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Abstract

Word embeddings learnt from massive text
collections have demonstrated significant lev-
els of discriminative biases such as gender,
racial or ethnic biases, which in turn bias
the down-stream NLP applications that use
those word embeddings. Taking gender-bias
as a working example, we propose a debias-
ing method that preserves non-discriminative
gender-related information, while remov-
ing stereotypical discriminative gender biases
from pre-trained word embeddings. Specif-
ically, we consider four types of informa-
tion: feminine, masculine, gender-neutral and
stereotypical, which represent the relationship
between gender vs. bias, and propose a de-
biasing method that (a) preserves the gender-
related information in feminine and masculine
words, (b) preserves the neutrality in gender-
neutral words, and (c) removes the biases
from stereotypical words. Experimental re-
sults on several previously proposed bench-
mark datasets show that our proposed method
can debias pre-trained word embeddings bet-
ter than existing SoTA methods proposed for
debiasing word embeddings while preserving
gender-related but non-discriminative infor-
mation.

1 Introduction

Despite the impressive success stories behind
word representation learning (Devlin et al., 2018;
Peters et al., 2018; Pennington et al., 2014;
Mikolov et al., 2013c,a), further investigations
into the learnt representations have revealed sev-
eral worrying issues. The semantic representations
learnt, in particular from social media, have shown
to encode significant levels of racist, offensive and
discriminative language usage (Bolukbasi et al.,
2016; Zhao et al., 2018b; Elazar and Goldberg,
2018; Rudinger et al., 2018; Zhao et al., 2018a).
For example, Bolukbasi et al. (2016) showed that

word representations learnt from a large (300GB)
news corpus to amplify unfair gender biases. Mi-
crosoft’s AI chat bot Tay learnt abusive language
from Twitter within the first 24 hours of its release,
which forced Microsoft to shutdown the bot (The
Telegraph, 2016). Caliskan et al. (2017) con-
ducted an implicit association test (IAT) (Green-
wald et al., 1998) using the cosine similarity mea-
sured from word representations, and showed that
word representations computed from a large Web
crawl contain human-like biases with respect to
gender, profession and ethnicity.

Given the broad applications of pre-trained
word embeddings in various down-stream NLP
tasks such as machine translation (Zou et al.,
2013), sentiment analysis (Shi et al., 2018), dia-
logue generation (Zhang et al., 2018) etc., it is im-
portant to debias word embeddings before they are
applied in NLP systems that interact with and/or
make decisions that affect humans. We believe
that no human should be discriminated on the
basis of demographic attributes by an NLP sys-
tem, and there exist clear legal (European Union,
1997), business and ethical obligations to make
NLP systems unbiased (Holstein et al., 2018).

Despite the growing need for unbiased word
embeddings, debiasing pre-trained word embed-
dings is a challenging task that requires a fine
balance between removing information related to
discriminative biases, while retaining information
that is necessary for the target NLP task. For ex-
ample, profession-related nouns such as profes-
sor, doctor, programmer have shown to be stereo-
typically male-biased, whereas nurse, homemaker
to be stereotypically female-biased, and a debi-
asing method must remove such biases. On the
other hand, one would expect1, beard to be as-
sociated with male nouns and bikini to be associ-

1This indeed is the case for pre-trained GloVe embeddings
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ated with female nouns, and preserving such gen-
der biases would be useful, for example, for a
recommendation system (Garimella et al., 2017).
As detailed later in section 2, existing debiasing
methods can be seen as embedding word embed-
dings into a subspace that is approximately or-
thogonal to a gender subspace spanned by gender-
specific word embeddings. Although unsuper-
vised, weakly-supervised and adversarially trained
models have been used for learning such embed-
dings, they primarily focus on the male-female
gender direction and ignore the effect of words
that have a gender orientation but not necessarily
unfairly biased.

To perform an extensive treatment of the gen-
der debiasing problem, we split a given vocabu-
lary V into four mutually exclusive sets of word
categories: (a) words wf ∈ Vf that are female-
biased but non-discriminative, (b) words wm ∈
Vm that are male-biased but non-discriminative,
(c) words wn ∈ Vn that are gender-neutral, and
(d) words ws ∈ Vs that are stereotypical (i.e., un-
fairly2 gender-biased). Given a large set of pre-
trained word embeddings and small seed example
sets for each of those four categories, we learn
an embedding that (i) preserves the feminine in-
formation for the words in Vf , (ii) preserves the
masculine information for the words in Vm, (iii)
protects the neutrality of the gender-neutral words
in Vn, while (iv) removing the gender-related bi-
ases from stereotypical words in Vs. The embed-
ding is learnt using an encoder in a denoising au-
toencoder, while the decoder is trained to recon-
struct the original word embeddings from the de-
biased embeddings that do not contain unfair gen-
der biases. The overall model is trained end-to-end
to dynamically balance the competing criteria (i)-
(iv).

We evaluate the bias and accuracy of the word
embeddings debiased by the proposed method
on multiple benchmark datasets. On the Sem-
Bias (Zhao et al., 2018b) gender relational anal-
ogy dataset, our proposed method outperforms
previously proposed hard-debiasing (Bolukbasi
et al., 2016) and gender-neural Global Vectors
(GN-GloVe) (Zhao et al., 2018b) by correctly de-
biasing stereotypical analogies. Following prior
work, we evaluate the loss of information due
to debiasing on benchmark datasets for semantic

2We use the term unfair as used in fairness-aware ma-
chine learning.

similarity and word analogy. Experimental results
show that the proposed method can preserve the
semantics of the original word embeddings, while
removing gender biases. This shows that the debi-
ased word embeddings can be used as drop-in re-
placements for word embeddings used in NLP ap-
plications. Moreover, experimental results show
that our proposed method can also debias word
embeddings that are already debiased using pre-
viously proposed debiasing methods such as GN-
GloVe to filter out any remaining gender biases,
while preserving semantic information useful for
downstream NLP applications. This enables us to
use the proposed method in conjunction with ex-
isting debiasing methods.

2 Related Work

To reduce the gender stereotypes embedded in-
side pre-trained word representations, Bolukbasi
et al. (2016) proposed a post-processing approach
that projects gender-neutral words to a subspace,
which is orthogonal to the gender dimension de-
fined by a list of gender-definitional words. They
refer to words associated with gender (e.g., she,
actor) as gender-definitional words, and the re-
mainder gender-neutral. They proposed a hard-
debiasing method where the gender direction
is computed as the vector difference between
the embeddings of the corresponding gender-
definitional words, and a soft-debiasing method,
which balances the objective of preserving the
inner-products between the original word embed-
dings, while projecting the word embeddings into
a subspace orthogonal to the gender definitional
words. They use a seed set of gender-definitional
words to train a support vector machine classi-
fier, and use it to expand the initial set of gender-
definitional words. Both hard and soft debias-
ing methods ignore gender-definitional words dur-
ing the subsequent debiasing process, and focus
only on words that are not predicted as gender-
definitional by the classifier. Therefore, if the clas-
sifier erroneously predicts a stereotypical word as
a gender-definitional word, it would not get debi-
ased.

Zhao et al. (2018b) proposed Gender-Neutral
Global Vectors (GN-GloVe) by adding a constraint
to the Global Vectors (GloVe) (Pennington et al.,
2014) objective such that the gender-related infor-
mation is confined to a sub-vector. During opti-
misation, the squared `2 distance between gender-
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related sub-vectors are maximised, while simul-
taneously minimising the GloVe objective. GN-
GloVe learns gender-debiased word embeddings
from scratch from a given corpus, and cannot
be used to debias pre-trained word embeddings.
Moreover, similar to hard and soft debiasing meth-
ods described above, GN-GloVe uses pre-defined
lists of feminine, masculine and gender-neutral
words and does not debias words in these lists.

Debiasing can be seen as a problem of hiding
information related to a protected attribute such
as gender, for which adversarial learning meth-
ods (Xie et al., 2017; Elazar and Goldberg, 2018;
Li et al., 2018) have been proposed in the fairness-
aware machine learning community (Kamiran and
Calders, 2009). In these approaches, inputs are
first encoded, and then two classifiers are trained
– a target task predictor that uses the encoded in-
put to predict the target NLP task, and a protected-
attribute predictor that uses the encoded input to
predict the protected attribute. The two classifiers
and the encoder is learnt jointly such that the ac-
curacy of the target task predictor is maximised,
while minimising the accuracy of the protected-
attribute predictor. However, Elazar and Goldberg
(2018) showed that although it is possible to ob-
tain chance-level development-set accuracy for the
protected attribute during training, a post-hoc clas-
sifier, trained on the encoded inputs can still man-
age to reach substantially high accuracies for the
protected attributes. They conclude that adversar-
ial learning alone does not guarantee invariant rep-
resentations for the protected attributes.

Gender biases have been identified in several
tasks in NLP such as coreference (Rudinger et al.,
2018; Zhao et al., 2018a) resolution and machine
translation (Prates et al., 2018). For example,
rule-based, feature-based as well as neural coref-
erence resolution methods trained on biased re-
sources have shown to reflect those biases in their
predictions (Rudinger et al., 2018). Google Ma-
chine Translation, for example, provides male and
female versions of the translations3, when the gen-
der in the source language is ambiguous.

3 Gender-Preserving Debiasing

3.1 Formulation

Given a pre-trained set of d-dimensional word em-
beddings {wi}|V|i=1, over a vocabulary V , we con-

3https://bit.ly/2B0nVHZ

sider the problem of learning a map E : Rd → Rl

that projects the original pre-trained word embed-
dings to a debiased l-dimensional space. We do
not assume any knowledge about the word em-
bedding learning algorithm that was used to pro-
duce the pre-trained word embeddings given to
us. Moreover, we do not assume the availability
or access to the language resources such as cor-
pora or lexicons that might have been used by the
word embedding learning algorithm. Decoupling
the debiasing method from the word embedding
learning algorithm and resources increases the ap-
plicability of the proposed method, enabling us to
debias pre-trained word embeddings produced us-
ing different word embedding learning algorithms
and using different types of resources.

We propose a debiasing method that models the
interaction between the values of the protected at-
tribute (in the case of gender we consider male, fe-
male and neutral as possible attribute values), and
whether there is a stereotypical bias or not. Given
four sets of words: masculine (Vm), feminine (Vf ),
neutral (Vn) and stereotypical (Vs), our proposed
method learns a projection that satisfies the fol-
lowing four criteria:

(i) for wf ∈ Vf , we protect its feminine proper-
ties,

(ii) forwm ∈ Vm, we protect its masculine prop-
erties,

(iii) forwn ∈ Vn, we protect its gender neutrality,
and

(iv) for ws ∈ Vs, we remove its gender biases.

By definition the four word categories are mutu-
ally exclusive and the total vocabulary is expressed
by their disjunction V = Vm ∪ Vf ∪ Vn ∪ Vs.
A key feature of the proposed method that dis-
tinguishes it from prior work on debiasing word
embeddings is its ability to differentiate between
undesirable (stereotypical) biases from the desir-
able (expected) gender information in words. The
procedure we follow to compile the four word-
sets is described later in subsection 4.1, and the
words that belong to each of the four categories
are shown in the supplementary material.

To explain the proposed gender debiasing
method, let us first consider a feminine regressor
Cf : Rl → [0, 1], parameterised by θf , that pre-
dicts the degree of feminineness of the word w.
Here, highly feminine words are assigned values

https://bit.ly/2B0nVHZ
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close to 1. Likewise, let us consider a mascu-
line regressor Cm : Rl → [0, 1], parametrised
by θm, that predicts the degree of masculinity
of w. We then learn the debiasing function as
the encoder E : Rd → Rl of an autoencoder
(parametrised by θe), where the corresponding de-
coder (parametrised by θd) is given by D : Rl →
Rd.

For feminine and masculine words, we require
the encoded space to retain the gender-related in-
formation. The squared losses, Lf and Lm, given
respectively by (1) and (2), express the extent to
which this constraint is satisfied.

Lf =
∑

w∈Vf

||Cf (E(w))− 1||22 +
∑

w∈V\Vf

||Cf (E(w))||22

(1)

Lm =
∑

w∈Vm

||Cm(E(w))− 1||22 +
∑

w∈V\Vm

||Cf (E(w))||22

(2)

Here, for notational simplicity, we drop the depen-
dence on parameters.

For the stereotypical and gender-neutral words,
we require that they are embedded into a subspace
that is orthogonal to a gender directional vector,
vg, computed using a set, Ω, of feminine and mas-
culine word-pairs (wf , wm)(∈ Ω) as given by (3).

vg =
1

|Ω|
∑

(wf ,wm)∈Ω

(E(wm)− E(wf )) (3)

Prior work on gender debiasing (Bolukbasi et al.,
2016; Zhao et al., 2018b) showed that the vec-
tor difference between the embeddings for male-
female word-pairs such as he and she accurately
represents the gender direction. When training,
we keep vg fixed during an epoch, and re-estimate
vg between every epoch. We consider the squared
inner-product between vg and the debiased stereo-
typical or gender-neutral words as the loss, Lg, as
given by (4).

Lg =
∑

w∈Vn∪Vs

(vg
>w)

2
(4)

It is important that we preserve the semantic
information encoded in the word embeddings as
much as possible when we perform debiasing. If
too much information is removed from the word
embeddings, not limited to gender-biases, then
the debiased word embeddings might not be suf-
ficiently accurate to be used in downstream NLP

applications. For this purpose, we minimise the
reconstruction loss, Lr, for the autoencoder given
by (5).

Lr =
∑
w∈V
||D(E(w))−w||22 (5)

Finally, we define the total objective as the
linearly-weighted sum of the above-defined losses
as given by (6).

L = λfLf + λmLm + λgLg + λrLr (6)

Here, the coefficients λf , λm, λg, λr are nonneg-
ative hyper-parameters that add to 1. They deter-
mine the relative importance of the different con-
straints we consider and can be learnt using train-
ing data or determined via cross-validation over a
dedicated validation dataset. In our experiments,
we use the latter approach.

3.2 Implementation and Training

Cf and Cm are both implemented as feed for-
ward neural networks with one hidden layer and
the sigmoid function is used as the nonlinear ac-
tivation. Increasing the number of hidden layers
beyond one for Cf and Cm did not result in a sig-
nificant increase in accuracy. Both the encoder E
and the decoder D of the autoencoder are imple-
mented as feed forward neural networks with two
hidden layers. Hyperbolic tangent is used as the
activation function throughout the autoencoder.

The objective (6) is minimised w.r.t. the pa-
rameters θf , θm, θe and θd for a given pre-
trained set of word embeddings. During opti-
misation, we used dropout with probability 0.01
and use stochastic gradient descent with initial
learning rate set to 0.1. The hyper-parameters
λf , λm, λg, λr are estimated using a separate vali-
dation dataset as described later in subsection 4.1.

Note that it is possible to pre-train Cf and Cm

separately using Vf and Vm prior to training the
full objective (6). In our preliminary experiments,
we found that initialising θf and θm to the pre-
trained versions of Cf and Cm to be helpful for
the optimisation process, resulting in early con-
vergence to better solutions compared to start-
ing from random initialisations for θf and θm.
For pre-training Cf and Cm we used Adam op-
timiser (Kingma and Ba, 2015) with initial learn-
ing rate set to 0.0002 and a mini-batch size of 512.
Autoencoder is also pre-trained using a randomly
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selected 5000 word embeddings and dropout reg-
ularisation is applied with probability 0.05.

We note that Vf and Vm are separate word sets,
not necessarily having corresponding feminine-
masculine pairs as in Ω used in (4). It is of
course possible to re-use the words in Ω in Vf
and Vm, and we follow this approach in our ex-
periments, which helps to decrease the number of
seed words required to train the proposed method.
Moreover, the number of training examples across
the four categories Vf ,Vm,Vn,Vs were signifi-
cantly different, which resulted in an imbalanced
learning setting. We conduct one-sided undersam-
pling (Kubat and Matwin, 1997) to successfully
overcome this data imbalance issue. The code and
the debiased embeddings are publicly available4.

4 Experiments

4.1 Training and Development Data

We use the feminine and masculine word lists (223
words each) created by Zhao et al. (2018b) as Vf
and Vm, respectively. To create a gender-neutral
word list, Vn, we select gender-neutral words from
a list of 3000 most frequent words in English5.
Two annotators independently selected words and
subsequently verified for gender neutrality. The fi-
nal set of V contains 1031 gender-neutral words.
We use the stereotypical word list compiled by
Bolukbasi et al. (2016) as Vs, which contains 166
professions that are stereotypically associated with
one type of a gender. The four sets of words used
in the experiments are shown in the supplementary
material.

We train GloVe (Pennington et al., 2014) on
2017 January dump of English Wikipedia to ob-
tain pre-trained 300-dimensional word embed-
dings for 322636 unique words. In our experi-
ments, we set both d and l to 300 to create 300-
dimensional de-biased word embeddings. We ran-
domly selected 20 words from each of the 4 sets
Vf , Vm, Vn and Vs, and used them as a develop-
ment set for pre-training Cf and Cm and to es-
timate the hyperparameters in (6). The optimal
hyperparameter values estimated on this develop-
ment dataset are: λf = λm = λg = 0.0001, and
λr = 1.0. In our preliminary experiments we ob-
served that increasing λf , λm and λg relative to
λr results in higher reconstruction losses in the

4https://github.com/kanekomasahiro/gp_
debias

5https://bit.ly/2SvBINY

autoencoder. This shows that the ability to accu-
rately reconstruct the original word embeddings is
an important requirement during debiasing.

4.2 Baselines and Comparisons
We compare our proposed method against several
baselines.

GloVe: is the pre-trained GloVe embeddings de-
scribed in subsection 4.1. This baseline denotes a
non-debiased version of the word embeddings.

Hard-GloVe: We use the implementation6 of
hard-debiasing (Bolukbasi et al., 2016) method by
the original authors and produce a debiased ver-
sion of the pre-trained GloVe embeddings.7

GN-GloVe : We use debiased GN-GloVe em-
beddings released by the original authors8, with-
out retraining ourselves as a baseline.

AE (GloVe): We train an autoencoder by min-
imising the reconstruction loss defined in (5) and
encode the pre-trained GloVe embeddings to a
vector space with the same dimensionality. This
baseline can be seen as surrogated version of the
proposed method with λf = λm = λg = 0. AE
(GloVe) does not perform debiasing and shows the
amount of semantic information that can be pre-
served by autoencoding the input embeddings.

AE (GN-GloVe): Similar to AE (GloVe), this
method autoencodes the debiased word embed-
dings produced by GN-GloVe.

GP (GloVe): We apply the proposed gender-
preserving (GP) debiasing method on pre-trained
GloVe embeddings to debias it.

GP (GN-GloVe): To test whether we can use the
proposed method to further debias word embed-
dings that are already debiased using other meth-
ods, we apply it on GN-GloVe.

4.3 Evaluating Debiasing Performance
We use the SemBias dataset created by Zhao
et al. (2018b) to evaluate the level of gender bias
in word embeddings. Each instance in SemBias
consists of four word pairs: a gender-definition
word pair (Definition; e.g. “waiter - waitress”),

6https://github.com/tolga-b/debiaswe
7Bolukbasi et al. (2016) released debiased embeddings for

word2vec only and for comparison purposes with GN-GloVe,
we use GloVe as the pre-trained word embedding and apply
hard-debiasing on GloVe

8https://github.com/uclanlp/gn_glove

https://github.com/kanekomasahiro/gp_debias
https://github.com/kanekomasahiro/gp_debias
https://bit.ly/2SvBINY
https://github.com/tolga-b/debiaswe
https://github.com/uclanlp/gn_glove
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Embeddings
SemBias SemBias-subset

Definition ↑ Stereotype ↓ None ↓ Definition ↑ Stereotype ↓ None ↓

GloVe 80.2 10.9 8.9 57.5 20 22.5
Hard-Glove 84.1 9.5 6.4 25 47.5 27.5
GN-GloVe 97.7 1.4 0.9 75 15 10
AE (GloVe) 82.7 8.2 9.1 62.5† 17.5† 20
AE (GN-GloVe) 98.0†∗ 1.6†∗ 0.5†∗ 77.5 17.5† 5†∗

GP (GloVe) 84.3∗ 8.0 7.7∗ 65† 15† 20
GP (GN-GloVe) 98.4†∗ 1.1†∗ 0.5†∗ 82.5†∗ 12.5†∗ 5†∗

Table 1: Prediction accuracies for gender relational analogies. ∗ and † indicate statistically significant differences
against respectively GloVe and Hard-GloVe.

a gender-stereotype word pair (Stereotype; e.g.,
“doctor - nurse”) and two other word-pairs that
have similar meanings but not a gender relation
(None; e.g., “dog - cat”, “cup - lid”). SemBias
contains 20 gender-stereotype word pairs and 22
gender-definitional word pairs and use their Carte-
sian product to generate 440 instances. Among
the 22 gender-definitional word pairs, 2 word-
pairs are not used as the seeds for training. Fol-
lowing, Zhao et al. (2018b), to test the general-
isability of a debiasing method, we use the sub-
set (SemBias-subset) of 40 instances associated
with these 2 pairs. We measure relational similar-
ity between (he, she) word-pair and a word-pair
(a, b) in SemBias using the cosine similarity be-
tween the

# »

he − #    »

she gender directional vector and
a − b using the word embeddings under evalua-
tion. For the four word-pairs in each instance in
SemBias, we select the word-pair with the high-
est cosine similarity with

# »

he − #    »

she as the pre-
dicted answer. In Table 1, we show the percent-
ages where a word-pair is correctly classified as
Definition, Stereotype, or None. If the word em-
beddings are correctly debiased, we would expect
a high accuracy for Definitions and low accuracies
for Stereotypes and Nones.

From Table 1, we see that the best performances
(highest accuracy on Definition and lowest ac-
curacy on Stereotype) are reported by GP (GN-
GloVe), which is the application of the proposed
method to debias word embeddings learnt by GN-
GloVe. In particular, in both SemBias and
SemBias-subset, GP (GN-GloVe) statistically
significantly outperforms GloVe and Hard-Glove
according to Clopper-Pearson confidence inter-
vals (Clopper and Pearson, 1934). Although GN-

GloVe obtains high performance on SemBias,
it does not generalise well to SemBias-subset.
However, by applying the proposed method, we
can further remove any residual gender biases
from GN-GloVe, which shows that the proposed
method can be applied in conjunction with GN-
GloVe. We see that GloVe contains a high per-
centage of stereotypical gender biases, which jus-
tifies the need for debiasing methods. By apply-
ing the proposed method on GloVe (corresponds
to GP (GloVe)) we can decrease the gender biases
in GloVe, while preserving useful gender-related
information for detecting definitional word-pairs.
Comparing corresponding AE and GP versions
of GloVe and GN-GloVe, we see that autoencod-
ing alone is insufficient to consistently preserve
gender-related information.

4.4 Preservation of Word Semantics

It is important that the debiasing process removes
only gender biases and preserve other information
unrelated to gender biases in the original word em-
beddings. If too much information is removed
from word embeddings during the debiasing pro-
cess, then the debiased embeddings might not
carry adequate information for downstream NLP
tasks that use those debiased word embeddings.

To evaluate the semantic accuracy of the de-
biased word embeddings, following prior work
on debiasing (Bolukbasi et al., 2016; Zhao et al.,
2018a), we use them in two popular tasks: seman-
tic similarity measurement and analogy detection.
We recall that we do not propose novel word em-
bedding learning methods in this paper, and what
is important here is whether the debiasing process
preserves as much information as possible in the
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Embeddings sem syn total MSR SE

GloVe 80.1 62.1 70.3 53.8 38.8
Hard-GloVe 80.3 62.7 70.7 54.4 39.1
GN-GloVe 77.8 60.9 68.6 51.5 39.1

AE (GloVe) 81.0 61.9 70.5 52.6 38.9
AE (GN-GloVe) 78.6 61.3 69.2 51.2 39.1

GP (GloVe) 80.5 61.0 69.9 51.3 38.5
GP (GN-GloVe) 78.3 61.3 69.0 51.0 39.6

Table 2: Accuracy for solving word analogies.

Datasets #Orig #Bal

WS 353 366
RG 65 77
MTurk 771 784
RW 2,034 2,042
MEN 3,000 3,122
SimLex 999 1,043

Table 3: Number of word-pairs in the original (Orig)
and balanced (Bal) similarity benchmarks.

original word embeddings.

4.4.1 Analogy Detection
Given three words a, b, c in analogy detection, we
must predict a word d that completes the analogy
“a is b as c is to d”. We use the CosAdd (Levy
and Goldberg, 2014) that finds d that has the maxi-
mum cosine similarity with (b−a+c). We use the
semantic (sem) and syntactic (syn) analogies in
the Google analogy dataset (Mikolov et al., 2013b)
(in total contains 19,556 questions), MSR dataset
(7,999 syntactic questions) (Mikolov et al., 2013d)
and SemEval dataset (SE, 79 paradigms) (Jurgens
et al., 2012) as benchmark datasets. The percent-
age of correctly solved analogy questions is re-
ported in Table 2. We see that there is no signifi-
cant degradation of performance due to debiasing
using the proposed method.

4.4.2 Semantic Similarity Measurement
The correlation between the human ratings and
similarity scores computed using word embed-
dings for pairs of words has been used as a
measure of the quality of the word embed-
dings (Mikolov et al., 2013d). We compute co-
sine similarity between word embeddings and
measure Spearman correlation against human rat-

ings for the word-pairs in the following bench-
mark datasets: Word Similarity 353 dataset
(WS) (Finkelstein et al., 2001), Rubenstein-
Goodenough dataset (RG) (Rubenstein and Good-
enough, 1965), MTurk (Halawi et al., 2012),
rare words dataset (RW) (Luong et al., 2013),
MEN dataset (Bruni et al., 2012) and SimLex
dataset (Hill et al., 2015).

Unfortunately, existing benchmark datasets for
semantic similarity were not created considering
gender-biases and contain many stereotypical ex-
amples. For example, in MEN, the word sexy has
high human similarity ratings with lady and girl
compared to man and guy. Furthermore, mas-
culine words and soldier are included in multi-
ple datasets with high human similarity ratings,
whereas it is not compared with feminine words
in any of the datasets. Although prior work study-
ing gender bias have used these datasets for evalu-
ation purposes (Bolukbasi et al., 2016; Zhao et al.,
2018a), we note that high correlation with human
ratings can be achieved with biased word embed-
dings.

To address this issue, we balance the original
datasets with respect to gender by including extra
word pairs generated from the opposite sex with
the same human ratings. For instance, if the word-
pair (baby, mother) exists in the dataset, we add
a new pair (baby, father) to the dataset. Ideally,
we should re-annotate this balanced version of the
dataset to obtain human similarity ratings. How-
ever, such a re-annotation exercise would be costly
and inconsistent with the original ratings. There-
fore, we resort to a proxy where we reassign the
human rating for the original word-pair to its de-
rived opposite gender version. Table 3 shows the
number of word-pairs in the original (Orig) and
balanced (Bal) similarity benchmarks.

As shown in Table 4, GP (GloVe) and GP (GN-
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Embeddings WS RG MTurk RW MEN SimLex
Orig Bal Orig Bal Orig Bal Orig Bal Orig Bal Orig Bal

GloVe 61.6 62.9 75.3 75.5 64.9 63.9 37.3 37.5 73.0 72.6 34.7 35.9
Hard-GloVe 61.7 63.1 76.4 76.7 65.1 64.1 37.4 37.4 72.8 72.5 35.0 36.1
GN-GloVe 62.5 63.7 74.1 73.7 66.2 65.5 40.0 40.1 74.9 74.5 37.0 38.1

AE (GloVe) 61.3 62.6 77.1 76.8 64.9 64.1 35.7 35.8 71.9 71.5 34.7 35.9
AE (GN-GloVe) 61.3 62.6 73.0 74.0 66.3 65.5 38.7 38.9 73.8 73.4 36.7 37.7

GP (GloVe) 59.7 61.0 75.4 75.5 63.9 63.1 34.7 34.8 70.8 70.4 33.9 35.0
GP (GN-GloVe) 63.2 64.3 72.2 72.2 67.9 67.4 43.2 43.3 75.9 75.5 38.4 39.5

Table 4: Spearman correlation between human ratings and cosine similarity scores computed using word embed-
dings for the word-pairs in the original and balanced versions of the benchmark datasets.

(a) GloVe (b) GN (GloVe)

(c) Hard-Glove (d) GP (GloVe)

Figure 1: Cosine similarity between gender, gender-neutral, stereotypical words and the gender direction.

GloVe) obtain the best performance on the bal-
anced versions of all benchmark datasets. More-
over, the performance of GP (GloVe) on both orig-
inal and balanced datasets is comparable to that of
GloVe, which indicates that the information en-
coded in GloVe embeddings are preserved in the
debiased embeddings, while removing stereotyp-
ical gender biases. The autoencoded versions re-
port similar performance to the original input em-
beddings.

Overall, the results on the analogy detection and
semantic similarity measurement tasks show that
our proposed method removes only gender-biases
and preserve other useful gender-related informa-
tion.

4.5 Visualising the Effect of Debiasing

To visualise the effect of debiasing on different
word categories, we compute the cosine similarity
between the gender directional vector

# »

he − #    »

she,
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and selected gender-oriented (female or male),
gender-neutral and stereotypical words. In Fig-
ure 1, horizontal axises show the cosine similarity
with the gender directional vector (positive scores
for masculine words) and the words are alphabeti-
cally sorted within each category.

From Figure 1, we see that the original GloVe
embeddings show a similar spread of cosine simi-
larity scores for gender-oriented as well as stereo-
typical words. When debiased by hard-debias
(Hard-GloVe) and GN-GloVe, we see that stereo-
typical and gender-neutral words get their gen-
der similarity scores equally reduced. Interest-
ingly, Hard-GloVe shifts even gender-oriented
words towards the masculine direction. On the
other hand, GP (GloVe) decreases gender bias
in the stereotypical words, while almost preserv-
ing gender-neutral and gender-oriented words as
in GloVe.

Considering that a significant number of words
in English are gender-neutral, it is essential that
debiasing methods do not adversely change their
orientation. In particular, the proposed method’s
ability to debias stereotypical words that carry un-
fair gender-biases, while preserving the gender-
orientation in feminine, masculine and neutral
words is important when applying the debiased
word embeddings in NLP applications that depend
on word embeddings for representing the input
texts

5 Conclusion

We proposed a method to remove gender-specific
biases from pre-trained word embeddings. Ex-
perimental results on multiple benchmark datasets
demonstrate that the proposed method can accu-
rately debias pre-trained word embeddings, out-
performing previously proposed debiasing meth-
ods, while preserving useful semantic informa-
tion. In future, we plan to extend the proposed
method to debias other types of demographic bi-
ases such as ethnic, age or religious biases.
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Hal Daumé III, Miro Dudı́k, and Hanna Wallach.
2018. Improving fairness in machine learning
systems: What do industry practitioners need?

David Jurgens, Saif Mohammad, Peter Turney, and
Keith Holyoak. 2012. Semeval-2012 task 2: Mea-
suring degrees of relational similarity. In *SEM
2012: The First Joint Conference on Lexical and

http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://aclweb.org/anthology/P12-1015
http://aclweb.org/anthology/P12-1015
http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1808.06640
http://arxiv.org/abs/arXiv:1808.06640
http://arxiv.org/abs/arXiv:1808.06640
https://doi.org/10.1145/371920.372094
https://doi.org/10.1145/371920.372094
https://www.aclweb.org/anthology/D17-1241
https://doi.org/10.1145/2339530.2339751
https://doi.org/10.1145/2339530.2339751
http://arxiv.org/abs/arXiv:1812.05239
http://arxiv.org/abs/arXiv:1812.05239
http://aclweb.org/anthology/S12-1047
http://aclweb.org/anthology/S12-1047


1650

Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
pages 356–364. Association for Computational Lin-
guistics.

Faisal Kamiran and Toon Calders. 2009. Classifying
without discriminating. In Proc. of International
Conference on Computer, Control and Communica-
tion (IC4), pages 1–6.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICLR.

Miroslav Kubat and Stan Matwin. 1997. Addressing
the curse of imbalanced training sets: one-sided se-
lection. In ICML 1997, pages 179 – 186.

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
In CoNLL.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text repre-
sentations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 25–30. Association
for Computational Linguistics.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, and Jeffrey Dean. 2013a.
Efficient estimation of word representation in vector
space. In ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continous space
word representations. In NAACL-HLT, pages 746
– 751.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013d. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Jeffery Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: global vectors for
word representation. In EMNLP, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL-HLT.

Marcelo O. R. Prates, Pedro H. C. Avelar, and Luis
Lamb. 2018. Assessing Gender Bias in Machine
Translation – A Case Study with Google Translate.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Commun.
ACM, 8(10):627–633.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14. Association for Computational Linguis-
tics.

Bei Shi, Zihao Fu, Lidong Bing, and Wai Lam.
2018. Learning domain-sensitive and sentiment-
aware word embeddings. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
2494–2504. Association for Computational Linguis-
tics.

The Telegraph. 2016. Microsoft deletes ‘teen girl’ ai
after it became a hitlter-loving sex robot within 24
hours. https://goo.gl/mE8p3J.

Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy,
and Graham Neubig. 2017. Controllable invariance
through adversarial feature learning. In Proc. of
NIPS.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2204–
2213. Association for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018a. Gender bias
in coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20. As-
sociation for Computational Linguistics.

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-
Wei Chang. 2018b. Learning Gender-Neutral Word
Embeddings. In Proc. of EMNLP, pages 4847–
4853.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proc. of
EMNLP’13, pages 1393 – 1398.

http://aclweb.org/anthology/P18-2005
http://aclweb.org/anthology/P18-2005
http://aclweb.org/anthology/W13-3512
http://aclweb.org/anthology/W13-3512
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://www.aclweb.org/anthology/N13-1090
http://www.aclweb.org/anthology/N13-1090
http://arxiv.org/abs/arXiv:1802.05365
http://arxiv.org/abs/arXiv:1802.05365
http://arxiv.org/abs/arXiv:1809.02208
http://arxiv.org/abs/arXiv:1809.02208
https://doi.org/10.1145/365628.365657
http://aclweb.org/anthology/N18-2002
http://aclweb.org/anthology/N18-2002
http://aclweb.org/anthology/P18-1232
http://aclweb.org/anthology/P18-1232
https://goo.gl/mE8p3J
http://aclweb.org/anthology/P18-1205
http://aclweb.org/anthology/P18-1205
http://aclweb.org/anthology/P18-1205
http://aclweb.org/anthology/N18-2003
http://aclweb.org/anthology/N18-2003
http://aclweb.org/anthology/N18-2003
http://arxiv.org/abs/arXiv:1809.01496
http://arxiv.org/abs/arXiv:1809.01496

