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Abstract

Recent work on Conditional Random
Fields (CRFs) has demonstrated the need
for regularisation to counter the tendency
of these models to overfit. The standard
approach to regularising CRFs involves a
prior distribution over the model parame-
ters, typically requiring search over a hy-
perparameter space. In this paper we ad-
dress the overfitting problem from a dif-
ferent perspective, by factoring the CRF
distribution into a weighted product of in-
dividual “expert” CRF distributions. We
call this model a logarithmic opinion
pool (LOP) of CRFs (LOP-CRFs). We ap-
ply the LOP-CRF to two sequencing tasks.
Our results show that unregularised expert
CRFs with an unregularised CRF under
a LOP can outperform the unregularised
CRF, and attain a performance level close
to the regularised CRF. LOP-CRFs there-
fore provide a viable alternative to CRF
regularisation without the need for hyper-
parameter search.

1 Introduction

In recent years, conditional random fields (CRFs)
(Lafferty et al., 2001) have shown success on a num-
ber of natural language processing (NLP) tasks, in-
cluding shallow parsing (Sha and Pereira, 2003),
named entity recognition (McCallum and Li, 2003)
and information extraction from research papers
(Peng and McCallum, 2004). In general, this work
has demonstrated the susceptibility of CRFs to over-
fit the training data during parameter estimation. As

a consequence, it is now standard to use some form
of overfitting reduction in CRF training.

Recently, there have been a number of sophisti-
cated approaches to reducing overfitting in CRFs,
including automatic feature induction (McCallum,
2003) and a full Bayesian approach to training and
inference (Qi et al., 2005). These advanced meth-
ods tend to be difficult to implement and are of-
ten computationally expensive. Consequently, due
to its ease of implementation, the current standard
approach to reducing overfitting in CRFs is the use
of a prior distribution over the model parameters,
typically a Gaussian. The disadvantage with this
method, however, is that it requires adjusting the
value of one or more of the distribution’s hyper-
parameters. This usually involves manual or auto-
matic tuning on a development set, and can be an ex-
pensive process as the CRF must be retrained many
times for different hyperparameter values.

In this paper we address the overfitting problem
in CRFs from a different perspective. We factor the
CRF distribution into a weighted product of indi-
vidual expert CRF distributions, each focusing on
a particular subset of the distribution. We call this
model a logarithmic opinion pool (LOP) of CRFs
(LOP-CRFs), and provide a procedure for learning
the weight of each expert in the product. The LOP-
CRF framework is “parameter-free” in the sense that
it does not involve the requirement to adjust hyper-
parameter values.

LOP-CRFs are theoretically advantageous in that
their Kullback-Leibler divergence with a given dis-
tribution can be explicitly represented as a function
of the KL-divergence with each of their expert dis-
tributions. This provides a well-founded framework
for designing new overfitting reduction schemes:
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look to factorise a CRF distribution as a set of di-
verse experts.

We apply LOP-CRFs to two sequencing tasks in
NLP: named entity recognition and part-of-speech
tagging. Our results show that combination of un-
regularised expert CRFs with an unregularised stan-
dard CRF under a LOP can outperform the unreg-
ularised standard CRF, and attain a performance
level that rivals that of the regularised standard CRF.
LOP-CRFs therefore provide a viable alternative to
CRF regularisation without the need for hyperpa-
rameter search.

2 Conditional Random Fields

A linear chain CRF defines the conditional probabil-
ity of a state or label sequence s given an observed
sequence o via1:

p(s |o) =
1

Z(o)
exp

(

T+1

∑
t=1

∑
k

λk fk(st−1,st ,o, t)

)

(1)

where T is the length of both sequences, λk are pa-
rameters of the model and Z(o) is the partition func-
tion that ensures (1) represents a probability distri-
bution. The functions fk are feature functions rep-
resenting the occurrence of different events in the
sequences s and o.

The parameters λk can be estimated by maximis-
ing the conditional log-likelihood of a set of labelled
training sequences. The log-likelihood is given by:

L (λ ) = ∑
o,s

p̃(o,s) log p(s |o;λ )

= ∑
o,s

p̃(o,s)

[

T+1

∑
t=1

λ · f(s,o, t)

]

− ∑
o

p̃(o) logZ(o;λ )

where p̃(o,s) and p̃(o) are empirical distributions
defined by the training set. At the maximum like-
lihood solution the model satisfies a set of feature
constraints, whereby the expected count of each fea-
ture under the model is equal to its empirical count
on the training data:

1In this paper we assume there is a one-to-one mapping be-
tween states and labels, though this need not be the case.

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] = 0, ∀k

In general this cannot be solved for the λk in
closed form so numerical routines must be used.
Malouf (2002) and Sha and Pereira (2003) show
that gradient-based algorithms, particularly limited
memory variable metric (LMVM), require much
less time to reach convergence, for some NLP tasks,
than the iterative scaling methods (Della Pietra et
al., 1997) previously used for log-linear optimisa-
tion problems. In all our experiments we use the
LMVM method to train the CRFs.

For CRFs with general graphical structure, calcu-
lation of Ep(s|o)[ fk] is intractable, but for the linear
chain case Lafferty et al. (2001) describe an efficient
dynamic programming procedure for inference, sim-
ilar in nature to the forward-backward algorithm in
hidden Markov models.

3 Logarithmic Opinion Pools

In this paper an expert model refers a probabilistic
model that focuses on modelling a specific subset of
some probability distribution. The concept of com-
bining the distributions of a set of expert models via
a weighted product has previously been used in a
range of different application areas, including eco-
nomics and management science (Bordley, 1982),
and NLP (Osborne and Baldridge, 2004).

In this paper we restrict ourselves to sequence
models. Given a set of sequence model experts, in-
dexed by α , with conditional distributions pα(s |o)
and a set of non-negative normalised weights wα , a
logarithmic opinion pool 2 is defined as the distri-
bution:

pLOP(s |o) =
1

ZLOP(o) ∏
α

[pα(s |o)]wα (2)

with wα ≥ 0 and ∑α wα = 1, and where ZLOP(o) is
the normalisation constant:

ZLOP(o) = ∑
s

∏
α

[pα(s |o)]wα (3)

2Hinton (1999) introduced a variant of the LOP idea called
Product of Experts, in which expert distributions are multiplied
under a uniform weight distribution.
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The weight wα encodes our confidence in the opin-
ion of expert α .

Suppose that there is a “true” conditional distri-
bution q(s | o) which each pα(s | o) is attempting to
model. Heskes (1998) shows that the KL divergence
between q(s | o) and the LOP, can be decomposed
into two terms:

K(q, pLOP) = E −A (4)

= ∑
α

wαK (q, pα)−∑
α

wαK (pLOP, pα)

This tells us that the closeness of the LOP model
to q(s | o) is governed by a trade-off between two
terms: an E term, which represents the closeness
of the individual experts to q(s | o), and an A term,
which represents the closeness of the individual
experts to the LOP, and therefore indirectly to each
other. Hence for the LOP to model q well, we desire
models pα which are individually good models of q
(having low E) and are also diverse (having large A).

3.1 LOPs for CRFs

Because CRFs are log-linear models, we can see
from equation (2) that CRF experts are particularly
well suited to combination under a LOP. Indeed, the
resulting LOP is itself a CRF, the LOP-CRF, with
potential functions given by a log-linear combina-
tion of the potential functions of the experts, with
weights wα . As a consequence of this, the nor-
malisation constant for the LOP-CRF can be calcu-
lated efficiently via the usual forward-backward al-
gorithm for CRFs. Note that there is a distinction be-
tween normalisation constant for the LOP-CRF, ZLOP

as given in equation (3), and the partition function of
the LOP-CRF, Z. The two are related as follows:

pLOP(s |o) =
1

ZLOP(o) ∏
α

[pα(s |o)]wα

=
1

ZLOP(o) ∏
α

[

Uα(s |o)

Zα(o)

]wα

=
∏α [Uα(s |o)]wα

ZLOP(o)∏α [Zα(o)]wα

where Uα = exp∑T+1
t=1 ∑k λαk fαk(st−1,st ,o, t) and so

logZ(o) = logZLOP(o)+∑
α

wα logZα(o)

This relationship will be useful below, when we de-
scribe how to train the weights wα of a LOP-CRF.

In this paper we will use the term LOP-CRF
weights to refer to the weights wα in the weighted
product of the LOP-CRF distribution and the term
parameters to refer to the parameters λαk of each
expert CRF α .

3.2 Training LOP-CRFs

In our LOP-CRF training procedure we first train
the expert CRFs unregularised on the training data.
Then, treating the experts as static pre-trained mod-
els, we train the LOP-CRF weights wα to maximise
the log-likelihood of the training data. This training
process is “parameter-free” in that neither stage in-
volves the use of a prior distribution over expert CRF
parameters or LOP-CRF weights, and so avoids the
requirement to adjust hyperparameter values.

The likelihood of a data set under a LOP-CRF, as
a function of the LOP-CRF weights, is given by:

L(w) = ∏
o,s

pLOP(s |o;w) p̃(o,s)

= ∏
o,s

[

1
ZLOP(o;w) ∏

α
pα(s |o)wα

]p̃(o,s)

After taking logs and rearranging, the log-
likelihood can be expressed as:

L (w) = ∑
o,s

p̃(o,s)∑
α

wα log pα(s |o)

− ∑
o

p̃(o) logZLOP(o;w)

= ∑
α

wα ∑
o,s

p̃(o,s) log pα(s |o)

+ ∑
α

wα ∑
o

p̃(o) logZα(o)

− ∑
o

p̃(o) logZ(o;w)

For the first two terms, the quantities that are mul-
tiplied by wα inside the (outer) sums are indepen-
dent of the weights, and can be evaluated once at the
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beginning of training. The third term involves the
partition function for the LOP-CRF and so is a func-
tion of the weights. It can be evaluated efficiently as
usual for a standard CRF.

Taking derivatives with respect to wβ and rear-
ranging, we obtain:

∂L (w)

∂wβ
= ∑

o,s
p̃(o,s) log pβ (s |o)

+ ∑
o

p̃(o) logZβ (o)

− ∑
o

p̃(o)EpLOP(s|o)

[

∑
t

logUβ t(o,s)
]

where Uβ t(o,s) is the value of the potential function
for expert β on clique t under the labelling s for ob-
servation o. In a way similar to the representation
of the expected feature count in a standard CRF, the
third term may be re-written as:

−∑
o

∑
t

∑
s′,s′′

pLOP(st−1 = s′,st = s′′,o) logUβ t(s
′
,s′′,o)

Hence the derivative is tractable because we can use
dynamic programming to efficiently calculate the
pairwise marginal distribution for the LOP-CRF.

Using these expressions we can efficiently train
the LOP-CRF weights to maximise the log-
likelihood of the data set.3 We make use of the
LMVM method mentioned earlier to do this. We
will refer to a LOP-CRF with weights trained using
this procedure as an unregularised LOP-CRF.

3.2.1 Regularisation
The “parameter-free” aspect of the training pro-

cedure we introduced in the previous section relies
on the fact that we do not use regularisation when
training the LOP-CRF weights wα . However, there
is a possibility that this may lead to overfitting of
the training data. In order to investigate this, we
develop a regularised version of the training proce-
dure and compare the results obtained with each. We

3We must ensure that the weights are non-negative and nor-
malised. We achieve this by parameterising the weights as func-
tions of a set of unconstrained variables via a softmax transfor-
mation. The values of the log-likelihood and its derivatives with
respect to the unconstrained variables can be derived from the
corresponding values for the weights wα .

use a prior distribution over the LOP-CRF weights.
As the weights are non-negative and normalised we
use a Dirichlet distribution, whose density function
is given by:

p(w) =
Γ(∑α θα)

∏α Γ(θα) ∏
α

wθα−1
α

where the θα are hyperparameters.

Under this distribution, ignoring terms that are
independent of the weights, the regularised log-
likelihood involves an additional term:

∑
α

(θα −1) logwα

We assume a single value θ across all weights. The
derivative of the regularised log-likelihood with
respect to weight wβ then involves an additional
term 1

wβ
(θ − 1). In our experiments we use the

development set to optimise the value of θ . We will
refer to a LOP-CRF with weights trained using this
procedure as a regularised LOP-CRF.

4 The Tasks

In this paper we apply LOP-CRFs to two sequence
labelling tasks in NLP: named entity recognition
(NER) and part-of-speech tagging (POS tagging).

4.1 Named Entity Recognition

NER involves the identification of the location and
type of pre-defined entities within a sentence and is
often used as a sub-process in information extrac-
tion systems. With NER the CRF is presented with
a set of sentences and must label each word so as to
indicate whether the word appears outside an entity
(O), at the beginning of an entity of type X (B-X) or
within the continuation of an entity of type X (I-X).

All our results for NER are reported on the
CoNLL-2003 shared task dataset (Tjong Kim Sang
and De Meulder, 2003). For this dataset the en-
tity types are: persons (PER), locations (LOC),
organisations (ORG) and miscellaneous (MISC).
The training set consists of 14,987 sentences and
204,567 tokens, the development set consists of
3,466 sentences and 51,578 tokens and the test set
consists of 3,684 sentences and 46,666 tokens.
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4.2 Part-of-Speech Tagging

POS tagging involves labelling each word in a sen-
tence with its part-of-speech, for example noun,
verb, adjective, etc. For our experiments we use the
CoNLL-2000 shared task dataset (Tjong Kim Sang
and Buchholz, 2000). This has 48 different POS
tags. In order to make training time manageable4,
we collapse the number of POS tags from 48 to 5
following the procedure used in (McCallum et al.,
2003). In summary:

• All types of noun collapse to category N.

• All types of verb collapse to category V.

• All types of adjective collapse to category J.

• All types of adverb collapse to category R.

• All other POS tags collapse to category O.

The training set consists of 7,300 sentences and
173,542 tokens, the development set consists of
1,636 sentences and 38,185 tokens and the test set
consists of 2,012 sentences and 47,377 tokens.

4.3 Expert sets

For each task we compare the performance of the
LOP-CRF to that of the standard CRF by defining
a single, complex CRF, which we call a monolithic
CRF, and a range of expert sets.

The monolithic CRF for NER comprises a num-
ber of word and POS tag features in a window of
five words around the current word, along with a
set of orthographic features defined on the current
word. These are based on those found in (Curran and
Clark, 2003). Examples include whether the cur-
rent word is capitalised, is an initial, contains a digit,
contains punctuation, etc. The monolithic CRF for
NER has 450,345 features.

The monolithic CRF for POS tagging comprises
word and POS features similar to those in the NER
monolithic model, but over a smaller number of or-
thographic features. The monolithic model for POS
tagging has 188,448 features.

Each of our expert sets consists of a number of
CRF experts. Usually these experts are designed to

4See (Cohn et al., 2005) for a scaling method allowing the
full POS tagging task with CRFs.

focus on modelling a particular aspect or subset of
the distribution. As we saw earlier, the aim here is
to define experts that model parts of the distribution
well while retaining mutual diversity. The experts
from a particular expert set are combined under a
LOP-CRF and the weights are trained as described
previously.

We define our range of expert sets as follows:

• Simple consists of the monolithic CRF and a
single expert comprising a reduced subset of
the features in the monolithic CRF. This re-
duced CRF models the entire distribution rather
than focusing on a particular aspect or subset,
but is much less expressive than the monolithic
model. The reduced model comprises 24,818
features for NER and 47,420 features for POS
tagging.

• Positional consists of the monolithic CRF and
a partition of the features in the monolithic
CRF into three experts, each consisting only of
features that involve events either behind, at or
ahead of the current sequence position.

• Label consists of the monolithic CRF and a
partition of the features in the monolithic CRF
into five experts, one for each label. For NER
an expert corresponding to label X consists
only of features that involve labels B-X or I-
X at the current or previous positions, while for
POS tagging an expert corresponding to label
X consists only of features that involve label
X at the current or previous positions. These
experts therefore focus on trying to model the
distribution of a particular label.

• Random consists of the monolithic CRF and a
random partition of the features in the mono-
lithic CRF into four experts. This acts as a
baseline to ascertain the performance that can
be expected from an expert set that is not de-
fined via any linguistic intuition.

5 Experiments

To compare the performance of LOP-CRFs trained
using the procedure we described previously to that
of a standard CRF regularised with a Gaussian prior,
we do the following for both NER and POS tagging:
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• Train a monolithic CRF with regularisation us-
ing a Gaussian prior. We use the development
set to optimise the value of the variance hyper-
parameter.

• Train every expert CRF in each expert set with-
out regularisation (each expert set includes the
monolithic CRF, which clearly need only be
trained once).

• For each expert set, create a LOP-CRF from
the expert CRFs and train the weights of the
LOP-CRF without regularisation. We compare
its performance to that of the unregularised and
regularised monolithic CRFs.

• To investigate whether training the LOP-CRF
weights contributes significantly to the LOP-
CRF’s performance, for each expert set we cre-
ate a LOP-CRF with uniform weights and com-
pare its performance to that of the LOP-CRF
with trained weights.

• To investigate whether unregularised training
of the LOP-CRF weights leads to overfitting,
for each expert set we train the weights of the
LOP-CRF with regularisation using a Dirich-
let prior. We optimise the hyperparameter in
the Dirichlet distribution on the development
set. We then compare the performance of the
LOP-CRF with regularised weights to that of
the LOP-CRF with unregularised weights.

6 Results

6.1 Experts

Before presenting results for the LOP-CRFs, we
briefly give performance figures for the monolithic
CRFs and expert CRFs in isolation. For illustration,
we do this for NER models only. Table 1 shows F
scores on the development set for the NER CRFs.
We see that, as expected, the expert CRFs in iso-
lation model the data relatively poorly compared to
the monolithic CRFs. Some of the label experts, for
example, attain relatively low F scores as they focus
only on modelling one particular label. Similar be-
haviour was observed for the POS tagging models.

Expert F score

Monolithic unreg. 88.33
Monolithic reg. 89.84

Reduced 79.62

Positional 1 86.96
Positional 2 73.11
Positional 3 73.08

Label LOC 41.96
Label MISC 22.03
Label ORG 29.13
Label PER 40.49

Label O 60.44

Random 1 70.34
Random 2 67.76
Random 3 67.97
Random 4 70.17

Table 1: Development set F scores for NER experts

6.2 LOP-CRFs with unregularised weights
In this section we present results for LOP-CRFs with
unregularised weights. Table 2 gives F scores for
NER LOP-CRFs while Table 3 gives accuracies for
the POS tagging LOP-CRFs. The monolithic CRF
scores are included for comparison. Both tables il-
lustrate the following points:

• In every case the LOP-CRFs outperform the
unregularised monolithic CRF

• In most cases the performance of LOP-CRFs
rivals that of the regularised monolithic CRF,
and in some cases exceeds it.

We use McNemar’s matched-pairs test (Gillick
and Cox, 1989) on point-wise labelling errors to ex-
amine the statistical significance of these results. We
test significance at the 5% level. At this threshold,
all the LOP-CRFs significantly outperform the cor-
responding unregularised monolithic CRF. In addi-
tion, those marked with ∗ show a significant im-
provement over the regularised monolithic CRF.
Only the value marked with † in Table 3 significantly
under performs the regularised monolithic. All other
values a do not differ significantly from those of the
regularised monolithic CRF at the 5% level.

These results show that LOP-CRFs with unreg-
ularised weights can lead to performance improve-
ments that equal or exceed those achieved from a
conventional regularisation approach using a Gaus-
sian prior. The important difference, however, is that
the LOP-CRF approach is “parameter-free” in the
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Expert set Development set Test set

Monolithic unreg. 88.33 81.87
Monolithic reg. 89.84 83.98

Simple 90.26 84.22∗

Positional 90.35 84.71∗

Label 89.30 83.27
Random 88.84 83.06

Table 2: F scores for NER unregularised LOP-CRFs

Expert set Development set Test set

Monolithic unreg. 97.92 97.65
Monolithic reg. 98.02 97.84

Simple 98.31∗ 98.12∗

Positional 98.03 97.81
Label 97.99 97.77

Random 97.99 97.76†

Table 3: Accuracies for POS tagging unregularised
LOP-CRFs

sense that each expert CRF in the LOP-CRF is un-
regularised and the LOP weight training is also un-
regularised. We are therefore not required to search
a hyperparameter space. As an illustration, to ob-
tain our best results for the POS tagging regularised
monolithic model, we re-trained using 15 different
values of the Gaussian prior variance. With the
LOP-CRF we trained each expert CRF and the LOP
weights only once.

As an illustration of a typical weight distribution
resulting from the training procedure, the positional
LOP-CRF for POS tagging attaches weight 0.45 to
the monolithic model and roughly equal weights to
the other three experts.

6.3 LOP-CRFs with uniform weights

By training LOP-CRF weights using the procedure
we introduce in this paper, we allow the weights to
take on non-uniform values. This corresponds to
letting the opinion of some experts take precedence
over others in the LOP-CRF’s decision making. An
alternative, simpler, approach would be to com-
bine the experts under a LOP with uniform weights,
thereby avoiding the weight training stage. We
would like to ascertain whether this approach will
significantly reduce the LOP-CRF’s performance.
As an illustration, Table 4 gives accuracies for LOP-
CRFs with uniform weights for POS tagging. A sim-
ilar pattern is observed for NER. Comparing these
values to those in Tables 2 and 3, we can see that in

Expert set Development set Test set

Simple 98.30 98.12
Positional 97.97 97.79

Label 97.85 97.73
Random 97.82 97.74

Table 4: Accuracies for POS tagging uniform LOP-
CRFs

general LOP-CRFs with uniform weights, although
still performing significantly better than the unreg-
ularised monolithic CRF, generally under perform
LOP-CRFs with trained weights. This suggests that
the choice of weights can be important, and justifies
the weight training stage.

6.4 LOP-CRFs with regularised weights
To investigate whether unregularised training of the
LOP-CRF weights leads to overfitting, we train
the LOP-CRF with regularisation using a Dirich-
let prior. The results we obtain show that in most
cases a LOP-CRF with regularised weights achieves
an almost identical performance to that with unreg-
ularised weights, and suggests there is little to be
gained by weight regularisation. This is probably
due to the fact that in our LOP-CRFs the number
of experts, and therefore weights, is generally small
and so there is little capacity for overfitting. We con-
jecture that although other choices of expert set may
comprise many more experts than in our examples,
the numbers are likely to be relatively small in com-
parison to, for example, the number of parameters in
the individual experts. We therefore suggest that any
overfitting effect is likely to be limited.

6.5 Choice of Expert Sets
We can see from Tables 2 and 3 that the performance
of a LOP-CRF varies with the choice of expert set.
For example, in our tasks the simple and positional
expert sets perform better than those for the label
and random sets. For an explanation here, we re-
fer back to our discussion of equation (5). We con-
jecture that the simple and positional expert sets
achieve good performance in the LOP-CRF because
they consist of experts that are diverse while simulta-
neously being reasonable models of the data. The la-
bel expert set exhibits greater diversity between the
experts, because each expert focuses on modelling a
particular label only, but each expert is a relatively
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poor model of the entire distribution and the corre-
sponding LOP-CRF performs worse. Similarly, the
random experts are in general better models of the
entire distribution but tend to be less diverse because
they do not focus on any one aspect or subset of it.
Intuitively, then, we want to devise experts that pro-
vide diverse but accurate views on the data.

The expert sets we present in this paper were
motivated by linguistic intuition, but clearly many
choices exist. It remains an important open question
as to how to automatically construct expert sets for
good performance on a given task, and we intend to
pursue this avenue in future research.

7 Conclusion and future work

In this paper we have introduced the logarithmic
opinion pool of CRFs as a way to address overfit-
ting in CRF models. Our results show that a LOP-
CRF can provide a competitive alternative to con-
ventional regularisation with a prior while avoiding
the requirement to search a hyperparameter space.

We have seen that, for a variety of types of expert,
combination of expert CRFs with an unregularised
standard CRF under a LOP with optimised weights
can outperform the unregularised standard CRF and
rival the performance of a regularised standard CRF.

We have shown how these advantages a LOP-
CRF provides have a firm theoretical foundation in
terms of the decomposition of the KL-divergence
between a LOP-CRF and a target distribution, and
how this provides a framework for designing new
overfitting reduction schemes in terms of construct-
ing diverse experts.

In this work we have considered training the
weights of a LOP-CRF using pre-trained, static ex-
perts. In future we intend to investigate cooperative
training of LOP-CRF weights and the parameters of
each expert in an expert set.
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