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Abstract

Although syntactic features offer more
specific information about the context
surrounding a target word in a Word
Sense Disambiguation (WSD) task, in
general, they have not distinguished
themselves much above positional fea-
tures such as bag-of-words. In this pa-
per we offer two methods for increas-
ing the recall rate when using syntac-
tic features on the WSD task by: 1)
using an algorithm for discovering in
the corpus every possible syntactic fea-
ture involving a target word, and 2) us-
ing wildcards in place of the lemmas in
the templates of the syntactic features.
In the best experimental results on the
SENSEVAL-2 data we achieved an F-
measure of 53.1% which is well above
the mean F-measure performance of of-
ficial SENSEVAL-2 entries, of 44.2%.
These results are encouraging consider-
ing that only one kind of feature is used
and only a simple Support Vector Ma-
chine (SVM) running with the defaults
is used for the machine learning.

1 Introduction: Syntactic Features

The best features for machine learning classifi-
cation are the ones that have the most discrimi-
natory power, for the task at hand. This paper
will be discussing the use of syntactic features
(SF’s) in word sense disambiguation (WSD.) In

WSD, the task is to choose (or classify) the cor-
rect sense of the target word (the word whose
sense is to be disambiguated) given the surround-
ing text. One type of feature that is commonly
used in WSD classification systems is called bag-
of-words. Bag-of-words features are rather infor-
mation poor, only specifying the presence or ab-
sence of words in the target word’s context. SF’s,
on the other hand, are much richer in information.
Not only do syntactic features have information on
the presence of words in the context but they also
include information about the syntactic relation-
ships that hold between the target word and con-
text words in the same sentence as the target.

In order to use SF’s, a syntactic parser is needed
that produces a parse tree for every training corpus
sentence. The parse tree gives the syntactic rela-
tionships between words in each sentence. Con-
nexor parser (Järvinen and Tapanainen, 1997) was
used to annotate the data with syntactic relation-
ships in the research presented here. In this re-
search, a SF is defined as a connected group of
words from a parse tree that must include the tar-
get word. The SF includes information on each
of its words, the syntactic relationships between
them, and information on how each word relates
to the others in the tree hierarchy. The SF word
information includes the word, lemma, and part-
of-speech (POS) for each word.
The use of syntactic features in WSD might

seem to be a more effective discriminatory feature
compared to a information poor feature like bag-
of-words because of the potential for SF’s to offer
more specific information about how the sense of
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Figure 1: Conexor parser tree for “There is no
sense spending 10 to check on a 20 debtor.”

a target word relies not only on the words around
it, but also on the information about the syntactic
relationships that hold between words. Alas, the
fact that SF’s contain more detail about the set of
words in a specific SF makes it less likely for a
given SF to occurred as frequently as the corre-
sponding set of bag-of-words features, thus lead-
ing to a general problem with SF’s of having lower
recall. The issue is data sparseness not whether or
not syntactic features have potential as a powerful
NLP feature. Rather, the question is how can the
strength of syntactic features be boosted. In this
paper, we explore two ways to help syntactic fea-
tures live up to their promise by:

1. Developing an algorithm for finding syntac-
tic features in the sentence that surrounds the
target-word. More specifically, the algorithm
identifies all syntactic features that 1) involve
the target word 2) contain a number of syn-
tactic links that is less than or equal to a fixed
maximum.

2. Allowing for abstract features. Syntactic fea-
tures are made up of member elements of var-
ious types. The term “abstract” here is being

used in the sense of being opposite of con-
crete. One type of member is the lemma ele-
ment. A method has been devised to exhaus-
tively enumerate all possible features where
one or two wildcards have replaced original
lemma elements. Any feature where a lemma
has been abstracted to a wildcard is defined as
abstract.

Both of these methods are shown experimen-
tally to be effective in boosting recall. The
specifics of the methods will be discussed in sec-
tion 4 and the experimental results will be dis-
cussed in section 5.

2 The WSD Task
2.1 General Description
One of the reasons that human language is far from
trivial to process is that many words in the lex-
icon hold different meanings depending on their
context. For instance, the word “sense” has five
senses as a noun and four senses as a verb accord-
ing to WordNet 2.0. Two of the five noun senses
are exemplified in the following two sentences:

1. There is a pleasing sense of justice about the
observation. (Here “sense” means “general
conscious awareness” – WordNet 2.0 )

2. There is no conceivable sense in going to
the opposite extreme. (Here “sense” means
“sound practical judgement” – WordNet 2.0)

The sense of a particular instance of a word in
a text can only be determined by the surrounding
context.
In the SENSEVAL competitions, teams of re-

searchers build word sense classifiers. The teams
are all given the same training examples of the
same set of words. The task is to build one clas-
sifier for each word that classifies an instance of
that word in context as one of its possible senses.
The training examples consist of the target-word,
along with the surrounding context which is typ-
ically several sentences. SENSEVAL is a super-
vised learning task so all of the training examples
supplied by the SENSEVAL organisers come with
a label in the form of a sense-tag that nails down
the sense of the target-word to one of the senses
listed in WordNet.



Different research groups try to outperform the
other groups by using different and hopefully su-
perior methods. There are, at least, five basic
areas in which the groups may differ 1) training
data used 2) enrichment of the training data, if
any 3) kinds of features extracted for the machine-
learning process 4) method of selecting the best
features 5) machine-learning algorithm or combi-
nation of algorithms used.

2.2 Data Enhancements by Parsing
The SENSEVAL-2 and SEMCOR sense-tagged
corpora were used as the training data in this re-
search. This data was enriched by extracting syn-
tactic information using the Connexor parser. It
is difficult to extract reliable syntactic informa-
tion without first processing the data with a good
parser. Connexor is a dependency parser, as op-
posed to a constituency parser. Any type of syn-
tactic parser that produces a hierarchical sentence
tree could be used with the syntactic feature ex-
traction methods used in this work.

2.3 Feature Selection Method
The method used for feature selection follows (Ng
and Lee, 1996). Three steps are used on all the
features found by a given feature-extractor to fil-
ter them down to the selected, final set of features
used in the machine learner. According to this pa-
per, each feature must meet the following condi-
tions to be selected:

1. The feature must have a feature count of at
least .

2. The conditional probability for some sense
given the feature must be greater than a pre-
determined probability. .

Condition one is enhanced by allowing the min-
imum count to depend on the abstraction level of
the feature where the abstraction level is defined
as the number of wildcards in a syntactic feature.

2.4 Motivation
The SENSEVAL-2 papers indicate that no one
came up with a single “magic bullet” idea that put
them out in front of the crowd, rather the teams
that did best were better able to combine known
ideas and better able to make small adjustments in

the application of these ideas. This is one of rea-
sons this study concentrates on understanding the
problems in-depth and improving a single type of
feature rather than combining many features and
using many different machine learners.

2.5 WSD Learning Infrastructure
Our WSD system is built on an extensible frame-
work for feature extraction and feature vector con-
struction. All of the experiments reported on here
were done using this in-house system. Due to lim-
ited space, the system will not be described here
but in (Bell and Patrick 2004.)

3 Syntactic Features and WSD

3.1 Dekan Lin
(Lin, 2000) describes the only other WSD system
we are aware of that makes use of syntactic fea-
tures alone. Lin’s system discovered all syntactic
features in the corpus which inspired the current
systems principle of only using syntactic features
discoved automatically in the corpus. Lin’s syn-
tactic features are less inclusive, and less complex
then those described in this paper. See section for
further comparisons. He used a nearest neighbour
(NN) algorithm to choose the best sense of the
word. Despite having simpler features, his system
showed better performance on the same task. In
the conclusion to this paper , we will speculate as
to why.

3.2 David Yarowsky et al.
(Yarowsky et al., 2001) describes the system that
did best among all competing supervised-learning
systems at SENSEVAL-2. This system is not di-
rectly comparable because they used five types
of features and a more complex, voting scheme
machine-learner. Nevertheless, it is instructive to
contrast the Yarowsky’s system syntactic features
with those being described here. Their system
identifies a closed set of syntactic feature types
first (e.g. verb/obj) and then can only extract those
types from the corpus.

3.3 David Fernandez-Amoros
(Férnandez-Amorós, 2004) is also not directly
comparable because he uses unsupervised learn-
ing. Again though, a comparison can be made be-



tween his syntactic features and those being de-
scribed here. He first parsed all the WordNet
glosses. He looked for parts of the parse trees that
contained WSD target-words and used these sub-
trees as patterns for that target-word. He also used
wildcards in place of pronouns and content words,
like the current research. He uses transformations
on these sub-tree patterns in a further attempts to
increase recall. In spirit, his research and that de-
scribed here are similar however he was not able
to achieve the same amount of automation in both
identifying syntactic tree topologies and in gener-
ating wildcard features. Also, his base-syntactic
patterns were limited to those found in the Word-
Net glosses for a given target-word.

4 Methods

The SF’s, described here, were originally inspired
by (Lin, 2000), however, a single one of Lin’s SF’s
is not capable of capturing all the different topolo-
gies of subtrees involving the target word. Lin
chose a limited yet easy to calculate set of syntac-
tic features that involve the target word. Specifi-
cally, he extracted features that always started with
the target word and included all the dependency
links and words that would be touched on the way
to any word in the sentence. Because his features
never branch but rather are a string of words con-
nected by dependency relationships we call them
linear syntactic features (LSF’s.) In his syntac-
tic features he included the lemma and POS of the
words in the feature and the dependency relation-
ships that are on the links in-between the words.
We have followed his lead in including this infor-
mation in the syntactic features.
Figure 1 shows the Connexor dependency parse

of a random (and somewhat awkward) sentence
from the SENSEVAL-2 data.
An example of a two link feature in this sen-

tence would be one that started at the target word
“sense” and then goes to the word “spending” by
following the “mod” link and then finally on to
“check” by following the “cnt” link.
From Lin’s description of his features, even

some linear features would not be extracted. For
instance, features where the target word is in the
middle of a linear path from one word to another
in this sentence would not be extracted because his

links ATSF running LSF running
total total

1 3 3 3 3
2 6 9 3 6
3 10 19 2 8
4 15 34 1 9
5 21 55 1 10
6 27 82 0 10
7 30 112 0 10
8 26 138 0 10
9 16 154 0 10
10 6 160 0 10
11 1 161 0 10

Table 3: Comparing the number of LSF’s vs.
ATSF’s found in the sentence: “There is no sense
spending 10 to check on a 20 debtor.” (from the
SENSEVAL-2 corpus)

features must start with the target word.

4.1 All-topologies Syntactic Features
(ATSF’s)

A version of Lin’s LSF’s was first implemented.
Those types of SF’s were automatically extracted
from the enhanced corpus documents. It was obvi-
ous when looking at a dependency parse tree that
while many features were identified there were
many more potential features that the LSF feature-
extractor was not able to catch. Thus, a more all-
inclusive class of syntactic feature which we have
named all-topology syntactic features (ATSF’s),
was developed.
The major motivating factor behind seeking to

extract ATSF’s was that it seemed they would be
more abundant than LSF’s. The basic idea is
that any subtree of a sentence parse tree with up
to and including a maximum number of depen-
dency links could be potentially useful as a fea-
ture. Referring to figure 1, one example of a fea-
ture that is not a LSF would be one that involves
the words (is, no, sense, spending). The links in-
volved in that feature could not be placed in a line.
To give an idea of how many more ATSF’s there
might be compared to LSF’s, table 3 shows the
feature counts in the example parse tree. The fea-
ture count is broken down into groups of features



that have the same number of dependency links in
them. In each of our experiments, a parameter sets
the maximum number of links that a feature can
have in that experiment. The best performance to
date comes from a maximum of three links. Ta-
ble 3 shows that there are five times as many three
link ATSF’s as three link LSF’s. In fact, in this ex-
ample sentence, there are no LSF’s that have more
than five links and this sentence is typical.

4.1.1 Canonical Form and Representation
The same subtree could be represented in many

different ways so a canonical form needs to be de-
fined. ATSF’s are defined as nested elements were
each element has the basic form:

[DRWP]::lemma=POS [children]

Where DRWP stands for dependency relation-
ship with parent. Out of the words in a feature, the
word that is topmost in the parse tree being repre-
sented is placed first in the feature set. The DRWP
of that top-most word is deleted. The rest of the
dependency relationships further down the tree are
represented in the children element of the top tree
item. The children of a feature or sub-feature are
sorted in alphabetical order by first the POS, then
DRWP and finally by lemma.
For example, the feature involving the words

(is, no, sense, spending) is rendered as:

::be=v comp::sense=n det::no=det mod::spending=ing

4.1.2 Algorithm for Identifying ATSF’s
In (Férnandez-Amorós, 2004), the author called

the problem of systematically identifying all syn-
tactic features “challenging” and said that for lack
of time he was not able to come up with a solution
yet. We also found it challenging but were able to
come up with a divide-and-conquer/dynamic pro-
gramming solution which is presented in outline
form here.
The basic idea is to define a recursive func-

tion whose job it is to identify all possible parse
tree topologies that can be formed with a constant
number of links where all topologies must involve
a target tree node and may involve any or all of a
group of neighbour nodes and their children. Let
us call the function gen-all-topologies. It returns

a list of features of all topologies. Its arguments
are:

target-ID The unique identifier of the target node.
This would usually be the ID of the token
node for a word.

links The function returns only syntactic features
with this many links.

neighbour-IDS The neighbours of the target
node which can be used to form the features.
Notice, this is usually not all of the neigh-
bours of the target-ID

Inside gen-all-topologies there is a loop that
assigns a variable links-to-first-neighbour values
from zero to the value of the argument links. For
each iteration in this loop we try different splits of
the links between the first neighbour in the list and
the target node1 Here are the two sub-recursive
calls:

feature-list-1 =
gen-all-topologies(

first(neighbour-IDS),
links-to-first-neighbour,
neighbours*(first(neighbour-IDS))

feature-list-2 =
gen-all-topologies(

target-ID,
links - links-to-first-neighbour,
rest(neighbour-IDS))

first and rest get the first element and the rest of
the elements of a list, respectively. neighbours*
gets all of the neighbours of a node except for the
target node. Once these two sub-recursive calls
have returned we do a cross product of the two
lists meaning that each member of a list must be
combined with each of the features on the other
list yielding a number features equal to the product
of the sizes of the two lists of features. Determing
how to combine two features into a bigger feature
has a straightforward solution.
gen-all-topologies is called times, where the

links arguments ranges from 1 to which will ob-
tain all features for a sentence with from 1 to
links in the features.
The implementation of gen-all-topologies

makes use of dynamic programming techniques,
1Only on the top-level call is the target node actually the

target word for the WSD problem.



as some of these sub-recursive calls will be
called more than once with the same arguments.
Therefore, the returned features from each call
are saved and simply used again if a call to
gen-all-topologies with the same arguments is
repeated. In one test, 35% of the calls were able
to get the results from the dynamic programming
results table. In practice, it seems that the feature
extraction algorithm is fairly fast, even when
extracting features with as many as five links.

4.1.3 Adding Abstraction to Improve Recall

Experiments show that the WSD system us-
ing ATSF’s outperform the mean F-measure of
44.2% (see the results table 2, second to last row.)
The best recall is 50.1%. The syntactic feature-
extractor was extended to first extract the same
features as before and, in addition, derive addi-
tional abstract features where a “*” or wildcard
might take the place of a (non-targetword) lemma.
It is important to do the bookkeeping that keeps
track of how many literal features make up an ab-
stract feature so when it comes time for feature
selection we know the count and the conditional
probability with which that abstract feature sup-
ports given senses. Table 1 and its caption give
details of a real example from the training data.
The addition of wildcard features can make an

especially noticeable difference when a sense of a
word goes from having zero features when wild-
cards are not used to having one or more features
with wildcard use. Table 1 shows such an exam-
ple.

4.1.4 Minimum Abstraction Support

Table 1 shows an example of an abstract feature
that has five literal features mapped to it. However,
many abstract features are only spawned by a sin-
gle literal feature from the training data (single-
support abstract features.) At best, such abstrac-
tion features do not add new information and at
worst they may add noise. Therefore, by default,
abstract features with only one supporting literal
feature have been removed. This aspect of the sys-
tem is called over abstraction protection (OAP.)

4.1.5 Feature Selection Strategies Based on
Abstraction Level

It could be argued, that constructing abstract
features comes with the risk of overgeneralization.
One way to control this risk is by use of OAP. An-
other way to control this risk is in the feature selec-
tion process. Section 2.3 specifies that one of the
conditions that a feature must meet to be selected
is that its count must be greater than . With
the addition of abstract features, the system now
allows for different values of based on the
level of abstraction in a feature. If the feature has
wildcards then that feature must have at least a

minimum count of n to not be eliminated.

5 Experiments and Results

All results discussed below are listed in table 2.

Abstract Features: The experimental results
back the importance of abstraction. The
results table is divided into three horizontal
sections based on the number of wildcards
(0, 1, or 2) used in the experiments. The
F-measure of every 2-wildcard experiment
is greater than the the F-measure of every 1-
wildcard experiment just as the 1-wildcard’s
are greater than the 0-wildcard’s. This
seems like strong evidence that abstraction is
invaluable tool for increasing both precision
and recall.

OAP: The use of OAP is supported experimen-
tally as the system does slightly worse when
single-support abstract features are not re-
moved. Experiment number 13 has the exact
same parameters as the best performing ex-
periment 14, but in 13 OAP is off while in 14
it is on. Experiment 13 does slightly worse
than 14 probably because of the extra noise.

Basing on abstraction level:
Experiments 12 and 14 have all param-
eters exactly the same except and
they come up with different results lending
weight to the proposition that such control
could be useful. Further experiments need
to be run to determine the scope of variation
in results as a result of different settings of

n for different values of .



Best performance: Experiment 14 performed
best.

Again, Lin’s system is one of the few SENSE-
VAL systems that only uses syntactic features and
thus should be quite comparable with our system.
Lin only gave his results in the course-grained
scale. The scores in table 2 are all in terms of the
fine-grained scale. Therefore, Lin’s results are not
included in table 2. His most comparable exper-
iment achieved a coarse-grained F-score of 67%.
The best coarse-grained F-score, of the system de-
scribed here, was 61.2%.

6 Conclusion

The Yarowsky et al. WSD system achieved the
highest official score with an F-measure of 64.2%.
Their system used six types of features and a
voting-scheme machine-learner that used five base
machine-learners. Given that the system described
here is using only a single type of feature, syntac-
tic, and a single type of machine-learner, SVM,
coming within 11.1% of the top score is quite re-
spectable.
Lin’s system, that used LSF’s, performed bet-

ter then the ATSF’s despite our expectations to the
contrary. One reason that ATSF’s might not have
outperformed Lin’s features could be because Lin
is using a nearest neighbor (NN) learner and Lin
may be able to compose many simpler features to
build up a similar picture to a fewer number of the
more complex ATSF’s. If this is the case, then
ATSF’s would not seem to offer any advantages
over LSF’s. The fact that Lin’s system did signifi-
cantly better then this system might say something
about the use of nearest-neighbor , compared to
SVM’s. Lin’s system built up a case library and
thus did not forget any data quirks. This might be
important in an area like WSD , where there is not
a lot of supervised training data available, at this
point.
There are some advantages to the ATSF’s rep-

resentation of the data. If one thinks of a fea-
ture as representing properties of the data then
ATSF’s can represent such properties more com-
pactly. Several of Lin’s features might be required
to represent the same data property as one ATSF.
Especially where it is important for humans to in-

terpret the features culled from the data, the ATSF
representation might be more efficient for humans
to deal with.
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Feature Type ATSF example phrase sense of “blind”
literal ::bit=n attr::blind=a mod::of=prep blind bit of [unassignable]
literal ::fear=n attr::blind=a mod::of=prep blind fear of irrational
literal ::force=n attr::blind=a mod::of=prep blind force of irrational
literal ::hatred=n attr::blind=a mod::of=prep blind hatred of irrational
literal ::pursuit=n attr::blind=a mod::of=prep blind pursuit of irrational
abstract ::*=n attr::blind=a mod::of=prep blind * of irrational

Table 1: The first five rows above hold literal features from the training data for the word “blind.” These
5 literal features did form one abstract feature, shown in the last row. The first example was not observed
with the same sense as the other literal features. The occurrence count of the abstract feature that was
formed from the literal features is five and since four out of five of the senses of the literal feature, are
of the same sense (the sense of “blind” as being irrational), the conditional probability that this abstract
feature supports that sense is 0.80. Under the feature selection parameter settings of the experiment
that had the best performance, the minimum count for a one-wildcard feature was 4 and the conditional
probability cut-off was 66%. Therefore, the abstract feature shown above would have been selected.

Parameters Results
Experiment# links *’s n OAP Precision Recall F-measure

0 1 2
1 1 0 3 - - 75 - 0.505 0.482 0.493
2 2 0 3 - - 75 - 0.516 0.501 0.508
3 3 0 3 - - 75 - 0.515 0.500 0.507
4 4 0 3 - - 75 - 0.515 0.500 0.507
5 4 0 3 - - 80 - 0.511 0.492 0.501
6 5 0 3 - - 75 - 0.515 0.500 0.507
7 2 1 3 4 - 75 yes 0.530 0.514 0.522
8 3 1 3 4 - 75 yes 0.527 0.511 0.519
9 4 1 3 4 - 75 yes 0.528 0.512 0.520
10 5 1 3 4 - 75 yes 0.528 0.512 0.520
11 3 2 3 4 4 51 yes 0.533 0.517 0.525
12 3 2 3 3 4 66 yes 0.538 0.521 0.529
13 3 2 3 4 4 66 no 0.539 0.522 0.530
14 3 2 3 4 4 66 yes 0.539 0.523 0.531
15 3 2 3 4 4 75 yes 0.536 0.520 0.528
16 4 2 4 4 4 75 yes 0.533 0.517 0.525
17 4 2 3 4 4 75 yes 0.534 0.518 0.526
18 5 2 3 4 4 75 yes 0.534 0.518 0.526

SENSEVAL-2 competition baseline: 0.476 0.476 0.476
SENSEVAL-2 competition mean: 0.459 0.425 0.442
SENSEVAL-2 competition best: 0.642 0.642 0.642

Table 2: Experimental results
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Abstract

We present a question answering system that
combines information at the lexical, syntactic,
and semantic levels, in the process to find and
rank the candidate answer sentences. The can-
didate exact answers are extracted from the
candidate answer sentences by means of a com-
bination of information-extraction techniques
(named entity recognition) and patterns based
on logical forms. The system participated in the
question answering track of TREC 2004.

1 Introduction

Question answering is an area that is becom-
ing increasingly active in research and is cur-
rently being deployed into practical applica-
tions. Research in question answering has re-
cently been fostered by large-scale programs
like AQUAINT1 and evaluation frameworks like
TREC2, NTCIR3, and CLEF4. Such research
and the current need to cope with large vol-
umes of text has led various companies to pro-
duce practical question answering systems. For
example, research groups from Microsoft, IBM,
NTT, Oracle, and Sun have participated in the
question answering track of TREC. In addition,
there are several attempts to provide question-
answering extensions to the current Web search
engines, with demos available by MIT5, LCC6,
and BrainBoost7, among others.

AnswerFinder is an open-domain question an-
swering system that combines information at
the lexical, syntactic, and semantic levels in
various stages to find the exact answer to the
user question. This paper describes the An-
swerFinder system as it stood at the time of the

1www.ic-arda.org/InfoExploit/aquaint/index.html
2trec.nist.gov
3research.nii.ac.jp/ntcir/index-en.html
4clef.iei.pi.cnr.it
5www.ai.mit.edu/projects/infolab/
6www.languagecomputer.com/
7www.brainboost.com/

TREC 2004 question answering track. Section 2
introduces TREC and the question answering
track. Section 3 describes the architecture of
the system. Section 4 details the function of
each module within the AnswerFinder system.
Section 5 gives the system performance on the
TREC 2003 question set. Section 6 mentions re-
lated work and Section 7 lists problems with the
AnswerFinder system that should be addressed
in the near future.

2 The TREC 2004 Question
Answering Track

The Text REtrieval Conference (TREC) started
in 1992 as part of the TIPSTER text program.
A fundamental goal of the conference is to pro-
vide an evaluation framework for the compar-
ison of the results of independent information
retrieval systems. The concept of information
retrieval is to be understood in a broad sense,
and this conference has developed various tracks
that focus on specific areas of information re-
trieval, such as ad-hoc (the name given to docu-
ment retrieval), routing, speech, cross-language,
web, video, and very large corpora (Voorhees,
2003).

The question answering track started in 1999
and ever since its creation it has been the most
popular track. Every year the complexity and
difficulty of the task increases. Thus, in 1999
the competing systems were asked to retrieve
small snippets of text containing the answer.
The questions were designed by the participants
and the answer was guaranteed to be in the text
corpus. In the 2004 competition, in contrast,
the questions were extracted from logs of real
questions, the answer is not guaranteed to be
in the corpus, and the systems were asked to
find the exact answers of factoid questions and
list questions. The questions were grouped into
targets, each target containing fact-based ques-
tions and list questions (explicitly marked as
such), plus a question asking to find any other



information relevant to the target. The ques-
tions were encoded in XML as shown in Fig-
ure 1. In this example, the target is Fred Durst,
so question with ID number 2.2 in the figure
is asking What record company is Fred Durst
with?.
<target id = "2" text = "Fred Durst">

<qa>
<q id = "2.1" type="FACTOID">
What is the name of Durst’s group?
</q>

</qa>

<qa>
<q id = "2.2" type="FACTOID">
What record company is he with?
</q>

</qa>

<qa>
<q id = "2.3" type="LIST">
What are titles of the group’s releases?
</q>

</qa>

<qa>
<q id = "2.4" type="FACTOID">
Where was Durst born?
</q>

</qa>

<qa>
<q id = "2.5" type="OTHER">
Other
</q>

</qa>

</target>

Figure 1: A hand-made example of a group of
questions using the TREC 2004 format

The corpus of supporting text was the
AQUAINT corpus, which comprises over 1 mil-
lion news articles taken from the New York
Times, the Associated Press, and the Xin-
hua News Agency newswires. This corpus is
not large in comparison with the terabites of
text available via the Internet, but it is still
large enough to require the need to resort to
shallow-processing preselection methods before
performing a real attempt to find the answer.

3 System Overview

The question answering procedure used by An-
swerFinder follows a pipeline structure that is

typical of rule-based question answering sys-
tems. The process is outlined in Figure 2 and is
as follows:

1. All questions are normalised, so that What
record company is he with? in Figure 1 be-
comes What record company is Fred Durst
with?

2. The questions are classified into types
based upon their expected answer. So the
question How far is it from Mars to Earth?
would be classified as a “Number” question
as it expects a numeric value in response.

3. 100 candidate answer sentences are ex-
tracted from the corpus.

4. The 100 sentences are re-scored based upon
their word overlap, grammatical relations
overlap, and flat logical form overlap with
the question text.

5. Exact answers —fragments like 416 million
miles— are extracted from the candidate
answer sentences.

6. The exact answer list is sorted, re-scored
and filtered for duplicate exact answers.

7. A number of exact answers from the top
of the list are selected, depending on the
question type.

AnswerFinder uses the following knowledge
sources to analyse the question and to select
from among possible answers:

Named entity data generated by the GATE
system (Gaizauskas et al., 1996), marking
pieces of text in the AQUAINT corpus as
one of the types Date, Location, Money,
Organization, and Person. These data are
generated off-line before any question is
processed. GATE’s analysis was extended
with a simple set of regular expressions that
detect numbers as well.

The list of preselected documents
provided by the US National Insti-
tute of Standards and Technology (NIST),
containing for each target entity, the 1,000
top scoring documents for that entity.
NIST co-sponsors the TREC conferences
and it obtained the list of preselected
documents by running the target query
through the PRISE (Harman and Candela,
1990) document retrieval system.
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Figure 2: System overview

4 Modules

4.1 Question Normalisation
AnswerFinder relies heavily on the common in-
formation found between a question and the
candidate answer sentence. Therefore questions
like What record company is he with? need to
undertake an anaphora resolution process to de-
termine that he in fact refers to Fred Durst.

Questions in the TREC 2004 competition co-
referred with previous questions or with their
target in a number of ways.

Questions might co-refer with their target
pronominally:

Target: Fred Durst
Q: What record company is he with?

Questions might co-refer with their target us-
ing a definite noun phrase:

Target: Club Med
Q: How many Club Med vacation spots
are there worldwide?

Questions might co-refer with another ques-
tion:

Target: Fred Durst
Q2.1: What is the name of Durst’s
group?
Q2.3: What are titles of the group’s re-
leases?

Finally, questions may relate to their target
associatively, that is, there may not be a direct
co-reference:

Target: Heaven’s Gate
Q: When did the mass suicide occur?

AnswerFinder normalises questions in the
first case, where the question co-refers with the
target pronominally. It performs a simple re-
placing of pronouns in the question with the
target text, forming a regular plural and pos-
sessive where necessary, as shown in Table 1.

Finally, “other” type questions, which were
of the generic form other, were transformed into
What is TARGET? so that question 2.5 in Fig-
ure 1 is transformed into What is Fred Durst?
This was a crude attempt at doing something
useful with the “other” type questions. Clearly
a more detailed processing of these questions is
required.

4.2 Question Classification
Particular question words signal particular
named entity types required as a response. The
example below requires a person’s name in re-
sponse to the question:

Who founded the Black Panthers orga-
nization?

AnswerFinder uses a set of 29 regular expres-
sions to determine what named entity type a
question requires in its response from the list
person, date, location, money, number, city, or-
ganization, percent, country, state, river, name,
unknown. The regular expressions were devel-
oped with the question set from TREC 2002,
and they produced an accuracy of 78.6% correct
classifications. This figure is lower than the one
reported by other systems like the ones by Paşca
and Harabagiu (2001) or Zhang and Lee (2003),
each of which reported an accuracy of 90% or
over. The question classification module clearly
needs further refinement, but an evaluation with
the question set from TREC 2003 showed an ac-
curacy of 77%, thus indicating that the regular
expressions generalise well.



What record company is he with? −→ What record company is Fred Durst
with?

How many of its members committed
suicide?

−→ How many of Heaven’s Gate’s mem-
bers committed suicide?

In what countries are they found? −→ In what countries are agoutis found?

Table 1: Examples of pronoun resolution performed by AnswerFinder

4.3 Candidate Sentence Extraction
Given the set of AQUAINT documents prese-
lected by the NIST document retrieval system,
AnswerFinder selects 100 sentences from these
documents as candidate answer sentences.

Candidate sentences are selected in the fol-
lowing way:

1. The 1,000 preselected documents provided
by NIST for each target are split into sen-
tences by means of a simple sentence split-
ting process.

2. Each sentence is assigned a numeric score:
1 point for each distinct non-stopword over-
lapping with the question string, and 10
points for the presence of one or more
named entities of the right type. This way
we reward heavily the presence of a string
of the expected answer type.

3. The 100 top scoring sentences are returned
as candidate answer sentences.

As an example of the scoring mechanism, con-
sider this question/sentence pair:

Q: How far is it from Mars to
Earth?
A: According to evidence from the
SNC meteorite, which fell from Mars
to Earth in ancient times, the water
concentration in Martian mantle is es-
timated to be 40 ppm, far less than
the terrestrial equivalents.

The question and sentence have 2 shared non-
stopwords: Mars and Earth. Further, this sen-
tence has a named entity of the required type
(Number): 40 ppm, making the total score for
this sentence 12 points.

4.4 Sentence Re-Scoring
The goal of all the above modules is to reduce
the corpus of text to a list of the 100 sentences
with highest likelihood to contain an answer.

The sentence re-scoring module uses a combi-
nation of lexical, syntactic, and semantic infor-
mation to perform a more detailed analysis of
these sentences:

lexical: The combined word overlap and
named entity score.

syntactic: The grammatical relation overlap
score.

semantic: Overlaps with flat logical form pat-
terns.

We have seen the use of lexical information in
Section 4.3. Below we will see the use of gram-
matical relations and flat logical form patterns,
and the final combinations used in TREC 2004.
4.4.1 Grammatical Relation Overlap

Score
The grammatical relations were initially devised
by Carroll et al. (1998) as a means to normalise
the output of parsers for their comparative eval-
uation. The set of grammatical relations repre-
sent some of the common relations that exist
between the words in a sentence, a selection of
which is shown in Table 2. To build the gram-
matical relations of questions and answer can-
didate sentences, AnswerFinder processes the
output of the Connexor Dependency Functional
Grammar, which is a dependency-based robust
parser with a wide-coverage grammar of English
(Tapanainen and Järvinen, 1997). Below is an
example of the grammatical relations of a ques-
tion and an answer candidate sentence.

Q: How far is it from Mars to Earth?
(subj be it )
(xcomp from be mars)
(ncmod be far)
(ncmod far how)
(ncmod earth from to)
A: It is 416 million miles from Mars
to Earth.
(ncmod earth from to)
(subj be it )
(ncmod from be mars)



Relation Description
CONJ(type,head+) Conjunction
MOD(type,head,dependent) Modifier
CMOD(type,head,dependent) Clausal modifier
NCMOD(type,head,dependent) Non-clausal modifier
DETMOD(type,head,dependent) Determiner
SUBJ(head,dependent,initial gr) Subject
OBJ(head,dependent,initial gr) Object
DOBJ(head,dependent,initial gr) Direct object
XCOMP(head,dependent) Clausal complement without an overt subject

Table 2: Grammatical relations used in this paper

(xcomp be mile)
(ncmod million 416)
(ncmod mile million)

The score is the number of relations shared
between question and sentence. In the example
above, the overlap between the grammatical re-
lations of question and candidate sentence is 2,
corresponding to the two grammatical relations
marked in boldface.
4.4.2 Flat Logical Form Patterns
In previous research we have developed a flat
notation for the logical forms of sentences and
a method to produce the logical forms from ar-
bitrary sentences by traversing their syntactic
structures (Mollá, 2001; Mollá and Hutchinson,
2002). These flat logical forms have been used
to determine the likelihood that a sentence con-
tains the answer by checking the semantic sim-
ilarity of the question with the sentence. In a
similar fashion to grammatical relations, the se-
mantic similarity of two sentences is the number
of logical terms shared between them. Thus if
we have the following logical forms:

Q: What is the population of Iceland?
object(iceland, o6, [x6])
object(population, o4, [x1])
object(what, o1, [x1])
prop(of, p5, [x1, x6])
A: Iceland has a population of 270000
dep(270000, d6, [x6])
object(population,o4,[x4])
object(iceland,o1,[x1])
evt(have,e2,[x1,x4])
prop(of,p5,[x4,x6])

The semantic similarity between the two sen-
tences is 2, as the number of overlaps between

the logical form of question and answer is 2
(overlap shown in boldface). Note that the com-
putation of the overlap is complicated by the
fact that logical terms include variables and it
is necessary to keep the relation between the
variables in the overlapping terms. Thus, in the
example above, the variable x1 in the question
terms corresponds with x4 in the answer candi-
date sentence and therefore whenever x1 is used
in the question, x4 must be used in the answer.
A simple process of Prolog unification suffices
to match the variables of the question terms
with those of the sentence terms, by convert-
ing the question term variables into real Prolog
variables.

Since there are several ways to answer a ques-
tion, for TREC 2004 we have developed a set of
patterns to capture the expected logical form of
sentences that contain the answer to questions.
Below is the matching pattern associated with
the template that we labelled as “what2” and
one of its replacement patterns:

Template “what2” :
Pattern:
object(ObjX,VobjX,[VeX]),
object(what, ,[VeWHAT]),
object(ObjY,VobjY,[VeWHAT]),
prop(of, ,[VexistWHAT,VeX])
Replacement 1:
dep(ANSWER,ANSW,[VeANSW]),
prop(of, ,[VeY,VeANSW]),
object(ObjX,VobjX,[VeX]),
evt(have, ,[VeX,VeWHAT]),
object(ObjY,VobjY,[VeY])

Borrowing the notation of Prolog variables,
the above template uses forms in uppercase or
“ ” to express the slots that can unify with log-
ical form components. As the logical form of
What is the population of Iceland? matches the



pattern above (we use standard Prolog unifica-
tion to perform the matching), then its logical
form is transformed into:

Q: What is the population of Iceland?
dep(ANSWER,ANSW,[VeANSW]),
prop(of, ,[VeY,VeANSW]),
object(iceland,o6,[x6]),
evt(have, ,[x6,x1]),
object(population,o4,[VeY])

The semantic similarity between this logical
form and the one of Iceland has a population
of 270000 is now 5, since all five terms of the
modified question logical form can be found in
the logical form of the answer and all variables
unify.

In addition to returning the overlap between
a candidate sentence and a matching answer
pattern, AnswerFinder uses the instantiation of
the ANSWER variable to determine the answer:
“270000” in the case of our example.

The introduction of flat logical form patterns
parallels the use of patterns based on regular
expressions, but using the logical level of a sen-
tence instead of the surface level. This way
it is hoped that less patterns are required to
cover a broader range of sentences. In practice,
however, the difficulty to read logical forms by
humans slows down the production of patterns
and replacements. As a result, a small set of 10
patterns were developed for our experiments in
TREC 2004. As we can see in Table 3, most of
the questions from the TREC 2004 test set were
covered by only 4 template patterns and there
was an important number of questions that did
not trigger any pattern.

Template ID Num. Template ID Num.
howmany1 0 how1 1
howmany2 0 who generic 39
what2 3 what generic 116
what3 0 what noun 69
what6 1 no match 78
when1 47

Table 3: Number of questions triggering each
template; a question may trigger several tem-
plates

The patterns that were triggered most fre-
quently were generic patterns that were intro-
duced to maximise the coverage of the pattern
set. For example, the most frequent pattern,

“what generic”, is defined so as to allow any
noun to replace the word what :

Template “what generic” :
Pattern:
object(’what’, ,[XWho])
Replacement:
object( ,ANSWER,[XWho])

4.5 Exact Answer Extraction, Filtering
and Scoring

Having selected and re-ranked the 100 top-
scoring candidate sentences, AnswerFinder then
selects exact answer strings from within them.
AnswerFinder combines the use of named enti-
ties with that of logical form patterns:

1. For each candidate sentence, extract all
named entities that match the question
classification.

2. For each candidate sentence, extract AN-
SWER values from any matching flat logi-
cal form pattern.

Exact answers are scored as follows:

1. If the exact answer is a named entity, its
score is the score of the candidate sentence
it is found in.

2. If the exact answer is an ANSWER value
from a flat logical form pattern, its score
is the score of the candidate sentence it is
found in.

3. If the exact answer is both a named entity
and an ANSWER value from a flat logical
form answer pattern, its score is twice the
score of the candidate sentence it is found
in.

If the same string is extracted from two an-
swer sentences the score becomes the sum of the
scores of the duplicate answers. This way an-
swer redundancy is rewarded.

4.6 Exact Answer Selection
AnswerFinder selects the answers depending on
the type of question:

Factoid questions requiring exactly one an-
swer: return the top scoring answer; or if
there are no answers with a score more than
0, return “NIL” indicating that there were
no answers.



List questions and “other” questions
requiring a number of answers: return all
exact answers within a threshold difference
in score with the top score. If there are no
exact answers with a score of more than 0,
return the top scoring candidate sentence.

5 Performance

After testing several combinations of lexical,
syntactic, and semantic information (see the
work by Mollá (2003) for the sort of analy-
sis that we performed), AnswerFinder used two
combinations of scores for the runs submitted
to TREC 2004:

3gro+lfo 3 times the grammatical relation
overlap score added to the flat logical form
pattern overlap score. This combination
was chosen because it gave the best results
in our preliminary experiments with ques-
tion sets taken from past TREC QA con-
ferences.

lfo The flat logical form pattern overlap score.

Although not explicitly expressed in the
above combinations, lexical information is used
implicitly because the scoring is based on the
output of a preselection module that did use
solely lexical information (word overlap and
named entities), as we have seen in Section 4.3.

In a preliminary analysis of the system we
used the answer patterns provided by Ken
Litkowsky via NIST. These answer patterns
cover all the answers found by the systems par-
ticipating in TREC 2003. We tested our system
with the TREC 2003 questions and checked the
output of the sentence re-scoring module and
the final output of the system. We found that
the re-scoring module gave the highest score to
a sentence containing the answer about 20% of
times. In contrast, the final system returned a
correct and exact answer about 5% of times.

The results of our participation in TREC
2004 are significantly better. In all runs, the
accuracy of the factoid questions is 10%, the
F-score of the list questions is 0.08, and the F-
score of the “other” questions is 0.09. Since the
system was not fine-tuned for the list or “other”
questions only the results of the factoid ques-
tions need to be considered. We believe that
the reason for the better results of the factoid
question with respect to our preliminary anal-
ysis is that Litkowsky’s patterns that we used
did not cover all cases of good answers. In fact,

we tried the patterns on the answers submitted
to TREC 2004 and we obtained an accuracy of
8.59%, which is between the accuracy given by
our preliminary experiments and the one given
by the TREC human assessors. Comparatively
with the other systems participating in TREC
2004, the results are below the median of the
results returned by all the systems (which was
17%). Also, surprisingly, all of our runs had vir-
tually the same results. These unusual results
led us to suspect that a chain of bugs may have
made the system ignore the information pro-
vided by the logical form patterns. Currently
we are analysing the results.

6 Related Work

AnswerFinder as it stood in TREC 2004 differs
from previous versions in several aspects. First
of all, now AnswerFinder uses the Named En-
tity data that has been pre-calculated on the
entire AQUAINT corpus. This way the system
does not need to spend precious time during the
on-line stage when the user is waiting for the an-
swer of the question. Also, in contrast with An-
swerFinder’s participation in TREC 2003 where
it focused on the extraction of passages contain-
ing the answer, now AnswerFinder extracts ex-
act answers and attempts to answer list and def-
inition questions. In the process, AnswerFinder
uses a set of templates based on patterns of log-
ical forms.

The overall architecture of AnswerFinder is
similar to that of other question answering sys-
tems. The aim is to gradually reduce the
amount of text to process through several levels
of increasing complexity. We use an informa-
tion retrieval system to preselect the documents
and information from named entities and the
expected answer type obtained from the ques-
tion to reward the sentences that may contain
the answer. One difference that sets our sys-
tem apart from the majority is the use of log-
ical forms in the process to further scope the
sentences that are most likely to contain the an-
swer. Other question answering systems use log-
ical forms (Harabagiu et al., 2001, for example)
that were developed independently from our re-
search.

But the main difference with respect to other
systems is the use of patterns derived from log-
ical forms to determine the exact answer. A
baseline method that would return the text
tagged by the named entity recogniser has been
used by various systems. Adding further com-



plexity, systems like the one developed by Echi-
habi et al. (2004) use patterns based on named
entities and parts of speech. However, we are
not aware of any other system besides An-
swerFinder that tries to use logical form pat-
terns.

7 Conclusions and Further Work

AnswerFinder is a question answering system
that uses a combination of lexical, syntactic,
and semantic information to find the answer to
the user question. An early version of this sys-
tem participated in the passages section of the
2003 TREC question answering track. After the
equivalent of only 55 person-hours work, the
system ranked above the median of the seven
participating systems. For TREC 2004 we have
included a named entity recogniser and a pro-
cess to find exact answers that uses a combi-
nation of patterns based on logical forms and
named entities.

Current and future work focuses on the re-
fining of the candidate sentence scoring, exact
answer scoring, and pattern development. We
also plan to work on a more detailed processing
of list and definition questions.

For the refining of the sentence scoring, we
are exploring the use of weighted measures for
different types of terms in the flat logical forms.
We are also exploring the integration of graph-
based methods such as the ones developed by
(Montes-y-Gómez et al., 2001).

For the exact answer scoring, we are de-
veloping further logical form patterns to in-
crease their coverage. We will also explore fuzzy
matching methods so that every question will
match at least one pattern.

To facilitate the discovery and development
of logical form patterns, we are studying meth-
ods to increase the readability of the flat logical
forms by converting them into graph structures.
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Abstract

This paper presents an approach for question
analysis that defines the question subject and
its required answer type by building a trie-
based structure from a set of question patterns.
The question analysis consists of comparing the
question tokens with the path of nodes in the
trie. A look-ahead process solve the mismatches
of unknown words by assigning a entity-type or
semantically linking them with other question
words. The developed approach is evaluated
using different datasets showing that its perfor-
mance is comparable with state-of-the-art sys-
tems.

1 Introduction

When a question is presented to a person, or
even to an automatic system, the first task, in
order to provide an answer, is to understand the
question. The question analysis process may
not be very clear for people when answering
questions, however for an automatic question
answering (QA) system it plays a crucial role.

Acquiring the information embedded in a
question is the primary task that allows the
system to execute the right commands in order
to provide the correct answer to it. According
to Moldovan et al. (2003), when the question
analysis fails, it is hard or almost impossible for
a QA system to perform its task. The impor-
tance of the question analysis is very clear in
the system of Moldovan et al. (2003) since this
task is performed by 5 of the 10 modules that
compose their system.

The most common approach for analysing
questions is to divide the task into two parts:
Finding the question expected answer type, and
finding the question focus.

Many systems (Mollá-Aliod, 2003; Chen et
al., 2001; Hovy et al., 2000) use a set of hand-
crafted rules for finding the expected answer
type (EAT). Normally the rules are written as

regular expressions (RE), while the task of find-
ing the EAT consists of matching questions and
REs. Every RE will have an associated EAT
that will be assigned to a question if it matches
its pattern.

For the task of finding the question focus, the
simplest approach is to discard every stopword
on the question and to consider the remaining
terms as the focus representation.

In the approach described in this paper, the
EAT and the question focus are defined using a
trie-based structure built from a manually anno-
tated corpus of questions. The structure stores
the answer type in every trie node and uses the
question words or entity types to link the nodes.

The question analysis method was evaluated
over an annotated set of question of an acad-
emic domain, over the annotated TREC-2003
questions and over the 6,000 questions of the
training/testing set of question of Li and Roth
(2002) showing promising results.

This paper addresses a technique used to
analyse natural language (NL) questions and its
evaluation. Section 2 describes the technique,
while Section 3 presents its evaluation. In Sec-
tion 4 some related work is described. Finally,
in Section 5 we present the concluding remarks
and some further work.

2 Question Analysis

The developed technique for finding the EAT
and the focus of the questions is based on a
training set of questions. The questions in the
training corpus are marked with their EAT and
with their entities and entity types.

A training question is delimited by the tag Q.
The Q tag must contain the attribute AT telling
the EAT of a question. The question may con-
tain entities, and these entities can be marked
to help the learning process. For the purposes
of presentation, the entity annotation is done in
a way similar to the named entity task of past
Message Understanding conferences (Grishman



and Sundheim, 1996) by using the ENAMEX tag
and its type attribute.

(1) <Q AT=’NAME’> Who is the
<ENAMEX type="POS">dean</ENAMEX> of
<ENAMEX type="ORG">Macquarie
University</ENAMEX>?</Q>

Observe that Example 1 informs that ‘dean’
is a POS (Position) and ‘Macquarie University’
is an ORG (Organization).

Every question in the training file provides
one question pattern. For instance, Example 1
informs that a question matching the RE in Ex-
ample 2 asks for a name.

(2) Who is the (.+) of (.+)?

Notice that the RE of Example 2 has two
groups of variable terms. If a question matches
the RE, it is possible to assume that the words
inside the groups match the same entity cate-
gory as the one defined in the question RE. Ac-
cording to Example 1, the Example 2 categories
are POS and ORG.

In our technique we use the words matching
the non-fixed part of the RE as the question
focus, while we define the EAT using the answer
type of the RE.

2.1 Trie-based Structure
A trie T (S), according to Clément et al. (1998),
is a data structure defined by a recursive
rule T (S) = 〈T (S/a1), T (S/a2), . . . , T (S/ar)〉,
where S is an set of strings of the alphabet
A = {aj}r

j=1, and S/an is all string of S that
starts with an stripped their initial letter.

In our question analysis we used a trie-based
structure where our ‘strings’ are the question
patterns and our ‘alphabet’ is the set of question
words and entity types.

A question pattern is a representation of the
RE where the beginning and the end of ques-
tion is marked and its non-fixed parts are rep-
resented by the entity type. For instance Ex-
ample 1, would be transformed to:

(3) ˆWho is the !POS of !ORG $

The construction of our question trie is simi-
lar to the construction of a dictionary trie. How-
ever the information stored, the tokens used,
and the structure utilisation are different.

In the trie construction phase, every time a
node is visited or created, the information re-
garding the frequency of its EAT is recorded.
Since a node in the trie can be reached from
different patterns, it is likely that we have a set

Nodes Information (EAT,Frequency)
1 (LOC,1),(NAME,1),(DESC,2),(NUMBER,2)
2-5 (LOC,1)
6-7 (NAME,1),(DESC,2)
8-12 (NAME,1)
13 (DESC,2)
14-17 (DESC,1)
18 (NUMBER,2)
19-26 (NUMBER,1)

Figure 1: Trie for the question patterns of Ta-
ble 1

of frequencies and categories recorded on every
node.

Figure 1 shows how the information is struc-
tured and recorded in our question trie in case
of training the patterns of Table 1. It can be
observed that every node in the trie records one
or more EAT.

Table 1: Training question/patterns of Figure 1

Question Pattern EAT
Where is Chile? ˆWhere is !LOC$ LOC
Who is the dean of ICS? ˆWho is the !POS of !ORG$ NAME
Who is J. Smith? ˆWho is !NAME$ DESC
Who is J. Smith of ICS? ˆWho is !NAME of !ORG$ DESC
How far is Athens? ˆHow far is !LOC$ NO
How tall is Sting? ˆHow tall is !NAME$ NO

2.2 Trie-based Analysis
There are many differences as well as similarities
between the utilisation of our trie structure for
question analysis and the extraction of indexes
from word tries. The first step in the question
analysis is to transform the question into the
pattern-like format of Example 3. The pattern-
like format requires the beginning-of-question
and end-of-question marks and if known (by the
use of a Gazetteer file) the substitution of some
of the question phrases by their entity type.

Using the question’ patterns we try to match
the first token of the question with the nodes
of the trie. If a match is found, then the next
token is searched on the nodes linked with the
first one. This process continues until there is
no more tokens to be examined or the current



Figure 2: Look-ahead process in the analysis of
questions

token can not be matched against the following
trie nodes.

This process returns the EAT with the high-
est frequency of the last visited node. This in-
formation will be used as the EAT of the ques-
tion that was been analysed.

If the current token does not match any fol-
lowing nodes, then a look ahead becomes nec-
essary. In this case the next token is examined
over the next nodes of the following nodes. Fig-
ure 2 exemplifies the look-ahead process on the
analysis of the questions ‘Who is John Smith?’
and ‘Who is John Smith of Macquarie Univer-
sity?’ over the trie of Figure 1

The analysis of question ‘Who is John
Smith?’ is done by matching the beginning-
of-sentence token and the words ‘who’ and ‘is’.
Notice that the words ‘John’ and ‘Smith’ and
the phrase ‘John Smith’ were not replaced by
their entity type since their condition as names
is unknown by the Gazetteer. The word ‘John’
is not found in the nodes following ‘is’ (node
13), so the next question word (‘Smith’) is then
searched in those nodes (14 and 15) which are
2 nodes away from the last matched one (node
7). The process continues to search for words in
the question in a 2 nodes distance from the last
word/node found.

If a match is found, all the words that were
not found in previous interaction, are assumed
to be of the same type as the node in between
the matches. If more than one match is found,
the path with the highest frequency will prevail.
In this process, the node between the matching
words/nodes will define the entity-type of the
non-matching phrase on the question pattern.

In the examples of Figure 2, both questions
complete the analysis and are assigned a de-
scription (DESC) as their EAT. If the process
consumes all the tokens of the question and still
does not find a match in the nodes, then the last

Figure 3: Trie-based structure built without en-
tity information

visited node will define the question EAT.
The focus is defined by the entity part of the

pattern-like representation of a question. The
replacement of some of the question phrases by
their entity types can be done before (using the
Gazetteer file) or during the utilisation of the
trie in the look-ahead process. In both occa-
sions the phrases and their entity types define
the question focus. For the questions of Figure 2
the focus would be the ‘NAME’ ‘John Smith’
and the ‘ORG’ ‘Macquarie University’.

Our method also considers incomplete
matches of question in the trie. If such cases
occur, the EAT with the highest frequency
of the last visited node will be assigned to
the question. For instance, the most frequent
EAT of node 6 will be assigned to the question
‘Who?’ since it is too short to completely
traverse the trie. In a similar situation, the
question ‘Who killed JFK?’ cannot be fully
matched in the trie and the information of node
6 will define its EAT. Observe that in both
cases the last analysed node defines the EAT.

As previous stated, our method requires a
training corpus of questions annotated with
their EAT and, if possible, with their entities
and entity types. The method for finding the
EAT does not require the markup of entities.
In this case the trie is built only with the infor-
mation from the words of the questions. Fig-
ure 3 shows the question trie constructed from
the questions of Table 1 discarding the entity
information.

When the entities and entity types are not
marked, the analysis of question will still per-
form the same look-ahead process as demon-
strated before. However, in this case, the look-
ahead process does not define an entity category
but describes an unknown relation between a
word in the training questions and another word



or phrase in the question that is been analysed.
To illustrate this situation, consider the ques-

tion ‘Who is the administrative assistant of
Macquarie University?’. Since neither ‘admin-
istrative’ nor ‘assistant’ can be found in the tier
of Figure 3, the look-ahead process matches the
word ‘of’ with node 10, assuming that there
is a relation between ‘administrative assistant’
with ‘dean’. The same situation will occur with
‘Macquarie University’ and ‘ICS’.

In the current development of our technique,
the information about the semantic relations of
these words are simply discarded. Further stud-
ies are needed to understand where this seman-
tic relations can be used in our QA method.

When the recognition of the entities and their
entity types is not possible, the focus is defined
by the remaining words in a stopword removing
procedure. In some cases this approach finds
the same focus words as our entity recognition,
however it lacks the information of their entity
type.

3 Evaluation of the Question
Analyser

Our question analysis technique was intrinsi-
cally evaluated using a semi-automatically con-
structed training set of questions. We did not
perform any extrinsic evaluation in the sense of
Jones and Galliers (1996). That is to say, we
did not perform any evaluation of the question
analyser over the results in an embedded appli-
cation such as the question answering task.

The training set contains 1385 randomly se-
lected questions from a set of approximately
40,000 NL questions. The questions were ex-
tracted from the JustAsk search engine logs be-
tween February 2000 and April 2004. JustAsk
is an information retrieval interface to the Mac-
quarie University web site that encourages its
users to present queries as full NL questions.

The questions posed in JustAsk are clearly
domain dependent, since the search engine is
limited to the university domain. Further stud-
ies are needed to evaluate how feasible this
training set is in questions of different domains.

For the evaluation, we wanted to determine
the impact of the size of the training set. For
this, we randomly created a training set of x
questions and we used the remaining questions
for evaluation. To iron out potential idiosyn-
crasies of the training test we repeated the eval-
uation n times (normally n = 200 but for practi-
cal reasons sometimes we used different values)
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Figure 4: Average results for the EAT

and computed the average of the results, which
are shown in Figures 4 and 5

Figure 4 shows a graphical representation of
the evaluation of the question analysis over a set
of 1385 annotated JustAsk NL questions. It also
shows that the EAT precision improves accord-
ing to the size of the training set. As the size of
the training and the verification sets are directly
related, it is possible to observe higher standard
deviation in the results when few questions are
used either for training or for verifying.

We observed that in Figure 4 the precision
seems to have a limit in between 70 and 75
percent. In order to measure the hypothetic
limit of these measures, we executed a test us-
ing the same set of questions for training and
for validating the technique. The test showed
that the maximum performance when the sys-
tem was trained and validated with the full set
of questions was around 85%.

The test also showed that the maximum per-
formance for finding the EAT degrades when
more training questions are provided. This hap-
pens because when new questions patterns are
introduced, some of them may be similar and
present ambiguous information to the overall
system. In many cases questions with simi-
lar structures require different types of answers.
Observe Examples 4 and 5:

(4) <Q AT=’NAME’> Who is the
<ENAMEX type=’POS’>chair</ENAMEX>
of
<ENAMEX type=’EVENT’>ALTW</ENAMEX>
</Q>
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Figure 5: Average results for the question focus

(5) <Q AT=’ORG’> Who is the
<ENAMEX type=’POS’>sponsor</ENAMEX>
of
<ENAMEX type=’EVENT’>ACL</ENAMEX>
</Q>

Both examples follow the same pattern (^Who
is the !POS of !EVENT$), however Example 4
asks for a name of a person while Example 5
requires a name of an organization.

Figure 5 shows the evaluation of the question
focus using precision and recall measures. Re-
call represents the percentage of entities in the
verification set that were identified as focus by
the question analysis, while the precision mea-
sure represents the percentage of entities found
that actually existed in the original question.

The evaluation of Figure 5 shows that the per-
formance of the focus identification improves for
every new data inserted in the training set. The
average of the recall measure increases from less
than 20% to more than 50% with less than 600
questions. The results also show that after a few
training questions the precision of the discov-
ered entities is kept around 60 and 70 percent
for all the training section.

The precision score in Figure 5 gives the im-
pression to have a 65% limit while recall appears
to have a limit in the region of 55% and 60%.
An estimation of the maximum performance for
the entities recognition revealed that the preci-
sion value could be as high as 80%, while recall
value reaches 85% when all questions used for
training are used for validating the technique.

The technique used to assign EATs to ques-
tions does not require the markup of entities in
the training questions. And because of that,
we were able to evaluate the technique on the
set of TREC 2003 questions that were manually
marked with their EAT information.

The results of this evaluation demonstrated
that the precision increases as the size of the
training set increases, reaching the mark of 70%
with less than 150 training questions and ap-
proaching 80% on 400 questions.

To understand if the higher precision of the
system in TREC 2003 question was achieved
due to the lack of entity information, we tested
the EAT precision of the system using the Just-
Ask training questions with and without the an-
notation of entities. The idea was to compre-
hend if the presence of the entities improve or
worsen the quality of the EAT analysis. We ob-
served that there were no significant differences
between the results, therefore the inclusion or
not of entities marks in the training set have to
be defined exclusively by the goal of the analy-
sis.

It is clear that the inclusion of entities
markup will provide important information
about the semantic role of the words in the
query focus. However, the cost of marking enti-
ties in the question set may not be viable when
the question analysis is only used for finding the
EAT.

4 Related Work

The importance of a good question analysis for
QA is clear. The correct EAT identification
helps QA process to pinpoint answers by allow-
ing it to focus on a certain answer category. The
right question focus provides QA systems with
knowledge that helps systems to choose the best
sentences to support answers. In this section we
discuss some of the techniques used for the task
of question analysis.

According to Chen et al. (2001) the EAT
recognition falls into two broad groups, those
based on lexical categories and those based on
answer patterns. The EAT analysis based on
lexical categories can be identified by the lexical
information present in the questions, while the
analysis based on answer patterns are predicted
by the recognition of certain question types.

It seems that the most popular approaches
for the EAT identification are based on answer
patterns. Most works in this group performs
the analysis of questions using handcrafted rules
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(Mollá-Aliod, 2003; Chen et al., 2001; Hovy et
al., 2000).

Hovy et al. (2000) built a QA typology in
order to create specific to general EAT. Ques-
tion patterns were assigned for every answer
type, and for those some examples of questions
were provided. In a further work Hermjakob
(2001) described their intentions of migrating
from manual defined rules to automatic ones.

Our system, as described in this paper, uses
a rule based approach to automatically build
a trie-based question structure. This type of
approach has the advantage of being capable of
changing domains or even languages by using a
different set of training questions.

In order to understand how well our technique
performs in comparison to others, we tested our
system using the same training/test set of ques-
tions used by the LAMP QA system (Zhang and
Lee, 2003b).

The LAMP QA system uses a Support Vec-
tor Machine (SVM) to classify questions into
answer categories. In further work Zhang and
Lee (2003a) evaluated their technique using the
testing dataset of Li and Roth (2002). Figure 6
compares the results of our trie-based approach
with the one using SVM.

The comparison with Zhang and Lee (2003a)
technique was made using the same testing
dataset and considering the results of Zhang and
Lee using bag-of-words features. This compar-
ison shows that SVM provide better results for
fine grained answer categories, while for coarse
grained answer categories both techniques pro-
vide similar results when using the training sets
of 1000 questions and 5500 questions.

The comparison shows that our technique

provides reasonable result without the need of
linguistic resources. And once again we no-
tice that the accuracy of our technique improves
when more training data is provided.

With a different approach some systems iden-
tify their EAT by using some lexical informa-
tion of the questions. For instance, the work
of Paşca and Harabagiu (2001) uses WordNet
(Fellbaum, 1998) to assign a category for its
answers. Their system matches questions’ key-
words with WordNet synsets, and by finding
dependencies between synsets, derives an EAT
from it.

Paşca and Harabagiu (2001) affirm that their
approach for identifying the EAT was success-
ful in 90% of the TREC-9 questions. Their ap-
proach for the EAT recognition used the Prince-
ton WordNet along with an answer type taxon-
omy and a name entity recogniser. Their exper-
iments showed that the use of a large semantic
database can help to achieve high quality preci-
sion over ambiguous questions stems for finding
the questions’ EAT.

WordNet has been successfully used in almost
every kind of natural language application; un-
doubtedly it can provide important information
to question analysers. For instance, in the QA
system of Na et al. (2002) WordNet supports
some manually defined questions patterns in the
classification of answer categories.

The evaluation of our question analyser shows
that we can achieve good results regarding
solely in pattern information. We believe that
the performance of our system can be boosted
by using a hybrid approach, where question pat-
terns are combined with lexical and semantic
information.

5 Concluding Remarks

This paper presented a method for question
analysis that uses a trie-based structure in or-
der to obtain the focus and the expected answer
category of a question. The trie-based question
analyser was evaluated by using different sets
of annotated questions, demonstrating that the
developed technique can be used as an alter-
native to handcrafted RE, since it is a simple
method which provides reasonable quality re-
sults.

We observed that by increasing the size of the
training set our method gets better results. In
spite of the fact that the method shows an upper
limit in performance, for either recognition of
the EAT and the question focus, the results are



not far from the hypothetic maximum value.
It is observed that the hypothetic maximum

performance decreases when the training set in-
creases in size. This, as already stated, is due
to implicit characteristics of question patterns;
however this decrease in quality may be accen-
tuated when poor or no guidelines are presented
on the stage of building the training corpus.

Sometimes the job of defining the questions’
EAT and their entities is hard even for human
annotators. Some questions may have different
interpretation on different occasions making the
question analysis a challenging task. It is essen-
tial that the same decisions are made by the
human annotator when dealing with ambiguous
questions. Since this problem was only identi-
fied during the annotation of JustAsk training
questions, our training set may contain some
noisy markups. Some further work is needed to
determine how this noise degrades the results of
the question analysis.

Manual question markup requires not only
well defined guidelines but also a great amount
of time. The complexity of manually building a
training corpus increases when the annotation
of named-entities is required. In future work
we intend to use the training questions without
the markup of the named-entities. We are plan-
ning on using the parts of speech (POS) of the
questions words and some semantic information
from WordNet to assign the question focus and
to find out its semantic role.

The extraction of the question focus has not
been totally explored yet. For the question
analysis on the Macquarie domain, the results
for extracting the focus are promising. How-
ever, we believe that the combination of POS
and semantic information may increase the pre-
cision and recall for either focus and the EAT.

To further ensure the effectiveness of the
question analyser, we still need to perform an
extrinsic analysis in a working question answer-
ing environment. Still, the results shown in
this paper provide enough evidence that the our
question analysis is feasible to be applied in a
QA system.
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Abstract 
This paper presents an approach on a query-
biased document summarisation and an 
evaluation of the use of such an approach for 
question answering tasks.  We observed a 
significant difference in the user’s 
performance by presenting a list of documents 
customized to the task type, compared with a 
generic document summarization approach.  
This indicates that paying attention to the task 
and the searcher interaction may provide 
substantial improvement in task performance. 

1 Introduction 
People are searching information to meet their 

information needs from their tasks at hand. 
However, most search engines interact with user in 
a “one size fits all” fashion and ignore the user’s 
preferences, search context or the task context. The 
burden is then placed on the user to scan, navigate, 
and read the retrieved documents to identify what 
s/he wants. We believe that paying attention to the 
nature of the information task and the needs of the 
searcher may provide benefits beyond those 
available through more accurate matching.  As 
Saracevic [9] pointed out, the key to the future of 
information systems and searching processes lies 
not only in increased sophistication of technology, 
but also in increased understanding of human 
involvement with information. 

In the study presented in this paper, we examine 
searchers’ ability to carry out a question answering 
task [13]. Unlike the task of the non-interactive 
TREC question answer track [10], where the 
question answering focuses on fact-based, short 
answer questions such as “Who is the first prime 
minister of Australia”. We looked at the type of 
question answering task that is more complex than 
the task of finding a single fact. The answer to this 
type of questions would not generally be available 
in a single document, but would require facts to be 

extracted from several documents.  For example, 
an Australian cattle farmer would like an 
information access system that could tell s/he 
“which countries are the top ten importers of 
Australian beef?”. An ideal answer should consist 
of a list of country names together with 
corresponding beef import data. This answer could 
be synthesized from scattered information 
collected from various sources, such as a news 
article about Japanese meat imports and an 
analysis report on Australian beef in the European 
market.   

The successful completion of such a task 
requires an answer to be obtained, citing the 
relevant source documents.  If we assume that we 
do not have an advanced language engine that can 
understand such questions and then synthesize 
answers to them, a searcher will be involved in the 
process, beyond simply initiating a query and 
reading a list of answers.  Some of the elements 
that might lead to successful answering might 
include: 
• support for query formulation (and re-

formulation) 
• effective matching and ordering of candidate 

documents 
• delivery of a useful form of the list of the 

candidate documents 
• support for extraction of answers from 

documents 
• synthesis of the answer 
 

There has been quite a bit of study on how to 
support query formulation, and the bulk of IR 
research has been devoted to better matching.  
Research into question answering technology (for 
automatic approaches) or text editing (for manual 
approaches) is needed for the last two activities.  In 
this work, we have concentrated on the task of 
delivering a useful form of the list of the candidate 
documents. The research question we investigated 
is: given a same list of retrieved documents, will 



the variation in document summary/surrogate 
improve searcher’s performance on question 
answering task? 

Under the evaluation framework of the TREC 
(Text REtreieval Conference) interactive track [7], 
we conducted two experiments that compared two 
types of candidate lists in two experimental 
systems.  One system (the control system) uses the 
document title and the first N words of a document 
as the document’s summary, while the other 
system (the testing system) uses the document title 
and the best three “answer chunks” extracted from 
the documents as the document’s summary.  The 
second confirming experiment repeated the first 
experiment, but with different search engine, test 
collection and subjects.  The purpose of the second 
experiment is to confirm the strong results from the 
first experiment and to test whether the 
methodology could be generalized to web data. 

The rest of the paper is organized as follows: 
Section 2 discusses our motivation and approach. 
Section 3 describes the experimental setup, 
including experiment design and test collections.  
Section 4 presents the experiments’ results and 
provides detailed analysis.  Section 5 provides the 
conclusions we have drawn. 

2 Motivation and approach  
In our previous studies [12], we investigated the 

use of clustering and classification methods to 
organize the retrieved documents, we found that 
while subjects could use the structured delivery 
format to locate groups of relevant documents, the 
subjects often either failed to identify a relevant 
document from the document summary or were 
unable to locate the answer component present 
within a relevant document. 

We hypothesize that one of the reasons for 
potential gains from structured delivery not being 
realized is that in our previous test systems the 
tools that were provided to differentiate the answer 
containing documents from non-answer containing 
documents were inadequate for the task of question 
answering.  

In our previous testing systems, a retrieved 
document is represented by its title.  While a 
document’s title may tell what the document is 
about, very often an answer component exists 
within a small chunk of the document, and this 
small chunk may not be related to the main theme 
of the document.  For example, for the question 
“Which was the last dynasty of China: Qing or 
Ming?”, the titles of the first two documents 
presented to a searcher are: “Claim Record Sale 
For Porcelain Ming Vase” and “Chinese Dish for 
Calligraphy Brushes Brings Record Price”.  The 
themes of the two documents are Ming vases and 

Chinese dishes respectively, but there are 
sentences in each document that mention the time 
span of the Ming Dynasty and of the Qing 
Dynasty.  By reading only the titles, searchers miss 
a chance to easily and quickly determine the 
answer, even the answer components are in the top 
ranked documents. 

In this work, we still use document retrieval, but 
focus on the surrogate or summary of the retrieved 
documents.  Some experiments have evaluated the 
suitability of taking extracted paragraphs or 
sentences as a document summary [2], [6], [8].  
The produced summary by these methods is purely 
based on individual document and basically a 
condensed version of a document - it requires the 
user less reading time to get to know the gist of the 
document. There are little studies that have shown 
whether the use of these summaries is suitable for 
the interactive question answering task. 

In our approach, a document is summarized and 
represented by its title and the three best answer-
indicative sentences (AIS).  The three best AIS are 
dynamically generated after each query search, 
based on the following criteria: 
• An AIS should contain at least one query 

word. 
• The AIS are first ranked according to the 

number of unique query words contained in 
each AIS.  If two AIS have the same number 
of unique query words, they will be ranked 
according to their order of appearance in the 
document. 

• Only the top three AIS are selected. 
Our hypothesis is that the title and answer-

indicative sentences should provide a better 
indication of whether a document might help 
answer a given question.  This is because 
documents can easily be completely off the topic 
of interest to the searcher, but still be relevant 
because they contain a part of the answer to the 
question.  Therefore, our experiment focused on 
the comparison and evaluation of two systems 
using different summaries.  The control system 
First20 uses the title and the first twenty words as 
the document summary, and the test system AIS3 
uses the title and best three answer-indicative 
sentences as the document summary. Performance 
will be evaluated in terms of searchers’ abilities to 
locate answer components, searchers’ subjective 
perceptions of the systems, and the efforts required 
by searchers to determine answers. 

3 Experimental setup 
Experimental design  

The experimental design concerns three major 
factors: system, question, and searcher, with focus 



on the comparison of two experimental systems. 
Thus, we adopted a factorial, Latin-square 
experiment design.  In this design, each searcher 
uses each system to search a block of questions; 
questions are rotated completely within two 
blocks. For an experiment involving two systems 
and eight questions, a block of sixteen searchers is 
needed.  

 
System description 

In each experiment, the two experimental 
systems use the same underlying search engine.  
The Experiment I used the MG [11] search engine, 
while the Experiment II used the Padre search 
engine [4].  In each experiment, the two 
experimental systems provide natural language 
querying only.  For each query, both systems 
present a searcher with the summary of the top 100 
retrieved documents in five consecutive pages, 
with each page containing 20 documents.  Each 
system has a main window for showing these 
summary pages.  A document reading window will 
pop up when a document title is clicked.  If a 
searcher finds an answer component from the 
document reading window, s/he can click the 
“Save Answer” button in this window and a save 
window will pop up for the searcher to record the 
newly found answer component and modify 
previously saved answer components. 

The difference between the two systems is the 
form and content of the result presented in the 
main windows.  The main window of the control 
system (First20) is shown in Figure 1. The main 
windows of the test systems (AIS3) are shown in 
Figure 2 and Figure 3.   

The AIS3 windows in each experiment are 
slightly different. In Experiment I (Figure 2), each 
answer-indicative sentence is linked to the content 
of the document and the sentence in the document 
is highlighted and brought to the top of the 
window. In Experiment II (Figure 3), we remove 
these links to make the interface closer to the 
interface of First20 and the three AIS truly the 
summary.  There is a save icon beside each AIS (in 
Figure 2) or each document title (in Figure3) in 
AIS3, this icon has the same function as the Save 
Answer button in the document reading window. If 
a searcher finds a fact from the following three 
answer-indicative sentences, s/he can save the fact 
directly from this (summary) page by clicking the 
icon.  

 
Document collection 

The document collection used by Experiment I 
contains all newswire articles.  Experiment II used 
a partial collection from the main web track 
(W10G) [1].  This collection is a snapshot of the 

WWW; all documents in the collection are web 
pages.  To concentrate on document summaries 
instead of browsing, we removed all links and 
images inside a web page - for the purpose of this 
experiment; each web page was treated as a stand-
alone document. 

  
 
 

 
Figure 1. The interface of the First20 

 
 
 

 
Figure 2. The interface of the AIS3 system in 
Experiment I 
 



 
Figure 3.  The interface of the AIS3 system in 
Experiment II 
 
Questions 

There are two types of questions in the 
experiments.  The Type 1 questions are of the form 
<<find any n Xs>>; for example, “Name four films 
in which Orson Welles appeared.”.  The Type 2 
questions are of the form <<compare two specific 
Xs>>; for example, “Which was the last dynasty of 
China: Qing or Ming?”.  For the Type 1 questions 
(question 1–4), a complete answer consists of n 
answer components, plus a list of supporting 
documents.  For the Type 2 questions (question 5–
8), two facts are usually needed to make the 
comparison, plus supporting documents. 

Experiment I used a set of eight questions 
developed by TREC9i participants.  To prepare a 
set of questions for Experiment II, we started with 
the eight questions from TREC9i.  We then 
removed those questions that could not be fully 
answered from the document collection used in 
Experiment II.  Additional questions were added 
either by modifying questions from the main web 
track, or were developed by an independent 
volunteer.   

 
Evaluation 

A searcher’s performance is evaluated in terms 
of the success rate.  For each search question, the 
saved answers and their supporting documents 
were collected for judging.  There are two levels of 
judgement: one is whether the searcher finds the 
required number of answer components (for 
questions of Type 1) or whether the found facts are 
enough to infer the answer (for questions of Type 
2); another is whether the submitted facts (or 

answers) are supported by the saved documents.  
For the success rate, a search session is given a 
score between 0 and 1: each correctly identified 
fact supported by a saved document contributes a 
score of 1/n to the search score, where n is the 
number of required answer components (or facts) 
for the question 

 
Experimental procedure 

Generally, we followed the procedure 
recommended by the TREC interactive track [7].  
During the experiments, the subjects performed the 
following tasks: 
• Pre-search preparation: consisting of 

introduction to the experiment, answering a 
pre-search questionnaire, demonstration of the 
main functions of each experimental system, 
and hands-on practice.  

• Searching session: each subject attempts four 
questions on each of the systems, answering a 
pre-search questionnaire and a post-search 
questionnaire per question, and a post-system 
questionnaire per system.  Subjects have a 
maximum of five minutes per question search.   

• Answering an exit questionnaire. 
 

Subjects 
All searchers were recruited via an internal 

university newsgroup: all were students from the 
department of computer science.  The average age 
of searchers was 23, with 4.7 years of online 
search experience. 

Subjects were asked about their familiarity about 
each question.  Overall, subjects claimed low 
familiarity with all questions (all under 3 on a 5-
point Likert scale).  In experiment I, the average 
familiarity of questions from each system is 1.5 
(AIS) and 1.58 (First20).  In experiment II, the 
scores are 2.1 (AIS) and 2.0 (First20).  No 
significant correlations are found between 
familiarity and success 

4 EXPERIMENTAL RESULTS 
To determine the success of a system at 

supporting a user performing an information task, 
it is important to know how well the task is done, 
how much effort is required, and whether an 
information system is perceived as helpful.  We 
use independent assessment for performance, 
system logging for effort, and questionnaires for 
perception. 

4.1 Searcher performance 
Experiment I 

We aimed to determine whether searchers could 
answer questions more successfully with the 



First20 system or the AIS3 system. Our results 
show that searchers using AIS3 had a higher 
success rate than those using First20 for all 
questions except for Question 5.  Overall, by using 
AIS3, searchers’ performance is improved by 38%.   

 In this experiment, the three variables to 
consider are the question, the searcher, and the 
system. Although the Latin-square design should 
minimize the effect of question and searcher, it is 
possible that question or searcher effects may still 
occur. An ANalysis Of Variance (ANOVA) model 
was used to test the significance of individual 
factor and the interactions between the factors.  
Here, the success rate is the dependent variable, 
and system, question, and searcher are three 
independent variables.  A major advantage of using 
the ANOVA model is that the effect of each 
independent variable as well as their interactions  
are  analyzed, whereas for the t-test, we can 
compare only one independent variable under 
different treatments. Table 1 shows the result of 
the three-way ANOVA test on success rates.  It 
tells us that the system effect and question effect 
are significant, but that the searcher effect and the 
interaction effects are not.   

Table 1.  Experiment I: summary of ANOVA 
model for the  success rate 

Source p-value 
System 0.041 
Question 0.000 
Searcher 0.195 
System * Question 0.414 
Question * Searcher 0.691 
System * Searcher 0.050 

Experiment II 
Experiment II was aimed to confirm the strong 

result from the experiment I.  We planned to repeat 
the above experiment with a quite different 
document collection, another set of questions, and 
different searchers.  However, we found that the 
technique for selecting AIS used in Experiment I 
could not be applied directly to web documents.  
Unlike news articles that have coherent text with a 
well-define discourse structure, web pages are 
often a chaotic jumble of phrases, links, graphics, 
and formatting commands.  On the other hand, 
compared with news articles, web documents have 
more structural information.  Although their mark-
up is more for presentation effect than to indicate 
their logical structure, some information between 
two tags (for example: <LI>…</LI>) can be 
regarded as a semantically coherent unit and 
treated as a sentence.  Therefore, in addition to the 

techniques used in Experiment I to segment 
documents into sentences, we also used some 
document mark-up as “sentence” indicators.  

Table 2 shows the ANOVA test on the 
experiment II data.  The table shows results similar 
to those in Table 1: only the system and the 
question have significant effect on the success rate. 
Overall, AIS3 leads to a performance improvement 
of 34% over First20.   

Based on the searchers’ performance in both 
experiments, our hypothesis that the AIS is a better 
form of document summary than the first N words 
for the question answering task is supported. 

Table 2.  Experiment II: summary of ANOVA 
model for the success rate 

Source p-value 
System 0.020 
Question 0.018 
Searcher 0.547 
System * Question 0.248 
Question * Searcher 0.808 
System * Searcher 0.525 

 

4.2 Searcher effort 
The effort of a searcher in determining answers 

to a question can be measured by the number of 
queries sent, the number of summary pages 
viewed, and the number of documents read. 

On average, searchers sent fewer queries, viewed 
fewer summary pages, and read fewer documents 
from AIS3 than from First20 in both experiments 
(refer to Table 3). 

We note that searchers generally did not use 
more than one summary page per query, nor did 
they need to read many documents to carry out the 
task.  Considering the summary page of AIS3 
displays more text than that in First20, we may 
tentatively conclude that searchers read similar 
amount of text, but AIS3 provides higher quality 
information than the First20 does, since we know 
searcher performance is better. 

 

Searcher preference 
The perception of searchers of the systems is 

captured by three questions in exit questionnaire.  
The three questions are 

• Q1: Which of the two systems did you find 
easier to learn to use? 

• Q2: Which of the two systems did you find 
easier to use? 

 

 
 



 

Table 3.  Searchers’ interactions with two systems 
 

 Experiment I Experiment II 

 First20 
Mean(SD) 

AIS3 
Mean(SD) 

First20 
Mean(SD) 

AIS3 
Mean(SD) 

No. of unique queries sent 2.14(0.56) 1.73(0.57) 2.0(1.2) 1.7(1.0) 
No. of surrogate pages viewed 2.80(1.64) 1.98(0.97) 2.4(1.4) 2.0(1.3) 

No. of documents read 3.42(1.22) 2.66(0.77) 4.2(2.8) 3.2(2.7) 
 

 
 

Table 4.  Searchers’ perceptions of two systems 
 

 Experiment I Experiment II 
 Q1 Q2 Q3 Q1 Q2 Q3 
First20 3 4 5 2 2 2 
 AIS3 8 11 11 10 12 13 
No difference 5 1  4 2 1 

 
 
 
• Q3: Which of the two systems did you like 

the best overall? 
 
The distribution of the searchers’ choices is 

shown in Table 4.  Combining the results from the 
two experiments’ questionnaires, for question 1, 
15% of subjects  selected First20, while 56% of 
subjects selected AIS3; for question 2, 19% of 
subjects selected First20, while 71% of subjects 
selected AIS3; for question 3, 22% of subjects 
preferred First20, while 75% preferred AIS3. 

 

5 Conclusion 
In this paper, we report two user studies on 

interactive question answering task.  By 
constructing a delivery interface that takes into 
account the nature of the task, we saw that 
searchers:  

• issued fewer queries 
• read fewer documents 
• found more answers 

 
We conducted two experiments that would allow 

us to determine searcher performance, searcher 
effort and searcher preference.  Our results show 
that searchers’ performance when using an AIS3 
system is improved over using a First20 system, 
based on objective assessment; this result is 
consistent in both experiments.  The performance 
difference between two experimental systems is 
statistically significant.  The data suggests that 

searchers using AIS3 require less effort, although 
cognitive load experiments are required to confirm 
this.  Finally, AIS3 is preferred by most searchers.  
Thus, the experiments support our hypothesis that 
AIS3 is a better indication of document suitability 
than First20, for the question answering task. 

Different search tasks may require different 
delivery methods.  For example: the clustering of 
retrieved documents can be used for the task of 
finding relevant documents [5], and the 
classification of retrieved documents can be used 
for the purposing of browsing. However, for the 
task of question answering, we found that none of 
these delivery methods performed better than a 
ranked list [12].  The experiments presented in this 
paper indicate that a relatively simple document 
summary can significantly improve the searcher’s 
performance in question answering task.  
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Abstract 
This work presents a type of parser that 
takes the process of chunking to the stage 
of producing full parse trees. This type of 
parser, denoted Thin Parsers (TP) in this 
work has the characteristics of: following a 
given grammar, creating full parse trees, 
producing only a limited number of full 
parse trees, parsing in linear time of 
sentence length. Performance standards on 
the Penn Tree Bank show results slightly 
under that of stochastic parsers but faster 
performance. Various types of Thin 
Parsers are presented. 

1 Introduction 
Bottom-up and Top-down methods of 

parsing, invented in 1950s, can parse in time 
which is an exponential function of the length n 
of an input sentence O(cn). Tabular parsing 
methods such as the CYK (Cocke-Younger-
Kasami) and Earley can parse context free 
languages in polynomial time O(n3), a significant 
improvement compared with the previous 
parsers. These methods are usually called 
“traditional methods”. However these methods 
are relatively slow, as they produce the complete 
parse trees. Also they use exhaustive search to 
find all possible parse trees, subsequently leading 
to the problem of needing to select an optimal 
parse from a very large set of solutions. Hence, 
researchers have tried to find other parsing 
methods and/or other formalisms for natural 
languages. For example, some researchers have 
tried to convert natural languages into regular 
languages to parse them by finite state automata 
(Black 1989, Pereira 2003). Some others work 
with parsers based on LL or LR 

grammars/parsers. However, they still have been 
unable to gain anything but small improvements. 

Recently, with the creation of large 
annotated corpora such as the Penn Tree Bank, 
probabilistic parsing methods based on their 
manifest grammars appear to be a useful solution 
for the parsing problem. In this situation, the 
induction of probabilistic context free grammars 
(PCFG) derived from the annotated corpora has 
become a new objective and many researchers 
have quickly developed improved performance 
(Ratnaparkhi 1994, Collins 1996).  

A different use of tree bank corpora is 
made by the chunking or shallow parsing process 
(Abney 1991, Brants 1999, Tjong Kim Sang 
2000).The main idea behind this parsing strategy 
is that both human and machine usually do not 
require full information of the parsing processes. 
These parsers usually produce only partial parse 
trees instead of full trees, which can be a 
disadvantage, but, the trade off is that the parse 
time becomes linear with the length of input 
sentences O(n). These parsers are called shallow 
parsers and the inference of probabilistic 
grammar rule sets is one of their useful 
characteristics. 

Unfortunately, shallow parsers cannot be 
used in applications in which full parse trees are 
required. Under these circumstances there is a 
need to use traditional parsers or improve 
shallow parsers to produce full parse trees. The 
challenge here is to solve the problems created 
by inferring a parser from a corpus. The strategy 
used in this research is to give attention to 
improving the parser without recourse to 
comprehensive generative probabilistic models 
of the tree bank but rather by developing fast 
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algorithms with accuracies rivaling that of 
probabilistic models. 

Justification for giving dominant attention 
to speed performance in the context of an 
inductive inference strategy is well supported by 
some established heuristics and by certain 
utilitarian values. As well, a search of the 
literature has failed to reveal any substantial 
attempt to analyse, on the basis of computability 
and speed performance, the advantages of an 
inductive inference approach to constructing a 
language parser from tree banks. 

Well recognized heuristics that have been 
established and support the motivation for this 
work are that language is predictable. It is well 
recognized that there is significant redundancy in 
language at the lexicogrammar and semantic 
levels and that corpus analysis has demonstrated 
there are reasonable predictors for subsequent 
phenomena from a given point in a sentence.  

Furthermore, Memory Based Learning has 
established the principle that “forgetting is 
harmful” to performance (Daelemans, van den 
Bosch & Zavrel 1999) and so remembering is 
helpful. 

Functional motivations include: large scale 
grammars can be better utilized by developing 
parser from their outputs; applications exist that 
don’t need wide coverage grammars but rather 
high speed. Current research in speech 
recognition is moving into a phase of exploiting 
lexicogrammar to improve performance (Lemon, 
2004).  

This paper promotes and develops a 
specific class of parsing methods, Thin Parsers 
(TP). Like traditional parsers, this method 
considers natural languages as context free 
languages and/or probabilistic context free 
languages. The aims of Thin Parsers are to 
overcome some weak points of both traditional 
(full) and shallow parsers. In comparison to full 
parsers, the Thin Parsers should work faster in 
practice and produce one or a few parse trees 
instead of large number. The main advantage of 
TPs over shallow parsers is that they can build 
full parse trees instead of partial trees, however, 
thin parsers do not have the ability to infer new 
grammar rules as shallow parsers do. Thus Thin 
Parsers could be considered closer to full parsers 

than shallow parsers. The Thin parser can be 
considered as a balance between the issues of the 
language class, parser speed and accuracy, and 
the need for full parse information. Hence, in this 
research the focus is on building performance 
models which are potentially useful in real 
situations rather than to build competence 
models. 

2 Pre-processing of the PTB 
The TPs in this research are developed 

from the Penn Tree Bank (PTB). As with other 
corpora, the PTB has some errors. Some of them 
can be corrected automatically by program 
whereas the others require manual reviews and 
corrections.  

As this research deals with CFGs, which 
lack the ability to smooth errors, better data for 
establishing a “gold standard” for both training 
and testing models is needed. From many authors 
working with the PTB, it appears that only Bod’s 
(1995) research is based on cleaned data as is this 
study. 

Each sentence of the PTB corpus is 
presented in three different formats: raw 
sentences, sentences with part-of-speech 
annotation, and skeletal syntactic bracketed 
sentences each in a separate file1.  Correct 
matching of these triples across the three files is 
needed to build up the full parse trees. However, 
due to errors in the data, the numbers of 
sentences are quite different in each file, making 
the work of extracting triples much harder and 
requiring human intervention. 

From the development of suitable 
software, around 22,000 triples or only half of 
the data were extracted automatically. After 
correcting the data manually, this has been 
increased to 34,000 triples. This data set is 
denoted as the “Large set”. From these triples, a 
subset of 6,700 triples was constructed, denoted 
the “Clean set” by deleting any triples having 
null elements and/or having incorrect parse trees 
(the trees that have none or more than one S node 
at the top of tree). This set is used in this 
research. The new set is quite small, compared 
with the original data, but still enough for 
experimentation as it is much larger than the sets 
                                                 
1 Raw sentences are not used in this work. 
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used in other research of a similar nature, for 
example Bod (1995) only used 500 sentences. 

3 Finite State Automata (FSA) 
The starting point for our modeling of the 

PTB is the inductive inference of FSAs for both 
the POS tag sequences and the phrasal tag 
sequences (see Fig. 1). Two tests using POS and 
Phrasal tags were run using 2 data sets (Large 
and Clean) to create a baseline for further work 
(Table 1). The results are quite similar with the 
Sekine’s (1997) although they are slightly worse. 
The reasons appear to be: i) a smaller training set 
is used here (30,600 sentences compared with 
47,219 sentences); ii) The training and testing 
here is on different sets.  

The results for Phrasal tags are 
significantly better than POS tags (19.19 % 
compared with 4.22%). The main reasons are: i) 
the average length of sentences (14.71) is shorter 
(21.23), creating the potential for repeated 
structures to be more frequent; ii) the annotation 
set for POS (36 POS tags + 12 other tags) is 
much larger than in Phrasals (14 syntactic tags + 
4 null elements) (Marcus 1993). These results are 
used as a base line for our research. However, 
they are still far from that of a good probabilistic 
parser (with over 70%).  
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Figure 1. Inferred FSA for phrasal tag 
sequences in the PTB. 

The Clean data set obviously brings some 
improvements. In the case of phrasal tags the 
FSA can parse successfully more than 44% of 
the phrasal test sentences. One of the reasons is 
that the average length of sentences is shorter. 
The POS tag results worsen between the Large 
and the Clean data sets compared to the phrasal 
tags. From these tests, it is evident that the 

lengths of sentences can affect the recognition 
results, the shorter the sentences, the better the 
result.  

 POS Phrasal 

Large 4.22% 19.19% 

Clean 3.66% 44.87% 

Table 1. Coverage attained by inferred FSAs of 
PTB data sets. 

In Charniak’s (1996) work he ignored all 
sentences of length greater than 40 in the test 
data to avoid high parsing costs. An examination 
of the Big data set confirms his assessment that 
only a small sample are excluded. There are 
29,462 sentences out of the 30,600 training set 
(96.28%) with a length of 40 words or under.  

Our tests to identify relationships between 
the tag length and coverage show for POS tag 
sequences the FSA parser begins to show 
deterioration for lengths higher than 11 tags and 
for Phrasal tags about 14 tags. 

3.1 Combination of POS and Phrasal FSAs  
The POS tag FSA is useful in practice 

however, the main limitation is the low coverage. 
In contrast, the Phrasal tag FSA is not of much 
use even though it has a much higher coverage. 
To overcome the disadvantage of the first FSA 
and take the advantage of the second, they are 
merged into a new parser that works with inputs 
of POS  and achieves a better coverage. 

This new model can be viewed as two 
components, one is a simple FSA for recognizing 
phrasal tag sequences. The other part is a 
converter to convert sequences of part-of-speech 
tags into sequences of phrasal tags for input into 
the FSA. The Converter creates the mapping of 
the POS tags to phrasal tags. The Phrasal FSA 
after recognizing a string of phrasal tags 
identifies the tree top of a legal tree top in the 
training set to complete the full parse tree (see 
Fig 2). 

3.1.1 Phrasal rules 

The rule sets for converting POS tags 
into phrasal tags are extracted from the PTB. 
For example, from the tree in Figure 3, some 
phrasal rules as follows can be extracted: 
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NP→DT JJ NN NNS; VP→VBP; NP→NN; 
ADVP→RB; VP→VBG; QP→RB IN CD  

From the 6700 sentences in the Clean 
dataset around 1200 phrasal rules were 
automatically extracted. This rule set is only a 
small subset of the PTB grammar, which has at 
least 10,000 rules as mentioned in Charniak 
(1996). 

 
Figure 2. Combination of POS and Phrasal tag 
FSAs. 

3.1.2 Limitations on a Converter  
For parsing an unseen sentence a 

Converter is needed to perform an exhaustive 
search algorithm. That is it has to try every 
combination of POS tags to phrasal tag 
conversion for the set of POS tags in the sentence 
until the string of phrasal tags is recognized by 
the main FSA. However, this approach has 
exponential explosion even for a small rule set 
and short sentence. 

3.1.3 Recursive Transition Network Induction 
– model TP1 

In the first attempt to create an efficient 
Converter, the two kinds of FSA are combined 
by using Recursive Transition Networks (RTN) 
(Woods, 1970) because this model can help 
reduce the exponential time problem.  

The two kinds of FSA are, one for part of 
speech tags and one for phrasal tags. The second 
one is the same FSA used in the initial tests 
above. The first one (type 1) uses a string of tags 
taken from the right side of phrasal rules instead 
of POS sentences. All rules which have the same 
left side are used to build one FSA. Thus there 

are many different FSA corresponding to a 
phrasal tag. 

 

 
Figure 3. Combination of two types of FSA into 
an  RTN.  

3.2   Results and Analysis 
The results of parsing by an RTN are 

shown in Table 2. The 6700 sentences of the 
Clean data set were used with 10 fold cross-
validation. There is no restriction on sentence 
length for the first test, however, in the second 
test, like Charniak (1996), all the sentences with 
length in excess of 40 tags were removed. The 
RTN method has a very high coverage (98.32%) 
but the accuracy (R= 19%, P=23%, F=21%) are 
below the base line.  

Theoretically, parsing by an RTN method 
is not as fast as using an FSA. Woods (1970) has 
shown that the time is about O(cn). However, in 
this work the RTN performs much faster, the 
average parse time per sentence is 0.0176 
second2 and slightly better 0.0156 if the 
sentences which are longer than 40 tags are 
ignored because: 

• the phrasal FSA has only a depth of one 

• there are no recursive loops 

• the first level is recognized as a chunk, not only 
a tag, thus, the number of elements at the first 
level is reduced significantly 

                                                 
2 All tests are done on a computer P4, 1.6 Ghz, 1 GB 
Ram. The time includes time for parsing, extracting 
parse trees and measuring accuracy. 
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• the number of phrasal rules is around 1400 – 
much smaller than the total number of grammar 
rules of the PTB3 

• this model stops parsing after finding a solution. 

In the worst case, the maximum parse time for all 
data is 1.603 seconds and for <41 data is only 
0.911 seconds4. 

The results in Table 2 of the RTN show a very 
high proportion of coverage – 98%. The high 
coverage and fast parse time of this model could 
well be useful for some applications. 

N C’age R P F Time 

all 98.32 19.74 23.92 21.83 0.0176 

<41 98.48 19.18 23.3 21.24 0.0156 

Table 2. Performance percentages of RTNs on 
the Clean data (10-fold cross-validation). 

 
4 Shallow Parsers for building Parse Trees  

To establish an understanding of the base 
performance of shallow parsers when used to 
build full parse trees we developed a method 
based on Abney (1991). The first experiment 
showed the coverage of the system is only 0.5% 
(only 3 of 600 test sentences).  

With the aim of producing a better 
assessment of coverage, the accuracy of the base 
sub-trees (lower parts of trees) which are created 
by the shallow parser is computed by an 
alternative method, that is the tag S is added to 
every incomplete parse tree. This produced the 
results of P=36.65%, R=15.03%. These results 
can be considered as another baseline. 
Comparisons of these results to the works of 
other authors are not possible as they have only 
reported the accuracy of chunkers. 

                                                 
3 An Earley parser (with parse time O(n3)) was built 
and tested using a reduced set of 9000 rules of the 
PTB, in general this parser takes from 30 seconds / 
short sentence to some days for long ones (around 30 
words). When using a much smaller and manually 
compacted rule set of 3000 the parser still takes 
several hours for a long sentence. 
4 The parse time is computed here to demonstrate how 
fast the model TP1 is in practice but not the fastest 
speed of this model.  

5 Constructing Thin Parsers from Shallow 
Parsers – TP2  

In this section, some improvements to the 
shallow parser model to extract the full parse 
trees are developed. These improvements can 
also be viewed as mixing models, that is a 
shallow parser and a finite state automaton 
(FSA), a shallow parser and a data-oriented 
parser (DOP), and the adaptation of a shallow 
parser with some non-deterministic components. 
The framework objective behind this blending is 
to reduce the number of levels needed in parse 
trees, reduce the number of elements of the parse 
trees, use of more stored pre-computed 
information, and to use non-deterministic 
mechanisms.  

The large number of levels of the parse 
tree for the shallow parser is one of the major 
reasons for the poor coverage in extracting full 
parse trees. With each new level, the parser has 
more chance of being trapped and/or creating 
errors which will propagate to higher levels, that 
is the coverage and accuracy are affected 
seriously by the number of levels. Hence, the 
idea of improvement here is to let the parser 
work for the first level or at the most the few first 
levels only, which can work well. Then another 
process adds the top parts of trees to complete 
the full trees.  

The tree tops that will be used to complete 
the parsing are pre-computed from the training 
corpus and saved into a database. One extra 
advantage of this method is that even though at 
the lower levels the trees are variable and large in 
number, at the higher levels the multiple forms 
decrease sharply. This means the number of tree 
tops is small, and easy to collect and to save to a 
database. Hence in testing the system has two 
parts. The first part works like a shallow parser 
and the second part is a search mechanism 
retrieving from this database.  

After creating the base sub-trees of a parse 
tree (by working for only one or the first few 
levels), the shallow parser passes the result to the 
next process “Find and Join”. This process 
retrieves from a database a saved tree top 
matching the tag configuration of these base sub-
trees. If a suitable tree top is found, this function 
will attach it to the lower sub-trees to create a full 
parse tree. The condition to match the two parts 
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is straightforward: the top sequence of tags of the 
base sub-trees must be matched with the bottom 
sequence of the tree top.  

Although four methods can be considered 
for assessment (Pham, 2004), the test results are 
shown here with a weaker measure, adjusted 
crossover brackets, to enable comparison with 
other authors. The data for training and testing is 
the Clean data set (6000 sentences for training 
and 600 for testing). After chunking k levels 
(column Level/k) the system gets the results 
sequence which is recognized by an FSA. 
Column Succ shows the numbers of parsed 
sentences.  

Model TP2 can parse successfully a range 
from 21.67% to 55.83% of input sentences with 
accuracies (F) from 76.61% to 91.68% (Table 3). 
The accuracies are highest when the shallow 
parser works for only the first level (level 0). The 
coverage, unlike accuracy, increases by level and 
reaches the highest proportion at level 7 
(55.83%) before decreasing slightly. As 
previously discussed, with the higher levels the 
variety of tree tops decreases sharply, helping the 
system match these tops more successfully. The 
model TP2 can parse successfully over 46% of 
total sentences with high accuracy of over 76% at 
k>=5. 

Level/
k 

Suc
c.  

Cover
age % 

P % R 
% 

F 
% 

1 239 39.8 92.3 91.1 91.7 

2 130 21.7 90.4 89.7 90.0 

3 219 36.5 82.3 83.1 82.7 

4 248 41.3 79.9 80.5 80.2 

5 277 46.2 78.5 79.3 78.9 

6 304 50.7 78.8 79.4 79.1 

7 335 55.8 77.3 78.1 77.7 

8 307 51.2 76.5 76.7 76.6 

9 316 52.7 76.6 77.1 76.8 

Table 3. Results of model TP2 chunking, 
measures of the accuracy of nodes with adjusting 
crossover brackets. 

 

6   Reduction of the number of tree elements - 
TP3 

The number of grammar rules available for 
use in a parse tree is usually large. For each extra 
rule that is used in a parse the tree has more 
variation at higher levels. This provides more 
opportunities for the parse to be trapped or to 
propagate more errors. Furthermore, if two rules 
have the same right hand side, then the one with 
the highest frequency is used for building the 
tree. However this selection process of removing 
a less frequent rule is the main reason for shallow 
parsers not being able to build up a full parse.  

Another idea for improvement of model 
TP2 is to reduce the number of grammar rules 
per parse tree by using the tree fragments which 
could be larger than these rules. By such a 
mechanism, the parser has more chance to use 
maximally frequent fragments, that is 
combinations of grammar rules, rather than 
grammar rules alone, thus avoiding the omission 
of less frequent grammar rules. Another 
advantage is that the number of levels can be 
reduced and so gain the benefit of getting higher 
coverage as well as faster execution time.  

This idea is partly similar to Bod’s (1995) 
model of DOP for using tree fragments, however 
in detail, there are differences in the ways tree 
fragments are collected and the method of 
parsing.  

6.1 Collection of fragments 
In the DOP model, Bod collects all 

possible tree fragments. However, this has the 
disadvantage that the number of fragments grows 
exponentially with size of grammar.  

In the case of the TP2 model, tree 
fragments are collected based on the data set 
prepared for the shallow parsing experiments, 
that is the filled trees, that is all branches have 
nodes at each lower level. The conditions for 
collecting a sub-tree as a real fragment are that 
all leaves at the end of the tree start on the same 
level, as the tree is filled, and, it has a height of 2 
levels or more. 

For example, Figure 4 shows a sub-tree of 
a parse tree. The DOP model will collect a total 
of 32 fragments from this sub tree. In the TP3 
model, firstly this sub tree is converted into a 
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filled tree as shown in Figure 5.a. From this data 
only two fragments are collected as in Figures 
5.b and 5.c, hence an exponential increase of 
fragments is prevented. 

6.2 Results 
All data for training and testing model TP3 

is reported for both shallow parsing (chunking, 
Table 4) and parsing (Table 5). 

 
Figure 4.  An example of a sub-tree from a 

parse tree.  

 Figure 5.  The parse sub-tree from Fig. 4 
converted into filled sub-tree (a).  From (a) in 

training only two fragments (b) and (c) are 
collected in model TP3. 

Table 4 shows the results of chunking the 
Clean data set. This is quite similar to Table 5.3 
text chunking except: the maximum level is only 
1, and, the accuracy of the two highest levels 

appears to be exceptional because the number of 
sentences is quite small (844 and 586 
respectively), compared with whole learning set 
(6000 sentence). 

As the levels increase the number of 
sentences available for both training and testing 
decreases as there is a variable range of tree 
heights across the corpus. 

Level Precision Recall F 

0  84.2 83.7 83.9 

1  72.5 64.1 68.1 

2  75.4 59.0 66.2 

3  68.8 53.1 59.9 

4  68.1 52.8 59.5 

5  72.1 65.4 68.6 

6  79.9 68.3 73.6 

7  91.1 85.4 88.2 

≥8 100.0 100.0 100.0 

Table 4. Text chunking results using the Clean 
data set for model TP3. 

Table 5 shows the results of the parse of 
600 sentences from the Clean data set. The 
coverage of TP3 in the best case is over 61% (at 
level 5), better than the best coverage 55% of 
TP2. However, the accuracies in general are a 
little worse than the accuracies of TP2. Both TP2 
and TP3 reach the highest accuracies at level 1 
and reduce at higher levels. 

Level Succ. Coverage P R F 

1 230 38.4 84.8 85.5 85.2 

2 135 22.5 64.8 73.7 69.2 

3 184 30.7 63.8 74.7 69.3 

4 351 58.6 64.7 74.8 69.8 

5 368 61.4 69.3 76.8 73.1 

6 183 30.6 70.7 79.2 75.00 

7 62 10.4 68.7 75.7 72.2 

≥8 1 0.17 73.5 83.3 78.4 

Table 5. Parsing results using the Clean data set 
with model TP3. 
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7    Non-Deterministic models –TP4, TP5 

Two approaches have been investigated in an 
attempt to produce concurrent solutions to 
improving coverage and accuracy. Whilst the 
methods will be reported elsewhere the 
results are relevant to this study and show 
great promise. The first method, model TP4, 
uses the idea of a non-deterministic chunker 
with a deterministic attacher. The second 
model, TP5, uses a deterministic chunker 
with a non-deterministic attacher. By 
exploitation of the learning process of 
creating a tree tops database and using 
algorithms to match the database entries 
against the candidate parse trees rather than 
the other way the practical implementation 
requires linear time to parse. The 
performance of the two systems is presented 
in Table 6.  
 
Model Coverage P R F 
TP4 63.7% 83.0 84.6 83.8 
TP5 82.2% 88.3 88.0 88.1 

Table 6. Performance statistics of models TP4 
& TP5. 

8 Conclusions 

Some improvements to building a thin 
parser from a shallow parser have been presented 
in the form of models TP2 and TP3, TP4 and 
TP5. They all include in the first stage a shallow 
parser. In general, these models can solve to 
some degree some problems of shallow parsing 
when extracting full parse trees. The problems 
are: deterministic mechanisms are not adequate 
enough for dealing with the ambiguities of 
natural language; the configuration of 
connections between layers make any error that 
occurs in the lower levels propagate to higher 
levels and worsen the performance; the Chunker 
and Attacher need to work with some limitations, 
such as using only the most probable rules; and 
not attach chunks with a size of 1. The results of 
these models are quite good: the coverage (from 
0.5% of original shallow parser) has improved to 
more than 82%, and the accuracy has improved 
from 20% to over 88%. 
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Abstract

Statistical parsers are extremely complex sys-
tems, yet papers describing them almost always
only discuss theoretical issues instead of imple-
mentation issues. This paper attempts to ad-
dress the imbalance by describing the imple-
mentation issues faced in building a state-of-
the-art statistical parser. In the process, we will
describe our own implementation of a statistical
parser.

1 Introduction

Between 1996 and 1999, Michael Collins devel-
oped a statistical parser (Collins, 1996; 1999)
which has become tremendously influential in
NLP. Collins’ thesis and published papers dis-
cuss the theoretical underpinnings of his system
in a great deal of detail; he devotes considerable
space to describing and justifying the grammar
formalism and the probability model which his
parser uses. His description of his parsing algo-
rithm is much less detailed; it is given as a set of
pseudocode routines in an appendix. However,
the scale and complexity of a lexicalised statis-
tical parser is such that implementing this pseu-
docode presents significant software engineering
difficulties. The pseudocode actually disguises
many of the interesting optimisations present
in Collins’ system. As far as we can tell, no-
body has published how to actually implement
such a system. The aim of this paper is to de-
scribe the important software engineering issues
involved in implementing a lexicalised statisti-
cal parser, using the parser we implemented as
an example. What we found was that if you
ever consider performance a secondary consid-
eration then the parser will go so slow as to be
impossible to debug. Because of this, we will
concentrate on the efficiency of algorithms not
so much to improve on Collins’, but just to get
a working system.

We will begin in Section 2 by describing
Collins’ probability model. In Section 3 we de-

scribe Collins’ parsing algorithm in high-level
detail. The remainder of the paper describes
our way of implementing the difficult parts of
this algorithm. The chart data structure is de-
scribed in Section 4; the generation of probabili-
ties from the probability model in Section 5; the
search strategy used by the parser is described
in Section 6; Some general advice about soft-
ware engineering in building a statistical parser
is discussed in Section 7. And we conclude by
noting that our parser performs almost the same
as Collins’ in Section 8.

2 Collins’ probability model

The key idea in any statistical parser is to asso-
ciate probabilities with grammatical rules. The
probability of any given parse tree is then sim-
ply the product of the probabilities of all the
rules applied in creating this tree. However, in
practice, the probability of a parse tree being
the correct parse of a sentence depends not just
on the rules which are applied, but on the words
which appear at the leaves of the tree. To illus-
trate, consider this well-known example of syn-
tactic ambiguity:

(1) The man saw the dog with the telescope.

The PP with the telescope can either modify the
dog (as a relative clause) or the verb saw (as an
adverbial). Intuitively, the latter reading should
be preferred; we expect events of seeing to in-
volve telescopes more frequently than dogs. The
notion of a lexical head is useful in spelling out
this intuition. We expect a VP headed by the
verb saw to be quite frequently modified by a
PP involving the word telescope in a represen-
tative corpus, while we expect a NP headed by
dog only rarely to be modified by a PP involv-
ing the word telescope in such a corpus. We
begin in Section 2.1 by describing a formalism
for capturing this idea.



2.1 Unary and dependency productions

How can we modify our grammar to include the
appropriate lexical information? A useful solu-
tion, originally proposed by Black et al. (1992),
basically involves a huge increase in the num-
ber of phrases in the grammar. Instead of sim-
ply having a phrase NP, we need one phrase
for each possible headword of an NP: i.e. NP-
headed-by-dog, NP-headed-by-telescope, and so
on. At this point, unfortunately, we are faced
with a data sparseness problem: we are unlikely
to find sufficient counts for individual produc-
tions, even with a very big corpus. The problem
is largely due to Zipf’s law; most words in the
language only occur very infrequently, so most
grammatical categories, when tagged with an
open-classed headword, will be fairly rare. The
problem is compounded by the fact that many
grammars allow a node to take several children.
If each child is already rare, then the combina-
tion of n such children will be exponentially so.
With low counts, we cannot be confident in the
probabilities we derive.

We will consider the problem due to Zipf’s
law in Section 2.3. However, the problem of
multiple children can be addressed by finding
a way of splitting a parse tree into events that
are smaller than single context-free rule appli-
cations. A useful idea, originally proposed by
Magerman (1995), is to break each single rule
application into several components: a unary
production which takes a phrase and gener-
ates its head constituent, and a set of depen-
dency productions which take a phrase and
its head constituent, and generate the remain-
ing child constituents, either to the left or the
right of the head. The occurrence of a parent
node decomposing into a set of children is now
represented using the kinds of events shown in
Figure 1.

Parent

Head

Parent

Left sibling . . . Head

Figure 1: Unary and dependency productions

The conditional probabilities we are inter-
ested in are the probability of a head constituent
given its parent (for a unary production) and
the probability of a sibling constituent given
its parent and its head (for a dependency pro-
duction). These probabilities can be estimated
from relative frequencies of events.

P(Head|Parent) =
Count(Head, Parent)

Count(Parent)

The notation here needs some explanation. If
you know the parent and you are trying to de-
rive the probability for a given head, you can
estimate the probability by counting the num-
ber of times that head occurs as the head of
that parent, and dividing by the total number of
times that parent occurs. The categories ‘head’
and ‘parent’ are descriptions of constituents,
which could be given at different levels of de-
tail. If we are building a lexicalised grammar,
these descriptions will each include a headword,
as well as a grammatical category. The data
sparseness problem due to Zipf’s law is now re-
duced; unary productions only involve one lex-
ical item, and dependency productions only in-
volve two.

2.2 Collins’ probabilistic grammar

Collins’ probabilistic grammar is expressed in
terms of unary and dependency productions, as
just described. Of course, he includes more in-
formation about these productions than we ex-
pressed in the above equations. As well as a
head word for each constituent, he includes in-
formation about the part of speech of this word:
the head tag. He calls the grammatical cate-
gory the head nonterminal, to distinguish it
from the tag. For the dependency productions,
he distinguishes between complement and ad-
junct siblings of a head (a complement sibling
is tagged ‘-C’), and includes a subcategorisa-
tion frame representing the complements that
the head needs. He also includes a measure of
the distance between the head and sibling con-
stituents. To explain Collins’ representation of
trees, we once again refer to a simple example
tree — see Figure 2. In this figure, only the
nodes pointed at by arrows take part in repre-
senting events.

NP−C

DT NN VB NP−C

a mousechasedcatThe

VP

S
Left tag (L )t

Left nonterminal (L    )NT Parent (P)

Head tag (t)

Head word (w)

Head nonterminal (H)

Distance (      ):
adjacency = true
verb = false

Left subCat (LC): {NP−C}

wLeft word (L  )

Figure 2: Collins’ event representation



This figure shows the fields used to represent
the dependency event of an NP-C attaching as
a left sister to the head VP of a parent S node.
Collins stores this event by encoding the terms
pointed to with arrows in the figure. At this
point, the event simply is the co-occurence of
these values for these data fields. To represent a
unary production, such as the generation of VP
from the parent S node, we just need the terms
on the right-hand side of Figure 2. To represent
a subcat production, such as the generation of
the VP’s left subcategorisation frame (in this
case, a bag containing one item, NP-C), we use
the same terms as the unary event, plus one
additional field: a bag of nonterminals.

The probabilities we need to compute for
unary, subcat and dependency productions can
now be given more precisely, in the following
three equations.

Punary(H |P,w, t)
Psubcat(LC |H,P,w, t)
Pdep(Lnt, Lw, Lt |P,H,w, t,∆, LC)

2.3 Collins’ event representation

To compute the above probabilities, we need to
derive appropriate relative frequencies of events
occurring in the WSJ corpus. Given that some
events might be rare, or nonexistent, in this cor-
pus, Collins uses a backoff technique. Basi-
cally, we estimate the probability of a very pre-
cisely specified event by looking up a less pre-
cisely specified one. For instance, the unary
event in Figure 2 where it was decided VP
should form the head of a sentence, would be
as follows:

Punary(V P |S, chased, V B)

while a backed-off version of the event might
leave out the head word chased:

Punary(V P |S, V B)

Collins makes use of three levels of backoff for
all the events he represents: Level 1 contains all
the terms pointed to in Figure 2, Level 2 drops
a headword, and Level 3 drops everything ex-
cept for nonterminals. To compute the proba-
bility of an event, its numerator, denominator,
and a weighting factor are looked up at all three
levels of backoff, and the resulting probabilities
are interpolated using the weighting factors. In
summary, to derive the probability of an event,
we must perform nine separate lookups of event
counts in a database of events derived from the
WSJ corpus.

2.4 Preprocessing the WSJ

The WSJ corpus is the main source of train-
ing data for statistical parsers. The trees in the
WSJ do not include information about head-
words or complements, both of which are fun-
damental to Collins’ approach. So Collins first
has to add this information, using heuristics
based on the syntactic and semantic annota-
tions which are present. These heuristics are too
numerous to doucment here, but a typical exam-
ple would be that noun-phrases search right to
left for their head child and prefer nouns. After
applying the heuristics, he then has to trans-
form the trees into a database of events to be
counted when computing probabilities. While
these preprocessing routines are relatively sim-
ple compared to the parser, Collins has not
released his preprocessor, and it is the least
documented part of the system, so it is useful
to document it; interested readers are referred
to Lakeland (forthcoming), where preprocessing
code is given in detail.

3 Collins’ parsing algorithm

We now present the high-level structure of the
parsing algorithm.

Very briefly, in words, here is what happens.
In the top-level function parse, we begin by
initialising the chart with a set of complete
edges, each of which is one word from the input
string, and a set of incomplete edges, each of
which is created by one or more unary produc-
tions on one of the complete edges. A com-
plete edge is one that will not be expanded fur-
ther. Then we call the function combine on
every set of adjacent edges in the chart. The
combine function attempts to join every pair
of adjacent edges, using a dependency produc-
tion, where the parent edge is incomplete and
the child edge is complete. This is done by
the functions join follow and join precede.
Whenever two edges are successfully joined, the
new complex edge is added to the chart; then
this edge is expanded using unary productions
(considering both a single unary production and
chains of two or three unary productions), and
adds these to the chart. This is done by the
function add singles stops. The new edges
which have been added to the chart will be
found by subsequent calls to combine. Eventu-
ally, edges will be created which span the whole
input string; when we have found all of these,
we select the complete parse with highest prob-
ability.



parse(sentence)
initialise(sentence)
for start = 0 to length
for end = start + 1 to length
for split = start + 1 to end {
left = spanning(start,split)
right = spanning(split+1,end)
combine(left,right)

}

combine(left, right) {
foreach (l left)
foreach (r right) {
if (!l.complete && r.complete)

joined = join_follow(l,r)
if (l.complete && !r.complete)

joined = join_precede(l,r)
add_singles_stops(joined)

}
}

join_follow(left,right) {
e = new edge(left)
e.add_child(right,at_end)
e.prob *= right
e.prob *= dep_prob(left,right)
chart.add(e)

}

join_precede(left,right) {
(as per join follow)

}

add_singles_stops(edges,depth=5) {
if (depth == 0) return edges
foreach (e edges)

e_stop += add_stop(e)
foreach (e e_stop)

e_ns += add_singles(e)
add_singles_stops(e_ns,depth-1)

}

add_singles(e) {
foreach (parent nonterminals)

foreach (lc subcats)
foreach (rc subcats)

if(grammar(e,parent,lc,rc)) {
result = unary(e,parent,lc,rc)
chart.add(result)
results += result

return results
}

Figure 3: Simplified parser pseudocode

Looking at the pseudocode it is hard to
see where the implementation difficulty lies.
The answer can be seen by counting loops:
parse contains three loops; combine contains
two; add singles stops contains one; and
add singles contains three. Since these func-
tions are all nested, the parser has nine nested
loops. To address this complexity, two things
are needed. Firstly, in general, we want to im-
plement everything efficiently, so that the al-
gorithm is as fast as possible. But as well
as efficiency considerations, we also need to
build some genuine shortcuts into the algo-
rithm, by applying search heuristics which
discard edges unlikely to be in the final parse.
Search heuristics are applied in two places in the
parsing algorithm: a beam search algorithm
is used in add singles stops to stop unlikely
unary productions from being generated; and
dynamic programming is used in the chart
insertion routine to discard an edge if a more
probable edge covering the same span already
exists. These two issues — code efficiency and
implementating heuristics — are what we focus
on in the remainder of the paper.

4 The chart data structure

The goal of the chart is to store and provide
access to all the edges covering each span of the
input string. The grammar is very large because
it contains a separate rule for each headword
in each production, and because of this a great
many edges cover each span. This means that
the wrong choice of chart data structure will
make parsing impossibly slow.

The most natural way of implementing such a
data structure would be as a three dimensional
array, in which the first two dimensions specify
the start and end of the span respectively, and
the last dimension stores the edges. Unfortu-
nately, we do not know how many edges will be
needed for any given span of the input string,
which makes allocating such an array impossible
(or at least extremely wasteful). To get around
this problem, note that the flow of control of the
parsing algorithm means that edges with a given
start and end position in the input string are
added consecutively. This means that we can
store the chart as a huge one dimensional array
of edges, with a two dimensional index array
of pointers indicating where the set of edges as-
sociated with each span are stored. There is
then no wasted space in the chart, and we still
have constant time access to any span.



A related optimisation comes from noting
that the control structure of the complete func-
tion means that we always process one complete
edge and one incomplete edge, so it would be
more efficient if we could loop over all complete
edges and all incomplete edges separately. It
thus makes sense to have two separate charts,
one for complete edges and one for incomplete
edges.

Another optimisation relates to the use of
a very simple dependency grammar within the
complete algorithm. Whenever two edges are
joined, we must compute the dependency prob-
ability for the join operation. If this probability
is zero, there is no need to store the edge. In
general we cannot predict when a dependency
event will have a probability of zero in advance,
but there is one exception: we can look at the
nonterminal head of the parent and sibling, and
if this combination was never seen in the train-
ing corpus then we know the dependency event
will have a probability of zero. The optimi-
sation involves precomputing a simple depen-
dency grammar specifying which nonterminal
categories are found in dependency productions
in the WSJ. (For instance, the top production
in Figure 2 would allow a parent S whose head
child is VP to have an NP-C as a left child.)
Now, in the combine function, we iterate over
every left and every right edge consistent with
this simple grammar. To permit efficient access
to grammatically consistent edges in the chart,
we add a third dimension to the index array, to
hold the edge’s parent nonterminal.

Another kind of optimisation in the chart
comes from noting that it is possible for two
different phrases to have the same representa-
tion as events in Collins’ probability model. For
instance, note in Figure 2 that Collins’ event
language makes no reference to the Det phrase
associated with the subject NP-C cat. Since the
goal of the parser is to find the single best parse,
if we ever have two phrases with the same rep-
resentation at a given span in the chart, we can
simply discard the one with lower probability;
it will never be involved in the best parse of the
sentence. This is known as the Viterbi opti-
misation. A closely related optimisation is to
discard any edge with a probability significantly
lower than the best edge over this span, since it
is very unlikely that a parse involving this edge
will outscore a parse involving the most likely
edge for this span. These last two optimisations
are examples of the dynamic programming

approach.

5 Computing probabilities

As mentioned in Section 2.3, to compute proba-
bilities, Collins derives nine counts — that is, he
looks up the number of times nine different sub-
events have occurred in the database of events
derived from the WSJ corpus. This database
cannot be stored as an indexed array since there
is no obvious index; we therefore make use of the
standard way of storing large data sets, hash ta-
bles. The training data requires storing around
fifty million events, and parsing a single sen-
tence requires many millions of probabilities to
be computed. Because performance is so critical
it is worth being careful about the implementa-
tion details.

Firstly, there is no need to store a hash table
for every type of event. Instead we can use a sin-
gle huge hashtable and include the type of event
in the key. This does not make the system in-
herently faster but does make it much easier to
control the density of the hashtable which will
lead to performance improvements. Secondly, it
is conventional in hashtables to store both the
key and value in the table so that hash collisions
can be detected but here the hash key is many
bytes and so it is more appropriate to just ig-
nore collisions and accept that probabilities will
be slightly incorrect. Finally, over ninety per-
cent of probabilities computed in the parser are
used more than once, so by storing all generated
probabilities in a ‘cache’ hashtable, the speed of
the whole system can be improved by an order
of magnitude.

6 Implementing the beam search

The function add singles stops includes three
nested loops and is itself called recursively
about five times. While none of these loops
is dependent on the size of the input sentence
(i.e. the function is O(1)), an unconstrained
implementation would result in approximately
20005 edges being created (the number of non-
terminals times the number of possible left sub-
categorisation frames times the number of right
subcategorisation frames, recursively called five
times). Even if these edges were discarded by
the chart on creation, the time taken to create
them would make it impossible to parse a sim-
ple sentence. To resolve this, Collins only ex-
pands edges likely to be part of the final parse.
Collins’ thesis notes he uses a constrained best
first search known as a beam search for this



process. The benefit of this is that instead of
an unmanageable number of nodes being cre-
ated, perhaps only a few hundred are created
(of which dynamic programming in the chart
will still discard all but a handful).

Search generally involves creating new nodes
for each child being expanded. But as is men-
tioned in Section 7, allocating memory is a com-
putationally expensive operation and is unde-
sirable in a program where efficiency is criti-
cal. Since a beam always has exactly n nodes
on it, it seems intuitively obvious that beam-
search could be implemented without allocat-
ing memory but it proves surprisingly difficult
to do efficiently. Our implementation of beam
search uses skiplists (Pugh, 1989). Skiplists
are a variant on linked lists in which a number
of ‘next’ pointers are kept on each node instead
of just one. These extra pointers allow the al-
gorithm to ‘skip’ along the list and lead to in-
sertion and access times of O(lg n) (the same
as binary search, but much simpler to imple-
ment). As an extension to Pugh’s idea, we im-
plemented double-ended skiplists (analogous to
doubly-linked lists). This gives O(1) access and
insertion to both the start and end of the list.

Having developed a suitable data structure,
we apply it to beam search. By allocating n+1
nodes for a beam of length n, we can pro-
vide add singles with an empty node in O(1)
by simply returning the last node in the list
(technically, these functions are not O(1) but
O(lg(lg(n)) due to pointer management code,
but this closely approximates 1 for even huge
values of n). In practice, insertions are almost
always at the start or the end of the list (both
approximately O(1)). When they are at other
parts of the list, insertion is an O(lg n) opera-
tion.

The obvious comparison for this approach
would be using a heap, as a heap is the data
structure most commonly used to implement
priority queues. Using an array based heap
(since the size of the queue is bounded) we can
access the front in O(1), but to remove the last
node and reinsert is O(lg n). Compared to this
implementation, skiplists are somewhat more
efficient at O(lg(lg n)).

Overall, double-ended skiplists have proven
to be an interesting and efficient method of im-
plementing beam-search for large n. Where n is
low, it is probably more efficient to simply use a
doubly-linked list but Collins’ noted he used a
beam size of 10,000, and so a more sophisticated

approach is called for. After implementing the
skiplists search, Collins released his code and it
is very interesting to compare his approach; it
turns out he does not actually implement clas-
sical beam-search, but instead uses an array of
edges being expanded with a threshold — if an
edge is a certain amount worse than the best
then it is discarded. This is significantly simpler
and somewhat more efficient than my approach.
However it would perform very poorly anywhere
where the heuristic evaluation improves as we
move away from the start state.

7 General software engineering
issues

The core difficulty in implementing a statistical
parser is that it processes a vast amount of data.
The event file created by the preprocessor con-
tains perhaps fifty million events; the beam is
searching through perhaps ten thousand local
possibilities; and the chart contains hundreds
of thousands of ambiguous partial parses. All
this means that we must keep code as efficient
as possible throughout the development pro-
cess, or the parser will simply fail. In addition,
that sophisticated code and data file verification
techniques are crucial, because small bugs can
have far-reaching consequences. In this section,
we present some of the software development
lessons we have learned in building our parser.

7.1 Start by solving a smaller problem

A lexicalised statistical parser is a very com-
plex system, where a single poor choice results
in a program that is too slow to test. How-
ever, building a part-of-speech (POS) tagger has
many of the same issues as a statistical parser
but without the asymptotic complexity. We
found it was useful to begin by building a full
reimplementation of Collins’ probability model
which was only used for POS tagging (Lakeland
and Knott, 2001). This enabled about half of
the system to be verified.

7.2 Choice of programming language

Initially our parser was implemented in LISP,
because it is a language ideally suited to both
tree processing and prototyping. It was far
too slow, and while various optimisations could
make it fast, it was obvious that the easiest ap-
proach would be to reimplement using a lan-
guage capable of breaking the rules built into
high-level programming languages, in which al-
location of memory can be done by hand, point-
ers can be manipulated directly, and shortcuts



can be hacked into the control structure of the
program.

It is worth explaining why direct memory
management is essential. Allocation of memory
is an extremely slow function and any program
desiring efficiency must not allocate memory in-
side its inner loop. By preallocating data struc-
tures (e.g. allocating all the memory for the
chart and the beam before parsing begins), it is
possible to avoid any memory allocation during
the core parsing loops, saving a great deal of
time. Languages such as Java, C# and Python
are therefore a bad idea; their automatic mem-
ory management (normally a key selling point)
is precisely what we need to sidestep to im-
plement an efficient parser. Consequently, like
Collins, we chose to implement the parser in C,
which provides low-level memory management
support. (However, for preprocessing the cor-
pus, we stuck with LISP, since it is not time
critical.)

7.3 Version control

Anybody building a nontrivial program will use
a source code control system such as CVS or
subversion. But we found that naive use is in-
sufficient – for instance we frequently found im-
provements to the preprocessor would break the
parser since it depended on the older format for
the data files. We also needed to make use of
‘branching’.

Another related step was the development of
a build script. There are a large number of steps
involved in converting the treebank and other
data into a format suitable for parsing. It is rel-
atively easy to perform these steps sequentially.
However that means any change to one of the
earlier steps (such as a tweak to the tokeniser)
requires every subsequent step to be repeated.
Since there is usually output from the previous
version lying around, it was often the case that
output files from different versions of the code
would be used at the same time — leading to
subtle errors.

Finally, version control only applies to files
but we often found that we needed to write
almost identical blocks of code, but often we
could not write the code as a general func-
tion which decided its behaviour based on ar-
guments and writing the same code twice in-
variably leads to bugs being fixed in one version
but not in another. Our solution to this was to
use source code preprocessing so that our sin-
gle ‘meta’ version generates multiple functions,

each with slightly different logic. We used the
tool funnelweb for this purpose.

7.4 Efficiency versus debuggability

It is often the case that the most efficient data
structure is harder to debug. For instance, our
hash keys can be easily compared to the data
used in generating the key and so a bug in key
generation is easily identifiable while Collins’
keys bear too little correspondence to data and
so cannot be easily debugged but they can be
generated faster. Similarly, Collins uses array
offsets to refer to edges where we use pointers
which will make our code slightly faster, but it
makes tracking an edge through parsing much
easier in Collins’ system.

‘Magic numbers’ are another area in which
bugs can easily creep into the system — for in-
stance, setting the maximum number of nonter-
minals to 100 might be correct at first, but later
adding -C complements could easily overflow
this and lead to data corruption. We managed
to avoid many of the problems here by automat-
ically generating the declarations of constants
from the input files, so any change to the in-
put files will automatically appear in the source
code. Similarly, many functions in the probabil-
ity model take a dozen or so parameters and get-
ting these in the wrong order will not cause any
typecast errors since they are all integers, it will
just generate invalid output. This problem was
avoided by implementing basic datatypes as dif-
ferent classes so that incorrect orders does result
in typecast errors. Curiously, Collins uses magic
numbers everywhere and I often wondered how
he managed to debug them in his parser.

7.5 Debugging methodology and test
suites

Debugging the parser turned out to be ex-
tremely difficult. It is not so hard to detect the
presence of a bug, but isolating where in the
process this bug is introduced can take a week.
In a normal program a bug can be isolated by
stepping through its operations on simple input
but with a statistical parser there are far too
many operations to do this for even the most
trivial input. The best approach we found was
to spend a lot of effort detecting bugs as soon as
possible after they are introduced. For instance,
if a bug in the tokeniser leads to a small number
of events not being generated then it is critical
to detect this problem during the generation of
the event file rather than during the execution
of the parser.



In order to facilitate this, after testing ev-
ery function we wrote an automated test suite
that rechecks functions every time the system
is built. For example, the probability model
can be checked by comparing the counts it de-
rives to those produced with grep. If a bug
is later introduced in the input to this func-
tion then it will likely cause some testcase to
fail. Similarly, the system is liberally scattered
with assert statements that perform every-
thing from internal bounds checking to checking
that the skiplist is in sorted order and still has n
elements. As a last resort, we also made exten-
sive use of the memprotect kernel call to lock
any data that was not currently being edited
(such as the hash tables). This allowed us to
catch a number of bugs where we had forgotten
an assertion.

A final comment is that we found high-level
debugging to be much less useful than low-level
debugging. For instance, by examining the sen-
tences the parser performs poorly on it may be
possible to infer it has a problem. But this ap-
proach turned out to be significantly more time-
consuming than simply verifying every function
independently, mainly because the parser was
too big to find where the bug was after the high-
level approach found the existence of a bug.

8 Conclusion: results of our own
parser

The parser we implemented performed almost
identically to Collins’ as regards precision and
recall (84.5% as opposed to 85%). In over
95% of cases, our parser produces exactly the
same output as Collins’, with differences partly
caused by small undocumented tweaks Collins
made, such as using the headword from a child
instead of the parent during coordination, and
partly due to some late design changes made
as our understanding of Collins’ algorithm im-
proved. Our system is significantly more mod-
ifiable than Collins. This is because it was de-
signed with that in mind, and also because all of
the seperate components used are tightly seper-
ated out into different classes with well specified
interactions. Because of this, my system is well
suited as a platform for further research.
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Abstract

In this paper we present PENG-D, a proposal
for a controlled natural language that can be
used for expressing knowledge about resources
in the Semantic Web and for specifying on-
tologies in a human-readable way. After a
brief overview of the main Semantic Web en-
abling technologies (and their deficiencies), we
will show how statements and rules written in
PENG-D are related to (a subset of) RDFS and
OWL and how this knowledge can be translated
into an expressive fragment of first-order logic.
The resulting information can then be further
processed by third-party reasoning services and
queried in PENG-D.

1 Introduction

“The Semantic Web is an extension
of the current web in which informa-
tion is given well-defined meaning, bet-
ter enabling computers and people to
work in cooperation.” (Berners-Lee et
al., 2001)

This claim falls short, since the languages –
based on RDF – that have been designed for
making statements about Web resources and
for specifying ontologies are not built for hu-
man consumption. These languages have been
developed with machine processability and au-
tomatic information exchange in mind (Manola
and Miller, 2004; Smith et al., 2004). They are
painful to read, write and understand for non-
specialists.

To overcome the disadvantages of machine-
processable formal languages based on RDF and
full natural languages that are far too expressive
for the task at hand, we will introduce PENG-
D, a controlled natural language that reconciles
rigid formality and natural familiarity.

In a nutshell, a controlled natural language
is a subset of a natural language that has been

restricted with respect to its grammar and its
lexicon. Grammatical restrictions result in less
complex and less ambiguous sentences, while
lexical restrictions reduce the size of the lexi-
con and the meaning of the lexical entries for
a particular domain (Huijsen, 1998). Using a
controlled language for knowledge representa-
tion, specification texts become easier to read
and understand for humans, and easier to pro-
cess for machines (Schwitter, 2004).

Traditionally, controlled natural languages
have been classified into two major cate-
gories: human-oriented and machine-oriented
controlled natural languages. Human-oriented
controlled natural languages have been designed
to improve the readability and understand-
ability of technical documents, particularly for
non-native speakers. An example are aircraft
maintenance documents in the aerospace indus-
try (AECMA, 2004). Machine-oriented con-
trolled natural languages have been developed
to ameliorate the quality of machine translation
for technical documents (Mitamura, 1999) and
for writing specification texts that can be easily
translated into a formal language (Fuchs et al.,
1999; Schwitter, 2002; Sowa, 2004).

Most of these machine-oriented controlled
natural languages are defined by their trans-
lation into first-order logic that automatically
restricts their expressivity to a small subset of
constructions compared to full English.

Since it is very likely that the emerging Se-
mantic Web will finally rely on a variant of
description logic as knowledge representation
formalism and since description logic is a de-
cidable fragment of first-order logic (Grosof et
al., 2003), a machine-oriented controlled natu-
ral language is required that is a compromise
between expressive power, complexity and com-
putability.

PENG-D is a proposal for such a machine-
oriented controlled natural language that fulfils
these requirements.



2 Semantic Web Enabling
Technologies

The Semantic Web aims at making Web re-
sources better accessible to automated agents
by adding information (meta-data) that de-
scribes Web content in a machine-readable way.
It is based on RDF, which relies on eXtensible
Markup Language (XML) for syntax, Uniform
Resource Identifiers (URIs) for naming, and
on the RDF Vocabulary Description Language:
RDF Schema (RDFS) for describing meaning
and relationship of terms (Manola and Miller,
2004). RDF and RDFS form the lowest layers in
the functional architecture of the envisioned Se-
mantic Web. Web ontology languages and rule
languages are expected to build the next two
layers on top of RDFS to supply richer mod-
elling primitives and reasoning support. Unfor-
tunately, the relationships between RDFS and
Web ontology languages are not clearly speci-
fied (Horrocks and Patel-Schneider, 2003).

2.1 RDF
RDF is a datamodel for representing meta-data
about Web resources. The basic RDF model
contains just the concept of a statement, and
the concept of reification - making a statement
about a statement. RDF is based on the idea of
using URI references to identify the resources
referred to in a RDF statement. RDF uses
a particular terminology for talking about the
various parts of a statement. The part that
identifies what the statement is about is called
the subject. The part that identifies the prop-
erty of the subject that the statement specifies is
called the predicate and the part that identifies
the value of that property is called the object.
In RDF, the English sentence

Nic is a human.

could be represented by a statement having
three URI references:

http://www.example.org/about-nic#nic
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.example.org/biology#Human

RDF models statements as nodes and arcs
in a graph. In this notation a statement is
represented as a node for the subject, a node
for the object, and an arc for the predicate
directed from the subject node to the object
node. RDF/XML is a graph serialisation syn-
tax and provides a machine-processable way to
record and exchange graph-based RDF state-

ments (Beckett, 2004). Here is an excerpt of an
RDF/XML document:

<?xml version=“1.0” encoding=“ISO-8859-1”?>

<rdf:RDF
xmlns:rdf=
“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=“http://www.example.org/about-nic#”
xmlns:bio=“http://www.example.org/biology#”
xmlns:con=“http://www.example.org/contact#”>

<bio:Human rdf:about=#nic>
<con:title>Dr.</con:title>
<con:name>Nic Miller</con:name>
<con:name>Nicolas Miller</con:name>
<bio:pet>

<bio:Labrador>
<con:name>Rex</con:name>

</bio:Labrador>
</bio:pet>

</bio:Human>

</rdf:RDF>

The rdf:RDF element is the root of the RDF
document and defines the XML document to be
an RDF document containing a reference to the
xmlns:rdf namespace and to three other names-
paces. Qualified names such as bio:Human or
con:title are shorthands for full URI references
whereas an URI reference with an empty prefix
stands for the current document.

RDF/XML is the standard interchange for-
mat for RDF on the Semantic Web, but there
exists a non-XML serialisation alternative called
Notation3 (N3) that is generally accepted to be
easier to use and is convertible to RDF/XML
and vice versa (Berners-Lee, 2001). N3 was
designed with human-readability in mind and
was created as an experiment in optimising the
“expression of data and logic in the same lan-
guage” (Palmer, 2002). This optimisation can
be seen as a first step towards the design of a
controlled natural language. Below is the au-
tomatic translation of our RDF/XML excerpt
into N3 using CWM, a forward chaining rea-
soner that supports data conversion (Berners-
Lee, 2003):

@prefix : <http://www.example.org/biology#>.
@prefix con: <http://www.example.org/contact#>.

<#nic> a :Human;
:pet [a :Labrador; con:name “Rex”];
con:name “Nic Miller”, “Nicolas Miller”;
con:title “Dr.”.

Without doubt this representation is easier
to read, to create and to understand by hu-
mans. However, there are still a couple of nota-



tional particularities which non-specialists have
to master.

It would be much easier if a human could ex-
press this information in a well-defined subset
of natural language, for example as follows:

Nic is a human who has Dr. as title.
Nic’s name is Nic Miller and Nicolas Miller.
Nic’s pet is a labrador that has the name Rex.

Obviously the writing process would need to
be supported by an intelligent writing assistant
that tells the user which constructions are ad-
missible.

2.2 RDF Schema
So far, we have only addressed the syntax of
RDF and have not considered the meaning of
terms used in XML/RDF and N3. RDF it-
self provides no means for defining application-
specific classes and properties. Instead, such
classes and properties need to be described via
RDF Schema (RDFS), an RDF-based vocabu-
lary description language (Brickley and Guha,
2004). RDFS does not provide an application-
specific vocabulary for classes and properties
but it offers the facilities that are needed to de-
scribe such classes and properties. Basically,
RDFS provides the means for constructing a
type hierarchy for RDF.
2.2.1 Describing classes
A class in RDFS corresponds to the generic con-
cept of a type or category. In N3 we can declare
a class such as Dog in the following way:

:Dog a rdfs:Class.

This states that Dog is a type of rdfs:Class. If
there is a hierarchical relationship between two
classes, then this can be stated, for example, as
follows:

:Labrador a rdfs:Class; rdfs:SubclassOf :Dog.

This says that Labrador is a rdfs:Class which is
a subclass (rdfs:SubclassOf) of the class Dog.
2.2.2 Describing properties
In RDFS, properties are used to declare a rela-
tionship between two things and are described
as instances of class rdf:Property:

:pet a rdfs:Property.

This states that pet is a type of rdfs:Property.
RDFS also provides vocabulary for describing
how properties and classes are intended to be
used together. For example in

:pet rdfs:domain :Human; rdfs:range :Animal.

the rdfs:domain property is used to indicate
that the values of the subject of the property pet
are instances of the class Human and the values
of the object of the same property are instances
of the class Animal.

In some respect, RDFS is a very limited
“knowledge representation” language with few
modelling primitives and more expressive power
is necessary to describe Web resources in suf-
ficient detail. Apart from this expressive re-
striction, RDFS has a non-standard and non-
fixed layer meta-modelling architecture, which
makes some elements in the model have dual
roles in the RDFS specification. This makes it
extremely difficult to layer more expressive on-
tology and rule languages on top of RDFS (Pan
and Horrocks, 2003).

2.3 OWL
The recognition of RDFS’s limitations led to the
development of OWL. The OWL language pro-
vides three increasingly expressive sublanguages
(OWL Lite, OWL DL and OWL Full) that have
been developed as a trade-off between expressiv-
ity and efficiency. OWL Lite supports users who
need a classification hierarchy and simple con-
straint features combined with desirable compu-
tational complexity. OWL DL is closely related
to description logic (DL) and supports users
who want the maximum expressiveness without
losing computational completeness and decid-
ability. OWL Full is designed for users who
require the meta-modelling facilities of RDFS
with no computational guarantees (Smith et al.,
2004).

OWL uses the same syntax as RDF (and
RDFS) to represent ontologies and uses RDFS
resources directly whenever the required func-
tionality already exists in RDFS. For example,
OWL uses rdfs:subClassOf to assert subclass re-
lationships and specific classes and properties to
extend RDFS functionality, e.g., the equivalent-
Class axiom is used to link a class description to
another class description:

<owl:Class rdf:ID=“Man”>
<rdfs:subClassOf rdf:resource=“#Human” />
<owl:equivalentClass rdf:resource=

“#MaleAdult” />
</owl:Class>

While syntactic layering of the these lan-
guages satisfies the design requirements of the
Semantic Web, the semantic layering is more
problematic, since OWL is largely based on



DL which is a decidable fragment of first-order
logic. The semantics of a DL is normally given
by a standard first-order model theory, while
the semantics of RDFS is given by a non-
standard model theory, because of its meta-
modelling facilities (Hayes, 2004). This incom-
patibility leads to serious problems when try-
ing to layer first-order based languages on top
of RDFS, since it is not clear how applications
would be able to reason with these languages.

3 Description Logic Programs

Instead of relying on RDFS, conventional first-
order logic (FOL) has been proposed as the
semantic underpinning of the Semantic Web.
From a theoretical point of view, it is well
known that reasoning in FOL is undecidable.
However, there are many decidable subsets of
FOL that have been extensively studied and
many reasoning systems have been developed
for FOL and its sublanguages. Although this
FOL-based approach is not immediately com-
patible with RDFS, it is compatible with a sim-
plified version of RDFS – “the FOL subset of
RDFS”(Horrocks and Patel-Schneider, 2003).

Recently, the fusion of DL ontologies and rule
languages (Horn logic) has been studied and
this effort resulted in the Description Logic Pro-
grams (DLP) paradigm (Grosof et al., 2003).
DLP is defined as the expressive intersection of
OWL Lite and Horn logic (without negation and
without function symbols) and captures a sig-
nificant part of OWL Lite. The interoperability
between OWL Lite and Horn logic is expressed
by a meaning preserving bidirectional transla-
tion of premises and inferences from the DLP
fragment of OWL Lite to Horn logic, and vice
versa from the DLP fragment of Horn logic to
OWL Lite. In this paradigm, a mapping func-
tion translates for example the DL axiom

DL: A ! ∃R.C # B ! ∀P.D

into Horn logic (HL) rules

HL: b(X) ← a(X), r(X,Y), c(X).

d(Z) ← a(X), r(X,Y), c(X), p(X,Z).

and vice versa (Grosof et al., 2003). Please
note that the Horn rules here correspond to defi-
nite Horn clauses (with exactly one positive lit-
eral). All variables are universally quantified
at the outer level and have scope over the en-
tire clause and only fact-form conclusions (as in
logic programs) are available.

4 PENG-D

PENG is a machine-oriented controlled natural
language that has been developed to write spec-
ifications for knowledge representation (Schwit-
ter, 2002; Schwitter et al., 2003; Schwitter,
2004). While PENG was designed for writing
specifications that are first-order equivalent, the
proposed language PENG-D has formal prop-
erties that are equivalent to DLP. Although
PENG-D is weaker than PENG, it provides a
clear computational pathway to layer more ex-
pressive constructions on top of it.

4.1 Architecture of PENG-D
The planned architecture of the PENG-D sys-
tem looks similar to the PENG system but offers
support for ontology construction. The PENG-
D system consists of four main components: a
look-ahead text editor, a controlled language
(CL) processor, an ontology component and an
inference engine.

4.2 The text editor
The text editor can be used either to construct
ontologies (TBox mode) or to assert knowledge
about a specific domain (ABox mode). The user
does not need to learn the rules of the controlled
language explicitly, since the writing process of
the user is guided by the look-ahead text editor.
The first thing that the user sees, for example,
after opening the text editor in the ABox mode,
are look-ahead categories:

[Proper Noun, Determiner, [There is a]]

After entering, for example, the name Nic,
the look-ahead editor displays further look-
ahead categories:

Nic [Verb, Relative Pronoun, [’s]]

The user can now type the word that belongs
to one of these look-ahead categories directly
into the editor or select it from a context menu.
This context menu contains entries that have
been derived from the ontology used. Name-
space definitions are handled via the editor.

4.3 The grammar of PENG-D
The grammar of PENG-D describes how sim-
ple sentences are built and provides construc-
tors to join simple sentences into complex sen-
tences. Anaphoric relations between nominal
constituents in sentences can be expressed via
definite noun phrases, proper nouns, and vari-
able names.



4.3.1 Simple sentences
Simple sentences are used for making state-
ments in the ABox. Note that the result of these
statements are always ground terms containing
no variables. In a first approximation, we can
describe the structure of simple sentences in the
following way:

sentence → subject + predicate
subject → nominal head
subject → specifier

{+ pre-nominal modifier}
+ nominal head
{+ post-nominal modifier}

predicate → verbal head + complement

These rules need to be carefully restricted to be
useful for our purpose:

Specifier. There are only two approved de-
terminers that are available in the specifier po-
sition: the definite determiner the and alterna-
tively the indefinite determiner a (with a “spe-
cific reading”):

The dog Rex ...
A dog Rex ...

Apart from that, a possessive construction
such as Nic’s can be used in the specifier po-
sition, for example:

Nic’s dog Rex ...

Once a specific instance has been introduced,
we can refer to it:

The dog Rex ... The dog ... Rex ...

Pre-nominal modifier. A pre-nominal
modifier can only consist of one single adjective
in the positive form. Adjectives can be used
to give additional information about a resource
(and are interpreted intersectively):

The friendly dog Rex ...

Nominal head. The nominal head must be
realised by a proper noun, a common noun or a
relational noun. Common nouns and relational
nouns (in subject position) always need a deter-
miner. The structure of nouns can be simple or
compound like in full English:

Nicolas Miller ...
The hunting dog Rex ...
The dog Rex of ...

Post-nominal modifier. A post-nominal
modifier can be realised in form of an of-
construction, a finite relative clause or a named
variable that starts with one of the four capi-
tal letter X, Y, Z or W (and is interpreted as a
proper noun):

The dog Rex of Nic ...
The dog Rex which is a labrador ...
The dog X ...

Verbal head. Only transitive verbs, the con-
struction has ... as ... and the copula be are
available in PENG-D. Furthermore, verbs can
only be used in the simple present tense, the
active voice, the indicative mood, and the third
person singular:

Nic likes Rex.
Nic has Rex as friend.
Nic is ...

Verbs are used for property assertions, apart
from the copula be that can be used in con-
structions for class assertions and property as-
sertions. Note that the possessive construction
Nic’s dog Rex and the of-construction The dog Rex
of Nic result in the same translation as the sen-
tence Nic has Rex as dog. The editor will displays
a paraphrase for the possessive construction and
for the of-construction.

Complement. The complement position
can be realised by most of the syntactic struc-
tures that are approved for the subject position.
Additionally, it allows for the prepositional con-
struction has ... as ... and for coordinated struc-
tures:

Nic is married to Sue.
Nic has Rex as dog.
Nic has Rex as dog and Tweety as bird.

There-sentences. A special case are “sko-
lemized” there-sentences that have the following
form:

There is a dog Rex that is happy.

4.3.2 Compound sentences
Constructors join simple sentences into complex
sentences. The main constructors that are used
on this level are: if, iff, and and or, for example:

If X is a dog then X is an animal.
If X is a man then X is a male and X is an adult.

Conditional (and biconditional) sentences are
only available in the TBox for constructing on-
tologies. The nominal heads of such sentences
can be realised by variables.

4.4 From PENG-D to HL and DL
We will now show how sentences of PENG-D are
related to HL and DL statements, explain the
function of these statements and explain which
constraints apply. We do this by first looking at
the RDFS statements that belong to the FOL



subset of RDFS and then by considering those
OWL Lite statements that extend the expres-
sivity of the FOL subset of RDFS but are still
contained within DLP, that is, the intersection
of HL and DL. Thereafter, we will discuss how
constructors in PENG-D sentences are reflected
in HL and DL and which consequences the use
of these constructors has.

4.4.1 RDFS statements
There are only two types of ABox statements
that belong to the FOL subset of RFDS: class
assertions and property assertions. The TBox
statements that belong to this subset are: sub-
class, subproperty, range and domain state-
ments.

Class assertions. Classes let us express
membership information about individuals:

CL: Nic is a human and Rex is a dog.
HL: human(nic). dog(rex).
DL: nic : Human ! rex : Dog

Property assertions. Properties let us ex-
press specific facts about individuals:

CL: Nic has the title Dr.
HL: has title(nic,doctor).
DL: <nic,doctor> : hasTitle

Subclass. Subclasses let us organise classes
into a hierarchical taxonomy. Whenever the in-
dividual being an instance X of one class, this in-
dividual will necessarily be an instance of some
other class:

CL: If X is a labrador then X is a dog.
HL: dog(X) ← labrador(X).
DL: Labrador # Dog

Subproperty. Properties like classes can be
arranged in an hierarchy. We can declare a
property as a subproperty (specialisation) of an
existing property:

CL: If X has Y as dog then X has Y as animal.
HL: has animal(X,Y) ← has dog(X,Y).
DL: hasDog # hasAnimal

Domain of a property. We can restrict
the domain of a property. In our example, the
property has as dog has a domain of human. It
relates instances of the class human to instances
of Y:

CL: If X has Y as dog then X is a human.
HL: human(X) ← has dog(X,Y).
DL: ' # ∀hasDog−.Human

Range of a property. Similarly, we can
restrict the range of a property. In our example,

the property has as dog has a range of animal and
ties instances of class animal to instances of X:

CL: If X has Y as dog then Y is an animal.
HL: animal(Y) ← has dog(X,Y).
DL: ' # ∀hasDog.Animal

To restrict the domain and the range at the
same time, we can write:

CL: If X has Y as dog then X is a human
and Y is an animal.

4.4.2 OWL Lite statements
OWL Lite extends RDFS with additional TBox
axioms. It adds explicit statements about class
and property equivalence as well as the inverse
of a property and transitivity.

Class equivalence. It is sometimes useful to
indicate that a particular class in an ontology is
equivalent to (i.e. has the same extension as)
another class. In PENG-D, equivalence can be
expressed via two conditional sentences but – as
we will see below – this can be simplified using
a biconditional operator:

CL: If X is a man then X is a male adult.
If X is a male adult then X is a man.

HL: male(X) ← man(X).
adult(X) ← man(X).
man(X) ← male(X), adult(X).

DL: Man ≡ Male ! Adult

The biconditional operator Iff is a shorthand
to express in one sentence that two (possible
complex) class descriptions have precisely the
same instances, for example:

CL: Iff X is a man then X is a male adult.

Property equivalence. Similar to class
equivalence, we can express that a particular
property is equivalent to another property:

CL: Iff X has Y as price then X costs Y.
HL: cost(X,Y) ← has price(X,Y).

has price(X,Y) ← cost(X,Y).
DL: cost ≡ hasPrice

Inverse of a property. If a property is the
inverse of another property, then the variables
in the first property switch their argument po-
sition in the second property, for example:

CL: Iff X has Y as child then Y has X as parent.
HL: has parent(Y,X) ← has child(X,Y).

has child(X,Y) ← has parent(Y,X).
DL: hasChild ≡ hasParent−

Transitivity of a property. Transitivity is
a property of a binary relation such that if X and
Y are related, and Y and Z are related, then it
follows that X and Z are also related, for all X,



Y, and Z for which the relation may apply. For
example the property ancestor of is transitive:

CL: If X is an ancestor of Y and Y is an
ancestor of Z then X is an ancestor of Z.

HL: ancestor(X,Z) ← ancestor(X,Y), ancestor(Y,Z).
DL: ancestor + # ancestor

4.4.3 Constructors
The use of constructors is restricted in PENG-
D, because they can not be expressed in HL or
because they only be used in a restricted form
in DL.

Conjunction. A conjunction of classes in
the antecedent of a conditional sentence can be
directly expressed in the body of a HL rule and
creates no problem for DL:

CL: If X is married and X is a woman then X is
a wife.

HL: wife(X) ← married(X), woman(X).
DL: Married ! Woman # Wife

Conjunction in the consequent of a condi-
tional sentence becomes a conjunction in the
head of the corresponding HL rule, however this
can be transformed into a pair of HL rules:

CL: If X is a man then X is male and X is a person.
HL: male(X) ← man(X).

person(X) ← man(X).
DL: Man # Male ! Person

Disjunction. Disjunction of classes in the
antecedent of a conditional sentence becomes a
disjunction in the body of the corresponding HL
rule. This again can be transformed into a pair
of HL rules:

CL: If X is a woman or X is a man then X is
a human.

HL: human(X) ← woman(X).
human(X) ← man(X).

DL: Woman ) Man # Human

When a disjunction of classes occurs in the
consequent of a conditional sentence, then it be-
comes a disjunction in the head of the HL rule,
but this cannot be expressed within HL.

Universal restriction. In DL, the univer-
sal quantifier can only be used in restrictions of
the form ∀P.C. Therefore, universal restriction
can only be expressed in the following form in
PENG-D:

CL: If X is a women and X is married to Y
then Y is a husband.

HL: husband(X) ← woman(X), married to(X,Y).
DL: Woman # ∀marriedTo.Husband

Expressing universal restriction of the form in
the consequent of a conditional sentence would

require negation in the rule body of HL.

Existential restriction. In DL, the existen-
tial quantifier can only be used in existential re-
strictions of the form ∃P.C. When an existential
restriction occurs in the antecedent of a condi-
tional sentence, it becomes a conjunction in the
body of HL:

CL: If X is married to Y and Y is a husband
then X is a wife.

HL: wife(X) ← married to(X,Y), husband(Y).
DL: ∃marriedTo.Husband # Wife

However, if the existential restriction occurs
in the consequent of a conditional sentence, then
it becomes a conjunction in the head of corre-
sponding HL rule with a variable that is existen-
tially quantified. This cannot be handled in HL
and would require transformation and skolem-
ization in a logic program.
4.4.4 Beyond DLP
PENG-D is potentially a good starting point
for language layering. More expressive language
constructs could allow, for example, for ex-
pressing full existential quantification, instance
equivalence, enumerating members of a class
and cardinality constraints. While such descrip-
tions cannot be directly expressed in DLP, many
of them can be implemented in logic program-
ing environments. Note that recursive HL rules
such as transitivity need to be rewritten anyway
for practical applications.

4.5 The inference engine
We are currently experimenting with various
DL (and FOL) inference engines for question
answering in PENG-D. Although not optimal,
available FOL provers could provide reasoning
services for more expressive DLs.

5 Conclusions

In this paper we referred to a number of de-
ficiencies of RDFS as a “knowledge represen-
tation” language for the envisioned Semantic
Web. Layering more complex ontology and rule
languages on top of RDFS is not straightfor-
ward, because of its non-standard and non-fixed
layer meta-modelling architecture. The rela-
tively new DLP paradigm offers a promising
first-order based alternative that enables onto-
logical definitions to be combined with rules.
To make such machine-processable information
easily accessible for non-specialists, we proposed
the use of PENG-D, a machine-oriented con-
trolled natural language that has the same ex-



pressivity as DLP. We expect that PENG-D
is easy to write for non-specialists with the
help of a look-ahead text editor, easy to read
in contrast to RDF-based notations, and easy
to translated into a corresponding machine-
processable format. In brief: PENG-D has
the potential for complementing these more
machine-oriented notations.
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Abstract 

In a world where information is 
increasingly delivered to users via different 
devices with dramatically different 
constraints and capabilities, it is becoming 
crucial to consider how the presentation of 
information must be adapted to suit 
specific devices and user contexts. To 
avoid confusing and disorienting the users 
as they switch between devices, the content 
and structure of information should be kept 
constant while its presentation must be 
optimised for each device to ensure 
usability. In this paper, we distinguish 
between two types of decisions that must 
be made during the presentation planning 
stage of an information delivery system: 
local decisions, which are based only on 
the content or features of the node itself, 
and global decisions, which are based on 
the entire structure of the discourse tree. 
We present a generic algorithm for making 
global decisions, driven by the discourse 
tree structure and contextual 
characteristics.  

1 Introduction 

In a world where information is increasingly 
delivered to users via different devices with 
dramatically different constraints and capabilities, 
it is becoming crucial to consider how the 
presentation of information must be adapted to suit 
specific devices and user contexts. To perform this 
adaptation and customisation manually is an 
expensive and time-consuming task. Additionally, 
as devices become increasingly interconnected, 
and as users are able to switch from one to another 
at will, it is essential to avoid confusing and 
disorienting the user (Chincholle, 2000). To this 
end, it is desirable to keep the content and structure 
of a document constant while optimising the 
presentation for each device to ensure usability. 
This is especially true for small or mobile devices.    

Figure 1 illustrates this issue. The screen on the 
left shows a report that might have been 

dynamically generated for a PC based web browser 
in response to a query about “financial threats to 
the Russian space program”. This report integrates 
information retrieved from multiple sources, and 
the information is structured and organised in order 
to be easily understandable. In particular, each 
piece of information is labelled with its role in the 
report. The most important part of the report is 
shown in bold at the very top. Then there is 
elaboration information, which gives more 
information about this first sentence. This is 
followed with information indicating the likely 
impact (consequence). The right hand side of 
Figure 1 shows the presentation of the same 
information, now delivered on a mobile phone. 
Given the different affordability of the delivery 
channel, the presentation and, in particular, the 
navigation is quite different, while the content and 
structure of the information being presented is 
constant.  

Our approach to ensuring coherence and 
consistency of information across devices is to use 
Myriad (Paris et al., 2004), a platform for 
contextualised information retrieval and delivery 
based on theories and techniques from natural 
language generation. Our system produces virtual 
documents (or, more generally, presentations) by 
essentially going through two main stages: first it 
selects, retrieves and organises information to 
present to the user, taking the context into account 
(e.g., the task at hand, the user, the environment); 
then, taking the result of the first stage, it decides 
how to best deliver the selected information, once 
again taking the context into account, in particular 
the delivery device. 

The remainder of this paper is structured as 
follows: we first present the Myriad architecture 
and briefly explain how it allows for coherent 
tailored information delivery. We introduce the 
two main stages involved: content and structure 
planning, and presentation planning. We then 
explain in detail the presentation planning stage, 
presenting how we came to decide that this stage 
was itself divided into two steps, which we present 
in turn, focusing especially on the “information 
assembly” step. 



 
Figure 1: Adapting the presentation of information to suit different devices 

 
Finally, we briefly introduce the last stage of the 

information delivery process, the realisation. The 
paper ends with some concluding remarks. 

 

2 The Myriad Architecture  

The core of the Myriad architecture is our 
information planning engine, which we call the 
Virtual Document Planner (VDP) (Colineau et al., 
2004b).  The VDP is based on a typical Natural 
Language Generation (NLG) architecture, where 
the linguistic resources are separate from the 
planning engine. The VDP is based on the Moore 
and Paris (1993) text planner, and, as in that text 
planner, the resources are represented as plans. 

The VDP works essentially as follows. Given a 
top level communicative goal (an overall purpose 
for presenting information), the engine uses a 
library of discourse rules (plan operators) to select 
and organise the content. Then, a library of 
presentation plans is employed to make local 
presentation decisions about how to present 
content. The output of the discourse planning stage 
is a discourse tree, which is then augmented 
(extended) during the presentation planning stage. 
This is shown schematically in  
Figure 2, where content represents the tree 
constructed as a result of the content and structure 
planning stage, and presentation represents the 
extension done during the presentation planning 

stage to take the specific delivery device into 
account. As we see from the figure, content and 
structure can thus remain constant across devices. 
Finally, the content represented in the extended 
tree is realised in syntax appropriate for the output 
device during the realisation phase. For example, 
referring back to Figure 1, during this phase, the 
content tree would be realised into HTML for the 
PC based display, while the mobile delivery might 
require WML. 

As in (Moore and Paris, 1993), our approach 
exploits rhetorical relations, also called coherence 
relations, based on Rhetorical Structure Theory 
(RST) (Mann and Thompson, 1988) to guarantee 
the coherence of the resulting presentation. The 
discourse and presentation rules both specify 
coherence relations that must hold between sibling 
sub-goals created by each goal decomposition. 
These coherence relations indicate how the various 
discourse segments and pieces of information work 
together to achieve the top level communicative 
goal. This was illustrated in Figure 1, where the 
second paragraph was related to the first paragraph 
by an elaboration relation, while the third 
paragraph was related to it by a consequence 
relation. Using terminology from RST, the first 
paragraph is the nucleus, while the other two 
paragraphs are satellites. 

 



 
 

Figure 2: Content and presentation planning for 
two different devices 

 
For reasons of simplicity and modularity, we 

explicitly maintain a conceptual and architectural 
separation between the different processes of 
content planning, presentation planning and 
surface realisation. This separation is closely 
analogous to the distinction between document 
planning, micro planning and surface realisation 
adopted by many natural language generation 
systems (e.g., McKeown, 1985; Hovy 1988; Moore 
and Paris, 1993).  

We exploited this generation paradigm to build 
several prototypes of information delivery systems, 
in particular one in the travel domain (cf., 
Wilkinson et al., 2000; Paris et al., 2001; Paris, 
2002) and one in the corporate domain, where 
users received a brochure about CSIRO tailored to 
their interest and needs (cf. Paris et al., 2003).  In 
these prototypes, the process was exactly as 
illustrated in Figure 2.  

Through these prototypes, however, we have 
now come to recognise that, during the 
presentation planning stage, we must distinguish 
between two types of decisions:  

• local decisions, which are based only on the 
content or features of the node itself, and 

• global decisions based on the entire 
structure of the discourse tree.  

An example of a local decision might be to 
‘present the content of this node in a table’ or to 
present that content as a bulleted list. In contrast, 
deciding to create a navigation index and 
organising content pages appropriately around this 
index requires more global knowledge of the 
discourse tree structure. 

Thus, the process we illustrated in Figure 2 can 
really only be used to make local decisions. Failing 
to make the distinction between these two types of 
decisions resulted in discourse operators that 
embedded decisions that should really occur during 
the presentation stage, while taking the whole 
discourse tree into account.  This thus blurred the 
separation between content and presentation 
planning that we originally desired. 

To address these shortcomings, we have 
designed a new layer within the presentation 

planning stage. This layer implements the 
reasoning that must occur during presentation 
planning but that must make decisions based on the 
global discourse structure. Our aim in the work 
presented here was four fold:  

o keep the conceptual separation between 
content and structure planning and 
presentation planning, while still being able 
to make a number of decisions that affect the 
final presentation (in particular, decisions 
about navigation); 
o explicitly decouple, in the presentation 
planning,  local decisions from global 
decision; 
o decouple the decision process (or 
algorithm) from the information needed to 
make decisions. This information might 
include characteristics of the device or of the 
user; and, finally, 
o produce a generic set of operators which 
can be used to produce reasonable (but not 
necessarily highly optimised) output for a 
large range of information domains, 
discourse structures and output devices. This 
is in contrast with our other work, including 
the DFDMSA1 project, where our aim is to 
produce multimedia output that is optimised 
for the task at hand (Colineau et al., 2004). 

In the remainder of this paper, after briefly 
describing the process implementing the local 
presentation decisions, we focus on the processing 
stage which enables the system to make global 
presentation decisions based on the discourse tree. 

 

3 Information Presentation 

We now propose to account for the two types of 
decisions we introduced in the previous section by 
having two steps, which we term “local 
presentation planning” and “information 
assembly”. Each of these steps exploits its own 
mechanism. We describe them in turn. As 
mentioned above, when the system reaches the 
presentation planning stage, a discourse tree has 
already been constructed through discourse 
planning.  

3.1 Local Presentation Decisions 

Local presentation planning is as we had 
originally envisioned and implemented it. This 
stage thus extends the current discourse tree. It is 
performed using standard Moore and Paris (1993) 
inspired plan operators.  
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<operator> 
<effect>InitialiseAssembly ?nodeId</effect> 

 <constraint>(discourse:isRootNode(?nodeId))</constraint> 
 <constraint>(set ?user (user:getCurrentUser()))</constraint> 
 <constraint>(set ?deviceModel (device:getCurrentDevice(?user)))</constraint> 
 <constraint>(set ?Layout (device:chooseLayout(?deviceModel)))</constraint> 
 <constraint> 

(set ?contentFrame (layout:chooseContentFrame(?Layout ?nodeId)) ) 
</constraint> 
<operation> 
(discourse:annotateFeature(contentPaneSpace device:getSpace(?contentFrame)) 
</operation>  

 <operation>(discourse:annotateFeature(contentFrame ?contentFrame))</operation>  
 <operation>(discourse:annotateFeature(Layout ?Layout))</operation>   
 <operation>(post ProcessRootNode ?Layout ?contentFrame)</operation>  
</operator> 
<operator> 
 <effect>ProcessRootNode ?Layout ?contentFrame</effect> 
 <constraint>(layout:hasIndexFrame(?Layout))</constraint> 
 <constraint>(layout:isRefillable(?contentFrame))</constraint> 
 <constraint>(set ?indexFrame (layout:getIndexFrame(?Layout)))</constraint> 
 <constraint>(set ?depthLimit (layout:getDepthLimit ?indexFrame))</constraint> 
 <constraint>(set ?realisationOrder 1)</constraint> 
 <operation>(discourse:annotateFeature(indexDepth 0))</operation>  
 <operation>(discourse:annotateFeature(indexFrame ?indexFrame))</operation> 
 <operation>(discourse:annotateFeature(indexDepthLimit ?depthLimit))</operation> 
  

<operation>(foreach ?child (discourse:getChildrenInOrder(?nodeId))  
 (post ProcessNode ?child ?Layout (layout:chooseContentPage(?child,

?contentFrame)) 
  ?realisationOrder++ ?indexFrame)) 
 </operation> 
</operator> 

Figure 3: Assembly operators for the root node of the discourse tree 

 
As explained earlier, this stage augments the 

discourse tree at the leaf nodes by performing 
further goal decomposition. This stage uses a 
specific library of presentation plan operators. 
Decisions on how to present specific discourse 
content (contained in the leaf nodes of the 
discourse tree) are made during this step. Examples 
of presentation decisions made could include 
marking up titles with specific style and font 
information, or choosing to display certain 
information as a list. Throughout this process, 
presentation decisions are made based on node-
local information; the global structure of discourse 
tree is not considered. In certain circumstances, 
presentation planning may reason about relations 
between immediate siblings, but not about more 
global tree structure. For example, if a node is 
related to a sibling nucleus by an RST relation 
“preparation”, a decision might be made to mark 
up the content of a node with specific style and 
font information appropriate for a heading.  
Previous work in natural language generation has 
shown that rhetorical text organisation, as 
embodied in the RST relations in a discourse tree, 
can be used to motivate text-formatting decisions 
(e.g., Hovy and Arens, 1991). 

 
 
 

3.2 Global Presentation Decisions 

The second stage deals with presentation 
decisions which require knowledge of the global 
structure of the discourse tree. This stage primarily 
assembles and combines pieces of information 
based on how they are related to each other within 
the discourse tree and on the constraints of the 
environment (e.g., the delivery device). We thus 
choose to refer to this stage as the information 
assembly stage. 

In this stage, the tree constructed thus far is 
traversed in a top-down fashion, as opposed to 
being extended. Each node is annotated with 
specifications that will be interpreted during the 
final realisation tree-walk. (Note that it is only 
during the final realisation pass through the 
discourse tree that the final output is actually 
produced.) This approach can be seen as an 
extension of the realisation process used in the 
DFDMSA project (Colineau et al. 2004). 

For the sake of simplicity, information assembly 
is performed using another specific library of 
operators which implement the following 
algorithm. 

Starting at the root node of the discourse tree, 
the VDP performs a top down pass through the 
tree, executing the following two functions at each 
node: 



1. It annotates the current tree node with 
information required for correct realisation. 
These annotations are based on contextual 
characteristics. As mentioned before, the 
annotations are interpreted during final 
realisation. 

2. It posts a new information assembly goal for 
each of its child nodes (if any). In this way, 
the discourse tree is traversed in a recursive 
manner, using the same sub goal 
decomposition mechanism of the existing 
plan operators and planning engine. 

As we process the root node of the tree, a 
number of contextual models are accessed. In 
particular, information about the device used by 
the user is retrieved. This determines how to 
proceed. We have identified a number of attributes 
that may characterise the device. They include: 

• the size of the screen (if there is a screen); 
• styles of navigation; 
• available modalities; 
• software capabilities; and  
• layout templates available for formatting on 

that specific device (e.g., stylesheets). 
This stage of the information assembly is 

implemented by the operators shown in Figure 3.  
As illustrated in these operators, the contextual 
models are accessed through the constraints 
mechanism, allowing the system to choose 
appropriate operators based on these models.  Note 
also the operations of the operators.  It is through 
them that (1) the tree is augmented with 
annotations and (2) the system posts additional 
goals to continue the traversal of the tree. 

Importantly, these operators are generic, and the 
decision process is decoupled from the information 
needed to make decisions, as was our goal. This 
information is encoded in declarative models 
outside the engine.  These include the device 
model.  

It is envisaged that the device model would 
eventually be encoded in a standard format such as 
that defined in the W3C’s Composite 
Capabilities/Preferences Profile (CC/PP) 
framework (Klyne et al., 2004). The RDF-based 
CC/PP framework provides a way to describe 
generic profiles which are accessible via the web, 
and could be created and maintained by hardware 
and software vendors for their own devices and 
applications. This mechanism would work well as 
a distributed contextual device model for the 
Myriad framework. Because the CC/PP framework 
has not yet been widely adopted, for now we are 
using a simpler XML-based representation for our 
device models.  

Layout templates act as stylesheets to organize 
the presentation of information. Layout templates 

are not device specific, meaning that the same 
layout template can often be used across multiple 
devices. Equally, the same device may support a 
number of different layout templates for displaying 
content. Layout templates are characterised by 
properties such as: 

• the set of frames contained; 
• the content type, e.g., MIME content types 

(Freed and Borenstein, 1996), supported by 
each frame; and 

• the relative size of each frame.  
Once instantiated for a specific device, a layout 

template and its frames are additionally 
constrained by the capabilities of the device. For 
example, a device may determine the amount of 
content that can be displayed in each frame of a 
layout template, whether a frame can spawn new 
windows for displaying new content, and whether 
the frame supports scrollbars. All these features 
affect later decisions about how to allocate space to 
individual pieces of content, and how to display all 
the planned content if there is not enough space. 
Assembly operators reason about layout template 
characteristics to determine how the planned 
content will be presented in that template. 

An example of a frame is an index frame. This 
contains a hierarchically indented set of links to 
content displayed in other frames. Index frames 
have additional attributes such as the maximum 
hierarchy depth supported for index entries.  

If the chosen layout template includes an index 
frame, it will contain hyperlinked references to 
some of the content pages. Exactly which pages 
are able to add a reference to themselves in the 
index frame is controlled by the assembly 
operators.  The maximum hierarchy depth of an 
index frame signifies the indent depth limit of the 
index. The assembly operators keep track of the 
number of content page references already 
inserted. At some point, a depth threshold will be 
reached (which represents a maximum level of 
indentation), and nodes will no longer be able to 
insert references into the index. At this point, all 
content for the discourse tree branch below that 
node must be delivered into a single, linear space 
(for most devices, this represents a single page 
instance). In this situation, an algorithm for 
allocating space is needed to divide up that linear 
space amongst the child nodes. Two possible 
algorithms are discussed below. 

After initialisation is complete, the information 
assembly stage recursively processes the remaining 
nodes in the tree. This results in further annotations 
being made to the tree. Examples of features that 
may be annotated in each node include: 
♦ The order in which a node should be 

realised in relation to its sibling nodes. 



Importantly, this is determined by the 
discourse relations between each of the 
sibling nodes. For example, Figure 4 
illustrates that, for the elaboration RST 
relation, the nucleus is realised before the 
satellite; 

♦ Hyperlink anchor text; 
♦ Whether a node should add a reference to 

itself in the navigation index (if there is 
one); and 

♦ The exact page instance(s) to be used to 
realise the node’s content. 

Table 1 illustrates some specific examples of 
feature names and possible values, exactly as they 
are encoded in the discourse tree. 

 
Feature Name Example 

Value 
Description/ 
Interpretation 

realisationOrder 2 Realise this node 
second, after one 
sibling node. 

addToIndex True Add a reference 
to this node’s 
content in the 
navigation index 
frame 

indexDepth 2 The depth of 
index entries at 
this node is 2. 

indexText Section 
Name 

Use this text as 
the anchor in the 
index to link to 
this node’s 
content. 

anchorText More 
Information 

Use this text as 
the anchor text 
for this hypertext 
link. 

linkTarget Page001 The target of this 
hypertext link is 
the specified 
page. 

contentPage Page001 Realise the 
content of this 
node in the 
specified page. 

Table 1: Examples of features that are annotated 
into the discourse tree during information assembly 

 
The coherence relations are ranked in another 

declarative resource, so that authors can declare 
whatever subjective realisation ordering suits their 
specific purposes or information domain.  

 

 

<relation> 
<name>elaboration</name> 
<type>RST</type> 
<description>The elaboration RST 

 relation</description> 
<library>discourse</library> 
<importance>medium</importance> 
<order>N:S</order> 

</relation> 

Figure 4: Definition for the elaboration RST 
relation 

 

Space Allocation within a single page 

A layout template may not have a separate 
navigation index frame, as is often the case on 
small screen devices such as mobile phones or 
PDAs. Alternatively, the system may have 
descended through the discourse tree beyond the 
index depth threshold. At that point, there is a 
single linear piece of space in which to realise an 
entire segment of our presentation. Often, in such a 
situation, there will not be enough space to realise 
all the content directly. As a result, sections of 
content must be summarised or realised on 
separate pages that are hyperlinked into the single 
shared space. 

We have identified two generic heuristics that 
could be used to allocate content to the available 
space. (This assumes we can characterise available 
space, e.g., by the number of lines of text that can 
be displayed). These heuristics are embodied in 
additional operators.  

One heuristic allocates space to sibling nodes in 
a manner proportional to their importance in the 
text, as indicated by the discourse relations in the 
tree. Let’s consider a node with 3 children: one 
nucleus, and two satellites, a preparation and an 
elaboration. The nucleus is allocated half the 
available space, and the two satellites a quarter 
each, assuming preparation and elaboration have 
been declared with equal importance. At each level 
of recursion, the available space is further divided. 
This means that after a certain recursion depth, the 
algorithm reverts to producing a list of links to 
each node’s content (similar to a page of search 
results). 

Another heuristic allocates most of the available 
space to the nucleus, and provides hypertext links 
to each of the satellites. This is the algorithm used 
to produce the small-screen output in Figure 1. 

These two heuristics provide generic 
mechanisms for allocating content to space. It is 
also always possible to define operators very 
specific to a domain or a device. 



As a final remark on the information assembly 
stage, as the tree is not extended during this stage, 
strictly speaking, there is thus no further planning 
involved. The operators used are not plan operators 
proper. However, for the sake of convenience, we 
have chosen to express these assembly operators 
using a very similar syntax to our plan operators, 
and, like plan operators, they are declarative rules 
used by the VDP engine. This allows us to reuse 
our existing planning engine and plan processing 
code to perform the information assembly stage. 

 

4 Realisation 

As noted, the annotations created during 
information assembly are interpreted during the 
final realisation tree walk. This makes the 
realisation process a relatively simple annotation 
interpretation process, which allows us to have a 
very generic realisation module.  

As an example, when processing the children of 
a node, the realisation module simply needs to 
refer to the realisationOrder feature annotation in 
each node to know the correct order in which to 
process the children. Similarly, the presence of 
addToIndex annotations instruct the realisation 
module to add a reference to a particular node into 
the index, and hyperlink anchorText and 
linkTarget annotations specify how to create 
hyperlinks according to the decisions made during 
information assembly. 

The realisation process results in the content 
actually being placed in specific page instances 
which are then displayed in specified frames of the 
chosen layout template. These pages are generated 
in a device-specific syntax, such as HTML or 
WML. 

 

5 Implementation Status 

This work is being carried out in the context of 
our work on contextualised information retrieval 
and delivery. The Myriad framework has been 
implemented and is being exploited in a number of 
domains and applications – e.g., Tiddler 
(Wilkinson et al., 2000; Paris et al., 2001), PERCY 
(Paris et al., 2003), DFDMSA (Colineau and Paris, 
2003, Colineau et al., 2004a) and skil (Müller-
Tomfelde et al., 2004).  The framework continues 
to be enhanced and extended.  

The work presented here has recently been 
added into the framework and is currently being 
tested in an application requiring the automatic 
production of tailored reports.  

Parts of the framework and the approach have 
been evaluated (e.g., Paris et al., 2001; Paris et al., 

2003, Wilkinson and Wu, 2004; Wu et al., 2004).  
We intend to perform further evaluations. 

 

6 Conclusion 

In our work, we are concerned with delivering 
information consistently and coherently across 
heterogeneous devices. To do so, we propose an 
approach which allows a presentation to be 
planned once, and yet be delivered appropriately 
on the delivery medium of choice. 

In this paper, we distinguished between two 
types of decisions that must be made during the 
presentation planning stage of an information 
delivery system: local decisions, which are based 
only on the content or features of the node itself, 
and global decisions, which are based on the entire 
structure of the discourse tree.  

We presented a generic algorithm for making 
global decisions, driven by the discourse tree 
structure and contextual characteristics. This 
algorithm, implemented through declarative 
operators, complements the more traditional local 
presentation decisions made through presentation 
planning.  
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Abstract

One of the most widely explored issues in natu-
ral language generation is the generation of re-
ferring expressions (gre): given an entity we
want to refer to, how do we work out the content
of a referring expression that uniquely identifies
the intended referent? Over the last 15 years, a
number of authors have proposed a wide range
of algorithms for addressing different aspects of
this problem, but the different approaches taken
have made it very difficult to compare and con-
trast the algorithms provided in any meaningful
way. In this paper, we propose a characterisa-
tion of the problem of referring expression gen-
eration as a search problem; this allows us to
recast existing algorithms in a way that makes
their similarities and differences clear.

1 Introduction

A major component task in natural language
generation (nlg) is the generation of referring
expressions: given an entity that we want to
refer to, how do we determine the content of a
referring expression that uniquely identifies that
intended referent? Since at least (Dale, 1989),
the standard conception of this task in the lit-
erature has been as follows:

1. We assume we have a knowledge base that
characterises the entities in the domain in
terms of a set of attributes and the values
that the entities have for these attributes;
so, for example, our knowledge base might
represent the fact that entity e1 has the
value cup for the attribute type, and the
value red for the attribute colour.

2. In a typical context where we want to re-
fer to some ei, which we call the intended
referent, there will be other entities from
which the intended referent must be distin-
guished; these are generally referred to as

distractors. So, for example, we may want
to distinguish a particular cup from all the
other items present in the context of a din-
ing table.

3. The goal of referring expression generation
is therefore to find some collection of at-
tributes and their values which distinguish
the intended referent from all the potential
distractors in the context.

Over the last 15 years, a wide variety of algo-
rithms have been proposed to deal with specific
aspects of this problem. For example, while ear-
lier algorithms focussed on the use of attributes
that correspond to simple one-place predicates,
later work attempts to address the use of rela-
tional predicates, and other work looks at the
incorporation of boolean operators such as not
and and. The consequence is that we now have
a considerable body of research in this area, but
it is difficult to establish just how these different
algorithms relate to each other.

This paper represents a first step to-
wards consolidating the results in this area, with
the aim of developing a framework within which
different algorithms can be compared and as-
sessed. The structure of the paper is as fol-
lows. In Section 2, we provide a brief overview
of work on the generation of referring expres-
sions to date. In Section 3, we borrow a stan-
dard approach used in Artificial Intelligence (ai)
to represent problems in an elegant and uni-
form way (see, for example, (Simon and Newell,
1963); (Russell and Norvig, 2003)), sketching
how gre algorithms can be expressed in terms
of problem-solving by search. In Section 4, we
explore how the most well-known algorithms
can be expressed in this framework. In Sec-
tion 5, we discuss how this approach enables a
more fruitful comparison of existing algorithms,
and we point to ways of taking this work fur-
ther.



2 A Brief Review of Work To Date

Although the task of referring expression gen-
eration is discussed informally in earlier work
on nlg (in particular, see (Winograd, 1972;
McDonald, 1980; Appelt, 1981), the first for-
mally explicit algorithm was introduced in Dale
(1989). This algorithm, which we will refer
to as the Full Brevity (fb) algorithm, is still
frequently used as a basis for other gre al-
gorithms. The fb algorithm searches for the
best solution amongst all possible referring ex-
pressions for an entity; the algorithm derives
the smallest set of attributes for the referent in
question, producing a referring expression that
is both adequate and efficient.

This initial algorithm limited its ap-
plication to one-place predicates. Dale and
Haddock (1991) introduced a constraint-based
procedure that could generate referring expres-
sions involving relations (henceforth ir), using
a greedy heuristic to guide the search.

As a response to the computational
complexity of greedy algorithms, (Reiter and
Dale, 1992; Dale and Reiter, 1995) introduced
the psycholinguistically motivated Incremental
Algorithm (ia). The most used and adapted
algorithm, this is based on the observation
that people often produce referring expressions
which are informationally redundant; the algo-
rithm uses a preference ordering over the at-
tributes to be used in a referring expression, ac-
cumulating those attributes which rule out at
least one potential distractor.

In recent years there have been a num-
ber of important extensions to the ia. The
Context-Sensitive extension (cs; (Krahmer and
Theune, 2002)) is able to generate referring ex-
pressions for the most salient entity in a con-
text; the Boolean Expressions algorithm (be;
(van Deemter, 2002)) is able to derive expres-
sions containing boolean operators, as in the cup
that does not have a handle; and the Sets algo-
rithm (set; (van Deemter, 2002)) extends the
basic approach to references to sets, as in the
red cups.

Some approaches combine algorithms
which reuse only parts of other algorithms:
the Branch and Bound (bab; (Krahmer et al.,
2003)) algorithm uses the Full Brevity algo-
rithm, but is able to generate referring expres-
sions with both attributes and relational de-
scriptions using a graph-based technique.

We have identified here what we be-
lieve to be the most cited strands of research in
this area, but of course there are many other al-
gorithms described in the literature: see, for ex-
ample, (Horacek, 1997; Bateman, 1999; Stone,
2000). Space limitations prevent a complete
summary of this other work here, but our in-
tention is to extend the analysis presented in
this paper to as many of these other algorithms
as possible.

All these algorithms focus on the gen-
eration of definite references; they are typically
embedded in a higher-level algorithm that in-
cludes cases for when the entity has not been
previously mentioned (thus leading to an ini-
tial indefinite reference) or when the referent
is in focus (thus leading to a pronominal refer-
ence); see, for example, (Dale, 1989; Krahmer
and Theune, 2002; Dale, 2003).

3 gre from the Perspective of
Problem Solving

With so many algorithms to choose from, it
would be useful to have a uniform framework in
which to discuss and compare algorithms; unfor-
tunately, this is rather difficult given the variety
of different approaches that have been taken to
the problem.

Within the wider context of ai, Russell
and Norvig (2003) present an elegant definition
of a general algorithm for problem solving by
search. The search graph consists of nodes with
the components state and path-cost; the prob-
lem is represented by an initial-state, an expand-
method which identifies new states in the search
space, a queuing-method which determines the
order in which the states should be considered,
and a path-cost-function which determines the
cost of reaching a given state. In this frame-
work, the search strategy is determined by the
combination of queuing-method and path-cost-
function used.

In the following, we use this framework
to provide a characterisation of existing gre al-
gorithms in terms of problem solving by search.
We conceptualise the search space as consist-
ing of states that have three components: a de-
scription that is true of the intended referent,
the set of distractor entities that the descrip-
tion also applies to besides the intended refer-
ent, and the set of properties of the intended
referent that have not yet been considered to
describe the referent.



1. The initial-state is of the form 〈{}, C, P 〉,
where C is the set of distractors in the ini-
tial context, and P is the set of all proper-
ties true of the intended referent.

2. The goal state is of the form
〈{λxP1,λxP2, . . .}, {}, P ′〉, where the
first term contains a set of properties of
the intended referent that, by virtue of the
second term (the set of distractors) being
an empty set, distinguish the intended
referent; P ′ contains any properties of
the intended referent not yet used in the
description.

3. All other states in the search space are then
intermediate states through which an algo-
rithm will move as it adds new properties
to the description.

4. The search strategy is carried out by the
expand-method and the queuing-method,
which together characterise the specific
gre algorithm (for example, fb, gh or ia)
that is used.

5. The path-cost-function allows us to route
the search as required; this can be used to
take account of salience weights, or to em-
body some kind of heuristic search.

For any given algorithm, not all of the methods
and functions need to be implemented; in par-
ticular, some algorithms do not require a path-
cost-function.

4 gre Algorithms in Terms of
Problem Solving

We adopt here an object oriented formalism,1

since this allows the representation of depen-
dencies between the algorithms by means of in-
heritance and overwriting.

To enable more fruitful comparison of
the different gre algorithms, we want to dis-
tinguish those aspects of the algorithms which
are true of all algorithms, and those which are
unique to each particular algorithm. In Sec-
tion 4.1, we first describe the elements that are
shared by all the algorithms; we then go on to
describe the distinct aspects of each algorithm
in turn.

1We follow the code conventions as used in OO-
languages, where the names of classes start with upper
case characters, and the names of methods and variables
start with lower case characters.

4.1 Common Elements

This approach allows us to separate out those
aspects of the various algorithms which remain
constant.

Following from the previous section,
the definitions of the node and state classes are
as shown in Definition 1. This figure also shows
the definitions for initial-state and goal, which
remain constant across the algorithms.

Definition 1: The Node and State Classes
class Node {
s // State
path-cost // Cost of the path
getState()
{return s} // returns the state of the node

}
class State {
L // Set of chosen properties and/or relations
C // Set of distractors
P // Set of available properties and/or relations

}
initialState() {return new State(∅,C,P )}
// the goal is the empty set of distractors
goal(s) {

if s.C = ∅ then return true
else return false

}

Given these components, the main
method makeRefExp is then as represented in
Definition 2. This takes two arguments, which
serve as the parameters that distinguish one
algorithm from another: an expand method
to create the successors of a given state, and
a queue method, which defines how to insert
nodes into the node queue. Depending on the
order in which the nodes are inserted, differ-
ent search strategies can be realized: for exam-
ple, when the nodes are inserted at the front
of the queue, the search strategy is depth-first;
when the nodes are inserted at the end of the
queue, the search strategy is breadth-first; when
the nodes of the queue are sorted by the esti-
mated distance to the goal, then the search type
is best-first; and so on.

In addition, we may require a number
of general-purpose methods which can be used
by a number of different algorithms. One such
method is the method rulesOut, which takes
a property or relations p and a set of distrac-
tors, and returns the set of distractors which
are ruled out by p.



Definition 2: The Basic Algorithm Struc-
ture
makeRefExp() {

// create a initial queue with a single node
nodeQueue ← [new Node(initialState())]
while nodeQueue %= ∅ do

node ← removeFront(nodeQueue)
if goal(node.getState()) then

return node // success
end
nodeQueue ← queue(nodeQueue,expand(node))

end
return nil // failure

}

With this machinery in place, we can
now redefine the existing algorithms in terms of
their core differences, which correspond essen-
tially to different ways of expanding the search
space.

4.2 The Full Brevity Algorithm

The distinctive property of the Full Brevity (fb)
algorithm is that it computes all combinations
of the available properties P with increasing
length, so that it may find the shortest combi-
nation that succeeds in identifying the intended
referent.

This behaviour is captured by the ex-
pand method shown in Definition 3. The
method creates a set of successors by creating a
node for each property pi which has not so far
been checked, provided that pi rules out at least
one distractor.

The fb algorithm uses a breadth-first
search implementation of the queue, as shown
in Definition 4. Consequently, any solution for
which goal returns true will have a minimal
number of properties, since the breadth-first
search considers smaller combinations of prop-
erties first.

The fb algorithm uses the expand
method, and createNode method which are
shown in Definition 3 and it is invoked by a
call of makeRefExp method which is shown in
Definition 2.

4.3 The Incremental Algorithm

The distinctive property of the Incremental Al-
gorithm is that it reduces the computational
complexity of constructing a referring expres-
sion by considering properties to use in se-

Definition 3: The Full Brevity Algorithm

expand(node) {
N ← ∅
s ← node.getState()
foreach p ∈ s.P do

N ← N ∪ { createNode (node, p)}
end
return N

}
createNode(node, p) {

s ← node.getState()
out ← rulesOut(p, s.C)
if out %= ∅ then

return new Node(s.C − out, s.L ∪ {p},
s.P − {p})

else return new Node(s.C, s.L, s.P − {p})
}

Definition 4: Breadth-first Queueing

queue(actNodes, newNodes) {
// append the nodes at the end
return actNodes ∪ newNodes

}

quence from a predefined ordering of the avail-
able properties. The implementation of the ex-
pand method shown in Definition 5 provides this
behaviour.

If the set of properties of the current
state s.P is not empty, then the first property
p according to the given order O is chosen from
the set of properties of the current state s.P ,
and a node is created with a new state by the
method createNode. Note that the createNode
method is the same as that used in the fb algo-
rithm and shown in Definition 3.

Unlike the expand method used in the
fb algorithm, however, the set of nodes re-
turned here contains only one node. The main
method applies the goal predicate to this node;
if this returns true, then the node containing the
state with the list of properties for the referring
expression is returned.

4.4 Extension of the IA to Sets

All the algorithms considered so far have been
concerned with constructing descriptions for in-
dividual referents; van Deemter (2002) intro-
duced an algorithm which extends the ia to sets.
The extension is shown in terms of our frame-
work in Definition 6.



Definition 5: The Incremental Algorithm

O // Predefined constant order of properties
expand(node) {

N ← ∅
s ← node.getState()
if s.P %= ∅ then

p ← choose the first p in O, where p ∈ s.P
N ← N ∪ { createNode(node, p) }

end
return N

}

Definition 6: The Set Algorithm

R // Set of referents
createNode(node, p) {

out ← rulesOut(p, s.C)
if (¬∃x ∈ R&x ∈ out)&(∃x ∈ C&x ∈ out) then

return new Node(s.C − out, s.L∪{p},s.P − {p})
else return new Node(s.C, s.L, s.P − {p})

}

Note that, precisely because this algo-
rithm is an extension of the ia algorithm, we
reuse the expand method from that algorithm.
Consequently, the extension requires only the
rewriting of the createNode method, whereby an
attribute pi is only chosen when it does not rule
out entities from the set of referents R and when
it rules out at least one entity from the set of
distractors C. If a property does not fulfil that
condition, then a node with the current state is
returned and the process is continued, as in the
ia, with the next property.

4.5 gre Involving Relations

The algorithm for gre Involving Relations (ir)
introduced by Dale and Haddock (1991) is
constraint-based. The search strategy used to
fulfil the constraints is a combination of a greedy
search, which chooses the relation that leads to
the smallest set of distractors, and depth-first
search to describe the entities, that is, the in-
tended referent as well as entities which are ref-
erenced in the relations.

The strategy can be explained best by
means of an and/or-tree, as shown in Figure 1.
Here, the top node represents a state in which
relational properties are to be considered as ad-
ditions to the set of chosen properties. Each
search step consists of two stages: in the first
stage, we choose the relation pi which rules out

the largest number of distractors; in the sec-
ond stage, each entity which is referenced by
the chosen relation has to be described by re-
peating the process recursively. This is done in
a depth-first manner, but if the related entity
is not uniquely distinguished then the next pj

that the intended referent participates in is cho-
sen, and so on. This process continues until all
entities are uniquely described (success) or no
further relations can be chosen (failure).

describe entity ...

between(x,w,v) on(x,y)

N=(L={ a bowl(a)},C={b1,b3},P={on(x,y),..)

choose relation

R1 R2

Figure 1: Expansion tree for the ir algorithm

The algorithm is represented in the
problem solving paradigm as in Definition 7.
Here, the expand method chooses a relation
which rules out the largest number of distrac-
tors; it then calls the method createNode, which
recursively calls makeRefExp for each new ref-
erent contained in the relation.

4.6 Context-Sensitive GRE

Krahmer and Theune (2002) also introduced
a number of extensions to the ia: the use of
salience weights in order to add a definite arti-
cle to the description for the most salient entity;
contrastive properties in order to add properties
which impose a contrast between two entities;
and a relational extension, similar in spirit but
not in form to that in the ir algorithm described
above.

Again, as for the sets algorithm, the
commonality with the ia algorithm surfaces
as the reuse of the latter algorithm’s expand
method; only the createNode method needs to
be rewritten, as in Definition 8. To model this
variant in our framework, we introduce the fol-
lowing additional methods (cf. (Krahmer and
Theune, 2002)):

• contrastive takes a referent r and a prop-
erty pi; it checks whether the property un-
der consideration is contrastive.

• mostSalient takes a referent r, a set of prop-



Definition 7: Involving Relations

r // Referent
expand(node) {

s ← node.getState()
pc ← nil
// Chosen relation is pc, where p rules out
// the largest number of distractors
foreach p ∈ s.P do

if pc = nil or
|rulesOut(p, s.C)| > |rulesOut(pc, s.C)|

then pc ← p
end

end
nodec ← createNode(node, pc)
if (nodec = nil) then return ∅
else return {nodec}

}
createNode(node, p) {

s ← node.getState()
C ← rulesOut(p, s.C)
L ← s.L ∪ {p}
// Extend Description
foreach r′ ∈ {rp|rp ∈ referents(p) & rp %= r} do

noder′ ← makeRefExp(r′)
if noder′ = nil then return nil // failure
L ← L ∪ node.getState().L

end
return new Node(C, L, s.P − {p})

}

erties, and a set of distractors; it checks
whether every entity in the set of distrac-
tors has a lower salience weight than r.

5 Conclusions and Future Work

In the foregoing, we have shown how a num-
ber of the most frequently discussed algorithms
for the generation of referring expressions can
be represented within a common framework.
There are three significant advantages to this
approach.

First, it allows us to determine what
the algorithms have in common. This is partic-
ularly interesting in that it allows us to begin to
assemble a collection of core functionalities that
are usable in a variety of different approaches to
gre. This is apparent not only in terms of the
general framework (where, for example, the no-
tions of states and their initialisation, and def-
inition of what it is to be a goal state, and the
overall algorithmic pattern) are shared, but in
terms of ‘helper’ routines (such as rulesOut and
mostSalient) which can be modularised out of
the essence of different algorithms.

Definition 8: Context-Sensitive Algorithm

r // Referent
createNode(node, p) {

s ← node.getState()
out ← rulesOut(p, s.C)
C ← s.C − out
L ← s.L
if (out %= ∅ or contrastive(r, p)) then

L ← L ∪ {p }
if v expresses a relation between r and r′ then

noder′ ← makeRefExp(r′)
L ← L ∪ noder′ .getState().L

end
end
if mostSalient(r, L, C) then

L ← L ∪ { defArt }
// The most salient rules out all distractors:
C ← ∅

end
return new Node(C, L, s.P − {p})

}

Second, it makes it possible to see
what the differences between the algorithms re-
ally consist in. In their original forms, these
differences are obscured, due to the absence of
a common vocabulary for expressing the algo-
rithms; by representing the algorithms within
a common framework, it becomes easier to see
where the algorithms differ, and where the dif-
ferences are simply due to differences in nota-
tion or presentation. By using the framework
of problem solving as search, we have effectively
decomposed the algorithms into a number of key
elements: a search srategy, represented by the
queuing-method, and an expand-method, which
encompasses two aspects of each algorithm: the
basic strategy adopted and the particular kinds
of referring expressions covered. Furthermore,
the expand-method decomposes into a general
strategy for expansion (as found in, for exam-
ple, the Full Brevity algorithm and the Incre-
mental Algorithm), and a createNode method,
which varies depending upon the kind of refer-
ring expression targetted.

Third, it allows us to see more clearly
the logical space within which the algorithms
reside, and to see ways of combining aspects
of different algorithms. At its simplest, this is
clearest with respect to the kind of search strat-
egy used in the algorithms. Present formula-
tions conflate the choice of search strategy with
the other aspects of the algorithm (such as how
subsequent nodes in the search space are com-



puted); our approach separates out these differ-
ent facets of the algorithms, and makes it much
easier to see that the choice of search strategy
is an independent decision. Consequently, for
example, we can easily experiment with a vari-
ant of the ir algorithm that uses breadth-first
search rather than depth-first search.

So far, we have used the framwework
to express the most widely-known algorithms
in the literature. Preliminary examination of
the algorithms in (Krahmer et al., 2003), (van
Deemter and Krahmer, forthcoming), and (Ho-
racek, 2004) suggests that these will also be
relatively straightforward to express within the
framework described here. As we capture more
algorithms in the framework, our intention is to
tease out an inventory of basic constituent ele-
ments which can then be reassembled and inte-
grated in different ways, so that we can derive a
better understanding of the nature of the prob-
lem of referring expression generation.
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

 

     
 
     


       
      
      
   


       
      
     
    
          
     
     
       
       

     



      
        
    
     

     


 

      
       

       
     
    
   
      
  


buys shares  S\NP 


        

        



buys  (S\NP)/NP 


       


John  NP 
buys  (S\NP)/NP 
shares  NP 


      


     


      


      
    
      




X/Y  Y  >  X 
Y  X\Y  <  X 


      


John

NP

buys

(S\NP)/NP

shares

NP
>

S\NP
<

S 



S

NP S\NP

John

(S\NP)/NP NP

buys shares


     
    





X  conj  X    <> X 
X             >T Y/(Y\X) 
X             <T Y\(Y/X) 
X/Y  Y/Z      >B X/Z 
X/Y  Y\Z      >Bx X\Z 
Y\Z  X\Y      <B X\Z 
Y/Z  X\Y      <Bx X/Z 
(X/Y)/Z  Y/Z  >S X/Z 
(X/Y)\Z  Y\Z  >Sx X\Z 
Y\Z  (X\Y)\Z  <S X\Z 
Y/Z  (X\Y)/Z  <Sx X/Z 

  
     


Anna

NP

met

(S\NP)/NP

and

conj

might

(S\NP)/VP

marry

VP/NP
>B

(S\NP)/NP
<Φ>

(S\NP)/NP

Manny

NP

>
S\NP

<
S 


articles

NP

that

(NP\NP)/(S/NP)

I

NP
>T

S/(S\NP)

file

VP/NP

without

(VP\VP)/VP

reading

VP/NP
>B

(VP\VP)/NP
<Sx

(VP\VP)/NP
>B

S/NP
>

NP\NP
<

NP 

       


 


        
     
     
       
      
   
      
     
      
       
       


       
    
       


 

        
       
        


     
      
      

     

    



     
    
     
     


 

      

      
     





   
      
        
      
     
      
       
       

      

     
      


X/Y  Y        >F X 
Y  X\Y        <F X 
X/X  X        >M X 
X  X\X        <M X 

 

       

     
    

       
    
     
         
     

   

      
    





      
     
     
      
    
     
      


     



 



 

      
      
     
      
       

     
     
      
     
       
      
     
       
     
     
      
      
    


      


Cresult

Cright Cleft

Cresult



         

      
      


 

      
 
        
       

      
         


 






COMBINATOR-SET := 



    COMBINATOR-TEMPLATE1 
      … 
      … 
    COMBINATOR-TEMPLATEm 

     
       
      

       

     
     
     
  


 



COMBINATOR-TEMPLATE := 
  ( TYPE, 
    OPERAND-PATTERN-LIST, 
    RESULT-PATTERN, 
    PERMITTED-VARIATIONS ) 


      

      
       



    n=2  
    n=1
     

    

      
     

   

        


      
{ >, >x, <, <x }

 

      


<PATTERN> := <ATOMIC>| 
<COMPOUND> 

<ATOMIC> := <A>[‘e’|‘n’]<N> 
<A> := (‘A’|…|‘Z’)+ 
<N> := (‘0’|…|‘9’)+ 
<COMPOUND> := <LEFT> 

(<RIGHT>|‘[’<RIGHT>‘]’) 

<LEFT> := <ATOMIC>| 
‘(’<COMPOUND>‘)’ 

<RIGHT> := <SLASH><LEFT> 
<SLASH> := (‘\’|‘/’)<N> 

      
    <A>n<N> 
       
      
       
    <ATOMIC> 
<RIGHT>

<ATOMIC> := <A>[‘e’]<N> 
<RIGHT> := <SLASH> 

(<LEFT>|<A>‘n’<N>) 

      


X1 
Y1/2Y3 
(X1/1Y1)\2X2 

     
     
       
A’N’
A”N”   C’ C”
     


A=A, N=N  C=C 
A=A, NN  CC 

     
    ((X1/1X1)/2X2)/3Y1
X1

  X1      
X2
X<N>        
X1X1X2
       
Y1       
 ((A/A)/B)/A ((A/A)/B)/B 
((A/A)/B)/C   ((A/C)/B)/A 
((A/A)/A)/A
        

       
       
AA/A
        

      
      
      



X1/1Yn1
A/B(A/B)/C((A/B)/C)/D


       
Xe1[/1Ye1]A
A/B(A/B)/CA/(B/C)

 

  
     
  


TYPE = B 
OPERANDS = X1/1Y1, Y1/2Z1 
RESULT   = X1/3Z1 

  >    


X1/Y1 Y1/Z1 >B X1/Z1 

>
       
 <    
   <   


Y1\Z1 X1\Y1 <B X1\Z1 

      
<>


x:{/2,/3} 

x
         
     <x  
    <  x



Y1/Z1 X1\Y1 <Bx X1/Z1 


  i:{/3}   
<xi

Y1/Z1 X1\Y1 <Bxi X1\Z1 

      <  x
i


 


     
    
    


 

TYPE = T 
OPERANDS = X1 
RESULT = Y1/1(Y1\2X1) 
VARIATIONS = {>,<} 

X1 >T Y1/(Y1\X1) 
X1 <T Y1\(Y1/X1) 

 
     


TYPE = B 
OPERANDS = X1/1Y1, Y1/2Zn1 
RESULT = X1/3Zn1 
VARIATIONS = {>,>x,<,<x} 

X1/Y1 Y1/Zn1 >B X1/Zn1 
X1/Y1 Y1\Zn1 >Bx X1\Zn1 
Y1\Zn1 X1\Y1 <B X1\Zn1 
Y1/Zn1 X1\Y1 <Bx X1/Zn1 

 

TYPE = F 
OPERANDS = X1/1X2, X2 
RESULT = X1 
VARIATIONS = {>,<} 

X1/X2 X2 >F X1 
X2 X1\X2 >F X1 

 

TYPE = M 
OPERANDS = X1/1X1, X1 
RESULT = X1 
VARIATIONS = {>,<} 

X1/X1 X1 >F X1 
X1 X1\X1 >F X1 

 


     
  
      



       
combine()

COMBINE
FACTORY

combinator
templates

combine()
functionfn



 combine()     
 
   
       


 


     

    combine()   

      

       A/B

B\C    

  
     
      
A/B 
X1/1Y1     B\C  
   Y1/2Zn1  
      
       
{X1:A, Y1:B, Zn1:C}    

>x  {s1:/, s2:\}   
   {s1:/, s2:/}
       
X1\Zn1:A\C    
      
      
 A/BY1/2Zn1 B\C
 X1/1Y1    Y1=A 
    Y1=C   
A/BB\C
(A\C >Bx)
A/BC

      C  
       


       A
    
     

      
 {X1:A}     

     {(*/(*\A) >T)
(*\(*/A) <T)}   * 
       Y1  
       


 

       
       
       
      

       



OPERANDS = A B 
RESULT   =     C 
VARIATIONS = {>*,<*} 

ABC
     >*

<*     
       
       
       

      
combine()

OPERANDS = A C 
RESULT   =     B 
VARIATIONS = {>*} 
     
[COMBINE FACTORY] 
     
combine1() 

OPERANDS = C A 
RESULT   =     B 
VARIATIONS = {<*} 
     
[COMBINE FACTORY] 
     
combine2() 

       


combine1(cA,cC) + combine2(cA,cC) 



combine1()   
 cB       A:cA
C:cC combine2()   A:cA C:cC
        
combine2()   
       
cAcCAcA
CcC


        

     

        
    
    


 



     

       
    
       


 

       
      
     
     
        
     
       




    


    


    
    


       
     
     






       
   

   
    


      
   
    


     
     
   
     


    
 


         
   
   


       
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Abstract 
We describe the framework for an 

intelligent multimedia presentation system 
we designed to be part of the FOCAL 
laboratory, a semi-immersive environment 
for Command and Control Environment. 
FOCAL comprises a number of input 
devices and output media, animated virtual 
conversational characters, a spoken dialogue 
system, and sophisticated visual displays. 
These need to be coordinated to provide a 
useful and effective presentation to the user. 
In this paper, we describe the principles 
which underlie intelligent multimedia 
presentation (IMMP) systems and the design 
of such a system within the FOCAL multi-
agent architecture.   

1 Introduction 
1.1 Description of FOCAL 

FOCAL (Future Operations Centre Analysis 
Laboratory) was established at the Australian 
Defence Science and Technology Organisation 
(DSTO) to "pioneer a paradigm shift in 
command environments through a superior use 
of capability and greater situation awareness".  
The facility was designed to experiment with 
innovative technologies to support this goal, and 
it has now been running since 2000. 

FOCAL contains a large-screen, semi-
immersive virtual reality environment, where 
large quantities of information can be displayed. 
A number of modalities and media are available 
to display the information to the end-user. These 
include visual display mechanisms, such as 3-D 
virtual batttlespace, and spoken dialogue 
interaction with virtual conversational characters 
(VCCs) that allow presentation of information 
through speech as well as through textual 

displays (Taplin et al. 2001; Broughton et al., 
2002; Estival et al., 2003).  While these have so 
far been studied and implemented somewhat 
independently of each other, ultimately all the 
different available means to present the 
information to the end-user must work together 
and be combined into a coherent whole; 
otherwise, the result would be very confusing to 
the user.  

From the delivery perspective (as opposed to 
the input fusion aspect) with which we are 
concerned here, FOCAL can be considered as an 
instance of an intelligent multimedia presentation 
(IMMP) system (see Bordegoni et al., 1997 for a 
reference model). 

1.2 An IMMP Architecture for FOCAL 
The framework for the design of an intelligent 

multimedia presentation system (IMMP) within 
FOCAL was the result of a collaboration 
between DSTO and CSIRO.  The aim was to 
design an architecture for the information 
delivery component, taking into account the 
existing architecture for the overall system, the 
available data sources and the type of desired 
presentations. 

One of the main idea in FOCAL is that a VCC 
will serve as a Virtual Adviser (VA) to the team 
of commanding officers engaged in the planning 
or conduct of an operation. The aim of the VA is 
to engage in interactions with the officers, 
presenting information and offering advice. VAs 
are able to present the information and justify 
their advice through multimedia presentations 
(e.g., speech, video, text, map, etc.). 

The remainder of this paper is structured as 
follows: in Section 2, we first briefly explain 
how research in multimedia presentation has 
grown from notions and systems developed in 
natural language generation. We then describe 
the process of generating multimedia 



presentations, and, in particular, an approach to 
integrate coherently multimedia content, with 
examples from the FOCAL scenario. In Section 
3 we describe the design for an IMMP 
architecture based on the reference model for 
FOCAL. We conclude in Section 4 with a short 
discussion of the evaluation to be undertaken. 

2 IMMP Systems 
Intelligent multimedia presentation systems 

(IMMP) are characterised by their capacity to 
automate the design of multimedia presentations. 
IMMP systems typically base their design 
decisions on explicit representations of diverse 
knowledge, and combine mechanisms and 
techniques that select, organise and coordinate 
relevant information across appropriate media. 
Such systems present the advantages to be: 

• Adaptable and flexible by generating on-the-
fly multimedia presentations of various 
combinations of information and media 
characteristics; 

• Consistent by coordinating content within 
and across media, thus maintaining the 
coherence of the presentation; and, 

• Effective by designing presentations that 
take into consideration the characteristics of 
the information source, the task that the users 
need to perform and the communicative 
goals to be achieved. 

 
We first provide in Section 2.1 an overview of 

the principles that have guided the research in 
multimedia information presentation and 
describe in Section 2.2 the standard Reference 
Model for IMMP. We then present the process of 
generating multimedia presentations proposed by 
Colineau and Paris (2003), highlighting the main 
steps.  In Section 2.3, we discuss the various 
issues encountered in integrating information 
across multiple media and illustrate the approach 
with an example from the FOCAL scenario. 

2.1 Background 
Studies in natural language generation have 

considerably influenced the research directions in 
multimedia information presentation, in 
particular on the issues of how to represent the 
global discourse structure, and how to organise 
and integrate each source of information in 
relation to the others. Several important notions 

have contributed to the progresses made in this 
domain:1 

• the notion of discourse structure and the 
generation of multi-sentential texts, as 
embodied, for example in (McKeown, 1985a; 
1985b; Moore and Paris, 1993); 

• the notion of coherence and the rhetorical 
dependencies between discourse parts, as 
defined, for example, in Rhetorical Structure 
Theory (RST) (Mann and Thompson, 1988); 
and finally,  

• the hierarchical planning approach as a 
means to structure and to represent a 
discourse goal hierarchy and the relationships 
between them, as in (Hovy, 1988; Moore and 
Paris, 1993) inter alia. 

 
Starting from these notions, the generation of 

multimedia information presentations has been 
considered by many researchers (e.g., André and 
Rist, 1990; 1993; Maybury, 1993; Bateman et 
al., 1998; Green et al., 1998; Mittal et al., 1998) 
as a goal-directed activity that starts from a 
communicative goal (i.e., a presentation intent), 
which is then further refined into communicative 
acts. Indeed, based on studies done in linguistics 
and philosophy (e.g., Austin 1962; Searle, 1969), 
in discourse (e.g., Grosz and Sidner, 1986) and in 
text planning (e.g., Hovy, 1988; Arens et al., 
1993; Moore and Paris, 1993), the multimedia 
generation community has built on the idea that 
the internal organisation of a discourse or a 
presentation is composed of a hierarchy of 
communicative acts, each act supporting a 
specific communicative goal that contributes to 
the whole. It has then extended this principle to 
multimedia material. Thus, as pointed out by 
Maybury (1993, p.61):  

“As text can be viewed as consisting of a 
hierarchy of intentions, similarly, multimedia 
communication can be viewed as consisting of 
linguistic and graphical acts that, appropriately 
coordinated, can perform some communicative 
goal”.  

Consequently, a question arises as to how to 
coordinate linguistic acts with other forms of 
expression (picture, graphics, video, etc.), so that 
the communicative goal is achieved in a coherent 
and consistent manner. 

                                                    
1 See (Colineau and Paris, 2003) for details.  



2.2 A Reference Architecture for IMMP 
In recent years, a standard Reference Model 

(RM) for IMMP systems has been proposed by 
Bordegoni et al. (1997), aiming at providing a 
conceptual design of IMMP systems.  The 
architecture is decomposed into five layers as 
follows: 

§ The Control Layer controls the generation 
process by prioritising the communicative 
goals to be processed; 

§ The Content Layer organises the content and 
makes explicit the relationships between 
discourse segments. It selects relevant 
information and chooses the appropriate 
modalities and media to be employed to 
convey the information and best achieve the 
communicative goals; 

§ The Design Layer distributes to dedicated 
media/modality design modules 
communicative acts to be encoded. It also 
determines the spatial and temporal 
arrangements of media objects in the 
presentation. The design plan specifications 
produced for media objects are then passed 
onto the realisation layer; 

§ The Realisation Layer distributes the design 
plan specifications to dedicated modules for 
the production of specific media objects. 
Specifications of displayable media objects 
with layout prescriptions are finally given to 
the presentation display layer; and,  

§ The Presentation Display Layer combines 
media objects, defines the document or the 
display layout and finally delivers the 
multimedia presentation through specialised 
media devices. The result is a coordinated 
fusion of the output of the different devices. 
Here, Bordegoni et al. point out a clear 

distinction between the design and the 
production of media objects and their 
presentation. 

We will not discuss here the Control Layer, as 
in the FOCAL system it is integrated with the 
overall dialogue and interaction management 
process (see Section 3).  The other four layers are 
illustrated in Figure 1 and constitute the actual 
multimedia generation process. 

The main steps that drive the multimedia 
presentation design are: 

• The content planning: this stage aims at 
selecting and organising the content of the 
presentation. A discourse structure is 
produced, which makes explicit the role of 
each piece of content regarding to the whole 
presentation.  

• The media allocation and content 
realisation: this stage aims at specifying how 
the content should be presented. One has to 
decide on the best way to realise the content 
and to combine the different discourse parts 
in a unified and integrated whole. We group 
here both the "Design of the presentation 
structure" and the "Realisation of the media 
objects"; and 

• The layout planning: this stage aims at 
assigning location to content, grouping and 
aligning element of content to contribute to 
the legibility and readability of the 
presentation. For dynamic presentations, 
there is also a need to program the execution 
of the presentation, in particular setting the 
timing of all components. 

In this paper, we focus on the content planning 
stage, but interested readers are referred to 
(Colineau and Paris, 2003) for details about the 
other stages. 

 
Figure 1: Multimedia generation process



2.3 Content Planning  
When dealing with multimedia presentations, a 

number of issues that do not occur in simple text 
planning arise: 

• How can we maintain the coherence of a 
presentation when the content is realised 
through different modalities (i.e., language, 
graphics, video, etc.)? 

• How do graphical representations, 
animations, etc. work? Do they have an 
internal structure (as text does) that can be 
expressed in term of rhetorical and discursive 
dependencies?  

• Can we use a common representation to 
express both textual and graphical acts? 

Following research in the field of text 
generation, most multimedia information 
presentation systems have taken a unified 
approach, based on hierarchical planning, to 
structure and organise multimedia data.  In 
parallel, by applying the principle of textual 
coherence to multimedia information 
presentation, researchers have generalised the 
RST theory of coherence to the broader context 
of multimedia information.  

Using this theory, the organisation of the 
document or the presentation is represented by a 
tree structure (i.e., the document discourse 
structure). It is the output of the content planner, 
and it provides a detailed representation of the 
content to be produced, indicating how parts of 
the structure are related and which purposes 
different parts of the generated content serve (see 
Figure 2). In particular, this permits an explicit 
representation of the relationships and 
dependencies between discourse segments, 
whichever modalities and/or the media are 
selected afterwards.  

The discourse structure2 shown in Figure 2 
illustrates the discourse representation that might 
be built to represent and organise the content of 
an "induction brief executive summary", from a 
military plannning exercise (with a fictitious 
scenario and fictitious data). This structure 
organises the different content elements (e.g., 
executive summary sentences, maps) and 
highlights their respective roles within the 
presentation (e.g., providing background 
information or evidences supporting a claim). 

                                                    
2 The discourse tree has been simplified for 

readability. 

We see that this executive summary is an 
integrated combination of text and illustrations 
(potentially static or dynamic illustrations).  This 
example shows that the discourse structure may 
represent text as well as other multimedia 
contents, and that it can explicitly represent 
relationships across modalities (e.g., an 
illustration that supports text) and within 
modality (e.g., text that elaborates on another 
text part).  If we examine the top of the discourse 
tree, it is organised into three discourse 
segments: 

• the main node, which is a complex discourse 
segment considered as the nucleus (segment 
[2-5] + additional illustrations); and, 

• two other discourse segments considered as 
satellites. One of the satellites (segment [1]) 
is linked to the nucleus by the rhetorical 
relation called preparation. This relation 
indicates that the satellite presents 
information which introduces the content 
presented by the nucleus. The other satellite 
is a complex discourse segment linked to the 
nucleus by the elaboration relation,3 which 
indicates that the satellite provides 
additional information (e.g., geographic 
illustrations).  

The discourse structure that is produced at the 
end of the content planning process presents 
several advantages. It provides a rich structure 
that can be reasoned about for a number of 
purposes, e.g., appropriate realisation in 
language, the placement of hypertext links, 
reasoning about user feedback and prior 
discourse, the coordination (as opposed to 
juxtaposition) of text, image, graphics or video. 

Using a hierarchical planning approach 
ensures the unity of the whole multimedia 
information presentation by organising the entire 
presentation as one discourse structure, even 
though subparts may correspond to elements to 
be realised in different modalities and/or media. 
Having one overall discourse structure enables 
and facilitates the integration of various 
discourse elements.  

                                                    
3 Depending on the role of the satellite and the 

purpose of the information, the link between the 
satellite and the nucleus could also have been realised 
by the enablement relation. In that case, the 
information carried by the satellite would have 
supported the hearer in locating the region discussed 
in the summary. 



 
Figure 2: Example of multimedia content represented with RST (a fictitious scenario) 

It also allows cross-references from one 
modality to the other (e.g., from text to graphics).  
This is explicitly stated in André and Rist (1995, 
p.9): 

“It seems reasonable to use text planning 
approaches not only for the organization of the 
textual parts of a multimedia presentation, but also 
for structuring the overall presentation. An 
essential advantage of a uniform structuring 
approach is that not only relationships within a 
single medium, but also relationships between 
parts in different media can be explicitly 
represented.” 

This integrated representation enables the delivery 
component of the system to act as a media 
coordinator in the preparation of the final 
presentation script, ensuring for example that parts 
of the presentation are not duplicated. It then 
becomes possible to factor out the needs of each 
individual presentation segment and to share the 
media objects throughout the presentation. This 
integrated view of the multimedia presentation also 
ensures that parts of the presentation are coherent 
and well integrated with each other.  With this 
approach, we can set and evaluate some basic 
multimedia principles, such as the principle of 
modality, contiguity, coherence and redundancy. 

3 FOCAL: a Command and Control 
Environment 

We now describe how we have extended the 
original FOCAL architecture to support the 
generation of multimedia presentations for military 
planning information.  

3.1 Multimedia Presentation in the Focal 
Architecture 

FOCAL is based on a multi-agent architecture, 
implemented using ATTITUDE, a high-level 
language developed at DSTO (Lambert and Relbe, 
1998). ATTITUDE is capable of representing and 
reasoning with uncertainty about multiple 
alternative scenarios (Lambert, 1999).  Extending 
the original FOCAL architecture (Taplin et al. 
2001) for IMMP involved adding agents to 
explicitly handle the design, the composition and 
the realisation of multimedia objects.  The original 
"Conductor" agent, which had so far only been 
concerned with spoken input, was renamed 
Dialogue Manager (DM).  It is now responsible for 
dialogue flow control and for understanding users’ 
query, deciding what best answers the user’s needs 
(i.e., the communicative goal).  A new MultiMedia 
Presenter (MMP) agent has been introduced.  It 
organises the presentation of information within 
FOCAL and carries out most of the multimedia 
generation process shown in Figure 1. The third 
stage (i.e., the realisation of media objects) is left 



to specific media generators, such as the natural 
language generator or the virtual video generator 
as shown in Figure 3. The data to be presented is 
accessed through the MMP agent, which 
determines, as part of the discourse plan, what 
information to include and integrate. The data 
come from various and heterogeneous sources, 
including spoken and typed input. 

Figure 3 shows the FOCAL architecture from a 
presentation of information point of view, leaving 
aside aspects related to the processing and fusion 
of the input and connections to the Information 
Sources. It shows the different components and the 
main interactions amongst them. The architecture 
is organised around the two main agents for 
IMMP: the DM agent, responsible for the overall 
interaction, and the MMP agent, responsible for 
building a presentation and realising it using 
different media.  They both act as “conductors”: 
one for understanding, the other for generation. 

Comparing the new architecture for FOCAL 
with the reference architecture for IMMP proposed 
by Bordegoni et al. (1997), the DM agent can be 
seen as corresponding to the Control Layer, 
deciding which communicative goals should be 
processed (i.e., the purpose of the presentation), 
while the MMP agent assumes the processes 
performed by the Content and Design layers.4 

3.2 Interaction flow process 
In the current FOCAL scenarios, there are two 

modes: (1) the virtual adviser (VA) “pushes” the 
information that needs to be presented, namely 
delivers the briefing content, and (2) the VA 
allows users to ask questions to repeat or gain 
information.  

With the IMMP architecture for FOCAL shown 
in Figure 3, these two modes follow the same flow 
process.  In both cases, the aim is to answer either 
an explicit or an implicit information need by 
presenting information through complementary 
media. The information need may have been 
initiated by the system (i.e., briefing mode) or 
initiated by the user (i.e., question-
answering/dialogue mode). 

When the system is answering a user’s query, 
the DM agent has to understand the user’s query in 
order to identify what is the user’s information 
need.5 This requires the DM agent to have access 
to domain knowledge, e.g., an ontology of the 
                                                    

4 We are currently collaborating with UniSA on the 
design of a Media Selection agent and a Media 
Presentation agent for these two layers. 

5 In briefing mode, the DM agent generates the 
information need, while in dialogue mode, the 
information need comes from the input devices, whose 
output is sent to the Input Fuser and then to the DM. 

domain (see Nowak et al., 2004), to ensure that the 
query makes sense (i.e., is syntactically and 
semantically well-structured).  Then, the DM’s aim 
is to determine a communicative goal which 
answers this information need and to send this goal 
to the MMP agent. The communicative goal thus 
constitutes the input to the MMP agent. From this 
input, the MMP selects the appropriate discourse 
strategies to be developed (e.g., "explain mission"). 

Once the MMP receives a communicative goal, 
it can develop a discourse plan to satisfy this goal. 
The discourse plan aims at selecting the relevant 
content and organising it. A set of queries is thus 
sent to the Query agent to acquire the content 
identified.  

Depending of the level of knowledge and 
expertise of the Query agent, the queries can either 
be forwarded to a specific Information Source (IS) 
agent responsible for the information requested, or 
be forwarded to all IS agents.  In the latter case, the 
Query agent will have to choose the most 
appropriate amongst the responses received and 
send these to the MMP. The Query agent thus acts 
as an interface between the IS agent and the MMP 
agent.  When the content of the information to be 
presented has been retrieved, the MMP allocates 
the realisation of each discourse segment (i.e., 
presentation unit) to the media-specific generators. 
The decision to encode information under a 
particular modality is made by taking into account 
several criteria represented as declarative rules and 
used by the planner engine. 

Finally, the MMP has to supervise the realisation 
of each discourse segment. It acts as a media 
coordinator to ensure that each media-specific 
generator agent is working towards a consistent 
and synchronised presentation. The MMP ensures 
that the presentation plan is built cooperatively and 
that alternatives are negotiated if needed. Thus, the 
presentation design planning is a cooperative 
process amongst the media-specific generator 
agents, supervised by the MMP. In comparison 
with the reference architecture model, the MMP 
shares with the media-specific generator agents the 
tasks performed in the design layer of the 
architecture. 

Each media-specific generator agent receives a 
discourse segment to be realised. It develops the 
design of this segment closely with the MMP 
before starting the generation process. These 
agents use specific knowledge sources (e.g., 
grammar and lexicon, icons region models, texture 
models, graphics techniques, etc.). In comparison 
with the reference architecture model, the media-
specific generator agents perform the tasks 
represented in the realisation layer of the 
architecture. 



 
Figure 3: IMMP architecture for FOCAL  

When each presentation unit has been realised 
and appropriately scheduled on a single timeline 
by the MMP, they are sent to their specific 
rendering devices to be displayed (cf. the 
presentation layer of the reference architecture). 

The architecture and the interaction process flow 
described above have been designed to handle an 
interaction between a user and the FOCAL system.  
This means that, during a session, a user may 
interact with several virtual advisers.  Virtual 
advisers can be considered as a means to interact 
with the system in the same way as a mouse or a 
pointing device.  In this case, one DM and one 
MMP drive the interaction and provide appropriate 
answers.  However in the case of multiple users 
interacting simultaneously with the system and in 
particular with different virtual advisers, the 
architecture will need to be extended to support 
parallel interactions. It will be necessary to have 
one DM and one MMP per interaction stream.  

4 Discussion 
This work is still in its early stages, and the 

architecture proposed here has not yet been fully 
implemented; however the current FOCAL system 
is very much in line with the IMMP architecture.  
Although attention has so far been put mainly on 
the spoken dialogue with the virtual advisers 
(Estival et al., 2003) and on the integration of new  
input modalities within a unified framework (Wark 

et al., 2004), our intention is to continue the work 
to produce appropriately integrated presentations. 
To conclude this paper, we would like to briefly 
discuss issues of evaluation. 

The FOCAL environment may be evaluated at 
different levels and for different purposes. The 
aspect which concerns us here is the generation of 
multimedia information and its integration across 
several modalities or media. The important 
questions then are whether users receive enough 
information, whether the information is relevant 
for them to accomplish their task, and whether the 
information has been appropriately represented and 
integrated. Through evaluation, we would like to 
be able to answer questions such as:  

• Is a particular medium/modality to be 
preferred for the encoding of specific 
information in order to facilitate the 
comprehension and retaining of that material? 
Which information should be represented 
under which format?  

• Which modalities best complement each 
other? 

• How can we avoid the split-attention effect in 
multimedia material? 

• Does the verbal or visual representation of 
information have an impact on its processing 
by users?  
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Abstract

Systemic features use linguistically-
derived language models as a basis for
text classification. The graph structure
of these models allows for feature repre-
sentations not available with traditional
bag-of-words approaches. This paper
explores the set of possible represen-
tations, and proposes feature selection
methods that aim to produce the most
compact and effective set of attributes
for a given classification problem. We
show that small sets of systemic fea-
tures can outperform larger sets of word-
based features in the task of identifying
financial scam documents.

1 Introduction

Text classification is among the most widespread
applications of computational linguistics. The
range of services that offer text classification con-
tinue to grow, and include such mainstream appli-
cations as email and web content filtering. The
classification of documents by machine learning
techniques requires a representation of each doc-
ument as a set of features; almost without excep-
tion, these features are based on the presence, ab-
sence, or frequency of words in the text. This ‘bag-
of-words’ model is popular both due to its ease
of implementation, and its excellent performance

on many tasks. Topic-based classification, such
as newswire or newsgroup tasks, is well-suited to
this automated keyword-spotting approach. These
are cases in which the presence of a topic-related
word such as ‘wheat’ is a very strong indicator of
a document’s class.

The bag-of-words model makes large simplify-
ing assumptions about a document. It assumes
that there is no textual structure; no ordering of
paragraphs in the text, sentences in a paragraph,
clauses in a sentence, or words in a clause. In
addition, it assumes that the occurrence of each
word is independent of each other word. These
assumptions, in providing a much simpler picture
of the document, destroy much of the text’s mean-
ing. Work has been done to restore this infor-
mation using semantic resources such as Word-
Net (Scott and Matwin, 1998) or using syntactic
information (Carr and Estival, 2002). There is
also growing interest in classifying texts on non-
denotational meaning, such as writing style, au-
thorship identification (van Halteren, 2004) and
sentiment analysis (Pang and Lee, 2004). These
new areas highlight the properties of a document
that are currently slipping through the cracks.

This paper takes another approach to providing
a better representation than bag-of-words. In line
with Systemic Functional Linguistic theory, the
words of a text are treated as evidence of semantic
choices being made by the author. These choices
form systems, and each document is modelled as
the set of choices it makes within these systems.
This knowledge of the semantic relationships be-
tween features allows for more sophisticated rep-



resentations that more accurately capture charac-
teristic linguistic differences. In Section 2 we enu-
merate these representations and discuss how their
semantics differ. Section 3 describes the Scam-
seek project and the use of systemic features in
the identification of financial scams. The results
provided in Section 4 show that smaller number of
systemic features can outperform larger numbers
of word-based features in text classification.

2 Systemic Features

Systemic Functional Linguistics (SFL) is a lin-
guistic theory that approaches language as a social
resource for meaning-making (Halliday, 1994).
Language is not seen as a collection of discrete
phrase production rules working upon a deeper
syntactic structure, but as an interwoven collection
of systems realising a deeper semantic structure
and functional intention. SFL explicitly deals with
three types of meaning (metafunctions) in text: the
ideational (content of the text), the textual (organ-
isation of the text), and the interpersonal (social
positioning of the text) meanings, each of which
contribute to the formation of a document.
SFL uses system networks as a way to represent

the patterns of language choice related to a partic-
ular meaning. A system network is defined both
graphically and algebraically (Matthiessen, 1995)
as a hierarchy of choices: at the most delicate
level, these choices result in particular lexical or
grammatical artifacts. SF linguists have proposed
standard system networks for most aspects of the
English language.
SFL has been applied in natural language pro-

cessing since the 1960s, but has been adopted
most widely within the field of text generation
(Matthiessen and Bateman, 1991). Most re-
cently, systemic analysis has been used with ma-
chine learners in more statistical NLP tasks such
as functional clause classification (O’Donnell,
2002). The increased interest in attitude and af-
fect has also seen SFL’s theory of appraisal used
to augment sentiment classification (Taboada and
Grieve, 2004).
Systemic features are a way to describe the us-

age of a system network within the document as
a whole. Systemic features were introduced as a
way of identifying the interpersonal distance of

documents (Whitelaw et al., 2004), using only a
single system network. Features from multiple
system networks have been used together to clas-
sify different styles of academic writing (Argamon
and Dodick, 2004). These types of grammar mod-
els have been shown to be well suited to the task of
describing the non-denotational or stylistic proper-
ties of writing (Whitelaw and Argamon, 2004).

2.1 Types of System Networks
Two types of system network are used in this pa-
per, both constructed using Systemic Functional
Linguistic theory. The first, grammar models, are
based on the general linguistic descriptions pro-
vided in linguistics texts, eg. (Matthiessen, 1995),
and are similar to those used previously for stylis-
tic text classification. The specific systems used
here include:

• CONJUNCTION: models how clauses expand
on their context through elaboration (that is),
extension (moreover), or enhancement (then,
next).

• PRONOMINAL/DETERMINATION: models
the way in which referents are identified in a
text. This system has been used to classify
texts on the basis of interpersonal distance
(Whitelaw et al., 2004)

• COMMENT: describes the status of a clause
within the context as eg. evaluative/judging
(sensibly), desiderative (unfortunately), or
assertive (certainly).

• MODALITY: is a rich system that describes
the likelihood (probably), frequency (might),
and necessity (should) of events.

Grammatical models such as these provide a
general profile of language use within a document
and a register. An advantage of these general mod-
els is their domain independence; the distinctions
made within these systems are based on the man-
ner in which the document was written, rather than
its topic. Manual linguistic research has given ev-
idence that scam documents differ from normal
documents in their language (Herke-Couchman,
2003), and so it is expected that features from
these systems will assist in this classification.
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Figure 1: Aggregating counts smooths differences
at greater delicacy

Register models, in contrast to the general ap-
plicability of the grammatical models, describe
specific linguistic traits that are characteristics of
individual registers. Register models are com-
piled manually by trained SF linguists based on
their analysis of a training corpus. A register, in
SFL terminology, is a group of texts whose lan-
guage selections vary from the general language
system in similar ways; a skewing ‘of probabili-
ties relative to the general systemic probabilities’
(Matthiessen, 1993). In the absence of a fully de-
veloped system network for English, register mod-
els each define portions of language use that are
characteristic and discriminatory within the cur-
rent classification task.

2.2 Leveraging Systemic Structure

In a standard ‘bag-of-words’ approach, the con-
tribution of a word to a document is given by its
relative frequency; how rarely or often that word
is used. This implicitly uses a language model
in which all words are independent of each other.
Crucially, this does not and cannot take into ac-
count the choice between words, since there is
no representation of this choice. Placing words
within a system network provides a basis for
richer and more informative feature representa-
tion. There are two main advantages to be gained
from systemic information.
Firstly, it allows for categorical features that are

based on semantically-related groups of words, at
all levels in the network. By collecting aggre-
gate counts, individual variations within a cate-
gory are ignored. Figure 1 shows the raw counts
of the same system in two documents; at the lower
level, closer to lexis, the distributions of counts are
highly dissimilar. At the higher level, these dif-
ferences have been smoothed, and the documents

20 15 5

38% 12% 25% 25%

40

4 2 2

8

50% 50%

Figure 2: Proportional features are a local and
size-independent measure

look the same. This aggregation also helps alle-
viate the problems associated with representations
containing large numbers of very sparse features.

For a given register, it may be the case that im-
portant and characteristic language choice occurs
at a very fine level, distinguishing between usage
of individual words. This word-level information
is kept intact, as in a bag-of-words approach. In
another register, it may be the usage of a category,
such as interactant, that is characteristic. The us-
age of any words within the category may appear
random while maintaining consistent category us-
age. These higher-level features are not avail-
able in a traditional bag-of-words approach, hence
these patterns may be lost as noise.

The second and more important difference to
traditional feature representation is the represen-
tation of language choice. SF theory treats lan-
guage use as a series of selections within systems;
at any point in the system network, or tree as it
has been modelled here, the selection is restrained
to the immediate sub-systems. The choice is not
between one word and any other, or even one sys-
tem and any other, but a series of semantically-
driven choices within the system. A bag-of-words
model can model only choice between one word
and any other; a choice between arbitrary words
such as ‘dog’ and ‘elegant’. Comparative features
such as these can only be used within an appropri-
ate theory-driven structure, which is provided here
through the use of SFL and system networks. Fig-
ure 2 shows the potential for comparative features
to reveal similarities not immediately apparent in a
text. The leftmost node in each system contributes
50% to parent system usage, despite markedly dif-
ferent numbers of occurrences.
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2.3 Representing Systemic Features
Figure 3 shows a portion of the DETERMINATION
system for two documents of different sizes, be-
longing to the same register. Four possible fea-
ture representations are given: from left to right,
each node shows the total count, term frequency,
system percentage, and system contribution. Each
feature representation captures a different aspect
of system usage in a document and register.
Raw counts (term frequency) (first column).

The summed feature count, shown in the leftmost
column, presents these two documents as highly
dissimilar. Note also that this is only the top por-
tion of the system, and that multiple levels exist
below those shown. Raw term counts are usually
not used directly as features, as they are heavily
influenced by document length.
Document percentage (second column) is the

standard basis for bag-of-words representations; it
gives the proportion of the document accounted
for by this term. It is commonly used since
it normalises for document length; most topic-
based document classification rightly assumes that
the document length is not important (Sebastiani,
2002). In creating features for each sub-system,
this representation can still take advantage of the
aggregation and smoothing provided by the sys-
tem, but does not take further advantage of the
known structure.
System percentage (third column) gives the

proportion of total system usage made up by this
sub-system. In Document A, addressee occurs
three times from a total of fifteen occurrences of
determination in the document, giving it a sys-
tem percentage of 20%. Within a document, sys-
tem percentage is directly proportional to term fre-
quency, but is independent to system density in the
document. If another 800 words were added to
Document A, but no more uses of DETERMINA-
TION, the term frequency for a feature would halve
while the system percentage remained constant.
This makes it a suitable representation where dis-
tinctions are made not on how often a feature oc-
curs, but the manner of its use. The system per-
centage of speaker is higher in Document A than
Document B, despite higher term frequency in the
latter. System percentage is also useful when the
area of interest is a constant-size subsection of a

variable-length document.
System contribution (fourth column) shows

the ratio of sub-system to super-system occur-
rence. Again in Document A, speaker occurs six
times and its super-system, interactant, occurs ten
times, giving a system contribution of 60%. This
is a strictly local measure of usage, and captures
most directly the systemic notion of choice: once
the decision to use a given super-system has been
made, how often was this sub-system chosen as
the realisation? This is a relative feature, and
as such is independent of document length, total
system usage, and usage of other portions of the
system (see Figure 3). Despite the differences in
lower-level choices, and in the raw counts of sys-
tem usage, the system contribution of interactant
in Documents A and B are very similar.
System contribution is not proportional or

strongly correlated to document percentage, and
the two measures provide useful and complemen-
tary information. Within a system instance, doc-
ument percentage can be used to report the fre-
quency not just of terms but of systems as well.
System contribution does not capture how often
a system is used, but rather its usage in relation
to the other possible choices. In the same way as
a register may be characterised by choice, it may
also be characterised by frequent usage of a partic-
ular system, which will be highlighted by system
percentage. The four complementary representa-
tions given here may each be useful in discerning
characteristic system usage.
In implementing these representations, it is

worth noting that not all system contribution fea-
tures are necessary, and some can be removed.
Features from a node which is an only child do
not add information since there is no choice. In a
system with a binary choice, either one of the fea-
tures may be discarded since they have unit sum.
Both system percentage and system contribution
are meaningless at the root level, and system per-
centage and system contribution are identical at
the first level below the root. These feature re-
ductions can be performed deterministically be-
fore any further feature selection.
By mapping only the relevant portions of a doc-

ument’s meaning, systemic features also have the
potential to increase computational efficiency by



reducing the number of attributes used in machine
learning systems, in comparison to broader bag-
of-words methods. This should produce smaller
feature sets with equal or better performance.

2.4 Selecting Systemic Features

We have presented four potential feature represen-
tations for systemic features. Depending on the
behaviour of a system network in a particular clas-
sification task, the most appropriate representation
may vary. In addition, the best feature type may
change within a single system. We propose a sim-
ple feature selection method for systemic features.
For a given task, the attribute significance of

each possible feature representation can be mea-
sured using a method such as information gain.
By ranking the options for a single node upon an
information metric, the best feature type for each
node can be selected. This reduces the number of
features, reduces the chance of performance loss
through correlated features, and should combine
the strengths of each feature type.

3 Scamseek: Identifying Financial Scams

We tested this range of possible systemic feature
representations using models and data compiled as
part of the Scamseek project1. Scamseek aims to
identify a variety of criminal financial scams on
the internet, using a combination of automatically
and linguistically derived criteria.
The entire Scamseek corpus, collected and man-

ually classified by ASIC experts, contains 7556
documents in a total of 58 registers. These reg-
isters fall into four broader classes which group
financial scams, other scams, legitimate financial
documents, and all other web pages. This coarser
classification is of the most interest to the client,
as potential scams are investigated regardless of
scam type. For these experiments we used 1896
documents from 22 registers with a minimum of
20 documents per register.
As well as existing grammar models, a register

model was developed by SF linguists for each of

1Scamseek is a joint project funded by The University
of Sydney, the Capital Markets Cooperative Research Cen-
tre, the Australian Securities & Investments Commission and
Macquarie University.
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Figure 4: Results for each set of models, selecting
the best feature at each node

the Scamseek registers. These were treated in two
ways.
Each register model can be considered as a se-

lection from a full systemic description of English.
Taken individually, a register model aggregates all
topic- and genre-specific features, producing an
overall picture of the ‘topicality’ of a text. The
register models can also be combined to form a
single system network, which is more complete
but not topic-specific. In this case, it should func-
tion more like a grammar model in that the relative
usage of systems should become more important.
Both of these options were tested.
As well as testing grammar models and regis-

ter models independently, the two types of system
networks were combined. In all cases, features
with no variation or no occurence in the corpus
were removed. The systemic features were ex-
tracted from documents using an efficient partial
parsing method (Whitelaw and Argamon, 2004).
Each of the feature representation methods given
in Section 2.3 were tested individually and in com-
bination (‘all’). The best-feature-per-node feature
selection method (‘best’) was also tested for each
feature set.
As a baseline, we used a bag-of-words repre-

sentation using all of the words and phrases in-
cluded in all the grammar and register models.
Each feature set was tested at various sizes, us-
ing information gain to select features. Tests were
performed using ten-fold cross-validation and the
support vector machine (SVM) (Platt, 1998) im-



gram reg (ind) reg (comb)
term frequency 24% 19% 14%
document % 20% 36% 30%
system % 18% 18% 27%

sys. contribution 38% 27% 29%

Table 1: Proportion of each feature type selected
for ‘best’ sets

plementation used in the WEKAmachine learning
environment (Witten and Eibe, 1999) 2

4 Results

Figure 4 shows the results from selecting the best
combination of feature types. This also shows the
best overall result achieved at 50.4%, using 200
features selected from the grammar and combined
register models. This outperforms the full baseline
result by two percent. The grammar models alone
perform much lower than any of the register mod-
els, which is to be expected on this register-based
classification.
Table 1 shows what types of features were se-

lected in the best-feature-per-node process. As
expected, the densely populated grammar models
select more system contribution features. When
register models are used individually they are very
sparse, and there is less benefit from including rel-
ative features. In this case, document percentage
makes up 36% of the feature set. The combined
register model, which forms a single more fully-
specified system network, selects equally from all
feature types except term frequency. All represen-
tations were used by all models, and it is through
this corpus- and system-specific selection that the
best combination of feature types is found.
The relative performance of each feature type

can be seen in Figure 5. As in most text classifica-
tion, raw counts do not work as well as normalised
features. Including all features from all nodes re-
gardless of potential correlations, as shown by the
solid line, produces worse results than using only
the best combination of features.
As discussed in Section 2.2, features higher in a

system network aggregate and smooth the features
below it. When it is the use of semantic categories

2Each experiment was also run using J48 decision trees
and Naive Bayes, but produced consistently poorer results.
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features accuracy
baseline 594 82.2%
grammar 200 82.4%
combined 200 84.4%
Scamseek > 5000 > 90%

Table 2: Class-based accuracy results.

of words that is important, these internal features
will be favoured over lexis. This is the case for
all the models tested: of the top hundred features
in grammar models, 83 are internal. Experimen-
tal results bear out the advantage, with better per-
formance for systemic features than the lexis-only
baseline when both use document percentage.
Table 2 shows the class-based accuracy results

for the best feature sets obtained. Registers are
more similar to other registers in the same class,
resulting in much higher performance than when
classifying by register. The best set of 200 sys-
temic features performed 2% better than the base-
line bag-of-words system. Grammar models also
outperformed the baseline despite poor register ac-
curacy. This is evidence of the stylistic differences
between these categories. The full Scamseek sys-
tem, which combines bag-of-words features with
more systemic features and other processing such
as entity recognition, uses many more features and
achieves much higher performance.

5 Conclusions

A document is more than a bag of words. As the
forms of document analysis and classification con-



tinue to expand beyond topic detection, we must
move towards a richer representation of a docu-
ment. SFL provides one such linguistic model,
and the representation of system models as fea-
tures presented here shows the efficacy of a the-
oretically motivated approach. Systemic features
allow for the production of smaller, denser fea-
ture sets that contain more sophisticated features
than traditional methods. Grammar models can
help build stylistic profiles of texts; register mod-
els supplement these with genre-specific linguis-
tic phenomena. Through their combination, and
a combination of new feature representations such
as system contribution and system percentage, we
have shown increased performance on the difficult
task of identifying financial scams.
The system networks used in this research are

still heavily tied to lexical realisations. The sys-
temic feature extraction process can be efficiently
expanded to include morphosyntactic and simple
grammatical relationships; this will allow for the
description of linguistic phenomena related to the
logogenesis or unfolding of a text, such as the rel-
ative ordering of features. As more system net-
works are constructed for core sections of English
SFL grammar, these models will be beneficial to a
wide range of tasks including the classification of
style, sentiment, attitude and affect.
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Abstract

We discuss the data sources available for ut-
terance disambiguation in a bilingual dialogue
system, distinguishing global, contextual, and
user-specific domains, and syntactic and seman-
tic levels. We propose a framework for combin-
ing the available information, and techniques for
increasing a stochastic grammar’s sensitivity to
local context and a speaker’s idiolect.

1 Introduction

Resolving the ambiguities present in an incom-
ing utterance is a key task in natural language
processing. Interpreting an utterance, whether
semantically, syntactically or phonologically, is
typically construed as a two-stage process: the
first stage involves deriving a set of all possi-
ble analyses, using relatively well-defined prin-
ciples, and the second stage involves selecting
between these analyses, using principles that are
harder to define and formalize.

This paper considers principles for disam-
biguating utterances in a human-machine dia-
logue system. Our main goal is to present a
framework for integrating the different sources
of information relevant to this task, and the
available techniques for making use of this in-
formation. Working with a dialogue system
highlights the need for such a framework; there
are additional types of ambiguity that need to
be considered (such as dialogue act ambiguity),
and a particularly diverse set of informational
resources to consult (many of which relate to the
current dialogue context). At the same time,
there are additional opportunities available—in
particular, the ability to ask the user clarifica-
tion questions if a given ambiguity cannot be
otherwise resolved.

We begin in Section 2 with an analysis of the
kinds of disambiguation needed in our dialogue
system, and of the information available to the
system to perform the task. In Section 3, we

outline a general framework for performing dis-
ambiguation in a dialogue system. In Sections 4
and 5, we describe how our system implements
this framework. We conclude in Section 6 with
an account of our current work.

2 Sources of information available
for utterance disambiguation

Utterance interpretation is typically modelled
as a pipeline process, beginning with phono-
logical interpretation, proceeding with syntactic
analysis and semantic analysis, and concluding
with discourse or dialogue attachment. We will
illustrate by showing the pipeline used in our
own bilingual English/Māori dialogue system,
Te Kaitito (see e.g. Knott and Wright (2003);
Knott et al. (2004)). Our pipeline is shown in
Figure 1. Since our input is a written sentence

Dialogue act
identification

Sentence
parsing

Presupposition
resolution

Figure 1: The utterance interpretation pipeline

we begin with sentence parsing, using the LKB
system (Copestake and Flickinger, 2000). LKB
works with HPSG-like grammars; the gram-
mar we use is bilingual, simultaneously encod-
ing a fragment of English and Māori (Knott et
al., 2002). LKB’s parser delivers ‘flat’ seman-
tic representations in a format called Minimal
Recursion Semantics (MRS) (Copestake et al.,
1999), which are turned into Discourse Repre-
sentation Structures (DRSs) distinguishing be-
tween an assertion and a set of presuppositions
(Kamp et al., in preparation). These DRSs are
then passed to a presupposition resolution mod-
ule, which finds referents for anaphora, definite
NPs, and other presuppositional constructions.
The resolved DRSs are passed to a dialogue act
identification module, which determines the di-
alogue act made by the utterance.



Ambiguities can arise at any point in this
pipeline. There can be many parses of the sen-
tence, many semantic interpretations of a parse
tree, many ways to resolve the presuppositions
in a semantic interpretation, and many ways to
interpret the resulting structure as a dialogue
act. By the end of the pipeline, there can be a
large number of interpretations consistent with
the original input sentence. How should one in-
terpretation be chosen?

To answer this question, it is useful to sur-
vey the kinds of information available to a sys-
tem for the resoluton of ambiguities. There are
two ways of thinking about this information.
Firstly, relevant information can appear at dif-
ferent levels, suitable for use at different points
in the pipeline. Some information is syntac-
tic: as is now well known1 we can make use of
statistics about the relative frequency of syn-
tactic constructions in a corpus to decide be-
tween alternative analyses. Other information
is semantic: for instance, we can specify a
set of axioms about what are considered nor-
mal circumstances, and use a theorem-prover
to determine which candidate interpretation is
most consistent with these. Syntactic informa-
tion can be used to resolve syntactic ambigui-
ties, and semantic information can be used to
resolve ambiguities in semantic interpretation
and discourse attachment. Secondly, relevant
information can come from different domains,
of which we consider three prominent ones: the
world, the speaker model, and the dialogue
context. Domains and levels of information are
roughly orthogonal; Table 1 summarizes their
possible combinations.

level
syntactic semantic

world general
corpus
statistics

world
knowledge
axioms

domain speaker
model

language
model of
the user

axioms
about
user

dialogue
context

statistics
about
recent
context

context-
matching
operations

Table 1: Domains and levels of information for
use in utterance disambiguation

This division is remeniscent of Menzel and

1See e.g. Manning and Schütze (1999, Chapter 12).

Schröder’s (1999) concept of multi-level parsing,
although they do not use the orthogonal domain
and level classifications shown here.

To illustrate these categorizations, consider a
well-known example of syntactic ambiguity:

(1) Fruit flies like a banana.

Under the most intuitive reading (call it Read-
ing 1), the sentence is about what fruit flies like
to eat. But it can also be interpreted (Read-
ing 2) as being about the way fruit tends to fly
through the air. We can use different sorts of
knowledge to help decide between these alter-
natives.

Firstly, we could use world knowledge—for
example, the fact that fruit doesn’t typically fly,
or that insects often like fruit. This information
could take the form of axioms in some suitable
logical language, directly encoding such propo-
sitions. But it could also take the form of statis-
tics about common syntactic structures in wide-
domain corpora, which indicate that the prob-
ability of the verb fly taking a subject headed
by fruit is vanishingly low. These statistics can
also be seen as a form of world knowledge, al-
beit one encoded in a far less explicit way than
a set of logical propositions.

Knowledge about the speaker of the sentence
is also of use in helping to disambiguate. For
instance, if the speaker is known to be a ge-
neticist, this would support Reading 1, while if
she is an aerodynamicist, this might generate a
weak preference for Reading 2. Again, knowl-
edge of the speaker can either be semantic (e.g.
taking the form of logical axioms) or syntactic
(e.g. statistics derived from a set of her previous
utterances).

Finally, an utterance’s context provides
strong constraints on disambiguation. Again,
this information can be syntactic (a recent us-
age of fly as a verb or noun would lend sup-
port to the corresponding interpretation) or se-
mantic, involving use of a logical representation
of the dialogue context: an utterance is scored
by the ease with which it can be incorporated
into the context (Knott and Vlugter, 2003). For
instance, if the utterance answers the question
How does fruit fly?, we may assume Reading
2; if it answers the question What do fruit flies
like?, we have very strong evidence for Reading
1.

In summary: we can distinguish six broad
categories of information relevant to utterance
disambiguation, classifying orthogonally by do-



main and level.

3 A framework for utterance
disambiguation

The central question in this paper is: how can
we incorporate disambiguation routines into our
pipeline so as best to integrate these disparate
categories of information? A simple approach
would be to use a ‘greedy’ algorithm: choose the
best syntactic analysis, using all the available
syntactic data, then pick the best semantic in-
terpretation that can be derived from this win-
ning syntactic analysis, and so on. But this ap-
proach can throw out plausible interpretations:
semantic information often overrides statistical
information about frequency of syntactic con-
structions. Consider the following dialogue:

(2)
System: I keep my pig in a pigpen.
User: Where is the pen?

If the system’s grammar has two lexical en-
tries for pen, one meaning ‘writing pen’ and one
meaning ‘pigpen’, the user’s utterance will be
syntactically ambiguous. The intended inter-
pretation is clearly ‘pigpen’, but corpus statis-
tics are unlikely to support this; if anything,
writing pens will be more common in a general
corpus. (Even looking at syntactic construc-
tions in the recent context will not help, since
the word pen was not used in the first utter-
ance.) However, at a higher level, presupposi-
tion resolution information can give us the right
reading. The intended reading carries a pre-
supposition that there is a pigpen, which can
be successfully resolved, while the other read-
ing presupposes a writing pen, which will not
be found, and must be accommodated.

In summary, we need a way to combine in-
formation from different levels (syntactic and
semantic) and domains (world, user and lo-
cal). Two questions now arise. Firstly, when
disambiguating an utterance at some point in
the interpretation pipeline, how far should we
look ahead along the pipeline? Secondly, how
should we combine evaluations made at differ-
ent points in the pipeline using different types
of information?

3.1 Proposal for a disambiguation
procedure

As to the question of how far to look ahead:
we propose that we should always look to the
very end of the pipeline. For instance, when
performing syntactic disambiguation, we should

take each possible reading, and perform seman-
tic interpretation, presupposition resolution and
dialogue attachment. Of course, each of these
might themselves generate alternative possibili-
ties. The resulting space of possibilities is rather
like a conventional AI search graph, in which
leaves are complete interpretations of the ut-
terance. At each stage, the procedure which
generates the ambiguities at that stage can as-
sign each alternative a local score, using the
information appropriate to that stage. When
we have created the full set of complete inter-
pretations, we can combine these local scores
somehow (see Section 3.2) to create a global
score for each complete interpretation.

We now need to use these scores to decide on
the best interpretation. Local and global scores
provide only a heuristic measure of which in-
terpretation is best, so we can only use them
as a rough indicator of which is the best read-
ing. If one interpretation has a global score far
exceeding those of all other interpretations, we
can safely choose it. But if there are several al-
ternatives with roughly the same global scores,
we need to ask a clarification question, so that
the user can disambiguate overtly. The selec-
tion of an appropriate clarification question is
problematic in its own right, since we may be
trying to distinguish between several interpreta-
tions whose high global scores originate in differ-
ent stages of the pipeline. Section 3.3 discusses
this topic.

3.2 Combining information types

How do we combine local scores due to sta-
tistical parsing, presupposition resolution and
dialogue attachment? To date, we have con-
sidered two approaches. We first considered a
weighting formula. In this method, all local
scores are numerical, and the global score is a
weighted sum of the local scores, with weights
chosen so as to reflect the importance of differ-
ent sources of information. However, this fails
to capture potential interactions between differ-
ent information sources. We now use a condi-
tional formula—basically a simple procedural
algorithm. In this scheme, we can specify, for
instance, that a certain local score is only used
if there is a tie as regards some other local score.
Our general observation is that higher levels of
information tend to trump lower levels; for in-
stance, if there are two alternative interpreta-
tions of an utterance at the dialogue act level,
and only one of these is consistent with a co-



herent dialogue, then it shouldn’t matter if the
other interpretation scores more highly in the
syntactic or presupposition-resolution domains.
Section 4 discusses this algorithm further.

3.3 How to generate clarification
questions

A key component in a dialogue-based disam-
biguation system should be the ability to ask
the user for clarification. There are well-known
dialogue strategies for doing this; the con-
cept of a clarification subdialogue is well-
established as a dialogue structure—see, for ex-
ample, Schmitz (1997).

It seems that different clarification ques-
tions target ambiguities at different points in
the interpretation pipeline. At the syntac-
tic level, clarification questions tend to have a
multiple-choice structure, in which the alter-
native syntactic possibilities are disambiguated
by rephrasing. For instance:

(3)

User: Fruit flies like a banana.
System: Do you mean (1) ‘A banana is

liked by fruit flies,’ or (2) ‘Fruit
flies just as a banana does’?

At the presupposition resolution level, clarifi-
cation questions tend to take the form of wh-
questions. For instance:

(4)
User: The dog barked.
System: Which dog barked?

These questions are sometimes termed echo
questions (c.f. Ginzburg (1996)). They are
syntactically different from ordinary questions:
for instance, the wh element receives a certain
kind of stress, and interestingly, they can be
embedded inside questions:

(5)
User: Who did the dog chase?
System: Who did which dog chase?

Questions about dialogue act assignment are
much less common. Questions of this sort would
probably include meta-level questions such
as the following:

(6) System: Are you talking to me?

(7) System: Are you asking me, or telling me?

Recall from Section 3.1 that a clarification
question will be asked if the highest-ranked in-
terpretation is close enough in score to one or
more lower-ranked interpretations. What sort
of clarification question should we then gener-
ate?

Our key suggestion here is that we need to
nail ambiguities in the order they arise in the
interpretation pipeline. We do not want to ask
a question about an ambiguity at one stage in
the pipeline if there are still ambiguities re-
maining at an earlier stage. We therefore pro-
pose traversing the interpretation space a sec-
ond time for the interpretations to be clarified;
as soon as an ambiguity is generated, we should
ask a question to resolve it. If ambiguities still
remain after this question has been answered,
we continue to traverse the search space for the
remaining interpretations, and ask further clari-
fication questions about points further on in the
pipeline. For example, we might have three po-
tential interpretations A, B and C. If B and C

have the same syntactic analysis, but A’s anal-
ysis differs, we ask a multiple-choice question
about these two syntactic possibilities. If the
user answers that the syntax is that of B/C, we
need to look further in the pipeline. If we find
that B and C have a presupposition resolved in
different ways, we then ask an echo question to
nail this remaining ambiguity.

The ambiguities that we find on this second
pass can be thought of as those that we find to
be ambiguous in hindsight, in the light of pro-
cessing further on in the pipeline. Even though
we are asking a question about syntactic ambi-
guity, we have actually worked out one or more
full interpretations for each possibility. To be
helpful to the user, the system could perhaps be
configured to include information with a ‘paren-
thetical’ flavour in a clarification question, indi-
cating what subsequent interpretation decisions
follow as a corollary to the alternatives she is
currently being asked about. For example:

(8)

User: The fruit flies like a banana.
System: Do you mean (1) ‘The (fresh)

fruit (in the bowl) flies like a
banana,’ or (2) ‘The (mutant)
fruit flies (in the genetics lab)
like a banana’?

As described in section 5.1, we cannot be
sure that the system’s grammar will always be
sufficient to form a syntactically unambiguous
rephrasing such as The drosophila are fond of
a banana. In these cases, parenthetical anno-
tations of semantic information could be very
useful.



Parse Probability Attachment Saliency Presuppositions Accommodations Dialogue act

P1
P1.A1
P1.A2

P2 P2.A1

P3
P3.A1
P3.A2
P3.A3

...
...

...
...

...
...

...

Table 2: Structure for aggregation of utterance disambiguation data in Te Kaitito

4 Disambiguation in Te Kaitito

Te Kaitito provides a variety of sources for dis-
ambiguation data: a DRS representation of the
current discourse context, a saliency list of ref-
erents ranked by how recently they have been
mentioned, and records of recent utterances
and preferred parses. We also have a corpus
of sentences hand-annotated with their correct
parses.

As an utterance travels along Te Kaitito’s
processing pipeline, a disambiguation table
(See Table 2) is progressively filled with all the
information necessary for a disambiguation de-
cision. When the utterance reaches the end of
the pipeline, a disambiguation module uses this
information to make a decision—either selecting
an interpretation outright, or initiating genera-
tion of clarification questions if there is insuffi-
cient information for a clear decision.

The structure of the disambiguator is,
broadly speaking, an iterative pruning process
traversing the table from right to left. Each
column is consulted in turn and sufficiently im-
plausible parse/attachment combinations dis-
carded. If at any stage only a single interpre-
tation remains, it is chosen as the correct one;
otherwise the next column to the left is used
to prune the remaining parses. If multiple in-
terpretations remain after the final stage (the
stochastic grammar), clarification questions are
generated (see Section 5).

This model fits the observation, made in Sec-
tion 3.2, of prioritising information from higher
semantic levels: the lower levels are only con-
sulted as tie-breakers for the higher levels.

The exact mechanism for combining disam-
biguation is subject to some experimentation:
in particular, it is not clear that presupposi-
tional weight is always a more reliable indica-
tor than saliency. However, the self-contained
nature of the disambiguator lets us modify it
without affecting the rest of the system.

4.1 Syntactic disambiguation using
statistics

Probabilistic rule annotation using statistical
data is an established technique for resolv-
ing syntactic ambiguity (Manning and Schütze,
1999, Chapters 11 and 12). Augmenting a
context-free grammar with rule probabilities is
relatively straightforward; the application of
similar techniques to a Head-Driven Phrase
Structure Grammar such as that used in Te
Kaitito is a more complex issue (Brew, 1995).

We use the techniques discussed by
Toutanova et al. (2002) for stochastic HPSG
parsing: augmentation of the derivation trees
with probabilities in the manner of a proba-
bilistic CFG, and an expectation-maximization
technique on selected features of the derivation
tree.

To construct a stochastic grammar, we re-
quire a source of statistical data. In our case
this takes the form of an annotated treebank.
Using the LKB parser and the [incr tsdb()]
package2, we can parse a corpus of test sen-
tences and manually select preferred parses.
[incr tsdb()] stores the human annotator pref-
erences as first-class data, making it relatively
immune both to changes in the nature of the
statistics extracted and in the underlying gram-
mar.

4.1.1 Contextually augmented
probabilities

Commonly, probabilities in stochastic gram-
mars are static: they are inferred off-line from
a corpus and remain fixed thereafter. It would
clearly be desirable to adapt the probabilities
to the current dialogue context. Consider ex-

2[incr tsdb()] provides an integrated grammar devel-
opment environment with a range of facilities for diag-
nostics, evaluation and benchmarking (see Oepen (1999)
for details). Here we are mainly concerned with its facil-
ity for maintaining a database of test items, parses, and
human correctness annotations.



ample 1: If fruit flies like bananas follows hard
upon meat flies rather inelegantly and vegeta-
bles fly like a dream, then we would like to as-
sign greater weight to the fly-as-verb reading.
This can be done by treating the dialogue as an
additional corpus, albeit with different learning
parameters.

We propose augmenting the usual probability
of a rule or feature with another value repre-
senting its ‘weight’ in the immediately preced-
ing context. This value is then combined with
the corpus-derived probability to give the over-
all probability used in disambiguation.

The contextual ‘weight’ of a feature is simply
a counter which is incremented whenever the
feature appears in an utterance by the user or
the system. Heavy damping is applied at each
dialogue turn so that features which stop ap-
pearing in the context soon regain their base
probabilities. Careful tuning of the damping
factor will be necessary.

It is not at present clear how best to com-
bine the contextual weight of a feature with its
base probability. Our current proposal is simple
addition after scaling by an empirically tuned
factor, but further evaluation will be needed.

4.1.2 The user model

The distribution of grammatical features varies
with the speaker as well as with the context,
both in vocabulary and higher-level constructs.
Our dialogue system functions in a language
learning environment, where users are learners
of Māori. In this environment, there is even
greater variation between users’ idiolects, as
learners often have widely differing skill levels.

For this reason it makes sense to augment the
probabilistic model with per-user information.
Again, the dialogue itself is used as an ancillary
corpus, but in this case statistics are only ex-
tracted from the user’s utterances, not those of
the system. The results of this on-line learning
can then be combined with the corpus-derived
probabilities in the same way as the contextual
counts. Again, some damping is desirable. Per-
sonal usage patterns don’t change as fast as con-
versational topics, but they are subject to grad-
ual variation, particularly when the speaker is
learning a new language.

There are additional benefits to keeping track
of a learner’s usage patterns: they can be com-
pared with a corpus of sentences at the learner’s
intended level to find gaps in their knowledge of
a language. It may be useful to bias the sys-
tem’s generation system in favour of features

that a learner’s speech lacks, in order to give
them more exposure to constructs that they find
more difficult.

4.1.3 Question-answering and priming

In human conversation, even the most unlikely
parse can become plausible when primed by a
question with the appropriate syntactic struc-
ture. For example, a hugely improbable inter-
pretation of the sentence Matt cooks lunch can
be primed by prepending the question What do
matt cooks do when they get hungry in the mid-
dle of the day?. We would like to be able to
prime our system similarly.

This kind of priming can be incorporated in
similar fashion to the context and user mod-
els, using a very short-term skewing of feature
probabilities. When a question is asked, the
probabilities of its features are substantially in-
creased for the next dialogue turn only. In this
case, matt-as-adjective and cook-as-noun would
receive greater than normal weight.

This problem can also be considered at other
levels of processing: at a semantic level, Te
Kaitito will prefer the cook-as-noun interpreta-
tion if there are cooks in the current discourse
context. At a dialogue act level, the uncom-
mon interpretation can be preferred because it
is the only one which answers the question. One
advantage of incorporating this kind of priming
at the syntactic level is efficiency: with a large
grammar it might be necessary to prune less
likely parses before the semantic stage of pro-
cessing, even though this runs counter to our
disambiguation technique. In this case it’s vi-
tal to incorporate priming at the syntactic level,
or the correct parse may be removed before the
semantic and dialogue-act layers can perform
disambiguation.

4.2 Semantic disambiguation using
presupposition resolution

We have already described how our system uses
information about the presupposition resolution
process to generate preferences between inter-
pretations: see Knott and Vlugter (2003). Here
is a quick summary.

There are three possibilities to consider when
resolving a presupposition: we may find no an-
tecedents in the discourse context that match
the presupposition, we may find exactly one an-
tecedent that matches, or we may find more
than one antecedent. If we cannot find any dis-
course entities to bind a presupposition to we
can be generous and resolve this presupposition



by accommodating the information provided. If
there is exactly one possible binding the pre-
supposition is simply resolved. If there is more
than one possible binding then we add further
ambiguity to the intended meaning of an utter-
ance as each possible binding can be considered
a separate interpretation. After presupposition
resolution each interpretation has its presuppo-
sitions resolved either through binding to some
entity in the discourse context, or by accommo-
dating the content of the presupposition, and
the number of possible interpretations may have
increased.

In disambiguation through presupposition
resolution we keep to three principles. Firstly,
we prefer interpretations that resolve through
binding over those that resolve through accom-
modation. Secondly, when presuppositions are
resolved through binding we prefer those with
greater presuppositional content. Thirdly, we
prefer interpretations where presuppositions are
resolved to more salient entities in the discourse.

4.3 Dialogue act disambiguation

Dialogue act disambiguation is currently done
procedurally. As noted in Section 3.2, it seems
unlikely that a dispreferred dialogue act inter-
pretation could ever be redeemed by high local
scores on syntactic or presupposition-resolution
grounds. In the context of a question, an asser-
tion is checked to see if it can be interpreted as
an answer to the question. If not, it is consid-
ered to be a new assertion (with the question
being ignored). Note that it could be an an-
swer that the system cannot interpret as such,
because of some misunderstanding or the limi-
tations of matching questions and answers. In
the context of an ungrounded assertion, a ques-
tion is first considered as a possible clarification
question and then, if this fails, as a new query
(with implicit grounding of the previous asser-
tion). In dialogue act disambiguation we pre-
fer interpretations that answer a question over
those that ignore the question and assert new
information, and so on.

5 Clarification questions in Te
Kaitito

Te Kaitito currently generates two kinds of clar-
ification question. These will be described in
turn.

5.1 Multiple-choice questions

We generate all possible sentences realizing each
remaining candidate interpretation, and then

search for sentences that unambiguously present
one interpretation. Here is an example:

(9)

User: The dog chased the sheep.
System: Do you mean (1) ‘The sheep

were chased by the dog,’ or (2)
‘The sheep was chased by the
dog’?

There’s no guarantee that we will find such
a sentence for each interpretation. However,
we can take certain measures to improve the
chances of doing so. Firstly, we can adapt our
grammar to include devices for resolving com-
mon ambiguities. For instance, we can include
a lexical item you (by yourself), to unambigu-
ously signal a singular second-person pronoun.
Naturally we do not want to generate this term
except when we are nailing ambiguities. But if
we use the probabilistic grammar to rank alter-
native sentences when generating, and we en-
sure that special constructions are rare in the
test suite, we should ensure that they are only
used in clarification questions. Secondly, our
grammar is bilingual, so we can generate sen-
tences that realize an interpretation in another
language. For example:

(10)
User: Kia ora, e hoa mā.
System: Do you mean (1) ‘Hello friends,’

or (2) ‘Hello, O white friend’?

This also increases the likelihood of paraphrases
that successfully nail syntactic ambiguities.

5.2 Echo questions

We ask echo questions to resolve referential am-
biguities generated during presupposition reso-
lution. Example 4 demonstrates this. To be a
bit more useful, the system can also generate
multiple-choice alternatives:

(11)
User: The dog barked.
System: Which dog barked? The black

dog? Or the white dog?

Finally, if ambiguities are encountered during
the processing of questions, rather than produce
a nested echo-question, the system simply pro-
vides an answer to all of the questions the user
can be understood as asking.

(12)

User: Which dog chased the cat?
System: The black dog chased the white

cat. The white dog chased the
black cat.



6 Summary and further work

We have created a general framework within
which to combine dialogue information from dif-
ferent domains and semantic levels, for the pur-
pose of disambiguating user utterances in a dia-
logue system. We propose that disambiguation
information be roughly prioritised according to
its position in the processing pipeline: high-level
semantic information carries more weight than
low-level syntactic information. Clarification
questions, if required, are generated in increas-
ing order of semantic level. We also discuss a
technique for augmenting a stochastic grammar
with statistics drawn from the current dialogue
context and from a particular user’s dialogue
history, giving it a better chance of selecting
the correct parse in a given context.

The framework we describe is already in
place, but many of the variables in the pro-
cess (for example, the weighting and damping
factors used to augment the stochastic gram-
mar) still require some careful tuning. Fur-
ther testing may also expose unforeseen interac-
tions between levels, which may complicate the
current straightforward iterative pruning algo-
rithm; however, no changes to the framework
itself should be necessary.
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Abstract
This paper investigates the application of Max-
imum Entropy Markov Models to semantic role
labelling. Syntactic chunks are labelled according
to the semantic role they fill for sentence verb pred-
icates. The model is trained on the subset of Prop-
bank data provided for the Conference on Compu-
tational Natural Language Learning 2004. Good
precision is achieved, which is of key importance
for information extraction from large corpora con-
taining redundant data, and for generalising systems
beyond task specific, hand coded template meth-
ods.

1 Introduction
In recent years, much progress has been made in
the fields of information extraction and question
answering. Research systems developed for confer-
ence competitions have graduated into the commer-
cial world in such applications as air travel infor-
mation and booking, call handling, and banking.
Although these systems perform well on their cho-
sen tasks, they are generally based on a frame–
and–slot approach. This approach uses application–
dependent frames defined for propositions and then
attempts to fill slots from words surrounding the
proposition that triggered the frame. For exam-
ple, in a financial system we may be interested in
extracting company mergers from newswires. We
could define a frame for the verb stem merge, and
slots in that frame for the companies involved in
the merger. Although this could be effective for
the chosen domain, each time we want to develop
a system for a new domain we need to start from
scratch. In order to build broad coverage systems
capable of generalising, we need a way of defining
and labelling propositions and their arguments that
is not tied to a particular application.
Systems have been developed to address the task

of semantic role labelling (SRL) using a variety of
machine learning techniques and features ranging
from simple lexical information to those derived
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<!DOCTYPE frameset SYSTEM "frameset.dtd">

<frameset>

<predicate lemma="begin">

<roleset id="begin.01" name="start" vncls="55.1">

<roles>

  <role descr="Agent" n="0">

    <vnrole vncls="55.1" vntheta="Agent"/></role>

  <role descr="Theme(-Creation)" n="1">

    <vnrole vncls="55.1" vntheta="Theme"/></role>

  <role descr="Instrument" n="2"/>

</roles>

Figure 1: Propbank XML frame for begin

from parse trees. These semantic roles identify
arguments of verb predicates and can be general,
such as agent, theme, or verb specific, such as A0,
A1.
This paper presents a discriminative Markov

model for the semantic role labelling task proposed
for the Conference on Computational Natural Lan-
guage Learning 2004 (CoNLL). Firstly, recent work
on SRL is examined and the data available for
this task is presented. A discriminative maximum
entropy framework is defined and a SRL model
described. This model trains maximum entropy
classifiers for each state in the Markov model, rep-
resenting the probability distribution for transitions
from that state for a given observation feature vec-
tor. This approach combines the advantages of tran-
sition sequence based models with the ability of
maximum entropy classifiers to handle a diverse
range of overlapping features. The results obtained
achieve precision comparable to the best performing
support vector model, while requiring significantly
less time to train. However, recall is not as high as
other approaches and provides an area for further
improvement.

2 Background
Many researchers have tackled semantic role
labelling. Traditional parsing systems have per-
formed tasks that incorporate a level of semantic
labelling and many information extraction systems
attempt to solve the labelling problem for a single,



BUY SELL

A0 buyer

A2 seller

A1 thing bought

A3 price paid

A4 benefactive

A0 seller

A2 buyer

A1 thing sold

A3 price paid

A4 benefactive

Figure 2: Propbank frames for two related predi-
cates

or small group of propositions, e.g. the biomedical
domain. Recently, the development of semantically
labelled corpora has led to a number of statistical
systems being developed.
Following the pattern of other areas of NLP, it

was not until the development of projects to sys-
tematically label propositions and their arguments
in a corpus, that researchers began to attack the
problem of developing generalised statistical sys-
tems for SRL. FrameNet was one of the first such
projects and aimed to create a hierarchy of seman-
tic frames describing predicates and the roles they
accept. Sentences from the British National Cor-
pus (BNC) where annotated with roles derived from
these frames.
Gildea and Jurafsky (2002) used FrameNet to

train networks of statistical classifiers based on a
variety of lexical and syntactic features. They used
the statistical parser of Collins (1997) to create the
parse trees upon which their syntactic features were
based. As the BNC doesn’t contain gold stan-
dard parse trees, they were unable to quantify the
affect of an imperfect parse on the classifiers. How-
ever, this work served to highlight the two distinct
tasks in SRL: segmenting argument constituents and
identifying their semantic role. On the full task
of segmenting and labelling arguments, Gildea and
Jurafsky achieved a performance of 65% recall and
61% precision, but it must be noted that their sys-
tem assumes knowledge of the proposition argu-
ments being labelled. Fleischman et al. (2003)
applied maximum entropy techniques to the prob-
lem defined by Gildea and Jurafsky and achieved
a slight increase in performance. This work cast
the labelling task as one of tagging, using a maxi-
mum entropy formulation over eleven feature sets,
and the Viterbi algorithm to search for the best
tag sequence. Thompson et al. (2003) applied
a generative model to labelling semantic roles in
FrameNet data which was somewhat similar to a
hidden Markov model (HMM) approach. Their
model calculated the probability that for a particular
frame a role sequence would generate an observed

constituent sequence and assumed that roles corre-
spond to sentence constituents. On their described
task they record approximately 70% accuracy, but it
is not clear how their system could be applied to the
case of general SRL given a raw sentence with no
additional information.

The Proposition Bank is a project to add propo-
sitional annotations to the Penn Treebank corpus
(Kingsbury et al., 2002). In comparison to Frame-
Bank, Propbank labels roles with a generic set of
tags: A0, A1, A2 etc. Frame entries map these
generic labels to proposition specific semantic roles,
such as theme and agent (figure 1). Although the
semantic roles are not strictly comparable across
propositions, annotators were instructed to be con-
sistent in naming and numbering semantic related
verb roles (figure 2). The more statistically repre-
sentative approach and increased coverage, as well
as the availability of the treebank parse trees, has
made Propbank the most popular resource for cur-
rent SRL research. Pradhan et al. (2003) devel-
oped a support vector machine that chunked seman-
tic arguments from sentences in the Propbank cor-
pus. Their system used similar features as previous
systems, including parse trees, and explored using
both word-by-word and chunk-by-chunk instances
for the classifier. Of interest in this work is an inves-
tigation into the effect of not using features derived
from a parse tree and relying only on shallow syn-
tactic information, they found that this reduced per-
formance by around 20%.

In an attempt to motivate the development of SRL
systems that have direct application to current prob-
lems in information extraction and question answer-
ing, CoNLL made SRL the topic of their 2004
shared task (Carreras and Marquez, 2004). The
challenge was to come up with “machine learning
strategies which address the SRL problem on the
basis of only partial syntactic information, avoiding
the use of full parsers and external lexico-semantic
knowledge bases,” thus recognising the importance
of SRL techniques that are fast and domain inde-
pendent. The data provided for the conference
was based on Propbank and didn’t contain parse
trees. Of the systems developed for CoNLL, two
used maximum entropy techniques. Both these sys-
tems used a single instance–by–instance maximum
entropy classifier. Lim et al. (2004) achieved the
highest performance of the two with an F score of
64.76 on the test data. In this paper we aim to
improve precision over previous maximum entropy
techniques by optimising the whole sentence tag
sequence and thus reducing sequence errors such



as repeated arguments and unlikely argument order-
ings.

3 Data & Evaluation
The CoNLL shared task supplied training, develop-
ment and testing data created from Propbank anno-
tations on six sections of the Wall Street Journal
component of the Penn Treebank. The standard
semantic labels from Propbank were used:

Verb specific arguments Arguments with a spe-
cific semantic meaning for a verb are labelled
A0-A5. The semantics of the roles correspond-
ing to these numbered arguments are defined in
the Propbank frame for the predicate verb, but
in general A0 maps to agent and A1 to patient
or theme.

Adjunctive arguments General arguments that
any verb may take. These include AM-LOC,
for locative and AM-TMP, for temporal. For
the complete list see (Carreras and Marquez,
2004).

Argument references Predicate arguments that
reference other predicate arguments. Labelled
R-A? with the argument referenced as the suf-
fix, eg. R-A1 is a reference to the A1 defined
elsewhere.

Predicate verb The predicate verb that defines the
proposition being labelled is tagged V.

The data contained annotations of part-of-speech
(PoS), base-phrase chunks, clause embedding and
named entities. An example of the data is shown in
figure 3. For each of the target verbs a column is
provided with the argument labelling for that verb.
PoS and base–phrase chunks are annotated in

IOB2(inside, outside, begin) format (Ramshaw and
Marcus, 1994) and don’t allow embedding. Clauses
and arguments are annotated in begin, end format,
with clauses allowing overlapping and arguments
not. So (A0* represents the start of the A0 argument
and *A0) represents the end, while (A0*A0) labels
an argument spanning a single word.
CoNLL also developed the evaluation script srl-

eval.pl that ranks systems on the standard criteria of
precision, recall and F1 score.

4 Maximum Entropy Markov Models
The system described in this paper is based on a dis-
criminative Markov model, allowing both the opti-
misation of the tag sequence and the incorporation
of multiple features over observations. A limita-
tion of HMMs is that it is hard to extend them to

allow multiple features of observations, rather than
atomic observations themselves. An alternative to
the HMM was proposed by McCallum et al. (2000)
in which the transition and observation probability
matrices are replaced by maximum entropy classi-
fiers for each state. These classifiers encode the
probability distribution Ps′(s|o), the probability of
making the transition to s from s′ and observing o.

4.1 Conditional Exponential Transition Model
The maximum entropy framework, as presented by
Berger et al. (1996), aims to “model all that is
known and assume nothing about that which is
unknown.” This is achieved by choosing the model
that fits all the constraints expressed by the training
data and is the most uniform, i.e. the one with the
highest entropy.
Many classification tasks are most naturally han-

dled by representing the instance to be classified as
a vector of features. By combining the state and
observation transition functions into a single max-
imum entropy model for each state we can condi-
tion the tag sequence assigned to a sentence on such
things as part–of–speech tags, phrasal tags, predi-
cate verbs, etc.
For this work we represent features as binary

functions of two arguments, fi(o, s), were o is the
observation and s is the possible next state. In
order to encode properties of instances which are
not binary, such as part–of–speech, a binary feature
function is defined for each possible value of the
property, i.e. f0(o, s) is true iff o contains the tagNN
and a transition to s is observed, f1(o, s) is true iff o
contains the tag VB and a transition to s is observed,
and so on.
Given our set of feature functions, and a set of

labelled training instances, we can formulate the
following constraint equation:

expected[fi] = empirical[fi] (1)

i.e. we should aim to have the expected value for the
feature function i in the predicted distribution equal
to its average on the empirical training sequence.
The maximum entropy distribution is a conditional
exponential model of the form:

Ps′(s|o) =
1

Z(o, s′)
exp(

∑

i

λifi(o, s)) (2)

where λi are the feature weights that need to be
estimated from the training data, and Z(o, s′) is a
normalisation factor to ensure P is a probability
distribution.



!"#"$%&'("#

!

That             DT    B-NP     (S*         -               (A0*               *       

settlement       NN    I-NP       *         -                  *A0)            *       

represented      VBD   B-VP       *         represent        (V*V)             *       

the              DT    B-NP       *         -               (A1*               *       

first            JJ    I-NP       *         -                  *               *       

time             NN    I-NP       *         -                  *               *       

shareholders     NNS   B-NP     (S*         -                  *            (A2*A2)    

were             VBD   B-VP       *         -                  *               *       

granted          VBN   I-VP       *         grant              *             (V*V)     

a                DT    B-NP       *         -                  *            (A1*       

major            JJ    I-NP       *         -                  *               *       

payment          NN    I-NP       *         -                  *               *A1)    

in               IN    B-PP       *         -                  *        (AM-LOC*       

a                DT    B-NP       *         -                  *               *       

greenmail        NN    I-NP       *         -                  *               *       

case             NN    I-NP       *S)       -                  *A1)            *AM-LOC)

.                .     O          *S)       -                  *               *       

Figure 3: CoNLL data format

s' s

o

s' s

o

HMM MEMM

Figure 4: In a MEMM states are conditioned on the
previous state and the observation.

4.2 Training and Evaluating the Model

In order to train the MEMMwe first need to split the
global training data into subsets which will be used
to train each individual maximum entropy model.
The list of training instances for each state repre-
sents the transitions and observations made from
that state in the training data. Once all the training
data has been processed into sub training lists, the
Generalized Iterative Scaling (GIS) (Darroch and
Ratcliff, 1972) algorithm is used to train each max-
imum entropy classifier.
A requirement of natural language systems, espe-

cially those based on tagging sentences, is that the
sequence of classifications produced by a model
should be coherent, this is what the HMM approach
and the Viterbi dynamic programming algorithm
facilitate. The recursive Viterbi step for the MEMM
is defined as:

δt(s) = max
0≤s≤N

[δt−1(s′)× Ps′(s|ot)] (3)

where δt(s) is the probability of seeing the obser-
vation sequence up until time t and being in state
s, having followed the most probable sequence of
state transitions into s. Figure 4 illustrates that both
the previous state and the observation determine the
next state probability distribution.

4.3 Limitations
The MEMM approach has limitations that must be
kept in mind for any implementation. By splitting
the training data on the basis of state transitions
we are removing the ability of the model to make
global generalisations over particular semantic role
properties. For example, the properties that mark
the start of a particular role will be dispersed among
all the states that transition into that role. Therefore
the fact that a role is often realised as a preposi-
tional phrase with its first word on will be diluted
in the split training data. As an added problem,
some roles will only appear very rarely in the train-
ing data and thus their state transition functions will
need to be estimated from a very small amount of
data, without the ability to represent general role
properties represented in the global data. In order
to partially address the problem of data sparseness,
a gaussian prior is used to smooth the individual
transition functions which have less than 10,000 1

supporting training examples.
Lafferty et al. (2001) identified the label bias

problem as a potential concern for MEMMs. If a
particular state has a low–entropy next state distri-
bution, with the extreme case being a single next
state, then the observation that the transition is con-
ditioned on will effectively be ignored. Thus the
Viterbi path will be biased towards state transitions
with low entropy that may be supported by very
little training data, over other transitions which are
much more supported in the training data. As the
MEMM developed in this paper was trained assum-
ing a fully connected initial structure, the transition
functions were unlikely to contain a single next state
with a nonzero probability. Thus, it was assumed
that the label bias problem had little effect, but this
could be verified experimentally in further work.

1Determined experimentally. A discussion of smoothing
maximum entropy models can be found in (Chen and Rosen-
feld, 1999).



5 A MEMM for SRL
Section 3 described the framing of SRL as a tagging
task. As MEMMs allow the determination of an
optimum tagging sequence for a sentence, and allow
the modelling of the data as multiple features, it is
of interest to investigate their performance on the
CoNLL SRL labelling task.
The MEMM described in this paper is a phrase-

by-phrase model that maps argument labels to
states, and feature vectors over phrases to observa-
tions. The original data format displayed in figure
3 was mapped into a phrase based format as shown
in figure 5 by converting role boundaries to IOB2
representation (Ramshaw and Marcus, 1994) and
collapsing each phrase into a single instance repre-
sented by its head word.
Tagging phrase–by–phrase leads to the loss of

some information as it is no longer possible to rep-
resent roles that have sub-phrasal boundaries. How-
ever, as such roles are rare, or easy to handle with
post-processing, the loss is acceptable. The advan-
tage of this representation is that it compresses the
data and thus decreases the processing required by
the model.
A further verb specific compression is performed

on the data clauses. It was observed that phrases
in clauses below the target verb clause participate
completely in roles, therefore these clauses were
collapsed with only the first phrase retained for lex-
ical and syntactic information, as shown in figures 6
and 7.
The following features were calculated for each

of the phrase/clause instances presented to the
model as an observation vector:

Syntactic features Phrase type, head word, head
PoS were used. Also, for context, the two
preceding and following phrase types and head
PoS.

Clause delta The difference of the clause depth of
the instance phrase and the clause containing
the target verb. If the phrase is lower in the
clause tree than the target verb, this value is
negative.

Predicate clause A boolean feature that is true if
the instance clause depth is equal to the target
verb phrase depth, false otherwise.

Position relative to the verb A feature to indicate
whether the phrase instance is before, in, or
after the target verb phrase.

Target verb stem The stemmed target verb, as
supplied in the CoNLL input data.

Predicate verb suffix Regular expression suffix
matching is performed on the target verb. Suf-
fixes matched are: ing, ogy, ed, s, ly, ion and
ies.

Most occured frame The frame of a verb is
defined as the role sequence that it appears
with in a sentence, excluding adjunctive roles,
for example: (A0, V, A1, A2). A frequency dis-
tribution of frames that a target verb appears
in is created from the training data, and the
most frequent frame for a particular target verb
presented as a feature. This aims to represent a
verbs preferred sentential structure.

Number of NPs from the target verb A count of
the number of NP chunks between the instance
phrase and the target verb phrase. If the
instance is after the verb, this is a negative
count.

Number of base-phrases to the target verb A
count of the number of base-phrase chunks
between the instance phrase and the target verb
phrase. If the instance is after the verb, this
value is negative.

Target verb voice A heuristic is used to estimate
the voice of the verb as either active or passive.
If the verb phrase contains a form of “to be”
and the verb is not gerundive, it is labelled
passive, otherwise it’s labelled active.

Prepositional head All noun phrases following
a prepositional phrase used a feature encod-
ing the prepositional phrase’s head word. This
improved the handling of adjunctive arguments
realised as prepositional phrases.

Clause As described previously, clauses below the
verb are compressed to a single instance. If this
instance phrase is a compressed clause, this
feature is true.

Feature pairs The following features were paired
to provide an indication of dependency: verb
stem + head, verb voice + position, verb stem
+ phrase type and verb stem + phrase path.

6 Implementation
The model was implemented in the Python script-
ing language using the Natural Language Toolkit
(NLTK) (Bird and Loper, 2004). The system was
implemented as a pipeline of processes:

1. First the training data was tokenized and global
statistics calculated, such as verb frames etc.



!"#"$%&'("#

!

settlement       NN    NP         -                 B-A0           O       

represented      VBD   VP         represent         B-V            O       

time             NN    NP         -                 B-A1           O       

shareholders     NNS   NP         -                 I-A1           B-A2    

granted          VBN   VP         grant             I-A1           B-V     

payment          NN    NP         -                 I-A1           B-A1    

in               IN    PP         -                 I-A1           B-AM-LOC       

case             NN    NP         -                 I-A1           I-AM-LOC

.                .     O          -                 O              O       

Figure 5: Phrase-by-phrase compressed data format
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settlement       NN    NP         -                 B-A0

represented      VBD   VP         represent         B-V

time             NN    NP         -                 B-A1

shareholders     NNS   NP         -                 I-A1   (a compressed clause)

.                .     O          -                 O       

Figure 6: Data representation with a clause compressed for the verb represent

2. The data was then separated into phrase/clause
chunks and the features determined. It was
then in the form of training instances, an
instance corresponding to a sentence and target
verb pair, that could be used as training data.

3. Individual state transition function training
lists were then created as described in section
4.2

4. The GIS algorithm with a Gaussian prior was
then used to train each state transition function

Testing instances were labelled by the model using
the Viterbi algorithm described in section 4.2 to
determine the optimal tagging. A post process-
ing step was used to tag AM-MOD and AM-NEG
adjuncts as these occur at a lexical level and thus
can’t be correctly classified by a phrase-by-phrase
system. All words in the target verb phrase that
had PoS tags MD (modal auxiliary) were tagged as
AM-MOD, while occurrences of the words n’t or not
were tagged as AM-NEG.
Table 1 shows the output of the srl-eval.pl script

when the model was used to tag the test data. The
overall F1 score achieved by the system was 59.09.
This score corresponds to 24% of the sentences
being perfectly labelled.
Due to the large amount of time required to tag

the development and test sets using a full set of
role tags, the tagging was performed with a reduced
set of tags. The tags used were: A0, A1, A2,
A3, A4, A5, R-A0, R-A1, R-A2, C-A1, AM-TMP,
R-AM-TMP, AM-ADV, AM-LOC, AM-MNR, AM-
MOD, AM-DIR, AM-NEG, AM-DIS, AM-CAU, AM-
EXT, AM-PNC, and V. This accounts for some of
the reduced performance on the test set as the the
reduced tag set was chosen on the basis of the devel-
opment data, and thus had less coverage on the test
data.

7 Discussion

The motivation for using a MEMM approach was to
produce more coherent output by finding the opti-
mal Markov sequence, and this is borne out in the
results. As is to be expected when not using a parse,
prepositional phrase attachment and other syntactic
ambiguity, such as propositions late in long sen-
tences, contribute to a number of errors.
Figure 8 shows two sentences that were cor-

rectly tagged by the system, and three that contained
errors. We can see from the correct sentence that the
model is capable of recognising some of the more
complex roles such as discourse (DIS) and pur-
pose (PNC). In the third sentence it is apparent that
the system has not recognised January as temporal,
instead labelling the preposition as locative (LOC).
This is a common error, LOC and TMP arguments
are both frequent and occur in similar prepositional
syntax and the model has not been able to capture
the lexical distinctions between the two. Sentences
four and five show that the system struggles with
the semantic ambiguity of the LOC role. In four,
the gold standard identifies ‘in the Reagan adminis-
tration’ as the location where the defense secretary
served, whereas the model tags the preposition as
part of the theme of served, a tagging which seems
quite reasonable. The opposite occurs in sentence
five where the model has tagged ‘in real estate’ as
a location. In this case the gold standard is more
semantically consistent. Overall these errors sup-
port the argument that even when the model errs,
the output is still often consistent.
The CoNLL data requires the labelling of pred-

icate verbs that occur within noun phrases. The
model developed generally fails to handle these
predicates correctly. This is to be expected as these
predicates have a completely different structure and
behavior to the standard verb phrase predicates and



Mr. Johnson succeeds Harry W. Sherman, 

who resigned to pursue other interests

,in both positions.

Figure 7: A clause tree showing a clause that would be collapsed to a single instance

1. [ Of course]DIS , [Mr. Wolf, 48 years old,]A0

[has]V [some savings]A1.

2. Mr Johnsom succeeds [Harry W. Sherman]A0,
[who]R−A0 [resigned]V [to pursue other
interests]PNC , in both positions.

3. ([In January]LOC)TMP , [he]A0 [accepted]V
[the position ...]A1.

4. [Mr. Carlucci, 59 years old,]A0 [served]V
as [defense secretary (in the Reagan
administration)LOC ]A1.

5. [Balcor]A0, [which]R−A0 [has]V
([interests]A1[in real estate]LOC)A1, said
the position is newly created.

Figure 8: Example model output. Square brackets
indicate tags applied by the system, while round
brackets and indicate the tagging from the gold stan-
dard

are also in the minority in the training data. A sepa-
rately trained model could solve this problem.
There are a number of possible improvements to

the MEMMmodel. Prepositional phrase attachment
could be handled explicitly in a subsystem. Each
state transition function could induce the n most
informative features and discard the rest, enabling
the model to be more able to avoid over–training
problems. Another obvious path to explore would
be the application of conditional random fields (Laf-
ferty et al., 2001) to the SRL task. These models
have the advantage of solving the label bias prob-
lem, as well as allowing more flexibility in mod-
elling, and by using an MEMM for initial weights
they converge more quickly.
The advantage of the approach described lies in

the increase in precision and the improved coher-
ence of the sentence tag sequence. However, the
nature of the SRL task as one that requires both local
phrase level feature information and global sentence
information, would indicate that both need to be

Precision Recall Fβ=1

Overall 71.29% 50.45% 59.09
A0 84.02% 66.11% 74.00
A1 65.94% 51.81% 58.03
A2 58.96% 42.92% 49.68
A3 65.15% 28.86% 40.00
A4 70.00% 42.00% 52.50
A5 0.00% 0.00% 0.00
AM-ADV 46.75% 11.76% 18.80
AM-CAU 66.67% 4.08% 7.69
AM-DIR 45.16% 28.00% 34.57
AM-DIS 66.99% 32.39% 43.67
AM-EXT 70.00% 50.00% 58.33
AM-LOC 37.41% 22.81% 28.34
AM-MNR 47.96% 18.43% 26.63
AM-MOD 87.57% 92.26% 89.86
AM-NEG 82.96% 88.19% 85.50
AM-PNC 35.29% 7.06% 11.76
AM-PRD 0.00% 0.00% 0.00
AM-TMP 61.23% 26.64% 37.13
R-A0 90.65% 61.01% 72.93
R-A1 73.91% 48.57% 58.62
R-A2 75.00% 33.33% 46.15
R-A3 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-PNC 0.00% 0.00% 0.00
R-AM-TMP 100.00% 7.14% 13.33
V 96.63% 95.69% 96.16

Table 1: Model performance on the test set

modelled for maximal performance. Most current
approaches, including the approach presented in this
paper, use word or phrase level classifiers and then
try to capture sentence level information through
features such as phrase paths and counts.
The evaluation metrics chosen for the CoNLL

shared task appear to be brittle, giving no recogni-
tion to systems that come close to predicting argu-
ments but fail to find exact matches. The main moti-
vation for SRL techniques is to improve information



extraction systems, but it is possible that systems
that are able to accurately label the head–words that
fill roles of predicate verbs, but miss prepositions
and additional noun-phrases, would be very useful
also. This is less of a concern for systems employ-
ing parse trees as phrase attachment information is
known.

8 Conclusion
A maximum entropy Markov model was developed
for the SRL task defined at CoNLL 2004. The
model managed good performance on the test data,
achieving a precision of 71.29 and an F1 score
of 59.09. This result suggests that discriminative
sequence models are worth further investigation for
the semantic role labelling task. Many errors in tag-
ging made by the model can be attributed to lack of
information about the syntactic relationships among
phrase chunks, providing an argument for the use of
full parse trees when labelling semantic roles.
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Abstract
The identification of semantically related terms for
a given word is an important problem. A number
of statistical approaches have been proposed to ad-
dress this problem. Most approaches draw their
statistics from a large general corpus. In this pa-
per, we propose to use specialized corpora which
focus strongly on the individual words of interest.
We propose to collect such corpora through targeted
queries to Internet search engines. Furthermore, we
introduce a new statistical measure, Relative Fre-
quency Ratio,tailored specifically for such special-
ized corpora. We evaluated our approach by using
the extracted related terms to attack the target word
selection problem in machine translation. This type
of indirect evaluation is conducted because a direct
evaluation on the set of related terms thus extracted
relies heavily on direct human involvement and is
not quantitatively comparable to others’ results. Our
experimental results so far are very encouraging.

1 Introduction
The identification of semantically related words
from texts is an important problem in natural lan-
guage processing. If successfully identified, they
could be used in query expansion, word sense
disambiguation, as well as document classifica-
tion (Tomohiko Sugimachi and Matsuo, 2003).
Another application concerns the identification of
new word senses in specialized languages, which
are constantly evolving and, hence, no up-to-date
dictionaries exist that could cover all those word
senses. Many approaches, such as co-occurrence
statistics based on mutual information (Church and
Hanks, 1990), the Z-score (Tomohiko Sugimachi
and Matsuo, 2003), have been used in the past to
tackle this problem. These approaches are limited
to be used only on general corpora in which large
amounts of texts are collected from sources as di-
verse as possible. In this paper, we call this kind
of corpus a General Corpus (GC). The nature of
these measures (rate high co-occurrence high and

rate high frequency words low) requires generality
of the corpus. Generality is defined in our paper as
for a corpus not being biased toward any particular
domain or particular word. Mutual information is
defined as follows:

I(w1, w2) = log
P (w1, w2)

P (w1)P (w2)
,

where P (wi) is the probability of word wi to occur
in a document and P (wi, wj) is the probability of
both words wi and wj to occur in a document.

If a good corpus with high generality could be
obtained, the co-occurrence statistics collected from
the corpus could be very good and reflect accurately
the tendency of semantic association among words.
But there are several innate drawbacks to these GC
based approaches. Firstly, generality is often very
difficult to define. Secondly, acquiring a GC with
good generality is a even more difficult problem.
Thirdly, given that these above two problems are
properly addressed the set of related terms extracted
from the corpora are still limited in number. The
main reason behind the third drawback is actually
the generality required by these approaches. Since
no words have a particularly high frequency in the
corpus. It is not difficult to prove that the num-
ber of semantically related terms extracted for a
given word is usually very low, especailly if we
take away function words (which co-occur with any
word indiscriminately). These sets of extracted re-
lated terms, if used to match the new context of the
word in question, only provide very limited disam-
biguating power.

Based on the above analysis, another type of cor-
pus is needed to obtain a sufficiently large set of re-
lated terms(so that they are practically useful) for
any particular word. We call this type of corpus a
Word Specific Corpus (WSC). It is constructed by
collecting only the texts where the particular word
of interest is present. We call this word the seed
word and in formal contexts we refer to a WSC
with seed word s, by wsc(s). In such corpora
words which occur with low frequency in a GC may



well occur with high frequency. We call this phe-
nomenon frequency jump. Note, frequency jump
of a word is a concept based on its frequency dif-
ference between a GC and a WSC where the word
occurs. For example, the word “cell” is a low fre-
quency word in GCs, but in a WSC with the seed
word “tissue”, it becomes a word with very high
frequency. Frequency jump is very common to
WSCs. In situations like this mutual information
or similar measures would not properly reflect the
semantic closeness between strongly related terms.
Words like “cell” and the word “tissue” in the above
corpus would be assigned dramatically lower mu-
tual information value because of their high fre-
quency. “Mutual informtion is widely known bi-
ased towards the word frequency. The tendency of
mutual information does not depend on word se-
mantics and the kinds of corpora but only on word
frequency. This causes a problem in extracting the
related words of a given word using an appropriate
threshold value. Most of the extracted words are low
frequency words and middle frequency words are
rarely extracted” (Tomohiko Sugimachi and Mat-
suo, 2003). The Z-score measure is then proposed
in the work to help extracting more middle fre-
quency words. But from WSCs it is those high fre-
quency words (apart from function words) that are
supposed to be extracted, which makes the applica-
bility of mutual information even Z-score worse on
WSCs. Our proposed approach is designed to bet-
ter measure the semantic closeness between words
in WSCs and the seed word.

In summary of the above: for the set of extracted
related terms to be practically useful, it has to be
sufficiently large; GCs could not provide these suffi-
ciently large sets of terms; WSCs are thus required;
Mutual information and the like measures do not
work well for WSCs; We propose a new approach
that works well with WSCs.

The paper is organised as follows. In section 2
we theoretically present our new method for extract-
ing related words. This is followed in section 3
by putting it into practice and showing some of the
words thus extracted. In section 4, we evaluate the
measure indirectly by using the extracted related
words to attack the target word selection problem
in machine translation. In section 5 we compare our
results to those of related works. Section 6 contains
the conclusions.

2 The Relative Frequency Ratio Measure
In this paper, a new measure called Relative Fre-
quency Ratio (RFR) is proposed to extract semanti-
cally related words from WSCs. It is based on the

idea that in a given context (e.g. a sentence) sur-
rounding a seed word some words are semantically
close to the seed word, others are not. For example
“information” in the sentence “We have full infor-
mation on all sorts of tissue paper.” is not semanti-
cally as close to “tissue” as it is to “algorithm” in
the sentence “The information gain is made as large
as possible by this machine learning algorithm.”

It is observed that in WSCs the closer a word
is semantically to the seed word the larger its fre-
quency jump (frequency increase) would be. This
provides a natural measure for the semantic close-
ness between an arbitrary word and the seed word.
The Rative Frequency Ratio, despite being based on
the same spirit, is defined in a more formal way.
First of all, relative frequencies for a word in both
a GC and a WSC are computed. The ratio is then
computed by dividing the GC relative frequency by
the WSC relative frequency. In essence relative fre-
quency ratio is a normalized version of frequency
jump.

The relative frequency ratio (RFR) for a word is
given by:

RFRw(wsc(s)) =
fw(wsc(s))/twsc(s)

fw(gc)/tgc

RFRw(wsc(s)) is the relative frequency ratio.
twsc(s) is the total number of word tokens in the
corpus wsc(s). tgc is the total number of word to-
kens in the corpus gc.

For example, one of the seed words that have
been tested with this approach is “tissue”. A large
GC in English is compiled. A WSC is also com-
piled with the seed word “tissue”. The relative fre-
quency for “paper” in the GC is 0.000477 and is
0.00322 in the WSC . The RFR value is 6.75. An-
other two words “end” and “open” that have almost
same GC relative frequency as “paper” have dras-
tically lower RFR values with respect to the WSC.
The GC relative frequency and WSC relative fre-
quency for “end” are 0.00048 and 0.000215 respec-
tively. Its RFR value is 0.45. Similarly, the word
“open” has 0.000477 and 0.000136 as its GC rel-
ative frequency and WSC relative frequency. The
RFR value is 0.29. While “Paper” occurs almost 7
times more frequently in the WSC than in the GC,
both “end” and “open” occur a lot less in the WSC.
In this particular case, by setting a threshold of 1 for
the RFR value would easily rule out the two words
“open” and “end” and keep only the word “paper”
as semantically close to the seed word “tissue”.



English German
Number of Word Tokens 1,538,152 896,413
Number of Word Types 38,508 43,449

Table 1: General corpora for English and German.

3 Extraction of Semantically Related
Words

3.1 Corpora
Two GCs, one English and one German general cor-
pus, have been compiled to provide the base rela-
tive frequency statistics. GCs are compiled by issu-
ing a set of most frequent function words as queries
and extracting all the texts from the search results.
This helps to avoid any possible domain bias being
introduced by the compiling process because those
most frequent function words are themselves not bi-
ased toward any domain. A number of WSCs in
English and German have been compiled to pro-
vide the specialized relative frequency statistics for
the English seed words and their German transla-
tions. Training data(WSCs) as well as testing data
are collected for three English seed words “tissue”,
“apron” and “attack” respectively from the top n
retrievals of Google and other search engines with
the seed words as queries. From each document
retrieved by the search engine only three sentences
surrounding or containing the first occurrence of the
seed word are extracted. This is mainly based on the
assumption that the publisher usually tries to give as
much as possible semantic information at the word’s
first occurrence to restrict its sense. This assumption
has shown to be valid in our experiments. The data
collection is summarised in Table 1 and Figure 1.
The last column in Figure 1 provides some extra in-
formation about experiment results, which is better
to be read together with final results summarized in
Table 2 when they are discussed in Section 5.

3.2 Identifying related words
All three words have been analyzed with the RFR
measure. The threshold on the measure is exper-
imentally set to 1, which means any word with a
RFR value higher than 1 would be extracted as se-
mantically related to the seed word. In reality it
might not be optimal, the threshold could vary when
the sizes of the GC and the WSC are changed, or
when the generality of the GC and the desired skew-
ness of the WSC are changed. However the basic
trend where semantically closer words have higher
RFR values prevails.

A sample of the extracted words (word stems ac-
tually) is shown in Figure 2 for the seed word “tis-

Tissue

Apron

Attack

227,959

70,968

103,633

16,293

8,102

9,956

Translations

Gewebe

Papiertaschentuch

Vorfeld

Schutzblech

Vorbuhne

Schurze

Anfall

Ubefallen

Angriff

attackieren

In Angriff Nehmen

Word English

Word tokens Word types

German

Tokens Word types Sense cases
(test data) Corretly identify

32,414

36,842

11,774

7,683

12,696

7,560

17,235

21,536

12,746

16,713

31,474

8,866

8,634

3,860

2,423

4,122

2,410

4,086

5,422

3,771

4,621

7,489

535

166

103

4

71

137

105

0

357

357

357

467

132

80

0

0

70

93

0

161

161

161

Figure 1: The table shows the statistics of our
word specific corpora for the English words ’tis-
sue’, ’apron’, and ’attack’ and their possible Ger-
man translations. Our method does not always pro-
vide a judgement for the respective word sense (tar-
get word selection). This lets the numbers of cor-
rectly identified senses appear lower than they actu-
ally are, especially when the applicability is low. A
summary of the final experiment results is found in
Table 2.

Word Frequency Word Frequency Word Frequency

cell

paper

engineer

body

soft

human

connective

organ

function

study

muscle

disease

blood

structure

animal

culture

toilet

layer

cover

bone

develop

lung

cause

cancer

handkerchief

normal

bathroom

729

442

308

300

286

278

259

248

219

198

190

184

181

180

179

177

169

151

138

136

131

121

117

115

105

100

94

Figure 2: Extracted word stems of words related to
the seed word ‘tissue’ along with their respective
occurrence frequency in the word specific corpus.

sue”.
An indirect evaluation approach in next section is

adopted to evaluate the quality of the sets of seman-
tically related words extracted with this measure.
Semantically related words of several seed words
are used to do word sense disambiguation of those
seed words for machine translation between English
and German.



4 Evaluation by Machine Translation
4.1 Target word selection as word sense

disambiguation
In machine translation choosing the correct trans-
lation for a word is called target word selection
problem. It is also a word sense disambiguation
problem. In this case, word senses are defined by
their distinctive translations into another language.
To attack the problem some approaches have been
proposed including knowledge based approach and
corpus based statistical approach (Ide and Veronis,
1998; S.Sekine and J.I.Tsujii, 1995; N.Uramoto,
1995; H.A.Lee and G.C.Kim, 2002).

To evaluate the set of semantically related words
extracted with RFR measure, we adopted the cor-
pus based approach due to increasing availability of
text data and the strong performance of recent cor-
pus based statistical approaches. The experiment is
conducted between English and German. We de-
scribe the experiments with respect to word sense
disambiguation first rather than directly to the tar-
get word selection problem. This is because word
sense disambiguation is a broader problem and our
measure could be applied to it in general. So, we
put this general problem before the target word se-
lection problem.

Semantically related words (both English and
German) are extracted for all three English seed
words and their German translations. German
words extracted for a German translation are used
later as the join context of that German word. The
set of semantically related English words, however,
could not be used directly for word sense disam-
biguation. It is unknown as to which of them sug-
gest one sense of the seed word, which suggest an-
other. We need to convert a set of semantically re-
lated words to several sets of sense specific words.
These data could then be used to match the new con-
text of the seed word to disambiguate it.

A clustering algorithm is used to find sense spe-
cific clusters of words from the set of semantically
related words. The algorithm is essentially the same
as other clustering algorithms in that it attempts to
find word clusters that have the strongest internal
connection and to minimize the inter-cluster con-
nections. The difference between such algorithms is
often reflected by how the algorithm defines a con-
nection. In our algorithm the connection is defined
as word co-occurrence. If two words co-occur fre-
quently enough (i.e. beyond coincidence) a connec-
tion is said to exist between them.

Surprisingly, during our experiments, we ob-
served that the clusters found are not really sense
clusters as many such clusters correspond to one

sense of the seed word and many correspond
another. Eventually, we come to realize that the
co-occurrence statistics based clustering algorithm
only goes half way to obtain sense specific clusters.
Each cluster obtained should be, instead, called
usage cluster. An concrete example would better
explain the situation. In this example the word “tis-
sue” is used as the seed word. A set of semantically
related words are extracted with the RFR measure.
From the words several clusters are obtained by
the clustering algorithm. One cluster contains the
words like “toilet”,“bathroom”,“roll”,“dispenser”
etc, which clearly indicate the word used in
the context of bathroom in the sense of toilet
tissue. Another cluster contains the words like
“flower”,“scissors”,“glue”,“colour”,“fold”,“cut”
etc, which indicate the word being used in the con-
text of handcrafts making in the sense of soft tissue
paper as a material. These two clusters are difficult
to be joined together based on co-occurrence be-
cause these two contexts rarely co-occur. In English
we could say they represent different senses of the
word, but in German they only have one translation.
Or even in English if we take a broader view, we
could say that they represent the same sense as
a type of paper (in contrast to body tissues like
organs). So they really correspond to word usage
rather than word senses.

Unambiguously, the next step would be to join
the usage clusters to form sense clusters, which is
not an easy task. Different contexts (usage) rarely
co-occur within a close vicinity. One fact, however,
simplifies the process. Since senses of a English
seed word is defined as the word’s German trans-
lations. We could bypass the English sense cluster
and directly join English usage clusters under Ger-
man translations of the seed word. This could be
done easily with the help of a bilingual dictionary.
For example, the English word “tissue” has two us-
age clusters aforementioned. They are used in two
different contexts. In German, however, the word
“Papiertaschentuch” as a translation to “tissue” is
used in both contexts. If we look up words from the
two English usage clusters in a bilingual dictionary,
naturally many of their German translations would
all occur in the German contexts of “Papiertaschen-
tuch”. Thus we could join two English usage clus-
ters under a German translation whenever we could
match German translations of English words from
both clusters to the context of that German word.
The context of a German word is conveniently pro-
vided by the set of semantically related words ex-
tracted for it.

In summary, a set of semantically related words



...

tartget, war

Bilingual
Dictionary

Medical sense 

Attack 

(Anfall)

Military, offensive sense (Attackieren)

Sense cluster−1

Usage cluster−1

plan, alqaeda, say

Usage cluster−2
israely, kill, palestinian, soldier

Usage cluster−3
11,  9, september, terrorist, unit 

Usage cluster−4

against,  air,  defend, enemy, force,  military,

Sense cluster−2

artery,  block,  blood , cause,  coronary, death

usage cluster−5

diabetis, disease, factor, flow, heart, increa

Figure 3: Usage clusters in English words are
grouped around word senses based also on the Ger-
man word-specific corpora.

are extracted for an English seed word X; a set of
usage clusters are formed from this set; these usage
clusters have to be joined under German translations
of X; each usage cluster has a German representa-
tion which is the set of all possible enumerations of
German translations to all the words in the cluster;
this German representation overlaps with contexts
of all German translations of X to different extent.
The usage cluster Y would be assigned to one Ger-
man translation context that has the biggest overlap
with one of Y’s German representations. Figure 3
shows how multiple English usage clusters could be
joined under a single German translation (word). In
the diagram for example, the English usage cluster2
passes through the “glass bar” of a bilingual dictio-
nary, its German representation coming out of the
dictionary has three matches with the first German
translation’s context, but only one match with the
second German translation’s context. It should be
joined under the first German translation. Usage
clusters thus joined under one German translation
form a sense cluster that could be used to match
new contexts of the seed word to disambiguate it.
One sense cluster here corresponds to one German
translation (word).

4.2 Testing results
Test data are collected from the Internet and are dif-
ferent from the training data. The sentences contain-
ing the English seed word are then labelled manu-
ally with the proper German translations of the seed
word. Each test data set contains several hundred of
such sentences. The sense clusters obtained with
above approach are used to provide evidence for
sense disambiguation alone and no other types of
knowledge is used. The sense cluster that has the
biggest overlap (words matched) with the new con-
text assigns its corresponding German translation to
the test sentence. This translation is compared to

Word Testing data Precision Applicability
tissue 703 instances 97.5% 87.2%
apron 315 instances 69% 67.3%
attack 471 instances 93.7% 57.4%

Table 2: Summary of the disambiguation results.
Precision is defined as the portion of correct judge-
ments in the total number of judgments made. Ap-
plicability is defined as the portion of cases where a
judgement is made in all tested cases.

the correct translation manually tagged to the sen-
tence. The results are summarized in Table 2. The
‘Precision’(i.e. accuracy) column shows how often
an assigned selection is correct. “Recall” indicates
the percentage of cases where a judgment is made
by the process.

5 Comparison with Related Works
There are other works that address the same prob-
lem of target word selection with different ap-
proaches. Sugimachi et al. in (Tomohiko Sugi-
machi and Matsuo, 2003) have used the Z-score
(a refined derivative of mutual information) to ex-
tract semantically related words and form clusters
from word graphs that resulted from the extrac-
tion. Their approach to the word sense disambigua-
tion problem was evaluated qualitatively. Marquez
in (Lluı́s Màrquez, 2000) compared five different
supervised statistical approaches for WSD. They are
Naive Bayes, Example Based Classifier, Winnow-
based Classifier. They also investigated the effect of
Boosting and Lazy Boosting. Their Lazy Boosting
approach performed the best at an average of 71%
accuracy on 21 selected words.

McDonald in (McDonald, 1998) used a vector
distance calculation based multidimensional seman-
tic space to calculate the closeness between alterna-
tive translations and the local context vector. Exper-
imental results showed an accuracy around 58% at
100% recall, i.e. a judgment is made in every case.
Khoen & Knight in (Koehn and Knight, 2000) used
unrelated monolingual corpora in both languages
together with a bilingual lexicon to build a trans-
lation model for 3830 German and 6147 English
noun tokens. The probability distribution of differ-
ent translations were estimated. They showed that
the accuracy of their approach lies around 70% on
average for a large collection of words.

Compared to these results our results are very
encouraging, as our average accuracy is signifi-
cantly higher. In particular, if we had used default



decisions provided in (Koehn and Knight, 2000),
the recall would be much higher without substan-
tially reducing the precision. What’s important is
that this machine translation application uses as its
main knowledge only the set of semantically re-
lated words extracted with RFR. This (although in-
directly) is sufficient as a proof to the effectiveness
of the RFR measure we propose in this paper. The
last thing worth mentioning is that mutual informa-
tion has been used in place of RFR at early stages of
the experiment but the precision rate stays at around
75 to 80% on average. Simply replacing mutual in-
formation with RFR under the exactly same frame-
work pushes the rate up to 87% on average without
compromising the applicability. One major differ-
ence made by RFR in comparison to mutual infor-
mation is extraction of semantically related words
with very high frequency. These high frequency
words from WSCs all play vital roles in constrain-
ing the sense usage of the seed words.

6 Discussion and Conclusion
In this paper we introduced a new statistical mea-
sure RFR to extract semantically related words for
a given word. The method can be applied to word
sense disambiguation in general although we only
showed how it could be applied to target word se-
lection. Our experiments showed encouraging re-
sults, but because of time and resource limits it is
only conducted for a small number of words so far.

The RFR measure could be used to obtain lists of
domain specific words, topic specific words and ba-
sically, as long as a biased corpus could be obtained
the list of words that are related to the biase could
be extracted by the RFR measure. In our paper the
WSCs are such corpora biased toward single words.

Some of the challenges that this measure faces
are the same to those of current co-occurence based
statistical approaches. One is to obtain a GC that
is large enough and with good generality to provide
good base statistics. But the seriousness of the prob-
lem is reduced by the fact that RFR measure is not
overall sensitive to the bias unlike mutual informa-
tion. If the GC is biased toward one domain, it will
only affect the extraction of semantically related
words for seed words in this domain. How could we
better utilize the set of semantically related words
is also an challenging problem. A general impres-
sion developed during the experiment of using the
extracted words for WSD is that the measure often
performs strongly in extracting domain or topic spe-
cific words. But word sense division does not of-
ten coincide with domain differences of the divided
senses. Quite many sense divisions are based on lo-

cal syntactic interaction of the word with surround-
ing words. This type of sense division is typical to
verbs, nouns that originate from verbs and some-
times nouns with fine sense divisions. The extracted
and clustered words usually do not perform well in
this case. The core of the difficulty could just be the
simple use of only word form co-occurrence infor-
mation during the extraction and clustering. Future
development of the work would be likely to focus on
integrating other types of knowledge beyond word
forms into the measure as well as finding of less de-
manding applications compared to WSD.
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Abstract
Linguistic forms are inherently multi-dimensional.
They exhibit a variety of phonological, orthographic,
morphosyntactic, semantic and pragmatic properties.
Accordingly, linguistic analysis involves multi-
dimensional exploration, a process in which the same
collection of forms is laid out in many ways until clear
patterns emerge. Equally, language documentation
usually contains tabulations of linguistic forms to
illustrate systematic patterns and variations. In
all such cases, multi-dimensional data is projected
onto a two-dimensional table known as a linguistic
paradigm, the most widespread format for linguistic
data presentation. In this paper we develop an XML
data model for linguistic paradigms, and show how XSL
transforms can render them. We describe a high-level
interface which gives linguists flexible, high-level
control of paradigm layout. The work provides a simple,
general, and extensible model for the preservation and
access of linguistic data.

1 Introduction
A linguistic paradigm is any kind of rational tabu-
lation of linguistic forms, such as phrases, words,
or phonemes, intended to illustrate contrasts and
systematic variation (Bird, 1999). A characteristic
property of paradigms is that interchanging entire
rows or columns does not change the interpretation
of the information. We view paradigms as a two-
dimensional arrangement of elements and attributes,
with optional row and column labels. An exam-
ple of a paradigm for the German definite article is
shown in Figure 1, with the labelling of number and
gender at the top, and case on the left.
This paper describes a relational data model for

linguistic paradigms, together with an XML based
approach for representing and rendering them. An
XSLT implementation provides proof of concept.1
This work presents a simple and general model for

1The implementation is available from http:
//www.csse.unimelb.edu.au/research/lt/
projects/paradigms/

Figure 1: Paradigm for German definite article
(Finegan, 1999, 60)

the preservation and access of linguistic paradigms,
and can generate an extensive range of useful visu-
alisations.
This paper is organised as follows. In §2 we dis-

cuss the existing computational models in linguistic
paradigms and the lack of an existing formalism. In
§3 we discuss the data model, while §4 and §5 we
provide an example of how to generate and visualise
a linguistic paradigm. In §6 we discuss the query
engine implementation and motivate each opera-
tion. In §7 we describe the transformation of the
paradigm data into an XHTML presentation form.
Finally, §8 discusses the significance of the work
and outlines several areas for further investigation.

2 Background
Traditionally, there have been two sources for com-
putational representations for linguistic paradigms,
descriptive linguistic tools and technologies for lan-
guages having complex morphology. There has
been little formal work in either area concerning
the best form for this linguistic data type. Here we
examine some of the more widely-used models and
their drawbacks.
Of the descriptive linguistic tools, perhaps the

foremost are Shoebox2 and CHILDES.3 Shoebox
is an interlinear text editor popular among field
linguists for analysing linguistic transcripts. The
underlying model is an attribute value set for each

2http://www.sil.org/computing/shoebox/
3http://childes.psy.cmu.edu/



Tag Value Description
\id 1612 identifier (used for hyperlinks)
\w mbhu orthographic form
\t LDH tone transcription
\p n part of speech
\pl me- plural prefix
\cl 9/6 noun class (singular/plural)
\en dog English gloss
\fr chien French gloss

Figure 2: Shoebox File Format, Adapted for Lin-
guistic Paradigms (Bird, 1997)

entry, as shown in Figure 2. In the context of para-
digms, each element corresponds to a cell in a table,
and Shoebox can generate simple tabulated listings
of forms which constitute a one-dimensional para-
digm. The CHILDES CLAN tool supports tran-
scription and analysis of conversation, and is widely
used by psycholinguists in their study of child lan-
guage acquisition. It has good search functional-
ity that permits the generation of tabular reports.
Despite their ability to generate simple paradigm-
like reports, these systems do not provide an inter-
face for generating arbitrary paradigms, nor do they
permit paradigms to be saved in a format which per-
mits reuse.
Outside purely linguistic description, work

on computational morphology usually requires
paradigms to be set up. For instance, Finnish and
Romanian have such a large number of productive
morphological processes it is impractical to
list every form in the lexicon. Instead, regular
derivational and inflectional processes are described
using a formal system (such as a finite-state
transducer). Groups of processes which apply
to the same class of lexical items are sometimes
referred to as a paradigm (e.g. (Tufis, 1989; Oflazer
et al., 2001)). Unlike the descriptive viewpoint, in
which a paradigm is a tabulation, here a paradigm is
effectively treated as executable code which might
be used to generate such tabulations. However, we
are neutral on this issue since both viewpoints can
be reconciled by treating a paradigm as a relation,
as we do in §3.

3 Data Model
Linguistic paradigms associate linguistic forms with
linguistic categories. For instance, the German def-
inite article paradigm in Figure 1 categorises the
form den as either masculine singular accusative
or as dative plural. Systematic changes in layout,
such as interchanging rows and columns, or flipping
axes, have no affect on the associations between

D1 D2 D3 D0

gender number case content
masc sg nom der
masc sg acc den
masc sg gen des
masc sg dat dem
masc pl nom die
masc pl acc die
masc pl gen der
masc pl dat den
fem sg nom die
fem sg acc die
fem sg gen der
fem sg dat der
fem pl nom die
fem pl acc die
fem pl gen der
fem pl dat den
neut sg nom das
neut sg acc das
neut sg gen des
neut sg dat dem
neut pl nom die
neut pl acc die
neut pl gen der
neut pl dat den

Figure 3: Function for the German Paradigm

forms and categories. Accordingly, a paradigm is a
function that maps a vector of properties to content,
as follows:

f : 〈masc, sg, acc〉 #→ den

Generalising, let D0 . . . Dn be a set of linguistic
properties (or domains). Then a paradigm is a func-
tion:

f : D1 × · · ·× Dn → D0

Let D1 = {masc, fem, neut}, D2 = {sg, pl},
and D3 = {nom, acc, gen, dat}. Also, let D0 =
{der, die, das, . . .}. The functional representation of
the German paradigm is shown in Figure 3.
Observe that the original paradigm display in Fig-

ure 1 is a compact view of this table. It shows
the domain values just once, and dispenses with the
gender property for the plural forms.
Now, the above functional representation in Fig-

ure 1 is just a relational table with schema German-
Paradigm ( gender, number, case, content ). We
can use domain relational calculus to extract the
columns of the original paradigm for display, e.g.:

{s | t ∈ GermanParadigm∧ t[number] = ‘sg’



∧ t[gender] = ‘masc’ ∧ t[case] = s[case]
∧ t[content] = s[content]}

= {〈nom, der〉 , 〈acc, den〉 , 〈gen, des〉 , 〈dat, dem〉}

The same query is expressed in SQL as follows:

SELECT case, content
FROM GermanParadigm
WHERE number = "sg"
AND gender = "masc".

nom, der
acc, den
gen, des
dat, dem

Standard XML technologies provide a more con-
venient way to map from this abstract representation
to a range of visualisations. The relational table
representation of a paradigm in XML is as follows:

<paradigm>
<form>
<attribute name="gender" value="masc"/>
<attribute name="number" value="sg"/>
<attribute name="case" value="nom"/>
<attribute name="content" value="der"/>

</form>
...

</paradigm>

XSL transforms provide a method to render this
material into XHTML or into some other presenta-
tional markup language for delivery to users. Using
this approach we will accomplish a round-trip, from
existing visualisations to the abstract model dis-
cussed here, then back to visualisations. The next
two sections describe this process in more detail.

4 Generating Paradigms
This section provides an overview of the steps
required to produce a paradigm of possessive
pronouns in Anejom̃, an Austronesian language of
Vanuatu. The source data is from (Lynch, 1998).
The process of generating paradigms is the same
for paradigms that are more complicated, so the
simplified Anejom̃ paradigm provides a helpful
introduction. First there is a simple examination of
the paradigm structure which motivates the choice
of model for the paradigm. Then, by investigating
an example query and looking at how it is processed
and presented, the intricacies and obstacles to an
effective model are evident. This leads onto the
discussion in §6 and §7 which provides the finer
details of the implementation and presents more
elaborate examples in order to reveal the strengths
and weaknesses of the model.
Figure 4 shows the architecture of the system.

The processing pipeline has three components: an

Figure 4: Architecture of System

Figure 5: Anejom̃ Possessive Pronouns (Lynch
1998:106) - Scanned Version

XML model, a query engine, and a presentation
engine.
Figure 5 shows a visualisation of a paradigm for

Anejom̃. It displays suffix morphemes for posses-
sive pronouns for different combinations of number
and person. Each cell is characterised by its content
and its attributes. For instance, the top right cell
has content -n, a ‘number’ attribute whose value is
‘singular’, and a ‘person’ attribute whose value is
‘3’. Each attribute has a domain of possible values.
For example, the domain of ‘number’ is ‘singular’,
‘dual’, ‘trial’ and ‘plural’. The content is likewise
a domain, having values such as ‘-jau’ and ‘-mrau’.
Figure 6 shows the XML model for Anejom̃. The
attributes and their domains make up the first sec-
tion, while the cells – the correspondences between
content and attribute values, make up the second
section.
The XMLmodel provides a representation for the

paradigm; the remainder of this section describes
a plain text query language for generating different
presentations from that model. The plain text query
maps to an XML based representation. Then a XSL
transform performs the underlying operations on the



<?xml version="1.0" encoding="UTF-8"?>
<document>

<attributes>
<name name="person">

<value value="1.INC"/>
<value value="1.EXC"/>
<value value="2"/>
<value value="3"/>

</name>
<name name="number">

<value value="singular"/>
..

<value value="plural"/>
</name>
<name name="content">

<value value="-"/>
<value value="-jau"/>
..
<value value="-ra"/>

</name>
</attributes>

<paradigm>
<form>

<attribute name="person" value="1.INC"/>
<attribute name="number" value="singular"/>
<attribute name="content" value="-"/>

</form>
<form>

<attribute name="person" value="1.INC"/>
<attribute name="number" value="dual"/>
<attribute name="content" value="-jau"/>

</form>
..
<form>

<attribute name="person" value="3"/>
<attribute name="number" value="plural"/>
<attribute name="content" value="-ra"/>

</form>
</paradigm>

</document>

Figure 6: XML Model of Anejom̃ Possessive Pro-
nouns

XML model of the paradigm. Here is an exam-
ple. The Query 1 produces the visualisation of Fig-
ure 7 from the XML model of Figure 6. Trans-
lation 1 shows the full query. The table operator
takes three arguments, the constraint applied to the
vertical axis, the constraint applied to the horizontal
axis, and the operation applied in each cell. The
domain operation presents a list of all the values in
a given domain. Note that the domain for the third
argument of a table operation is different for each
cell and determined by the values on the vertical and
horizontal axes. Therefore Figure 7 shows a table
with person and number as axes and content in the
cells.
Query 1: table( person, number, content )
Translation 1: table( domain( person ), domain(
number ), domain( content ) )

1.INC 1.EXC 2 3
singular - -k -m -n
dual -jau -mrau -mirau -rau
trial -taj -mtaj -mitaj -ttaj
plural -ja -ma -mia -ra

Figure 7: Anejom̃ Possessive Pronouns: Table -
Reproduced Visualisation

1.INC singular -
dual -jau
trial -taj
plural -ja

1.EXC singular -k
dual -mrau
trial -mtaj
plural -ma

2 singular -m
dual -mirau
trial -mitaj
plural -mia

3 singular -n
dual -rau
trial -ttaj
plural -ra

Figure 8: Anejom̃ Possessive Pronouns - Hierarchy
induced by query

The model supports multiple visualisations of the
data. For example, Query 2 produces a presenta-
tion of the XML model in a tree-like structure. In
Query 2 the shorthand ‘/’ symbol represents the
hierarchy operation shown in Translation 2. The
hierarchy operator takes two arguments, the con-
straint that forms a list and the operation applied to
each element of the list. This produces the visu-
alisation of Figure 8. Nesting table and hierarchy
operations allows presentation of paradigms that are
more complicated and n-dimensional.
Query 2: person/number/content
Translation 2: hierarchy( domain( person ), hier-
archy( domain( number ), domain( content ) ) )

5 Realising Paradigms
This section details the implementation responsible
for presenting queries, using our running example.
First, a PHP script maps the textual query represen-
tation to the equivalent XML representation shown
in Figure 9. Then the ‘logical’ transform runs the
query on the underlying XML model of the Anejom̃
paradigm (See Figure 6). Finally, the ‘presenta-
tional’ transform generates an XHTML presentation
of that paradigm. Both transforms are written using
XSLT.



<?xml version="1.0"?>
<document>

<parse-tree>
<operator opcode="table" instruction="1">

<operand type="domain"
arg="horizontal">person</operand>

<operand type="domain"
arg="vertical">number</operand>

<operand type="domain"
arg="cell">content</operand>

</operator>
</parse-tree>

</document>

Figure 9: XML Version of Query 1

The logical transform generates an intermediate
representation from the XML query and the XML
source model. The XSLT processor performs a
depth first traversal of the query expression. For
example, in Query 1 control starts at the table oper-
ation. The table operation requires calculating the
domain of person and number before it can gener-
ate the cells. The domain operation generates the
output tree of Figure 10 with a node for each value
in its domain. The processor generates nodes 1INC,
1EXC, 2 and 3 for person. It then places the forms
from the source tree that match the domain value
under the corresponding output node.
When processing the table operation the XSLT

processor searches the output trees of the vertical
and horizontal branches for child nodes. The XSLT
processor generates a cell for each combination
of vertical horizontal child pairs. The combined
set of nodes for each cell form the domain of the
third argument. In the example, the first cell of the
paradigm has the following mapping:

vertical: singular {-, -k, -m. -n}
horizontal: 1.INC{-, -jau, -taj, -ja}
cell(1,1): {-}

<form>
<attribute name="person" value="1.INC"/>
<attribute name="number" value="singular"/>
<attribute name="content" value="-"/>

</form>

The query domain(content) in cell (1,1) produces
a single node with a value ‘-’. The extended XML
output of the sheet is shown in Figure 10. At each
node the XSLT processor tags the number of leaves
and maximum depth of the tree which simplifies the
presentation logic.
The presentational transform renders the

intermediate representation into XHTML for
display on web browsers. It traverses the

<?xml version="1.0"?>
<document><operator optype="table">

<vertical leaf-depth="1" leaves="4">
<operator optype="domain" root-depth="1"

leaf-depth="1" leaves="4" direction="top-to-b.">
<node ..>

<att><html-att. element-name="th"/></att>
<forms>

<form>
<att. name="person" value="1.INC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-"/>

</form>
<form>

<att. name="person" value="1.EXC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-k"/>

</form>
<form>

<att. name="person" value="2"/>
<att. name="number" value="singular"/>
<att. name="content" value="-m"/>

</form>
<form>

<att. name="person" value="3"/>
<att. name="number" value="singular"/>
<att. name="content" value="-n"/>

</form>
</forms>

</node> . <node heading="plural" ../>
</operator>

</vertical>
<horizontal leaf-depth="1" leaves="4">

<operator optype="domain" root-depth="1"
leaf-depth="1" leaves="4" direction="left-to-r.">

<node heading="1.INC" ..>
<forms>

<form>
<att. name="person" value="1.INC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-"/>

</form>
<form>

<att. name="person" value="1.INC"/>
<att. name="number" value="dual"/>
<att. name="content" value="-jau"/>

</form>
<form>

<att. name="person" value="1.INC"/>
<att. name="number" value="trial"/>
<att. name="content" value="-taj"/>

</form>
<form>

<att. name="person" value="1.INC"/>
<att. name="number" value="plural"/>
<att. name="content" value="-ja"/>

</form>
</forms>

</node> . <node heading="3" ../>
</operator>

</horizontal>
<cells>

<row>
<column>

<operator optype="domain" root-depth="1"
leaf-depth="1" leaves="1" direction="left-to-r.">

<node heading="-" ..>
<forms>
<form>
<att. name="person" value="1.INC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-"/>

</form>
</forms>

</node>
</operator>

</column><column>..</column>
</row><row>..</row>

</cells>
</operator></document>

Figure 10: XML output from Query 1. The forms
elements are only relevant in the horizontal and ver-
tical nodes during processing. The common form
element becomes the form element for the cell.



intermediate representation depth-first from
the root. The XSLT document handles three classes
of node; text leaves (node), text nodes with children
(domains) and arrays of text nodes with children
(tables). It must handle the following cases for each
node; where the node is the contents of another
node; and where the orientation of the node is
vertical or horizontal. The next section provides
further detail of how the query engine presents
paradigms.

6 Operations
This section elaborates the domain, hierarchy and
table operations, showing how they describe the
presentation of a wide variety of linguistic para-
digms. We also provide correspondences with rela-
tional queries:
Query 3: person
Translation 3: domain(person)
The SQL equivalent of Translation 3 is as follows:

SELECT person FROM paradigm

person
1.INC
1.EXC
2
3

Query 4: person/number
Translation 4: hierarchy ( domain( person ),
domain ( number ) )

SELECT * FROM
(
SELECT person FROM paradigm

OUTER JOIN
SELECT number FROM paradigm

);

person number
1.inc singular

dual
trial
plural

1.exc singular
dual

. .

. .

Query 5: table( person, number, content)
Translation 5: table( domain ( person ), domain (
number ), domain ( content ) )

Qv = SELECT person FROM paradigm;
Qh = SELECT number FROM paradigm;
Qd = Qv OUTER JOIN Qh OUTER JOIN paradigm;
Qc = SELECT content FROM Qd;

The domain and hierarchy queries have
straightforward mappings to SQL as shown for
Translation 3 and Translation 4. The interactions
of the table operation are complex, especially
when looking at the query that produces the cells.
To build the table the parser generates the axes
using the query for the vertical and horizontal
axes with a direct mapping of the queries from the
first two arguments as shown in Translation 5. In
this case, it is the queries for domain(person) and
domain(number) that produce the desired SQL. A
projection of the vertical and horizontal values (Qv
and Qc) form the domain (Qd) for each of the cells
(Qc). Any query on the cells applies only to this
new domain (Qd). The result of the query Qc is a
list of values which fill the table from the top left
corner.

Figure 11: French concord (Crowley, 1992, 322)

This covers the simple case where the paradigm
has just three-dimensions. There are however,
paradigms that have many more dimensions. The
French concord of Figure 11 has five dimensions
and provides a good source for more complicated
queries. Consider the following two queries:
Query 6: table (gender, number, language/phrase )
Translation 6: table( domain( gender ), domain(
number ), domain( language/phrase ) )

Qv = SELECT gender FROM paradigm
Qh = SELECT number FROM paradigm
Qd = Qv OUTER JOIN Qh OUTER JOIN paradigm
Qc =

SELECT * FROM (
SELECT language FROM Qd
OUTER JOIN
SELECT phrase FROM Qd

);



Query 7: table( gender, number, language )
Translation 7: table( domain( gender ), domain(
number ), domain( language ) )

Qd = paradigm
Qc =
SELECT * FROM (

SELECT language FROM Qd
OUTER JOIN
SELECT phrase FROM Qd

);

The difference in SQL for the cells between these
two queries is the domain Qd. This represents
the context for the query, its treatment is system-
atic throughout the XSLT logic allowing nesting of
queries. Query 8 and Query 9 show queries that
produce two different structures for the French lan-
guage data. Using combinations of domain, hier-
archy and table operation it is possible to generate
almost all presentation layouts.
Query 8: table( gender/number, case/language,
phrase )
Translation 8: table( hierarchy( domain( gender
), domain( number ) ), hierarchy( domain( case ),
domain( language ) ), domain( phrase ) )
Query 9: table( gender, case, table ( number, lan-
guage, phrase ) )
Translation 9: table( domain( gender ), domain(
case ), table( domain( number ), domain( language
), domain( phrase ) )

7 Presentation
This section describes the implementation of the
presentation engine. This is the most complex com-
ponent in the system; it produces XHTML from the
underlying XML representation. The XSL trans-
form does the processing with each operation act-
ing as event. The domain operation is the simplest
operation. It handles three distinct cases; one case
for producing a list of values; one for producing a
horizontal table; and one for producing a vertical
table. The processing produces the following code
for each:

Row:
<tr><td>Item 1</td><td>Item 2</td></tr>

Column:
<tr><td>Item 1</td></tr>
<tr><td>Item 2</td></tr>

Space separated list:
Item 1 Item 2

XSLT recursion solves the more difficult problem
of constructing a hierarchy. The example of Table 1

Item 11 Item 12
Item 21 Item 22 Item 23 Item 24

Table 1: Horizontal hierarchy of items.

Item 11 Item 21
Item 22

Item 21 Item 23
Item 24

Table 2: Vertical hierarchy of items.

is straightforward; each node has width equal to the
number of its children (set with the colspan prop-
erty). When the hierarchy is root, each level is a row
with control grounded at the root. Control must be
grounded at the root to avoid parts of the tree end-
ing up in different rows. In Table 1 this equates to
‘Item 11’ and ‘Item 12’ forming one row and ‘Item
21’, ‘Item 22’, ‘Item 23’ and ‘Item 24’ forming the
second row.
The same is true for the vertical realisation: the

root node controls the generation of each row. How-
ever, in this case, there is a need for a policy for
when to generate XHTML nodes. The problem is
the XHTML language has one nesting of row and
column yet two directions of spanning cells. Thus,
in Table 2, ‘Item 11’ produces a node in row one
but not row two and ‘Item 21’ produces a node in
row three but not row four. This causes serious
difficulties for any program written in a functional
language. The solution is an intricate variable pass-
ing procedure where the generation of each label
depends on whether it is the first node in the row.
When it is first the label forms a cell with the rows-
pan property equal to the number of children in the
hierarchy.
The generation of tables comes in three parts; the

generation of the vertical axis; the horizontal axis
and the cells. The XSL transform leaves the top-left
square of the paradigm blank to avoid connection
ambiguity problems. The generation of the hori-
zontal axis is the same as when the table did not
exist, albeit appropriately shifted by the depth of the
vertical axis. The table operator iterates over each
row generating first the vertical heading for that row
then the cells for that row. This maps to the XHTML
design of the table where the declaration of the rows
comes before the columns.
The XSL transform treats operators as either con-

trollers or fillers. As controller, the operator has
responsibility for generating XHTML table and row
tags. As filler, the operator just has responsibil-
ity for generating content. The nature of different
orientations require different code for vertical and



horizontal orientations. When supported this allows
integration and presentation of arbitrary commands.
In fact this XSLT framework can display any query
that used operations from §6.

8 Conclusion
This paper describes an XML model for linguistic
paradigms, including a query language and
implementation, along with a model for generating
presentations and an implementation. This work
provides a flexible and extensible representation
for storing multidimensional linguistic paradigms;
and a simple yet powerful method for accessing
and analysing stored data. This model allows the
easy manipulation of paradigm structure, and easy
presentation of systematic patterns and variations.
We believe that the XML representation will be
useful for archiving linguistic paradigms and for
the interchange of paradigms between programs.
We also believe the presentation system supports
multidimensional exploration of complex linguistic
datasets, a linguistic version of what is known in
the database world as online analytical processing
(OLAP).
In the future, we plan to investigate the following:

ordering paradigm content; generating paradigms
from interlinear text; and investigating a multi-table
model. Ordering the cells of a paradigm is an
issue because it complicates the axes, which then
require the repetition of headings. The second
line of enquiry is the generation and integration
of paradigm presentation into interlinear text
systems, which requires a level of machine learning
combined with an understanding of how to integrate
different levels of linguistic description. The other
issue is how to represent some of the relationships
within paradigms such as the phonetic characters
for a vowel and its height (eg. ε is a high vowel).
We believe that the optimum solution for some of
these problems is a multi-table model.
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Abstract

This paper describes a tool for acquiring un-
known words, which operates in a bilingual
human-machine dialogue system. When the
user’s utterance includes a word which is not
in the system’s lexicon, the system initiates a
subdialogue to find out about the new word, by
querying the user about the syntactic validity
of a number of example sentences generated au-
tomatically from the grammar’s test suite. The
tool can handle multiple unknown words, reg-
ular morphology and translation of new words
within a very complex unification feature struc-
ture type hierarchy.

1 Introduction

A major problem for current wide-coverage
symbolic parsing systems is the existence of un-
known words: words which appear in the in-
put strings to be parsed, but which are not in
the system’s lexicon. To give a representative
example: when the English Resource Grammar
(ERG: Copestake and Flickinger (2000)) was
tested over a portion of the British National
Corpus, unknown words accounted for 40% of
all unparsed sentences (Baldwin et al., 2004).
There are several ways of tackling this prob-
lem. Some of these are offline, and simply in-
volve making the lexicon bigger, adding new en-
tries by hand or by some semiautomatic process.
Other methods are on-line, and are designed to
cope with unknown words which are encoun-
tered during the parsing process itself.

This paper is concerned with on-line meth-
ods for dealing with unknown words. We fo-
cus on methods which are appropriate for im-
plementation in a human-machine dialogue
system. In this application, a human user en-
ters a sentence; the system then parses the sen-
tence, derives a semantic interpretation, and
generates a suitable response. If the user’s sen-
tence contains an unknown word, then the sys-
tem must somehow compute information about

this word’s syntactic characteristics (so that the
sentence can be parsed), and about its seman-
tics (so that the sentence can receive an inter-
pretation). Some of this information can typi-
cally be inferred from the context in which the
new word appears—but it is unusual if it can
all be provided this way. Typically, some other
source of knowledge needs to be actively con-
sulted before the dialogue can resume.

A dialogue application opens up some new
possibilities for unknown word processing, be-
cause when the system encounters an unknown
word, it can initiate a subdialogue to find
out more about this word. We will begin in
Section 2 by outlining current approaches to
unknown words in parsing, both in dialogue
and non-dialogue applications. In Section 3 we
will propose a new approach, which combines
and extends existing approaches. In Section 4
we will present a new tool for unknown word
processing which implements the proposed ap-
proach. Section 5 gives some examples of word-
authoring dialogues produced by the tool we
built, and Section 6 describes some avenues for
further work.

2 Current approaches to handling
unknown words in parsing

2.1 Knight: word-authoring dialogues

The suggestion that lexical items can be au-
thored in a human-computer dialogue system
is not new. The idea is first proposed by
Knight (1996) as the learning by instruction
paradigm. Knight proposes two dialogue based
methods whereby a naive user could add new
words to a system’s lexicon. The first approach
is to ask a set of multiple choice questions in
which the new word is placed in different gram-
matical contexts and the user is asked about
their syntactic correctness or where the user is
asked various conceptual questions about the
nature of the new word, as illustrated in the
dialogue in Figure 1. The second approach is



H: John is hungry.
C: I don’t know the meaning of ”hungry”. Is

”very hungry” a reasonable phrase?
H: Yes.
C: Is ”hungry” a visually detectable property ?
H: No. (. . . )

Figure 1: A multi-choice word-authoring dia-
logue

to let the user paraphrase the sentence con-
taining the unknown word using concepts the
system is already familiar with, as illustrated
in Figure 2. Knight observes that although the

H: ”John is hungry.”
C: I don’t know the meaning of ”hungry”
H: I mean: ”John wants to eat”. (. . . )

Figure 2: An authoring dialogue using para-
phrases

multiple choice method might work well for syn-
tax, for semantics, the appropriate set of ques-
tions is rather ill-defined, and giving good an-
swers requires a fair amount of semantic sophis-
tication on the part of the user. He therefore
did not try implementing this method. Even
at the syntactic level, it is quite a challenge to
decide what syntactic contexts to present the
unknown word in when querying the user. We
somehow need to choose the most informative
contexts, so that the user is not queried more
often than necessary, and so that we eventually
end up identifying the actual syntax of the new
word. If we assume a wide-coverage grammar
such as the ERG, with over five hundred lexical
types, this is a complex task.

2.2 Erbach, Barg & Walther, Fouvry:
making use of sentence context

Even without asking the user about how a new
word can be used in other contexts, it is still
possible to extract a lot of information about
the word’s syntactic characteristics from the
original sentence in which it appears. If we as-
sume (a) that the word is of a syntactic type
which the grammar already knows about, and
(b) that the sentence would be parseable if the
word were correctly identified as this type, there
are only certain possibilities as to what type it
can be. For example, a human reader ignorant
of the word zapf could deduce from the sentence
the zapf chased his mother that zapf is a noun,

that zapf is singular (otherwise it would be the
zapf chase their mother) and this particular in-
stance of zapf is male.

A number of researchers have considered how
best to make use of syntactic context to pro-
duce a set of hypotheses about an unknown
word. Most such proposals are tied to a spe-
cific grammar formalism—typically, some form
of typed unification grammar. An influential
approach was that of Erbach (1990). In his sys-
tem (as in many others), a set of open-class
word types is defined (a subset of the full set
of lexical types), and it is assumed that the un-
known word is one of these types. Erbach de-
fines a formalism for representing disjunctions
of word types, and assigns the unknown word a
lexical type using this formalism.

Much of the complexity of this formalism de-
rives from the fact that lexical types can be de-
fined for various features which can take dif-
ferent values; for instance, the type noun takes
a feature number which can be singular or
plural. When an unknown word is encoun-
tered it must be filtered before it can actually
be added as a new word. This filtering process
consists of selecting which features may be in-
cluded in the final lexical entry. For the type
noun the feature number of an unknown word
derived from the sentence context will be in-
cluded in the new lexical entry. The feature
tense, however, which can also be derived from
the sentence context for the unknown word, will
not be included in new lexical entries for the
type noun.

Barg and Walther (1998) refine Erbach’s
treatment of unknown words. A word accord-
ing to Barg and Walther is not just known or
unknown, but is an entry open to constant re-
vision. Every time a word appears within the
sentence context a revision takes place. A word
not available in the lexicon is represented by
the conjunction of all open class word types.
For the revision process, features are marked as
either generalizable or specializable. General-
izable features are features such as gender for
nouns, which can have different values in dif-
ferent contexts (e.g. the word zapf in the sen-
tences the zapf chased his mother and the zapf
chased her mother). Specializable features are
features such as number, which once they oc-
cur once with a value in a context cannot occur
with another value in a different context. (Note
that when number for a noun is specializable,
morphologically irregular words such as sheep



should be defined in two separate lexical en-
tries, with number set to singular and plural

respectively.)
Fouvry (2003) adapts the Er-

bach/Barg&Walther technique for the LKB
parsing system (Copestake and Flickinger,
2000). He notes an important method for
simplifying the technique, which stems from
the fact that in many modern unification-based
grammars (including many developed for the
LKB system) lexical types are not associated
with features, for efficiency reasons. Rather,
for instance, there are individual entries in
the word type hierarchy for singular-np,
plural-np, and so on. Many of the complex
filtering techniques proposed by Erbach, or
grammar annotations proposed by Barg &
Walther, are simply no longer necessary in such
grammars. In our unknown word mechanism,
which is also an adaptation of the LKB parser,
we will make use of this simplification.

2.3 Summary, and some remaining
problems

To some extent, the two basic approaches to
on-line unknown word processing just discussed
have complementary benefits and drawbacks.
There are good syntax-based methods for de-
riving hypotheses about an unknown word’s
syntactic type from the context it appears in.
However, there are often several alternative hy-
potheses for a given word, and processing a
corpus of sentences in ‘batch’ mode to decide
between these is a rather undirected process.
Dialogue-based approaches offer the possibility
of a tightly focussed set of questions to focus in
on the correct hypothesis, with the user provid-
ing the answer at each stage. The problem is in
deciding how to generate suitable questions.

In addition, there are some extensions to the
syntactic paradigm which have not yet been
considered. No-one has yet developed a way to
process multiple unknown words, whether these
are interpreted as a single multi-word lexeme,
or two separate lexemes. The problem, as Fou-
vry notes, is that when there is more than one
unknown word, the space of possible parses be-
comes extremely big. Also, no-one has a way
to consider different morphological analyses of
the unknown word when generating hypotheses
about its lexical type. Finally, as Knight noted,
it is difficult to use a multiple choice method to
define the semantics of an unknown word. For
this task, a sentence paraphrasing process seems

more appropriate.

3 A new proposal for unknown
words

We propose a new algorithm for unknown word
processing, which draws on the strengths of
Knight’s dialogue-based methods and of Fouvry
et al’s syntactic hypothesis-formation methods.
The system begins by deriving a set of hypothe-
ses about the type of the unknown word, just
as Fouvry does. It then generates a set of test
sentences to present to the user, in a Knight-
style multi-choice question. The answer to this
question reduces the set of hypotheses, and we
iterate by asking further questions. When the
syntactic type of the word is established, we fin-
ish by asking a paraphrase question, to establish
its semantics.

A key feature of the proposed system is its
method for generating test sentences. We pro-
pose to use the test suite of sentences which
comes with the grammar for this purpose. All
large-scale grammars developed nowadays come
with special-purpose test suites, and often with
special tools for running the parser on these
suites (such as the tsdb++ system for LKB:
Oepen (2001)). The important point is that the
sentences in a given test suite collectively pro-
vide a very good description of the complete set
of constructions covered by the grammar it is
developed for. (At least they should do, if the
test suite is well designed.) An important com-
ponent of any test suite is a collection of min-
imal pairs of sentences, which differ only in a
single grammatical aspect. Figure 3 gives an
example of some minimal pairs for verbs which
take a subject but no object. Such minimal
pairs are exactly the kinds of sentences we need
in order to decide how to classify a new word.

It rained.
Abrams barked.
The window opened.
It barked.
Abrams opened.
The window rained. (. . . )

Figure 3: Minimal pairs in the MRS test suite

There are three additional features of the new
algorithm, which we will discuss in turn.



3.1 Preprocessing, for multi-word
lexemes

As noted in Section 2.3, traditional unknown
word processing methods using sentence context
are unable to handle multiple unknown words
within one sentence, due to the compounded
ambiguity. Processing unknown words within
the context of a dialogue, however, opens up
the possibility of letting the user work around
this problem.

Consecutive unknown words can make up just
one lexical entry such as yellow-eyed penguin.
Therefore for each sequence of consecutive un-
known words the user is first consulted as to
whether or not these make up one lexical entry.

After it is resolved whether multiple unknown
words make up one lexical entry there might still
be multiple new lexical entries in one sentence.
To work around the problem of compounded
ambiguity in cases like this, the user is asked
to provide new sentences, each containing just
one of the unknown words.

The two previous two user-consultation steps
result in sentences with only one unknown lexi-
cal entry. From these sentences information can
be gained to create hypotheses for the unknown
words.

3.2 Extensions to deal with
morphological ambiguity

In a modern grammar like the ERG, with syn-
tactic features compiled into the hierarchy of
lexical types, the syntactic character of an un-
known word can be expressed very simply as a
set of alternative hypotheses—basically, a set
of all the lexical types to which the word can
still be assigned. However, there is one further
uncertainty, which relates to the morphological
analysis of the unknown word. If the unknown
word is bobsled, for instance, the system can hy-
pothesise that it is an uninflected noun, but also
that it is the regular past tense of a new verb to
bobsle.

We extend the algorithm to deal with regular
morphology as follows. Each word has a stem
(e.g. walk or dog) on which so-called morpho-
logical inflection rules can be applied which
will add a prefix and/or suffix to the stem. Note
that these morphological rules will never de-
crease the size of the stem. The rule for plu-
rality will inflect dog to dogs and albatross to
albatrosses, but not analysis to analyses.

To deal with regular morphology in unknown
words these morphological rules can be applied

backwards. Applying the plurality rule back-
wards on zapfes will give zapfe as a possible
stem. Applying the third person present rule
backwards on the same word will give zapfe and
zapf as possible stems. A hypothesis about a
word’s syntactic character now becomes a tu-
ple, whose first element is a lexical type, and
whose second element is a stem. Of course cer-
tain morphological rules can only be applied
to certain types. When entering The winner
is zapfing both the pair (proper-name,zapfing)
and (verb,zapfe) occur as hypotheses, but not
(proper-name, zapfe) since proper names can-
not be inflected using the present participle rule.

3.3 Multilingual paraphrases, for word
semantics

In grammars which have a treatment of compo-
sitional semantics, such as those supported by
the LKB system, it is necessary to produce a
representation of the semantics of a new word,
as well as of its syntax. There are simple ways
of doing this—for instance, we can just create
a ‘dummy’ semantic value, derived from the or-
thography of the word. However, the grammar
we use is bilingual, and is intended for use in
sentence translation or bilingual dialogue ap-
plications: our grammar can parse and gen-
erate both English sentences and Māori sen-
tences. It is useful in this context to be able to
specify semantic correspondences between sen-
tences containing the new word and translations
of these sentences in the other language. We
therefore propose a simple method for specify-
ing the semantics of an unknown word, by al-
lowing the user to enter paraphrasing sentences
in the other language.1

The semantics of a sentence is given as a for-
mula in Minimal Recursion Semantics (MRS:
Copestake et al. (1999))—basically, a ‘flat’ col-
lection of predicates with associated arguments.
For the purposes of defining the semantics of
new words, we can simply treat the sentence
as a set of predicates: for instance The kit-
ten eats is represented by {determiner-pred,
little-pred, cat-pred, eat-pred}; and its
Māori translation ka kai te punua poti (literally
Present eat the cat little is represented by the
same set of predicates.

1Needless to say, our system can also be applied to a
monolingual grammar. In this case, no paraphrase needs
to be specified. However, the paraphrasing system we
describe here might still be of use, in specifying words
which are synonyms of one another.



Using these set semantics the user can be re-
quested to give a paraphrase in Māori for the
original English phrase the unknown word was
used in. The semantics of the unknown word
in English are then equal to the set of seman-
tics of the paraphrase excluding the semantics
of known words in the original phrase. Of course
this also works the other way around.

The paraphrase can again contain unknown
words. But since there will be only one new lex-
ical entry (that of the translation of the original
unknown words, possibly consisting of multiple
new words) the same methodology as for the
original sentence applies for the translation.

4 The Tauira system

In this section, we describe the system we
have built to implement the unknown-word-
processing algorithm just outlined. The system
is called Tauira, which is Māori for ‘student’,
and also for ‘example’. Preprocessing to iden-
tify multiword lexemes and multiple lexemes is
straightforward, so there are two main compo-
nents of the system to describe. Section 4.1 de-
scribes the way in which test sentences featuring
the new word are created by selecting and trans-
forming sentences from the test suite, and Sec-
tion 4.2 describes the way these test sentences
are used to form a series of questions to ask the
user.

4.1 Creating test sentences from the
test suite

To begin with, we preprocess the test suite of-
fline to produce a set of test items. A test
item is a sentence from the suite in which one
‘target’ open-class word has been extracted, to-
gether with its original lexical type and mor-
phological rule. In addition all possible lexical
types that can appear in this word’s position
(termed the associated types) are added. The
idea is to create test sentences for the user by
plugging the unknown word into the place from
which the target word was removed. For ex-
ample, from the test suite sentence How happy
was Abrams, we would derive the following test
items:

• How was Abrams, <adjective,nil>,
{adjective,adverb}

• How happy was , <propernoun,nil>,
{propernoun,dayoftheweek. . . }

The associated types for the first of these items
includes ‘adverb’, because of sentences like How

early was Abrams. Those for the second item
include ‘dayoftheweek’ because of sentences like
How happy was Tuesday.

After this preprocessing has taken place, the
effectiveness of each test item in reducing the
set of hypothesis types can be evaluated. For
each open-class word type, a number of bench-
marks can be defined. Firstly, we define the
number of test-items whose original type is
this word type. (If this is zero, then there
are no sentences the system can use to verify
that an unknown word is of this type.) Sec-
ondly, we define the number of positively in-
distinguishable open-class word types for this
type. This is calculated as the number of open-
class word types which are found in all the test
items which include this type in their associ-
ated types. This number represents the num-
ber of hypotheses which would remain if the
user affirmed that an unknown word could be
used in all these test items. Finally, we de-
fine the number of negatively indistinguish-
able open-class word types for the given type.
Type wt2 is negatively indistinguishable from
type wt1 if there are no test items where wt1
can be used and wt2 cannot be used. We calcu-
late the number of negatively indistinguishable
types for word type wt1 by searching through its
set of positively indistinguishable word types,
and removing all types wt2 that do not have
wt1 in their set of positively indistinguishable
word types.

These benchmarks are in fact very useful as a
formal way of evaluating the adequacy of a test
suite accompanying a grammar. What we want,
for all word types, is for there to be no positively
indistinguishable types, or no negatively indis-
tinguishable types. If there is a genuine reason
for distinguishing between two lexical types, we
expect there to be test items which allow us to
distinguish them.

We ran these benchmarks on several test
suites associated with the ERG grammar. We
found some gaps in individual test suites; for
instance, in the MRS test suite, there are no
sentences for distinguishing between unergative
and unaccusative verbs. Joining several test
suites together might solve the problem, but we
were not able to do this, as the algorithm for
creating test items uses a lot of memory. So
there are still some gaps in the set of test items
we created for the ERG.



4.2 Dialogue strategies

After one unknown lexical entry is identified per
sentence, a set of the current possible hypothe-
ses (pairs of word types and stems) is generated.
Different types of questions are then posed in
order to reduce the number of hypotheses.

For unknown words without morphological
ambiguity, multiple choice questions are
generated for each hypothesised word type.
These questions present a set of alternative sen-
tences formed from test items and featuring
the unknown word, and ask the user to choose
which sentence (if any) provides an appropriate
context for it. The algorithm for creating sen-
tences is as follows. For the hypothesis whose
word type occurs most frequently in the lexicon,
we select the test item whose set of associated
types has the smallest intersection with the set
of current hypotheses, and create a sentence us-
ing this test item and the unknown word. We
then iterate, looking for additional test items
whose set of associated types do not overlap
with the associated types of the items chosen
so far. Finally, we include the additional option
‘none’.

For unknown words with morphological am-
biguity, yes-no questions are generated about
the validity of a single sentence. Since morpho-
logical rules within our setup never decrease the
size of the stem, the shortest stem will always be
queried first. When a sentence is accepted, only
the hypotheses containing a corresponding stem
and original or associated types remain. When
a sentence is not accepted the hypotheses con-
taining a corresponding stem and the original
sentence type are removed.

Finally, if the test suite simply fails to provide
sentences which distinguish between two types,
we fall back on a simple similar words ques-
tion, which presents examples of words from the
lexicon of the remaining possible word types,
and asks the user to choose which sets of words
are most like the unknown word.

5 Results: some dialogues with
Tauira

In this section some example dialogues with
Tauria are given, to demonstrate what it is ca-
pable of. The first of these examples are based
on a set of test items derived from test suites
associated with the ERG grammar.

The example in Figure 4 shows how a proper
name in English is authored in three simple
questions, even if the original phrase the word is

H: my name is maarten
C: I do not understand the word MAARTEN.

Which of these phrases illustrates the correct
use of MAARTEN ?
1. how maarten was abrams
2. the maartens of the projects are trustwor-
thy
3. mr maarten browne is the manager
4. there are five maarten in the room aren’t
there
5. None

H: 3
C: Is ’five of the seven maartens work for abrams’

a correct sentence ?
H: no
C: Is ’maarten knows that sara will sleep doesn’t

he’ a correct sentence ?
H: yes (. . . )

Figure 4: Example adding a proper name in a
very ambiguous sentence

H: my name is dutch
C: I do not understand the word DUTCH.

Which of these phrases illustrates the correct
use of DUTCH ?
1. how dutch was abrams
2. the dutches of the projects are trustworthy
3. mr dutch browne is the manager
4. there are five dutch in the room aren’t there
5. None

H: 1
C: Which of these phrases illustrates the correct

use of DUTCH ?
1. abrams works for a dutch manager
2. how dutch does abrams interview a pro-
grammer
3. dutch hundred twenty dogs bark
4. None

H: 1
C: Which of these words is most like your word ?

1. ’european’, ’stupid’, ’gusty’
2. ’uncertain’, ’invisible’, ’aware’

H: 1 (. . . )

Figure 5: Example adding an intransitive ad-
jective in a very ambiguous sentence

very ambiguous. To show how ambiguous this
sentence is, a syntactically equal sentence sen-
tence is given in Figure 5 with the unknown
adjective Dutch. The last question exemplifies
the back-up mechanism when there are no suit-
able test suite sentences to distinguish between
word types. In this case there is no test suite
sentence to distinguish between transitive and
intransitive adjectives.



The example in Figure 6 exemplifies morpho-
logical disambiguation. The sentence I danced

H: I danced
C: I do not understand the word DANCED.

Is ’the dog arrived and danced’ a correct sen-
tence ?

H: yes
C: Is ’abrams dancs for browne’ a correct sen-

tence ?
H: no
C: Which of these words is most like your word ?

1. ’stand’, ’orientate’, ’bay’
2. ’bust’, ’grow’, ’blow’

H: 1 (. . . )

Figure 6: Example illustrating morphological
stem reduction

for unknown word danced has three possible
stems: danc (which takes -ed, c.f. walk); dance
(which takes -d, c.f. chase); and danced (as
an uninflected present-tense verb, c.f. bobsled).
The first question checks pairs with intransi-
tive verbs and the stems danc and dance. The
second question checks the stem danc for an
unergative intransitive verb and is refused, so
this pair is removed from the complete set of
hypotheses.

The example in Figure 7 exemplifies how the
system deals with multiple words and trans-
lations when describing an encounter between
two inhabitants of the Otago Peninsula: the
albatross (toroa) and the yellow-eyed penguin
(hoiho). Since the Māori grammar is still under
development and consists of no more then 15
different types, questions posed (if any) will not
have many alternatives. In the final utterance,
the system, having created the necessary new
lexical items, reprocesses the original sentence
containing the unknown words, and produces a
set of translations.

6 Summary and further work

Tauira extends the theory of Erbach (1990),
Barg and Walther (1998) and Fouvry (2003) in
two straightforward ways. Firstly it simplifies
the creation of a new lexical entry by explicitly
formulating a set of simple hypotheses, which
can be eliminated one by one, instead of cre-
ating a disjunct feature structure which needs
to be filtered. Secondly, it takes morphologi-
cal information into account in unknown word
processing. This is a first step to truly robust
processing of unknown words not offered by any
of the previous works. Thirdly, using a sentence

paraphrasing task, it is able to provide simple
semantics for unknown words, to allow sentence
translation using the newly authored words.

Tauira also has many advantages over other
lexical acquisition tools which do not operate
within a dialogue context. First of all, more
then one unknown word per sentence can be
resolved; this was a serious problem for Er-
bach, Barg and Walther and Fouvry, but one
for which there are easy work-arounds in a
dialogue context. Moreover, Tauira provides
a simple natural language dialogue through
which a non-linguist user can author new words.
Our human-machine dialogue system asks many
kinds of clarification question in different cir-
cumstances; the questions asked by Tauira are
very easy to integrate into this general frame-
work.

Finally, Tauira can be used on any gram-
mar and test suite developed for the LKB sys-
tem. The questions it asks the user are gen-
erated fully automatically from the grammar’s
test suite, and therefore evolve together with
the development of the grammar and test suite.
In addition, as a side-effect, Tauira’s routines
for preprocessing the test suite define bench-
marks which can be used to formally evaluate a
test suite’s coverage in relation to a grammar.

There are several things we would like to do
in future work. These include: running a user
evaluation, checking for incorrect spelling in un-
known words, using a statistical part of speech
tagger to decrease the initial set of hypothe-
ses, taking syntactic, semantic and multi-word
homonyms into account, and dealing with irreg-
ular morphology. Ideas to realize these future
works are dealt with in detail in the Tauira tech-
nical report (van Schagen, 2004).

We are also interested in the prospect of fully
automating the word-authoring dialogues. In-
stead of querying a user about the validity of a
given sentence featuring the new word, it may
be possible to search for sentences on the web
which have the syntactic structure of the test
sentence and which contain the new word in
the appropriate position. (Naturally, it does not
matter what the other words in the sentence are,
provided they have the right parts of speech.)
Finding such a sentence is akin to receiving the
answer ‘yes’ in an authoring dialogue. Clearly,
identifying the sentences retrieved by the web
search which have the right syntactic structure
would be a major task; however, the directed
nature of the question-answering process does at



least strongly minimize the number of searches
which would be needed. This is a topic we plan
to address in future work.
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H: the albatross chases the yelloweyed penguin
C: I do not understand the words ALBATROSS,

YELLOWEYED, PENGUIN.
Is YELLOWEYED PENGUIN one word ?

H: yes
C: Could you provide me an example sentence

with the unknown word ’ALBATROSS’ using
words I know ?

H: the albatross eats
C: Which of these phrases illustrates the correct

use of ALBATROSS ?
1. the albatrosses of the projects are trustwor-
thy
2. mr albatross browne is the manager
3. browne was hired on january albatross 1984
4. None

H: 4
C: Is ’he showed her an albatross’ a correct sen-

tence ?
H: yes
C: Which of these words is most like your word ?

1. ’sec’, ’counter narcotics’, ’paycheck’
2. ’school’, ’black’, ’distance’
3. ’delivery’, ’record’, ’treatment’
4. ’specification’, ’subscriber’, ’deviation’

H: 1
C: What is the translation of ’the albatross eats’

in Māori.
H: ka kai te toroa
C: Is ’kua pai te toroa’ a correct sentence ?
H: yes
C: Which of these phrases illustrates the correct

use of YELLOWEYED PENGUIN ?
1. the yelloweyed penguins of the projects are
trustworthy
2. mr yelloweyed penguin browne is the man-
ager
3. browne was hired on january yelloweyed
penguin 1984
4. there are five yelloweyed penguin in the
room aren’t there
5. None

H: 5
C: Is ’list yelloweyed penguins who have book-

cases’ a correct sentence ?
H: yes
C: Which of these words is most like your word ?

1. ’sec’, ’counter narcotics’, ’paycheck’
2. ’school’, ’black’, ’distance’
3. ’delivery’, ’record’, ’treatment’
4. ’specification’, ’subscriber’, ’deviation’

H: 1
C: What is the translation of ’the albatross chases

the yelloweyed penguin’ in Māori.
H: ka whai te toroa i te hoiho
C: ’the albatross chases the yelloweyed penguin’

translates to:
ka whāia te hoiho e te toroa
ka whai te toroa i te hoiho

Figure 7: Example illustrating multiple words
and translation
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Abstract
Language technology makes extensive use of hierarchi-
cally annotated text and speech data. These databases are
stored in flat files and manipulated using corpus-specific
query tools or special-purpose scripts. While the size of
these databases and the range of applications has grown
rapidly in recent years, neither method for managing the
data has led to reusable, scalable software. The formal
properties of the query languages are not well under-
stood. Hence established methods for indexing tree data
and optimizing tree queries cannot be employed. We
analyze a range of existing linguistic query languages,
and adduce a set of requirements for a reusable, scalable
linguistic query language.

1 Introduction
Corpora form the backbone of language technol-
ogy. However corpora usually need to be annotated
with structural information describing, for example,
syntax or phonology. Query languages are neces-
sary to extract useful information from these mas-
sive data sets. Moreover, annotated corpora require
thousands of hours of manual annotation to create,
revise and maintain. Query languages are also use-
ful during this process. For example, queries can be
used to find parse errors or to transform annotations
into different schemes.
However, the query languages currently available

for annotated corpora suffer from several problems.
Firstly, updates are not supported as query
languages focus on the needs of linguists searching
for syntactic constructions. Secondly, their
relationship to existing database query languages
is poorly understood, making it difficult to apply
standard database indexing and query optimization
techniques. As a consequence they do not scale
well. Finally, linguistic annotations have both a
sequential and a hierarchical organization. Query
languages must support queries that refer to both

of these types of structure simultaneously. Such
hybrid queries should have a concise syntax. The
interplay between these factors has resulted in a
variety of mutually-inconsistent approaches.
This paper aims to describe the query language

requirements for navigating and modifying struc-
turally annotated corpora. We focus on tree struc-
tured annotation. This entails sequential structure.
This paper is organized as follows. Section 2

surveys six linguistic tree querying languages and
where appropriate the data models they are based
on. The survey is the basis of the linguistic tree
query requirements presented in Section 3. We con-
clude in Section 4 with suggested areas for further
work.

2 Tree Models and Query Languages
The prototypical hierarchical linguistic annotation
is the syntax tree, an ordered tree where termi-
nals (leaves) contain the text of a sentence being
analyzed. Non-terminals represent syntactic cate-
gories, and the hierarchical organization represents
constituency. The leaf level is usually considered
immutable. The queries in Figure 1 have been cho-
sen to highlight the expressive capabilities of cur-
rent tree query languages.
A query language must be able to accurately

specify which subtrees to match in a corpus. This
means quantifying the existence of nodes and
succintly stating the relationships between them.
Q1 is a simple query based on the dominance
relation inherent in trees. As mentioned earlier,
however, the sequential ordering of nodes is also
an important factor. Q3 and Q4 demonstrate the
precision that is available for describing subtrees
constrained by both dominance and precedence
relations.
It is also desirable to specify subtrees by what

they do not contain. This requires some form of
negation. Q2 is a simple example of this type of



Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately

followed by a noun phrase that is immediately fol-
lowed by a prepositional phrase.

Q5. Find the first common ancestor of sequences of a
noun phrase followed by a verb phrase.

Q6. Find a noun phrase which dominates a word dark
that is dominated by an intermediate phrase that
bears an L-tone.

Q7. Find an noun phrase dominated by a verb phrase.
Return the subtree dominated by that noun phrase
only.

Figure 1: Syntactic Queries for Comparing Tree Query
Languages

SBAR

WH-NP1

What

SQ

is NP-SBJ

Tim

VP

eating NP*T*-1

∅

Figure 2: Trace elements in Penn Treebank

query. Q5 contains an implicit negation: we need
to select the common ancestor that has no descen-
dant that is also a common ancestor of the nodes in
question. These queries also explore the interaction
between quantification and negation of nodes and
subtrees.
Linguistic query languages, in general, need to

be able to deal with heterogeneous data. Many
interesting queries fall on the interface of linguistic
fields. For example, Q6 requires both syntactic and
phonological data. This can be represented as two
trees that intersect at the word level (Cassidy and
Harrington, 2001).
Finally, trees can be large, and it is often unde-

sirable to return whole trees for which the query
tree matches a tiny fragment. Thus, we need a way
to specify what part of a query simply constrains
context, and what part should be returned. Q7 is a
simple test of a query language’s ability to control
output.

2.1 Penn Treebank and Tgrep2
Penn Treebank contains approximately 50,000
parse trees of Wall Street Journal text (Marcus et
al., 1994). Each parse is represented as an ordered
tree, and syntactic dependencies are indicated using

Q1. S << saw
Q2. S !<< saw
Q3. NP <- N
Q4 VP=vp << (V . (N >> =vp . PP >> =vp))
Q5. *=p << (NP=n .. (VP=v >> =p

!>> (* << =n >> =p)))
Q6.* Not expressible
Q7. VP << ‘NP

Figure 3: Tgrep2 Queries; Q5 is taken from (Rohde,
2001)

zero-width trace elements co-indexed with a full
noun phrase (cf. Figure 2).
Tgrep2 is a grep-like tool for this database

(Rohde, 2001), and all example queries can be
specified correctly except Q6 (cf. Figure 3).
Queries are nested expressions involving nodes and
relationships between nodes. Nodes are specified
using strings or regular expressions. Tgrep2
supports a large number of node relationships,
including immediate precedence: A immediately
precedes B (ie A . B) if the right corner of A
immediately precedes the left corner of B in the
sentence on which the tree is built. A wildcard (*)
can be used for a node when there is no constraint
on its name. Node identifiers allow multiple
sub-expressions to refer to the same node (e.g. Q4).
Tgrep2 can specify non-inclusion or non-existence
(Q2, Q5).
Query execution uses a binary file representation

of the data, including an index on the words in the
trees. The top node in a query is first matched
and the rest of the tree is matched recursively, con-
strained by node relations. The output is a set of
human-readable subtrees. The subtree matched by
the first node mentioned in the query is returned by
default, but another return subtree can be specified
by the user as shown in Q7. This output cannot
be queried, since it must first be converted into the
binary format; i.e. Tgrep2 is not compositional.
Not all node relationships are primitive

(e.g. sibling relation ($)). However, dominates
type relations such as leftmost descendant (<<,)
cannot be derived. The depth of such a descendant
is unknown. Thus, the language could be greatly
simplified with a closure operator.

2.2 The TIGER Corpus and TIGERSearch
The TIGER corpus contains syntactically annotated
German newspaper text (Brants et al., 2002).
The syntax of German permits discontinuous
constituents, which are represented in the corpus as
trees with crossing edges. TIGERSearch is a logic
and constraint programming approach to querying



Q1. #s:[cat="S"] & #l:[lex="saw"]
& #s >* #l

Q2.* #s:[cat="S"] & #l:[lex="saw"]
& #s !>* #l

Q3. #n1:[cat="NP"] & #n2:[pos="N"]
& (#n1 >* #n2) & (#n1 >@r #n3)
& (#n2 >* #n4)

Q4 #vp:[cat="VP"] & #v: [pos="V"]
& #np:[cat="NP"] & #pp:[cat="PP"]
& #vp >* #v & #vp >* #np
& #vp >* #pp & #v >@r #vr
& #np >@l #npl & #vr .1 #npl
& pp >@l ppl & npl .1 ppl

Q5.* #vp:[cat="VP"] & #np:[cat="NP"]
& (#x >* #v) & (#x >* #np)
& (#v .* #np)

Q6. Not expressible
Q7.* #vp:[cat="VP"] & #np:[cat="NP"]

$ (#vp >* #np)

Figure 4: TigerSearch Queries; (*) Queries are approxi-
mations and may not produce the correct output

these so-called “syntax graphs” (König and Lezius,
2001). Query graphs are built using two main
relations: immediate dominance (>) and immediate
precedence (.). Closures of these relations (>*
and .* respectively) and other node relations such
sibling ($) and left and right corners (>@l,>@r)
increase expressiveness. However, intersecting
hierarchies are not supported (Q6).
A precedes B (i.e. A .. B) if the left corner of

A precedes the left corner of B. Immediate prece-
dence means the distance between left corners is 1.
Queries requiring immediate precedence (e.g. Q4)
will not be correctly described using this relation.
Left and right corners can be used to define the
query we want (cf. fig 4). However, this mimics
the Tgrep2 precedence definition and may fail if the
syntax graph has crossing branches.
Nodes are implicitly existentially quantified

before the graph description. This means non-
inclusion in Q2 will fail unless the negated node
exists in the graph. The expression of Q5 is
incorrect as the non-existence of a lower common
ancestor cannot be established. The closest
approximation will include all common ancestors.
However, we can use the (somewhat unintuitive)
fact that a rightmost child of a node must dominate
the right corner of that node to formulate Q3.
The corpus of syntax graphs is indexed before

querying. This index contains inferred facts about
the corpus graphs with respect to TIGERSearch
relations and predicates. In effect, the corpus data
becomes a prolog fact database. The query proces-
sor attempts to unify elements of corpus graphs with

Q1. [Syntax=S ˆ Word=saw]
Q2.* Not expressible
Q3. end(Syntax=NP, Syntax=N)=1
Q4.* [Syntax=VP ˆ [Syntax=V ->

[Syntax=NP -> Syntax PP] ]]
Q5.* [Syntax!=x ˆ [Syntax=NP -> Syntax=VP]]
Q6. [Syntax=NP ˆ

[Word=dark ˆ intermediate=L-]]
Q7.? [Syntax=VP ˆ #Syntax=NP]

Figure 5: Emu Queries

the query graph. Exhaustive search is avoided using
label based filtering and by re-ordering the query
graph traversal.
Matching syntax graphs are returned in their

entirety. This means output reduction of Q7 cannot
be done.

2.3 Emu Query Language

The Emu speech database system (Cassidy and Har-
rington, 2001) defines an annotation scheme involv-
ing temporal constraints of precedence and over-
lap. Emu annotations are stratified into levels; each
level is an interval structure, and elements on each
level overlap those on the same and on other levels.
The overlap relation is called dominance in the Emu
documentation, but it is a reflexive, symmetric and
non-transitive relation best understood as temporal
overlap. Given this approach to dominance, nodes
in an Emu structure can be “dominated” by multiple
parent nodes. Hence Emu claims to support multi-
ple intersecting hierarchies. Example Emu queries
are given in Figure 5.
Built in functions start(), end(), mid() and

position() allow expression of the positional
constraint in Q3. However lack of precision in
dominance and precedence relations is a problem
when dealing with syntax. Immediate dominance
is only expressible between the appropriate levels.
However, syntax trees do not easily split into such
identifiable levels. Precedence is only defined
for nodes on the same level. There is no way to
describe immediate precedence within a level.
Negated relations are not possible hence Q2 type
non-inclusion cannot be expressed either.
Each query only returns one node per match. The

target node can be specified by the user (Q7). How-
ever, this is unhelpful if structure is of interest. It
also prevents query composition. Query constraints
are tested in all possible match positions in the
structure. This is satisfactory for small data sets but
does not scale up well.



Q1. node: S
query: saw exists

Q2. node: S
query: !saw exists

Q3. node: NP
query: NP iDomsLast1 N

Q4.? node: VP
query: V iprecedes NP

and NP iprecedes PP
Q5.* Not expressible
Q6.* Not expressible
Q7. node: VP

query: exists NP
node: NP
query: exists *

Figure 6: CorpusSearch Queries

2.4 CorpusSearch
CorpusSearch was developed for the Penn-Helsinki
Parsed Corpus of Middle English, though it can
be used with any corpus annotated in the Penn
Treebank style. An interesting feature of this
language is that queries are limited in scope to
subtree rooted by a specific type of node. In Q1
exists asks that the word ‘saw’ exists in a subtree
rooted with an ‘S’. Surprisingly, the search function
(relation) dominates has been discontinued.
This means nested dominance queries cannot be
expressed. Precedence is only defined among
siblings which greatly restricts the number of
queries possible. Q4, for example, will miss many
hits.
Negation of dominance has the semantics

required for Q2. However, VP precedes !NP
will not match verb phrases that are rightmost
amongst their siblings. Search functions such
as iDomsLast exist to express this sort of
positional constraint instead. Wildcards can be
specified, however the lack of a dominance search
function means Q5 cannot be expressed. Multiple
domination, as in Q6, is not supported.
A striking feature of this language is that it

treats regular expressions over node names as
variable names. Thus A iprecedes B*|C and
B*|C iprecedes D describes a sequence of three
nodes, while A iprecedes B*|C and C|B*
iprecedes D describes two unrelated sequences,
each of two nodes.
CorpusSearch is compositional. This allows Q7

to be specified in two stages.

2.5 NiteQL
NiteQL extends the MATE workbench query
language Q4M (McKelvie et al., 2001) and has

Q1. ($s syntax) ($w word):
($w@orth=="saw") && ($s@cat=="S")
&& ($s ˆ $w)

Q2.*($s syntax) ($w word):
($w@orth=="saw") && ($s@cat=="S")
&& !($s ˆ $w)

Q3. ($np cat) ($w word) :
($np@cat=="NP") && ($w@pos=="N")
&& ($np ˆ1[-1] $w)

Q4. ($vp syntax) ($v word)
($np syntax) ($pp syntax):

($v@pos=="V") && ($np@cat=="NP")
&& ($pp@cat=="PP")
&& ($vp@cat=="VP")
&& ($v <>1 $np) && ($np <>1 $pp)
&& ($vp ˆ $v) && ($vp ˆ $np)
&& ($vp ˆ $pp)

Q5.*($vp syntax) ($np syntax) ($x syntax):
($vp@cat=="VP") && ($np@cat=="NP")
&& ($x ˆ $vp) && ($x ˆ $np)
&& ($np <> $vp)

Q6. ($s syntax) ($i intermediate)
($w word):

($s@cat=="NP") && ($i@tone=="L-")
&& ($w@orth=="dark")
&& ($s ˆ $w) && ($i ˆ $w)

Q7. (exists $vp syntax) ($np syntax):
($vp@cat=="VP") && ($np@cat=="NP")
&& ($vp ˆ $np)

Figure 7: NiteQL Queries

been released as part of the NITE XML Toolkit
(Heid et al., 2004). Queries consist of weakly typed
variable declarations followed by match conditions.
Matches are evaluated over attribute, structure and
time constraints. Precedence can be defined by the
application designer depending on the data model.
The queries in Figure 7 assume the model used

by Tgrep2. If crossing branches are permitted, and
the left corners precedence definition is used, then
NiteQL will behave like TIGERSearch instead.
Dominance and precedence relations can take
modifiers that provide more positional constraints.
In Q3, ˆ1 indicates immediate dominance and
[-1] indicates rightmost descendant. Any sibling
position at any level can be specified.
Like TIGERSearch, variables are existentially

quantified when declared so Q2 and Q5 cannot
be correctly expressed. Quantification (exists,
forall) can be used in variable declarations.
However their main purpose is to suppress marked
in query output as used in Q7.
The NITE project encourages storage in standoff

XML. An XPath-like pointer relation enables the
formation of secondary (non-tree) edges between



Q1. /S[//_[@lex = ’saw’]]
Q2. /S[not //_[@lex = ’saw’]]
Q3. //NP{/N$}
Q4 //VP{V -> NP -> PP}
Q5.? //_{//NP --> VP}/

ancestor-or-self::*[1]
Q6.* Not expressible
Q7. //VP/NP

Figure 8: LPath Queries

nodes. These can also occur between separate hier-
archies. The final output is an XML document
listing pointers to matches in the corpus. This is
useful for searches during the annotation process.
NiteQL’s type system allows queries on intersecting
hierarchies as seen in Q6. Complex queries provide
compositionality and can be used to structure results
to some extent.

2.6 LPath
LPath is a path language for linguistic trees
extending XPath, with with an immediate
precedence and a scoping operator (Bird et
al., 2004). LPath queries can be translated into
SQL for efficient evaluation. The LPath versions
of the example queries are shown in Figure 8. The
LPath representation of Q5 follows from node set
selection in XPath. The positional predicate [1]
is applied as the ancestor axis is traversed. In
this case, only the first node in reverse document
order is selected. This is the first common ancestor
required by the query.

3 Requirements for Tree Query
Tree query languages need to be able to express
node relationships succinctly. The languages we
have surveyed needed more than dominance and
precedence relations to express the specialized rela-
tions invoked in the example queries. A reason-
able definition of immediate precedence is clearly
necessary. However, more is required than positive
descriptions. Non-inclusion queries such as Q2 and
Q5 could not be expressed in all languages.

3.1 Simple Navigation
Subtree Matching. A vital part of subtree match-
ing is accurate specification of the query tree. An
inventory of subtree description types is given in
Figure 9. Subtree description may also be facilitated
with a graphical interface that maps tree diagrams to
expressions in a query language. This is an attrac-
tive option for non-computer scientists and already
exists in tools such as TIGERSearch.

Immediate dominance:
A dominates B, A may dominate other nodes

Positional constraint:
A dominates B, and B is the first (last) child of A

Positional constraint with respect to a label:
A dominates B, and B is the last B child of A

Multiple dominance:
A dominates both B and C, but the order of B and C
is unspecified.

Sibling precedence:
A dominates both B and C, B precedes C; A domi-
nates both B and C, B immediately precedes C

Complete description:
A dominates B and C, in that order, and nothing else

Multiple copies:
A dominates B and B, and the two Bs are different
instances

Negation:
A does not dominate node with label B

Figure 9: Subtree Matching Queries

Returning subtrees. The query languages had
some capacity to constrain the output of a query as
was shown in example query Q7. However, only
NiteQL could choose specific nodes (as opposed
to subtree roots) to output. This sort of precise
reduction needs to be further supported.
Reverse navigation. Query specifications tend

to reflect top down, left to right tree navigation.
On the other hand, context can occur in any direc-
tion from a node. This is a problem for languages
such as Tgrep2 where graph description focuses on
one particular node at a time. Reverse relations,
such as ‘follows’, are implemented in Tgrep2 and
are necessary for queries such as Q5. However,
reverse relations have less value in a language like
TIGERSearch where the ordering of graph descrip-
tion is not important. In terms of expressiveness,
necessity of these relations depends on the query
structure.
However, reverse navigation is relevant for devel-

oping a matching strategy. For example, matching
an ancestor only requires nodes on the path from
the current node to the root. Strategies that allow
reduction of the search space need to be employed.
Non-tree navigation. Queries are not always

described in terms of edge traversal structure.
Queries are often specified over the sequence of
terminals (i.e. the text), regardless of hierarchical
organization. Example queries have shown that
this notion of sequential navigation needs to be
extended to non-terminal nodes, e.g. to permit
searching for sequences of one or more adjective
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S→ NP VP
VP→ V NP
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Figure 11: Immediate Precedence in Linguistic Trees

followed by a noun, regardless of the internal
organization of the noun phrase (cf. Figure 10).
All surveyed languages support some notion of
precedence though not all allow for immediate
precedence. Immediate precedence in a tree can be
conceived in terms of the “proper analyses” of early
generative grammar (Chomsky, 1963) or syntactic
charts, as shown in Figure 11.

3.2 Closures

The surveyed languages include closures of basic
relations such as dominance, precedence and sib-
ling precedence. These are necessary as distance
between nodes of interest can be arbitrarily large.
These are generally represented as separate rela-
tions in tree querying languages. However, closures
are required of more complicated structures that are
not handled currently.

We may wish to find parts of a corpus that fit
a particular grammatical theory. For example,
Chomsky adjunction in Figure 10 can be described
by the productions: NP → Adj NP, NP → N.
This translates to an LPath-like expression
(/NP[/Adj])*/N. Here closure is atomic and each
repetition involves a single step along some axis.
In general we would like to be able to express any
self-recursive rule A → L1 · · · LnAR1 · · · Rn using a
closure. In LPath this might possibly be specified
by (/A[<=Ln...<=L1, =>R1...=>Rn])+.
Closures involving more than one step are also

required. For example, a path consisting of alter-
nating VP and S’s: (/VP/S)+. Outside of tree
navigation we wish to find regular sequences such
as consonants and vowels: (->C->V)+. Moreover
some structure may best be described using nested
closures, e.g. ((->C)+->V)+.
Q5 represents a class of queries that ask for the

first common ancestor of tree fragment. However,
negation semantics means this can only be speci-
fied in Tgrep2 and LPath. This problem may be
addressed more generally with the greedy matching
approach of regular expression processing. That is,
signal that we want the first match only. However,
this is not compositional.

3.3 Beyond ordered trees

Queries may need to extend beyond sentence
boundaries. For example, anaphoric arguments
may occur in previous sentences (Prasad et al.,
2004). If trees represent sentences and querying
is restricted to subtree matching this is a problem.
One solution is to include multiple sentences in
trees. However, this drastically increases the size
of trees. Query trees are generally very small (if
spread widely) so massive trees decrease filter
effectiveness during query processing and have a
bad effect on matching algorithms.
This presents a good case for querying over

ordered forests. In fact this is necessary when
querying the Verbmobil treebanks of spontaneous
speech (Hinrichs et al., 2000). Here discourse turns
are modelled to include repetitions, interjections,
disfluencies and sentence fragments. These are
represented as trees disconnected from surrounding
well-formed sentences. Trees can occur wrapped
in other trees as seen in Figure 12. VIQTORYA
(Steiner and Kallmeyer, 2002) is a query language
developed for these treebanks. However, this can be
considered a subset of the TIGERSearch language
so was not discussed in the survey.



Figure 12: Forest representation of the Verbmobil corpus
(Steiner and Kallmeyer, 2002)

There is a general need to move beyond single
tree searches and integrate different types of linguis-
tic data. Querying intersecting hierarchies has been
well motivated by the workbenches such as Emu
and the NITE project. There is also a need to query
over relational and structural data. (e.g. Switch-
board Treebank). We may want to match subtrees
depending on the attributes of a word stored else-
where (e.g. verb class in dictionary). Scope for
these types of queries needs to be included in query
language development.
Beyond this, there is a need to query non-tree

structure. For example, Penn Treebank and the
TIGER corpus includes secondary edges. It would
be useful to navigate these links to extract informa-
tion about the long range phenomena stored there.
This means a definite move from tree based models
which needs to be explored further.

3.4 Update
Curating a corpus of trees requires frequent
updates. Tree edits often describe restructuring of
constituents. For example, transforming structure to
(resp. from) a small clause representation involves
insertion (resp. deletion) of a common parent.
Changing annotation style to reflect X-bar theory
involves relabelling certain NP nodes to N’. Another
useful transform is to reattach a phrasal adjunct
to a higher level node, which calls for a notion of
subtree movement.
Insertion, deletion and relabelling nodes are stan-

dard tree editing operations. However, linguistic
trees are more constrained than general trees. Free-
dom of movement of constituents almost always
depends on preserving the base text. Subtree dele-
tion is not allowed (except zero-width elements)
nor is re-ordering of leaves. Any subtree can only
legally move to a limited number of locations with-
out perturbing the text.
Subtree movement can be described in terms of

node insertion and deletion. However, this will be

extremely tedious for the user to specify as sub-
trees may be extremely large. Thus subtree move-
ment should appear as a basic operation. (Cotton
and Bird, 2002) present a tree edit operations all in
terms of node movement of a distinguished node.
The direction and surrounding structure determines
where the node is reattached. Further operations are
required to deal correctly with empty constituents.
All update operations should have inverses so edits
can be reversed.
Syntactically annotated corpora are often anno-

tated with respect to a particular grammar. These
grammars may be updated and annotations need to
be changed to reflect this. However, it is inefficient
to reannotate the entire corpus every time this hap-
pens. A useful update mechanism should be able
to compare grammars and then implement changes
only where necessary. The closures described pre-
viously will be useful here.

4 Conclusion

Several linguistic tree languages have been pro-
posed in earlier work, and we have investigated their
expressiveness and conciseness for a range of prac-
tical queries. Our survey has led us to propose
a number of requirements for any general-purpose
linguistic tree query language. They should permit
hierarchical and sequential navigation, including an
immediate precedence relation which cuts across
the hierarchy. They should go beyond simple sub-
tree matching to support a range of closures which
correspond to grammar fragments, and positive and
negative constraints on context. Whether as inter-
secting hierarchies or ordered forests, multiple tree
querying must also be developed further. Require-
ments for a tree update language derive from a need
to maintain the underlying text and present natural
edit operations to the user.
We have broached several topics which require

further investigation. Query languages incorporat-
ing variables, quantification, negation, and closures
need to be better understood. This can be done by
manually translating such queries to a language of
first order logic or modal logic, exploring the kinds
of nested quantification required, and consequences
for implementation. The existing, well-understood
relational and semi-structured query languages and
finite automata could play a similar role.
Query expressions which can be mapped to the

forwards and downwards subset of tree navigations
are amenable to implementation in a streaming pro-
cessor, opening the way for a true tree-grep tool
which is able to function in a pipeline mode on



unpreprocessed treebank files. Other areas of fur-
ther work include an exploration of an appropriate
typing system as used to navigate intersecting hier-
archies; investigation of boundaries for contextual
search; and the interaction of indexing and updates.
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Abstract
Systemic functional linguistics offers a grammar
that is semantically organised, so that salient gram-
matical choices are made explicit. This paper de-
scribes the explication of these choices through the
conversion of the Penn Treebank into a systemic
functional grammar corpus. Developing such a re-
source can help connect work in natural language
processing to a significant body of research dealing
explicitly with the issue of how lexical and gram-
matical selections create meaning.

1 Introduction
The Penn Treebank was designed to maximise con-
sistency and annotator efficiency, rather than con-
formity with any particular linguistic theory (Mar-
cus et al., 1994). This results in trees that strongly
suggest the use of synthetic features to explicate
semantically significant grammatical choices like
mood, tense, voice or negation. These distinctions
lie latent in the configuration of the tree in the Tree-
bank II annotation scheme, making it difficult for a
machine learner to make use of them.
Rather than the ad hoc addition of this informa-

tion at the feature extraction stage, the corpus can be
re-presented in a way that makes feature extraction
more principled. This involves increasing the size
and complexity of the representation of a sentence
by organising the tree semantically. Organising a
grammar semantically is by no means a trivial task,
and has been an active area of linguistic research for
the last forty years. This paper describes the con-
version of the Penn Treebank into a prominent out-
put of such research, systemic functional grammar
(SFG).
Systemic functional grammar does not confine its

description to syntactic structure, but includes a rep-
resentation of the choices grammatical configura-
tions represent — or ‘realise’, to use the term pre-
ferred in the linguistics literature (Halliday, 1976).
There is growing evidence that systemic func-

tional grammar can be usefully applied to natural

language processing (Munro, 2003; Couchman and
Whitelaw, 2003), and there is a strong history of
interaction between systemic functional linguistics
and natural language generation (Matthiessen and
Bateman, 1991). However, there is currently a lack
of computational SFG resources. There is no stan-
dard format for machine readable annotation, no an-
notated corpora, and no useable parsers. Converting
the Penn Treebank will make a large body of SFG
annotated data available to computational linguists
for the first time, an important step towards address-
ing this situation.
We first discuss some preliminaries relating to

the nature of systemic functional grammar, and the
scope of the converted corpus’s annotation. We
then discuss the conversion of the treebank’s phrase-
structure representation to SFG constituency struc-
ture, and finally we discuss the addition of interper-
sonal and textual function structures.

2 Some preliminaries
2.1 Structure of the SFG analysis
Systemic functional grammar divides the task of
grammatical analysis — the process of stating the
grammatical properties of a text — into two parts:
analysis of syntactic structures, and analysis of
function structures.
SFG syntactic analysis is constituency based,

and is predicated on Halliday’s notion of the rank
scale (Halliday, 1966): clauses are composed of
groups/phrases, which are composed of words,
which are composed of morphemes. The main
concerns of SFG syntactic analysis are the chunk-
ing of words into groups/phrases, and the chunk-
ing of groups/phrases into clauses. Levels of con-
stituency between groups/phrases and their words
are recognised in the literature (Matthiessen, 1995),
but rarely brought into focus in research unless
the group/phrase contains, or is, an embedded con-
stituent from another rank (e.g., a nominal group
like ‘the man’ with an embedded relative clause like
‘who knew too much’).



Function structures can refer to any rank of the
constituency, but clause rank functional analysis
is generally regarded as the most important. The
grammar defines a set of systems, which can be de-
fined recursively using conjunction and disjunction.
They are usually represented graphically in system
networks (Matthiessen, 1995), as in Figure 1.
In this figure, the nested disjunction ‘indicative

or interrogative’ represents a more delicate, or finer
grained, distinction than that between indicative and
imperative. After selecting from the initial choice,
one proceeds from left to right into increasingly del-
icate distinctions. These systems are categorised
into three metafunctions, which represent differ-
ent types of meaning language enacts simultane-
ously (ideational, interpersonal and textual) (Hall-
iday, 1969).

Figure 1: A simple mood system, ‘(indicative or in-
terrogative) or imperative’

2.2 Scope of target annotation
There is no clearly defined limit to systemic func-
tional grammar, in the sense that one could say that a
text has been ‘fully’ analysed. The grammar is con-
stantly being extended, with new kinds of analysis
and levels of delicacy suggested. The ultimate aim
of the approach is to distinguish every semantically
distinct different wording choice (Hasan, 1987).
When working with systemic functional gram-

mar, then, practitioners generally define the scope
of their analysis. We must do the same, although
the reasons are different. Analysis, so far, has al-
ways been performed manually, with only finite
time available. Projects have therefore had to de-
cide between the size of a sample and the detail of
its analysis. In our case, we are limited to the kinds
of analysis which can be directly inferred from
the Penn Treebank. Future research will doubtless
leverage other resources to extend the analysis of
the corpus we present, but attempts to do so are be-
yond the scope of this paper.
The Penn Treebank presents accurate con-

stituency and part-of-speech information. This is
enough information to annotate the corpus automat-
ically with roughly two thirds of the most important
clause rank systems: mood and theme, but not tran-
sitivity.

The distinction between systems which can be
automatically annotated and systems which cannot
lies in the way the systems are realised. Mood
and theme are realised primarily through the order
of constituents (the order of Subject and Finite in
the case of mood, and the first Adjunct, Subject,
Complement or Predicator in the case of theme).
They are realised structurally, as opposed to lexi-
cally. Other systems are realised through the se-
lection of grammatical items (also called ‘function
words’ — a term we prefer not to use because of the
special sense of ‘function’ in the context of SFG).
Systems that are realised with grammatical items,

such as voice, polarity and tense, can also be au-
tomatically annotated. Lexically realised systems,
on the other hand, require a lexicon or equivalent
resource, since the choice of words within identi-
cal syntactic structures changes the selection from
the system. Trees which are identical at every level
except their leaves have different process type se-
lections. The central system of transitivity, process
type, cannot be analysed for this reason.
The annotation of the corpus we present there-

fore attempts to include selections from the follow-
ing systems at clause rank:

• interpersonal

– mood (i.e. mood type and role tags
for Subject, Finite, Predicator, Adjunct,
Complement, Vocative)

– clause class
– status
– tense
– polarity

• textual

– theme (i.e. role tags for Textual Theme,
Interpersonal Theme, Topical Theme,
Rheme)

– voice

Ideational analysis is omitted entirely, because
transitivity analysis requires a more complicated
approach, as discussed above. Although arguably
some aspects of taxis and expansion type could be
annotated automatically, because the central infor-
mation cannot be annotated, we have left it out en-
tirely.

3 Constituency Conversion
We have not found it necessary to use a method of
automatic rule induction to generate a CFG. The



lack of a suitable training set made that approach
impractical for the time and resources we have had
available; and good results have been obtained by
simply using a set of hard-coded transformation
functions, implemented as a Python script. This
approach does have a significant drawback, how-
ever: because the script does not output a con-
version grammar, correcting systematic errors and
other maintenance or extension tasks are much more
difficult.
The first process in the conversion of a sentence

is to parse the Lisp-style string representation into a
tree of generic node objects. Each node contains
a function tag (which may be null), a node label
and a set of children (which may be empty). The
root node is then used to initialise a sentence ob-
ject, which sorts its immediate children into clause,
group and verbal group objects. As each class is
initialised, it initialises a clause, verbal group, other
group or lexis object with each of its children. The
tree is thus recursively re-represented by more spe-
cific constituent objects, rather than generic node
objects. Subtyping the nodes facilitates the changes
to the structure that must be performed, since the
structural changes are mostly specific to either ver-
bal groups or clauses.
These changes are divided into a series of steps,

each coded as a function. Each function contains
a series of conditionals which identify the struc-
ture being targeted and how it should be altered.
The most significant functions are described in more
detail below. This is not an exhaustive list, how-
ever, as several trivial changes have been omitted.
These include things like node relabelling and the
addition of group nodes for conjunctions. There
are many changes of this sort, some introduced by
the specific mechanics of altering the tree. They
are not generally interesting differences between
the constituency representations of the Treebank’s
phrase-structure representation and systemic func-
tional grammar.

3.1 Raising verb phrase predicates
The most obvious difference between SFG con-
stituency and the Treebank II annotation scheme is
the flatter, ‘minimal bracketing’ style SFG uses. To
convert a tree to SFG clause constituency, all com-
plements and adjuncts must be raised by attaching
them to the clause node; in the Treebank annotation
they attach to the verb. Figure 2 illustrates the rais-
ing of clause constituents from the verb phrase.

3.2 Raising hypotactic clauses
SFG represents the distinction between hypotaxis
and parataxis with features, rather than tree struc-

Figure 2: Raising of NP and PP nodes dominated
by a VP

Figure 3: A clause dominating another

ture. All non-nominalised, non-embedded clauses
are therefore siblings dominated by the root clause
complex.
Figure 3 shows the Treebank representation, with

a hypotactic clause as a child of a VP. Hypotactic
clauses are raised to be siblings of the nearest clause
node above them. Figure 4 shows the tree after this
has been performed.

Figure 4: Equally ranked clauses

3.3 Flattening auxiliaries
In the Treebank II annotation scheme, each auxil-
iary — and the main verb — is given its own node,
dominated by the auxiliary before it. This structure
needs to be flattened to match the SFG representa-
tion. If all of a verb phrase’s lexical items have POS
tags in the following list: VB, VBD, VBG, VBN,
VBP, VBZ; and it only has one verb phrase child,
then its lexis attaches to the verb phrase below it.
The empty internal node will later be removed in



Figure 5: Treebank representation of a sentence that
contains a verbal group complex

the generic ‘flattening’ stage.

3.4 Verbal group complexing
SFG distinguishes between clause complexes and
verbal group complexes. The rules for parsing a tree
as one or the other type of construction are quite
simple.
If a verb phrase has one verb phrase child, and

dominates a lexis node that is not a finite, then it
is treated as a verbal group complex. Additionally,
if a verb phrase has a sentence child that is not a
direct quotation, does not have the function tag PRN
(parenthetical), and is not labelled SBAR (used for
relative and subordinate clauses), it is treated as a
verbal group complex. For example, SFG renders
the tree in Figure 5 as a single clause, with the verbal
group “(continued) (to slide)”.
Group and phrase complexing is actually repre-

sented a little inaccurately in the script. Ideally,
a structural Complex node should be created, and
all groups attached to it. This representation would
mirror the way clause complexing is handled. In-
stead, group or phrase complexing is treated like
rank-shifting, with the first group dominating the
others. This concern is not crucial, however, since it
does not affect the clause division or the annotation
of function structures.

3.5 Ellipsis
Ellipsis was the most difficult case to deal with,
since it involves more than just relocating nodes in
the tree. A new clause is created when a verb phrase
is identified as part of a clause with an ellipsed sub-
ject. The verb phrase is moved to the new clause,
along with all of its children, and any items identi-
fied as ellipsed are copied and attached. Lexis that
is copied in this way must be renumbered, so that
the clause sorts properly.
When a verb phrase has two or more verb phrase

children, each verb phrase child after the first is
moved to a new clause. Figure 6 shows the struc-
ture of a sentence containing an ellipsed clause. The

siblings of the dominant verb phrase (such as the
subject), all lexis of the dominant verb phrase (such
as the finite), and all children of the ellipsed verb
phrase (such as the complement) are copied to the
new clauses. In effect, the only items in the ‘orig-
inal’ clause that are not in the ‘ellipsis’ clauses are
children of the first verb phrase (such as the adver-
bial phrase).
It is not entirely clear that copying the words is

the best solution. A trace — an empty group that
simply references the original version — is possi-
bly more convenient. The trace solution is more
convenient when using the corpus as training data
for a computational linguistics task, while copying
the elements makes the corpus easier to use for lin-
guistic research. The SFG literature is unhelpful for
these kinds of decisions: it is concerned with con-
tent descriptions, not representation descriptions.

3.6 Pruning and truncating
Lexical nodes that contain only punctuation or
traces are pruned from the tree. Group nodes that
contain no lexis are also pruned. This operation is
performed recursively, from the bottom up, clearing
away any branches that have no lexical leaves. In-
ternal nodes that contain only one child are replaced
by that child, truncating non-branching arcs of the
tree.
The clearance of punctuation is a problem with

the script as it currently stands, since clearly this
information should not be lost.

4 Adding Metafunctional Analysis
Function structures must be added after the con-
stituency conversion. The structures attach to
clauses in the constituency tree, making separation
into clauses essential before systems can be anno-
tated.
Function structures fall into two categories:

metafunctional roles, and systems. Metafunctional
roles describe the interpersonal, textual or ideational
function of a particular constituent, which is consid-
ered the role’s realisation. Systems are instead dis-
junctions from which a term is selected if the entry
condition is met. The names of metafunctional roles
are generally capitalised in the literature, while sys-
tem names are given in italics. We follow this con-
vention to help make the distinction clearer.
As with the constituency conversion, function

structures were added by hard-coded functions, im-
plemented as a Python script. Four kinds of infor-
mation are used for metafunctional analysis:

1. The Penn Treebank’s function tags
2. The Penn Treebank’s POS tags



Figure 6: Treebank representation of an ellipsed clause, with verb phrases named

3. The value of other systems

4. The order of constituents in the SFG represen-
tation

The use of values from other systems makes the an-
notation procedure order dependent. They are usu-
ally used to determine whether a system’s entry con-
dition has been met. For instance, tense is not se-
lected by non-finite clauses — so the function that
discerns tense first checks the that requirement, and
assigns null tense if the clause has no Finite.
The subsections below give a brief linguistic de-

scription of the system being annotated, and then
describe the way its selection is calculated. If the
entry condition is not met, the selection is consid-
ered ‘none’.

4.1 Class
Class is an interpersonal system with the possible
values ‘major’ and ‘minor’. Major clauses are those
with a verbal group. Minor clauses are equivalent
to sentence fragments in other grammatical theories.
An example from the Penn Treebank is the fragment
“Not this year.”
If a clause contains a verbal group, it is marked

‘major clause’. If it has no verbal group, it is marked
‘minor clause’.

4.2 Finite
Finite is an interpersonal role. The Finite is the tense
marker of a verbal group. It is either the first auxil-
iary, or it is included with the lexical verb as a mor-
phological suffix. The Finite is a significant unit of
the grammar, because the placement of it in relation
to the Subject realises mood type, and its morphol-
ogy realises tense selection and number agreement
with the Subject.
If a clause is minor class, or the first word of its

verbal group has one of the following POS tags: TO,
VBG, VBN; then it does not contain a Finite. Oth-

erwise the first word of the verbal group receives the
interpersonal role Finite.

4.3 Predicator
Predicator is an interpersonal role. The Predicator
is the lexical verb of a verbal group.
If a clause is minor class, it does not contain a

Predicator. Otherwise, the last word of the verbal
group receives the interpersonal role Predicator. If
a verbal group has only one word, that word will
therefore receive two interpersonal roles (Finite and
Predicator). This is the analysis recommended in
the literature (Halliday, 1994).

4.4 Status
Status is an interpersonal system with the possible
values ‘free’ and ‘bound’. Status refers to whether
a clause is ‘independent’ or ‘dependant’, to use the
terms from traditional grammar.
Minor clauses do not select from the status sys-

tem, so receive the value ‘none’. Major clauses that
have no Finite, or were originally attached to an-
other clause and were tagged SBAR, or are rank-
shifted, are considered bound. All other clauses are
considered free.

4.5 Subject
Subject is an interpersonal role. The Subject of a
verbal group is the nominal group whose number
the verbal group must agree with.
Nominal groups realising Subject are generally

tagged explicitly in Treebank II annotation. The ex-
ception to this is wh- subjects like ‘who’, ‘what’ or
‘which’. If no nominal group has the function tag
SBJ, and there is a wh- nominal group that was not
attached to the verbal group, that nominal group is
considered the Subject.
In clauses with an Initiator (‘I made him paint the

fence’), two nominal groups will usually have been
marked subject (‘I’, ‘him’). In these cases, the first



occurring nominal group is considered the subject
(‘I’).

4.6 Mood type
Mood type is an interpersonal system with the possi-
ble values ‘declarative’, ‘interrogative’ and ‘imper-
ative’. Mood type refers to whether a clause is con-
gruently a question (interrogative), command (im-
perative) or statement (declarative).
Minor and bound clauses do not select from

this system, and therefore receive the value ‘none’.
Free clauses with no subject are marked ‘impera-
tive’. Clauses with the node labels SQ or SBARQ
are marked ‘interrogative’. Other free clauses are
marked ‘declarative’.

4.7 Tense
Tense is an interpersonal system whose value
is some sequence of ‘present’, ‘past’, ‘future’,
‘modal’. Tense refers to the temporal positioning of
the process of a clause, with respect to the time of
speaking. In English, it is a serial value, because se-
quences of tenses can be built (‘have (present) been
(past) going (present)’).
Finite declarative and interrogative clauses re-

ceive one or more tense values. The function iter-
ates through the words of the verbal group (or the
first verbal group in a verbal group complex), and
assigns these values based on the words’ POS tags,
and in special cases their text.
If a tag is either VBD or VBN, the value ‘past’

is appended to the tense list. If the tag is either
VB, VBG, VBZ or VBP, the value ‘present’ is ap-
pended to the tense list. If the tag is MD, then the
text is checked. If the word is “’ll”, ‘will’ or ‘shall’,
the value ‘future’ is appended to the tense list. The
value ‘modal’ is appended to the tense list for lexi-
cal items tagged MD. When an MD tag is seen, the
next word in the list is skipped, since it will be a
bare infinitive that does not represent a tense selec-
tion. If the lexical items ‘going’ or ‘about’ are seen,
the value ‘future’ is appended to the tense list, and
the next two words are skipped, as they will be ‘to’
and an infinitive verb. This does not occur if ‘go-
ing’ is the last word of the verbal group, since in
that case it is the process, not a tense marker.
Passive clauses will have received an extra ‘past’

tense value, so when a clause is labelled passive, its
last tense selection is removed.

4.8 Polarity
Polarity is an interpersonal system with the possible
values ‘positive’ and ‘negative’. Polarity refers to
whether the verbal group is directly negated.

Polarity is the simplest system to determine, since
it only involves checking the verbal group for the
word “not” (or “n’t”). Looking at negation more
generally would be far more difficult, since it is
more of a semantic motif than specific grammatical
system.

4.9 Adjuncts, Complements, Vocatives

Adjunct, Complement and Vocative are interper-
sonal roles. Nominal groups can be either Voca-
tives, Adjuncts or Complements. Adjuncts repre-
sent circumstances of a clause — the where, why
and when of its happening. Complements represent
its non-Subject participants — the whom, to whom
and for whom of its happening. Vocatives are nom-
inal groups that name the person the clause is ad-
dressed to.
Adverbial groups, prepositional phrases and par-

ticles are always given the interpersonal function
‘Adjunct’. Vocatives are explicitly marked in the
Treebank, with the VOC tag. Nominal groups
that realise an adverbial function are also explicitly
tagged, with either TMP, DIR, LOC, MNR or PNR.
Nominal groups with one of these tags receive the
interpersonal role ‘Adjunct’. All other non-Subject
nominal groups receive the interpersonal role ‘Com-
plement’.

4.10 Voice

Voice is a textual system with the possible values
‘active’, ‘passive’ and ‘middle’. Voice refers to
whether the Subject is also the ‘doer’ of the clause,
or whether the participants have been switched so
that the Subject is the ‘done to’. Compare the active
clause “the dog bit the boy” with the passive version
“the boy was bitten by the dog”. If clauses do not
have a ‘done to’ constituent which might have been
made Subject (i.e. a Complement), they are consid-
ered ‘middle’ (‘the boy slept’).
Minor clauses do not select for voice, and there-

fore receive the value ‘none’. Non-finite clauses are
typed according to the POS tag of their Predicator.
If the tag is VBG, voice is determined to be active;
if the tag is VBN, voice is determined to be passive.
Infinitive non-finite clauses receive the value ‘none’.
Finite clauses with a final tense other than ‘past’

are labelled active. If the final tense is ‘past’, and
the penultimate word of the verbal group is a form
of the verb ‘be’, the clause is labelled passive, and
the tense sequence is corrected accordingly.
Active clauses are then subtyped into true ac-

tive and middle voices. Middle clauses are active
clauses which have at least one complement.



4.11 Theme/Rheme
Theme and Rheme are textual roles. Theme refers
to the order of information in a clause. The
Theme/Rheme structure of a clause is often called
Topic/Comment in other theories of grammar. The
Theme is the departure point of information in a
clause. The Rheme is the information not encom-
passed by the Theme.
The first Adjunct, Complement, Subject or Pred-

icator that occurs is marked ‘Topical Theme’. Any
conjunctions that occur before it are marked ‘Tex-
tual Theme’, while any vocatives or finites that oc-
cur before it are marked ‘Interpersonal Theme’. All
other clause constituents are marked ‘Rheme’.

5 Accuracy
Accuracy was checked using 100 clauses that had
not been sampled while the script was being de-
veloped or debugged. Each clause was checked
for constituency accuracy to the group and phrase
rank — i.e., clause division and clause constituency
were checked. Each of the eleven function struc-
tures were also checked: clause class, status,
mood, tense, polarity, Subject, Finite, voice, Topi-
cal Theme, Textual Themes, Interpersonal Themes.
Two errors were found, both on the same clause.

The status selection of an indirect projected speech
clause was marked ‘free’ instead of ‘bound’. This
occurred because the projected clause was top-
icalised (i.e., it occurred before the projecting
clause), which is rare for indirect speech. To cor-
rect this, the script must consider the presence or
absence of quotation marks, which may be com-
plicated by the slightly inconsistent attachment of
punctuation in the Penn Treebank (Bies, 1995). Be-
cause the status of this clause was given as free,
the clause incorrectly met the entry condition for
the mood type system, causing the second error —
a mood type selection of ‘declarative’ instead of
‘none’.
In this somewhat small sample, 1198/1200

(99.83%) properties were correct, and 99% of
clauses were annotated without any errors. The
lack of plausible Adjunct subtyping may present
problems for the accurate determination of Topical
Theme in a more register varied sample, such as the
Brown corpus.
Adjuncts should be subtyped into Modal Ad-

juncts (such as ‘possibly’), Comment Adjuncts
(such as ‘unfortunately’), Conjunctive Adjuncts
(such as ‘however’) and Experiential Adjuncts (such
as ’quickly’). Only Experiential Adjuncts can be
Topical Theme; if another kind of Adjunct occurs
first it should be marked Interpersonal Theme (in

the case of Modal and Comment Adjuncts), or Tex-
tual Theme (in the case of Conjunctive Adjuncts).
The Wall Street Journal corpus, which was the

only section of the Penn Treebank available for this
research, contains very few Mood, Comment or
Conjunctive Adjuncts, so the extent of this problem
could not be properly measured.

6 Conclusion
This work is approximately ten years overdue, in the
sense that that is how long the resources required
to perform it have existed. The motivations for it
are even older: corpus linguistics has been a pil-
lar of systemic functional linguistic research since
it began, and raw text corpora are inadequate for
many of the questions systemic functional linguis-
tics asks (Honnibal, 2004). The first effort to con-
vert the Penn Treebank to another representation
was presented within months of the corpus’s com-
pletion (Wang et al., 1994). Since then, treebanks
have been converted to several grammatical theories
(cf. (Lin, 1998; Frank et al., 2003; Watkinson and
Manandhar, 2001)). It is unclear why SFG has been
left behind for so long.
A corpus of over two million words of SFG con-

stituency analysed text, annotated with the most im-
portant clause rank interpersonal and textual sys-
tems and functions, is now available. This is an
important resource for linguistic research, the devel-
opment of SFG parsers, and research into applying
systemic linguistics to language technology prob-
lems.
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Abstract
Selectional preferences are a source of linguistic infor-
mation commonly applied to the task ofWord Sense Dis-
ambiguation (WSD). To date, WSD systems using se-
lectional preferences as the main disambiguation mech-
anism have achieved limited success. One possible rea-
son for this limitation is the limited number of semantic
roles used in the construction of selectional preferences.
This study investigates whether better performance can
be achieved using the current state-of-art semantic role
labelling systems, and explores alternative ways of ap-
plying selectional preferences for WSD. In this study,
WordNet noun synonym sets and hypernym sets were
used in the construction of selectional preferences; Sem-
cor2.0 data was used for the training and evaluation of
a support vector machine classifier and a Naive Bayes
classifier.

1 Introduction
Word Sense Disambiguation (WSD) is the process
of examining word tokens in a given context and
specifying exactly which sense of each word is in-
tended in that context. It has many applications in
natural language processing related areas such as
document retrieval, question answering, and com-
positional sentence analysis (Jurafsky and Martin,
2000), to name a few.
WSD systems can be roughly divided into two

categories based on how the disambiguation infor-
mation is obtained and applied: knowledge based
and corpus based. Knowledge based systems in
general require certain existing linguistic informa-
tion repositories which provides all the information
that can be used by the disambiguation system to
distinguish different senses of the same polysemous
words based on the context. Examples of knowl-
edge based systems include dictionary based sys-
tems (Lesk, 1986) and selectional preference based
systems (Resnik, 1997).
Corpus based systems in general do not require

any linguistic information, instead, they require a
certain amount of training data (labelled or unla-

belled), and a set of predefi ned disambiguation fea-
tures which can be used by a statistical method to
train a classifi er which then is used in the disam-
biguation of previously unseen data. A corpus based
system is described in (Yarowsky, 1995).
Selectional preferences between predicating

words (verbs and adjectives) and their arguments
(nouns) are a type of linguistic information which
has previously been combined with statistical
methods to perform word sense disambiguation,
((Resnik, 1997) and (McCarthy and Carroll,
2003)). A selectional preference is a function
mapping semantic-role to noun type. The basic
assumption made by all selectional preference
based WSD systems is that the different senses of
the same predicating word would have different
selectional preferences with their arguments.
As will be discussed in section 2.2, selectional

preference based WSD systems developed so far
are limited in terms of coverage and accuracy. In
my opinion, the most important cause of this lim-
itation is these systems’ inability to extract a suffi -
cient number of semantic roles to be used in the con-
struction of selectional preferences. For example, if
a WSD system uses only the subject of the verbs
in the selectional preferences, then it cannot be ex-
pected to correctly identify the appropriate sense of
the verb “run” in “John ran a race” and “John ran a
restaurant”, since the distinguishing feature of these
two senses of “run” comes from the objects they
take.
Given the diffi culty of semantic role labelling, it

is not surprising that only a small set of semantic
roles have been used in the literature on selectional
preference based WSD. However, recent develop-
ments in semantic role labelling makes it possible to
extract a much richer set of semantic roles from un-
restricted text, thereby enabling more complex se-
lectional preferences to be constructed.
The main objective of this study is to investigate

whether the performance of selectional preference
based WSD can be improved by using the current
state-of-art semantic role labelling systems. This



paper is organised as follows: section 2 will give
a formal description of the research problem pre-
sented in this paper; section 3 will provide a review
of some related work; section 4 will discuss the sta-
tistical methods investigated in this study and how
they are combined with selectional preferences; the
results of this study will be presented in section 5;
and section 6 gives a conclusion of this study and
some avenues for further research.

2 Background
2.1 Selectional Preference
Selectional preferences (p) are verb-sense specifi c.
It is possible for a particular sense of a verb to
have more than one selectional preference. A se-
lectional preference of a verb-sense (s) refers to the
predicate-argument structure relationship between s
and its arguments. Formally, a selectional prefer-
ence is a function whose domain is the fi nite set of
semantic roles (r) and whose range is a fi nite set of
noun types (t):

p(ri) = tj

For example, the fi rst sense of the verb “eat”
(eat1: take in solid food) in WordNet (Miller, 1995)
would have a selectional preference that requires the
subject of the verb to be nouns of the animate type
and the object of the verb to be nouns of the food
type; whereas the fourth sense of “eat” (eat4: use up
(resources or materials)) would have a selectional
preference which allows the subject of the verb to
be of both animate type and inanimate type.
Since there does not exist a set of commonly ac-

cepted noun types, it is common for different selec-
tional preference basedWSD systems to invent their
noun types.
One can draw a parallel between verb selectional

preferences of natural language and function over-
loading of the programming language Java. In Java,
two or more functions can be declared with the same
name, each of these functions will have a different
argument list which the Java interpreter uses at run-
time to select (disambiguate) the correct function.
The argument list of Java functions is an ordered list
of Java object types. Similarly, one can treat the dif-
ferent senses of any verb as different functions shar-
ing the same name, and distinguish between them
based on which type of nouns are used in which se-
mantic role of the verb.

2.2 Related Work
Resnik (1997) describes a WSD system which uses
selectional preferences to train an entropy based
probabilistic model classifi er. Resnik defi nes the

prior distribution Prp(t) as the probability of the
noun-type t occurring in a particular selectional
preference p. From the prior distribution, Resnik
defi nes the selectional preference strength of a par-
ticular verb sense s with respect to a particular se-
lectional preference p over a fi nite set of noun types
T as:

Stp(s) = D(Prp(t|s)‖Prp(t))

=
∑

t∈T

Prp(t|s) log
Prp(t|s)

Prp(t)

From the above equation, it is obvious that the
selectional preference strength of a verb sense s de-
pends on how much mutual information the noun
types of its arguments share. In other words, verb
senses which take a small set of nouns as arguments
are easier to disambiguate.
With the selection preference strength, Resnik

further defi ned the selectional association value be-
tween a verb sense s and a noun-type t as:

Ap(t, s) =
1

Stp(s)
Prp(t|s) log

Prp(t|s)

Prp(t)

The disambiguation of a polysemous verb v using
Resnik’s system is therefore achieved in the follow-
ing way: Suppose the noun n is an argument to a
polysemous verb v; Let [s1, s2, ..., sn] be v’s senses;
let [ns1, ns2, ..., nsk] be n’s senses; and for each
nsj , letHj be the set of WordNet synsets which are
hypernyms of nsj; compute the following for each
si:

VA(si) = max
nsj∈Hj

Ap(si, nsj)

Then the verb sense(s) which maximise(s) the
function VA will be chosen as the most appropriate
sense(s) for v. Since Resnik’s system is trained and
evaluated on WordNet, he used a subset of WordNet
noun synsets as the noun-types of his selectional
preferences. Therefore, each nsi is a noun type.
I believe this method of choosing noun types

is a weakness of Resnik’s system. It is not clear
from his description whether this subset of noun
synsets were hand picked or computed from the
available data. If these synsets were hand picked
(which is the likely scenario), then the resulting sys-
tem could suffer from poor coverage because it was
highly unlikely that the hand picked set of noun
types were complete or compatible with the Word-
Net noun hypernym hierarchy. To illustrate this



problem, consider the verb-object relationship be-
tween drink1 (take in liquids and its objects: if
the noun-type beverage (beverage1) is chosen as
a noun type (as it was in Resnik’s paper), and the
sentences “John drank wine” and “Joe drank cof-
fee” are in the training data, since coffee1 and wine1
both have beverage as hypernym then the proba-
bility of Pr(beverage|drink1) is very likely to be
high. However, if in the testing data, the system
encounters the sentence “John drank some water”,
then because “water” does not have beverage as a
hypernym in WordNet, it would be unlikely for the
system to identify the correct sense of “drink”.
On the other hand, if the subset of noun types are

computed from the training data, then all the hyper-
nyms of the nouns in the training data would also
be taken into account in the estimation of Prp(t|s).
Furthermore, since the hypernym of a noun nwould
always describe a more general concept than n, then
it is natural that the noun types describing the most
general concepts would produce the highest value
for the estimation of Prp(t|s). However, the more
general the noun type is, the less distinguishing fea-
ture it would be able to provide, therefore such noun
types would not be effective for the WSD task.
Another weakness of Resnik’s system is that the

selectional preferences used in this system were
constructed with only a single semantic role, e.g.
the object of the verb or the subject of the verb.
Therefore, these selectional preferences could only
provide limited features useful for sense disam-
biguation.

3 Methodology
3.1 System Architecture
The system developed in this study takes semantic-
role-labelled sentences as inputs and trains a clas-
sifi er which can be used for the disambiguation of
verbs.
The system consists of two major components:

the selectional preference construction module and
the classifi er training and disambiguation module.
When the system is given a semantic-role-labelled
sentence, it fi rst constructs the selectional prefer-
ences from the labelled semantic roles and their
head nouns. These selectional preferences are then
passed to the statistical classifi er for the training
or the disambiguation of the verb. In this study,
two types of statistical classifi ers were investigated:
a Support Vector Machine (SVM) classifi er and a
Bayesian classifi er.
A state-of-the-art semantic role labelling system,

“ASSERT” (Pradhan et al., 2004), was used for the
task of semantic role labelling. The influence of the

ASSERT will be discussed in section 4. In the re-
mainder of this section, I will give details of the two
main modules of the WSD system.

3.2 Selectional Preference Construction
In this study, the WordNet noun hypernym hierar-
chy (NHH) is used to generate the noun-types used
to construct the selectional preferences. A noun
synset nsa is the hypernym of another noun synset
nsb if nsa denotes a more general concept than nsb.
A hypernym hierarchy for a noun synset ns is the
tree structure which includes all the direct and indi-
rect hypernyms of ns.
Each path from the most specifi c node in the

NHH to the most general node is treated as a sep-
arate noun-type. For example, the NHH of the fi rst
sense of “apple” (apple1: fruit with red or yellow
or green skin and sweet to tart crisp whitish flesh)
would generate the following noun-types:

t1: (entity1, substance1, solid1, food2, produce1,
edible fruit1, apple1)

t2: (entity1, object1, natural object1, plant part1,
plant organ1, reproductive structure1, fruit1,
edible fruit1, apple1)

t3: (entity1, object1, natural object1, plant part1,
plant organ1, reproductive structure1, fruit1,
pome1, apple1)

There are two advantages of using paths extracted
from WordNet NHH as the noun-types. First, it
eliminates the need for a set of hand generated
noun-types which is most likely to be not as com-
prehensive as WordNet. Second, since the noun-
types are set of noun synsets of varying degrees of
generality, it is possible to compute partial equality
between them, this partial equality will then be ap-
plicable to the comparison between selectional pref-
erences, thereby increasing the coverage and poten-
tially the accuracy of the system.
To illustrate how selectional preferences are

constructed from semantic-role-labelled sentences,
suppose we have the following sentence:

E1 [The monkey]arg0 [ate]target [an apple]arg1

The head nouns for arg0 and arg1 are “monkey”
and “apple” respectively. Since the system does
not know which senses of these words are being
used here, it will have to consider all senses of both
words. In WordNet, “monkey” and “apple” corre-
spond to the NHHs shown in fi gure 1.
Each path in the above NHHs is a noun-type.

As we can see, there are 3 potential noun-types for
“monkey” (arg0), and 4 potential noun-types for



monkey_1

primate_2

placental_1

mammal_1

vertebrate_1

chordate_1

animal_1

organism_1

living_thing_1

object_1

entity_1

monkey_2

child_1

juvenile_1

person_1

organism_1

living_thing_1

object_1

entity_1

causal_agent_1

entity_1

apple_1

edible_fruit_1

produce_1

food_2

solid_1

substance_1

entity_1

fruit_1

reproductive_structure_1

plant_organ_1

plant_part_1

natural_object_1

object_1

entity_1

pome_1

fruit_1

reproductive_structure_1

plant_organ_1

plant_part_1

natural_object_1

object_1

entity_1

apple_2

apple_tree_1

fruit_tree_1

angiospermous_tree_1

tree_1

woody_plant_1

vascular_plant_1

plant_2

organism_1

living_thing_1

object_1

entity_1

Figure 1: Example NHHs

“apple” (arg1). Therefore, the sentence E1 gives
rise to 12 potential selectional preferences.

3.3 Training of the SVM Classifier
The SVM classifi er is the fi rst of the two clas-
sifi ers investigated in this study. Since most
verbs have more than two senses, the SVM clas-
sifi er was trained to be multi-class, and each
sense was treated as an independent class. Two
types of multi-class classifi cation were experi-
mented: One-class-Against-the-Rest-of-the-classes
and One-class-Against-One-other-class.
The attributes used in the classifi cation are com-

binations of semantic role and WordNet noun
synset. Recall that a selectional preference is a func-
tion mapping semantic roles to noun types; and each
noun-type is a set of WordNet noun synsets. Each
noun synset will be combined with its respective se-
mantic role to form a feature. Therefore, if the total
number of semantic roles isNr and the total number
of WordNet noun synsets isNns, the total number of
dimensions or features is thenNf = Nr×Nns. Dur-
ing the training and the classifi cation, all the selec-
tional preferences generated for the same instance
of a verb are used to create a single feature vector.
If a synset nsi appears in the noun-type for a partic-
ular semantic role rj , then the feature corresponding
to the (rj , nsi) tuple will have the value of 1.0, oth-

erwise this feature will have the value of 0.0. Fur-
thermore, all the selectional preference generated
are always stored in the same feature vector. The
total number of features may seem excessive, how-
ever, since the training data is unlikely to contain all
the relevant selectional preferences, it is therefore
necessary to include all the possible features during
training and classifi cation.
Two types of SVM kernels were experimented

with in this study, linear and degree 2 polynomial.

3.4 Training of the Probabilistic Classifier
Since theoretically it is possible for a verb to take a
large number of nouns for any of its semantic roles,
the training of the probabilistic classifi er would suf-
fer from the data sparseness problem if no prepro-
cessing is performed on the training data.
The preprocessing performed in this study is

based on the theory of argument fusion (Jackendoff,
1990). Its main purpose is to extract common fea-
tures from the noun types and give them appropriate
mass in the probabilistic distribution. For example,
suppose the training data consists of the following
sentences for eat1 (take in solid food).

S1 [The monkey]arg0 [ate]target [an apple]arg1

S2 John’s dietitian allowed [him]arg0 to [eat]target

only [one slice of the cake3]arg1 at his birthday
party.

S1 would generate the following selectional pref-
erences:

S1 1 arg0 (entity1, object1, living thing1,
organism1, animal1, chordate1,
verebrate1, mammal1, placental1,
primate2, monkey1)

arg1 (entity1, object1, natural object1,
plant part1, plant organ1,
reproduction structure1, fruit1,
edible fruit1, apple1)

S1 2 arg0 (entity1, object1, living thing1,
organism1, animal1, chordate1,
verebrate1, mammal1, placental1,
primate2, monkey1)

arg1 (entity1, object1, natural object1,
plant part1, plant organ1,
reproduction structure1, fruit1,
pome1, apple1)

S1 3 arg0 (entity1, object1, living thing1,
organism1, animal1, chordate1,
verebrate1, mammal1, placental1,
primate2, monkey1)

arg1 (entity1, substance1, solid1,
food2, produce1, edible fruit1,
apple1)



S2 would generate the following selectional pref-
erences:

S2 1 arg0 (entity1, casual agent1, person1,
male2, man1, John)

arg1 (entity1, substance1, solid1, food2

baked goods1, cake3)

S2 2 arg0 (entity1, object1, living thing1,
organism1, person1, male2, man1,
John)

arg1 (entity1, substance1, solid1, food2

baked goods1, cake3)

It can be observed that some of these selectional
preferences have partial overlappings among the
noun-types of the same semantic roles. These over-
lappings capture what is in common between the ex-
amples from the training data. Intuitively, the over-
lappings are more suitable to be the selectional pref-
erences than the individual training examples. For
example, consider the selectional preferences gener-
ated by S1 and S2 for eat1, one of the overlappings
between them is:

S12 1 arg0 (entity1, object1, living thing1,
organism1)

arg1 (entity1, substance1, solid1, food2)

It is obvious that S12 1 captures almost exactly
what eat1’s selectional preference really should be,
namely that the subject of the verb has to be some
living organism and the object of the verb has to
be some kind of food. In the remainder of this pa-
per, selectional preferences constructed through the
process of argument fusion will be referred to as
fused selectional preferences, and selectional pref-
erences directly constructed from the training data
will be referred to as raw selectional preferences.
Since fused selectional preferences are more proto-
typical than the raw ones, it would make sense to
give them greater mass in the fi nal probability dis-
tribution.
Formally, the frequency of the selectional prefer-

ences are estimated in the following way:
Let rpi be a raw selectional preference, its fre-

quency (C(rpi)) is the number of times rpi appears
in the training examples.
Let fpj be a fused selectional preference, and let

[rp1, rp2, ..., rpk] be the set of raw selectional pref-
erences from which fpj was derived, then fpj’s fre-
quency is calculated as:

C(fpj) =
k

∑

i=1

C(rpi)

Similarly, the conditional frequency of the se-
lectional preference pi given the verb sense sj

(C(pi|sj)) is estimated as the number of times pi

co-occurs with sj .
The two frequency distributions are then used

to construct the corresponding probability distribu-
tions which are then smoothed to allow far unseen
data.
The classifi cation of previously unseen data is

not as simple as fi nding the verb sense si which
maximises the probability of Pr(si|pj). Firstly,
let P c be the set of candidate selectional prefer-
ences [pc

1, ...., p
c
n] extracted with respect to an am-

biguous verb v in a given context. Let P t be the
set of selectional preferences [pt

1, ...., p
t
m] from the

training data. Suppose the set of senses of v is
S = [s1, ..., sk], then the most suitable sense(s) of v
will be chosen in the following equation:

smax = argmax
si∈S,pc

j∈P c
(max(Pr(si|p

c
j))

From Bayes’ rule, Pr(si|pc
j) is calculated as fol-

lows:

Pr(si|p
c
j) =

Pr(pc
j|si)Pr(si)

Pr(pc
j)

However, since it is very likely that pc
j has not

previously been seen in the training data, Pr(si|pc
j)

is therefore estimated as follows:

Pr(si|p
c
j) = max

pt
k
∈P t

(Pr(si|p
t
k) · sim(pc

j , p
t
k))

The function sim(pa, pb) calculates the similar-
ity between two given selectional preferences. Let
dom(pa) and dom(pb) be the sets of semantic roles
applicable to pa and pb respectively. Recall that in
this study, a noun-type t is a set of WordNet noun
synsets, then the function sim works in the follow-
ing way:

sim(pa, pb) =
{

0 dom(pa) != dom(pb)
P

ri∈dom(pa)
cos(pa(ri), pb(ri)) otherwise

4 Results
The system developed in this study was evaluated
using the Semcor2.0 data and the Propbank data.
Two types of baseline performances were used in
the evaluation: the majority sense baseline (baseline
1) and the bag-of-synsets baseline (baseline 2).
The bag-of-synsets baseline works by fi rst col-

lecting the 10 nouns closest to and before the verb,



and the 10 nouns closest to and after the verb; then
extracting the synsets from their WordNet noun hy-
pernym hierarchy; and fi nally using these synsets as
features to training a support vector machine classi-
fi er. The purpose of this baseline is to see whether
the additional information provided by the semantic
roles can indeed improve the performance of WSD.
Because of the diverse natural of verb selectional

preferences and the different availabilities of the
verb specifi c training data, the evaluation of the two
classifi ers was performed in a verb-by-verb fashion.
The verbs selected for evaluation are: “bear”, “eat”,
“kick”, “look”, “run”, and “serve”. As shown in ta-
ble 1, these verbs are chosen because they represent
a variety of transitivities, semantic role combina-
tions, and different degrees of similarities between
the senses. The senses of these verbs are defi ned in
WordNet2.0.

Verb Intran.1 Trans.2 Compl.3 NSR 4

bear no yes no 11
eat yes yes no 2
kick yes yes no 9
look yes no yes 11
run yes yes no 28
serve no yes yes 9

Table 1: Semantic Properties of the verbs

The following classifi ers were trained and evalu-
ated:

C1 SVM classifier with a linear kernel

C2 SVM classifier with a degree 2 polynomial kernel

C3 Naive Bayes classifier using thematic role tag set

Table 2 shows the number of senses and the ma-
jority class baselines of the above verbs:

Verb Majority Baseline 1 No. of senses
bear 31.58% 9
eat 76.27% 3
kick 45% 3
look 56.9% 8
run 33.75% 26
serve 27.81% 11

Table 2: Majority class baseline

1Intransitive
2Transitive
3Require Prepositional Complement
4Number of applicable semantic roles according to Prop-

bank

Tables 3 to 5 show the results (Accuracy) of the
above classifi ers trained on 30%, 50%, and 80% of
the training data:

Verbs baseline 2 C1 C2 C3
bear 30.23 37.9 31.62 20.23
eat 75 61.5 64.5 70.25
kick 43.75 42.5 46.25 43.16
look 5.97 49.25 50.14 26.27
run 4.31 4.83 3.97 5.69
serve 12.5 36.5 38 16.58

Table 3: Classifi ers accuracy(%) when 30% data
was used in the training

Verbs baseline 2 C1 C2 C3
bear 6.67 41.33 37.33 20.33
eat 7.14 60.36 63.57 65.36
kick 18.18 54.54 50.9 45.45
look 57.63 50.69 52.5 34.79
run 1.19 5 9.52 6.91
serve 12.79 4.88 4.88 14.42

Table 4: Classifi ers accuracy(%) when 50% data
was used in the training

Verbs baseline 2 C1 C2 C3
bear 14.29 40.71 44.28 24.29
eat 8.33 58.33 63.33 63.33
kick 20 35 56 40
look 33.89 47.29 48.81 39.32
run 2.56 4.61 7.17 5.64
serve 7.89 8.95 7.89 13.16

Table 5: Classifi ers accuracy(%) when 80% data
was used in the training

The most signifi cant feature of the results is that
the three classifi ers all performed below the major-
ity class baseline. These poor results were caused
by a combination of the following factors: complex
sentence, poor semantic role labelling, inconsistent
data, too fi nely defi ned verb senses and inadequate
smoothing of the probability distributions.
The sentences used in the evaluation are gener-

ally longer than 20 words and contain embedded
clauses, metaphors and ellipses. For instance, one
of the examples for “eat” (eat1) is the sentence:
“The dialogue is sharp witty and candid typical
don’t eat the daisies material which has stamped the
author throughout her books and plays and it was
obvious that the Theatre-by-the-Sea audience liked
it”. In this sentence, there is no subject/AGENT
for “eat”. Another example for “eat” (eat3) is:



“No matter that it is his troops who rape Western
women and eat Western men”. In this sentence,
“eat” is clearly used in a metaphoric way therefore
should not be interpreted literally. These complex
sentences not only increase the amount of noise in
the data, but also make semantic role labelling diffi -
cult. According to my estimation, less than 30% of
the sentences were correctly tagged with semantic
roles.
Another problem with the semantic role labelling

is that it only labels noun phrases. The impact
of this problem is shown by the very poor re-
sult on the verb “serve” most of whose senses re-
quire either a propositional phrase or a verb phrase
as compliment. For example, the sentence “The
tree stump serves as a table” is annotated as “[The
tree stump]agent [serves]target as [a]proposition ta-
ble” which is clearly wrong.
The problem caused by the excessively fi ne-

grained senses is that these senses have very similar
(sometimes identical) selectional preferences which
cause inconsistency in the training data. Take eat
for example, the defi nitions of its fi rst and second
senses are: “take in solid food”, and “eat a meal;
take a meal” respectively. In the training data, in “
She was personally sloppy, and when she had colds
would blow her nose in the same handkerchief all
day and keep it soaking wet dangling from her waist
and when she gardened she would eat dinner with
dirt on her calves”, eat is labelled as having the
fi rst sense, but it is labelled as having the second
sense in “Charlie ate some supper in the kitchen
and went into the TV room to hear the news.”. This
type of inconsistency causes the classifi ers to some-
times behave almost randomly with respect to the
relevant senses.
The problem caused by the inadequate smooth-

ing of the probability distributions is more sub-
tle. Given a very frequent senses sa and a very
infrequent verb sense sb and a candidate selec-
tional preference pc

i , the conditional probabilities
of Pr(sa|pc

i) and Pr(sb|pc
i) depends on the values

of Pr(pc
i |sa) · Pr(sa) and Pr(pc

i |sb) · Pr(sb). It
is often the case that there are so many selectional
preferences applicable to sa that

Pr(pc
i |sa)

Pr(pc
i |sb)

< Pr(sb)
Pr(sa) ,

thereby making the Bayes classifi er assign sb to in-
stances of sa. Currently, the Lidstone probability
distribution with γ of 0.0001 is used by the Bayes
classifi er; further study is required to select a more
suitable probability distribution.
Another interesting feature of the results is that

the differences of the accuracy is relatively small
with respect to the different amounts of data used
in training. This feature is expected because one

of the assumptions made by selectional preference
based WSD is that each semantic role of any verb
sense should be fi lled by nouns of similar type, in
other words, nouns that have something in common.
Therefore even though the amount of training data
is different, the common features between the nouns
of the same semantic role can still be captured and
used for disambiguation.
Finally, the results also show that verbs with

higher order of transitivity are easier to disam-
biguate. This is also not surprising because higher
transitivity means more semantic roles which in turn
provides more disambiguating features.

5 Conclusion and Future work
This paper has presented a study of whether the
performance of selectional preference based WSD
could be improved by using the current state-of-art
semantic role labelling system. Although very little
performance improvement was able to be achieved
by the systems developed in this study, a few useful
observations could be made.
First, selectional preference based WSD systems

do not require a large amount of training data, as
demonstrated by the previous section. Therefore,
they may be more useful or more effective than cor-
pus based WSD systems when the amount of train-
ing data is very limited or to act as a bootstrapping
mechanism.
Second, to a very large degree, the performance

of a selectional preference based WSD system de-
pends on how fi nely the different senses of a verb
are defi ned and the total number of semantic roles
associated with the senses. As demonstrated by the
“eat” example, the fi ner the senses are defi ned, the
less effective selectional preference will be.
Third, the performance of selectional preference

based WSD systems is heavily influenced by the
quality of the semantic role identifi cation. More
importantly, it is not suffi cient to only use seman-
tic roles which can only be fi lled by noun phrases,
as “serve” illustrated in the previous section; prepo-
sitions and verbal complements are also likely to
be useful to selectional preference based WSD sys-
tems.
The results of this study also merit several further

research topics. First, the focus of this research was
on the disambiguation of verbs. However, the re-
sults of the disambiguation also contains the sense
information of the nouns which are the arguments to
the disambiguated verbs. Therefore, the next step of
the current research is to assess how well the system
developed in this work would perform on the nouns.
A further extension to the current WSD system



would be to incorporate extra information such as
the prepositions and other open class words in the
disambiguation. This extension may require a hy-
brid WSD system incorporating selectional prefer-
ence based mechanisms and corpus based mecha-
nisms.
Finally, as it was observed that the performance

of a selectional preference based WSD system was
heavily influenced by the quality of semantic role
labelling; it might also be possible to use selec-
tional preference as a crude measure of the perfor-
mances of semantic role labelling systems on unla-
belled data. This is because it is likely for a par-
ticular semantic role to be fi lled by nouns of simi-
lar types, therefore nouns correctly labelled for the
same semantic role should exhibit a greater similar-
ity than if incorrectly labelled.
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Abstract 
A verb particle construction (VPC) 
classification scheme gleaned from 
linguistic sources has been used to assess 
its usefulness for identifying issues in 
decomposability.  Linguistic sources have 
also been used to inform the features 
suitable for use in building an automatic 
classifier for the scheme with a series of 
good performance results. The notions of 
how to define the task of computing 
phrasal verbs are discussed and new 
proposals are presented. 

 
1 Introduction 

 
Our area of research focuses on verb-particle 
constructions (VPCs), a sub-section of multi-word 
expressions (MWEs). MWEs are a generic term 
for the group of expressions that include idioms 
(e.g. over the moon), lexically fixed expressions 
(e.g. ad hoc), light verb constructions (e.g. make a 
mistake), institutionalised phrases (e.g. kindle 
excitement), and verb-particle constructions (e.g. 
run away). All these expressions have in common 
the occurrence of words adjacent to each other that 
would be more frequent than if they were simply 
random words put together. Hence the words 
which constitute them have some particular 
meaning together that they would not have apart. 
 VPCs consist of a simplex (single-word) 
verb, and a particle, whether preposition or adverb. 
A particular subset of interest are “phrasal” verbs 
which are considered to be non-decomposable 
structures where the meaning is in the whole and 
not the parts of the phrase (Dixon, 1978).  
 Previous research into the area of MWEs, 
shows a number of places in which there has been 
a lack of research. The area which is of interest to 
us is the approach of bringing reliable resources 
and specific encodeable linguistic knowledge for 
use in feature selection in supervised learning 
tasks of categorisation and WSD. 

 
 

2 Previous Research 
 
There has been only limited research done in the 
field of MWEs in computational linguistics, 
mostly focusing on VPCs; although much research 
(Abeillé, 1988, 1995; Barkema, 1994; Wehrli, 
1998) has been done on such MWEs as idioms 
(Abeillé, 1995; Barkema, 1994; Wehrli, 1998) and 
light verbs (Abeillé, 1988) within the traditional 
linguistics field. MWEs are very idiosyncratic 
constructs making progress in their computation 
difficult. They have been called “a serious 
problem for many areas of language technology” 
(Copestake, Lambeau, Villavicencio, Bond, 
Baldwin, Sag, Flickinger, 2002) “unpredictable” 
(Baldwin & Villavicencio, 2002) and “a pain in 
the neck”  (Sag, Baldwin, Bond, Copestake and 
Flickinger. 2002), and thus many applications of 
computational linguistics such as machine 
translation put multiword expressions in the “too-
hard” basket. However, the use of MWEs in 
natural language is widespread, and thus comes 
about the need for what has been called “a robust, 
structured handling [of MWEs]” (Baldwin & 
Villavicencio, 2002, Calzolari, Fillmore, Grishman, 
Ide, Lencu, MacLeod, and Zampolli. 2002).  
 Much of the previous work on VPCs has 
revolved around tasks besides WSD, focused on 
the extraction of multiple word constructs from 
corpora (Abeillé,1988, Baldwin & Villavicencio, 
2002, Maynard & Ananiadou, 1999.) which we 
will discuss in some detail below, or what is 
termed the “decomposability” or 
“compositionality” of VPCs.  
 
 

2.1 Extraction of MWEs from Corpora 
 
One of the important components of research in 
MWEs is their automatic extraction from some 
corpora. The best results for precision and recall 
on this task is clearly the work of Baldwin and 
Villavicencio (2002), who used a combination of 
part-of-speech (POS)-based extraction (using 
Brill’s POS tagger (Brill, 1995)), chunk-based  
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extraction, and chunk-grammar-based extraction, 
to extract VPCs from the Wall Street Journal 
section of the Penn Treebank. 
 They report precision of 0.889 and recall of 
0.903 (F 1 = 0.896) for this task. Although they 
cite some other research into a similar area, there 
had been very little research in this specific area of 
extracting VPCs automatically from corpora, 
although some studies without quantitative 
analysis had been done previously (Kaalep & 
Muischnek, 2002, Krenn & Evert, 2001), along 
with work on the extraction of other collocations 
other than MWEs (Abeillé, 1988, Basili, Pazienza 
and Velardi, 1993, Maynard and Ananiadou, 1999). 

 
Table 1. Summativity of VPCs; whether 
individual elements determine the meaning of the 
construction. 

 
2.2 Determining the Decomposability of 

MWEs 
 

 As the semantics of most MWEs are more 
difficult to ascertain than the semantics of simplex 
words (even taking into account the problem of 
disambiguating between different senses of a 
simplex word), there has been some research done 
into what is termed the “compositionality” or 
“decomposability” of VPCs. In Bannard, Baldwin 
& Lascarides (2003) some examples are given of 
VPCs which illustrate one way of describing 
“summativity” (See table 1). In these examples, 1) 
“put up”, is entirely composed of its constituent 
parts, as at the end of the action, the painting is 
both “put” somewhere, and is now “up”. In 2) 
“finished up”, the paper is “finished”, but nothing 
is “up”, in 3) “made away”, the thief is “away”, 
but nothing is “made”, and in 4) nothing is either 
“made” or “out”. 
 Lin (1999) discusses the principle of 
decomposability with regards to constructs other 
than VPCs, (e.g. “red tape”), and conducted an 
experiment whereby individual words in the 
collocation are replaced by words with similar 
meanings taken from a thesaurus.  

 This word-substitution technique is 
transferred to VPCs in Bannard (2002) where he 
suggests that a similar approach could be used to 
determine the “decomposability” of VPCs. He 
obtains disappointing results ranging from 
precision of 0.516 and recall of 0.739 (for the 
largest class) to precision of 0.286 and recall of 
0.083 (for the smallest class).  
 Bannard et al (2003) describe a statistical 
distribution modelling framework for determining 
whether specific VPCs are “decomposable”, and 
hence automatically infer their meaning.  
 They conducted an internet-based 
experiment whereby non-expert native English 
speakers were asked whether certain VPCs, in sets 
of 5 sentences for each exemplar VPC, entailed 
the meaning of the simplex verb and/or the 
meaning of the preposition. They used this as their 
gold standard test data to evaluate their results. 
This contrasts with the approach taken by Lin 
(1999), in that their evaluation is based on a more 
intuitive level, although this could in fact lead to 
their results becoming affected by subjective 
judgments. They then encapsulated the problem as 
a classification task, to classify VPCs into classes 
depending on whether or not they were composed 
of their individual elements. They achieved results 
that improved on a baseline of classifying 
everything as the most common class, with results 
ranging from 0.735 for precision and 0.892 for 
recall (F 1= 0.810) to 0.303 for precision and 
0.769 for recall (F 1=0.435) by using their 
distribution modelling approach. 
 
 
2.3 Word Sense Disambiguation (WSD) 
 
There has been much general research done in the 
field of WSD (Krovetz & Croft, 1989, Maynard & 
Ananiadou, 1998, Yarowsky, 1992, 1995, for 
example), although very little relating specifically 
to disambiguating MWEs. O’Hara and Wiebe, 
2003 do perhaps what is the most relevant research, 
on the task of disambiguating prepositions as 
having a locative, temporal or other meaning. 
They report average accuracy of 0.703, although 
they don’t provide precision and recall scores, so it 
is difficult to ascertain the particular shortcomings 
of the system, and where improvements could be 
made. However, we can make the conjecture that 
had they determined the compositionality of the 
VPC to which the prepositional particle belongs, 
their reported accuracy would be higher. 
 
 
 
 

VPC Example 
Verb  

Contributes 
 to Meaning 

Particle  
Contributes 
 to Meaning 

1. Peter put the picture up Yes Yes 
2. Susan finished up her  
paper Yes No 

3. The thief made away          
with the cash No Yes 

4. Barbara and Simon  
made out No No 
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3 Method 
 

Our research goal is to create a system that can 
accurately disambiguate between the different 
semantics of different instances of VPCs. It is 
interesting to note that the task of disambiguating 
VPCs has not been undertaken by other 
researchers working on MWEs possibly for a 
number of reasons. 
 Firstly, there is no readily available corpus 
that has VPCs tagged for semantic differences. 
Hence, a major part of the work described is to 
collect a suitable subset of a given corpus – in this 
case, we use the British National Corpus (BNC) – 
and manually tag target VPCs as having certain 
semantic features. 
 Another reason why semantic 
disambiguation has not been undertaken to such a 
fine degree for VPCs is that there is, in fact, no 
comprehensive electronic resource which contains 
different senses of a given verb-particle 
construction, although there are large, readily 
available resources for different simplex verbs (the 
most obvious being WordNet (G. Miller, Beckwith, 
Fellcaum, Gross, and K. Miller. 1990). 
 Hence, the main difference between the 
research being undertaken in this project and that 
which has been done previously is the exploitation 
of a lexical database of phrasal verbs (constructed 
from Meyer, 1975). This will be used to increase 
the accuracy of our task on VPCs, and provide us 
with a compendium of “valid” verb-particle 
constructions. Also, whilst most semantic 
identification tasks relate to simplex words, there 
has been little research on disambiguation of 
MWEs. Disambiguation in this sense is most 
applicable to VPCs, as most other idiomatic 
MWEs have a single, fixed (if still metaphorical) 
meaning. For example, the idiom “kick the 
bucket”, once it has been identified as a MWE has 
only the sense of “dying”. Although the phrase 
itself could also have a literal sense of kicking, 
once it has been extracted and identified as an 
idiom, only this idiomatic, metaphoric sense 
applies. It is a similar situation with other idioms. 
 However, with VPCs, there are many 
examples that have different senses. For example 
the phrasal verb “to check out” has the sense of 
leaving a hotel, and the sense of checking 
something to make sure it is correct. Other 
examples of VPCs with multiple senses are “pick 
up” (understand/comprehend, retrieve from the 
ground, hook up with someone of the opposite 
sex), “look out” (look out of a window, watch out 
for) and “set up” (put into position, furnish with 
money/resources, establish, etc…). 

 

4 Motivation 
 
Unlike the current trend in other works that focus 
on recognition of VPCs from thesaural expansion 
of context whether automatically (Lin, 1999, 
Bannard et al, 2003, McCarthy et al, 2003) or 
using WordNet (Bannard et al 2003) and the 
establishment of gold standards by survey 
(Bannard et al, 2003, McCarthy et al, 2003) we 
prefer a principled method using the 
understandings developed by linguistic studies. 
The identification of (virtually) all candidate VPCs 
have been captured in 3 Phrasal Verb dictionaries 
(Collins, Oxford, and Meyer) so as a resource to 
determine the definitions of VPCs we use the 
dictionary of Meyer (1975).  As well as the 
dictionaries, a variety of linguistic studies provide 
an extensive analysis of the features of VPCs. Our 
procedure is to use the dictionaries to guide the 
compilation of our gold standard and the studies to 
guide feature selection for automated classification 
to both establish the parameterisation of a 
generative model for recognising VPCs and to 
identify the strengths of the various features 
established by linguists.  
 The most comprehensive analysis of this 
problem has been completed by Dixon, (1982) and 
we use his classification scheme to guide the 
development of our own classification scheme and 
much feature selection has been gleaned from his 
work. For the definition of verbs we use the new 
Shorter Oxford English Dictionary (1993) and for 
particle description Lindstromberg, (1998). Dixon 
produced a 5 class classification scheme:  

 
A. Literal usage of all  VPC components, e.g. 

John walked on the grass, 
B. Like A but with missing arguments that are 

reasonably inferable e.g. He ran down (the 
bank) to the railway line,  

C. Obvious metaphorical extensions form 
literal phrases e.g. the firm went under,   

D. non-literal constructions that cannot 
obviously be related to the literal form e.g. 
They are going to have it out;  

E. Full idioms, e.g. turn over a new leaf. 
 

 This scheme is more extensive than that 
used in any computational study we have found, 
most of which attempt to resolve the 
compositional/non-compositional dichotomy of a 
VPC or at best provide a graded scale. Whilst the 
Dixon scheme is more detailed than other schemes 
we are not entirely satisfied with it. In our own 
studies we have come to recognise that there is a 
dimension of diversity in VPCs not captured by it. 
Some VPCs have become so established that they  
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have a metaphorical sense derived from the 
original components and are found in the 
dictionaries catalogues as such, have it off, kick off. 
However they, like fully compositional VPCs, are 
used in both literal and metaphorical contexts 
based on the literality of the phrasal arguments, 
leading to the perception that compositionality is a 
continuum. In the case of kick off, our own 
experience is that even with literal arguments it 
feels metaphorical, e.g. The game kicks off at 7pm.  
 We believe that individual assessment of the 
literality of the arguments will establish a more 
reliable predictor of metaphoricity and thereby 
compositionality. For example, the Government is 
driving down the road of disaster has one more 
metaphorical argument than, the man is driving 
down the road of disaster. Furthermore, the 
relationship between the VPC and the head of the 
object is literal, and the metaphorical meaning is 
only created by the head modifier. Due to the 
manual effort in calibrating a corpus with this 
level of detail we have not incorporated such an 
analysis here, but we foreshadow it as future work. 
 A further deficit in this scheme is that it 
doesn’t permit the distinction between full literal 
usage (class A) and literal usage of the compound 
where the particle is non-contributing (do you 
think he will end up getting married) or may even 
be removed (are the computers linked/hooked (up) 
to the network). 
 Further complications arise from features 
that can exist as one value at the sense level in the 
way you might define it in a dictionary but the 
context of usage changes those values, e.g. blow 
off. 
 Thus, we use the principles behind Dixon’s 
classifications, along with our analysis of the 
problem to create a new 3-class classification  

scheme, which reflects more closely the real-life 
problem of identifying phrasal verbs. 
 The description of our NDI classification 
scheme appears in Table 2. 
 
 
5 Determining Gold-standards 
 
The work of Bannard et al (2003) determined a 
gold standard by randomly collecting 5 examples 
of a given VPC and as a collection asking non-
experts to classify the components as 
compositional/non-compositional. We prefer an 
alternative approach where each individual sample 
sentence is assessed for all classifications of 
interest. Our work in this study has shown a 
significant diversity in random sampling so that 
we don’t believe it can lead to a consistent result. 
This random sampling leads to imprecision in the 
classification task, due to a failure to create a 
homogenous data set. Indeed the poor inter-rater 
reliability in their study is testimony to this 
problem. Rather we have categorised each sample 
sentence extracted from the BNC.  
 We perceive that the notion of sense for 
VPCs appears at three major levels without 
restricting granularity within those levels. The first 
level is the compositional sense brought together 
by the union of the components, the second is the 
intrinsic sense that is more (or not) than the sum of 
the parts and conventionally recorded in a phrasal 
dictionary, and the third is the contextual sense 
that varies either of the other two senses in 
language usage. Hence automatic WSD will only 
be achieved by identifying each of these types of 
meaning making through fixed resources like 
dictionaries, manual analysis of the idiosyncratic 
usage in real language examples, that is corpus 
tagging, and the machine learning methods  

Class Description Example(s) 
N – Non-decomposable 
VPCs (Phrasal Verbs) 

Verb-preposition pairs which are 
semantically related, and whose 
meaning is somewhat or wholly 
idiomatic. 

“Leeds United 
carried off a 
massive 
victory.” 
“John and Julie 
made out.” 

D – Decomposable VPCs Verb-preposition pairs which are 
semantically related, but whose 
meaning is literal, or where the 
preposition is redundant. 

“The bee carried 
the pollen off to 
another flower” 

I – Independent verb-
preposition pairs 

Verb-preposition pairs which 
have no semantic relationship. 

“The cables 
carry around 
1,000 volts” 

Table 2. Description of NDI classification scheme. 
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appropriately parameterised for all variables of a 
linguistically motivated model. The current work 
is a beginning on the larger task of WSD for VPCs. 

 
6 Data Selection 

 
The data selection process consisted of firstly 
constructing a lexical database of Meyer’s phrasal 
verb dictionary (1975) (denoted PV-Lex-Meyer) 
(Only entries A-O have been completed). The text 
was scanned and OCRed and then converted from 
a Word file into an XML database using the Ferret 
software (Patrick, Palko, Munro, Zappavigna, 
2003).  All VPCs in the database were extracted 
and all matching examples in the BNC retrieved 
on the criteria the verb and the particle had no 
intervening verb. This yielded over 600,000 
sample sentences. To cut down the examples used, 
we sampled those VPCs which had medium 
density in the corpus; those verb-particle pairs 
which occurred in more than 10, but less than 40 
sentences. There were approximately 70 such 
verb-particle pairs, giving us a reduced corpus of 
approximately 6000 sentences. 
 We used this reduced corpus as the basis for 
our initial classification task over the 3 possible 
tags for particles which occur in the BNC's 
CLAWS tag set, AV0 (adverb), AVP (adverbial 
preposition), PRP(general preposition). Our results 
for this experiment are shown in Table 3. 

 

 
Table 3. Precison, Recall and F scores for 
estimating POS tags of particles. 

 
 The features used in this preliminary 
experiment were the POS tags of the words on 
either side of the verb and particle, the distance 
between the verb and particle, the particle’s value. 
This experiment provided the separation of the 
data into the Clean and Noisy data sets, where 
Clean is correctly classified and Noisy is 
incorrectly classified. 
 Once we had achieved our best accuracy, we 
had a list of approximately 400 sentences which 
were not correctly identified by our classifier. We 
then manually tagged these 400 sentences using 
our VPC classification schemes. 
 This set provided examples of VPCs used in 
an atypical fashion. We use this set in our 
classification task, as the value of linguistic 
analysis is not tested by an entirely compliant data  

set. So although this sample is not representative 
of general usage, if gives a better measure of the 
performance of the linguistic features.  
 To complement these 400 sentences, and 
give us a rich problem to solve we sampled across 
the 5600 correctly classified sentences, to extract 
another 400. Our goal was to extract a sample of 
sentences which were representative of the trends 
in preposition usage (i.e. the POS tag of the 
particle), while still maintaining as wide a 
spectrum of verb-particle pairs as possible. 
 Of the extracted sentences, around 80% 
had particles labelled as adverbial particles, 10% 
as general adverbs and 10% as general 
prepositions. Thus, to maintain this distribution, 
we extracted 320 sentences which contained 
adverbial particles, 40 with general adverbs, and 
40 sentences with general prepositions. 
 The representation of different VPCs 
according to CLAWS tags are: AV0-28, AVP-64, 
PRP-65. We thus targeted extraction numbers of 5 
sentences for each VPC with an AVP tag, 2 
sentences for each with an AV0 tag, and 1 
sentence with a PRP tag. Given that some verbs 
occurred in less than the targeted number of 
sentences, we actually extracted a total of 423 
example sentences. 
 We then manually tagged these 423 
examples using our VPC schemes which was 
reduced to 376 when unusable sentences were 
deleted (principally for incorrect pre-processing, 
and in a few cases for being unintelligible). This 
set of approximately 800 examples was then used 
for our classification tasks. Our aim was to have a 
representative sample of the corpus, while 
maximising those examples where the 
classification was less obvious, and the number of 
different VPCs. Thus we included those examples 
where the use of the particle was more difficult to 
classify. 
 

7 Results 
 
The compositionality experiments are based on the 
NDI classification scheme, decomposable (D) 
(~44%), non-decomposable (N) (~36%) and 
Independent (I) (~19%), as this recognises the 
processing situation of identifying phrasal verbs in 
real text, rather than the somewhat artificial task of 
just discriminating between summative and non-
summative constructs. The D class is the largest 
class and so sets the baseline as P=0.472, R=1, 
F=0.641 on the Noisy data set, P=0.412, R=1, 
F=0.584 on the Clean data set and P=0.442, R=1, 
F=0.613 on the Combined. Based on our initial 
linguistic analysis of the problem, we looked for a 
number of features within the target sentence. In  

Class Precision Recall F-Score 
AV0 0.975 0.963 0.969 
AVP 0.984 0.996 0.990 
PRP 0.911 0.767 0.833 
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the first experiment (Table 4), the features 
included the particle being used, the distance 
between the verb and the particle in the VPC, the 
number of words this sentence has in common 
with example sentences extracted from our 
resource for this VP pair, whether this particle was 
part of one of the compound particles extracted 
during the manual annotation of the corpus, 
whether this VP pair has more senses in which it is 
transitive or intransitive (or neither, if there are an 
equal number of transitive and intransitive senses) 
also extracted from PV-Lex-Meyer, and the Dixon 
sub-categorisation frame.  
 In experiment 2 (Table 4) we constructed a 
more fine-grained scale for the transitivity 
measure, distinguishing between those PVs which 
only have transitive or intransitive senses, and 
those which have more transitive than intransitive 
senses. 

 
Exp 1 - Noisy Exp 2 - Noisy  
P R F P R F 

N 0.500 0.534 0.516 0.523 0.585 0.552 
D 0.579 0.565 0.572 0.612 0.554 0.581 
I 0.420 0.420 0.433 0.507 0.522 0.514 

Exp 1 - Clean Exp 2 - Clean  
P P P P R F 

N 0.502 0.502 0.502 0.513 0.649 0.573 
D 0.461 0.461 0.461 0.485 0.406 0.442 
I 0.550 0.550 0.550 0.508 0.411 0.455 

Exp 1 - Combined Exp 2 - Combined  
P R F P R F 

N 0.459 0.609 0.523 0.502 0.605 0.549 
D 0.506 0.390 0.441 0.545 0.452 0.494 
I 0.550 0.452 0.561 0.556 0.556 0.556 

 
Table 4. Performance statistics for 
experiments 1 and  2. 

 
 In Experiment 3a the length of the verb was 
used as a feature, given that, as Dixon says, 
“phrasal verbs are almost exclusively based on 
monosyllabic verbs of Germanic origin”. 
 We considered that this length would give 
us a reasonable estimate of the number of syllables. 
This result looked encouraging, so we manually 
annotated each of the verbs in our resource for the 
number of syllables in the word. 
 In experiment 3b we used this number 
instead of the verb length. This showed an 
increase in two of the classes, but a decrease in the 
largest class. We hence included both these 
features in experiment 3c (see Table 5).  
 Some further analysis of the linguistics of 
these constructs led to the creation of a measure of 
the differences of the arguments of the verb.  

To do this, in experiment 4a we identified the POS 
tag of the head of each of the noun phrases 
surrounding the preposition. In experiment 4b we 
then generalised this distinction, to being either a 
named entity, or a general noun, given that this 
distinction occurs within the CLAWS tag set. 
These features were added to the features from 
experiment 3c. The results are shown in Table 6. 
 Following on from the potential 
phonological interpretation of Dixon’s “Germanic 
origin” thesis, we also used the last three letters of 
the verb, each as an individual feature in 
experiment 5. However, we appreciate this is a 
primitive representation of the underlying 
linguistic model, and needs further maturity. See 
Table 7. 
 
8 Conclusions 
 
We have shown in the research a classification 
system built on encodeable linguistic knowledge 
can predict certain semantic information about a 
given instance of a VPC, to a level of accuracy 
comparable to that which has been achieved on the 
more coarse-grained approach of dealing with 
each verb-particle pair as a unit whose semantics 
remain the same in different contexts. 
 While VPCs in different contexts have 
vastly different semantic properties, we have also 
shown that it is possible to compute these 
semantics from features such as the syntactic 
structure of the VPC, and features of the 
arguments of the VPC. 
 Although the results are not presented here, 
there is evidence to suggest that if the distinction 
between these classes could be predicted reliably 
we could also get good results on predicting 
Dixon’s class assignment of a given instance of a 
phrasal verb. 
 Our approach has come from grounding in 
the linguistic features of VPCs, to determine what 
the key distinctions between VPCs with different 
semantics are. Whilst no direct comparison can be 
drawn between the work presented here and the 
previous studies done on the “decomposability” of 
VPCs, our results show more stable solutions on a 
more complex task, which is also closer to realistic 
language processing. 
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Experiment 4a - 
Noisy 

Experiment 4b - 
Noisy 

 

P R F P R F 
N 0.522 0.649 0.578 0.525 0.635 0.757 
D 0.549 0.503 0.525 0.511 0.432 0.469 
I 0.600 0.411 0.488 0.515 0.466 0.489 

Experiment 4a - 
Clean 

Experiment 4b – 
Clean 

 

P R F P R F 
N 0.586 0.576 0.581 0.578 0.627 0.602 
D 0.670 0.702 0.686 0.671 0.667 0.669 
I 0.540 0.493 0.515 0.533 0.464 0.496 

Experiment 4a - 
Combined 

Experiment 4b – 
Combined 

 

P R F P R F 
N 0.538 0.583 0.560 0.544 0.583 0.563 
D 0.566 0.554 0.560 0.564 0.560 0.562 
I 0.520 0.465 0.491 0.520 0.458 0.487 

 
 Table 6. Performance statistics for 
 experiments 4 a and b 

 
9 Future Work 

 
The work discussed here is a precursor to the rich, 
and perhaps more computationally difficult task of 
sense-disambiguation of VPCs. While we have 
gone some way to computing differences in the 
semantics of different VPCs, there is a far greater 
level of sophistication required before all the 
semantic properties of these anomalous constructs 
can be computed. 
 
 
 
 
 
 

 
 

Experiment 5 - Noisy  
P R F 

N 0.675 0.703 0.689 
D 0.715 0.762 0.738 
I 0.566 0.435 0.492 

Experiment 5 - Clean  
P R F 

N 0.618 0.689 0.652 
D 0.610 0.535 0.570 
I 0.480 0.493 0.486 

Experiment 5 - Combined  
P R F 

N 0.683 0.665 0.674 
D 0.647 0.619 0.633 
I 0.515 0.592 0.551 
Table 7. Performance statistics for 
experiment 5 

 
 There is also scope for an improvement of 

the results presented here, through a deeper 
linguistic analysis of the structure of these VPCs, 
in particular looking at the features of the 
arguments.  

 We have also identified other semantic 
properties of VPCs (such as the dichotomy of 
whether the verb and preposition are being used in 
a literal or metaphoric sense), which in the future, 
may also form an independent basis for 
computational classification tasks. Whether these 
tasks can be performed to any high level of 
accuracy is left as an open question. 

 
 
 
 
 
 

 

Experiment 3a Noisy Experiment 3a Clean Experiment 3a Combined 

Class Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score 
N 0.570 0.619 0.593 0.533 0.655 0.588 0.502 0.545 0.523 
D 0.627 0.619 0.623 0.537 0.465 0.498 0.533 0.520 0.527 
I 0.443 0.391 0.415 0.550 0.452 0.496 0.583 0.521 0.550 

Experiment 3b Noisy Experiment 3b Clean Experiment 3b Combined  
Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score 

N 0.536 0.627 0.578 0.548 0.689 0.611 0.522 0.624 0.568 
D 0.664 0.589 0.625 0.519 0.439 0.476 0.564 0.480 0.518 
I 0.544 0.536 0.540 0.525 0.425 0.470 0.565 0.549 0.557 

Experiment 3c Noisy Experiment 3c Clean Experiment 3c Combined  
Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score 

N 0.579 0.619 0.598 0.579 0.682 0.623 0.535 0.632 0.579 
D 0.667 0.655 0.661 0.576 0.523 0.549 0.579 0.511 0.543 
I 0.547 0.507 0.526 0.550 0.452 0.496 0.553 0.514 0.533 

Table 5. Performance statistics for experiments 3 a,b,c 
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