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Abstract

Via an oracle experiment, we show that the

upper bound on accuracy of a CCG parser

is significantly lowered when its search space

is pruned using a supertagger, though the su-

pertagger also prunes many bad parses. In-

spired by this analysis, we design a single

model with both supertagging and parsing fea-

tures, rather than separating them into dis-

tinct models chained together in a pipeline.

To overcome the resulting increase in com-

plexity, we experiment with both belief prop-

agation and dual decomposition approaches to

inference, the first empirical comparison of

these algorithms that we are aware of on a

structured natural language processing prob-

lem. On CCGbank we achieve a labelled de-

pendency F-measure of 88.8% on gold POS

tags, and 86.7% on automatic part-of-speeoch

tags, the best reported results for this task.

1 Introduction

Accurate and efficient parsing of Combinatorial Cat-

egorial Grammar (CCG; Steedman, 2000) is a long-

standing problem in computational linguistics, due

to the complexities associated its mild context sen-

sitivity. Even for practical CCG that are strongly

context-free (Fowler and Penn, 2010), parsing is

much harder than with Penn Treebank-style context-

free grammars, with vast numbers of nonterminal

categories leading to increased grammar constants.

Where a typical Penn Treebank grammar may have

fewer than 100 nonterminals (Hockenmaier and

Steedman, 2002), we found that a CCG grammar

derived from CCGbank contained over 1500. The

same grammar assigns an average of 22 lexical cate-

gories per word (Clark and Curran, 2004a), resulting

in an enormous space of possible derivations.

The most successful approach to CCG parsing is

based on a pipeline strategy (§2). First, we tag (or

multitag) each word of the sentence with a lexical

category using a supertagger, a sequence model over

these categories (Bangalore and Joshi, 1999; Clark,

2002). Second, we parse the sentence under the

requirement that the lexical categories are fixed to

those preferred by the supertagger. Variations on

this approach drive the widely-used, broad coverage

C&C parser (Clark and Curran, 2004a; Clark and

Curran, 2007; Kummerfeld et al., 2010). However,

it fails when the supertagger makes errors. We show

experimentally that this pipeline significantly lowers

the upper bound on parsing accuracy (§3).

The same experiment shows that the supertag-

ger prunes many bad parses. So, while we want to

avoid the error propagation inherent to a pipeline,

ideally we still want to benefit from the key insight

of supertagging: that a sequence model over lexi-

cal categories can be quite accurate. Our solution

is to combine the features of both the supertagger

and the parser into a single, less aggressively pruned

model. The challenge with this model is its pro-

hibitive complexity, which we address with approx-

imate methods: dual decomposition and belief prop-

agation (§4). We present the first side-by-side com-

parison of these algorithms on an NLP task of this

complexity, measuring accuracy, convergence be-

havior, and runtime. In both cases our model signifi-

cantly outperforms the pipeline approach, leading to

the best published results in CCG parsing (§5).
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2 CCG and Supertagging

CCG is a lexicalized grammar formalism encoding

for each word lexical categories that are either ba-

sic (eg. NN, JJ) or complex. Complex lexical cat-

egories specify the number and directionality of ar-

guments. For example, one lexical category for the

verb like is (S\NP )/NP , specifying the first argu-

ment as an NP to the right and the second as an NP

to the left; there are over 100 lexical categories for

like in our lexicon. In parsing, adjacent spans are

combined using a small number of binary combina-

tory rules like forward application or composition

(Steedman, 2000; Fowler and Penn, 2010). In the

first derivation below, (S\NP )/NP and NP com-

bine to form the spanning category S\NP , which

only requires an NP to its left to form a complete

sentence-spanning S. The second derivation uses

type-raising to change the category type of I.
I like tea

NP (S\NP)/NP NP
>

S\NP
<

S

I like tea

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S

As can be inferred from even this small example,

a key difficulty in parsing CCG is that the number

of categories quickly becomes extremely large, and

there are typically many ways to analyze every span

of a sentence.

Supertagging (Bangalore and Joshi, 1999; Clark,

2002) treats the assignment of lexical categories (or

supertags) as a sequence tagging problem. Because

they do this with high accuracy, they are often ex-

ploited to prune the parser’s search space: the parser

only considers lexical categories with high posterior

probability (or other figure of merit) under the su-

pertagging model (Clark and Curran, 2004a). The

posterior probabilities are then discarded; it is the

extensive pruning of lexical categories that leads to

substantially faster parsing times.

Pruning the categories in advance this way has a

specific failure mode: sometimes it is not possible

to produce a sentence-spanning derivation from the

tag sequences preferred by the supertagger, since it

does not enforce grammaticality. A workaround for

this problem is the adaptive supertagging (AST) ap-

proach of Clark and Curran (2004a). It is based on

a step function over supertagger beam widths, re-

laxing the pruning threshold for lexical categories

only if the parser fails to find an analysis. The pro-

cess either succeeds and returns a parse after some

iteration or gives up after a predefined number of it-

erations. As Clark and Curran (2004a) show, most

sentences can be parsed with a very small number of

supertags per word. However, the technique is inher-

ently approximate: it will return a lower probability

parse under the parsing model if a higher probabil-

ity parse can only be constructed from a supertag

sequence returned by a subsequent iteration. In this

way it prioritizes speed over exactness, although the

tradeoff can be modified by adjusting the beam step

function. Regardless, the effect of the approxima-

tion is unbounded.

We will also explore reverse adaptive supertag-

ging, a much less aggressive pruning method that

seeks only to make sentences parseable when they

otherwise would not be due to an impractically large

search space. Reverse AST starts with a wide beam,

narrowing it at each iteration only if a maximum

chart size is exceeded. In this way it prioritizes ex-

actness over speed.

3 Oracle Parsing

What is the effect of these approximations? To

answer this question we computed oracle best and

worst values for labelled dependency F-score using

the algorithm of Huang (2008) on the hybrid model

of Clark and Curran (2007), the best model of their

C&C parser. We computed the oracle on our devel-

opment data, Section 00 of CCGbank (Hockenmaier

and Steedman, 2007), using both AST and Reverse

AST beams settings shown in Table 1.

The results (Table 2) show that the oracle best

accuracy for reverse AST is more than 3% higher

than the aggressive AST pruning.1 In fact, it is al-

most as high as the upper bound oracle accuracy of

97.73% obtained using perfect supertags—in other

words, the search space for reverse AST is theoreti-

cally near-optimal.2 We also observe that the oracle

1The numbers reported here and in later sections differ slightly

from those in a previously circulated draft of this paper, for

two reasons: we evaluate only on sentences for which a parse

was returned instead of all parses, to enable direct comparison

with Clark and Curran (2007); and we use their hybrid model

instead of their normal-form model, except where noted. De-

spite these changes our main findings remained unchanged.
2This idealized oracle reproduces a result from Clark and Cur-
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Condition Parameter Iteration 1 2 3 4 5

AST
β (beam width) 0.075 0.03 0.01 0.005 0.001

k (dictionary cutoff) 20 20 20 20 150

Reverse
β 0.001 0.005 0.01 0.03 0.075

k 150 20 20 20 20

Table 1: Beam step function used for standard (AST) and less aggressive (Reverse) AST throughout our experiments.

Parameter β is a beam threshold while k bounds the use of a part-of-speech tag dictionary, which is used for words

seen less than k times.

Viterbi F-score Oracle Max F-score Oracle Min F-score

LF LP LR LF LP LR LF LP LR cat/word

AST 87.38 87.83 86.93 94.35 95.24 93.49 54.31 54.81 53.83 1.3-3.6

Reverse 87.36 87.55 87.17 97.65 98.21 97.09 18.09 17.75 18.43 3.6-1.3

Table 2: Comparison of adaptive supertagging (AST) and a less restrictive setting (Reverse) with Viterbi and oracle

F-scores on CCGbank Section 00. The table shows the labelled F-score (LF), precision (LP) and recall (LR) and the

the number of lexical categories per word used (from first to last parsing attempt).
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Figure 1: Comparison between model score and Viterbi F-score (left); and between model score and oracle F-score

(right) for different supertagger beams on a subset of CCGbank Section 00.

worst accuracy is much lower in the reverse setting.

It is clear that the supertagger pipeline has two ef-

fects: while it beneficially prunes many bad parses,

it harmfully prunes some very good parses. We can

also see from the scores of the Viterbi parses that

while the reverse condition has access to much better

parses, the model doesn’t actually find them. This

mirrors the result of Clark and Curran (2007) that

they use to justify AST.

Digging deeper, we compared parser model score

against Viterbi F-score and oracle F-score at a va-

ran (2004b). The reason that using the gold-standard supertags

doesn’t result in 100% oracle parsing accuracy is that some

of the development set parses cannot be constructed by the

learned grammar.

riety of fixed beam settings (Figure 1), considering

only the subset of our development set which could

be parsed with all beam settings. The inverse re-

lationship between model score and F-score shows

that the supertagger restricts the parser to mostly

good parses (under F-measure) that the model would

otherwise disprefer. Exactly this effect is exploited

in the pipeline model. However, when the supertag-

ger makes a mistake, the parser cannot recover.

4 Integrated Supertagging and Parsing

The supertagger obviously has good but not perfect

predictive features. An obvious way to exploit this

without being bound by its decisions is to incorpo-

rate these features directly into the parsing model.
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In our case both the parser and the supertagger are

feature-based models, so from the perspective of a

single parse tree, the change is simple: the tree is

simply scored by the weights corresponding to all

of its active features. However, since the features of

the supertagger are all Markov features on adjacent

supertags, the change has serious implications for

search. If we think of the supertagger as defining a

weighted regular language consisting of all supertag

sequences, and the parser as defining a weighted

mildly context-sensitive language consisting of only

a subset of these sequences, then the search prob-

lem is equivalent to finding the optimal derivation

in the weighted intersection of a regular and mildly

context-sensitive language. Even allowing for the

observation of Fowler and Penn (2010) that our prac-

tical CCG is context-free, this problem still reduces

to the construction of Bar-Hillel et al. (1964), mak-

ing search very expensive. Therefore we need ap-

proximations.

Fortunately, recent literature has introduced two

relevant approximations to the NLP community:

loopy belief propagation (Pearl, 1988), applied to

dependency parsing by Smith and Eisner (2008);

and dual decomposition (Dantzig and Wolfe, 1960;

Komodakis et al., 2007; Sontag et al., 2010, inter

alia), applied to dependency parsing by Koo et al.

(2010) and lexicalized CFG parsing by Rush et al.

(2010). We apply both techniques to our integrated

supertagging and parsing model.

4.1 Loopy Belief Propagation

Belief propagation (BP) is an algorithm for com-

puting marginals (i.e. expectations) on structured

models. These marginals can be used for decoding

(parsing) in a minimum-risk framework (Smith and

Eisner, 2008); or for training using a variety of al-

gorithms (Sutton and McCallum, 2010). We experi-

ment with both uses in §5. Many researchers in NLP

are familiar with two special cases of belief prop-

agation: the forward-backward and inside-outside

algorithms, used for computing expectations in se-

quence models and context-free grammars, respec-

tively.3 Our use of belief propagation builds directly

on these two familiar algorithms.

3Forward-backward and inside-outside are formally shown to

be special cases of belief propagation by Smyth et al. (1997)

and Sato (2007), respectively.

f(T1) f(T2)

b(T0) b(T1)

t1T0 T1 t2 T2

e0 e1 e2

Figure 2: Supertagging factor graph with messages. Cir-

cles are variables and filled squares are factors.

BP is usually understood as an algorithm on bi-

partite factor graphs, which structure a global func-

tion into local functions over subsets of variables

(Kschischang et al., 1998). Variables maintain a be-

lief (expectation) over a distribution of values and

BP passes messages about these beliefs between

variables and factors. The idea is to iteratively up-

date each variable’s beliefs based on the beliefs of

neighboring variables (through a shared factor), us-

ing the sum-product rule.

This results in the following equation for a mes-

sage mx→f (x) from a variable x to a factor f

mx→f (x) =
∏

h∈n(x)\f

mh→x(x) (1)

where n(x) is the set of all neighbours of x. The

message mf→x from a factor to a variable is

mf→x(x) =
∑
∼{x}

f(X)
∏

y∈n(f)\x

my→f (y) (2)

where ∼ {x} represents all variables other than x,

X = n(f) and f(X) is the set of arguments of the

factor function f .

Making this concrete, our supertagger defines a

distribution over tags T0...TI , based on emission

factors e0...eI and transition factors t1...tI (Fig-

ure 2). The message fi a variable Ti receives from its

neighbor to the left corresponds to the forward prob-

ability, while messages from the right correspond to

backward probability bi.

fi(Ti) =
∑
Ti−1

fi−1(Ti−1)ei−1(Ti−1)ti(Ti−1, Ti) (3)

bi(Ti) =
∑
Ti+1

bi+1(Ti+1)ei+1(Ti+1)ti+1(Ti, Ti+1) (4)
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t1 t2

Figure 3: Factor graph for the combined parsing and su-

pertagging model.

The current belief Bx(x) for variable x can be com-

puted by taking the normalized product of all its in-

coming messages.

Bx(x) =
1
Z

∏
h∈n(x)

mh→x(x) (5)

In the supertagger model, this is just:

p(Ti) =
1
Z
fi(Ti)bi(Ti)ei(Ti) (6)

Our parsing model is also a distribution over vari-

ables Ti, along with an additional quadratic number

of span(i, j) variables. Though difficult to represent

pictorially, a distribution over parses is captured by

an extension to graphical models called case-factor

diagrams (McAllester et al., 2008). We add this

complex distribution to our model as a single fac-

tor (Figure 3). This is a natural extension to the use

of complex factors described by Smith and Eisner

(2008) and Dreyer and Eisner (2009).

When a factor graph is a tree as in Figure 2, BP

converges in a single iteration to the exact marginals.

However, when the model contains cycles, as in Fig-

ure 3, we can iterate message passing. Under certain

assumptions this loopy BP it will converge to ap-

proximate marginals that are bounded under an in-

terpretation from statistical physics (Yedidia et al.,

2001; Sutton and McCallum, 2010).

The TREE factor exchanges inside ni and outside

oi messages with the tag and span variables, tak-

ing into account beliefs from the sequence model.

We will omit the unchanged outside recursion for

brevity, but inside messages n(Ci,j) for category

Ci,j in span(i, j) are computed using rule probabil-

ities r as follows:

n(Ci,j) =


fi(Ci,j)bi(Ci,j)ei(Ci,j) if j=i+1∑
k,X,Y

n(Xi,k)n(Yk,j)r(Ci,j , Xi,k, Yk,j)

(7)

Note that the only difference from the classic in-

side algorithm is that the recursive base case of a cat-

egory spanning a single word has been replaced by

a message from the supertag that contains both for-

ward and backward factors, along with a unary emis-

sion factor, which doubles as a unary rule factor and

thus contains the only shared features of the original

models. This difference is also mirrored in the for-

ward and backward messages, which are identical to

Equations 3 and 4, except that they also incorporate

outside messages from the tree factor.

Once all forward-backward and inside-outside

probabilities have been calculated the belief of su-

pertag Ti can be computed as the product of all in-

coming messages. The only difference from Equa-

tion 6 is the addition of the outside message.

p(Ti) =
1
Z
fi(Ti)bi(Ti)ei(Ti)oi(Ti) (8)

The algorithm repeatedly runs forward-backward

and inside-outside, passing their messages back and

forth, until these quantities converge.

4.2 Dual Decomposition

Dual decomposition (Rush et al., 2010; Koo et al.,

2010) is a decoding (i.e. search) algorithm for prob-

lems that can be decomposed into exactly solvable

subproblems: in our case, supertagging and parsing.

Formally, given Y as the set of valid parses, Z as the

set of valid supertag sequences, and T as the set of

supertags, we want to solve the following optimiza-

tion for parser f(y) and supertagger g(z).

arg max
y∈Y,z∈Z

f(y) + g(z) (9)

such that y(i, t) = z(i, t) for all (i, t) ∈ I (10)

Here y(i, t) is a binary function indicating whether

word i is assigned supertag t by the parser, for the
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set I = {(i, t) : i ∈ 1 . . . n, t ∈ T} denoting

the set of permitted supertags for each word; sim-

ilarly z(i, t) for the supertagger. To enforce the con-

straint that the parser and supertagger agree on a

tag sequence we introduce Lagrangian multipliers

u = {u(i, t) : (i, t) ∈ I} and construct a dual ob-

jective over variables u(i, t).

L(u) = max
y∈Y

(f(y)−
∑
i,t

u(i, t)y(i, t)) (11)

+ max
z∈Z

(f(z) +
∑
i,t

u(i, t)z(i, t))

This objective is an upper bound that we want to

make as tight as possible by solving for minu L(u).
We optimize the values of the u(i, t) variables using

the same algorithm as Rush et al. (2010) for their

tagging and parsing problem (essentially a percep-

tron update).4 An advantages of DD is that, on con-

vergence, it recovers exact solutions to the combined

problem. However, if it does not converge or we stop

early, an approximation must be returned: following

Rush et al. (2010) we used the highest scoring output

of the parsing submodel over all iterations.

5 Experiments

Parser. We use the C&C parser (Clark and Curran,

2007) and its supertagger (Clark, 2002). Our base-

line is the hybrid model of Clark and Curran (2007);

our integrated model simply adds the supertagger

features to this model. The parser relies solely on the

supertagger for pruning, using CKY for search over

the pruned space. Training requires repeated calcu-

lation of feature expectations over packed charts of

derivations. For training, we limited the number of

items in this chart to 0.3 million, and for testing, 1

million. We also used a more permissive training

supertagger beam (Table 3) than in previous work

(Clark and Curran, 2007). Models were trained with

the parser’s L-BFGS trainer.

Evaluation. We evaluated on CCGbank (Hocken-

maier and Steedman, 2007), a right-most normal-

form CCG version of the Penn Treebank. We

use sections 02-21 (39603 sentences) for training,

4The u terms can be interpreted as the messages from factors

to variables (Sontag et al., 2010) and the resulting message

passing algorithms are similar to the max-product algorithm, a

sister algorithm to BP.

section 00 (1913 sentences) for development and

section 23 (2407 sentences) for testing. We sup-

ply gold-standard part-of-speech tags to the parsers.

Evaluation is based on labelled and unlabelled pred-

icate argument structure recovery and supertag ac-

curacy. We only evaluate on sentences for which an

analysis was returned; the coverage for all parsers is

99.22% on section 00, and 99.63% on section 23.

Model combination. We combine the parser and

the supertagger over the search space defined by the

set of supertags within the supertagger beam (see Ta-

ble 1); this avoids having to perform inference over

the prohibitively large set of parses spanned by all

supertags. Hence at each beam setting, the model

operates over the same search space as the baseline;

the difference is that we search with our integrated

model.

5.1 Parsing Accuracy

We first experiment with the separately trained su-

pertagger and parser, which are then combined us-

ing belief propagation (BP) and dual decomposition

(DD). We run the algorithms for many iterations,

and irrespective of convergence, for BP we compute

the minimum risk parse from the current marginals,

and for DD we choose the highest-scoring parse

seen over all iterations. We measured the evolving

accuracy of the models on the development set (Fig-

ure 4). In line with our oracle experiment, these re-

sults demonstrate that we can coax more accurate

parses from the larger search space provided by the

reverse setting; the influence of the supertagger fea-

tures allow us to exploit this advantage.

One behavior we observe in the graph is that the

DD results tend to incrementally improve in accu-

racy while the BP results quickly stabilize, mirroring

the result of Smith and Eisner (2008). This occurs

because DD continues to find higher scoring parses

at each iteration, and hence the results change. How-

ever for BP, even if the marginals have not con-

verged, the minimum risk solution turns out to be

fairly stable across successive iterations.

We next compare the algorithms against the base-

line on our test set (Table 4). We find that the early

stability of BP’s performance generalises to the test

set as does DD’s improvement over several itera-

tions. More importantly, we find that the applying
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Parameter Iteration 1 2 3 4 5 6 7

Training
β 0.001 0.001 0.0045 0.0055 0.01 0.05 0.1

k 150 20 20 20 20 20 20

Table 3: Beam step function used for training (cf. Table 1).

section 00 (dev) section 23 (test)

AST Reverse AST Reverse

LF UF ST LF UF ST LF UF ST LF UF ST

Baseline 87.38 93.08 94.21 87.36 93.13 93.99 87.73 93.09 94.33 87.65 93.06 94.01

C&C ’07 87.24 93.00 94.16 - - - 87.64 93.00 94.32 - - -

BPk=1 87.70 93.28 94.44 88.35 93.69 94.73 88.20 93.28 94.60 88.78 93.66 94.81

BPk=25 87.70 93.31 94.44 88.33 93.72 94.71 88.19 93.27 94.59 88.80 93.68 94.81

DDk=1 87.40 93.09 94.23 87.38 93.15 94.03 87.74 93.10 94.33 87.67 93.07 94.02

DDk=25 87.71 93.32 94.44 88.29 93.71 94.67 88.14 93.24 94.59 88.80 93.68 94.82

Table 4: Results for individually-trained submodels combined using dual decomposition (DD) or belief propagation

(BP) for k iterations, evaluated by labelled and unlabelled F-score (LF/UF) and supertag accuracy (ST). We compare

against the previous best result of Clark and Curran (2007); our baseline is their model with wider training beams (cf.

Table 3).
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Figure 4: Labelled F-score of baseline (BL), belief prop-

agation (BP), and dual decomposition (DD) on section

00.

our combined model using either algorithm consis-

tently outperforms the baseline after only a few iter-

ations. Overall, we improve the labelled F-measure

by almost 1.1% and unlabelled F-measure by 0.6%

over the baseline. To the best of our knowledge,

the results obtained with BP and DD are the best

reported results on this task using gold POS tags.

Next, we evaluate performance when using au-

tomatic part-of-speech tags as input to our parser

and supertagger (Table 5). This enables us to com-

pare against the results of Fowler and Penn (2010),

who trained the Petrov parser (Petrov et al., 2006)

on CCGbank. We outperform them on all criteria.

Hence our combined model represents the best CCG

parsing results under any setting.

Finally, we revisit the oracle experiment of §3 us-

ing our combined models (Figure 5). Both show an

improved relationship between model score and F-

measure.

5.2 Algorithmic Convergence

Figure 4 shows that parse accuracy converges af-

ter a few iterations. Do the algorithms converge?

BP converges when the marginals do not change be-

tween iterations, and DD converges when both sub-

models agree on all supertags. We measured the

convergence of each algorithm under these criteria

over 1000 iterations (Figure 6). DD converges much

faster, while BP in the reverse condition converges

quite slowly. This is interesting when contrasted

with its behavior on parse accuracy—its rate of con-

vergence after one iteration is 1.5%, but its accu-

racy is already the highest at this point. Over the

entire 1000 iterations, most sentences converge: all

but 3 for BP (both in AST and reverse) and all but
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section 00 (dev) section 23 (test)

LF LP LR UF UP UR LF LP LR UF UP UR

Baseline 85.53 85.73 85.33 91.99 92.20 91.77 85.74 85.90 85.58 91.92 92.09 91.75

Petrov I-5 85.79 86.09 85.50 92.44 92.76 92.13 86.01 86.29 85.74 92.34 92.64 92.04

BPk=1 86.44 86.74 86.14 92.54 92.86 92.23 86.73 86.95 86.50 92.45 92.69 92.21

DDk=25 86.35 86.65 86.05 92.52 92.85 92.20 86.68 86.90 86.46 92.44 92.67 92.21

Table 5: Results on automatically assigned POS tags. Petrov I-5 is based on the parser output of Fowler and Penn

(2010); we evaluate on sentences for which all parsers returned an analysis (2323 sentences for section 23 and 1834

sentences for section 00).
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Figure 5: Comparison between model score and Viterbi F-score for the integrated model using belief propagation (left)

and dual decomposition (right); the results are based on the same data as Figure 1.
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Figure 6: Rate of convergence for belief propagation (BP)

and dual decomposition (DD) with maximum k = 1000.

41 (2.6%) for DD in reverse (6 in AST).

5.3 Parsing Speed

Because the C&C parser with AST is very fast, we

wondered about the effect on speed for our model.

We measured the runtime of the algorithms under

the condition that we stopped at a particular iteration

(Table 6). Although our models improve substan-

tially over C&C, there is a significant cost in speed

for the best result.

5.4 Training the Integrated Model

In the experiments reported so far, the parsing and

supertagging models were trained separately, and

only combined at test time. Although the outcome

of these experiments was successful, we wondered

if we could obtain further improvements by training

the model parameters together.

Since the gradients produced by (loopy) BP

are approximate, for these experiments we used a

stochastic gradient descent (SGD) trainer (Bottou,

2003). We found that the SGD parameters described

by Finkel et al. (2008) worked equally well for our

models, and, on the baseline, produced similar re-

sults to L-BFGS. Curiously, however, we found that

the combined model does not perform as well when
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AST Reverse

sent/sec LF sent/sec LF

Baseline 65.8 87.38 5.9 87.36

BPk=1 60.8 87.70 5.8 88.35

BPk=5 46.7 87.70 4.7 88.34

BPk=25 35.3 87.70 3.5 88.33

DDk=1 64.6 87.40 5.9 87.38

DDk=5 41.9 87.65 3.1 88.09

DDk=25 32.5 87.71 1.9 88.29

Table 6: Parsing time in seconds per sentence (vs. F-

measure) on section 00.

AST Reverse

LF UF ST LF UF ST

Baseline 86.7 92.7 94.0 86.7 92.7 93.9

BP inf 86.8 92.8 94.1 87.2 93.1 94.2

BP train 86.3 92.5 93.8 85.6 92.1 93.2

Table 7: Results of training with SGD on approximate

gradients from LPB on section 00. We test LBP in both

inference and training (train) as well as in inference only

(inf); a maximum number of 10 iterations is used.

the parameters are trained together (Table 7). A pos-

sible reason for this is that we used a stricter su-

pertagger beam setting during training (Clark and

Curran, 2007) to make training on a single machine

practical. This leads to lower performance, particu-

larly in the Reverse condition. Training a model us-

ing DD would require a different optimization algo-

rithm based on Viterbi results (e.g. the perceptron)

which we will pursue in future work.

6 Conclusion and Future Work

Our approach of combining models to avoid the

pipeline problem (Felzenszwalb and McAllester,

2007) is very much in line with much recent work

in NLP. Such diverse topics as machine transla-

tion (Dyer et al., 2008; Dyer and Resnik, 2010;

Mi et al., 2008), part-of-speech tagging (Jiang et

al., 2008), named entity recognition (Finkel and

Manning, 2009) semantic role labelling (Sutton and

McCallum, 2005; Finkel et al., 2006), and oth-

ers have also been improved by combined models.

Our empirical comparison of BP and DD also com-

plements the theoretically-oriented comparison of

marginal- and margin-based variational approxima-

tions for parsing described by Martins et al. (2010).

We have shown that the aggressive pruning used

in adaptive supertagging significantly harms the or-

acle performance of the parser, though it mostly

prunes bad parses. Based on these findings, we com-

bined parser and supertagger features into a single

model. Using belief propagation and dual decom-

position, we obtained more principled—and more

accurate—approximations than a pipeline. Mod-

els combined using belief propagation achieve very

good performance immediately, despite an initial

convergence rate just over 1%, while dual decompo-

sition produces comparable results after several iter-

ations, and algorithmically converges more quickly.

Our best result of 88.8% represents the state-of-the

art in CCG parsing accuracy.

In future work we plan to integrate the POS tag-

ger, which is crucial to parsing accuracy (Clark and

Curran, 2004b). We also plan to revisit the idea

of combined training. Though we have focused on

CCG in this work we expect these methods to be

equally useful for other linguistically motivated but

computationally complex formalisms such as lexi-

calized tree adjoining grammar.
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