
Generation of single-sentence paraphrases from
predicate/argument structure using lexico-grammatical resources

Raymond Kozlowski, Kathleen F. McCoy, and K. Vijay-Shanker

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, USA

kozlowsk,mccoy,vijay@cis.udel.edu

Abstract

Paraphrases, which stem from the va-
riety of lexical and grammatical means
of expressing meaning available in a
language, pose challenges for a sen-
tence generation system. In this
paper, we discuss the generation of
paraphrases from predicate/argument
structure using a simple, uniform gen-
eration methodology. Central to our
approach are lexico-grammatical re-
sources which pair elementary seman-
tic structures with their syntactic re-
alization and a simple but powerful
mechanism for combining resources.

1 Introduction

In natural language generation, producing some
realization of the input semantics is not the only
goal. The same meaning can often be expressed
in various ways using di�erent lexical and syn-
tactic means. These di�erent realizations, called
paraphrases, vary considerably in appropriate-
ness based on pragmatic factors and commu-
nicative goals. If a generator is to come up with
the most appropriate realization, it must be ca-
pable of generating all paraphrases that realize
the input semantics. Even if it makes choices on
pragmatic grounds during generation and pro-
duces a single realization, the ability to generate
them all must still exist.
Variety of lexical and grammatical forms

of expression pose challenges to a generator

((Stede, 1999); (Elhadad et al., 1997); (Nicolov
et al., 1995)). In this paper, we discuss the gen-
eration of single-sentence paraphrases realizing
the same semantics in a uniform fashion using a
simple sentence generation architecture.

In order to handle the various ways of realiz-
ing meaning in a simple manner, we believe that
the generation architecture should not be aware
of the variety and not have any special mech-
anisms to handle the di�erent types of realiza-
tions1. Instead, we want all lexical and gram-
matical variety to follow automatically from the
variety of the elementary building blocks of gen-
eration, lexico-grammatical resources.

We have developed a fully-operational proto-
type of our generation system capable of gen-
erating the examples presented in this paper,
which illustrate a wide range of paraphrases.
As we shall see, the paraphrases that are pro-
duced by the system depend entirely on the
actual lexicon used in the particular applica-
tion. Determining the range of alternate forms
that constitute paraphrases is not the focus of
this work. Instead, we describe a framework in
which lexico-grammatical resources, if properly
de�ned, can be used to generate paraphrases.

2 Typical generation methodology

Sentence generation takes as input some seman-
tic representation of the meaning to be conveyed
in a sentence. We make the assumption that

1Ability to handle variety in a uniform manner is also
important in multilingual generation as some forms avail-
able in one language may not be available in another.



ENJOY

EXPERIENCER THEME

AMY INTERACTION

Figure 1: The semantics underlying (2a-2b)

the input is a hierarchical predicate/argument
structure such as that shown in Fig. 1. The
output of this process should be a set of gram-
matical sentences whose meaning matches the
original semantic input.

One standard approach to sentence genera-
tion from predicate/argument structure (like the
semantic-head-driven generation in (Shieber et
al., 1990)) involves a simple algorithm.

1. decompose the input into the top predicate
(to be realized by a (single) lexical item that
serves as the syntactic head) and identify
the arguments and modi�ers

2. recursively realize arguments, then modi-
�ers

3. combine the realizations in step 2 with the
head in step 1

In realizing the input in Fig. 1, the input can be
decomposed into the top predicate which can be
realized by a syntactic head (a transitive verb)
and its two arguments, the experiencer and the
theme. Suppose that the verb enjoy is chosen
to realize the top predicate. The two arguments
can then be independently realized as Amy and
the interaction. Finally, the realization of the
experiencer, Amy, can be placed in the subject
position and that of the theme, the interaction,
in the complement position, yielding (2a).

Our architecture is very similar but we argue
for a more central role of lexico-grammatical re-
sources driving the realization process.

3 Challenges in generating

paraphrases

Paraphrases come from various sources. In this
section, we give examples of some types of para-
phrases we handle and discuss the challenges
they pose to other generators. We also identify
types of paraphrases we do not consider.

3.1 Paraphrases we handle

Simple synonymy The simplest source of
paraphrases is simple synonymy. We take sim-
ple synonyms to be di�erent words that have
the same meaning and are of the same syntactic
category and set up the same syntactic context.

(1a) Booth killed Lincoln.

(1b) Booth assassinated Lincoln.

A generation system must be able to allow
the same semantic input to be realized in dif-
ferent ways. Notice that the words kill and as-

sassinate are not always interchangeable, e.g.,
assassinate is only appropriate when the victim
is a famous person. Such constraints need to be
captured with selectional restrictions lest inap-
propriate realizations be produced.

Di�erent placement of argument realiza-

tions Sometimes di�erent synonyms, like the
verbs enjoy and please, place argument realiza-
tions di�erently with respect to the head, as il-
lustrated in (2a-2b).

(2a) Amy enjoyed the interaction.

(2b) The interaction pleased Amy.

To handle this variety, a uniform generation
methodology should not assume a �xed map-
ping between thematic and syntactic roles but
let each lexical item determine the placement of
argument realizations. Generation systems that
use such a �xed mapping must override it for
the divergent cases (e.g., (Dorr, 1993)).

Words with overlapping meaning There
are often cases of di�erent words that realize dif-
ferent but overlapping semantic pieces. The eas-
iest way to see this is in what has been termed
incorporation, where a word not only realizes a
predicate but also one or more of its arguments.
Di�erent words may incorporate di�erent argu-
ments or none at all, which may lead to para-
phrases, as illustrated in (3a-3c).

(3a) Charles 
ew across the ocean.

(3b) Charles crossed the ocean by plane.

(3c) Charles went across the ocean by plane.

Notice that the verb 
y realizes not only go-
ing but also the mode of transportation being a
plane, the verb cross with its complement real-
ize going whose path is across the object realized



by the complement, and the verb go only real-
izes going. For all of these verbs, the remaining
arguments are realized by modi�ers.
Incorporation shows that a uniform genera-

tor should use the word choices to determine 1)
what portion of the semantics they realize, 2)
what portions are to be realized as arguments
of the realized semantics, and 3) what portions
remain to be realized and attached as modi�ers.
Generation systems that assume a one-to-one
mapping between semantic and syntactic units
(e.g., (Dorr, 1993)) must use special processing
for cases of overlapping semantics.

Di�erent syntactic categories Predicates
can often be realized by words of di�erent syn-
tactic categories, e.g., the verb found and the
noun founding, as in (4a-4b).
(4a) I know that Olds founded GM.

(4b) I know about the founding of GM by Olds.

Words of di�erent syntactic categories usu-
ally have di�erent syntactic consequences. One
such consequence is the presence of additional
syntactic material. Notice that (4b) contains
the prepositions of and by while (4a) does not.
These prepositions might be considered a syn-
tactic consequence of the use of the noun found-

ing in this con�guration. Another syntactic con-
sequence is a di�erent placement of argument re-
alizations. The realization of the founder is the
subject of the verb found in (4a) while in (4b)
the use of founding leads to its placement in the
object position of the preposition by.

Grammatical alternations Words can be
put in a variety of grammatical alternations such
as the active and passive voice, as in (5a-5b), the
topicalized form, the it-cleft form, etc.
(5a) Oswald killed Kennedy.

(5b) Kennedy was killed by Oswald.

The choice of di�erent grammatical alterna-
tions has di�erent syntactic consequences which
must be enforced in generation, such as the pres-
ence or absence of the copula and the di�erent
placement of argument realizations. In some
systems such as ones based on Tree-Adjoining
Grammars (TAG), including ours, these con-
sequences are encapsulated within elementary
structures of the grammar. Thus, such systems

do not have to speci�cally reason about these
consequences, as do some other systems.

More complex alternations The same con-
tent of excelling at an activity can be realized by
the verb excel, the adverb well, and the adjective
good, as illustrated in (6a-6c).

(6a) Barbara excels at teaching.

(6b) Barbara teaches well.

(6c) Barbara is a good teacher.

This variety of expression, often called head

switching, poses a considerable di�culty for
most existing sentence generators. The di�-
culty stems from the fact that the realization
of a phrase (sentence) typically starts with the
syntactic head (verb) which sets up a syntactic
context into which other constituents are �t. If
the top predicate is the excelling, we have to be
able to start generation not only with the verb
excel but also with the adverb well and the ad-
jective good, typically not seen as setting up an
appropriate syntactic context into which the re-
maining arguments can be �t. Existing genera-
tion systems that handle this variety do so using
special assumptions or exceptional processing,
all in order to start the generation of a phrase
with the syntactic head (e.g., (Stede, 1999), (El-
hadad et al., 1997), (Nicolov et al., 1995), (Dorr,
1993)). Our system does not require that the se-
mantic head map to the syntactic head.

Di�erent grammatical forms realizing se-

mantic content Finally, we consider a case,
which to our knowledge is not handled by other
generation systems, where grammatical forms
realize content independently of the lexical item
on which they act, as in (7a-7b).

(7a) Who rules Jordan?

(7b) Identify the ruler of Jordan!

The wh-question form, as used in (7a), real-
izes a request for identi�cation by the listener
(in this case, the ruler of Jordan). Likewise, the
imperative structure (used in (7b)) realizes a re-
quest or a command to the listener (in this case,
to identify the ruler of Jordan).

3.2 Paraphrases we do not consider

Since our focus is on sentence generation and not
sentence planning, we only consider the genera-



tion of single-sentence paraphrases. Hence, we
do not have the ability to generate (8a-8b) from
the same input.

(8a) CS1 has a programming lab.

(8b) CS1 has a lab. It involves programming.

Since we do not reason about the semantic
input, including deriving entailment relations,
we cannot generate (9a-9b) from the same input.

(9a) Oslo is the capital of Norway.

(9b) Oslo is located in Norway.

4 Our generation methodology

Generation in our system is driven by the
semantic input, realized by selecting lexico-
grammatical resources matching pieces of it,
starting with the top predicate. The realization
of a piece containing the top predicate provides
the syntactic context into which the realizations
of the remaining pieces can be �t (their place-
ment being determined by the resource).

The key to our ability to handle paraphrases
in a uniform manner is that our processing is
driven by our lexicon and thus we do not make
any a priori assumptions about 1) the amount
of the input realized by a lexical unit, 2) the re-
lationship between semantic and syntactic types
(and thus the syntactic rank or category of the
realization of the top piece), 3) the nature of
the mapping between thematic roles and syn-
tactic positions, and 4) the grammatical alter-
nation (e.g., there are di�erent resources for the
same verb in di�erent alternations: the active,
passive, topicalized, etc.). Because this informa-
tion is contained in each lexico-grammatical re-
source, generation can proceed no matter what
choices are speci�ed about these in each indi-
vidual resource. Our approach is fundamen-
tally di�erent from systems that reason directly
about syntax and build realizations by syntactic
rank ((Bateman, 1997), (Elhadad et al., 1997);
(Nicolov et al., 1995); (Stone and Doran, 1997)).

4.1 Our algorithm

Our generation algorithm is a simple, recursive,
semantic-head-driven generation process, con-
sistent with the approach described in section 2,
but one driven by the semantic input and the
lexico-grammatical resources.

1. given an unrealized input, �nd a lexico-
grammatical resource that matches a por-
tion including the top predicate and satis-
�es any selectional restrictions

2. recursively realize arguments, then modi-
�ers

3. combine the realizations in step 2 with the
resource in step 1, as determined by the re-
source in step 1

Notice the prominence of lexico-grammatical re-
sources in steps 1 and 3 of this algorithm. The
standard approach in section 2 need not be
driven by resources.

4.2 Lexico-grammatical resources

The key to the simplicity of our algorithm lies in
the lexico-grammatical resources, which encap-
sulate information necessary to carry through
generation. These consist of three parts:

� the semantic side: the portion of seman-
tics realized by the resource (including the
predicate and any arguments; this part is
matched against the input semantics)

� the syntactic side: either word(s) in a syn-
tactic con�guration or a grammatical form
without words, and syntactic consequences

� a mapping between semantic and syntactic
constituents indicating which constituent
on the semantic side is realized by which
constituent on the syntactic side

Consider the resources for the verbs enjoy and
please in Fig. 2. The semantic sides indicate
that these resources realize the predicate ENJOY
and the thematic roles EXPERIENCER and THEME.
The arguments �lling those roles (which must be
realized separately, as indicated by dashed out-
lines) appear as variables X and Y which will be
matched against actual arguments. The syntac-
tic sides contain the verbs enjoy and please in
the active voice con�guration. The mappings
include links between ENJOY and its realization
as well as links between the unrealized agent (X)
or theme (Y) and the subject or the complement.

Our mapping between semantic and syntactic
constituents bears resemblance to the pairings in
Synchronous TAG (Shieber and Schabes, 1990).
Just like in Synchronous TAG, the mapping is



VPNP

VP

NPV
enjoy

◆

S

0 0

1

ENJOY

EXPERIENCER THEME

X Y
1

VPNP

VP

NPV
please

◆

S

0 0

1

ENJOY

EXPERIENCER THEME

X Y
1

Figure 2: Two di�erent resources for ENJOY

critical for combining realizations (in step 3 of
our algorithm in section 4.1). There are, how-
ever, advantages that our approach has. For
one, we are not constrained by the isomorphism
requirement in a Synchronous TAG derivation.
Also, the DSG formalism that we use a�ords
greater 
exibility, signi�cant in our approach, as
discussed later in this paper (and in more detail
in (Kozlowski, 2002b)).

4.3 The grammatical formalism

Both step 3 of our algorithm (putting re-
alizations together) and the needs of lexico-
grammatical resources (the encapsulation of
syntactic consequences such as the position
of argument realizations) place signi�cant de-
mands on the grammatical formalism to be used
in the implementation of the architecture. One
grammatical formalism that is well-suited for
our purposes is the D-Tree Substitution Gram-
mars (DSG, (Rambow et al., 2001)), a variant
of Tree-Adjoining Grammars (TAG). This for-
malism features an extended domain of locality
and 
exibility in encapsulation of syntactic con-
sequences, crucial in our architecture.

Consider the elementary DSG structures on
the right-hand-side of the resources for enjoy

and please in Fig. 2. Note that nodes marked
with # are substitution nodes corresponding to
syntactic positions into which the realizations of

S

◆

0 0

1

1

VPNP

VP

please
NPV◆

S

0 0

1

1

NP

the interactionAmy

VPNP

VP

V
enjoy

Figure 3: Combining argument realizations with
the resources for enjoy and please

arguments will be substituted. The positions of
both the subject and the complement are en-
capsulated in these elementary structures. This
allows the mapping between semantic and syn-
tactic constituents to be de�ned locally within
the resources. Dotted lines indicate domination
of length zero or more where syntactic material
(e.g., modi�ers) may end up.

4.4 Using resources in our algorithm

Step 1 of our algorithm requires matching the se-
mantic side of a resource against the top of the
input and testing selectional restrictions. A se-
mantic side matches if it can be overlaid against
the input. Details of this process are given
in (Kozlowski, 2002a). Selectional restrictions
(type restrictions on arguments) are associated
with nodes on the semantic side of resources.
In their evaluation, the appropriate knowledge
base instance is accessed and its type is tested.
More details about using selectional restrictions
in generation and in our architecture are given
in (Kozlowski et al., 2002).

Resources for enjoy and please which match
the top of the input in Fig. 1 are shown in
Fig. 2. In doing the matching, the arguments
AMY and INTERACTION are uni�ed with X and
Y. The dashed outlines around X and Y indicate
that the resource does not realize them. Our al-
gorithm calls for the independent recursive real-
ization of these arguments and then putting to-
gether those realizations with the syntactic side
of the resource, as indicated by the mapping.



0

◆

fly

VPNP

VP

S

0

V

GO

1

PLANE

AGENT MODE

X

ACROSS

VPNP

VP

NPV
cross

◆

S

0 0

1

GO

AGENT PATH

X
1

THEME

Y

Figure 4: Two di�erent resources for GO

PATH MODE

ACROSS

OCEAN

THEME

AGENT

GO

PLANECHARLES

Figure 5: The semantics underlying (3a-3c) with
portion realized by cross in bold

This is shown in Fig. 3. The argument realiza-
tions, Amy and the interaction, are placed in the
subject and complement positions of enjoy and
please, according to the mapping in the corre-
sponding resources.

4.5 Driving decomposition by resources

The semantic side of a resource determines
which arguments, if any, are realized by the re-
source, while the matching done in step 1 of our
algorithm determines the portions that must be
realized by modi�ers. This is always done the
same way regardless of the resources selected
and how much of the input they realize, such
as the two resources realizing the predicate GO

shown in Fig. 4, one for 
y which incorporates
MODE PLANE and another for cross which incor-
porates PATH ACROSS.

YX

AGENT THEME

NP

FOUND

Y
1

X

THEMEAGENT

1

00

S

◆

found
V

VP

NP VP

◆

N’
the

◆ 0

NP

D N’

1

FOUND

2

PP

1
by
P NP

founding

◆

of
P NP

◆ PP

2

N

N’

Figure 6: Two di�erent resources for FOUND

Suppose the semantic input underlying (3a-
3c) is as given in Fig. 5. The portion shown
in bold is realized by the resource for cross in
Fig. 4. The agent of GO and the theme of ACROSS
are to be realized as arguments. The remaining
thematic role MODE with the argument PLANE �ll-
ing it, is to be realized by a modi�er.

4.6 Encapsulation of syntactic

consequences

All syntactic information should be encapsu-
lated within resources and transparent to the
algorithm. This includes the identi�cation of ar-
guments, including their placement with respect
to the realization. Another example of a syn-
tactic consequence is the presence of additional
syntactic material required by the lexical item in
the particular syntactic con�guration. The verb
found in the active con�guration, as in (4a), does
not require any additional syntactic material.
On the other hand, the noun founding in the
con�guration with prepositional phrases headed
by of and by, as in (4b), may be said to require
the use of the prepositions. The resources for
found and founding are shown in Fig. 6. Encap-
sulation of such consequences allows us to avoid
special mechanisms to keep track of and enforce



EXPERIENCER

EXCEL

THEME

[0]:
1

◆V

VP

◆

at
P

PP

[0]:

excel

VP

[0]:

[0]:

0

◆

well
Adv

0Adv’

1Adv’

1

VP

AdvP

P

AGENT

NP

1

PRO
NP

S

P

THEMEEXPERIENCER

EXCEL
00

S

VP

Figure 7: Two di�erent resources for EXCEL

them for individual resources.

4.7 Syntactic rank and category

No assumptions are made about the realization
of a piece of input semantics, including its syn-
tactic rank and category. For instance, the pred-
icate EXCEL can be realized by the verb excel,
the adverb well, and the adjective good, as illus-
trated in (6a-6c). The processing is the same:
a resource is selected and any argument realiza-
tions are attached to the resource.

Fig. 7 shows a resource for the predicate
EXCEL realized by the verb excel. What is in-
teresting about this case is that the DSG for-
malism we chose allows us to encapsulate the
PRO in the subject position of the complement
as a syntactic consequence of the verb excel in
this con�guration. The other resource for EXCEL
shown in Fig. 7 is unusual in that the predicate
is realized by an adverb, well. Note the link be-
tween the uninstantiated theme on the semantic
side and the position for its corresponding syn-
tactic realization, the substitution node VP1

2.

Suppose the semantic input underlying (6a-

2Also notice that the experiencer of EXCEL is consid-
ered realized by the well resource and coindexed with the
agent of the theme of EXCEL, to be realized by a separate
resource.

[1]

[1]: BARBARA

TEACH

[1]

AGENT

EXCEL

THEMEEXPERIENCER

Figure 8: The semantics underlying (6a-6c)

6c) is as given in Fig. 8 and the well resource in
Fig. 7 is selected to realize the top of the seman-
tics. The matching in step 1 of our algorithm
determines that the subtree of the input rooted
at TEACH must be recursively realized. The re-
alization of this subtree yields Barbara teaches.
Because of the link between the theme of EXCEL
and the VP1 node of well, the realization Bar-

bara teaches is substituted to the VP1 node of
well. This is a more complex substitution than
in regular TAG (where the substitution node is
identi�ed with the root of the argument realiza-
tion), and is equivalent to the adjunction of well
to Barbara teaches. In DSG, we are able to treat
structures such as the well structure as initial
and not auxiliary, as TAG would. Thus, argu-
ment realizations are combined with all struc-
tures in a uniform fashion.

4.8 Grammatical forms

As discussed before, grammatical forms them-
selves can realize a piece of semantics. For in-
stance, the imperative syntactic form realizes a
request or a command to the listener, as shown
in Fig. 9. Likewise, the wh-question form real-
izes a request to identify, also shown in Fig. 9.
In our system, whether the realization has any
lexical items is not relevant.

4.9 The role of DSG

We believe that the choice of the DSG formal-
ism plays a crucial role in maintaining our sim-
ple methodology. Like TAG, DSG allows cap-
turing syntactic consequences in one elementary
structure. DSG, however, allows even greater

exibility in what is included in an elementary
structure. Note that in DSG we may have non-
immediate domination links between nodes of



[empty:+]

[subj−empty:+]

[0]:

[0]:

REQUEST

ACTION

ACTION

REQUEST

P

YOU

S

NP
(you)

IDENTIFY

THEME

S1NP
[inv:+]

S

NP
εwho

◆N
YOU SET−OF

THEME SUCH−THAT

P

AGENT

Figure 9: Two di�erent resources for REQUEST

di�erent syntactic categories (e.g., between the S
and NP in Fig. 9 and also in the excel at structure
in Fig. 7). DSG also allows uniform treatment
of complementation and modi�cation using the
operations of substitution (regardless of the re-
alization of the predicate, e.g., the structures in
Fig. 7) and adjunction, respectively.

5 Conclusions

Although we only consider paraphrases with the
same semantics, there is still a wide variety of
expression which poses challenges to any genera-
tion system. In overcoming those challenges and
generating in a simple manner in our architec-
ture, our lexico-grammatical resources play an
important role in each phase of generation. En-
capsulation of syntactic consequences within ele-
mentary syntactic structures keeps our method-
ology modular. Whatever those consequences,
often very di�erent for di�erent paraphrases,
generation always proceeds in the same manner.
Both the algorithm and the constraints on

our lexico-grammatical resources place signif-
icant demands on the grammatical formalism
used for the architecture. We �nd that the DSG
formalism meets those demands well.

References

John Bateman. 1997. Enabling technology for mul-
tilingual natural language generation: the KPML
development environment. Natural Language En-
gineering, 3(1):15{55.

Bonnie J. Dorr. 1993. Interlingual machine transla-
tion: a parametrized approach. Arti�cial Intelli-
gence, 63(1):429{492.

Michael Elhadad, Kathleen McKeown, and Jacques
Robin. 1997. Floating constraints in lexical
choice. Computational Intelligence, 23:195{239.

Raymond Kozlowski, Kathleen F. McCoy, and
K. Vijay-Shanker. 2002. Selectional restrictions
in natural language sentence generation. In Pro-
ceedings of the 6th World Multiconference on Sys-
temics, Cybernetics, and Informatics (SCI'02).

Raymond Kozlowski. 2002a. Driving multilingual
sentence generation with lexico-grammatical re-
sources. In Proceedings of the Second Interna-
tional Natural Language Generation Conference
(INLG'02) - Student Session.

Raymond Kozlowski. 2002b. DSG/TAG - An appro-
priate grammatical formalism for 
exible sentence
generation. In Proceedings of the Student Research
Workshop at the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL'02).

Nicolas Nicolov, Chris Mellish, and Graeme Ritchie.
1995. Sentence Generation from Conceptual
Graphs. In Proceedings of the 3rd International
Conference on Conceptual Structures (ICCS'95).

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-Tree Substitution Grammars. Computa-
tional Linguistics, 27(1):87{122.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous Tree-Adjoining Grammars. In Proceed-
ings of the 13th International Conference on Com-
putational Linguistics.

Stuart M. Shieber, Gertjan van Noord, Fernando
C. N. Pereira, and Robert C. Moore. 1990.
Semantic-Head-Driven Generation. Computa-
tional Linguistics, 16(1):30{42.

Manfred Stede. 1999. Lexical semantics and knowl-
edge representation in multilingual text genera-
tion. Kluwer Academic Publishers, Boston.

Matthew Stone and Christine Doran. 1997. Sen-
tence Planning as Description Using Tree Adjoin-
ing Grammar. In Proceedings of the 35th Annual
Meeting of the Association for Computational Lin-
guistics (ACL'97).


