Data-Defined Kernels for Parse Reranking
Derived from Probabilistic Models

James Henderson
School of Informatics
University of Edinburgh
2 Buccleuch Place

Edinburgh EH8 9LW, United Kingdom

james.henderson@ed.ac.uk

Abstract

Previous research applying kernel meth-
ods to natural language parsing have fo-
cussed on proposing kernels over parse
trees, which are hand-crafted based on do-
main knowledge and computational con-
siderations. In this paper we propose a
method for defining kernels in terms of
a probabilistic model of parsing. This
model is then trained, so that the param-
eters of the probabilistic model reflect the
generalizations in the training data. The
method we propose then uses these trained
parameters to define a kernel for rerank-
ing parse trees. In experiments, we use
a neural network based statistical parser
as the probabilistic model, and use the
resulting kernel with the Voted Percep-
tron algorithm to rerank the top 20 parses
from the probabilistic model. This method
achieves a significant improvement over
the accuracy of the probabilistic model.

Ivan Titov
Department of Computer Science
University of Geneva
24, rue Greral Dufour
CH-1211 Gepve 4, Switzerland
ivan.titov@-cui.unige.ch

language has focussed on the definition of appropri-
ate kernels for natural language tasks. In particu-
lar, most of the work on parsing with kernel meth-
ods has focussed on kernels over parse trees (Collins
and Duffy, 2002; Shen and Joshi, 2003; Shen et
al., 2003; Collins and Roark, 2004). These kernels
have all been hand-crafted to try reflect properties
of parse trees which are relevant to discriminating
correct parse trees from incorrect ones, while at the
same time maintaining the tractability of learning.
Some work in machine learning has taken an al-
ternative approach to defining kernels, where the
kernel is derived from a probabilistic model of the
task (Jaakkola and Haussler, 1998; Tsuda et al.,
2002). This way of defining kernels has two ad-
vantages. First, linguistic knowledge about parsing
is reflected in the design of the probabilistic model,
not directly in the kernel. Designing probabilistic
models to reflect linguistic knowledge is a process
which is currently well understood, both in terms of
reflecting generalizations and controlling computa-
tional cost. Because many NLP problems are un-
bounded in size and complexity, it is hard to specify
all possible relevant kernel features without having

so many features that the computations become in-
tractable and/or the data becomes too sparSec-

Kernel methods have been shown to be very efnd, the kernel is defined using the trained param-
fective in many machine learning problems. The;‘FterS of the probabilistic model. Thus the kernel is
have the advantage that learning can try to optimiZ8 Part determined by the training data, and is auto-
measures related directly to expected testing perfdiiatically tailored to reflect properties of parse trees
mance (i.e. “large margin” methods), rather thafVhich are relevant to parsing.
the probabilistic measures used in statistical models;——— _ _

For example, see (Henderson, 2004) for a discussion of

WhiCh are only indirectly related to eXpec_ted teSt\'/vhy generative models are better than models parameterized to
ing performance. Work on kernel methods in naturadstimate the a posteriori probability directly.

1 Introduction

181

Proceedings of the 43rd Annual I\/_Ieetin%] of the AGages 181-188,
Ann Arbor, June 200502005 Association for Computational Linguistics

In this paper, we propose a new method for dewhere¢(z,y) is a feature vector for the sentence-
riving a kernel from a probabilistic model which istree pair, w is a parameter vector for the discrim-
specifically tailored to reranking tasks, and we apiant function, and<a, b> is the inner product of
ply this method to natural language parsing. For theectorsa andb. In the remainder of this section, we
probabilistic model, we use a state-of-the-art neuralill characterize the kernel methods we consider in
network based statistical parser (Henderson, 2003grms of the feature extractgfx, y).

The resulting kernel is then used with the Voted Per-
ceptron algorithm (Freund and Schapire, 1998) t8-1 Fisher Kernels

reranking the top 20 parses from the probabilistiqhe Fisher kernel (Jaakkola and Haussler, 1998) is
model. This method achieves a significant improvegne of the best known kernels belonging to the class
ment over the accuracy of the probabilistic modebf probability model based kernels. Given a genera-
alone. tive model of P(z|0) with smooth parameterization,
the Fisher score of an examplés a vector of partial

2 Kemels Derived from Probabilistic derivatives of the log-likelihood of the example with

Models respect to the model parameters:
In recent years, several methods have been proposed _ dlog P(2]0) dlog P(2|0)
for constructing kernels from trained probabilistic 09(2) = (Tg o T)

models. As usual, these kernels are then used Whfhis score can be regarded as specifying how the
linear classifiers to learn the desired task. As well 8$,o4el should be changed in order to maximize the
some empirical successes, these methods are M@fis|ihood of the example. Then we can define the
vated by theoretical results which suggest we shoulgmijarity between data points as the inner product
expect some improvement with these classifiers ovgg the corresponding Fisher scores. This kernel is
the classifier which chooses the most probable agfien referred to as the practical Fisher kernel. The
swer according to the probabilistic model (i.e. thgneoretical Fisher kernel depends on the Fisher in-
maximum a posteriori (MAP) classifier). There isgomation matrix, which is not feasible to compute
guaranteed to be a linear classifier for the deriveg), most practical tasks and is usually omitted.
kernel which performs at least as well as the MAP 1o Figher kernel is only directly applicable to
classifier for the probabilistic model. So, assumln%inary classification tasks. We can apply it to our

a large-margin classifier can optimize a more afgqy py considering an exampieto be a sentence-
propriate criteria than the posterior probability, we ae pair(z, y), and classifying the pairs into cor-

should expect the derived kernel's classifier 10 pel, ot harses versus incorrect parses. When we use the

form better than the probabilistic model’'s CIaSSiﬁerFisherscor@A(x y) in the discriminant functiod”
o\ -

although empirical results on a given task are nevgfe can interpret the value as the confidence that the

guaranteed. _ _ treey is correct, and choose thein which we are
In this section, we first present two previous Kefine most confident.

nels and then propose a new kernel specifically for
reranking tasks. In each of these discussions we2 TOP Kernels

need to characterize the parsing problem as a Clas.?]éuda (2002) proposed another kernel constructed

fication task. Parsing can be regarded as a mapplﬂ%m a probabilistic model, called the Tangent vec-

I[ﬁem d ir:nm&u; s;)caecce)fofafggfn(:ﬁontr(]) tﬁesggsci;s tors Of Posterior log-odds (TOP) kernel. Their TOP
put Sp P G kernel is also only for binary classification tasks, so,

of training sentences, we learn a discriminant funca—lS above. we treat the iNougs a sentence-tree nair
tion £ : X x)Y — R. The parse treg with the ’ P P

largest value for this discriminant functidf(x, y) and the output'categorzy € {-1,+1} as incor-
. rect/correct. It is assumed that the true probability
is the output parse tree for the sentencé&Ve focus

on the linear discriminant functions: distribution is included in the class of probabilis-
' tic models and that the true parameter vecétois
Fylz,y) = <w, ¢(z,y)>, unique. The feature extractor of the TOP kernel for

182

the inputz is defined by: this we use a statistical parser which has previously
B A Ou(z,0) 9v(z,0) been shown to achieve state-of-the-art performance,
d6(2) = (w(z.0), =55 g,) namely that proposed in (Henderson, 2003). This
where wv(z,0) = logP(c=+1|z,§) — parser has two levels of parameterization. The first
log P(c=—1|z,). level of parameterization is in terms of a history-
In addition to being at least as good as théased generative probability model, but this level is
MAP classifier, the choice of the TOP kernel feanot appropriate for our purposes because it defines
ture extractor is motivated by the minimization ofan infinite number of parameters (one for every pos-
the binary classification error of a linear classifiesible partial parse history). When parsing a given
<w, ¢4(z)> + b. Tsuda (2002) demonstrates thasentence, the bounded set of parameters which are
this error is closely related to the estimation error ofelevant to a given parse are estimated using a neural
the posterior probability?(c=+1|z, 0*) by the esti- network. The weights of this neural network form
mator g(<w, ¢,(z)> + b), whereg is the sigmoid the second level of parameterization. There is a fi-
functiong(t) = 1/(1 + exp (—t)). nite number of these parameters. Neural network
The TOP kernel isn’t quite appropriate for structraining is applied to determine the values of these
tured classification tasks becausg z) is motivated parameters, which in turn determine the values of
by binary classificaton error minimization. In thethe probability model's parameters, which in turn
next subsection, we will adapt it to structured classidetermine the probabilistic model of parse trees.
fication. We do not use the complete set of neural network
) weights to define our kernels, but instead we define a
2.3 ATOP Kernel for Reranking third level of parameterization which only includes
We define the reranking task as selecting a parse trgg network’s output layer weights. These weights
from the list of candidate trees suggested by a probdefine a normalized exponential model, with the net-
bilistic model. Furthermore, we only consider learnwork’s hidden layer as the input features. When we
ing to rerank the output of a particular probabilisticried using the complete set of weights in some small
model, without requiring the classifier to have goodcale experiments, training the classifier was more
performance when applied to a candidate list prazcomputationally expensive, and actually performed
vided by a different model. In this case, it is naturaklightly worse than just using the output weights.
to model the probability that a parse tree is the besising just the output weights also allows us to make
candidate given the list of candidate trees: some approximations in the TOP reranking kernel

_ Pl which makes the classifier learning algorithm more
P(yk|f£, Y1y -y yS) - Zt Plzy)’ efficient.

wherey, ...,y is the list of candidate parse trees.
To construct a new TOP kernel for reranking, wes.1 A History-Based Probability Model

apply an approach similar to that used for the TORg \with many other statistical parsers (Ratnaparkhi,
kernel (Tsuda etal., 2002), but we consider the prolggg; Collins, 1999; Charniak, 2000), Henderson
ability P(yx|z, 1, . ..,ys,0") instead of the proba- (2003) uses a history-based model of parsing. He
bility P(c=+1|z,6*) considered by Tsuda. The re-gefines the mapping from phrase structure trees to

sulting feature extractor is given by: parse sequences using a form of left-corner parsing
g (. yx) = (v(:c,yk,é), m%b‘yf’é)v”v 8U(§g/lk7é))7 strategy (see (_Hen(_ierson,_2_003) for_ more details).
. L The parser actions include: introducing a new con-
where v(z,yi,0) = log P(yrly1,...,¥s,0) — stituent with a specified label, attaching one con-
log > Zizr, P(yelyn, - - ys,0). We will call this ker- stityent to another, and predicting the next word of
nel theTOP reranking kernel the sentence. A complete parse consists of a se-

guence of these actiondy,..., d,,, such that per-
formingdy,..., d,,, results in a complete phrase struc-
To complete the definition of the kernel, we needure tree.

to choose a probabilistic model of parsing. For Because this mapping to parse sequences is

3 The Probabilistic Model

183

one-to-one, and the word prediction actions innput to which others. First, each history representa-
a complete parsel,...,d,, specify the sentence, tion is assigned to the constituent which is on the top
P(d,,...,d,,) is equivalent to the joint probability of of the parser’s stack when it is computed. Then ear-
the output phrase structure tree and the input seler history representations whose constituents are
tence. This probability can be then be decomposedructurally local to the current representation’s con-
into the multiplication of the probabilities of eachstituent are input to the computation of the correct
action decisiond; conditioned on that decision’s representation. In this way, the number of represen-

prior parse historyly,..., d;_1. tations which information needs to pass through in
P(dy,..dp) = ILP(di|dy,....di—1) order to flow from history re_presentatio‘nto his-
tory representatiorj is determined by the structural
3.2 Estimating Decision Probabilities with a distance betweeiis constituent ang’s constituent,
Neural Network and not just the distance betweérand j in the

The parameters of the above probability model arearse sequence. This provides the neural network
the P(d;|dy,..,d;_1). There are an infinite num- With a linguistically appropriate inductive bias when
ber of these parameters, since the parse histofylearns the history representations, as explained in
d1,..., d;—1 grows with the length of the sentence. Inmore detail in (Henderson, 2003).

other work on history-based parsing, independence Once it has computed(d;,..,d;—1), the SSN
assumptions are applied so that only a finite amoutises a normalized exponential to estimate a proba-
of information from the parse history can be treate8ility distribution over the set of possible next deci-
as relevant to each parameter, thereby reducing tR#@nsd; given the history:

number of parameters to a finite set which can be P(d;|dy,...,di_1,0) ~
estimated directly. Instead, Henderson (2003) uses exp(<04;,h(d1,...di—1)>)
a neural network to induce a finite representation Dien(a;_y) P(<O0R(dr,di1)>)”

of this unbounded history, which we will denote
h{d1,..,di—1). Neural network training tries to find weights, corresponding to the parser action
such a history representation which preserves all t

.)) o d;_1) defines a set of possible next parser actions
information about the history which is relevant to es- (di-1) P P

L . - after the stepl;_, andf denotes the full set of model
timating the desired probability.

parameters.
P(di|dy,...,d;—1) = P(d;|h(dy,...,d;—1)) We trained SSN parsing models, using the on-line
Using a neural network architecture called Simplé(e'rsion of _Backpropagatio_n tq perform_ thg gradient
Synchrony Networks (SSNs), the history representzg-escem_W'th a maximum likelihood ijectlve fupc-
tion A(ds,..,d;_,) is incrementally computed from tion. This learning simultaneously trle_s to optimize
features of the previous decisioh_; plus a finite the parameters of the output computation and the pa-

set of previous history representationgl; ..., d;), rameters of the mappinggd ..., di—1). With multi-

j < i— 1. Each history representation is a finitel@yered networks such as SSNs, this training is not

vector of real numbers, called the network’s hiddelguara_mteed to converge to a _glo_bal opﬂmum, but in
layer. As long as the history representation for popractlcg a network whose criteria value is close to
sition i — 1 is always included in the inputs to thethe optimum can be found.
history representation for positianany information
about the entire sequence could be passed from his-
tory representation to history representation and b@nce we have defined a kernel over parse trees, gen-
used to estimate the desired probability. Howeveeral techniques for linear classifier optimization can
learning is biased towards paying more attention tbe used to learn the given task. The most sophis-
information which passes through fewer history repticated of these techniques (such as Support Vec-
resentations. tor Machines) are unfortunately too computationally
To exploit this learning bias, structural locality isexpensive to be used on large datasets like the Penn
used to determine which history representations afieeebank (Marcus et al., 1993). Instead we use a

where by #; we denote the set of output layer

Large-Margin Optimization

184

method which has often been shown to be virtuw = 0

ally as good, the Voted Perceptron (VP) (Freundanér j = 1 .. n

Schapire, 1998) algorithm. The VP algorithm was for k =2 .. s A
originally applied to parse reranking in (Collins and if <w,¢(27,yl)> > <w,¢(2?,y])>
Duffy, 2002) with the Tree kemnel. We modify the — w = w + A(yl,y))((a?, yl) — (a7, yl))
perceptron training algorithm to make it more suit-

gble for parsing, _Where zero-one classification loss Figure 1: The modified perceptron algorithm
is not the evaluation measure usually employed. We

also develop a variant of the kernel defined in sec- o
tion 2.3, which is more efficient when used with thd'@PPens because we compute the derivative of the
VP algorithm. normalization factor used in the network’s estima-

Given a list of candidate trees, we train the clast-Ion Of P(di|dy,...,di—1). This normalization factor

. . . depends on the output layer weights correspondin
sifier to select the tree with largest constitudnt P P y 9 P 9

. ...~ to all the possible next decisions (see section 3.2).
score. TheF; score is a measure of the similarity P ()

. . Tcpis makes an application of the VP algorithm in-
between the tree in question and the gold standa](eaSible in the case of a large vocabulary

parse, and is the standard way to evaluate the accu- . .
. We can address this problem by freezing the
racy of a parser. We denote tkgh candidate tree o)
y . P normalization factor when computing the feature
for thej'th sentencer’ by y;.. Without loss of gener-

) e) ~ vector. Note that we can rewrite the model log-
ality, let us assume that is the candidate tree with probability of the tree as:
the largestty score.

I log P(y|6) =
The Voted Perceptron algorithm is an ensem- exp(<Bq. h(d1,...di—1)>)
ble method for combining the various intermediate 2. log (ZteNmH) e;p(<9t,h(d1,.~,di_1)>)) -
models which are produced during training a per- >°.(<0g,, h(dy,...,d;—1)>)—
ceptron. It demonstrates more stable generalization 3", log Dten(d_y) €rP(<Op, h(d,..., di—1)>).

performance than the normal perceptron algorithfye treat the parameters used to compute the first
when the problem is not linearly separable (Freungy,m as different from the parameters used to com-
and Schapire, 1998), as is usually the case. pute the second term, and we define our kernel only
We modify the perceptron algorithm by introduc-using the parameters in the first term. This means
ing a new classification loss function. This modifi-that the second term does not effect the derivatives
cation enables us to treat differently the cases wheiie the formula for the feature vecter(z,y). Thus
the perceptron predicts a tree with Bnscore much the feature vector for the kernel will contain non-
smaller than that of the top candidate and the casgero entries only in the components corresponding
where the predicted and the top candidates have sim-the parser actions which are present in the candi-
ilar score values. The natural choice for the losgate derivation for the sentence, and thus in the first
function would beA(y],y!) = Fi(yl) — Fi(y]), vector component. We have applied this technique
where F1(yi) denotes theF; score value for the tothe TOP reranking kernel, the result of which we
parse tree/. This approach is very similar to slackwill call the efficient TOP reranking kernel
variable rescaling for Support Vector Machines pro- .
posed in (Tsochgntaridispgt al., 2004). The Iear?ﬂng The Experimental Results
algorithm we employed is presented in figure 1. \We used the Penn Treebank WSJ corpus (Marcus et
When applying kernels with a large training cor-al., 1993) to perform empirical experiments on the
pus, we face efficiency issues because of the larggoposed parsing models. In each case the input to
number of the neural network weights. Even thougkhe network is a sequence of tag-word pait&/e re-
we use only the output layer weights, this vectoport results for two different vocabulary sizes, vary-
grows with the size of the vocabulary, and thus caing in the frequency with which tag-word pairs must
be large. The kernels presented in section 2 all lead 2\ (1cad 4

: § 2\We used a publicly available tagger (Ratnaparkhi, 1996) to
to feature vectors without many zero values. Thigrovide the tags.

185

occur in the training set in order to be included ex- LR | LP |Fg—;
plicitly in the vocabulary. A frequency threshold of SSN-Freg200 87.2| 88.5| 87.8
200 resulted in a vocabulary of 508 tag-word pairs |Fisher-Freg200 87.2| 88.8| 87.9
(including tag-unknowrword pairs) and a threshold TOP-Frea:200 87.3|88.9| 88.1
of 20 resulted in 4215 tag-word pairs. We denote |TOP-Eff-Freq-200 || 87.3| 88.9 | 88.1
the probabilistic model trained with the vocabulary |SSN-Fre¢20 88.1| 89.2 | 88.6
of 508 by the SSN-Free200, the model trained with TOP-Eff-Freq:20 | 88.2| 89.7| 88.9

the vocabulary of 4215 by the SSN-Fre2p. i
Testing the probabilistic parser requires using gable 1: Percentage labeled constituent recall (LR),

beam search through the space of possible parsBEECision (LP), and a combination of bothy(k) on
We used a form of beam search which prunes tne@lidation set sentences of length at most 100.
search after the prediction of each word. We set the
width of this post-word beam to 40 for both testingmodel, but only the improvement of the TOP kernels
of the probabilistic model and generating the candis statistically significant. For the TOP kernel, the
date list for reranking. For training and testing ofmprovement over baseline is about the same with
the kernel models, we provided a candidate list corpoth vocabulary sizes. Also note that the perfor-
sisting of the top 20 parses found by the generativ@ance of the efficient TOP reranking kernel is the
probabilistic model. When using the Fisher kernelsame as that of the original TOP reranking kernel,
we added the log-probability of the tree given by théor the smaller vocabulary.
probabilistic model as the feature. This was not nec- For comparison to previous results, table 2 lists
essary for the TOP kernels because they already cdhe results on the testing set for our best model
tain a feature corresponding to the probability esti(TOP-Efficient-Freq20) and several other statisti-
mated by the probabilistic model (see section 2.3).cal parsers (Collins, 1999; Collins and Duffy, 2002;
We trained the VP model with all three kernelsCollins and Roark, 2004; Henderson, 2003; Char-
using the 508 word vocabulary (Fisher-Fe@§0, niak, 2000; Collins, 2000; Shen and Joshi, 2004;
TOP-Freg200, TOP-Eff-Freg200) but only the ef- Shen et al., 2003; Henderson, 2004; Bod, 2003).
ficient TOP reranking kernel model was trained withFirst note that the parser based on the TOP efficient
the vocabulary of 4215 words (TOP-Eff-Fre2D). kernel has better accuracy than (Henderson, 2003),
The non-sparsity of the feature vectors for other kewhich used the same parsing method as our base-
nels led to the excessive memory requirements atide model, although the trained network parameters
larger testing time. In each case, the VP model wasere not the same. When compared to other kernel
run for only one epoch. We would expect some immethods, our approach performs better than those
provement if running it for more epochs, as has bedmased on the Tree kernel (Collins and Duffy, 2002;
empirically demonstrated in other domains (Freun€ollins and Roark, 2004), and is only 0.2% worse
and Schapire, 1998). than the best results achieved by a kernel method for
To avoid repeated testing on the standard testingarsing (Shen et al., 2003; Shen and Joshi, 2004).
set, we first compare the different models with their
performance on the validation set. Note that the vaB Related Work
idation set wasn't used during learning of the kernel
models or for adjustment of any parameters. The first application of kernel methods to parsing

Standard measures of accuracy are shown in t42s proposed by Collins and Duffy (2002). They
ble 123 Both the Fisher kernel and the TOP kernelé‘sed the Tree kernel, where the features of a tree are

show better accuracy than the baseline probabilistfl! itS connected tree fragments. The VP algorithm

oAl oo resut A with th b . Iwas applied to rerank the output of a probabilistic
our results are computed with the evalb program fol- ;

lowing the standard criteria in (Collins, 1999), and using tthOde_I and demonstrated an improvement over the

standard training (sections 2-22, 39,832 sentences, 910,108seline.

words), validation (section 24, 1346 sentence, 31507 words),

and testing (section 23, 2416 sentences, 54268 words) sets “We measured significance with the randomized signifi-
(Collins, 1999). cance test of (Yeh, 2000).

186

LR | LP |Fg—1+ better performance comparing to the 0-1 loss func-
Collins99 88.1| 88.3| 88.2 tion when applied to a structured classification task
Collins&Duffy02 || 88.6| 88.9 | 88.7 (Tsochantaridis et al., 2004).
Collins&Roark04 | 88.4| 89.1| 88.8 All the described kernel methods are limited to
Henderson03 88.8| 89.5| 89.1 the reranking of candidates from an existing parser
Charniak00 89.6| 89.5| 895 due to the complexity of finding the best parse given
TOP-Eff-Freq>20|| 89.1| 90.1 | 89.6 a kernel (i.e. the decoding problem). (Taskar et
Collins00 89.6| 89.9| 89.7 al., 2004) suggested a method for maximal mar-
Shen&Joshi04 || 89.5| 90.0| 89.8 gin parsing which employs the dynamic program-
Shenetal.03 89.7| 90.0| 89.8 ming approach to decoding and parameter estima-
Henderson04 89.8|90.4| 90.1 tion problems. The efficiency of dynamic program-
Bod03 90.7]90.8] 90.7 ming means that the entire space of parses can be

* Fp=1 for previous models may have rounding errors. considered, not just a candidate list. However, not
Table 2: Percentage labeled constituent recall (LR&|l kernels are suitable for this method. The dy-
precision (LP), and a combination of boths(F) on namic programming approach requires the feature
the entire testing set. vector of a tree to be decomposable into a sum over

parts of the tree. In particular, this is impossible with
the TOP and Fisher kernels derived from the SSN

Shen and Joshi (2003) applied an SVM basercri1odel. Also, it isn’t clear whether the algorithm

voting algorithm with the Preference kernel defined . . :
remains tractable for a large training set with long

over pairs for reranking. o define the Preferencgemences’ since the authors only present results for

kernel they used the Tree kernel and the Linear ker-
))) entences of length less than or equal to 15.
nel as its underlying kernels and achieved state-o?—

the-art results with the Linear kernel.)
7 Conclusions

In (Shen et al., 2003) it was pointed out that
most of the arbitrary tree fragments allowed by th@his paper proposes a method for deriving a ker-
Tree kernel are linguistically meaningless. The ausel for reranking from a probabilistic model, and
thors suggested the use of Lexical Tree Adjoininglemonstrates state-of-the-art accuracy when this
Grammar (LTAG) based features as a more linguisnethod is applied to parse reranking. Contrary to
tically appropriate set of features. They empirimost of the previous research on kernel methods in
cally demonstrated that incorporation of these fegarsing, linguistic knowledge does not have to be ex-
tures helps to improve reranking performance. pressed through a list of features, but instead can be

Shen and Joshi (2004) proposed to improve maexpressed through the design of a probability model.
gin based methods for reranking by defining thdhe parameters of this probability model are then
margin not only between the top tree and all th&ained, so that they reflect what features of trees are
other trees in the candidate list but between all theglevant to parsing. The kernel is then derived from
pairs of parses in the ordered candidate list for théais trained model in such a way as to maximize its
given sentence. They achieved the best results whegefulness for reranking.
training with an uneven margin scaled by the heuris- We performed experiments on parse reranking us-
tic function of the candidates positions in the listing a neural network based statistical parser as both
One potential drawback of this method is that ithe probabilistic model and the source of the list
doesn’t take into account the actugl score of the of candidate parses. We used a madification of
candidate and considers only the position in the lighe Voted Perceptron algorithm to perform reranking
ordered by theF; score. We expect that an im-with the kernel. The results were amongst the best
provement could be achieved by combining our apeurrent statistical parsers, and only 0.2% worse than
proach of scaling updates by thg loss with the the best current parsing methods which use kernels.
all pairs approach of (Shen and Joshi, 2004). Usé&fe would expect further improvement if we used
of the F} loss function during training demonstrateddifferent models to derive the kernel and to gener-

187

ate the candidates, thereby exploiting the advantagesLanguage Technology Conpages 103-110, Edmon-
of combining multiple models, as do the better per- ton, Canada.

forming methods using kernels. James Henderson. 2004. Discriminative training of
In recent years, probabilistic models have become a neural network statistical parser. Rroc. 42nd

Commonp|ace in natural |anguage processing_ We Meeting of Assqciation for Computational Linguistics

believe that this approach to defining kernels would Barcelona, Spain.

simplify the problem of defining kernels for theseTommi S. Jaakkola and David Haussler. 1998. Ex-

tasks, and could be very useful for many of them. Ploiting generative models in discriminative classi-

In particular, maximum entropy models also use a fiers. Advances in Neural Information Processes Sys-
. ' . ; . tems 11

normalized exponential function to estimate proba- _ N

bilities, so all the methods discussed in this papé\{lltchell P. Marcus, Beatrice Santorini, and Mary Ann

. : Marcinkiewicz. 1993. Building a large annotated cor-
would be applicable to maximum entropy models. pus of English: The Penn Treebankomputational

This approach would be particularly useful for tasks |_inguistics 19(2):313-330.
where there is less data available than in parsing, for

.) . . Adwait Ratnaparkhi. 1996. A maximum entropy model
which large-margin methods work particularly well.” ™ - part-of-speech tagging. IRroc. Conf. on Empir-

ical Methods in Natural Language Processjmages
133-142, Univ. of Pennsylvania, PA.
References
o) Adwait Ratnaparkhi. 1999. Learning to parse natural
Rens Bod. 2003. An efficient |mp|ementat|0n of a new |anguage with maximum entropy modeldvlachine
DOP model. InProc. 10th Conf. of European Chap- | earning 34:151-175.
ter of the Association for Computational Linguistics
Budapest, Hungary. Libin Shen and Aravind K. Joshi. 2003. An SVM based
voting algorithm with application to parse reranking.
Eugene Charniak. 2000. A maximum-entropy-inspired In Proc. of the 7th Conf. on Computational Natural
parser. InProc. 1st Meeting of North American Language Learningpages 9—16, Edmonton, Canada.
Chapter of Association for Computational Linguistics))))
pages 132-139, Seattle, Washington. Libin Shen and Aravind K. Joshi. 2004. Flexible margin

selection for reranking with full pairwise samples. In
Michael Collins and Nigel Duffy. 2002. New ranking Proc. of the 1st Int. Joint Conf. on Natural Language
algorithms for parsing and tagging: Kernels over dis- ProcessingHainan Island, China.
crete structures and the voted perceptron. Ptoc. . . .
40th Meeting of Association for Computational Lin-LiPin Shen, Anoop Sarkar, and Aravind K. Joshi. 2003.
guistics pages 263-270. Using LTAG based fe_al_tures in parse reranking. In
Proc. of Conf. on Empirical Methods in Natural Lan-
Michael Collins and Brian Roark. 2004. Incremental 9uage Processingapporo, Japan.
parsing with the perceptron algorithm. Rroc. 42th
Meeting of Association for Computational Linguistics
Barcelona, Spain.

Ben Taskar, Dan Klein, Michael Collins, Daphne Koller,
and Christopher Manning. 2004. Max-margin pars-
ing. In Proc. Conf. on Empirical Methods in Natural

Michael Collins. 1999 Head-Driven Statistical Models ~ Language Processin@arcelona, Spain.

for Natural Language ParsingPh.D. thesis, Univer- oannis Tsochantaridis, Thomas Hofmann, Thorsten
sity of Pennsylvania, Philadelphia, PA. Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and structured
output spaces. IfProc. 21st Int. Conf. on Machine
Learning pages 823-830, Banff, Alberta, Canada.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. Broc. 17th Int. Conf. on Ma-
chine Learningpages 175-182, Stanford, CA.

. K. Tsuda, M. Kawanabe, G. Ratsch, S. Sonnenburg,
Yoav Freund and Robert E. Schapire. 1998. Large and K. Muller. 2002. A new discriminative ker-

margin classification using the perceptron algorithm. et ;
In Proc. of the 11th Annual Conf. on Computational 222{823%??;22?(: modelsNeural Computation
Learning Theorypages 209-217, Madisson WI.
)) Alexander Yeh. 2000. More accurate tests for the sta-
James Henderson. 2003. Inducing history representa-tjstical significance of the result differences. Froc.

tions for broad coverage statistical parsing. Froc. 17th International Conf. on Computational Linguis-
joint meeting of North American Chapter of the Asso- tics pages 947-953, Saarbruken, Germany.

ciation for Computational Linguistics and the Human

188

