Bono. 
 
 
 

 
Cluster 1  
platinum recording artist Cluster 2 (cont) 
cbs records artist rocker 
artist american pop superstar 
Cluster 2 visiting idol 
singer idol 
pop idol pop music superstar 
day pop superstar package entertainer 
international pop star another entertainer 
starring singer american pop singer 
american singer Cluster 3 
rock superstar local talk radio personality 
suing pop superstar kabc radio talk show host 
pop superstar los angeles radio personality 
enigmatic pop superstar veteran kabc radio talk show host 
featuring pop star ubiquitous radio commentator 
embattled pop star radio broadcaster 
controversial pop star broadcaster 
including singer Cluster 4 
featuring singer author 
even singer british beer guru 
signing pop performer beer expert 
pop singer Cluster 5 
surrounding entertainer mannequin collector 
joining entertainer Cluster 6 
including entertainer kfor commander 
singing superstar the commander of kfor 
including superstar commander of kfor 
american superstar british commander 
superstar Cluster 7 

ailing superstar the nato commander of  
  the kosovo liberation force 

reuter pop superstar Cluster 8 
reclusive pop superstar Designer 
quiet pop superstar Cluster 9 

embattled pop superstar deputy secretary  
  of transportation 

alleging pop superstar deputy secretary of the  
  department of transportation 

music superstar Cluster 10 
the us pop star historian 
rock star Cluster 11 
pop star education department spokesman 
entertainer company spokesman 
pop recording star dow corning spokesman 
newlywed pop star Cluster 12 
fellow pop star judge 
the singer Cluster 13 
superstar singer receiver 
setting singer career browns receiver 
rock singer trading receiver 
surrounding pop singer ravens receiver 
suing pop singer baltimore wide receiver 
reuter pop singer agent wide receiver 
prague pop singer wide receiver 
pop singer Cluster 14 
rock sensation baylor offensive tackle 
music sensation Cluster 15 
pop sensation beer writer 
Table 2.  Output clusters for the name Michael Jackson 




