
Trading accuracy for faster entity linking

Kristy Hughes Joel Nothman

e-lab, School of Information Technologies
University of Sydney
NSW 2006, Australia

{khug2372@uni.,joel.nothman@,james.r.curran@}sydney.edu.au

James R. Curran

Abstract

Named entity linking (NEL) can be applied
to documents such as financial reports,
web pages and news articles, but state
of the art disambiguation techniques are
currently too slow for web-scale applica-
tions because of a high complexity with re-
spect to the number of candidates. In this
paper, we accelerate NEL by taking two
successful disambiguation features (popu-
larity and context comparability) and use
them to reduce the number of candidates
before further disambiguation takes place.
Popularity is measured by in-link score,
and context similarity is measured by lo-
cality sensitive hashing.

We present a novel approach to locality
sensitive hashing which embeds the pro-
jection matrix into a smaller array and ex-
tracts columns of the projection matrix us-
ing feature hashing, resulting in a low-
memory approximation. We run the linker
on a test set in 63% of the baseline time
with an accuracy loss of 0.72%.

1 Introduction

Named entity linking (NEL) (Bunescu and Pasca,
2006; Varma et al., 2009; Cucerzan, 2007) is
the task of mapping mentions of named entities
to their canonical reference in a knowledge base
(KB). Recently, this task has been motivated by the
Text Analysis Conference (TAC) Knowledge Base
Population (KBP) entity linking task. In this task,
systems are given queries comprising of a mention
string and document ID, and return the referring
entity ID from the KB (in this case, Wikipedia) or
a NIL ID if the entity is not in the KB.

While large amounts of candidate data provides
rich information that can be used for disambigua-
tion, we show that data transfer and query costs

comprise over 51% of running time in the unsu-
pervised configuration of Radford (2014). Addi-
tionally, whole document approaches for disam-
biguation compare text using methods such as co-
sine similarity, but are slow for high-dimensional
data such as text (Indyk and Motwani, 1998).

In this paper, we pre-filter candidates using a
combination of candidate popularity and context
similarity. These features are complimentary to
each other, because a high in-link count suggests
that the mention string refers to that entity fre-
quently, but a high similarity measure is required
for less popular candidates. Since context compar-
ison is expensive to compute, we use LSH (Gio-
nis et al., 1999) to produce a compact binary hash
representation of each document, which can be
compared using Hamming distance. This fast, in-
formed pre-filtering reduces data communication
costs and the number of similarity comparisons.

While LSH has been shown to be a good approx-
imation to cosine similarity on image data (Lu et
al., 2008), we show that it this is also the case on
text data. Using a hash size of 1024 bits, LSH simi-
larity and cosine similarity have a Spearman corre-
lation of 0.94, with correlation increasing as hash
size increases. Using a hash size of 2kB and a LSH

similarity threshold of 0.56, and keeping the top 7
candidates by in-link score, we run the linker in
63% of the time with an accuracy loss of 0.72%.

We also present a new, low-memory version of
LSH which embeds the projection matrix into a
smaller vector and extracts rows of the projection
matrix using feature hashing. This method allows
for an expandable vocabulary, and only requires
storing a single, smaller vector, resulting in fast
generation of document hashes.

Our LSH pre-filtering method enables the task
to feasibly be applied to linking longer documents
(financial reports), big data (the web), and real-
time or frequently updated documents (the news)
with only a very small drop in accuracy.

Kristy Hughes, Joel Nothman and James R. Curran. 2014. Trading accuracy for faster named entity linking.
In Proceedings of Australasian Language Technology Association Workshop, pages 32−40.

2 Background

Named entities (NEs) in natural language are of-
ten difficult to resolve; one entity can be referred
to by many different mention strings (synonymy)
or multiple distinct entities referred to by the same
mention string (polysemy). While the task of re-
solving this ambiguity is automatically and sub-
consciously performed by most people when they
read text, this is a much more difficult task for au-
tomated systems to perform.

The NE ambiguity problem has been ap-
proached within the field of computational linguis-
tics as three related tasks: Cross-document Coref-
erence Resolution (Bagga and Baldwin, 1998),
Wikification (Mihalcea and Csomai, 2007), and
named entity linking (NEL) (Bunescu and Pasca,
2006). NEL aims to link in-text mentions of NEs
to a knowledge base (KB) using the context of the
mention and the vast amount of structured and un-
structured information held in the KB.

Approaches to NEL vary (Hachey et al., 2013;
Ji and Grishman, 2011), however many sys-
tems share some core components. Radford et
al. (2012) combines three seminal approaches
(Cucerzan, 2007; Varma et al., 2009; Bunescu and
Pasca, 2006) to produce the NEL system on which
this paper is based. Almost all approaches can be
split into 3 stages: mention extraction, candidate
generation and candidate disambiguation.

The mention extraction stage involves chain-
ing together mentions in a document that re-
fer to the same entity, and candidate generation
stage involves retrieving entities from the KB that
have similar names to mentions in the query’s
chain. The candidate disambiguation stage com-
pares each candidate with the query and ranks
them by the aggregate of similarity scores.

Core to almost all approaches is the usefulness
of the prior probability of a candidate entity, and
the amount of overlap in text between the query
document and candidate entity. These two features
are complementary to each other.

Prior probability is a measure of the popular-
ity of the entity. This can be calculated from a
large corpus of disambiguated entities, most often
using Wikipedia’s internal links, and is indepen-
dent from the query document, so it can be pre-
computed and stored. Popular entities appear in all
contexts, and so they will often not require a par-
ticular context for readers to know what the men-
tion string refers to.

Less popular entities are distinguished by read-
ers through the context that they appear. Therefore
context similarity is an important measure of the
validity of a candidate. The most popular way for
comparing the similarity of text is by using cosine
similarity, and many of the scores in the candidate
disambiguation stage use cosine similarity, some
only over sentences and others over entire docu-
ments.

To compute cosine similarity over a document,
text is mapped to a bag of words (BOW) vector
containing the count of each word in the docu-
ment, and the dot product of these vectors repre-
sents their similarity. For a BOW, the dimensional-
ity of the vector is number of words in the vocabu-
lary, v. Cosine similarity can also be applied more
broadly using any textual feature as a dimension of
the vector. Since these vectors are generally sparse
(you do not have every word in the vocabulary ap-
pear in one document), it is are often fast to com-
pute. However, due to the high number of com-
parisons needed (every document-candidate pair),
it can become an expensive measure to use.

Dimensionality reduction of these BOW vec-
tors before computing cosine similarity further
decreases its computational complexity and the
cost of data transfer (as lower dimensional forms
can be precomputed and stored). Popular meth-
ods of dimensionality reduction are singular value
decomposition and principle component analysis
(Muflikhah and Baharudin, 2009; Lin et al., 2011),
however these are expensive to compute and adds
skew to the data, so they don’t correlate well with
cosine similarity.

Dimensionality reduction through random pro-
jections removes much of this pre-computational
work, while also not introducing significant skew
(Lu et al., 2008). BOW vectors are mapped to
lower dimensions by pre-computing some ran-
domly generated hyperplanes called the projection
matrix, and computing the matrix multiplication
of the vector and the projection matrix.

Locality sensitive hashing (LSH) makes the
comparison process in the projected space more
efficient by binarising the embedded vectors into
a hash (Gionis et al., 1999), approximating cosine
similarity of the BOWs as the Jaccard similarity of
the hashes. While LSH is faster to compute, it still
requires a large projection matrix to be stored, and
there needs to be a way of dealing with new words
that appear, which we discuss in section 5.

33

Step Approx Time (%) Substep Approx Time (%)
Initialisation and output 0.9 0.9

Mention Extraction 2.5
C&C NER 1.6
Chaining 0.9

Candidate Generation 31.0

Build query 0
Expand query 0.9
Retrieve candidate ID s 5.7
Retrieve processed candidates 20.6
Compile in-memory structure 3.8

Candidate Disambiguation 65.6

In-link prior probability 0.1
Reference probability 13.1
Alias cosine 10.6
Category score 6.2
Context score 29.5
In-link overlap 3.2
Sentence context 2.3
Rank and determine NIL 0.6

Total Time 100.0 100.0

Table 1: A profile of the TAC 11 dataset reveals that both the candidate generation and candidate disam-
biguation phases are slow

3 NEL Profile

This paper extends the unsupervised NEL system
introduced by Radford (2014) with the aim of in-
creasing its speed while maintaining comparable
accuracy. In order to do this, it is important to first
discover which stages are computationally expen-
sive. The system consists of three main stages:
mention extraction, candidate generation and can-
didate disambiguation.

The mention extraction stage aims to find all
mentions of named entities in a document in order
to find aliases for the mention string. It begins by
preprocessing the document with a part of speech
tagger and performing named entity recognition.
Similar to the task of word sense disambiguation,
we assume that mention strings have one sense per
discourse. Thus, they are clustered into chains that
refer to the same entity using limited coreference
resolution rules such as acronym expansion and
substring name matching.

The candidate generation stage produces a list
of candidate entities (Wikipedia articles) for each
chain in the document. We take the longest men-
tion string in a chain to be the canonical men-
tion and use this to search the database for suit-
able matches. Candidates are returned from a
Solr database (limited to 100 candidates) if the
canonical mention matches matches a Wikipedia

pages’ title, redirect titles or apposition stripped ti-
tle. This stage aims to ensure that the correct entity
is returned as a candidate, while minimising the
size of the candidate set for feasible disambigua-
tion. Once a list of candidate names is obtained
from Solr, the data associated with each candidate
is retrieved from a Hypertable database.

While these first two stages aim to maximise re-
call, the candidate disambiguation stage aims to
distinguish the correct entity from the rest of the
candidates by ranking them according to a score.
The final score is the sum of the in-link prior prob-
ability, reference probability, alias cosine similar-
ity, category score, context score, in-link overlap
and sentence context. A more detailed description
of each can be found in Radford (2014).

We profiled (Radford, 2014) to discover linking
bottlenecks. It is often difficult to judge timing
of systems due to the variability caused by dif-
fering hardware and loads, so we ran all our ex-
periments over the TAC 11 dataset and queries 10
times to get an average run-time of 1778.39 sec-
onds with a standard error of 9.5 seconds. Our ex-
periments were run on an unloaded machine with
two 2.30GHz Intel(R) Xeon(R) E5-2470 CPUs and
62GiB RAM. The full break-down of this profile
can be seen in Table 1, which shows that both the
candidate generation and candidate disambigua-
tion steps are expensive.

34

The candidate generation step is expensive due
to an external database query which retrieves can-
didate information such as Wikipedia pages. The
run-time of this step is linear to the number of can-
didates retrieved, as well as linear to the amount of
data associated with each candidate.

The candidate disambiguation stage takes
65.6% of run-time. The most expensive score to
compute is the context score, which take context
information from the candidate, such as the disam-
biguating term in each candidate’s Wikipedia title,
anchor text from links within the first paragraph,
and links to pages that link back to the candidate.
These context terms are searched for within the
query document using a trie. While the complex-
ity of this step is related to the number of context
terms, the dominating cost is from the number of
candidates. Other expensive steps are the refer-
ence probability score and alias cosine score.

4 Pre-filtering candidates

Since the expensive steps that have been identi-
fied are costly for each candidate, we consider a
pre-filter which reduces the number of candidates
before their full text is retrieved from the database,
and before disambiguation occurs. This will trade
accuracy for speed because the load is reduced for
both the candidate generation and candidate dis-
ambiguation steps, at the cost of some true can-
didates inadvertently being eliminated. We hy-
pothesise that correct candidates either are either
contextually similar with the query document, or
are popular and so do not require any contextual
overlap. For example, a query document mention-
ing Melbourne is likely to have similar words to
the Wikipedia page for Melbourne. This contex-
tual similarity is important for capturing the cor-
rect entity because Melbourne could also refer to
Melbourne, Nova Scotia or Melbourne, Quebec. How-
ever, a query document mentioning Australia is not
necessarily going to share context with the page
for Australia because of its notability.

Popularity is measured using an in-link score,
which measures the prior probability that a partic-
ular candidate is linked to by the mention string.
Since this is document insensitive, in-link scores
have been precomputed for all candidates in the
KB and are retrieved from the database when the
name query occurs. We use the rank of candidates
sorted by in-link score because it is more meaning-
ful than their raw score, which may vary greatly

Candidate
Extraction

Candidate
Generation

Candidate
Disambiguation

Solr DB

Mention string
lookup to

retrieve IDs

ID lookup to
retrieve

candidate text

Hypertable
DB

Remove candidates
that do not satisfy pre

filter rules
New steps

Figure 1: NEL Pipeline and our changes

between candidates. Since Solr returns candidates
sorted by this score in the existing system, using
their rank is not an expensive step.

Context between documents is generally mea-
sured using cosine similarity. For our purposes,
we compute the cosine similarity of the BOW of
the document (a vector containing the count of
each word in the document). We use these raw
counts, rather than TF-IDF because some initial
experiments suggested that it did not change the
spread of correct candidates and it was expensive
to retrieve IDF scores. While we found in-link rank
to be a very fast pre-filtering method, cosine sim-
ilarity has to be computed for each candidate of a
given document, making it slow when there is a
high number of candidates.

For each query, we retain the top i candidates
by in-link count. For any remaining candidates,
we calculate the similarity between the query doc-
ument and each candidate’s Wikipedia page text,
retaining those with a similarity above `. This fits
within the candidate generation stage. We store
candidate data needed for these thresholds in the
Solr database, so that filtering occurs after the Solr
query, but before the Hypertable query (Figure 1).
In order for this to be an effective pre-filter, it must
be fast with respect to the number of candidates,
otherwise it defeats the purpose. Since cosine sim-
ilarity is slow, we use locality sensitive hashing to
approximate cosine similarity.

35

r1,1 r1,2 · · · r1,v

...
. . .

...
...

. . .
...

rb,1 · · · · · · rb,v

︸ ︷︷ ︸
b×v random hyperplanes matrix

H

×

c1
c2
...
cv

︸ ︷︷ ︸

BOW

=

x1
x2
...
xb

︸ ︷︷ ︸

Projected vector

→ xi ≥ 0 7→ 1
xi < 0 7→ 0

→

1
0
...
1

︸ ︷︷ ︸

Hash

Figure 2: Creating a document hash representation using LSH

5 Low memory LSH

Locality sensitive hashing (LSH) (Broder, 1997;
Indyk and Motwani, 1998) is generally used for
grouping similar objects from a large data set by
mapping them to buckets based on the bits in
their lower-dimensional hash (Ravichandran et al.,
2005). Since the number of candidates per docu-
ment is relatively small, this approach is unnec-
essary, but we use it to compute an extremely effi-
cient approximate similarity function. This is done
by counting the number of bits that are the same
between the document and query hash. Since
hashes are binary, this can be done taking the XOR

of the hashes, and counting the 0’s which is very
fast using the popcount CPU instruction. While the
similarity function is very fast, we also need the
hashing technique to be very fast, since documents
are unseen and their hashes must be calculated in
real-time. To do this, we present a new method
of generating hashes which is different from the
traditional method.

Traditionally, cosine LSH projects the document
vectors, or bags of words (BOWs), of dimension v
to a lower dimensional (b) binary hash. A BOW

document representation is a real valued vector
where each element corresponds to the count of
each word in the combined vocabulary of all the
documents, excluding stop words. BOWs are pro-
jected by computing their dot product with a pro-
jection matrix (M) of normally distributed random
numbers (ri). The result of this operation, a low-
dimensional vector, is then binarised into a hash
by mapping non-negative numbers to 1, and nega-
tive numbers to a 0 (Figure 2).

This method of LSH requires the vocabulary to
be precomputed, which is not suitable for many
NEL applications as unseen documents often con-
tain unseen words that must be dealt with. If un-
seen words are discarded, the hashes no longer be-
come a true representation of the document. Con-
versely, adding a row to the projection matrix ev-

start = bh÷ nc
h = hash(wi)

↗
↘

step = h mod (n− 1) + 1

[
r1 r2 · · · rstart

��
· · · rstart+step

��
· · · rstart+i stepii · · · rn

]
︸ ︷︷ ︸

Random vector (prime n>v)

↓ Generates

r1,1 r1,2 · · · r1,v

...
. . .

...
...

. . .
...

rb,1 · · · · · · rb,v

Figure 3: Low-memory LSH generates rows of the
hyperplane matrix

ery time a new word is discovered, which is fre-
quent under Zipf’s Law, incurs a runtime cost, and
results in unbounded memory consumption. Addi-
tionally, query documents are unseen so their hash
representation cannot be pre-computed, requiring
M to be loaded into memory. This can be expen-
sive with a large vocabulary and high number of
bits, as |M | = b× v.

We present a low-memory LSH technique which
embeds M in a single, fixed-length array, M ′,
and artificially generates rows of M by stepping
through M ′ (Figure 3). To find the start and step
for a particular row, the word associated with that
row is hashed into a 32-bit integer using a string
hash function, xxhash. We divide the integer by
the length of M ′, with the quotient being the start-
ing place in M ′ and the remainder being the step
size. We step through the M ′ until we have pro-
duced a b length row and multiply it by the value

36

corresponding to that word. This is done for each
word in the document and the resulting rows are
added together and binarised to produce the hash.
This effectively mimics the normal matrix multi-
plication.

The theoretical basis for this method relies on
the idea that each word in the document will cor-
respond to a unique start and step, which produces
a unique row of the projection matrix. To en-
sure that no repeating occurs in the generated row,
we need the step length to be co-prime to |M ′|.
Thus we choose |M ′| to be prime, so that all step
lengths are co-prime to |M ′|. This method allows
us to embed an |M ′|(|M ′| − 1)× |M ′| dimension
random matrix in M ′ without substantially affect-
ing LSH, provided that |M ′| is prime and larger
than the true size of the vocabulary (which is un-
known), and b < |M ′|. This new LSH method only
needs to generate and store |M ′| random numbers,
rather than b×v random numbers, and thus is more
space-efficient than traditional LSH.

6 Experiments and Evaluation

Our first experiment determines the correlation of
LSH with cosine similarity to confirm that it corre-
lates well in text data, and to find a suitable hash
size. To show the correlation between cosine and
LSH, we graphed the cosine similarity and LSH

similarity between all query-candidate pairs for
the TAC 11 dataset. We calculated both Pearson
and Spearman correlation as to not make incorrect
distributional assumptions that may affect its va-
lidity.

We evaluate our system in terms of both run
time and accuracy and measure it as a trade-off,
since speed increases usually come at a cost to ac-
curacy. We judge a good trade-off between the
time and accuracy as one where the time taken to
run the NEL system is significantly shorter without
significantly impacting the speed. We use TAC 11
data as a training set, and then test our best config-
uration on the held-out TAC 12 dataset.

We pre-filter candidates retrieved from the Solr
search using the similarity of their hash with the
document’s hash. This relies on the assumption
that candidates with low similarity between doc-
uments are likely not to be a correct link. We
determine the time-accuracy trade-off when filter-
ing by a similarity threshold. We use in-link score
which is retrieved from the Solr database as a base-
line pre-filtering method. We also combine both

in-link score and LSH similarity to test how they
work together. This is under the assumption that
in-link score is a measure of entity popularity, and
so will retrieve different candidates to LSH simi-
larity, which is an approximation of context simi-
larity.

We precomputed the 2kB hashes for all TAC 11
candidates and stored them in the Solr database.
Our pre-filtering experiments retrieved the hashes
of all candidates during the Solr search (Figure 1),
cut-down the hash to the number of dimensions
we were experimenting with, and pre-filtered them
according to their hash similarity with the query’s
hash for various thresholds (i.e. hash similarity
> threshold). This meant that extra time was
added to the candidate generation step by retriev-
ing hashes from Solr and calculating hash similar-
ity, but time was taken away from the candidate
generation step also because fewer candidates had
to be retrieved from Hypertable. The candidate
disambiguation phase is where most of the time
gain occurs, as whole document linking has fewer
candidates to disambiguate.

The accuracy of the NEL system is the macro-
averaged accuracy over the entities, as to align
with the TAC task measures. Our experiments
are all run over the TAC 11 dataset, and the NIL

baseline (linking all queries as NIL) is 51.84. We
use the unsupervised configuration of the Radford
(2014) system for all of our linking experiments.
This configuration took an average of 1778.39 sec-
onds to run (Table 1) and achieved an accuracy
87.16%. We use this configuration as out base-
line for time-accuracy trade-offs that occur when
filtering candidates at differing thresholds.

7 Results and Analysis

Our results show that low-memory LSH requires a
high number of bits to correlate well with cosine
similarity (Figure 4). With 512 bits we can see
a linear trend between cosie similarity ane low-
memory LSH, however Pearson correlation ex-
ceeds 0.9 for hash sizes larger than 213.

We notice some particularly high hash similar-
ity when the cosine similarity is 0, and after some
investigation, we discovered that these similarity
scores were for candidates with no text. If a can-
didate has no text, their default LSH hash is a string
of 0’s, so their similarity measure with the docu-
ment is effectively counting the proportion of 0’s
in the document hash. We expected LSH similarity

37

(a) 29 bits (b) 210 bits (c) 211 bits

(d) 212 bits (e) 213 bits (f) 214 bits

Figure 4: LSH and Cosine correlation increases as hash dimensionality increases.

to be 0.5 for non-correlated documents, since this
is the expected value that any two bits are equal.
One possible explaination for this relates to the
small size of the projection array, M ′. With low-
memory LSH, each row of M is generated by ef-
fectively sampling from a sample (M ′) rather than
the population (N) and so any bias that the sam-
ple may have is magnified in the full matrix. This
may result in the proportion of 1’s having a slight
skew away from the theoretical mean of 0.5. Fig-
ure 5 shows that the distribution of M ′ is reason-
ably centered at 0 for an array of 16 411 random
numbers. The results of a t-test to see if the mean
was significantly different to 0 was inconclusive,
with a p-value of 0.18. However, when we use
only 2053 random numbers in M ′ we see a signif-
icant bias. We are not yet sure whether this is the
cause of the anomalous points, and whether this
theoretical flaw has any practical effect. We have
a proposed solution to this problem of the sample
mean, which we will discuss later in future work.

In order for the pre-filtering mechanism to be
valid, we need the filter method to be very fast
and not scale badly with the number of candidates.
To use LSH instead of cosine, we need the cost of
hashing each document plus the cost of computing
the LSH similarity for each document-candidate
pair to be faster than the cosine of each document-
candidate pair. Our experiments show that LSH

similarity performs at 38.1% of the time of cosine

4 2 0 2 4
Random number from projection array

0

200

400

600

800

1000

1200

Fr
e
q
u
e
n
cy

Figure 5: Distribution of M ′ is not centered at 0.
This could be the cause of anomalous LSH similar-
ity scores where cosine similarity is 0

similarity for a hash size of 214 bits. This cost de-
creases as hash size decreases, however so does
the correlation coefficient.

Our time-accuracy trade-offs are shown in Ta-
ble 2. We notice that there is a general trend
with accuracy increasing as the number of top-
inlinks increases and as LSH similarity threshold
decreases, at the cost of speed. This is also shown
visually in Figure 6. This shows us that our best
time-accuracy trade-off is when ` = 0.56 and
i = 7, since only a slight amount of accuracy is
lost for a large gain in speed.

38

Threshold
for `

Threshold for i

No in-links 1 2 5 7 11
Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc

No LSH – – 42.89 81.33 45.6 84.84 55.53 86.04 58.37 86.53 62.5 86.89

0.53 68.2 84.22 69.76 86.67 71.4 87.2 74.58 87.29 80.27 87.42 79.64 87.47
0.54 56.58 79.87 64.16 86.09 62.61 86.93 66.98 87.07 72.85 87.38 73.76 87.56
0.55 48.78 74.62 55.45 85.38 57.2 86.49 65.66 86.8 69.05 87.16 70.14 87.47
0.56 41.93 68.93 51.98 84.62 54.8 86.36 60.05 86.8 63.91 87.11 67.78 87.47
0.57 37.59 64.8 49.41 83.78 54.16 85.87 58.31 86.62 64.15 86.98 67.58 87.38
0.58 34.97 62.36 49.07 83.47 51.61 85.78 58.1 86.58 63.25 86.98 66.39 87.29
0.59 33.77 59.82 48.19 82.98 51.22 85.51 57.25 86.53 63.06 86.89 66.22 87.2
0.6 32.16 58.13 47.63 82.84 51.75 85.42 56.98 86.49 63.48 86.84 65.91 87.16

Table 2: Time-accuracy trade-off for different in-link ranks and LSH similarity thresholds. Time is
measured in percentage of original system (1778.39 seconds) and accuracy is the total accuracy of the
system with that configuration

Configuration Accuracy Time (s) Average Time
(% of baseline)

Standard
Error (%)

Baseline 74.35 2293 100 0.02
i = 7 ` = 0.56 73.63 1455 63 0.01
i = 2 ` = 0.56 71.52 1179 53 –

Table 3: Results for three chosen thresholds shows that this method is robust across unseen datasets.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Run Time (proportion of baseline time)

85.0

85.5

86.0

86.5

87.0

87.5

88.0

A
cc

u
ra

cy

Baseline

`=0.54
i=11

`=0.56
i=11

`=0.56
i=7

`=0.56
i=2

Figure 6: Candidate filtering time for different
configurations. Top in-links is fast, while the com-
bined LSH configurations take more time

We choose ` = 0.56 and i = 7 to test on an un-
seen dataset, with results shown in Table 3. We
see that results are robust to an unseen dataset,
with accuracy decreasing by 0.42 while running
at 63.4% of the baseline time.

8 Conclusion

In this paper, we used pre-filtering of candidates to
achieve faster time in linking without substantial
loss of accuracy. Using a LSH similarity thresh-

old of 0.54 and keeping the top 3 in-links, we de-
creased the speed by 20% with no loss of accuracy.

We also presented a new method for calculating
LSH which runs much faster than regular LSH, re-
quires significantly less storage space than regular
LSH and also allows for an expanding vocabulary.
We show that this method correlates well with co-
sine similarity, with a hash size of 1024 bits having
a Spearman correlation score of 0.94.

The system we presented uses relatively sim-
ple heuristics to decrease the number of candi-
dates that need to be processed in the disambigua-
tion phase. This enables supervised models with
large feature sets to be feasibly trained. Our low-
memory LSH method can be applied elsewhere in
NEL, such as in the disambiguation phase. Fea-
tures that were previously too expensive in the
original vector space can be hashed and their sim-
ilarity approximated. This is particular useful for
features that have a high complexity with regard to
candidate size.

Acknowledgments

This work was supported by ARC Discovery grant
DP1097291. The authors thank the anonymous re-

39

viewers and the e-lab researchers for their helpful
feedback.

References
Amit Bagga and Breck Baldwin. 1998. Entity-

based cross-document coreferencing using the vec-
tor space model. In Proceedings of the 36th Annual
Meeting of the Association for Computational Lin-
guistics and 17th International Conference on Com-
putational Linguistics - Volume 1, ACL ’98, pages
79–85.

Andrei Broder. 1997. On the resemblance and con-
tainment of documents. In Proceedings of the Com-
pression and Complexity of Sequences 1997, pages
21–29.

Razvan Bunescu and Marius Pasca. 2006. Using en-
cyclopedic knowledge for named entity disambigua-
tion. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-06), Trento, Italy, pages 9–
16, April.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on Wikipedia data. In Proceed-
ings of EMNLP-CoNLL 2007, pages 708–716.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
1999. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International
Conference on Very Large Data Bases, VLDB ’99,
pages 518–529.

Ben Hachey, Will Radford, Joel Nothman, Matthew
Honnibal, and James R. Curran. 2013. Evaluat-
ing entity linking with Wikipedia. Artificial Intel-
ligence, 194:130–150, January.

Piotr Indyk and Rajeev Motwani. 1998. Approxi-
mate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing,
STOC ’98, pages 604–613.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages
1148–1158, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Lin Lin, Chao Chen, Mei-Ling Shyu, and Shu-Ching
Chen. 2011. Weighted subspace filtering and rank-
ing algorithms for video concept retrieval. IEEE
Multimedia, 18(3):32–43.

Yu-En Lu, Pietro Lió, and Steven Hand. 2008. On
low dimensional random projections and similarity
search. In Proceedings of the 17th ACM Conference
on Information and Knowledge Management, CIKM
’08, pages 749–758.

Rada Mihalcea and Andras Csomai. 2007. Wikify!:
Linking documents to encyclopedic knowledge. In
Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Man-
agement, CIKM ’07, pages 233–242.

Lailil Muflikhah and Baharum Baharudin. 2009. Doc-
ument clustering using concept space and cosine
similarity measurement. In Proceedings of the 2009
International Conference on Computer Technology
and Development - Volume 01, ICCTD ’09, pages
58–62.

Will Radford, Will Cannings, Andrew Naoum, Joel
Nothman, Glen Pink, Daniel Tse, and James R. Cur-
ran. 2012. (Almost) Total recall. In Proc. Text Anal-
ysis Conference (TAC2012).

Will Radford. 2014. Linking Named Entities to
Wikipedia. Ph.D. thesis, University of Sydney.

Deepak Ravichandran, Patrick Pantel, and Eduard
Hovy. 2005. Randomized algorithms and nlp: Us-
ing locality sensitive hash function for high speed
noun clustering. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics, ACL ’05, pages 622–629.

Vasudeva Varma, Praveen Bysani, and Kranthi Reddy.
2009. IIT Hyderabad at TAC 2009. In Proc. Text
Analysis Conference (TAC2009).

40

