
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2110–2120
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1193

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2110–2120
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1193

Parsing to 1-Endpoint-Crossing, Pagenumber-2 Graphs

Junjie Cao∗, Sheng Huang∗, Weiwei Sun and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{junjie.cao,huangsheng,ws,wanxiaojun}@pku.edu.cn

Abstract

We study the Maximum Subgraph prob-
lem in deep dependency parsing. We con-
sider two restrictions to deep dependency
graphs: (a) 1-endpoint-crossing and (b)
pagenumber-2. Our main contribution is
an exact algorithm that obtains maximum
subgraphs satisfying both restrictions si-
multaneously in time O(n5). Moreover,
ignoring one linguistically-rare structure
descreases the complexity to O(n4). We
also extend our quartic-time algorithm into
a practical parser with a discriminative dis-
ambiguation model and evaluate its perfor-
mance on four linguistic data sets used in
semantic dependency parsing.

1 Introduction

Dependency parsing has long been studied as a
central issue in developing syntactic or seman-
tic analysis. Recently, some linguistic projects
grounded on deep grammar formalisms, including
CCG, LFG, and HPSG, draw attentions to rich syn-
tactic and semantic dependency annotations that
are not limited to trees (Hockenmaier and Steed-
man, 2007; Sun et al., 2014; Ivanova et al., 2012).
Parsing for these deep dependency representations
can be viewed as the search for Maximum Sub-
graphs (Kuhlmann and Jonsson, 2015). This is a
natural extension of the Maximum Spanning Tree
(MST) perspective (McDonald et al., 2005) for de-
pendency tree parisng.

One main challenge of the Maximum Subgraph
perspective is to design tracTable algorithms for
certain graph classes that have good empirical cov-
erage for linguistic annotations. Unfortunately, no
previously defined class simultaneously has high

∗The first two authors contribute equally.

coverage and low-degree polynomial parsing al-
gorithms. For example, noncrossing dependency
graphs can be found in time O(n3), but cover only
48.23% of sentences in CCGBank (Kuhlmann and
Jonsson, 2015).

We study two well-motivated restrictions to
deep dependency graphs: (a) 1-endpoint-crossing
(1EC hereafter; Pitler et al., 2013) and (b) pa-
genumber is less than or equal to 2 (P2 hereafter;
Kuhlmann and Jonsson, 2015). We will show that
if the output dependency graphs are restricted to
satisfy both restrictions, the Maximum Subgraph
problem can be solved using dynamic program-
ming in time O(n5). Moreover, if we ignore one
linguistically-rare sub-problem, we can reduce the
time complexity to O(n4). Though this new algo-
rithm is a degenerated one, it has the same empiri-
cal coverage for various deep dependency annota-
tions. We evaluate the coverage of our algorithms
on four linguistic data sets: CCGBank, DeepBank,
Enju HPSGBank and Prague Dependency Tree-
Bank. They cover 95.68%, 97.67%, 97.28% and
97.53% of dependency graphs in the four corpora.
The relatively satisfactory coverage makes it pos-
sible to parse with high accuracy.

Based on the quartic-time algorithm, we im-
plement a parser with a discriminative disam-
biguation model. Our new parser can be taken
as a graph-based parser which is complemen-
tary to transition-based (Henderson et al., 2013;
Zhang et al., 2016) and factorization-based (Mar-
tins and Almeida, 2014; Du et al., 2015a) sys-
tems. We evaluate our parser on four data
sets: those used in SemEval 2014 Task 8 (Oepen
et al., 2014), and the dependency graphs ex-
tracted from CCGbank (Hockenmaier and Steed-
man, 2007). Evaluations indicate that our parser
produces very accurate deep dependency analysis.
It reaches state-of-the-art results on average pro-
duced by a transition-based system of Zhang et al.

2110

https://doi.org/10.18653/v1/P17-1193
https://doi.org/10.18653/v1/P17-1193

(2016) and factorization-based systems (Martins
and Almeida, 2014; Du et al., 2015a).

The implementation of our parser is avail-
able at http://www.icst.pku.edu.cn/
lcwm/grass.

2 Background

Dependency parsing is the task of mapping a nat-
ural language sentence into a dependency graph.
Previous work on dependency parsing mainly fo-
cused on tree-shaped representations. Recently, it
is shown that data-driven parsing techniques are
also applicable to generate more flexible deep de-
pendency graphs (Du et al., 2014; Martins and
Almeida, 2014; Du et al., 2015b,a; Zhang et al.,
2016; Sun et al., 2017). Parsing for deep depen-
dency representations can be viewed as the search
for Maximum Subgraphs for a certain graph class
G (Kuhlmann and Jonsson, 2015), a generalization
of the MST perspective for tree parsing. In partic-
ular, we have the following optimization problem:

Given an arc-weighted graph G = (V, A), find a
subgraph G′ = (V,A′ ⊆ A) with maximum total
weight such that G′ belongs to G.

The choice of G determines the computational
complexity of dependency parsing. For example,
if G is the set of projective trees, the problem can
be solved in time O(|V |3), and if G is the set of
noncrossing dependency graphs, the complexity
is O(|V |3). Unfortunately, no previously defined
class simultaneously has high coverage on deep
dependency annotations and low-degree polyno-
mial decoding algorithms for practical parsing. In
this paper, we study well-motivated restrictions:
1EC (Pitler et al., 2013) and P2 (Kuhlmann and
Jonsson, 2015). We will show that relatively sat-
isfactory coverage and parsing complexity can be
obtained for graphs that satisfy both restrictions.

3 The 1EC, P2 Graphs

3.1 The 1EC Restriction

Pitler et al. (2013) introduced a very nice property
for modelling non-projective dependency trees,
i.e. 1EC. This property not only covers a large
amount of tree annotations in natural language
treebanks, but also allows the corresponding MST
problem to bo solved in time of O(n4). The formal
description of the 1EC property is adopted from
(Pitler et al., 2013).

Definition 1. Edges e1 and e2 cross if e1 and e2

have distinct endpoints and exactly one of the end-
points of e1 lies between the endpoints of e2.

Definition 2. A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p.

Given a sentence s = w0w1 · · · wn−1 of length
n, the vertices, i.e. words, are indexed with inte-
gers, an arc from wi to wj as a(i,j), and the com-
mon endpoint, namely pencil point, of all edges
crossed with a(i,j) or a(j,i) as pt(i, j). We denote
an edge as e(i,j), if we do not consider its direction.

3.2 The P2 Restriction

The term pagenumber is referred to as planar
by some other authors, e.g. (Titov et al., 2009;
Gómez-Rodrı́guez and Nivre, 2010; Pitler et al.,
2013). We give the definition of related concepts
as follows.

Definition 3. A book is a particular kind of topo-
logical space that consists of a single line called
the spine, together with a collection of one or
more half-planes, called the pages, each having
the spine as its boundary.

Definition 4. A book embedding of a finite graph
G onto a book B satisfies three conditions: (1)
every vertex of G is drawn as a point on the spine
of B; (2) every edge of G is drawn as a curve that
lies within a single page of B; (3) every page of B
does not have any edge crossings.

Empirically, a deep dependency graph is not
very dense and can typically be embedded onto
a very thin book. To measure the thickness of a
graph, we can use its pagenumber.

Definition 5. The book pagenumber of G is the
minimum number of pages required for a book em-
bedding of G.

For sake of concision, we say a graph is
“pagenumber-k”, meaning that the pagenumber is
at most k.

Theorem 1. The pagenumber of 1EC graph may
be greater than 2.

Proof. The graph in Figure 1 gives an instance
which is 1EC but the pagenumber of which is 3.
There is a cycle, namely a → c → e → b → d →
a, consisting of odd number of edges.

Pitler et al. (2013) proved that 1EC trees are a
subclass of graphs whose pagenumber is at most
2. This property provides the foundation to the

2111

PN≤ 2 1EC EnjuBank DeepBank PCEDT CCGBank
Yes Both 32236 (99.53%) 32287 (99.69%) 31866 (98.39%) 38848 (98.09%)
Both Yes 31507 (97.28%) 31634 (97.67%) 31589 (97.53%) 37913 (95.73%)
Yes Yes 31507 (97.28%) 31634 (97.67%) 31589 (97.53%) 37894 (95.68%)
No Yes 0 (0.0%) 0 (0.0%) 0 (0.0%) 19 (0.05%)
Yes No 729 (2.25%) 653 (2.02%) 277 (0.86%) 954 (2.41%)
Sentences 32389 32389 32389 39604

Table 1: Coverage in terms of complete graphs under various structural restrictions. Column “PN≤ 2”
indicates whether the restriction “P2” is satisfied; Column “1EC” indicates whether the restriction “1EC”
is satisfied.

..a. b. c. d. e

Figure 1: A 1EC graph whose pagenumber is 3.

success in designing dynamic programming algo-
rithms for trees. Theorem 1 indicates that when
we consider more general graph, the case is more
complicated. In this paper, we study graphs that
are constrained to be both 1EC and P2. We call
them 1EC/P2 graphs.

3.3 Coverage on Linguistic Data
To show that the two restrictions above are well-
motivated for describing linguistic data, we eval-
uate their empirical coverage on four deep depen-
dency corpora (as defined in Section 5.2). These
corpora are also used for training and evaluating
our data-driven parsers. The coverage is evaluated
using sentences in the training sets.

Table 1 shows the results. We can see that
1EC is also an empirical well-motivated restriction
when it comes to deep dependency structures. The
P2 property has an even better coverage. Unfortu-
nately, it is a NP-hard problem to find optimal P2
graphs (Kuhlmann and Jonsson, 2015). Though
theoretically a 1EC graph is not necessarily P2, the
empirical evaluation demonstrates the high over-
lap of them on linguistic annotations. In partic-
ular, almost all 1EC deep dependency graphs are
P2. The percentages of graphs satisfying both re-
strictions vary between 95.68% for CCGBank and
97.67% for DeepBank. The relatively satisfactory
coverage enables accurate practical parsing.

4 The Algorithm

This section contains the main contribution of this
paper: a polynomial time exact algorithm for solv-
ing the Maximum Subgraph problem for the class

of 1EC/P2 graphs.

Theorem 2. Take 1EC/P2 graphs as target sub-
graphs, the maximum subgraph problem can be
solved in time O(|V |5).

For sake of formal concision, we introduce the
algorithm of which the goal is to calculate the
maximum score of a subgraph. Extracting corre-
sponding optimal graphs can be done in a number
of ways. For example, we can maintain an aux-
iliary arc table which is populated parallel to the
procedure of obtaining maximum scores.

Our algorithm is highly related to the follow-
ing property: Every subgraph of a 1EC/P2 graph
is also a 1EC/P2 graph. We therefore focus
on maximal 1EC/P2 graphs, a particular type of
1EC/P2 graphs defined as follows.

Definition 6. A maximal 1EC/P2 graph is a
1EC/P2 graph that cannot be extended by includ-
ing one more edge.

Our algorithm is a bottom-up dynamic pro-
gramming algorithm. It defines different struc-
tures corresponding to different sub-problems, and
visits all structures from bottom to top, finding the
best combination of smaller structures to form a
new structure. The key design is to make sure
that it can produce all maximal 1EC/P2 graphs.
During the search for maximal 1EC/P2 graphs, we
can freely delete bad edges whose scores are neg-
ative. In particular, we figure out some edges, in
each construction step, which can be created with-
out violating either 1EC or P2 restriction. Assume
the arc weight associated with a(i,j) is w[i, j].
Then we define a function SELECT(i, j) accord-
ing to the comparison of 0 and w[i, j] as well as
w[j, i]. If w[i, j] ≥ 0 (or w[j, i] ≥ 0), we then
select a(i,j) (or a(j,i)) and add it to currently the
best solution of a sub-problem. SELECT(i, j) re-
turns max(max(0, w[i, j]) + max(0, w[j, i])). If
we allow at most one arc between two nodes,
SELECT(i, j) returns max(0, w[i, j], w[j, i]).

2112

..

Int[i, j]

.
i
.

j
.

L[i, j, x]

.
x

.
i

.
j

.

R[i, j, x]

.
x

.
i

.
j

.

LR[i, j, x]

.
x

.
i

.
j

.

N [i, j, x]

.
x

.
i

.
j

..
C[x, i, a, b](b < a)

.
x
.

i
.

b
.

a
.

C[x, i, a, b](a < b)

.
x

.
i

. a.
b

Figure 2: Graphic representations of sub-problems.

The graphical illustration of our algorithm uses
undirected graphs1. In other words, we use e(i,j) to
include the discussion about both a(i,j) and a(j,i).

4.1 Sub-problems
We consider six sub-problems when we construct
a maximum dependency graph on a given (closed)
interval [i, k] ⊆ V of vertices. When we fo-
cus on the nodes strictly inside this interval, and
we use an open interval (i, k) to exclude i and
j. See Figure 2 for graphical visualization. The
first five are adapted in concord with Pitler et al.
(2013)’s solution for trees, and we introduce a
new sub-problem, namely C. Because graphs al-
low for loops as well as disconnectedness, the sub-
problems are simplified to some extent, while a
special case of LR is now prominent. C is thus
introduced to represent the special case. The sub-
problems are explained as follows.

Int Int[i, j] represents a partial analysis associ-
ated with an interval from i to j inclusively.
Int[i, j] may or may not contain edge e(i,j).
To parse a given sentence is equivalent to
solve the problem Int[0, n − 1].

L L[i, j, x] represents a partial analysis associ-
ated with an interval from i to j inclusively
as well as an external vertex x. ∀p ∈
(i, j), pt(x, p) = i. L[i, j, x] can contain
e(i,j) but disallows e(x,i) or e(x,j).

R R[i, j, x] represents a partial analysis associ-
ated with an interval from i to j inclusively
as well as an external vertex x. ∀p ∈
(i, j), pt(x, p) = j. R[i, j, x] can contain
e(i,j) but disallows e(x,i) or e(x,j).

1 The single-head property does not hold. We currently
do not consider other constraints of directions. So predic-
tion of the direction of one edge does not affect prediction
of other edges as well as their directions. The directions can
be assigned locally, and our parser builds directed rather than
undirected graphs in this way. Undirected graphs are only
used to conveniently illustrate our algorithms. All experimen-
tal results in Section 5.2 consider directed dependencies in a
standard way. We use the official evaluation tool provided by
SDP2014 shared task. The numberic results reported in this
paper are directly comparable to results in other papers.

LR LR[i, j, x] represents a partial analysis as-
sociated with an interval from i to j inclu-
sively as well as an external vertex x. ∀p ∈
(i, j), pt(x, p) = i or j. LR[i, j, x] must al-
low e(i,j) but disallows e(x,i) or e(x,j).

N N [i, j, x] represents a partial analysis asso-
ciated with an interval from i to j inclu-
sively and an external vertex x. ∀p ∈
(i, j), pt(x, p) /∈ [i, j]. N [i, j, x] can contain
e(i,j) but disallows e(x,i) or e(x,j).

C C[x, i, a, b](a ̸= b, a > i, b > i) represents
a partial analysis associated with an interval
from i to max{a, b} inclusively and an ex-
ternal vertex x. Intuitively, C depicts a class
of graphs constructed by upper- and lower-
plane edges arranged in a staggered pattern. a
stands for the last endpoint in the upper plane,
and b the last endpoint in the lower plane.

We give a definition of C. There exists in
C[x, i, a, b] a series {s1, · · · , sm} that fulfills the
following constraints:

1. s1 = i < s2 < ... < sm = max{a, b}.

2. ∃e(x,s2).

3. ∀k ∈ [1,m − 2], ∃e(sk,sk+2).

4. ∀k ∈ [1,m − 2], ∄e(l,r)(sk, sk+2) ⊂ (l, r) ⊂
(s1, sm)2.

5. ∀k ∈ [2,m − 3], e(sk,sk+2) crosses only with
e(sk−1,sk+1) and e(sk+1,sk+3); e(s1,s3) crosses
only with e(s2,s4) and e(x,s2); e(sm−2,sm)

crosses only with e(sm−3,sm−1).

6. e(x,sm−1), e(s1,sm), e(x,s1), e(x,sm) are disal-
lowed.

7. While a < b, the series can be written as
{s1 = i, · · · , sm−1 = a, sm = b}(m ≥ 5).
While b < a, the series is {s1, · · · , sm−1 =

2By “(x, y) ⊂ (z, w),” we mean x ≥ z, y < w or x > z,
y ≤ w.

2113

b, sm = a}(m ≥ 4). We denote the two
cases using the signs C1 and C2 respectively.

The distinction between C1 and C2 is whether
there is one more edge below than above.

4.2 Decomposing an Int Sub-problem
Consider an Int[i, j] sub-problem. Assume that
k(k ∈ (i, j)) is the farthest vertex that is linked
with i, and l = pt(i, k). When j − i > 1, there
must be such a k given that we consider maximal
1EC/P2 graphs. There are three cases.

Case 1: l = j. Vertex k divides the interval [i, j]
into two parts: [i, k] and [k, j]. First notice that
the edges linking (i, k) and j can only cross with
e(i,k). Thus i or k can be the pencil points of those
edges, which entails that interval [i, k] is an LR in
respect to external vertex j. Because there exist no
edge from i to any node in (k, j), interval [k, j] is
an Int. The problem is eventually decomposed to:
LR[i, k, j] + Int[k, j] + SELECT[i, j].

Case 2: l ∈ (k, j). In this case, we can freely
add e(i,l) without violating either 1EC or P2 condi-
tions. Therefore Case 2 does not lead to any max-
imal 1EC/P2 graph. Our algorithm does not need
to explicitly handle this case, given that they can
be derived from solutions to other cases.

Case 3: l ∈ (i, k). Now assume that there is an
edge from i to a vertex in (l, k). Consider the far-
thest vertex that is linked with l, say p(p ∈ (k, j).
We can freely add e(i,p) without violating the 1EC

and P2 restrictions. Similar to Case 2, we do not
explicitly deal with this case.

If there is no edge from i to any vertex in
(l, k), then [i, l], [l, k], [k, j] are R, Int, L respec-
tively. Three external edges are e(i,k), e(l,j), and
e(i,j). The decomposition is: R[i, l, k]+Int[l, k]+
L[k, j, l] + SELECT[l, j] + SELECT[i, j].

4.3 Decomposing an L Sub-problem
If there is no edge from x to any node in (i, j), the
graph is reduced to Int[i, j]. If there is one, let
k be the vertex farthest from i and adjacent to x.
There are two different cases, as shown in Figure
4.

1. If there exists an edge from x to some node
in (i, k), intervals [i, k], [k, j] are classified
as L, N respectively. Two edges external to
the interval: e(x,k), e(i,j). The decomposi-
tion is L[i, k, x]+N [k, j, i]+SELECT[x, k]+
SELECT[i, j].

Case 1: l = j

..
i
. k.

j
. =. +

Case 2: l ∈ (k, j)

...
i
. k.

l
.

j

Case 3: l ∈ (i, k)

..

Does such a dashed edge exist?

.
i
.

l
. k.

j

..

(3.1)

.
i
.

l
. k.

j

..
(3.2)

. =. +. +

Figure 3: Decomposition for Int[i, j], with
pt(i, k) = l.

..

Does such a dashed edge exist?

.
x
.

i
. k.

j

..
(2.1)

. =. +

..
(2.2)

. =. +

Figure 4: Decomposition for L[i, j, x].

2. Otherwise, Intervals [i, k], [k, j] are classified
as Int, L respectively. Two edges external
to the interval: e(x,k), e(i,j). The decomposi-
tion is Int[i, k] +L[k, j, i] + SELECT[x, k] +
SELECT[i, j].

4.4 Decomposing an R Sub-problem

If there is no edge from x to (i, j), then the graph
is reduced to Int[i, j]. If there is one, let k be the
farthest vertex from j and adjacent to x. There are
two different cases:

1. If there exist an edge from x to (k, j), In-
tervals [i, k], [k, j] are classified as N, R re-
spectively. Two edges external to the in-
terval: e(x,k), e(i,j). The decomposition

2114

..
(2)

.
x
.

i
.

k
.

j
. =. +

Figure 5: Decomposition for N [i, j, x].

..

(3.1) There is a separating vertex.

.
x
.

i
.

k
.

j

..

(3.2) No such separating vertex.

.
x
.

i
. k.

b

Figure 6: Decomposition for LR[i, j, x].

is N [i, k, j] + R[k, j, x] + SELECT[x, k] +
SELECT[i, j].

2. Otherwise, Intervals [i, k], [k, j] are classified
as R, Int respectively. Two edges external to
the interval are e(x,k), e(i,j). The decomposi-
tion is R[i, k, j]+Int[k, j]+ SELECT[x, k]+
SELECT[i, j].

The decomposition is similar to L, we thus do not
give a graphical representation to save space.

4.5 Decomposing an N Sub-problem
If there is no edge from x to (i, j), then the graph
is reduced to Int[i, j]. If there is one, let k be
the farthest vertex from i and adjacent to x. By
definition, N [i, j, x] does not allow for e(x,i) or
e(x,j). Thus k ̸= i or j. Intervals [i, k], [k, j] are
classified as N, Int respectively. Two edges exter-
nal to the interval are e(x,k), e(i,j). The decompo-
sition is N [i, k, x] + Int[k, j] + SELECT[x, k] +
SELECT[i, j].

4.6 Decomposing an LR Sub-problem
If the pencil point of all edges from x to (i, j) is i,
then the model is the same as L[i, j, x]. Similary,
if the pencil point is j, then the model is the same
as R[i, j, x].

If some of the edges from x to (i, j) share a pen-
cil point i, and the others share j, there are two
different cases.

1. If there is a k which satisfies that within [i, j],
only e(i,j) crosses over k (i.e., [i, j] can be
divided along dashed line k into two), then,
k divides [i, j] into [i, k] and [k, j]. Because
k is not allowed to be pencil point, the two

subintervals must be an L and an R in terms
of external x, respectively. In addition, there
are two edges, namely e(x,k) and e(i,j) not in-
cluded by the subintervals. The problem is
thus decomposed as L[i, k, x] + R[k, j, x] +
SELECT[x, k] + SELECT[i, j].

2. If there is no such k in concord with the con-
dition in (1), it comes a much more difficult
case for which we introduce sub-problem C.
Here we put forward the conclusion:

Lemma 1. Assume that k(k ∈ (i, j)) is the vertex
that is adjacent to x and farthest from i. The de-
composition for the second case is C[x, i, k, j] +
SELECT[x, k] + SELECT[i, j].

Proof. The distinction between Case 1 and 2 im-
plies the following property, which is essential,
∀t ∈ (i, j), ∃e(pl,pr) such that t ∈ (pl, pr) ⊂ [i, j].

We can recursively generate a series of length
n—{e(slk,srk)}—in LR[i, j, x] as follows.

k = 1 Let slk = i, srk = max{p|p ∈ (i +
1, j) and ∃e(i,p)};

k > 1 For srk−1, we denote all edges that
cover it as e(pl1,pr1), · · · , e(pls,prs). Note that
there is at least one such edge. For any two
edges in them, viz e(plu,pru) and e(plv ,prv),
(plu, pru) ⊂ (plv, prv) or (plv, prv) ⊂
(plu, pru). Otherwise, the P2 property no
longer holds due to the interaction among
e(slk−1,srk−1), e(plu,pru) and e(plv ,prv). As-
sume (plw, prw) is the largest one, then we
let slk = plw, srk = prw. When srk = j,
recursion ends.

We are going to prove that if
we delete two edges e(x,srn−1) and
e(i,j) from LR[i, j, x], the series
{sl1, sl2, sl3, ..., sln−2, sln−1, sln, srn−1, srn}
satisfies each and all the conditions of C1.

Condition 1. Because e(sln,srn) covers srn−1,
Condition 1 holds for k = m−3,m−2. Consider
k ≤ m− 4 = n− 2. Assume that sk+1 < sk, then
we have e(sk+1,srk+1) is larger than e(sk,srk+1).
This is impossible because we select the largest
edge in every step.

Condition 2. The LR sub-problem we discussed
now cannot be reduced to L nor R, so there must
be two edges from x that respectively cross edges
linked to i and j. We are going to prove that

2115

the two edges must be e(x,s2) and e(x,srn−1). As-
sume that there is e(x,p), where p ∈ (i, j), p ̸=
s2 and p ̸= srn−1. If p ∈ (i, s2), then e(s1,s3)

crosses with e(x,p) and e(s2,s4) simultaneously.
1EC is violated. If p ∈ (s2, srn−1), e(x,p) nec-
essarily crosses with some edge e(sk,sk+2). Fur-
thermore, i < sk < sk+2 < j. Thus 1EC is vio-
lated. If p ∈ (srn−1, j), the situation is similar to
p ∈ (i, s2).

Condition 3. ∀k ∈ [1, n − 2], e(slk,srk)

and e(slk+1,srk+1) cross, e(slk+1,srk+1) and
e(slk+2,srk+2) cross, so srk ≤ slk+2. Otherwise
the interaction of the three edges results in the
violation of P2. If srk < slk+2, e(slk,srk) and
e(slk+2,srk+2) share no common endpoint, violat-
ing 1EC. Therefore, srk = slk+2 = sk+2, and
Condition 3 is satisfied.

We also reach proposition that pt(sk, sk+2) =
sk+1.

Condition 4. This condition is easy to verify be-
cause (sk, sk+2) is the largest with respective to
srk.

Condition 5. Assume, that there is e(pl,pr)

which intersects with e(sk,sk+2), and at the
same time satisfy the conditions: e(pl,pr) /∈
{e(st,st+2)|t ∈ [1,m − 2]} ∪ {e(x,s2), e(x,srn−1)}.
Since pt(sk, sk+2) = sk+1, pl = sk+1 or pr =
sk+1.

If pl = sk+1, then pl < slk+2 < pr, and in turn
k < m − 2. In addition, according to Condition
4, (pl, pr) ⊂ (sk+1, sk+3). So pr < sk+3. If
k = m − 3 then e(x,sn−1)

crosses with e(pl,pr) and
e(i,j) simultaneously. 1EC is violated. If k < m −
3 then e(sk+2,sk+4) cross with e(pl,pr), and pr <
sk+3 = pt(e(sk+2,sk+4)). Again 1EC is violated. If
pr = sk+1 The symmetry of our proof entails the
violation of 1ec.

All in all, the assumption does not hold and thus
satisfies Condition 5.

Condition 6. e(x,s1), e(x,sm) are disallowed due
to definition of an LR problem. e(x,sm−1), e(s1,sm)

are disallowed due to the decomposition.

Condition 7. Due to the existence of e(x,s2) and
e(x,srn−1), there must be two edges: e(x,p1) and
e(x,p2) that cross e(i,s2) and e(srn−1,j) respectively.
There must be an odd number of edges in the series
{e(slk,srk)}, otherwise P2 is violated as the case
shown in Figure 1. In summary, the last condition

..

(a) C[i, j, a, b](a < b)

.
x
.

i
.

k
. a.

b
. =. +

..

(b.1) C[i, j, a, b](a > b), n > 2

.
x
.

i
. k.

b
.

a
. =. +

..

(b.2) C[i, j, a, b](a > b), n = 2

.
x
.

i
. k.

b
.

a
. =. +. +

Figure 7: Decomposition for C[x, i, a, b].

is satisfied and we have a C1 structure in this LR
sub-problem.

4.7 Decomposing a C Sub-problem

We illustrate the decomposition using the graph-
ical representations shown in Figure 7. When
a < b, since a is the upper-plane endpoint farthest
to the right, and b is the lower-plane counterpart,
in this case a precedes b (i.e., a is to the left of b).

Let C[x, i, a, k] be a C in which the lower-plane
endpoint k precedes a. Add e(k,b) gives a new C
sub-problem with lower-plane endpoint preceded
by the upper-plane one. The decomposition is then
C[x, i, a, k] + Int[a, b] + SELECT[k, b].

When a > b and n > 2, the lower-plane end-
point b precedes a. In analogy, the case can be ob-
tained by adding e(k,a) to C[x, i, k, b]. The decom-
position: C[x, i, k, b] + Int[b, a] + SELECT[k, a].

When n = 2, we reach the most funda-
mental case. Only 4 vertices are in the series,
namely i,k,b,a. Moreover, there are three edges:
e(x,k), e(i,b), e(k,a), and the interval [i,a] is di-
vided by k,b into three parts. The decomposition
is Int[i, k]+Int[k, b]+Int[b, a]+SELECT[x, k]+
SELECT[i, b] + SELECT[k, a].

4.8 Discussion

4.8.1 Soundness and Completeness
The algorithm is sound and complete with respec-
tive to 1EC/P2 graphs. We present our algorithms
by detailing the decomposition rules. The com-
pleteness is obvious because we can decompose
any 1EC/P2 graph from an Int, use our rules to re-
duce it into smaller sub-problems, and repeat this
procedure. The decomposition rules are also con-
struction rules. During constructing graphs by ap-
plying these rules, we never violate 1EC nor P2

2116

..
i
.

l
.

k
.

j

....Int[i, j].

.... ..Int[k, j]

.

....LR[i, k, j].

....L[i, k, j].

.... ..L[l, k, i].

....Int[l, k]

.Int[i, l]

. ..Int[i, j].

.... ..L[k, j, l].

....Int[k, j].

.... ..Int[l, k]

.

....R[i, l, k].

....Int[i, l]

Figure 8: A maximal 1EC/P2 graph and its two
derivations. For brevity, we elide the edges created
in each derivation step.

restrictions. So our algorithm is sound.

4.8.2 Greedy Search during Construction
There is an important difference between our al-
gorithm and Eisner-style MST algorithms (Eis-
ner, 1996b; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010) for trees as
well as Kuhlmann and Jonsson’s Maximum Sub-
graph algorithm for noncrossing graphs. In each
construction step, our algorithm allows multiple
arcs to be constructed, but whether or not such
arcs are added to the target graph depends on their
arc-weights. In each step, we do greedy search
and decide if adding an related arc according to
local scores. If all arcs are assigned scores that are
greater than 0, the output of our algorithm includes
the most complicated 1EC/P2 graphs. That means
adding one more arc voilates the 1EC or P2 restric-
tions. For all other aforementioned algorithms, in
a single construction step, it is clear whether to
add a new arc, and which one. There is no local
search.

4.8.3 Spurious Ambiguity
To generate the same graph, even a maximal
1EC/P2 graph, we may have different derivations.
Figure 8 is an example. This is similar to syn-
tactic analysis licensed by Combinatory Catego-
rial Grammar (CCG; Steedman, 1996, 2000). To
derive one surface string, there usually exists mul-
tiple CCG derivations. A practice of CCG parsing
is defining one particular derivation as the stan-
dard one, namely normal form (Eisner, 1996a).
The spurious ambiguity in our algorithm does not
affect the correctness of first-order parsing, be-
cause scores are assigned to individual dependen-

cies, rather than derivation processes. There is no
need to distinguish one special derivation here.

4.8.4 Complexity
The sub-problem Int is of size O(n2), each graph
of which takes a calculating time of order O(n2).
For sub-problems L, R, LR, and N, each has
O(n3) elements, with a unit calculating time
O(n). C has O(n4) elements, with a unit calcu-
lating time O(n). Therefore the full version algo-
rithm runs in time of O(n5) with a space require-
ment of O(n4).

4.9 A Degenerated Version

We find that graphical structures involved in the C
sub-problem, namely coupled staggered pattern, is
extremely rare in linguistic analysis. If we ignore
this special case, we get a degenerated version of
dynamic programming algorithm. This algorithm
can find a strict subset of 1EC/P2 graphs. We can
improve efficiency without sacrificing expressive-
ness in terms of linguistic data. This degenerated
version algorithm requires O(n4) time and O(n3)
space.

5 Practical Parsing

5.1 Disambiguation

We extend our quartic-time parsing algorithm into
a practical parser. In the context of data-driven
parsing, this requires an extra disambiguation
model. As with many other parsers, we employ
a global linear model. Following Zhang et al.
(2016)’s experience, we define rich features ex-
tracted from word, POS-tags and pseudo trees. For
details we refer to the source code. To estimate
parameters, we utilize the averaged perceptron al-
gorithm (Collins, 2002).

5.2 Data

We conduct experiments on unlabeled parsing
using four corpora: CCGBank (Hockenmaier
and Steedman, 2007), DeepBank (Flickinger
et al., 2012), Enju HPSGBank (EnjuBank; Miyao
et al., 2004) and Prague Dependency TreeBank
(PCEDT; Hajic et al., 2012), We use “standard”
training, validation, and test splits to facilitate
comparisons. Following previous experimental
setup for CCG parsing, we use section 02-21 as
training data, section 00 as the development data,
and section 23 for testing. The other three data
sets are from SemEval 2014 Task 8 (Oepen et al.,

2117

DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

P1 90.75 86.13 88.38 93.38 90.20 91.76 94.21 88.55 91.29 90.61 85.69 88.08
1ECP2d 91.05 87.22 89.09 93.41 91.83 92.61 94.41 91.41 92.89 90.76 86.31 88.48

Table 2: Parsing accuracy evaluated on the development sets.

DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

Ours 90.91 86.98 88.90 93.83 91.49 92.64 94.23 91.13 92.66 90.09 85.90 87.95
ZDSW 89.04 88.85 88.95 92.92 92.83 92.87 92.49 92.30 92.40 - - - - - -
MA 90.14 88.65 89.39 93.18 91.12 92.14 - - - - - - 90.21 85.51 87.80
DSW - - - - - - - - - - - - 93.03 92.03 92.53 - - - - - -

Table 3: Parsing accuracy evaluated on the test sets.

2014), and the data splitting policy follows the
shared task. All the four data sets are publicly
available from LDC (Oepen et al., 2016).

Experiments for CCG-grounded analysis were
performed using automatically assigned POS-tags
that are generated by a symbol-refined HMM tag-
ger (Huang et al., 2010). Experiments for the
other three data sets used POS-tags provided by
the shared task. We also use features extracted
from pseudo trees. We utilize the Mate parser
(Bohnet, 2010) to generate pseudo trees. The
pre-processing for CCGBank, DeepBank and En-
juBank are exactly the same as in experiments re-
ported in (Zhang et al., 2016).

5.3 Accuracy
We evaluate two parsing algorithms, the algorithm
for noncrossing dependency graphs (Kuhlmann
and Jonsson, 2015), i.e. pagenumber-1 (denoted
as P1) graphs, and our quartic-time algorithm (de-
noted as 1ECP2d). Table 2 summerizes the ac-
curacy obtained our parser. Same feature tem-
plates are applied for disambiguation. We can see
that our new algorithm yields significant improve-
ments on all data sets, as expected. Especially, due
to the improved coverage, the recall is improved
more.

5.4 Comparison with Other Parsers
Our new parser can be taken as a graph-based
parser which employ a different architecture from
transition-based and factorization-based (Martins
and Almeida, 2014; Du et al., 2015a) systems.
We compare our parser with the best reported sys-
tems in the other two architectures. ZDSW (Zhang
et al., 2016) is transition-based parser while MA
(Martins and Almeida, 2014) and DSW (Du et al.,

2015a) are two factorization-based systems. All
of them achieves state-of-the-art performance. All
results on the test set is shown in Table 3. We
can see that our parser, as a graph-based parser,
is comparable to state-of-the-art transition-based
and factorization-based parsers.

6 Conclusion and Future Work

In this paper, we explore the strength of the graph-
based approach. In particular, we enhance the
Maximum Subgraph model with new parsing al-
gorithms for 1EC/P2 graphs. Our work indi-
cates the importance of finding appropriate graph
classes that on the one hand are linguistically ex-
pressive and on the other hand allow efficient
search. Within tree-structured dependency pars-
ing, higher-order factorization that conditions on
wider syntactic contexts than arc-factored rela-
tionships have been proved very useful. The arc-
factored model proposed in this paper may be en-
hanced with higher-order features too. We leave
this for future investigation.

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology).

We thank the first anonymous reviewer whose
valuable comments led to significant revisions.
We thank Xingfeng Shi for his help in explicating
the idea.

Weiwei Sun is the corresponding author.

2118

References
Bernd Bohnet. 2010. Top accuracy and fast depen-

dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In In Proc.
EMNLP-CoNLL.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Pro-
ceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1–8.
https://doi.org/10.3115/1118693.1118694.

Yantao Du, Weiwei Sun, and Xiaojun Wan. 2015a.
A data-driven, factorization parser for CCG de-
pendency structures. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1545–
1555. http://www.aclweb.org/anthology/P15-1149.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun
Wan. 2014. Peking: Profiling syntactic tree pars-
ing techniques for semantic graph parsing. In
Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Asso-
ciation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 459–464.
http://www.aclweb.org/anthology/S14-2080.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015b. Peking: Building semantic
dependency graphs with a hybrid parser. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages
927–931. http://www.aclweb.org/anthology/S15-
2154.

Jason Eisner. 1996a. Efficient normal-form parsing for
combinatory categorial grammar. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics (ACL). Santa Cruz, pages 79–
86.

Jason M. Eisner. 1996b. Three new probabilistic mod-
els for dependency parsing: an exploration. In
Proceedings of the 16th conference on Computa-
tional linguistics - Volume 1. Association for Com-
putational Linguistics, Stroudsburg, PA, USA, pages
340–345.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: A dynamically annotated treebank of the
wall street journal. In Proceedings of the Eleventh

International Workshop on Treebanks and Linguistic
Theories. pages 85–96.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Uppsala, Sweden, pages 1492–1501.
http://www.aclweb.org/anthology/P10-1151.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr
Sgall, Ondej Bojar, Silvie Cinková, Eva Fucı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jirı́ Se-
mecký, Jana Sindlerová, Jan Stepánek, Josef Toman,
Zdenka Uresová, and Zdenek Zabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the 8th International
Conference on Language Resources and Evaluation.
Istanbul, Turkey.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational Linguistics
39(4):949–998.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the penn treebank. Com-
putational Linguistics 33(3):355–396.

Zhongqiang Huang, Mary Harper, and Slav Petrov.
2010. Self-training with products of latent vari-
able grammars. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Cambridge, MA, pages 12–22.
http://www.aclweb.org/anthology/D10-1002.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop. Jeju, Republic of Korea, pages 2–11.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Uppsala, Sweden, pages 1–11.
http://www.aclweb.org/anthology/P10-1001.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570.

André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A turbo semantic parser with second or-
der features. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014). Association for Computational Linguistics
and Dublin City University, Dublin, Ireland, pages
471–476. http://www.aclweb.org/anthology/S14-
2082.

2119

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-2006)). volume 6, pages
81–88.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of Human Language Technology Conference and
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Vancouver, British Columbia, Canada,
pages 523–530.

Yusuke Miyao, Takashi Ninomiya, and Jun ichi Tsujii.
2004. Corpus-oriented grammar development for
acquiring a head-driven phrase structure grammar
from the penn treebank. In IJCNLP. pages 684–693.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajič, Angelina Ivanova, and Zdeňka Urešová.
2016. Semantic Dependency Parsing (SDP) graph
banks release 1.0 LDC2016T10. Web Download.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. 2014. Semeval 2014
task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014). As-
sociation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 63–72.
http://www.aclweb.org/anthology/S14-2008.

Emily Pitler, Sampath Kannan, and Mitchell Mar-
cus. 2013. Finding optimal 1-endpoint-crossing
trees. TACL 1:13–24. http://www.transacl.org/wp-
content/uploads/2013/03/paper13.pdf.

M. Steedman. 1996. Surface Structure and Interpre-
tation. Linguistic Inquiry Monographs. Mit Press.
http://books.google.ca/books?id=Mh1vQgAACAAJ.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

Weiwei Sun, Junjie Cao, and Xiaojun Wan. 2017. Se-
mantic dependency parsing via book embedding. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Weiwei Sun, Yantao Du, Xin Kou, Shuoyang Ding, and
Xiaojun Wan. 2014. Grammatical relations in Chi-
nese: GB-ground extraction and data-driven pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 446–
456. http://www.aclweb.org/anthology/P14-1042.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planari-
sation for synchronous parsing of semantic and
syntactic dependencies. In Proceedings of the
21st international jont conference on Artifi-
cal intelligence. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, pages 1562–1567.
http://dl.acm.org/citation.cfm?id=1661445.1661696.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389. http://aclweb.org/anthology/J16-
3001.

2120

	Parsing to 1-Endpoint-Crossing, Pagenumber-2 Graphs

