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mantic class of that named entity. The following il-
lustrates biomedical named entity recognition.

vates the expression of class Il genes

Abstract

We explore the use of Support Vector Ma-
chines (SVMs) for biomedical hamed en- ) ——— DNA
tity recognition. To make the SVM train- but recruits another B cell-specific
ing with the available largest corpus — the coactivator to increase transcriptional
GENIA corpus — tractable, we propose to activity of class Il promoters, , in

split the non-entity class into sub-classes,
using part-of-speech information. In ad-

BcellsgLrype

dition, we explore new features such as
word cache and the states of an HMM
trained by unsupervised learning. Experi-
ments on the GENIA corpus show that our
class splitting technique not only enables
the training with the GENIA corpus but
also improves the accuracy. The proposed
new features also contribute to improve
the accuracy. We compare our SVM-
based recognition system with a system
using Maximum Entropy tagging method.

Machine learning approach has been applied to
biomedical named entity recognition (Nobata et al.,
1999; Collier et al., 2000; Yamada et al., 2000;
Shimpuku, 2002). However, no work has achieved
suficient recognition accuracy. One reason is the
lack of annotated corpora for training as is often
the case of a new domain. Nobata et al. (1999) and
Collier et al. (2000) trained their model with only
100 annotated paper abstracts from the MEDLINE
database (National Library of Medicine, 1999), and
Yamada et al. (2000) used only 77 annotated paper
abstracts. In addition, it is flicult to compare the

techniques used in each study because they used a
closed and dferent corpus.

To overcome such a situation, the GENIA cor-
pus (Ohta et al., 2002) has been developed, and at
Application of natural language processing (NLP) ishis time it is the largest biomedical annotated cor-
now a key research topic in bioinformatics. Sincegpus available to public, containing 670 annotated ab-
it is practically impossible for a researcher to grasptracts of the MEDLINE database.
all of the huge amount of knowledge provided in Another reason for low accuracies is that biomed-
the form of natural language, e.g., journal paperscal named entities are essentially hard to recognize
there is a strong demand for biomedical informatiomising standard feature sets compared with the named
extraction (IE), which extracts knowledge automatientities in newswire articles (Nobata et al., 2000).
cally from biomedical papers using NLP techniqueThus, we need to employ powerful machine learning
(Ohta et al., 1997; Proux et al., 2000; Yakushiji etechniques which can incorporate various and com-
al., 2001). plex features in a consistent way.

The process callechamed entity recognitign  Support Vector Machines (SVMs) (Vapnik, 1995)
which finds entities that fill the information slots,and Maximum Entropy (ME) method (Berger et al.,
e.g., proteins, DNAs, RNAs, cells etc., in thel996) are powerful learning methods that satisfy
biomedical context, is an important building block insuch requirements, and are applied successfully to
such biomedical IE systems. Conceptually, nameather NLP tasks (Kudo and Matsumoto, 2000; Nak-
entity recognition consists of two taskglentifica- agawa et al., 2001; Ratnaparkhi, 1996). In this pa-
tion, which finds the region of a named entity inper, we apply Support Vector Machines to biomed-
a text, andclassification which determines the se- ical named entity recognition and train them with

1 Introduction



the GENIA corpus. We formulate the named entity Table 1: Basic statistics of the GENIA corpus

recognition as the classification of each word with # of sentences 5109
context to one of the classes that represent region # of words 152,216
and named entity’s semantic class. Although there # of named entities 23,793
is a previous work that applied SVMs to biomedi- # of words in NEs 50,229
cal named entity task in this formulation (Yamada et #of words notin NEs| 101,987
al., 2000), their method to construct a classifier us- Av. length of NEs ¢) | 2.11 (1.40)

ing SVMs,one-vs-restfails to train a classifier with

entire GENIA corpus, since the cost of SVM train-3 Named Entity Recognition Using SVMs
ing is super-linear to the size of training samples.

Even with a more feasible methquhirwise(KreRel, 3.1 Named Entity Recognition as Classification

1998), which is employed in (Kudo and Matsumoto . .
' ; e e formulate the named entity task as the classi-
2000), we cannot train a classifier in a reasonab ation of each word with context to one of the

time, because we have a large number of sampl L ]

that belong to thmon-entityclgss in this formula—p a_ss,es that represent region information and_named

tion. To solve this problem, we propose to split th&Ntity’s semantic class. Several representations to
) ! code region information are proposed and exam-

non-entity class to several sub-classes, using part-of- J .
. : : > ed (Ramshaw and Marcus, 1995; Uchimoto et al.,
speech information. We show that this technique n 00; Kudo and Matsumoto, 2001). In this paper,

only enables the training feasible but also improve e employ the simplesBIO representation, which

the accuracy. is also used in (Yamada et al., 2000). We modify
In addition, we explore new features suchvaBd s representation in Section 5.1 in order to acceler-

cacheand the states of an unsupervised HMM foGta the SYM training.

named entity recognition using SVMSs. In the exper-", 1he B|O representation, the region information

iments, we show thefiect of using these features; represented as the class prefix@s and “I-", and

and compare the overall performance of our SVMz 355 ©”. B- means that the current word is at the

based recognition system with a system using the,qinning of a named entity; means that the cur-
Maximum Entropy method, which is an alternative.ant word is in a named entity (but not at the be-

to the SVM method. ginning), andO means the word is not in a named
entity. For each named entity claSsclassB-C and
I-C are produced. Therefore, if we halkkenamed
2 The GENIA Corpus entity classes, the BIO representation yieltis21
. classes, which will be the targets of a classifier. For
The GENIA corpus is an annotated corpus of Pdpstance, the following corresponds to the annota-

per abstracts taken from the MEDLINE database. - . :
Currently, 670 abstracts are annotated with namgﬁ) n “"Number of glucocorticoid receptoE[aOTElNln

entity tags by biomedical experts and made availymphocyteg .. ..and..”.
able to public (Ver. 1.13. These 670 abstracts are a _
subset of more than 5,000 abstracts obtained by thdumber  of glucocorticoid receptors

query ‘humanAND blood cell AND transcription O o B-PROTEIN  I-PROTEIN

factor” to the MEDLINE database. Table 1 shows in lymphocytes and

basic statistics of the GENIA corpus. Since the GE- B-CELLTYPE O

NIA corpus is intended to be extensive, there exist

24 distinct named entity classes in the corpuBur 3.2 Support Vector Machines

task is to find a named entity region in a paper ab- .

stract and correctly select its class out of these 2dupport Vector Machines (SVMs) (Cortes and Vap-

classes. This number of classes is relatively largdik, 1995) are powerful methods for learning a clas-

compared with other corpora used in previous studifier, which have been applied successfully to many
ies, and compared with the named entity task foNLP tasks such as base phrase chunking (Kudo and
newswire articles. This indicates that the task witfMatsumoto, 2000) and part-of-speech tagging (Nak-

the GENIA corpus is hard, apart from theffiulty —agawa etal., 2001). _ 3
of the biomedical domain itself. The SVM constructs a binary classifier that out-

puts+1 or-1 given a sample vectore R". The de-
Available via httpy/www-tsujii.is.s.u-tokyo.ac JGENIA/ cision is based on the separating hyperplane as fol-

2The GENIA corpus also has annotations for conjunc-IOWS'
tive/disjunctive named entity expressions such as “human B- or
T-cell lines” (Kim et al., 2001). In this paper we ignore such +1 if w-Xx+b>0 weR"beR,
expressions and consider that constituents in such expressionsC(X) = {_1 otherwise
are annotated as a dummy class “temp”.




The class for an input, c(x), is determined by see- (weighted) conjunction ofl features in the original
ing which side of the space separated by the hypesample.
planew - x + b = 0, the input lies on.

Given a set of labeled training samples3.3 Multi-Class SVMs

(e xa). - L x0)l, xi € Ry € {+1,-1},  agdescribed above, the standard SVM learning con-
the SVM training tries to find theoptimal Ny- gyrycts a binary classifier. To make a named entity
perplang i.e., the hyperplane with the maximumecognition system based on the BIO representation,
margin. Margin is defined as the distance betweegje yequire a multi-class classifier. Among several
the hyperplane and the training samples near&g{aihods for constructing a multi-class SVM (Hsu

to the hyperplane. Maximizing the margin insists;q Lin, 2002), we use a pairwise method proposed
that these nearest samplesiport vectors exist - by kreRel (1998) instead of the one-vs-rest method
on both sides of the separating hyperplane and ”ﬂéed in (Yamada et al., 2000), and extend the BIO
hyperplane lies exactly at the midpoint of thesgensresentation to enable the training with the entire
support vectors. This margin maximization tightlysena corpus. Here we describe the one-vs-rest

relates to the fine generalization power of SVMs. athod and the pairwise method to show the neces-
Assuming thajw-x; +b| = 1 at the support vectors sity of our extension.

without loss of generality, the SVM training can be " goth one-vs-rest and pairwise methods construct
formulated as the following optimization problem. a multi-class classifier by combining many binary
1 SVMs. In the following explanation denotes the
minimize =|\w||? number of the target classes.

subjecttoyi(w-x+b)>1, i=1,---,L. one-vs-restConstruct K binary SVMs, each of
_ _ _ _ which determines whether the sample should
The solution of this problem is known to be written be classified as classor as the other classes.
as follows, using only support vectors and weights  The output is the class with the maximulix)

for them. in Equation 1.
f(X) =w-x+b= Z YiaiX - Xi + b (1) pairwise Constructk(K — 1)/2 binary SVMs, each
ieSVs of which determines whether the sample should
) _ be classified as classr as clasg. Each binary
In the SVM learning, we can use a functikfx;, x;) SVM has one vote, and the output is the class
called akernel functioninstead of the inner prod- with the maximum votes.

uct in the above equation. Introducing a kernel

function means mapping an original inpxtusing Because the SVM training is a quadratic optimiza-
D(x), s.t.@(x)-D(x;) = k(xi, X;) to another, usually tion program, its cost is super-linear to the size of the
a higher dimensional, feature space. We construtraining samples even with the tailored techniques
the optimal hyperplane in that space. By using kesuch as SMO (Platt, 1998) and kernel evaluation
nel functions, we can construct a non-linear separataching (Joachims, 1998). Letbe the number of
ing surface in the original feature space. Fortunatel{he training samples, then the one-vs-rest method
such non-linear training does not increase the contakes time inK x Osym(L). The BIO formula-
putational cost if the calculation of the kernel function produces one training sample per word, and
tion is as cheap as the inner product. A polynomighe training with the GENIA corpus involves over
function defined ass; - x; + r)d is popular in ap- 100,000 training samples as can be seen from Ta-
plications of SVMs to NLPs (Kudo and Matsumoto ble 1. Therefore, it is apparent that the one-vs-
2000; Yamada et al., 2000; Kudo and Matsumotd€st method is impractical with the GENIA corpus.
2001), because it has an intuitively sound interpréOn the other hand, if target classes are equally dis-

tation that each dimension of the mapped space igt#uted, the pairwise method will take timek((K —
I T— 1)/2x Osvym(2L/K). This method is worthwhile be-

3 L. . . .
inseparatie, we allow the consraints are brokeh wif samgPlUSE each training is much faster, though it requires
penalty. In t’he experiments, we use so-called 1-norm soft mrgbe Itralnlng Otf gt;] :Lt)/tf21 t'me.s more CI?hSS(I:IerrSH It
gin formulation described as: IS also reporie al the pairwise metnod acnieves

higher accuracy than other methods in some bench-

1 L marks (Kref3el, 1998; Hsu and Lin, 2002).
minimize §||w||2 + CZ&
_ =1 _ 3.4 Input Features
subjecttoyi(w-x +b)>1-¢&, i=1,---,L, . L
£>0,i=1--,L An inputx to an SVM classifier is a feature repre-

sentation of the word to be classified and its context.
We use a bit-vector representation, each dimension



of which indicates whether the input matches witld  Named Entity Recognition Using ME

a certainfeature The following illustrates the well- Model

used features for the named entity recognition task.

The Maximum Entropy method, with which we
compare our SVM-based method, defines the prob-

1 if aword atk,W, is theith word ability that the class is given an input vectok as

W = in the vocabularyy’ follows.
0 otherwise \vord feature
if W is assigned thih POS tag P(cx) :i 1—[ aifi(c’x),
pos; = in the POS tag lisPOS Z(x) [
0 otherwise part-of-speech featuye ) o
) _ _ _ whereZ(x) is a normalization constant, arfgc, x)
if Wi starts with theth prefix is afeature function A feature function is defined
preg = in the prefix listP in the same way as the features in the SVM learn-
otherwise [prefix featurg ing, except that it includes in it like f(c,x) =
) ) ) (cisthejth class)A wik(x). If x contains pre-
1 if Wk starts with theth sufix viously assigned classes, then the most probable
sufy; = in the sufix list S class sequence] "= argmax, ... .. [1{_; P(cilx:) is
otherwise $yfix featurg searched by using the Viterbi-type algorithm. We
. i . . use the maximum entropy tagging method described
'f_ W contalns_ thet_h substring in (Kazama et al., 2001) for the experiments, which
sulxj = in the substring lisS8 is a variant of (Ratnaparkhi, 1996) modified to use
0 otherwise gubstring featurg HMM state features.
_ |1 if Wk(k < 0) was assigneih class . . .
PG = {0 otherwise jpreceding class featuye 5 Tuning of SVMs for Biomedical NE Task

5.1 Class Splitting Technique

In Section 3.3, we described that if target classes are

qually distributed, the pairwise method will reduce
e training cost. In our case, however, we have a
ry unbalanced class distribution with a large num-
ber of samples belonging to the clag¥’(see Table

). This leads to the same situation with the one-vs-
gst method, i.e., iLo is the number of the samples

In the above definitiong is a relative word position
from the word to be classified. A negative value rep
resents a preceding word’s position, and a positi
value represents a following word’s position. Noté
that we assume that the classification proceeds |
to right as can be seen in the definition of the pr
ceding class feature. For the SVM classification, w
does not use a dynamic argmax-type classificati ; " .
such as the Viterbi algorithm, since it isfiitult to ~ 0elonging to the classc”, then the most dominant
define a good comparable value for the confidence Bt Of the training takes time i < Osym(Lo).

a prediction such as probability. The consequencesone solution to this unbalanced class distribution

of this limitation will be discussed with the experi-Problem is to split the class “O” into several sub-
mental results. classes #ectively. This will reduce the training cost
for the same reason that the pairwise method works.

Features usually form a group with some vari- In this paper, we propose o spiit the non-entity
I h as th iti ified. In thi : g L
ables such as the position unspecified. In this IoaperIass according to part-of-speech (POS) informa-

we instantiate all features, i.e., instantiate foriall © ) :
for a group and a position. Then, it is convenient t§ion Of the word. That is, given a part-of-speech
denote a set of features for a grogand a position %gpsgtigg’ Vé?ngéoxgcgsgeﬁggl tgg;tsa(re?ﬁa?c;ut—
kasg (€.g.,wk andpog,). Using this notation, we puts 45 Penn Treebank’s POS tags in this paper, we

write a feature set agn_1, Wo, pre_s, preg, pc_q}.4 ;
) - C Ay ’ > -1 ave new 45 sub-classes which correspond to non-
This feature description derives the following 'npu'gntity regions such ag-NNS” (plural nouns), O-

vector? JJ” (adjectives), and O-DT” (determiners).
Splitting by POS information seems useful for im-
X ={W_1,1, W12, , W_ 1), Wo,1, "~ * , Wo v, proving the system accuracy as well, because in the
pre_q g, -+, Pregp, PC_11, -+ » PC1k } named entity recognition we must discriminate be-
tween nouns in named entities and nouns in ordi-
“We will further compress this d$w, pre),_y ), PC.y)- nal noun phrases. In the experiments, we show this

5Although a huge number of features are instantiated, oniglass splitting technique not only enables the feasi-
a few features have value one for a givgandk pair. ble training but also improves the accuracy.



5.2 Word Cache and HMM Features 5.3 Implementation Issues

In addition to the standard features, we explored Towards practical named entity recognition using
cache featureand HMM state feature mainly to SVMs, we have tackled the following implementa-
solve the data sparseness problem. tion issues. It would be impossible to carry out the
Although the GENIA corpus is the largest anno£xperiments in a reasonable time without such ef-
tated corpus for the biomedical domain, it is stillfOrS.
small compared with other linguistic annotated corParallel Training: The training of pairwise SVMs
pora such as the Penn Treebank. Thus, the ddtas trivial parallelism, i.e., each SVM can be trained
sparseness problem is severe, and must be treassparately. Since computers with two or more CPUs
carefully. Usually, the data sparseness is preventede not expensive these days, parallelization is very
by using more general features that apply to practical solution to accelerate the training of pair-
broader set of instances (e.g., disjunctions). Whileise SVMs.
polynomial kernels in the SVM learning caff@- Fast Winner Finding: Although the pairwise
tively generate feature conjunctions, kernel funcmethod reduces the cost of training, it greatly in-
tions that can fectively generate feature disjunc-creases the number of classifications needed to de-
tions are not known. Thus, we should explicitly addermine the class of one sample. For example, for

dimensions for such general features. __our experiments using the GENIA corpus, the BIO
~ The word cache feature is defined as the disjungepresentation with class splitting yields more than
tion of several word features as: 4,000 classification pairs. Fortunately, we can stop

classifications when a class géts- 1 votes and this
stopping greatly saves classification time (Krel3el,
1998). Moreover, we can stop classifications when

. the current votes of a class is greater than the others’
We intend that the word cache feature captures turgg)ssiue votes.

similarities of the patterns with a common key wor
such as follows.

WCk{ky, - knli = VkekWkii

upport Vector Caching: In the pairwise method,
though we have a large number of classifiers, each
(a) “humanW_, W_; Wo" and “humanw._; W classifier shares some support vectors with other
(b) “Wp gene” and Wy W, gene” classifiers. By storing the bodies of all support vec-
0d 019 tors together and letting each classifier have only the
We use a left word cache defined mecy; = weights, we can greatly reduce the size of the clas-
WC_k... 0i» and a right word cache defined a§ifier._ The sharing of support vectors also can _be
'WCki = WG1.. ki for patterns like (a) and (b) in exploited to accelerate the classification by caching
the above example respectively. the value of the kernel function between a support

Kazama et al. (2001) proposed to use as featur¥gctor and a classifiee sample.
the Viterbi state sequence of a hidden Markov modg  Experiments
(HMM) to prevent the data sparseness problem in
the maximum entropy tagging model. An HMM isTo conduct experiments, we divided 670 abstracts
trained with a large number of unannotated texts bgf the GENIA corpus (Ver. 1.1) into the train-
using an unsupervised learning method. Becauseg part (590 abstracts; 4,487 sentences; 133,915
the number of states of the HMM is usually madevords) and the test part (80 abstracts; 622 sen-
smaller thanV|, the Viterbi states give smoothedtences; 18,211 word$) Texts are tokenized by us-
but maximally informative representations of wording Penn Treebank’s tokenizer. An HMM for the
patterns tuned for the domain, from which the raWHMM state features was trained with raw abstracts

texts are taken. of the GENIA corpus (39,116 sentencés)The
The HMM feature is defined in the same way asiumber of states is 160. The vocabulary for the
the word feature as follows. word feature is constructed by taking the most fre-
quent 1(_),000 word_s fr_om the a_bove raw abstracts,
1 if the Viterbi state foM is the prefixsufix/prefix list by taking the most fre-

o . ! ! quent 10,000 prefixgsufixegsubstrings.
hmny; = thelth_state in the HMM's states( The performance is measuredgmgcision recall,
0 otherwise KIMM featurg andF-score which are the standard measures for the

. . . ®Randomly selected set used in (Shimpuku, 2002). We do
In the experiments, we train an HMM using rawyqt se pape?/titles, while he used. ( P )

MEDLINE abstracts in the GENIA corpus, and  7These do not include the sentences in the test part.
show that the HMM state feature can improve the 8These are constructed using the training part to make the
accuracy. comparison with the ME method fair.



Table 2: Training time and accuracy withithout

samples includes SOS and EOS (special words faneans positiveféect.
the startend of a sentence).

Table 3: Hfect of each feature set assessed by
the class splitting technique. The number of trainingddingsubtracting (F-score). Changes in bold face

no splitting splitting feature set (A) adding  (B) sub. (k2) (C) sub. (k3)
training | time acc. time acc. Base 42.86 47.82 49.27
Samp|es (SEC.) (F_Score) (SEC.) (F_ Leﬁ cache 43.25 &039 47.77 (00@ 49.02 (023
score) Right cache| 42.34 (-0.52) | 47.81 ¢0.0)) | 49.07 €0.20
16,000| 2,809 37.04 5581 36.82 HMM state | 44.70 ¢-1.84 | 47.25 (0.57) | 48.03 ¢1.29
32,000\ 13,614 40.65 9,175 41.36 POS 44.82 ¢1.96) | 48.29 (-0.47) | 48.75 €0.52
48,000 21,174 42.44 9,709 42.49 Prec. class | 44.58 ¢1.72 | 43.32¢4.50 |43.84¢5.43
64,000| 40,869 42.52 12,502 44.34 Prefix 42.77 (-0.09) | 48.11 (-0.29) | 48.73 £0.54)
96,000] - - 21,922 44.93 Suffix 45.88 ¢3.02 | 47.07 €0.75 | 48.48 ¢0.79
128,000| - 36,846 45.99 Substring | 42.16 (-0.70) | 48.38 (-0.56) | 50.23 (+0.96)

named entity recognition. Systems based onthe Blglete) base set. The first column (A) in Ta-
representation may produce an inconsistent class ¢g¢e 3 shows an adding case where the base fea-
quence such asd' B-DNA I-RNA O". We interpret ture set is{w_2..2}. The columns (B) and
such outputs as follows: once a named entity star{€) show subtracting cases where the base feature
with “B-C” then we interpret that the named entityset is{(w, pre, suf, suh pos hmmy_y ... i Iwek, rweg,
with class ‘C” ends only when we see anothes-* PG_o_j} With k = 2 andk = 3 respectively. The
or“O-"tag. _ kernél function is the inner product. We can see that
We have implemented SMO algorithm (Plattyyord cache and HMM state features surely improve
1998) and techniques described in (Joachims, 199e recognition accuracy. In the table, we also in-
for soft margin SVMs in G+ programming lan- cluded the accuracy change for other standard fea-
guage, and implemented support codes for pairwisgres. Preceeding classes anfligsas are definitely
classification and parallel training in Java programne|pful. On the other hand, the substring feature is
ming language. To obtain POS information require@ot efective in our setting. Although thefects of
for features and class splitting, we used an Englisgart-of-speech tags and prefixes are not so definite,
POS tagger described in (Kazama et al., 2001).  t can be said that they are practicalljeztive since
6.1 Class Splitting Technique they show positive féects in the case of the maxi-

, .. mum performance.
First, we show the féect of the class splitting P
described in Section 5.1. Varying the size 06.3 Comparison with the ME Method
training data, we compared the change |n.tth this set of experiments, we compare our
training time and the accuracy with and Wlth-estM-based system with a L amed entity recog-
out the class splitting. We used a feature Snition system based on the Maximum Entropy
{(w, pre, suf, SUL PO _5... ), PGy} aNd the in- oo 20 e SvM system, we used the fea-
ner product kern_e‘%. The training time was mea- o set{(w, pre, suf, pos hmm 3’ 31, lwes, rwes,
sured on a machine with four 700MHz Pentlumlllzjc[ ), which is Shown to b[é fﬁ’e]best in the pre-
cxperments.  Fgure 1 shows he resuls grapfious Speriment. The compared system i a max:
cally. We can see that without splitting we soon -SUfét al 2001§>y Tr?c?u ?1 it supports several character
fer from super-linearity of the SVM training, while ’ ' 9 PP

type features such amimberandhyphenand some

with splitting we can handle the training with over 7&= tive feat h d A
100,000 samples in a reasonable time. It is very inf.onjunctive features such as wargram, we do no
se these features to compare the performance un-

portant that the splitting technique does not sacrific | it ble. The feat .
the accuracy for speed, rather improves the accurad{fz’ &S C'0S€ a condition as possibie. The fealure se
sed in the maximum entropy system is expressed

6.2 Word Cache and HMM State Features as{(w, pre, suf, pos hmmy_, 21, PG_» _1]}_10 Both

In this experiment, we see thdfect of the word Systems use the BIO representation with splitting.
cache feature and the HMM state feature described Table 4 shows the accuracies of both systems. For
in Section 3.4. The féect is assessed by thethe SVM system, we show the results with the inner
accuracy gain observed by adding each featuproduct kernel and several polynomial kernels. The
set to a base feature set and the accuracy degraw “All (id)” shows the accuracy from the view-

dation observed by subtracting it from a (com—7MM—
When the width becomes-B,--- , 3], the accuracy de-

9Soft margin constant C is 1.0 throughout the experimentsgrades (53.72 to 51.73 in F-score).
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Figure 1: Hfect of the class splitting technique.

point of the identification task, which only finds theF-score. Thus, such a noise reduction method is

named entity regions. The accuracies for several malso important. However, the cuffanethod for the

jor entity classes are also shown. The SVM systelE method cannot be applied without modification

with the 2-dimensional polynomial kernel achievesince, as described in Section 3.4, the definition of

the highest accuracy. This comparison may be utthe features are fierent in the two approaches. It

fair since a polynomial kernel has th&ect of us- can be said the features in the ME method is “finer”

ing conjunctive features, while the ME system doethan those in SVMs. In this sense, the ME method

not use such conjunctive features. Nevertheless, tafows us more flexible feature selection. This is an

facts: we can introduce the polynomial kernel verydvantage of the ME method.

easily; there are very few parameters to be tuHed; The accuracies achieved by both systems can be

we could achieve the higher accuracy; show an a@aid high compared with those of the previous meth-

vantage of the SVM system. ods if we consider that we have 24 named entity
It will be interesting to discuss why the SVM sys-classes. However, the accuracies are néicent

tems with the inner product kernel (and the polynofor a practical use. Though higher accuracy will be

mial kernel withd = 1) are outperformed by the ME achieved with a larger annotated corpus, we should

system. We here discuss two possible reasons. TASO explore moreftective features and findfec-

first is that the SVM system does not use a dynamié/€ feature combination methods to exploit such a

decision such as the Viterbi algorithm, while the MEarge corpus maximally.

system uses it. To see this, we degrade the ME sys- -

tgm so that it predicts the classesgdeterministica?ll Conclusion

without using the Viterbi algorithm. We found thatwe have described the use of Support Vector Ma-
this system only marks 51.54 in F-score. Thus, it caghines for the biomedical named entity recognition
be said that a dynamic decision is important for thisask. To make the training of SVMs with the GE-
named entity task. However, although a method tRIA corpus practical, we proposed to split the non-
convert the outputs of a binary SVM to probabilisticentity class by using POS information. In addition,
values is proposed (Platt, 1999), the way to obtaijye explored the new types of features, word cache
meaningful probabilistic values needed in Viterbiand HMM states, to avoid the data sparseness prob-
type algorithms from the outputs of a multi-clasgem. In the experiments, we have shown that the
SVM is unknown. Solving this problem is certainly class splitting technique not only makes training fea-
a part of the future work. The second possible reasible but also improves the accuracy. We have also
son is that the SVM system in this paper does n&hown that the proposed new features also improve
use any Cut—ﬁ_or feat.ure truncation method to re_-the accuracy and the SVM system with the p0|yn0-
move data noise, while the ME system uses a sininjal kernel function outperforms the ME-based sys-
ple feature cut-fi method? We observed that the tem.

ME system without the cutfdonly marks 49.11 in Acknowledgements
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Table 4: Comparison: The SVM-based system and the ME-based system. (pyesisilR-score)

SVM ME
inner product polynomial 6= 0.01r = 1.0))

type # d=1 = =

All (2,782)| 50.7/49.8/50.2 | 54.6/48.8/51.5 | 56.2/52.8/54.4 | 55.1/51.5/53.2 | 53.4/53.0/53.2
All(id) 71.8/70.4/71.1 | 75.0/67./70.8 | 75.971.4/73.6 | 75.3/70.3/72.7 | 73.572.973.2
protein (709) | 47.2/55.2/50.8 | 45.7/64.9/53.6 | 49.2/66.4/56.5 | 48.7/64.7/55.6 | 49.1/62.1/54.8
DNA (460) | 39.9/37.6/38.7 | 48.2/31.5/38.1 | 49.6/37.0/42.3 | 47.9/37.4/42.0 | 47.3/39.6/43.1
cell line (121) | 54.8/47.1/50.7 | 61.2/43.0/50.5 | 60.2/46.3/52.3 | 62.2/46.3/53.1 | 58.0/53.7/55.8
cell type (199) | 67.6/74.4/70.8 | 67.4/74.971.0 | 70.0/75.4/72.6 | 68.6/72.4/70.4 | 69.972.4/71.1
lipid (109) | 77.0/61.5/68.4 | 83.3/50.5/62.9 | 82.7/61.5/70.5 | 79.2/56.0/65.6 | 68.9/65.1/67.0
other names (590)| 52.553.9/53.2 | 60.2/55.9/58.0 | 59.3/58.0/58.6 | 58.9/57.8/58.3 | 59.0/61.7/60.3
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